Real-Time Optimization and Control of Next-Generation Distribution
Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution Infrastructure This project develops innovative, real-time optimization and control methods for next-generation
Improving Mid-Course Flight Through an Application of Real-Time Optimal Control
2017-12-01
COURSE FLIGHT THROUGH AN APPLICATION OF REAL- TIME OPTIMAL CONTROL by Mark R. Roncoroni December 2017 Thesis Advisor: Ronald Proulx Co...collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources...AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVING MID-COURSE FLIGHT THROUGH AN APPLICATION OF REAL- TIME OPTIMAL CONTROL 5. FUNDING
Using real time traveler demand data to optimize commuter rail feeder systems.
DOT National Transportation Integrated Search
2012-08-01
"This report focuses on real time optimization of the Commuter Rail Circulator Route Network Design Problem (CRCNDP). The route configuration of the circulator system where to stop and the route among the stops is determined on a real-time ba...
A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy.
Sans, Victor; Porwol, Luzian; Dragone, Vincenza; Cronin, Leroy
2015-02-01
A configurable platform for synthetic chemistry incorporating an in-line benchtop NMR that is capable of monitoring and controlling organic reactions in real-time is presented. The platform is controlled via a modular LabView software control system for the hardware, NMR, data analysis and feedback optimization. Using this platform we report the real-time advanced structural characterization of reaction mixtures, including 19 F, 13 C, DEPT, 2D NMR spectroscopy (COSY, HSQC and 19 F-COSY) for the first time. Finally, the potential of this technique is demonstrated through the optimization of a catalytic organic reaction in real-time, showing its applicability to self-optimizing systems using criteria such as stereoselectivity, multi-nuclear measurements or 2D correlations.
Closed-Loop Optimal Control Implementations for Space Applications
2016-12-01
analyses of a series of optimal control problems, several real- time optimal control algorithms are developed that continuously adapt to feedback on the...through the analyses of a series of optimal control problems, several real- time optimal control algorithms are developed that continuously adapt to...information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering
NASA Technical Reports Server (NTRS)
Mehra, R. K.; Washburn, R. B.; Sajan, S.; Carroll, J. V.
1979-01-01
A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions.
Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok; ...
2016-01-01
Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok
Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less
Sans, Victor; Porwol, Luzian; Dragone, Vincenza
2015-01-01
A configurable platform for synthetic chemistry incorporating an in-line benchtop NMR that is capable of monitoring and controlling organic reactions in real-time is presented. The platform is controlled via a modular LabView software control system for the hardware, NMR, data analysis and feedback optimization. Using this platform we report the real-time advanced structural characterization of reaction mixtures, including 19F, 13C, DEPT, 2D NMR spectroscopy (COSY, HSQC and 19F-COSY) for the first time. Finally, the potential of this technique is demonstrated through the optimization of a catalytic organic reaction in real-time, showing its applicability to self-optimizing systems using criteria such as stereoselectivity, multi-nuclear measurements or 2D correlations. PMID:29560211
Sequence Optimized Real-Time RT-PCR Assay for Detection of Crimean-Congo Hemorrhagic Fever Virus
2017-03-21
19-23]. Real-56 time reverse-transcription PCR remains the gold standard for quantitative , sensitive, and specific 57 detection of CCHFV; however...five-fold in two different series , and samples were run by real- time RT-PCR 116 in triplicate. The preliminary LOD was the lowest RNA dilution where...1 Sequence optimized real- time RT-PCR assay for detection of Crimean-Congo hemorrhagic fever 1 virus 2 3 JW Koehler1, KL Delp1, AT Hall1, SP
Pokharel, Shyam; Rana, Suresh; Blikenstaff, Joseph; Sadeghi, Amir; Prestidge, Bradley
2013-07-08
The purpose of this study is to investigate the effectiveness of the HIPO planning and optimization algorithm for real-time prostate HDR brachytherapy. This study consists of 20 patients who underwent ultrasound-based real-time HDR brachytherapy of the prostate using the treatment planning system called Oncentra Prostate (SWIFT version 3.0). The treatment plans for all patients were optimized using inverse dose-volume histogram-based optimization followed by graphical optimization (GRO) in real time. The GRO is manual manipulation of isodose lines slice by slice. The quality of the plan heavily depends on planner expertise and experience. The data for all patients were retrieved later, and treatment plans were created and optimized using HIPO algorithm with the same set of dose constraints, number of catheters, and set of contours as in the real-time optimization algorithm. The HIPO algorithm is a hybrid because it combines both stochastic and deterministic algorithms. The stochastic algorithm, called simulated annealing, searches the optimal catheter distributions for a given set of dose objectives. The deterministic algorithm, called dose-volume histogram-based optimization (DVHO), optimizes three-dimensional dose distribution quickly by moving straight downhill once it is in the advantageous region of the search space given by the stochastic algorithm. The PTV receiving 100% of the prescription dose (V100) was 97.56% and 95.38% with GRO and HIPO, respectively. The mean dose (D(mean)) and minimum dose to 10% volume (D10) for the urethra, rectum, and bladder were all statistically lower with HIPO compared to GRO using the student pair t-test at 5% significance level. HIPO can provide treatment plans with comparable target coverage to that of GRO with a reduction in dose to the critical structures.
NASA Technical Reports Server (NTRS)
Leonard, Michael W.
2013-01-01
Integration of the Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) System into the control system of a Short Takeoff and Landing Mobility Concept Vehicle simulation presents a challenge because the CAPIO formulation requires that constrained optimization problems be solved at the controller operating frequency. We present a solution that utilizes a modified version of the well-known L-BFGS-B solver. Despite the iterative nature of the solver, the method is seen to converge in real time with sufficient reliability to support three weeks of piloted runs at the NASA Ames Vertical Motion Simulator (VMS) facility. The results of the optimization are seen to be excellent in the vast majority of real-time frames. Deficiencies in the quality of the results in some frames are shown to be improvable with simple termination criteria adjustments, though more real-time optimization iterations would be required.
Can Subjects be Guided to Optimal Decisions The Use of a Real-Time Training Intervention Model
2016-06-01
execution of the task and may then be analyzed to determine if there is correlation between designated factors (scores, proportion of time in each...state with their decision performance in real time could allow training systems to be designed to tailor training to the individual decision maker...release; distribution is unlimited CAN SUBJECTS BE GUIDED TO OPTIMAL DECISIONS? THE USE OF A REAL- TIME TRAINING INTERVENTION MODEL by Travis D
Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun
2014-01-01
In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.
Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.
NASA Astrophysics Data System (ADS)
Hawary, A. F.; Razak, N. A.
2018-05-01
Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.
On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending
NASA Astrophysics Data System (ADS)
Zheng, Qiangang; Zhang, Haibo; Miao, Lizhen; Sun, Fengyong
2017-11-01
A real-time optimization control method is proposed to extend turbo-fan engine service life. This real-time optimization control is based on an on-board engine mode, which is devised by a MRR-LSSVR (multi-input multi-output recursive reduced least squares support vector regression method). To solve the optimization problem, a FSQP (feasible sequential quadratic programming) algorithm is utilized. The thermal mechanical fatigue is taken into account during the optimization process. Furthermore, to describe the engine life decaying, a thermal mechanical fatigue model of engine acceleration process is established. The optimization objective function not only contains the sub-item which can get fast response of the engine, but also concludes the sub-item of the total mechanical strain range which has positive relationship to engine fatigue life. Finally, the simulations of the conventional optimization control which just consider engine acceleration performance or the proposed optimization method have been conducted. The simulations demonstrate that the time of the two control methods from idle to 99.5 % of the maximum power are equal. However, the engine life using the proposed optimization method could be surprisingly increased by 36.17 % compared with that using conventional optimization control.
Online gaming for learning optimal team strategies in real time
NASA Astrophysics Data System (ADS)
Hudas, Gregory; Lewis, F. L.; Vamvoudakis, K. G.
2010-04-01
This paper first presents an overall view for dynamical decision-making in teams, both cooperative and competitive. Strategies for team decision problems, including optimal control, zero-sum 2-player games (H-infinity control) and so on are normally solved for off-line by solving associated matrix equations such as the Riccati equation. However, using that approach, players cannot change their objectives online in real time without calling for a completely new off-line solution for the new strategies. Therefore, in this paper we give a method for learning optimal team strategies online in real time as team dynamical play unfolds. In the linear quadratic regulator case, for instance, the method learns the Riccati equation solution online without ever solving the Riccati equation. This allows for truly dynamical team decisions where objective functions can change in real time and the system dynamics can be time-varying.
An Augmented Lagrangian Filter Method for Real-Time Embedded Optimization
Chiang, Nai -Yuan; Huang, Rui; Zavala, Victor M.
2017-04-17
We present a filter line-search algorithm for nonconvex continuous optimization that combines an augmented Lagrangian function and a constraint violation metric to accept and reject steps. The approach is motivated by real-time optimization applications that need to be executed on embedded computing platforms with limited memory and processor speeds. The proposed method enables primal–dual regularization of the linear algebra system that in turn permits the use of solution strategies with lower computing overheads. We prove that the proposed algorithm is globally convergent and we demonstrate the developments using a nonconvex real-time optimization application for a building heating, ventilation, and airmore » conditioning system. Our numerical tests are performed on a standard processor and on an embedded platform. Lastly, we demonstrate that the approach reduces solution times by a factor of over 1000.« less
An Augmented Lagrangian Filter Method for Real-Time Embedded Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Nai -Yuan; Huang, Rui; Zavala, Victor M.
We present a filter line-search algorithm for nonconvex continuous optimization that combines an augmented Lagrangian function and a constraint violation metric to accept and reject steps. The approach is motivated by real-time optimization applications that need to be executed on embedded computing platforms with limited memory and processor speeds. The proposed method enables primal–dual regularization of the linear algebra system that in turn permits the use of solution strategies with lower computing overheads. We prove that the proposed algorithm is globally convergent and we demonstrate the developments using a nonconvex real-time optimization application for a building heating, ventilation, and airmore » conditioning system. Our numerical tests are performed on a standard processor and on an embedded platform. Lastly, we demonstrate that the approach reduces solution times by a factor of over 1000.« less
Event Oriented Design and Adaptive Multiprocessing
1991-08-31
System 5 2.3 The Classification 5 2.4 Real-Time Systems 7 2.5 Non Real-Time Systems 10 2.6 Common Characterizations of all Software Systems 10 2.7... Non -Optimal Guarantee Test Theorem 37 6.3.2 Chetto’s Optimal Guarantee Test Theorem 37 6.3.3 Multistate Case: An Extended Guarantee 39 Test Theorem...which subdivides all software systems according to the way in which they operate, such as interactive, non interactive, real-time, etc. Having defined
Rapid near-optimal aerospace plane trajectory generation and guidance
NASA Technical Reports Server (NTRS)
Calise, A. J.; Corban, J. E.; Markopoulos, N.
1991-01-01
Effort was directed toward the problems of the real time trajectory optimization and guidance law development for the National Aerospace Plane (NASP) applications. In particular, singular perturbation methods were used to develop guidance algorithms suitable for onboard, real time implementation. The progress made in this research effort is reported.
Real Time Optimal Control of Supercapacitor Operation for Frequency Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yusheng; Panwar, Mayank; Mohanpurkar, Manish
2016-07-01
Supercapacitors are gaining wider applications in power systems due to fast dynamic response. Utilizing supercapacitors by means of power electronics interfaces for power compensation is a proven effective technique. For applications such as requency restoration if the cost of supercapacitors maintenance as well as the energy loss on the power electronics interfaces are addressed. It is infeasible to use traditional optimization control methods to mitigate the impacts of frequent cycling. This paper proposes a Front End Controller (FEC) using Generalized Predictive Control featuring real time receding optimization. The optimization constraints are based on cost and thermal management to enhance tomore » the utilization efficiency of supercapacitors. A rigorous mathematical derivation is conducted and test results acquired from Digital Real Time Simulator are provided to demonstrate effectiveness.« less
Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Xu, Yan; Tomsovic, Kevin
In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG and price responsive loads. The microgrid coordinates the energy consumption or production of its components and trades electricity in both the day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total costmore » of operation minus total benefit of demand. This formulation can be solved by mixed integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator, a battery and a responsive load show the advantage of stochastic optimization in addition to robust optimization.« less
Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
Liu, Guodong; Xu, Yan; Tomsovic, Kevin
2016-01-01
In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG and price responsive loads. The microgrid coordinates the energy consumption or production of its components and trades electricity in both the day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total costmore » of operation minus total benefit of demand. This formulation can be solved by mixed integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator, a battery and a responsive load show the advantage of stochastic optimization in addition to robust optimization.« less
Stochastic Optimization for an Analytical Model of Saltwater Intrusion in Coastal Aquifers
Stratis, Paris N.; Karatzas, George P.; Papadopoulou, Elena P.; Zakynthinaki, Maria S.; Saridakis, Yiannis G.
2016-01-01
The present study implements a stochastic optimization technique to optimally manage freshwater pumping from coastal aquifers. Our simulations utilize the well-known sharp interface model for saltwater intrusion in coastal aquifers together with its known analytical solution. The objective is to maximize the total volume of freshwater pumped by the wells from the aquifer while, at the same time, protecting the aquifer from saltwater intrusion. In the direction of dealing with this problem in real time, the ALOPEX stochastic optimization method is used, to optimize the pumping rates of the wells, coupled with a penalty-based strategy that keeps the saltwater front at a safe distance from the wells. Several numerical optimization results, that simulate a known real aquifer case, are presented. The results explore the computational performance of the chosen stochastic optimization method as well as its abilities to manage freshwater pumping in real aquifer environments. PMID:27689362
Optimal Reservoir Operation using Stochastic Model Predictive Control
NASA Astrophysics Data System (ADS)
Sahu, R.; McLaughlin, D.
2016-12-01
Hydropower operations are typically designed to fulfill contracts negotiated with consumers who need reliable energy supplies, despite uncertainties in reservoir inflows. In addition to providing reliable power the reservoir operator needs to take into account environmental factors such as downstream flooding or compliance with minimum flow requirements. From a dynamical systems perspective, the reservoir operating strategy must cope with conflicting objectives in the presence of random disturbances. In order to achieve optimal performance, the reservoir system needs to continually adapt to disturbances in real time. Model Predictive Control (MPC) is a real-time control technique that adapts by deriving the reservoir release at each decision time from the current state of the system. Here an ensemble-based version of MPC (SMPC) is applied to a generic reservoir to determine both the optimal power contract, considering future inflow uncertainty, and a real-time operating strategy that attempts to satisfy the contract. Contract selection and real-time operation are coupled in an optimization framework that also defines a Pareto trade off between the revenue generated from energy production and the environmental damage resulting from uncontrolled reservoir spills. Further insight is provided by a sensitivity analysis of key parameters specified in the SMPC technique. The results demonstrate that SMPC is suitable for multi-objective planning and associated real-time operation of a wide range of hydropower reservoir systems.
Research on Optimization of GLCM Parameter in Cell Classification
NASA Astrophysics Data System (ADS)
Zhang, Xi-Kun; Hou, Jie; Hu, Xin-Hua
2016-05-01
Real-time classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. Gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images ,which are too complicated to coordinate with the real-time system for a large amount of calculation. An optimization of GLCM algorithm is provided based on correlation analysis of GLCM parameters. The results of GLCM analysis and subsequent classification demonstrate optimized method can lower the time complexity significantly without loss of classification accuracy.
An Optimization Framework for Dynamic, Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
Xiang, Wei; Li, Chong
2015-01-01
Operating Room (OR) is the core sector in hospital expenditure, the operation management of which involves a complete three-stage surgery flow, multiple resources, prioritization of the various surgeries, and several real-life OR constraints. As such reasonable surgery scheduling is crucial to OR management. To optimize OR management and reduce operation cost, a short-term surgery scheduling problem is proposed and defined based on the survey of the OR operation in a typical hospital in China. The comprehensive operation cost is clearly defined considering both under-utilization and overutilization. A nested Ant Colony Optimization (nested-ACO) incorporated with several real-life OR constraints is proposed to solve such a combinatorial optimization problem. The 10-day manual surgery schedules from a hospital in China are compared with the optimized schedules solved by the nested-ACO. Comparison results show the advantage using the nested-ACO in several measurements: OR-related time, nurse-related time, variation in resources' working time, and the end time. The nested-ACO considering real-life operation constraints such as the difference between first and following case, surgeries priority, and fixed nurses in pre/post-operative stage is proposed to solve the surgery scheduling optimization problem. The results clearly show the benefit of using the nested-ACO in enhancing the OR management efficiency and minimizing the comprehensive overall operation cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grelewicz, Z; Wiersma, R
Purpose: Real-time fluoroscopy may allow for improved patient positioning and tumor tracking, particularly in the treatment of lung tumors. In order to mitigate the effects of the imaging dose, previous studies have demonstrated the effect of including both imaging dose and imaging constraints into the inverse treatment planning object function. That method of combined MV+kV optimization may Result in plans with treatment beams chosen to allow for more gentle imaging beam-on times. Direct-aperture optimization (DAO) is also known to produce treatment plans with fluence maps more conducive to lower beam-on times. Therefore, in this work we demonstrate the feasibility ofmore » a combination of DAO and MV+kV optimization for further optimized real-time kV imaging. Methods: Therapeutic and imaging beams were modeled in the EGSnrc Monte Carlo environment, and applied to a patient model for a previously treated lung patient to provide dose influence matrices from DOSXYZnrc. An MV + kV IMRT DAO treatment planning system was developed to compare DAO treatment plans with and without MV+kV optimization. The objective function was optimized using simulated annealing. In order to allow for comparisons between different cases of the stochastically optimized plans, the optimization was repeated twenty times. Results: Across twenty optimizations, combined MV+kV IMRT resulted in an average of 12.8% reduction in peak skin dose. Both non-optimized and MV+kV optimized imaging beams delivered, on average, mean dose of approximately 1 cGy per fraction to the target, with peak doses to target of approximately 6 cGy per fraction. Conclusion: When using DAO, MV+kV optimization is shown to Result in improvements to plan quality in terms of skin dose, when compared to the case of MV optimization with non-optimized kV imaging. The combination of DAO and MV+kV optimization may allow for real-time imaging without excessive imaging dose. Financial support for the work has been provided in part by NIH Grant T32 EB002103, ACS RSG-13-313-01-CCE, and NIH S10 RR021039 and P30 CA14599 grants. The contents of this submission do not necessarily represent the official views of any of the supporting organizations.« less
Instrumentation for optimizing an underground coal-gasification process
NASA Astrophysics Data System (ADS)
Seabaugh, W.; Zielinski, R. E.
1982-06-01
While the United States has a coal resource base of 6.4 trillion tons, only seven percent is presently recoverable by mining. The process of in-situ gasification can recover another twenty-eight percent of the vast resource, however, viable technology must be developed for effective in-situ recovery. The key to this technology is system that can optimize and control the process in real-time. An instrumentation system is described that optimizes the composition of the injection gas, controls the in-situ process and conditions the product gas for maximum utilization. The key elements of this system are Monsanto PRISM Systems, a real-time analytical system, and a real-time data acquisition and control system. This system provides from complete automation of the process but can easily be overridden by manual control. The use of this cost effective system can provide process optimization and is an effective element in developing a viable in-situ technology.
NASA Technical Reports Server (NTRS)
Granaas, Michael M.; Rhea, Donald C.
1989-01-01
The requirements for the development of real-time displays are reviewed. Of particular interest are the psychological aspects of design such as the layout, color selection, real-time response rate, and the interactivity of displays. Some existing Western Aeronautical Test Range displays are analyzed.
Real-time CT-video registration for continuous endoscopic guidance
NASA Astrophysics Data System (ADS)
Merritt, Scott A.; Rai, Lav; Higgins, William E.
2006-03-01
Previous research has shown that CT-image-based guidance could be useful for the bronchoscopic assessment of lung cancer. This research drew upon the registration of bronchoscopic video images to CT-based endoluminal renderings of the airway tree. The proposed methods either were restricted to discrete single-frame registration, which took several seconds to complete, or required non-real-time buffering and processing of video sequences. We have devised a fast 2D/3D image registration method that performs single-frame CT-Video registration in under 1/15th of a second. This allows the method to be used for real-time registration at full video frame rates without significantly altering the physician's behavior. The method achieves its speed through a gradient-based optimization method that allows most of the computation to be performed off-line. During live registration, the optimization iteratively steps toward the locally optimal viewpoint at which a CT-based endoluminal view is most similar to a current bronchoscopic video frame. After an initial registration to begin the process (generally done in the trachea for bronchoscopy), subsequent registrations are performed in real-time on each incoming video frame. As each new bronchoscopic video frame becomes available, the current optimization is initialized using the previous frame's optimization result, allowing continuous guidance to proceed without manual re-initialization. Tests were performed using both synthetic and pre-recorded bronchoscopic video. The results show that the method is robust to initialization errors, that registration accuracy is high, and that continuous registration can proceed on real-time video at >15 frames per sec. with minimal user-intervention.
1989-12-01
to construct because the mechanism is a dispatching procedure. Since all nonpreemptive schedules are contained in the set of all preemptive schedules...the optimal value of T’.. in the preemptive case is at least a lower bound on the optimal T., for the nonpreemptive schedules. This principle is the...adapt to changes in the enviro.nment. In hard real-time systems, tasks are also distinguished as preemptable and nonpreemptable . A task is preemptable
Intelligent and robust optimization frameworks for smart grids
NASA Astrophysics Data System (ADS)
Dhansri, Naren Reddy
A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic optimization algorithm for smart grid automatic generation control.
El-Malah, Yasser; Nazzal, Sami
2013-01-01
The objective of this work was to study the dissolution and mechanical properties of fast-dissolving films prepared from a tertiary mixture of pullulan, polyvinylpyrrolidone and hypromellose. Disintegration studies were performed in real-time by probe spectroscopy to detect the onset of film disintegration. Tensile strength and elastic modulus of the films were measured by texture analysis. Disintegration time of the films ranged from 21 to 105 seconds whereas their mechanical properties ranged from approximately 2 to 49 MPa for tensile strength and 1 to 21 MPa% for young's modulus. After generating polynomial models correlating the variables using a D-Optimal mixture design, an optimal formulation with desired responses was proposed by the statistical package. For validation, a new film formulation loaded with diclofenac sodium based on the optimized composition was prepared and tested for dissolution and tensile strength. Dissolution of the optimized film was found to commence almost immediately with 50% of the drug released within one minute. Tensile strength and young's modulus of the film were 11.21 MPa and 6, 78 MPa%, respectively. Real-time spectroscopy in conjunction with statistical design were shown to be very efficient for the optimization and development of non-conventional intraoral delivery system such as fast dissolving films.
Pruning-Based, Energy-Optimal, Deterministic I/O Device Scheduling for Hard Real-Time Systems
2005-02-01
However, DPM via I/O device scheduling for hard real - time systems has received relatively little attention. In this paper,we present an offline I/O...polynomial time. We present experimental results to show that EDS and MDO reduce the energy consumption of I/O devices significantly for hard real - time systems .
RTDS implementation of an improved sliding mode based inverter controller for PV system.
Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M
2016-05-01
This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Suboptimal LQR-based spacecraft full motion control: Theory and experimentation
NASA Astrophysics Data System (ADS)
Guarnaccia, Leone; Bevilacqua, Riccardo; Pastorelli, Stefano P.
2016-05-01
This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.
OPAD-EDIFIS Real-Time Processing
NASA Technical Reports Server (NTRS)
Katsinis, Constantine
1997-01-01
The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.
Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals
NASA Astrophysics Data System (ADS)
Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan
2015-03-01
Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.
OPTIMIZED REAL-TIME CONTROL OF COMBINED SEWERAGE SYSTEMS: TWO CASE STUDIES
The paper presents results of two case studies of Real-Time Control (RTC) alternatives evaluations that were conducted on portions of sewerage systems near Paris, France and in Quebec City, Canada, respectively. The studies were performed at real-scale demonstration sites. RTC ...
Fu, Qinyi; Martin, Benjamin L.; Matus, David Q.; Gao, Liang
2016-01-01
Despite the progress made in selective plane illumination microscopy, high-resolution 3D live imaging of multicellular specimens remains challenging. Tiling light-sheet selective plane illumination microscopy (TLS-SPIM) with real-time light-sheet optimization was developed to respond to the challenge. It improves the 3D imaging ability of SPIM in resolving complex structures and optimizes SPIM live imaging performance by using a real-time adjustable tiling light sheet and creating a flexible compromise between spatial and temporal resolution. We demonstrate the 3D live imaging ability of TLS-SPIM by imaging cellular and subcellular behaviours in live C. elegans and zebrafish embryos, and show how TLS-SPIM can facilitate cell biology research in multicellular specimens by studying left-right symmetry breaking behaviour of C. elegans embryos. PMID:27004937
Optimizing Tsunami Forecast Model Accuracy
NASA Astrophysics Data System (ADS)
Whitmore, P.; Nyland, D. L.; Huang, P. Y.
2015-12-01
Recent tsunamis provide a means to determine the accuracy that can be expected of real-time tsunami forecast models. Forecast accuracy using two different tsunami forecast models are compared for seven events since 2006 based on both real-time application and optimized, after-the-fact "forecasts". Lessons learned by comparing the forecast accuracy determined during an event to modified applications of the models after-the-fact provide improved methods for real-time forecasting for future events. Variables such as source definition, data assimilation, and model scaling factors are examined to optimize forecast accuracy. Forecast accuracy is also compared for direct forward modeling based on earthquake source parameters versus accuracy obtained by assimilating sea level data into the forecast model. Results show that including assimilated sea level data into the models increases accuracy by approximately 15% for the events examined.
NASA Astrophysics Data System (ADS)
Saruwatari, Shunsuke; Suzuki, Makoto; Morikawa, Hiroyuki
The paper shows a compact hard real-time operating system for wireless sensor nodes called PAVENET OS. PAVENET OS provides hybrid multithreading: preemptive multithreading and cooperative multithreading. Both of the multithreading are optimized for two kinds of tasks on wireless sensor networks, and those are real-time tasks and best-effort ones. PAVENET OS can efficiently perform hard real-time tasks that cannot be performed by TinyOS. The paper demonstrates the hybrid multithreading realizes compactness and low overheads, which are comparable to those of TinyOS, through quantitative evaluation. The evaluation results show PAVENET OS performs 100 Hz sensor sampling with 0.01% jitter while performing wireless communication tasks, whereas optimized TinyOS has 0.62% jitter. In addition, PAVENET OS has a small footprint and low overheads (minimum RAM size: 29 bytes, minimum ROM size: 490 bytes, minimum task switch time: 23 cycles).
Design and implementation of real-time wireless projection system based on ARM embedded system
NASA Astrophysics Data System (ADS)
Long, Zhaohua; Tang, Hao; Huang, Junhua
2018-04-01
Aiming at the shortage of existing real-time screen sharing system, a real-time wireless projection system is proposed in this paper. Based on the proposed system, a weight-based frame deletion strategy combined sampling time period and data variation is proposed. By implementing the system on the hardware platform, the results show that the system can achieve good results. The weight-based strategy can improve the service quality, reduce the delay and optimize the real-time customer service system [1].
NASA Astrophysics Data System (ADS)
Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.
1991-03-01
To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).
Real-Time Optimization in Complex Stochastic Environment
2015-06-24
simpler ones, thus addressing scalability and the limited resources of networked wireless devices. This, however, comes at the expense of increased...Maximization of Wireless Sensor Networks with Non-ideal Batteries”, IEEE Trans. on Control of Network Systems, Vol. 1, 1, pp. 86-98, 2014. [27...C.G., “Optimal Energy-Efficient Downlink Transmission Scheduling for Real-Time Wireless Networks ”, subm. to IEEE Trans. on Control of Network Systems
Optimized Real-Time Control of Combined Sewerage Systems: Two Case Studies (Proceedings Paper)
The paper presents results of two case studies of Real-Time Control (RTC) alternatives evaluations that were conducted on portions of sewerage systems near Paris, France and in Quebec City, Canada, respectively. The studies were performed at real-scale demonstration sites. RTC al...
Singular perturbation techniques for real time aircraft trajectory optimization and control
NASA Technical Reports Server (NTRS)
Calise, A. J.; Moerder, D. D.
1982-01-01
The usefulness of singular perturbation methods for developing real time computer algorithms to control and optimize aircraft flight trajectories is examined. A minimum time intercept problem using F-8 aerodynamic and propulsion data is used as a baseline. This provides a framework within which issues relating to problem formulation, solution methodology and real time implementation are examined. Theoretical questions relating to separability of dynamics are addressed. With respect to implementation, situations leading to numerical singularities are identified, and procedures for dealing with them are outlined. Also, particular attention is given to identifying quantities that can be precomputed and stored, thus greatly reducing the on-board computational load. Numerical results are given to illustrate the minimum time algorithm, and the resulting flight paths. An estimate is given for execution time and storage requirements.
Shete, Anita M; Yadav, Pragya; Kumar, Vimal; Nikam, Tushar; Mehershahi, Kurosh; Kokate, Prasad; Patil, Deepak; Mourya, Devendra T
2017-01-01
Bats are recognized as important reservoirs for emerging infectious disease and some unknown viral diseases. Two novel viruses, Malsoor virus (family Bunyaviridae, genus, Phlebovirus) and a novel adenovirus (AdV) (family, Adenoviridae genus, Mastadenovirus), were identified from Rousettus bats in the Maharashtra State of India. This study was done to develop and optimize real time reverse transcription - polymerase chain reaction (RT-PCR) assays for Malsoor virus and real time and nested PCR for adenovirus from Rousettus bats. For rapid and accurate screening of Malsoor virus and adenovirus a nested polymerase chain reaction and TaqMan-based real-time PCR were developed. Highly conserved region of nucleoprotein gene of phleboviruses and polymerase gene sequence from the Indian bat AdV isolate polyprotein gene were selected respectively for diagnostic assay development of Malsoor virus and AdV. Sensitivity and specificity of assays were calculated and optimized assays were used to screen bat samples. Molecular diagnostic assays were developed for screening of Malsoor virus and AdV and those were found to be specific. Based on the experiments performed with different parameters, nested PCR was found to be more sensitive than real-time PCR; however, for rapid screening, real-time PCR can be used and further nested PCR can be used for final confirmation or in those laboratories where real-time facility/expertise is not existing. This study reports the development and optimization of nested RT-PCR and a TaqMan-based real-time PCR for Malsoor virus and AdV. The diagnostic assays can be used for rapid detection of these novel viruses to understand their prevalence among bat population.
Computationally-Efficient Minimum-Time Aircraft Routes in the Presence of Winds
NASA Technical Reports Server (NTRS)
Jardin, Matthew R.
2004-01-01
A computationally efficient algorithm for minimizing the flight time of an aircraft in a variable wind field has been invented. The algorithm, referred to as Neighboring Optimal Wind Routing (NOWR), is based upon neighboring-optimal-control (NOC) concepts and achieves minimum-time paths by adjusting aircraft heading according to wind conditions at an arbitrary number of wind measurement points along the flight route. The NOWR algorithm may either be used in a fast-time mode to compute minimum- time routes prior to flight, or may be used in a feedback mode to adjust aircraft heading in real-time. By traveling minimum-time routes instead of direct great-circle (direct) routes, flights across the United States can save an average of about 7 minutes, and as much as one hour of flight time during periods of strong jet-stream winds. The neighboring optimal routes computed via the NOWR technique have been shown to be within 1.5 percent of the absolute minimum-time routes for flights across the continental United States. On a typical 450-MHz Sun Ultra workstation, the NOWR algorithm produces complete minimum-time routes in less than 40 milliseconds. This corresponds to a rate of 25 optimal routes per second. The closest comparable optimization technique runs approximately 10 times slower. Airlines currently use various trial-and-error search techniques to determine which of a set of commonly traveled routes will minimize flight time. These algorithms are too computationally expensive for use in real-time systems, or in systems where many optimal routes need to be computed in a short amount of time. Instead of operating in real-time, airlines will typically plan a trajectory several hours in advance using wind forecasts. If winds change significantly from forecasts, the resulting flights will no longer be minimum-time. The need for a computationally efficient wind-optimal routing algorithm is even greater in the case of new air-traffic-control automation concepts. For air-traffic-control automation, thousands of wind-optimal routes may need to be computed and checked for conflicts in just a few minutes. These factors motivated the need for a more efficient wind-optimal routing algorithm.
Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M.K.
2015-01-01
Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution. PMID:26110406
Optimized quantum sensing with a single electron spin using real-time adaptive measurements.
Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
Optimized quantum sensing with a single electron spin using real-time adaptive measurements
NASA Astrophysics Data System (ADS)
Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
A Sarsa(λ)-based control model for real-time traffic light coordination.
Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.
Tire-road friction estimation and traction control strategy for motorized electric vehicle.
Jin, Li-Qiang; Ling, Mingze; Yue, Weiqiang
2017-01-01
In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS).
Tire-road friction estimation and traction control strategy for motorized electric vehicle
Jin, Li-Qiang; Yue, Weiqiang
2017-01-01
In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053
A study of optimization techniques in HDR brachytherapy for the prostate
NASA Astrophysics Data System (ADS)
Pokharel, Ghana Shyam
Several studies carried out thus far are in favor of dose escalation to the prostate gland to have better local control of the disease. But optimal way of delivery of higher doses of radiation therapy to the prostate without hurting neighboring critical structures is still debatable. In this study, we proposed that real time high dose rate (HDR) brachytherapy with highly efficient and effective optimization could be an alternative means of precise delivery of such higher doses. This approach of delivery eliminates the critical issues such as treatment setup uncertainties and target localization as in external beam radiation therapy. Likewise, dosimetry in HDR brachytherapy is not influenced by organ edema and potential source migration as in permanent interstitial implants. Moreover, the recent report of radiobiological parameters further strengthen the argument of using hypofractionated HDR brachytherapy for the management of prostate cancer. Firstly, we studied the essential features and requirements of real time HDR brachytherapy treatment planning system. Automating catheter reconstruction with fast editing tools, fast yet accurate dose engine, robust and fast optimization and evaluation engine are some of the essential requirements for such procedures. Moreover, in most of the cases we performed, treatment plan optimization took significant amount of time of overall procedure. So, making treatment plan optimization automatic or semi-automatic with sufficient speed and accuracy was the goal of the remaining part of the project. Secondly, we studied the role of optimization function and constraints in overall quality of optimized plan. We have studied the gradient based deterministic algorithm with dose volume histogram (DVH) and more conventional variance based objective functions for optimization. In this optimization strategy, the relative weight of particular objective in aggregate objective function signifies its importance with respect to other objectives. Based on our study, DVH based objective function performed better than traditional variance based objective function in creating a clinically acceptable plan when executed under identical conditions. Thirdly, we studied the multiobjective optimization strategy using both DVH and variance based objective functions. The optimization strategy was to create several Pareto optimal solutions by scanning the clinically relevant part of the Pareto front. This strategy was adopted to decouple optimization from decision such that user could select final solution from the pool of alternative solutions based on his/her clinical goals. The overall quality of treatment plan improved using this approach compared to traditional class solution approach. In fact, the final optimized plan selected using decision engine with DVH based objective was comparable to typical clinical plan created by an experienced physicist. Next, we studied the hybrid technique comprising both stochastic and deterministic algorithm to optimize both dwell positions and dwell times. The simulated annealing algorithm was used to find optimal catheter distribution and the DVH based algorithm was used to optimize 3D dose distribution for given catheter distribution. This unique treatment planning and optimization tool was capable of producing clinically acceptable highly reproducible treatment plans in clinically reasonable time. As this algorithm was able to create clinically acceptable plans within clinically reasonable time automatically, it is really appealing for real time procedures. Next, we studied the feasibility of multiobjective optimization using evolutionary algorithm for real time HDR brachytherapy for the prostate. The algorithm with properly tuned algorithm specific parameters was able to create clinically acceptable plans within clinically reasonable time. However, the algorithm was let to run just for limited number of generations not considered optimal, in general, for such algorithms. This was done to keep time window desirable for real time procedures. Therefore, it requires further study with improved conditions to realize the full potential of the algorithm.
Road map to adaptive optimal control. [jet engine control
NASA Technical Reports Server (NTRS)
Boyer, R.
1980-01-01
A building block control structure leading toward adaptive, optimal control for jet engines is developed. This approach simplifies the addition of new features and allows for easier checkout of the control by providing a baseline system for comparison. Also, it is possible to eliminate certain features that do not have payoff by being selective in the addition of new building blocks to be added to the baseline system. The minimum risk approach specifically addresses the need for active identification of the plant to be controlled in real time and real time optimization of the control for the identified plant.
Zheng, Qianwang; Mikš-Krajnik, Marta; Yang, Yishan; Xu, Wang; Yuk, Hyun-Gyun
2014-09-01
Conventional culture detection methods are time consuming and labor-intensive. For this reason, an alternative rapid method combining real-time PCR and immunomagnetic separation (IMS) was investigated in this study to detect both healthy and heat-injured Salmonella Typhimurium on raw duck wings. Firstly, the IMS method was optimized by determining the capture efficiency of Dynabeads(®) on Salmonella cells on raw duck wings with different bead incubation (10, 30 and 60 min) and magnetic separation (3, 10 and 30 min) times. Secondly, three Taqman primer sets, Sal, invA and ttr, were evaluated to optimize the real-time PCR protocol by comparing five parameters: inclusivity, exclusivity, PCR efficiency, detection probability and limit of detection (LOD). Thirdly, the optimized real-time PCR, in combination with IMS (PCR-IMS) assay, was compared with a standard ISO and a real-time PCR (PCR) method by analyzing artificially inoculated raw duck wings with healthy and heat-injured Salmonella cells at 10(1) and 10(0) CFU/25 g. Finally, the optimized PCR-IMS assay was validated for Salmonella detection in naturally contaminated raw duck wing samples. Under optimal IMS conditions (30 min bead incubation and 3 min magnetic separation times), approximately 85 and 64% of S. Typhimurium cells were captured by Dynabeads® from pure culture and inoculated raw duck wings, respectively. Although Sal and ttr primers exhibited 100% inclusivity and exclusivity for 16 Salmonella spp. and 36 non-Salmonella strains, the Sal primer showed lower LOD (10(3) CFU/ml) and higher PCR efficiency (94.1%) than the invA and ttr primers. Moreover, for Sal and invA primers, 100% detection probability on raw duck wings suspension was observed at 10(3) and 10(4) CFU/ml with and without IMS, respectively. Thus, the Sal primer was chosen for further experiments. The optimized PCR-IMS method was significantly (P=0.0011) better at detecting healthy Salmonella cells after 7-h enrichment than traditional PCR method. However there was no significant difference between the two methods with longer enrichment time (14 h). The diagnostic accuracy of PCR-IMS was shown to be 98.3% through the validation study. These results indicate that the optimized PCR-IMS method in this study could provide a sensitive, specific and rapid detection method for Salmonella on raw duck wings, enabling 10-h detection. However, a longer enrichment time could be needed for resuscitation and reliable detection of heat-injured cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Optimization of dynamic soaring maneuvers to enhance endurance of a versatile UAV
NASA Astrophysics Data System (ADS)
Mir, Imran; Maqsood, Adnan; Akhtar, Suhail
2017-06-01
Dynamic soaring is a process of acquiring energy available in atmospheric wind shears and is commonly exhibited by soaring birds to perform long distance flights. This paper aims to demonstrate a viable algorithm which can be implemented in near real time environment to formulate optimal trajectories for dynamic soaring maneuvers for a small scale Unmanned Aerial Vehicle (UAV). The objective is to harness maximum energy from atmosphere wind shear to improve loiter time for Intelligence, Surveillance and Reconnaissance (ISR) missions. Three-dimensional point-mass UAV equations of motion and linear wind gradient profile are used to model flight dynamics. Utilizing UAV states, controls, operational constraints, initial and terminal conditions that enforce a periodic flight, dynamic soaring problem is formulated as an optimal control problem. Optimized trajectories of the maneuver are subsequently generated employing pseudo spectral techniques against distant UAV performance parameters. The discussion also encompasses the requirement for generation of optimal trajectories for dynamic soaring in real time environment and the ability of the proposed algorithm for speedy solution generation. Coupled with the fact that dynamic soaring is all about immediately utilizing the available energy from the wind shear encountered, the proposed algorithm promises its viability for practical on board implementations requiring computation of trajectories in near real time.
DOT National Transportation Integrated Search
2013-10-01
This document serves as an Operational Concept for the Applications for the Environment: Real-Time Information Synthesis (AERIS) Eco-Lanes Transformative Concept. The Eco-Lanes Transformative Concept features dedicated lanes on freeways optimized for...
A new real-time guidance strategy for aerodynamic ascent flight
NASA Astrophysics Data System (ADS)
Yamamoto, Takayuki; Kawaguchi, Jun'ichiro
2007-12-01
Reusable launch vehicles are conceived to constitute the future space transportation system. If these vehicles use air-breathing propulsion and lift taking-off horizontally, the optimal steering for these vehicles exhibits completely different behavior from that in conventional rockets flight. In this paper, the new guidance strategy is proposed. This method derives from the optimality condition as for steering and an analysis concludes that the steering function takes the form comprised of Linear and Logarithmic terms, which include only four parameters. The parameter optimization of this method shows the acquired terminal horizontal velocity is almost same with that obtained by the direct numerical optimization. This supports the parameterized Liner Logarithmic steering law. And here is shown that there exists a simple linear relation between the terminal states and the parameters to be corrected. The relation easily makes the parameters determined to satisfy the terminal boundary conditions in real-time. The paper presents the guidance results for the practical application cases. The results show the guidance is well performed and satisfies the terminal boundary conditions specified. The strategy built and presented here does guarantee the robust solution in real-time excluding any optimization process, and it is found quite practical.
Pani, Danilo; Barabino, Gianluca; Citi, Luca; Meloni, Paolo; Raspopovic, Stanisa; Micera, Silvestro; Raffo, Luigi
2016-09-01
The control of upper limb neuroprostheses through the peripheral nervous system (PNS) can allow restoring motor functions in amputees. At present, the important aspect of the real-time implementation of neural decoding algorithms on embedded systems has been often overlooked, notwithstanding the impact that limited hardware resources have on the efficiency/effectiveness of any given algorithm. Present study is addressing the optimization of a template matching based algorithm for PNS signals decoding that is a milestone for its real-time, full implementation onto a floating-point digital signal processor (DSP). The proposed optimized real-time algorithm achieves up to 96% of correct classification on real PNS signals acquired through LIFE electrodes on animals, and can correctly sort spikes of a synthetic cortical dataset with sufficiently uncorrelated spike morphologies (93% average correct classification) comparably to the results obtained with top spike sorter (94% on average on the same dataset). The power consumption enables more than 24 h processing at the maximum load, and latency model has been derived to enable a fair performance assessment. The final embodiment demonstrates the real-time performance onto a low-power off-the-shelf DSP, opening to experiments exploiting the efferent signals to control a motor neuroprosthesis.
Flight Test of an Adaptive Configuration Optimization System for Transport Aircraft
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Georgie, Jennifer; Barnicki, Joseph S.
1999-01-01
A NASA Dryden Flight Research Center program explores the practical application of real-time adaptive configuration optimization for enhanced transport performance on an L-1011 aircraft. This approach is based on calculation of incremental drag from forced-response, symmetric, outboard aileron maneuvers. In real-time operation, the symmetric outboard aileron deflection is directly optimized, and the horizontal stabilator and angle of attack are indirectly optimized. A flight experiment has been conducted from an onboard research engineering test station, and flight research results are presented herein. The optimization system has demonstrated the capability of determining the minimum drag configuration of the aircraft in real time. The drag-minimization algorithm is capable of identifying drag to approximately a one-drag-count level. Optimizing the symmetric outboard aileron position realizes a drag reduction of 2-3 drag counts (approximately 1 percent). Algorithm analysis of maneuvers indicate that two-sided raised-cosine maneuvers improve definition of the symmetric outboard aileron drag effect, thereby improving analysis results and consistency. Ramp maneuvers provide a more even distribution of data collection as a function of excitation deflection than raised-cosine maneuvers provide. A commercial operational system would require airdata calculations and normal output of current inertial navigation systems; engine pressure ratio measurements would be optional.
Real-time optimizations for integrated smart network camera
NASA Astrophysics Data System (ADS)
Desurmont, Xavier; Lienard, Bruno; Meessen, Jerome; Delaigle, Jean-Francois
2005-02-01
We present an integrated real-time smart network camera. This system is composed of an image sensor, an embedded PC based electronic card for image processing and some network capabilities. The application detects events of interest in visual scenes, highlights alarms and computes statistics. The system also produces meta-data information that could be shared between other cameras in a network. We describe the requirements of such a system and then show how the design of the system is optimized to process and compress video in real-time. Indeed, typical video-surveillance algorithms as background differencing, tracking and event detection should be highly optimized and simplified to be used in this hardware. To have a good adequation between hardware and software in this light embedded system, the software management is written on top of the java based middle-ware specification established by the OSGi alliance. We can integrate easily software and hardware in complex environments thanks to the Java Real-Time specification for the virtual machine and some network and service oriented java specifications (like RMI and Jini). Finally, we will report some outcomes and typical case studies of such a camera like counter-flow detection.
Enabling Next-Generation Multicore Platforms in Embedded Applications
2014-04-01
mapping to sets 129 − 256 ) to the second page in memory, color 2 (sets 257 − 384) to the third page, and so on. Then, after the 32nd page, all 212 sets...the Real-Time Nested Locking Protocol (RNLP) [56], a recently developed multiprocessor real-time locking protocol that optimally supports the...RELEASE; DISTRIBUTION UNLIMITED 15 In general, the problems of optimally assigning tasks to processors and colors to tasks are both NP-hard in the
Crowd evacuation model based on bacterial foraging algorithm
NASA Astrophysics Data System (ADS)
Shibiao, Mu; Zhijun, Chen
To understand crowd evacuation, a model based on a bacterial foraging algorithm (BFA) is proposed in this paper. Considering dynamic and static factors, the probability of pedestrian movement is established using cellular automata. In addition, given walking and queue times, a target optimization function is built. At the same time, a BFA is used to optimize the objective function. Finally, through real and simulation experiments, the relationship between the parameters of evacuation time, exit width, pedestrian density, and average evacuation speed is analyzed. The results show that the model can effectively describe a real evacuation.
Processor tradeoffs in distributed real-time systems
NASA Technical Reports Server (NTRS)
Krishna, C. M.; Shin, Kang G.; Bhandari, Inderpal S.
1987-01-01
The problem of the optimization of the design of real-time distributed systems is examined with reference to a class of computer architectures similar to the continuously reconfigurable multiprocessor flight control system structure, CM2FCS. Particular attention is given to the impact of processor replacement and the burn-in time on the probability of dynamic failure and mean cost. The solution is obtained numerically and interpreted in the context of real-time applications.
Real-time aerosol black carbon (BC) data, presented at time resolutions on the order of seconds to minutes, is desirable in field and source characterization studies measuring rapidly varying concentrations of BC. The Optimized Noise-reduction Averaging (ONA) algorithm has been d...
Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm
NASA Technical Reports Server (NTRS)
Baskaran, Subbiah; Noever, D.
1999-01-01
Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.
NASA Astrophysics Data System (ADS)
Wang, Qian; Lu, Guangqi; Li, Xiaoyu; Zhang, Yichi; Yun, Zejian; Bian, Di
2018-01-01
To take advantage of the energy storage system (ESS) sufficiently, the factors that the service life of the distributed energy storage system (DESS) and the load should be considered when establishing optimization model. To reduce the complexity of the load shifting of DESS in the solution procedure, the loss coefficient and the equal capacity ratio distribution principle were adopted in this paper. Firstly, the model was established considering the constraint conditions of the cycles, depth, power of the charge-discharge of the ESS, the typical daily load curves, as well. Then, dynamic programming method was used to real-time solve the model in which the difference of power Δs, the real-time revised energy storage capacity Sk and the permission error of depth of charge-discharge were introduced to optimize the solution process. The simulation results show that the optimized results was achieved when the load shifting in the load variance was not considered which means the charge-discharge of the energy storage system was not executed. In the meantime, the service life of the ESS would increase.
Optimal structural design of the midship of a VLCC based on the strategy integrating SVM and GA
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Deyu
2012-03-01
In this paper a hybrid process of modeling and optimization, which integrates a support vector machine (SVM) and genetic algorithm (GA), was introduced to reduce the high time cost in structural optimization of ships. SVM, which is rooted in statistical learning theory and an approximate implementation of the method of structural risk minimization, can provide a good generalization performance in metamodeling the input-output relationship of real problems and consequently cuts down on high time cost in the analysis of real problems, such as FEM analysis. The GA, as a powerful optimization technique, possesses remarkable advantages for the problems that can hardly be optimized with common gradient-based optimization methods, which makes it suitable for optimizing models built by SVM. Based on the SVM-GA strategy, optimization of structural scantlings in the midship of a very large crude carrier (VLCC) ship was carried out according to the direct strength assessment method in common structural rules (CSR), which eventually demonstrates the high efficiency of SVM-GA in optimizing the ship structural scantlings under heavy computational complexity. The time cost of this optimization with SVM-GA has been sharply reduced, many more loops have been processed within a small amount of time and the design has been improved remarkably.
Relations between information, time, and value of water
NASA Astrophysics Data System (ADS)
Weijs, S. V.; Galindo, L. C.
2015-12-01
This research uses with stochastic dynamic programming (SDP) as a tool to reveal economic information about managed water resources. An application to the operation of an example hydropower reservoir is presented. SDP explicitly balances the marginal value of water for immediate use and its expected opportunity cost of not having more water available for future use. The result of an SDP analysis is a steady state policy, which gives the optimal decision as a function of the state. A commonly applied form gives the optimal release as a function of the month, current reservoir level and current inflow to the reservoir. The steady state policy can be complemented with a real-time management strategy, that can depend on more real-time information. An information-theoretical perspective is given on how this information influences the value of water, and how to deal with that influence in hydropower reservoir optimization. This results in some conjectures about how the information gain from real-time operation could affect the optimal long term policy. Another issue is the sharing of increased benefits that result from this information gain in a multi-objective setting. It is argued that this should be accounted for in negotiations about an operation policy.
Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah
Tian, Le; Latré, Steven
2017-01-01
IEEE 802.11ah, marketed as Wi-Fi HaLow, extends Wi-Fi to the sub-1 GHz spectrum. Through a number of physical layer (PHY) and media access control (MAC) optimizations, it aims to bring greatly increased range, energy-efficiency, and scalability. This makes 802.11ah the perfect candidate for providing connectivity to Internet of Things (IoT) devices. One of these new features, referred to as the Restricted Access Window (RAW), focuses on improving scalability in highly dense deployments. RAW divides stations into groups and reduces contention and collisions by only allowing channel access to one group at a time. However, the standard does not dictate how to determine the optimal RAW grouping parameters. The optimal parameters depend on the current network conditions, and it has been shown that incorrect configuration severely impacts throughput, latency and energy efficiency. In this paper, we propose a traffic-adaptive RAW optimization algorithm (TAROA) to adapt the RAW parameters in real time based on the current traffic conditions, optimized for sensor networks in which each sensor transmits packets with a certain (predictable) frequency and may change the transmission frequency over time. The TAROA algorithm is executed at each target beacon transmission time (TBTT), and it first estimates the packet transmission interval of each station only based on packet transmission information obtained by access point (AP) during the last beacon interval. Then, TAROA determines the RAW parameters and assigns stations to RAW slots based on this estimated transmission frequency. The simulation results show that, compared to enhanced distributed channel access/distributed coordination function (EDCA/DCF), the TAROA algorithm can highly improve the performance of IEEE 802.11ah dense networks in terms of throughput, especially when hidden nodes exist, although it does not always achieve better latency performance. This paper contributes with a practical approach to optimizing RAW grouping under dynamic traffic in real time, which is a major leap towards applying RAW mechanism in real-life IoT networks. PMID:28677617
Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah.
Tian, Le; Khorov, Evgeny; Latré, Steven; Famaey, Jeroen
2017-07-04
IEEE 802.11ah, marketed as Wi-Fi HaLow, extends Wi-Fi to the sub-1 GHz spectrum. Through a number of physical layer (PHY) and media access control (MAC) optimizations, it aims to bring greatly increased range, energy-efficiency, and scalability. This makes 802.11ah the perfect candidate for providing connectivity to Internet of Things (IoT) devices. One of these new features, referred to as the Restricted Access Window (RAW), focuses on improving scalability in highly dense deployments. RAW divides stations into groups and reduces contention and collisions by only allowing channel access to one group at a time. However, the standard does not dictate how to determine the optimal RAW grouping parameters. The optimal parameters depend on the current network conditions, and it has been shown that incorrect configuration severely impacts throughput, latency and energy efficiency. In this paper, we propose a traffic-adaptive RAW optimization algorithm (TAROA) to adapt the RAW parameters in real time based on the current traffic conditions, optimized for sensor networks in which each sensor transmits packets with a certain (predictable) frequency and may change the transmission frequency over time. The TAROA algorithm is executed at each target beacon transmission time (TBTT), and it first estimates the packet transmission interval of each station only based on packet transmission information obtained by access point (AP) during the last beacon interval. Then, TAROA determines the RAW parameters and assigns stations to RAW slots based on this estimated transmission frequency. The simulation results show that, compared to enhanced distributed channel access/distributed coordination function (EDCA/DCF), the TAROA algorithm can highly improve the performance of IEEE 802.11ah dense networks in terms of throughput, especially when hidden nodes exist, although it does not always achieve better latency performance. This paper contributes with a practical approach to optimizing RAW grouping under dynamic traffic in real time, which is a major leap towards applying RAW mechanism in real-life IoT networks.
Shanechi, Maryam M.; Williams, Ziv M.; Wornell, Gregory W.; Hu, Rollin C.; Powers, Marissa; Brown, Emery N.
2013-01-01
Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system. PMID:23593130
Real-time optimal guidance for orbital maneuvering.
NASA Technical Reports Server (NTRS)
Cohen, A. O.; Brown, K. R.
1973-01-01
A new formulation for soft-constraint trajectory optimization is presented as a real-time optimal feedback guidance method for multiburn orbital maneuvers. Control is always chosen to minimize burn time plus a quadratic penalty for end condition errors, weighted so that early in the mission (when controllability is greatest) terminal errors are held negligible. Eventually, as controllability diminishes, the method partially relaxes but effectively still compensates perturbations in whatever subspace remains controllable. Although the soft-constraint concept is well-known in optimal control, the present formulation is novel in addressing the loss of controllability inherent in multiple burn orbital maneuvers. Moreover the necessary conditions usually obtained from a Bolza formulation are modified in this case so that the fully hard constraint formulation is a numerically well behaved subcase. As a result convergence properties have been greatly improved.
Optimized positioning of autonomous surgical lamps
NASA Astrophysics Data System (ADS)
Teuber, Jörn; Weller, Rene; Kikinis, Ron; Oldhafer, Karl-Jürgen; Lipp, Michael J.; Zachmann, Gabriel
2017-03-01
We consider the problem of finding automatically optimal positions of surgical lamps throughout the whole surgical procedure, where we assume that future lamps could be robotized. We propose a two-tiered optimization technique for the real-time autonomous positioning of those robotized surgical lamps. Typically, finding optimal positions for surgical lamps is a multi-dimensional problem with several, in part conflicting, objectives, such as optimal lighting conditions at every point in time while minimizing the movement of the lamps in order to avoid distractions of the surgeon. Consequently, we use multi-objective optimization (MOO) to find optimal positions in real-time during the entire surgery. Due to the conflicting objectives, there is usually not a single optimal solution for such kinds of problems, but a set of solutions that realizes a Pareto-front. When our algorithm selects a solution from this set it additionally has to consider the individual preferences of the surgeon. This is a highly non-trivial task because the relationship between the solution and the parameters is not obvious. We have developed a novel meta-optimization that considers exactly this challenge. It delivers an easy to understand set of presets for the parameters and allows a balance between the lamp movement and lamp obstruction. This metaoptimization can be pre-computed for different kinds of operations and it then used by our online optimization for the selection of the appropriate Pareto solution. Both optimization approaches use data obtained by a depth camera that captures the surgical site but also the environment around the operating table. We have evaluated our algorithms with data recorded during a real open abdominal surgery. It is available for use for scientific purposes. The results show that our meta-optimization produces viable parameter sets for different parts of an intervention even when trained on a small portion of it.
Lin, Guoping; Candela, Y; Tillement, O; Cai, Zhiping; Lefèvre-Seguin, V; Hare, J
2012-12-15
A method based on thermal bistability for ultralow-threshold microlaser optimization is demonstrated. When sweeping the pump laser frequency across a pump resonance, the dynamic thermal bistability slows down the power variation. The resulting line shape modification enables a real-time monitoring of the laser characteristic. We demonstrate this method for a functionalized microsphere exhibiting a submicrowatt laser threshold. This approach is confirmed by comparing the results with a step-by-step recording in quasi-static thermal conditions.
A Sarsa(λ)-Based Control Model for Real-Time Traffic Light Coordination
Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183
Real-time parameter optimization based on neural network for smart injection molding
NASA Astrophysics Data System (ADS)
Lee, H.; Liau, Y.; Ryu, K.
2018-03-01
The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.
Optimization of the resources management in fighting wildfires.
Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J Manuel
2002-09-01
Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.
Optimization of the Resources Management in Fighting Wildfires
NASA Astrophysics Data System (ADS)
Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J. Manuel
2002-09-01
Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.
Jacchia, Sara; Nardini, Elena; Savini, Christian; Petrillo, Mauro; Angers-Loustau, Alexandre; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco
2015-02-18
In this study, we developed, optimized, and in-house validated a real-time PCR method for the event-specific detection and quantification of Golden Rice 2, a genetically modified rice with provitamin A in the grain. We optimized and evaluated the performance of the taxon (targeting rice Phospholipase D α2 gene)- and event (targeting the 3' insert-to-plant DNA junction)-specific assays that compose the method as independent modules, using haploid genome equivalents as unit of measurement. We verified the specificity of the two real-time PCR assays and determined their dynamic range, limit of quantification, limit of detection, and robustness. We also confirmed that the taxon-specific DNA sequence is present in single copy in the rice genome and verified its stability of amplification across 132 rice varieties. A relative quantification experiment evidenced the correct performance of the two assays when used in combination.
Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification
Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...
Real-time range generation for ladar hardware-in-the-loop testing
NASA Astrophysics Data System (ADS)
Olson, Eric M.; Coker, Charles F.
1996-05-01
Real-time closed loop simulation of LADAR seekers in a hardware-in-the-loop facility can reduce program risk and cost. This paper discusses an implementation of real-time range imagery generated in a synthetic environment at the Kinetic Kill Vehicle Hardware-in-the Loop facility at Eglin AFB, for the stimulation of LADAR seekers and algorithms. The computer hardware platform used was a Silicon Graphics Incorporated Onyx Reality Engine. This computer contains graphics hardware, and is optimized for generating visible or infrared imagery in real-time. A by-produce of the rendering process, in the form of a depth buffer, is generated from all objects in view during its rendering process. The depth buffer is an array of integer values that contributes to the proper rendering of overlapping objects and can be converted to range values using a mathematical formula. This paper presents an optimized software approach to the generation of the scenes, calculation of the range values, and outputting the range data for a LADAR seeker.
Real-time PCR probe optimization using design of experiments approach.
Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F
2016-03-01
Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.
VAXELN Experimentation: Programming a Real-Time Periodic Task Dispatcher Using VAXELN Ada 1.1
1987-11-01
synchronization to the SQM and VAXELN semaphores. Based on real-time scheduling theory, the optimal rate-monotonic scheduling algorithm [Lui 73...schedulability test based on the rate-monotonic algorithm , namely task-lumping [Sha 871, was necessary to cal- culate the theoretically expected schedulability...8217 Guide Digital Equipment Corporation, Maynard, MA, 1986. [Lui 73] Liu, C.L., Layland, J.W. Scheduling Algorithms for Multi-programming in a Hard-Real-Time
The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.
Han, Gaining; Fu, Weiping; Wang, Wen
2016-01-01
In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm
Han, Gaining; Fu, Weiping; Wang, Wen
2016-01-01
In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability. PMID:26880881
Real-time management of an urban groundwater well field threatened by pollution.
Bauser, Gero; Franssen, Harrie-Jan Hendricks; Kaiser, Hans-Peter; Kuhlmann, Ulrich; Stauffer, Fritz; Kinzelbach, Wolfgang
2010-09-01
We present an optimal real-time control approach for the management of drinking water well fields. The methodology is applied to the Hardhof field in the city of Zurich, Switzerland, which is threatened by diffuse pollution. The risk of attracting pollutants is higher if the pumping rate is increased and can be reduced by increasing artificial recharge (AR) or by adaptive allocation of the AR. The method was first tested in offline simulations with a three-dimensional finite element variably saturated subsurface flow model for the period January 2004-August 2005. The simulations revealed that (1) optimal control results were more effective than the historical control results and (2) the spatial distribution of AR should be different from the historical one. Next, the methodology was extended to a real-time control method based on the Ensemble Kalman Filter method, using 87 online groundwater head measurements, and tested at the site. The real-time control of the well field resulted in a decrease of the electrical conductivity of the water at critical measurement points which indicates a reduced inflow of water originating from contaminated sites. It can be concluded that the simulation and the application confirm the feasibility of the real-time control concept.
NASA Astrophysics Data System (ADS)
Neagoe, Cristian; Grecu, Bogdan; Manea, Liviu
2016-04-01
National Institute for Earth Physics (NIEP) operates a real time seismic network which is designed to monitor the seismic activity on the Romanian territory, which is dominated by the intermediate earthquakes (60-200 km) from Vrancea area. The ability to reduce the impact of earthquakes on society depends on the existence of a large number of high-quality observational data. The development of the network in recent years and an advanced seismic acquisition are crucial to achieving this objective. The software package used to perform the automatic real-time locations is Seiscomp3. An accurate choice of the Seiscomp3 setting parameters is necessary to ensure the best performance of the real-time system i.e., the most accurate location for the earthquakes and avoiding any false events. The aim of this study is to optimize the algorithms of the real-time system that detect and locate the earthquakes in the monitored area. This goal is pursued by testing different parameters (e.g., STA/LTA, filters applied to the waveforms) on a data set of representative earthquakes of the local seismicity. The results are compared with the locations from the Romanian Catalogue ROMPLUS.
On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery
Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang
2018-01-01
With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585
On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.
Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang
2018-04-25
With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.
Error field optimization in DIII-D using extremum seeking control
NASA Astrophysics Data System (ADS)
Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; Humphreys, D. A.; Eidietis, N.; Hanson, J. M.; Paz-Soldan, C.; Strait, E. J.; Walker, M. L.
2016-07-01
DIII-D experiments have demonstrated a new real-time approach to tokamak error field control based on maximizing the toroidal angular momentum. This approach uses extremum seeking control theory to optimize the error field in real time without inducing instabilities. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coil currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.
A real-time intercepting beam-profile monitor for a medical cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendriks, C.; Uittenbosch, T.; Cameron, D.
2013-11-15
There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.
Liu, Fubo; Li, Guangjun; Shen, Jiuling; Li, Ligin; Bai, Sen
2017-02-01
While radiation treatment to patients with tumors in thorax and abdomen is being performed, further improvement of radiation accuracy is restricted by the tumor intra-fractional motion due to respiration. Real-time tumor tracking radiation is an optimal solution to tumor intra-fractional motion. A review of the progress of real-time dynamic multi-leaf collimator(DMLC) tracking is provided in the present review, including DMLC tracking method, time lag of DMLC tracking system, and dosimetric verification.
Optimal guidance with obstacle avoidance for nap-of-the-earth flight
NASA Technical Reports Server (NTRS)
Pekelsma, Nicholas J.
1988-01-01
The development of automatic guidance is discussed for helicopter Nap-of-the-Earth (NOE) and near-NOE flight. It deals with algorithm refinements relating to automated real-time flight path planning and to mission planning. With regard to path planning, it relates rotorcraft trajectory characteristics to the NOE computation scheme and addresses real-time computing issues and both ride quality issues and pilot-vehicle interfaces. The automated mission planning algorithm refinements include route optimization, automatic waypoint generation, interactive applications, and provisions for integrating the results into the real-time path planning software. A microcomputer based mission planning workstation was developed and is described. Further, the application of Defense Mapping Agency (DMA) digital terrain to both the mission planning workstation and to automatic guidance is both discussed and illustrated.
Wang, Lei; Zhao, Pengyue; Zhang, Fengzu; Bai, Aijuan; Pan, Canping
2013-01-01
Ambient ionization direct analysis in real time (DART) coupled to single-quadrupole MS (DART-MS) was evaluated for rapid detection of caffeine in commercial samples without chromatographic separation or sample preparation. Four commercial samples were examined: tea, instant coffee, green tea beverage, and soft drink. The response-related parameters were optimized for the DART temperature and MS fragmentor. Under optimal conditions, the molecular ion (M+H)+ was the major ion for identification of caffeine. The results showed that DART-MS is a promising tool for the quick analysis of important marker molecules in commercial samples. Furthermore, this system has demonstrated significant potential for high sample throughput and real-time analysis.
Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric
2016-01-01
This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.
Intelligent system of coordination and control for manufacturing
NASA Astrophysics Data System (ADS)
Ciortea, E. M.
2016-08-01
This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.
Real-time implementation of logo detection on open source BeagleBoard
NASA Astrophysics Data System (ADS)
George, M.; Kehtarnavaz, N.; Estevez, L.
2011-03-01
This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.
Linear quadratic optimization for positive LTI system
NASA Astrophysics Data System (ADS)
Muhafzan, Yenti, Syafrida Wirma; Zulakmal
2017-05-01
Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.
Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Smith, Mark S.
2008-01-01
Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.
Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Smith, Mark S.
2010-01-01
Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors, prediction cases, and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.
DOT National Transportation Integrated Search
2003-01-01
This study evaluated existing traffic signal optimization programs including Synchro,TRANSYT-7F, and genetic algorithm optimization using real-world data collected in Virginia. As a first step, a microscopic simulation model, VISSIM, was extensively ...
Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kang, Keeryun
This thesis presents an integrated framework for online obstacle avoidance of rotary-wing unmanned aerial vehicles (UAVs), which can provide UAVs an obstacle field navigation capability in a partially or completely unknown obstacle-rich environment. The framework is composed of a LIDAR interface, a local obstacle grid generation, a receding horizon (RH) trajectory optimizer, a global shortest path search algorithm, and a climb rate limit detection logic. The key feature of the framework is the use of an optimization-based trajectory generation in which the obstacle avoidance problem is formulated as a nonlinear trajectory optimization problem with state and input constraints over the finite range of the sensor. This local trajectory optimization is combined with a global path search algorithm which provides a useful initial guess to the nonlinear optimization solver. Optimization is the natural process of finding the best trajectory that is dynamically feasible, safe within the vehicle's flight envelope, and collision-free at the same time. The optimal trajectory is continuously updated in real time by the numerical optimization solver, Nonlinear Trajectory Generation (NTG), which is a direct solver based on the spline approximation of trajectory for dynamically flat systems. In fact, the overall approach of this thesis to finding the optimal trajectory is similar to the model predictive control (MPC) or the receding horizon control (RHC), except that this thesis followed a two-layer design; thus, the optimal solution works as a guidance command to be followed by the controller of the vehicle. The framework is implemented in a real-time simulation environment, the Georgia Tech UAV Simulation Tool (GUST), and integrated in the onboard software of the rotary-wing UAV test-bed at Georgia Tech. Initially, the 2D vertical avoidance capability of real obstacles was tested in flight. The flight test evaluations were extended to the benchmark tests for 3D avoidance capability over the virtual obstacles, and finally it was demonstrated on real obstacles located at the McKenna MOUT site in Fort Benning, Georgia. Simulations and flight test evaluations demonstrate the feasibility of the developed framework for UAV applications involving low-altitude flight in an urban area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Kody M.; Kim, Jong Suk; Cole, Wesley J.
2016-10-01
District energy systems can produce low-cost utilities for large energy networks, but can also be a resource for the electric grid by their ability to ramp production or to store thermal energy by responding to real-time market signals. In this work, dynamic optimization exploits the flexibility of thermal energy storage by determining optimal times to store and extract excess energy. This concept is applied to a polygeneration distributed energy system with combined heat and power, district heating, district cooling, and chilled water thermal energy storage. The system is a university campus responsible for meeting the energy needs of tens ofmore » thousands of people. The objective for the dynamic optimization problem is to minimize cost over a 24-h period while meeting multiple loads in real time. The paper presents a novel algorithm to solve this dynamic optimization problem with energy storage by decomposing the problem into multiple static mixed-integer nonlinear programming (MINLP) problems. Another innovative feature of this work is the study of a large, complex energy network which includes the interrelations of a wide variety of energy technologies. Results indicate that a cost savings of 16.5% is realized when the system can participate in the wholesale electricity market.« less
NASA Astrophysics Data System (ADS)
Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Sarunic, Marinko V.; Verhaegen, Michel; Jian, Yifan
2017-02-01
Optical Coherence Tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. A limitation of the performance and utilization of the OCT systems has been the lateral resolution. Through the combination of wavefront sensorless adaptive optics with dual variable optical elements, we present a compact lens based OCT system that is capable of imaging the photoreceptor mosaic. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient eyes, and a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators for aberration correction to obtain near diffraction limited imaging at the retina. A parallel processing computational platform permitted real-time image acquisition and display. The Data-based Online Nonlinear Extremum seeker (DONE) algorithm was used for real time optimization of the wavefront sensorless adaptive optics OCT, and the performance was compared with a coordinate search algorithm. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented. Applying the DONE algorithm in vivo for wavefront sensorless AO-OCT demonstrates that the DONE algorithm succeeds in drastically improving the signal while achieving a computational time of 1 ms per iteration, making it applicable for high speed real time applications.
Current status of the real-time processing of complex radar signatures
NASA Astrophysics Data System (ADS)
Clay, E.
The real-time processing technique developed by ONERA to characterize radar signatures at the Brahms station is described. This technique is used for the real-time analysis of the RCS of airframes and rotating parts, the one-dimensional tomography of aircraft, and the RCS of electromagnetic decoys. Using this technique, it is also possible to optimize the experimental parameters, i.e., the analysis band, the microwave-network gain, and the electromagnetic window of the analysis.
Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun
2014-09-01
The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
2001-09-01
RHODES is a traffic-adaptive signal control system that optimally controls the traffic that is observed in real time. The RHODES-ITMS Program is the application of the RHODES strategy for the two intersections of a freeway-arterial diamond interchang...
Real-time edge-enhanced optical correlator
NASA Technical Reports Server (NTRS)
Liu, Tsuen-Hsi (Inventor); Cheng, Li-Jen (Inventor)
1992-01-01
Edge enhancement of an input image by four-wave mixing a first write beam with a second write beam in a photorefractive crystal, GaAs, was achieved for VanderLugt optical correlation with an edge enhanced reference image by optimizing the power ratio of a second write beam to the first write beam (70:1) and optimizing the power ratio of a read beam, which carries the reference image to the first write beam (100:701). Liquid crystal TV panels are employed as spatial light modulators to change the input and reference images in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundt, Michael; Kuemmel, Stephan
2006-08-15
The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential ismore » analyzed.« less
NASA Astrophysics Data System (ADS)
Alqasemi, Umar; Li, Hai; Yuan, Guangqian; Kumavor, Patrick; Zanganeh, Saeid; Zhu, Quing
2014-07-01
Coregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue. We present the coregistered US and photoacoustic imaging system structure, the optimal design of the PC interfacing software, and the reconfigurable field programmable gate array operation and optimization. Phantom experiments of system lateral resolution and axial sensitivity evaluation, examples of the real-time scanning of a tumor-bearing mouse, and ex vivo human ovaries studies are demonstrated.
NASA Astrophysics Data System (ADS)
Chamitoff, Gregory E.; Saenz-Otero, Alvar; Katz, Jacob G.; Ulrich, Steve; Morrell, Benjamin J.; Gibbens, Peter W.
2018-01-01
This paper presents the development of a real-time path-planning optimization approach to controlling the motion of space-based robots. The algorithm is capable of planning three dimensional trajectories for a robot to navigate within complex surroundings that include numerous static and dynamic obstacles, path constraints and performance limitations. The methodology employs a unique transformation that enables rapid generation of feasible solutions for complex geometries, making it suitable for application to real-time operations and dynamic environments. This strategy was implemented on the Synchronized Position Hold Engage Reorient Experimental Satellite (SPHERES) test-bed on the International Space Station (ISS), and experimental testing was conducted onboard the ISS during Expedition 17 by the first author. Lessons learned from the on-orbit tests were used to further refine the algorithm for future implementations.
Optimizing Real-Time Vaccine Allocation in a Stochastic SIR Model
Nguyen, Chantal; Carlson, Jean M.
2016-01-01
Real-time vaccination following an outbreak can effectively mitigate the damage caused by an infectious disease. However, in many cases, available resources are insufficient to vaccinate the entire at-risk population, logistics result in delayed vaccine deployment, and the interaction between members of different cities facilitates a wide spatial spread of infection. Limited vaccine, time delays, and interaction (or coupling) of cities lead to tradeoffs that impact the overall magnitude of the epidemic. These tradeoffs mandate investigation of optimal strategies that minimize the severity of the epidemic by prioritizing allocation of vaccine to specific subpopulations. We use an SIR model to describe the disease dynamics of an epidemic which breaks out in one city and spreads to another. We solve a master equation to determine the resulting probability distribution of the final epidemic size. We then identify tradeoffs between vaccine, time delay, and coupling, and we determine the optimal vaccination protocols resulting from these tradeoffs. PMID:27043931
Adaptive convex combination approach for the identification of improper quaternion processes.
Ujang, Bukhari Che; Jahanchahi, Cyrus; Took, Clive Cheong; Mandic, Danilo P
2014-01-01
Data-adaptive optimal modeling and identification of real-world vector sensor data is provided by combining the fractional tap-length (FT) approach with model order selection in the quaternion domain. To account rigorously for the generality of such processes, both second-order circular (proper) and noncircular (improper), the proposed approach in this paper combines the FT length optimization with both the strictly linear quaternion least mean square (QLMS) and widely linear QLMS (WL-QLMS). A collaborative approach based on QLMS and WL-QLMS is shown to both identify the type of processes (proper or improper) and to track their optimal parameters in real time. Analysis shows that monitoring the evolution of the convex mixing parameter within the collaborative approach allows us to track the improperness in real time. Further insight into the properties of those algorithms is provided by establishing a relationship between the steady-state error and optimal model order. The approach is supported by simulations on model order selection and identification of both strictly linear and widely linear quaternion-valued systems, such as those routinely used in renewable energy (wind) and human-centered computing (biomechanics).
Performance Optimizing Adaptive Control with Time-Varying Reference Model Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hashemi, Kelley E.
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The control synthesis involves the design of a performance optimizing adaptive controller from a subset of control inputs. The resulting effect of the performance optimizing adaptive controller is to modify the initial reference model into a time-varying reference model which satisfies the performance optimization requirement obtained from an optimal control problem. The time-varying reference model modification is accomplished by the real-time solutions of the time-varying Riccati and Sylvester equations coupled with the least-squares parameter estimation of the sensitivities of the performance metric. The effectiveness of the proposed method is demonstrated by an application of maneuver load alleviation control for a flexible aircraft.
Study on Amortization Time and Rationality in Real Estate Investment
NASA Astrophysics Data System (ADS)
Li, Yancang; Zhou, Shujing; Suo, Juanjuan
Amortization time and rationality has been discussed a lot in real estate investment research. As the price of real estate is driven by Geometric Brown Motion (GBM), whether the mortgagors should amortize in advance has become a key issue in amortization time research. This paper presents a new method to solve the problem by using the optimal stopping time theory and option pricing theory models. We discuss the option value in amortizing decision based on this model. A simulation method is used to test this method.
Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices
Selck, David A.
2016-01-01
Nucleic acid amplification tests that are coupled with a digital readout enable the absolute quantification of single molecules, even at ultralow concentrations. Digital methods are robust, versatile and compatible with many amplification chemistries including isothermal amplification, making them particularly invaluable to assays that require sensitive detection, such as the quantification of viral load in occult infections or detection of sparse amounts of DNA from forensic samples. A number of microfluidic platforms are being developed for carrying out digital amplification. However, the mechanistic investigation and optimization of digital assays has been limited by the lack of real-time kinetic information about which factors affect the digital efficiency and analytical sensitivity of a reaction. Commercially available instruments that are capable of tracking digital reactions in real-time are restricted to only a small number of device types and sample-preparation strategies. Thus, most researchers who wish to develop, study, or optimize digital assays rely on the rate of the amplification reaction when performed in a bulk experiment, which is now recognized as an unreliable predictor of digital efficiency. To expand our ability to study how digital reactions proceed in real-time and enable us to optimize both the digital efficiency and analytical sensitivity of digital assays, we built a custom large-format digital real-time amplification instrument that can accommodate a wide variety of devices, amplification chemistries and sample-handling conditions. Herein, we validate this instrument, we provide detailed schematics that will enable others to build their own custom instruments, and we include a complete custom software suite to collect and analyze the data retrieved from the instrument. We believe assay optimizations enabled by this instrument will improve the current limits of nucleic acid detection and quantification, improving our fundamental understanding of single-molecule reactions and providing advancements in practical applications such as medical diagnostics, forensics and environmental sampling. PMID:27760148
NASA Astrophysics Data System (ADS)
Shimoyama, Koji; Jeong, Shinkyu; Obayashi, Shigeru
A new approach for multi-objective robust design optimization was proposed and applied to a real-world design problem with a large number of objective functions. The present approach is assisted by response surface approximation and visual data-mining, and resulted in two major gains regarding computational time and data interpretation. The Kriging model for response surface approximation can markedly reduce the computational time for predictions of robustness. In addition, the use of self-organizing maps as a data-mining technique allows visualization of complicated design information between optimality and robustness in a comprehensible two-dimensional form. Therefore, the extraction and interpretation of trade-off relations between optimality and robustness of design, and also the location of sweet spots in the design space, can be performed in a comprehensive manner.
Pizzolato, Claudio; Lloyd, David G.; Barrett, Rod S.; Cook, Jill L.; Zheng, Ming H.; Besier, Thor F.; Saxby, David J.
2017-01-01
Musculoskeletal tissues respond to optimal mechanical signals (e.g., strains) through anabolic adaptations, while mechanical signals above and below optimal levels cause tissue catabolism. If an individual's physical behavior could be altered to generate optimal mechanical signaling to musculoskeletal tissues, then targeted strengthening and/or repair would be possible. We propose new bioinspired technologies to provide real-time biofeedback of relevant mechanical signals to guide training and rehabilitation. In this review we provide a description of how wearable devices may be used in conjunction with computational rigid-body and continuum models of musculoskeletal tissues to produce real-time estimates of localized tissue stresses and strains. It is proposed that these bioinspired technologies will facilitate a new approach to physical training that promotes tissue strengthening and/or repair through optimal tissue loading. PMID:29093676
Long-range wind monitoring in real time with optimized coherent lidar
NASA Astrophysics Data System (ADS)
Dolfi-Bouteyre, Agnes; Canat, Guillaume; Lombard, Laurent; Valla, Matthieu; Durécu, Anne; Besson, Claudine
2017-03-01
Two important enabling technologies for pulsed coherent detection wind lidar are the laser and real-time signal processing. In particular, fiber laser is limited in peak power by nonlinear effects, such as stimulated Brillouin scattering (SBS). We report on various technologies that have been developed to mitigate SBS and increase peak power in 1.5-μm fiber lasers, such as special large mode area fiber designs or strain management. Range-resolved wind profiles up to a record range of 16 km within 0.1-s averaging time have been obtained thanks to those high-peak power fiber lasers. At long range, the lidar signal gets much weaker than the noise and special care is required to extract the Doppler peak from the spectral noise. To optimize real-time processing for weak carrier-to-noise ratio signal, we have studied various Doppler mean frequency estimators (MFE) and the influence of data accumulation on outliers occurrence. Five real-time MFEs (maximum, centroid, matched filter, maximum likelihood, and polynomial fit) have been compared in terms of error and processing time using lidar experimental data. MFE errors and data accumulation limits are established using a spectral method.
NASA Astrophysics Data System (ADS)
Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun
2014-01-01
We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.
THE CHOICE OF REAL-TIME CONTROL STRATEGY FOR COMBINED SEWER OVERFLOW CONTROL
This paper focuses on the strategies used to operate a collection system in real-time control (RTC) in order to optimize use of system capacity and to reduce the cost of long-term combined sewer overflow (CSO) control. Three RTC strategies were developed and analyzed based on the...
A Real-Time Greedy-Index Dispatching Policy for using PEVs to Provide Frequency Regulation Service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Xinda; Wu, Di; Lu, Ning
This article presents a real-time greedy-index dispatching policy (GIDP) for using plug-in electric vehicles (PEVs) to provide frequency regulation services. A new service cost allocation mechanism is proposed to award PEVs based on the amount of service they provided, while considering compensations for delayed-charging and reduction of battery lifetime due to participation of the service. The GIDP transforms the optimal dispatch problem from a high-dimensional space into a one-dimensional space while preserving the solution optimality. When solving the transformed problem in real-time, the global optimality of the GIDP solution can be guaranteed by mathematically proved “indexability”. Because the GIDP indexmore » can be calculated upon the PEV’s arrival and used for the entire decision making process till its departure, the computational burden is minimized and the complexity of the aggregator dispatch process is significantly reduced. Finally, simulation results are used to evaluate the proposed GIDP, and to demonstrate the potential profitability from providing frequency regulation service by using PEVs.« less
A Real-Time Greedy-Index Dispatching Policy for using PEVs to Provide Frequency Regulation Service
Ke, Xinda; Wu, Di; Lu, Ning
2017-09-18
This article presents a real-time greedy-index dispatching policy (GIDP) for using plug-in electric vehicles (PEVs) to provide frequency regulation services. A new service cost allocation mechanism is proposed to award PEVs based on the amount of service they provided, while considering compensations for delayed-charging and reduction of battery lifetime due to participation of the service. The GIDP transforms the optimal dispatch problem from a high-dimensional space into a one-dimensional space while preserving the solution optimality. When solving the transformed problem in real-time, the global optimality of the GIDP solution can be guaranteed by mathematically proved “indexability”. Because the GIDP indexmore » can be calculated upon the PEV’s arrival and used for the entire decision making process till its departure, the computational burden is minimized and the complexity of the aggregator dispatch process is significantly reduced. Finally, simulation results are used to evaluate the proposed GIDP, and to demonstrate the potential profitability from providing frequency regulation service by using PEVs.« less
Optimal Sparse Upstream Sensor Placement for Hydrokinetic Turbines
NASA Astrophysics Data System (ADS)
Cavagnaro, Robert; Strom, Benjamin; Ross, Hannah; Hill, Craig; Polagye, Brian
2016-11-01
Accurate measurement of the flow field incident upon a hydrokinetic turbine is critical for performance evaluation during testing and setting boundary conditions in simulation. Additionally, turbine controllers may leverage real-time flow measurements. Particle image velocimetry (PIV) is capable of rendering a flow field over a wide spatial domain in a controlled, laboratory environment. However, PIV's lack of suitability for natural marine environments, high cost, and intensive post-processing diminish its potential for control applications. Conversely, sensors such as acoustic Doppler velocimeters (ADVs), are designed for field deployment and real-time measurement, but over a small spatial domain. Sparsity-promoting regression analysis such as LASSO is utilized to improve the efficacy of point measurements for real-time applications by determining optimal spatial placement for a small number of ADVs using a training set of PIV velocity fields and turbine data. The study is conducted in a flume (0.8 m2 cross-sectional area, 1 m/s flow) with laboratory-scale axial and cross-flow turbines. Predicted turbine performance utilizing the optimal sparse sensor network and associated regression model is compared to actual performance with corresponding PIV measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Ryan; Marnay, Chris
The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, tomore » examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.« less
Real-Time Control of an Ensemble of Heterogeneous Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Andrey; Bouman, Niek J.; Le Boudec, Jean-Yves
This paper focuses on the problem of controlling an ensemble of heterogeneous resources connected to an electrical grid at the same point of common coupling (PCC). The controller receives an aggregate power setpoint for the ensemble in real time and tracks this setpoint by issuing individual optimal setpoints to the resources. The resources can have continuous or discrete nature (e.g., heating systems consisting of a finite number of heaters that each can be either switched on or off) and/or can be highly uncertain (e.g., photovoltaic (PV) systems or residential loads). A naive approach would lead to a stochastic mixed-integer optimizationmore » problem to be solved at the controller at each time step, which might be infeasible in real time. Instead, we allow the controller to solve a continuous convex optimization problem and compensate for the errors at the resource level by using a variant of the well-known error diffusion algorithm. We give conditions guaranteeing that our algorithm tracks the power setpoint at the PCC on average while issuing optimal setpoints to individual resources. We illustrate the approach numerically by controlling a collection of batteries, PV systems, and discrete loads.« less
NASA Astrophysics Data System (ADS)
Farag, Mohammed; Fleckenstein, Matthias; Habibi, Saeid
2017-02-01
Model-order reduction and minimization of the CPU run-time while maintaining the model accuracy are critical requirements for real-time implementation of lithium-ion electrochemical battery models. In this paper, an isothermal, continuous, piecewise-linear, electrode-average model is developed by using an optimal knot placement technique. The proposed model reduces the univariate nonlinear function of the electrode's open circuit potential dependence on the state of charge to continuous piecewise regions. The parameterization experiments were chosen to provide a trade-off between extensive experimental characterization techniques and purely identifying all parameters using optimization techniques. The model is then parameterized in each continuous, piecewise-linear, region. Applying the proposed technique cuts down the CPU run-time by around 20%, compared to the reduced-order, electrode-average model. Finally, the model validation against real-time driving profiles (FTP-72, WLTP) demonstrates the ability of the model to predict the cell voltage accurately with less than 2% error.
Arrieta-Camacho, Juan José; Biegler, Lorenz T
2005-12-01
Real time optimal guidance is considered for a class of low thrust spacecraft. In particular, nonlinear model predictive control (NMPC) is utilized for computing the optimal control actions required to transfer a spacecraft from a low Earth orbit to a mission orbit. The NMPC methodology presented is able to cope with unmodeled disturbances. The dynamics of the transfer are modeled using a set of modified equinoctial elements because they do not exhibit singularities for zero inclination and zero eccentricity. The idea behind NMPC is the repeated solution of optimal control problems; at each time step, a new control action is computed. The optimal control problem is solved using a direct method-fully discretizing the equations of motion. The large scale nonlinear program resulting from the discretization procedure is solved using IPOPT--a primal-dual interior point algorithm. Stability and robustness characteristics of the NMPC algorithm are reviewed. A numerical example is presented that encourages further development of the proposed methodology: the transfer from low-Earth orbit to a molniya orbit.
Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron
2008-01-01
In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.
Foo, Brian; van der Schaar, Mihaela
2010-11-01
In this paper, we discuss distributed optimization techniques for configuring classifiers in a real-time, informationally-distributed stream mining system. Due to the large volume of streaming data, stream mining systems must often cope with overload, which can lead to poor performance and intolerable processing delay for real-time applications. Furthermore, optimizing over an entire system of classifiers is a difficult task since changing the filtering process at one classifier can impact both the feature values of data arriving at classifiers further downstream and thus, the classification performance achieved by an ensemble of classifiers, as well as the end-to-end processing delay. To address this problem, this paper makes three main contributions: 1) Based on classification and queuing theoretic models, we propose a utility metric that captures both the performance and the delay of a binary filtering classifier system. 2) We introduce a low-complexity framework for estimating the system utility by observing, estimating, and/or exchanging parameters between the inter-related classifiers deployed across the system. 3) We provide distributed algorithms to reconfigure the system, and analyze the algorithms based on their convergence properties, optimality, information exchange overhead, and rate of adaptation to non-stationary data sources. We provide results using different video classifier systems.
Near-Optimal Guidance Method for Maximizing the Reachable Domain of Gliding Aircraft
NASA Astrophysics Data System (ADS)
Tsuchiya, Takeshi
This paper proposes a guidance method for gliding aircraft by using onboard computers to calculate a near-optimal trajectory in real-time, and thereby expanding the reachable domain. The results are applicable to advanced aircraft and future space transportation systems that require high safety. The calculation load of the optimal control problem that is used to maximize the reachable domain is too large for current computers to calculate in real-time. Thus the optimal control problem is divided into two problems: a gliding distance maximization problem in which the aircraft motion is limited to a vertical plane, and an optimal turning flight problem in a horizontal direction. First, the former problem is solved using a shooting method. It can be solved easily because its scale is smaller than that of the original problem, and because some of the features of the optimal solution are obtained in the first part of this paper. Next, in the latter problem, the optimal bank angle is computed from the solution of the former; this is an analytical computation, rather than an iterative computation. Finally, the reachable domain obtained from the proposed near-optimal guidance method is compared with that obtained from the original optimal control problem.
Determination of the Conservation Time of Periodicals for Optimal Shelf Maintenance of a Library.
ERIC Educational Resources Information Center
Miyamoto, Sadaaki; Nakayama, Kazuhiko
1981-01-01
Presents a method based on a constrained optimization technique that determines the time of removal of scientific periodicals from the shelf of a library. A geometrical interpretation of the theoretical result is given, and a numerical example illustrates how the technique is applicable to real bibliographic data. (FM)
Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe
NASA Astrophysics Data System (ADS)
Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao
2017-10-01
Microscopic 3-D shape measurement can supply accurate metrology of the delicacy and complexity of MEMS components of the final devices to ensure their proper performance. Fringe projection profilometry (FPP) has the advantages of noncontactness and high accuracy, making it widely used in 3-D measurement. Recently, tremendous advance of electronics development promotes 3-D measurements to be more accurate and faster. However, research about real-time microscopic 3-D measurement is still rarely reported. In this work, we effectively combine optimized binary structured pattern with number-theoretical phase unwrapping algorithm to realize real-time 3-D shape measurement. A slight defocusing of our proposed binary patterns can considerably alleviate the measurement error based on phase-shifting FPP, making the binary patterns have the comparable performance with ideal sinusoidal patterns. Real-time 3-D measurement about 120 frames per second (FPS) is achieved, and experimental result of a vibrating earphone is presented.
Niu, Gang; Jiang, Junjie; Youn, Byeng D; Pecht, Michael
2018-01-01
Autonomous vehicles are playing an increasingly importance in support of a wide variety of critical events. This paper presents a novel autonomous health management scheme on rail vehicles driven by permanent magnet synchronous motors (PMSMs). Firstly, the PMSMs are modeled based on first principle to deduce the initial profile of pneumatic braking (p-braking) force, then which is utilized for real-time demagnetization monitoring and degradation prognosis through similarity-based theory and generate prognosis-enhanced p-braking force strategy for final optimal control. A case study is conducted to demonstrate the feasibility and benefit of using the real-time prognostics and health management (PHM) information in vehicle 'drive-brake' control automatically. The results show that accurate demagnetization monitoring, degradation prognosis, and real-time capability for control optimization can be obtained, which can effectively relieve brake shoe wear. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Flexible real-time magnetic resonance imaging framework.
Santos, Juan M; Wright, Graham A; Pauly, John M
2004-01-01
The extension of MR imaging to new applications has demonstrated the limitations of the architecture of current real-time systems. Traditional real-time implementations provide continuous acquisition of data and modification of basic sequence parameters on the fly. We have extended the concept of real-time MRI by designing a system that drives the examinations from a real-time localizer and then gets reconfigured for different imaging modes. Upon operator request or automatic feedback the system can immediately generate a new pulse sequence or change fundamental aspects of the acquisition such as gradient waveforms excitation pulses and scan planes. This framework has been implemented by connecting a data processing and control workstation to a conventional clinical scanner. Key components on the design of this framework are the data communication and control mechanisms, reconstruction algorithms optimized for real-time and adaptability, flexible user interface and extensible user interaction. In this paper we describe the various components that comprise this system. Some of the applications implemented in this framework include real-time catheter tracking embedded in high frame rate real-time imaging and immediate switching between real-time localizer and high-resolution volume imaging for coronary angiography applications.
NASA Technical Reports Server (NTRS)
Barker, L. Keith; Mckinney, William S., Jr.
1989-01-01
The Laboratory Telerobotic Manipulator (LTM) is a seven-degree-of-freedom robot arm. Two of the arms were delivered to Langley Research Center for ground-based research to assess the use of redundant degree-of-freedom robot arms in space operations. Resolved-rate control equations for the LTM are derived. The equations are based on a scheme developed at the Oak Ridge National Laboratory for computing optimized joint angle rates in real time. The optimized joint angle rates actually represent a trade-off, as the hand moves, between small rates (least-squares solution) and those rates which work toward satisfying a specified performance criterion of joint angles. In singularities where the optimization scheme cannot be applied, alternate control equations are devised. The equations developed were evaluated using a real-time computer simulation to control a 3-D graphics model of the LTM.
Dynamic ADMM for Real-Time Optimal Power Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi
This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearization of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation ofmore » the AC power flows, and it avoids ubiquitous metering to gather the state of noncontrollable resources. Optimality and convergence of the proposed algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.« less
Dynamic ADMM for Real-Time Optimal Power Flow: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi
This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation ofmore » the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.« less
Determination of T-2 and HT-2 toxins from maize by direct analysis in real time mass spectrometry
USDA-ARS?s Scientific Manuscript database
Direct analysis in real time (DART) ionization coupled to mass spectrometry (MS) was used for the rapid quantitative analysis of T-2 toxin, and the related HT-2 toxin, extracted from corn. Sample preparation procedures and instrument parameters were optimized to obtain sensitive and accurate determi...
NASA Astrophysics Data System (ADS)
Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas
2013-09-01
The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.
Millisecond timing on PCs and Macs.
MacInnes, W J; Taylor, T L
2001-05-01
A real-time, object-oriented solution for displaying stimuli on Windows 95/98, MacOS and Linux platforms is presented. The program, written in C++, utilizes a special-purpose window class (GLWindow), OpenGL, and 32-bit graphics acceleration; it avoids display timing uncertainty by substituting the new window class for the default window code for each system. We report the outcome of tests for real-time capability across PC and Mac platforms running a variety of operating systems. The test program, which can be used as a shell for programming real-time experiments and testing specific processors, is available at http://www.cs.dal.ca/~macinnwj. We propose to provide researchers with a sense of the usefulness of our program, highlight the ability of many multitasking environments to achieve real time, as well as caution users about systems that may not achieve real time, even under optimal conditions.
3D graphics hardware accelerator programming methods for real-time visualization systems
NASA Astrophysics Data System (ADS)
Souetov, Andrew E.
2001-02-01
The paper deals with new approaches in software design for creating real-time applications that use modern graphics acceleration hardware. The growing complexity of such type of software compels programmers to use different types of CASE systems in design and development process. The subject under discussion is integration of such systems in a development process, their effective use, and the combination of these new methods with the necessity to produce optimal codes. A method of simulation integration and modeling tools in real-time software development cycle is described.
3D graphics hardware accelerator programming methods for real-time visualization systems
NASA Astrophysics Data System (ADS)
Souetov, Andrew E.
2000-02-01
The paper deals with new approaches in software design for creating real-time applications that use modern graphics acceleration hardware. The growing complexity of such type of software compels programmers to use different types of CASE systems in design and development process. The subject under discussion is integration of such systems in a development process, their effective use, and the combination of these new methods with the necessity to produce optimal codes. A method of simulation integration and modeling tools in real-time software development cycle is described.
Computation offloading for real-time health-monitoring devices.
Kalantarian, Haik; Sideris, Costas; Tuan Le; Hosseini, Anahita; Sarrafzadeh, Majid
2016-08-01
Among the major challenges in the development of real-time wearable health monitoring systems is to optimize battery life. One of the major techniques with which this objective can be achieved is computation offloading, in which portions of computation can be partitioned between the device and other resources such as a server or cloud. In this paper, we describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data between the wearable device and mobile application as a function of desired classification accuracy.
Real-time trajectory optimization on parallel processors
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1993-01-01
A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.
Plug-in hybrid electric vehicles in smart grid
NASA Astrophysics Data System (ADS)
Yao, Yin
In this thesis, in order to investigate the impact of charging load from plug-in hybrid electric vehicles (PHEVs), a stochastic model is developed in Matlab. In this model, two main types of PHEVs are defined: public transportation vehicles and private vehicles. Different charging time schedule, charging speed and battery capacity are considered for each type of vehicles. The simulation results reveal that there will be two load peaks (at noon and in evening) when the penetration level of PHEVs increases continuously to 30% in 2030. Therefore, optimization tool is utilized to shift load peaks. This optimization process is based on real time pricing and wind power output data. With the help of smart grid, power allocated to each vehicle could be controlled. As a result, this optimization could fulfill the goal of shifting load peaks to valley areas where real time price is low or wind output is high.
Uplink Packet-Data Scheduling in DS-CDMA Systems
NASA Astrophysics Data System (ADS)
Choi, Young Woo; Kim, Seong-Lyun
In this letter, we consider the uplink packet scheduling for non-real-time data users in a DS-CDMA system. As an effort to jointly optimize throughput and fairness, we formulate a time-span minimization problem incorporating the time-multiplexing of different simultaneous transmission schemes. Based on simple rules, we propose efficient scheduling algorithms and compare them with the optimal solution obtained by linear programming.
Park, Yangkyu; Kim, Hyeon Woo; Yun, Joho; Seo, Seungwan; Park, Chang-Ju; Lee, Jeong Zoo; Lee, Jong-Hyun
2016-01-01
Purpose. To distinguish between normal (SV-HUC-1) and cancerous (TCCSUP) human urothelial cell lines using microelectrical impedance spectroscopy (μEIS). Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF) was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT) was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p < 0.001), was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p < 0.001). Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF. PMID:26998490
Waste collection multi objective model with real time traceability data.
Faccio, Maurizio; Persona, Alessandro; Zanin, Giorgia
2011-12-01
Waste collection is a highly visible municipal service that involves large expenditures and difficult operational problems, plus it is expensive to operate in terms of investment costs (i.e. vehicles fleet), operational costs (i.e. fuel, maintenances) and environmental costs (i.e. emissions, noise and traffic congestions). Modern traceability devices, like volumetric sensors, identification RFID (Radio Frequency Identification) systems, GPRS (General Packet Radio Service) and GPS (Global Positioning System) technology, permit to obtain data in real time, which is fundamental to implement an efficient and innovative waste collection routing model. The basic idea is that knowing the real time data of each vehicle and the real time replenishment level at each bin makes it possible to decide, in function of the waste generation pattern, what bin should be emptied and what should not, optimizing different aspects like the total covered distance, the necessary number of vehicles and the environmental impact. This paper describes a framework about the traceability technology available in the optimization of solid waste collection, and introduces an innovative vehicle routing model integrated with the real time traceability data, starting the application in an Italian city of about 100,000 inhabitants. The model is tested and validated using simulation and an economical feasibility study is reported at the end of the paper. Copyright © 2011 Elsevier Ltd. All rights reserved.
Real-time video compressing under DSP/BIOS
NASA Astrophysics Data System (ADS)
Chen, Qiu-ping; Li, Gui-ju
2009-10-01
This paper presents real-time MPEG-4 Simple Profile video compressing based on the DSP processor. The programming framework of video compressing is constructed using TMS320C6416 Microprocessor, TDS510 simulator and PC. It uses embedded real-time operating system DSP/BIOS and the API functions to build periodic function, tasks and interruptions etcs. Realize real-time video compressing. To the questions of data transferring among the system. Based on the architecture of the C64x DSP, utilized double buffer switched and EDMA data transfer controller to transit data from external memory to internal, and realize data transition and processing at the same time; the architecture level optimizations are used to improve software pipeline. The system used DSP/BIOS to realize multi-thread scheduling. The whole system realizes high speed transition of a great deal of data. Experimental results show the encoder can realize real-time encoding of 768*576, 25 frame/s video images.
Sun, Xin; Xu, Haobo; Shen, Jing; Guo, Shuyuan; Shi, Sa; Dan, Juhua; Tian, Fang; Tian, Yanfeng; Tian, Ye
2015-01-01
Reactive oxygen species (ROS) elevation and mitochondrial membrane potential (MMP) loss have been proven recently to be involved in sonodynamic therapy (SDT)-induced macrophage apoptosis and necrosis. This study aims to develop an experimental system to monitor intracellular ROS and MMP in real-time during ultrasonic irradiation in order to achieve optimal effect in SDT. Cultured THP-1 derived macrophages were incubated with 5-aminolevulinic acid (ALA), and then sonicated at different intensities. Intracellular ROS elevation and MMP loss were detected in real-time by fluorospectrophotometer using fluorescence probe DCFH-DA and jc-1, respectively. Ultrasound at low intensities (less than 0.48W/cm(2)) had no influence on ROS and MMP in macrophages, whereas at an intensity of 0.48W/cm(2), ROS elevation and MMP loss were observed during ultrasonic irradiation. These effects were strongly enhanced in the presence of ALA. Quantitative analysis showed that ROS elevation and MMP loss monotonically increased with the rise of ultrasonic intensity between 0.48 and 1.16W/cm(2). SDT at 0.48 and 0.84W/cm(2) induced mainly apoptosis in THP-1 macrophages while SDT at 1.16W/cm(2) mainly cell necrosis. This study supports the validity and potential utility of real-time ROS and MMP detection as a dosimetric tool for the determination of optimal SDT. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke
2018-06-01
In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.
USDA-ARS?s Scientific Manuscript database
A highly sensitive detection test for Rinderpest virus (RPV), based on a real-time reverse transcription-PCR (RT-PR) system, was developed. Five different RPV genomic targets were examined, and one was selected and optimized to detect viral RNA in infected tissue culture fluid with a level of detec...
ERIC Educational Resources Information Center
Her, Cheenou; Alonzo, Aaron P.; Vang, Justin Y.; Torres, Ernesto; Krishnan, V. V.
2015-01-01
Enzyme kinetics is an essential part of a chemistry curriculum, especially for students interested in biomedical research or in health care fields. Though the concept is routinely performed in undergraduate chemistry/biochemistry classrooms using other spectroscopic methods, we provide an optimized approach that uses a real-time monitoring of the…
NASA Technical Reports Server (NTRS)
Granaas, Michael M.; Rhea, Donald C.
1989-01-01
In recent years the needs of ground-based researcher-analysts to access real-time engineering data in the form of processed information has expanded rapidly. Fortunately, the capacity to deliver that information has also expanded. The development of advanced display systems is essential to the success of a research test activity. Those developed at the National Aeronautics and Space Administration (NASA), Western Aeronautical Test Range (WATR), range from simple alphanumerics to interactive mapping and graphics. These unique display systems are designed not only to meet basic information display requirements of the user, but also to take advantage of techniques for optimizing information display. Future ground-based display systems will rely heavily not only on new technologies, but also on interaction with the human user and the associated productivity with that interaction. The psychological abilities and limitations of the user will become even more important in defining the difference between a usable and a useful display system. This paper reviews the requirements for development of real-time displays; the psychological aspects of design such as the layout, color selection, real-time response rate, and interactivity of displays; and an analysis of some existing WATR displays.
NASA Astrophysics Data System (ADS)
Guthier, C.; Aschenbrenner, K. P.; Buergy, D.; Ehmann, M.; Wenz, F.; Hesser, J. W.
2015-03-01
This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.
Guthier, C; Aschenbrenner, K P; Buergy, D; Ehmann, M; Wenz, F; Hesser, J W
2015-03-21
This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.
Real coded genetic algorithm for fuzzy time series prediction
NASA Astrophysics Data System (ADS)
Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.
2017-10-01
Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.
Reactive Collision Avoidance Algorithm
NASA Technical Reports Server (NTRS)
Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred
2010-01-01
The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on-line. The optimal avoidance trajectory is implemented as a receding-horizon model predictive control law. Therefore, at each time step, the optimal avoidance trajectory is found and the first time step of its acceleration is applied. At the next time step of the control computer, the problem is re-solved and the new first time step is again applied. This continual updating allows the RCA algorithm to adapt to a colliding spacecraft that is making erratic course changes.
NASA Astrophysics Data System (ADS)
Tanaka, Kiyoshi; Takano, Shuichi; Sugimura, Tatsuo
2000-10-01
In this work we focus on the indexed triangle strips that is an extended representation of triangle strips to improve the efficiency for geometrical transformation of vertices, and present a method to construct optimum indexed triangle strips using Genetic Algorithm (GA) for real-time visualization. The main objective of this work is how to optimally construct indexed triangle strips by improving the ratio that reuses the data stored in the cash memory and simultaneously reducing the total index numbers with GA. Simulation results verify that the average index numbers and cache miss ratio per polygon cold be small, and consequently the total visualization time required for the optimum solution obtained by this scheme could be remarkably reduced.
Sarrazin, Christoph; Dierynck, Inge; Cloherty, Gavin; Ghys, Anne; Janssen, Katrien; Luo, Donghan; Witek, James; Buti, Maria; Picchio, Gaston; De Meyer, Sandra
2015-04-01
Protease inhibitor (PI)-based response-guided triple therapies for hepatitis C virus (HCV) infection are still widely used. Noncirrhotic treatment-naive and prior relapser patients receiving telaprevir-based treatment are eligible for shorter, 24-week total therapy if HCV RNA is undetectable at both weeks 4 and 12. In this study, the concordance in HCV RNA assessments between the Roche High Pure System/Cobas TaqMan and Abbott RealTime HCV RNA assays and the impacts of different HCV RNA cutoffs on treatment outcome were evaluated. A total of 2,629 samples from 663 HCV genotype 1 patients receiving telaprevir/pegylated interferon/ribavirin in OPTIMIZE were analyzed using the High Pure System and reanalyzed using Abbott RealTime (limits of detection, 15.1 IU/ml versus 8.3 IU/ml; limits of quantification, 25 IU/ml versus 12 IU/ml, respectively). Overall, good concordance was observed between the assays. Using undetectable HCV RNA at week 4, 34% of the patients would be eligible for shorter treatment duration with Abbott RealTime versus 72% with the High Pure System. However, using <12 IU/ml for Abbott RealTime, a similar proportion (74%) would be eligible. Of the patients receiving 24-week total therapy, 87% achieved a sustained virologic response with undetectable HCV RNA by the High Pure System or <12 IU/ml by Abbott RealTime; however, 92% of the patients with undetectable HCV RNA by Abbott RealTime achieved a sustained virologic response. Using undetectable HCV RNA as the cutoff, the more sensitive Abbott RealTime assay would identify fewer patients eligible for shorter treatment than the High Pure System. Our data confirm the <12-IU/ml cutoff, as previously established in other studies of the Abbott RealTime assay, to determine eligibility for shortened PI-based HCV treatment. (The study was registered with ClinicalTrials.gov under registration no. NCT01241760.). Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A Novel, Real-Time, In Vivo Mouse Retinal Imaging System.
Butler, Mark C; Sullivan, Jack M
2015-11-01
To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies.
Time-optimal aircraft pursuit-evasion with a weapon envelope constraint
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Duke, E. L.
1990-01-01
The optimal pursuit-evasion problem between two aircraft, including nonlinear point-mass vehicle models and a realistic weapon envelope, is analyzed. Using a linear combination of flight time and the square of the vehicle acceleration as the performance index, a closed-form solution is obtained in nonlinear feedback form. Due to its modest computational requirements, this guidance law can be used for onboard real-time implementation.
Baygin, Mehmet; Karakose, Mehmet
2013-01-01
Nowadays, the increasing use of group elevator control systems owing to increasing building heights makes the development of high-performance algorithms necessary in terms of time and energy saving. Although there are many studies in the literature about this topic, they are still not effective enough because they are not able to evaluate all features of system. In this paper, a new approach of immune system-based optimal estimate is studied for dynamic control of group elevator systems. The method is mainly based on estimation of optimal way by optimizing all calls with genetic, immune system and DNA computing algorithms, and it is evaluated with a fuzzy system. The system has a dynamic feature in terms of the situation of calls and the option of the most appropriate algorithm, and it also adaptively works in terms of parameters such as the number of floors and cabins. This new approach which provides both time and energy saving was carried out in real time. The experimental results comparatively demonstrate the effects of method. With dynamic and adaptive control approach in this study carried out, a significant progress on group elevator control systems has been achieved in terms of time and energy efficiency according to traditional methods. PMID:23935433
NASA Astrophysics Data System (ADS)
Kim, Kyung-Su; Lee, Hae-Yeoun; Im, Dong-Hyuck; Lee, Heung-Kyu
Commercial markets employ digital right management (DRM) systems to protect valuable high-definition (HD) quality videos. DRM system uses watermarking to provide copyright protection and ownership authentication of multimedia contents. We propose a real-time video watermarking scheme for HD video in the uncompressed domain. Especially, our approach is in aspect of practical perspectives to satisfy perceptual quality, real-time processing, and robustness requirements. We simplify and optimize human visual system mask for real-time performance and also apply dithering technique for invisibility. Extensive experiments are performed to prove that the proposed scheme satisfies the invisibility, real-time processing, and robustness requirements against video processing attacks. We concentrate upon video processing attacks that commonly occur in HD quality videos to display on portable devices. These attacks include not only scaling and low bit-rate encoding, but also malicious attacks such as format conversion and frame rate change.
[Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].
Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing
2012-08-01
Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.
Intelligent data management for real-time spacecraft monitoring
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce
1992-01-01
Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.
Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-Test Results
NASA Technical Reports Server (NTRS)
Brown, Nelson Andrew; Schaefer, Jacob Robert
2013-01-01
A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.
Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-test Results
NASA Technical Reports Server (NTRS)
Brown, Nelson Andrew; Schaefer, Jacob Robert
2013-01-01
A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.
Peak Seeking Control for Reduced Fuel Consumption with Preliminary Flight Test Results
NASA Technical Reports Server (NTRS)
Brown, Nelson
2012-01-01
The Environmentally Responsible Aviation project seeks to accomplish the simultaneous reduction of fuel burn, noise, and emissions. A project at NASA Dryden Flight Research Center is contributing to ERAs goals by exploring the practical application of real-time trim configuration optimization for enhanced performance and reduced fuel consumption. This peak-seeking control approach is based on Newton-Raphson algorithm using a time-varying Kalman filter to estimate the gradient of the performance function. In real-time operation, deflection of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of a modified F-18 are directly optimized, and the horizontal stabilators and angle of attack are indirectly optimized. Preliminary results from three research flights are presented herein. The optimization system found a trim configuration that required approximately 3.5% less fuel flow than the baseline trim at the given flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These preliminary results show the algorithm has good performance and is expected to show similar results at other flight conditions and aircraft configurations.
NASA Astrophysics Data System (ADS)
Li, W.; Shao, H.
2017-12-01
For geospatial cyberinfrastructure enabled web services, the ability of rapidly transmitting and sharing spatial data over the Internet plays a critical role to meet the demands of real-time change detection, response and decision-making. Especially for the vector datasets which serve as irreplaceable and concrete material in data-driven geospatial applications, their rich geometry and property information facilitates the development of interactive, efficient and intelligent data analysis and visualization applications. However, the big-data issues of vector datasets have hindered their wide adoption in web services. In this research, we propose a comprehensive optimization strategy to enhance the performance of vector data transmitting and processing. This strategy combines: 1) pre- and on-the-fly generalization, which automatically determines proper simplification level through the introduction of appropriate distance tolerance (ADT) to meet various visualization requirements, and at the same time speed up simplification efficiency; 2) a progressive attribute transmission method to reduce data size and therefore the service response time; 3) compressed data transmission and dynamic adoption of a compression method to maximize the service efficiency under different computing and network environments. A cyberinfrastructure web portal was developed for implementing the proposed technologies. After applying our optimization strategies, substantial performance enhancement is achieved. We expect this work to widen the use of web service providing vector data to support real-time spatial feature sharing, visual analytics and decision-making.
Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)
NASA Astrophysics Data System (ADS)
Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.
2016-05-01
This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.
Real time processor for array speckle interferometry
NASA Astrophysics Data System (ADS)
Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos
1989-02-01
The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.
Real time processor for array speckle interferometry
NASA Technical Reports Server (NTRS)
Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos
1989-01-01
The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.
A real-time MPEG software decoder using a portable message-passing library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, Man Kam; Tang, P.T. Peter; Lin, Biquan
1995-12-31
We present a real-time MPEG software decoder that uses message-passing libraries such as MPL, p4 and MPI. The parallel MPEG decoder currently runs on the IBM SP system but can be easil ported to other parallel machines. This paper discusses our parallel MPEG decoding algorithm as well as the parallel programming environment under which it uses. Several technical issues are discussed, including balancing of decoding speed, memory limitation, 1/0 capacities, and optimization of MPEG decoding components. This project shows that a real-time portable software MPEG decoder is feasible in a general-purpose parallel machine.
Smart Water: Energy-Water Optimization in Drinking Water Systems
This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...
Mandel, Jacob E; Morel-Ovalle, Louis; Boas, Franz E; Ziv, Etay; Yarmohammadi, Hooman; Deipolyi, Amy; Mohabir, Heeralall R; Erinjeri, Joseph P
2018-02-20
The purpose of this study is to determine whether a custom Google Maps application can optimize site selection when scheduling outpatient interventional radiology (IR) procedures within a multi-site hospital system. The Google Maps for Business Application Programming Interface (API) was used to develop an internal web application that uses real-time traffic data to determine estimated travel time (ETT; minutes) and estimated travel distance (ETD; miles) from a patient's home to each a nearby IR facility in our hospital system. Hypothetical patient home addresses based on the 33 cities comprising our institution's catchment area were used to determine the optimal IR site for hypothetical patients traveling from each city based on real-time traffic conditions. For 10/33 (30%) cities, there was discordance between the optimal IR site based on ETT and the optimal IR site based on ETD at non-rush hour time or rush hour time. By choosing to travel to an IR site based on ETT rather than ETD, patients from discordant cities were predicted to save an average of 7.29 min during non-rush hour (p = 0.03), and 28.80 min during rush hour (p < 0.001). Using a custom Google Maps application to schedule outpatients for IR procedures can effectively reduce patient travel time when more than one location providing IR procedures is available within the same hospital system.
An Optimized Trajectory Planning for Welding Robot
NASA Astrophysics Data System (ADS)
Chen, Zhilong; Wang, Jun; Li, Shuting; Ren, Jun; Wang, Quan; Cheng, Qunchao; Li, Wentao
2018-03-01
In order to improve the welding efficiency and quality, this paper studies the combined planning between welding parameters and space trajectory for welding robot and proposes a trajectory planning method with high real-time performance, strong controllability and small welding error. By adding the virtual joint at the end-effector, the appropriate virtual joint model is established and the welding process parameters are represented by the virtual joint variables. The trajectory planning is carried out in the robot joint space, which makes the control of the welding process parameters more intuitive and convenient. By using the virtual joint model combined with the B-spline curve affine invariant, the welding process parameters are indirectly controlled by controlling the motion curve of the real joint. To solve the optimal time solution as the goal, the welding process parameters and joint space trajectory joint planning are optimized.
Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real- and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual ..epsilon..-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules formore » cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.« less
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Turner, J. D.; Chun, H. M.
1984-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. Two examples are given to illustrate the validity and usefulness of the formulations.
The Earth Phenomena Observing System: Intelligent Autonomy for Satellite Operations
NASA Technical Reports Server (NTRS)
Ricard, Michael; Abramson, Mark; Carter, David; Kolitz, Stephan
2003-01-01
Earth monitoring systems of the future may include large numbers of inexpensive small satellites, tasked in a coordinated fashion to observe both long term and transient targets. For best performance, a tool which helps operators optimally assign targets to satellites will be required. We present the design of algorithms developed for real-time optimized autonomous planning of large numbers of small single-sensor Earth observation satellites. The algorithms will reduce requirements on the human operators of such a system of satellites, ensure good utilization of system resources, and provide the capability to dynamically respond to temporal terrestrial phenomena. Our initial real-time system model consists of approximately 100 satellites and large number of points of interest on Earth (e.g., hurricanes, volcanoes, and forest fires) with the objective to maximize the total science value of observations over time. Several options for calculating the science value of observations include the following: 1) total observation time, 2) number of observations, and the 3) quality (a function of e.g., sensor type, range, slant angle) of the observations. An integrated approach using integer programming, optimization and astrodynamics is used to calculate optimized observation and sensor tasking plans.
MO-DE-BRA-04: Hands-On Fluoroscopy Safety Training with Real-Time Patient and Staff Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderhoek, M; Bevins, N
Purpose: Fluoroscopically guided interventions (FGI) are routinely performed across many different hospital departments. However, many involved staff members have minimal training regarding safe and optimal use of fluoroscopy systems. We developed and taught a hands-on fluoroscopy safety class incorporating real-time patient and staff dosimetry in order to promote safer and more optimal use of fluoroscopy during FGI. Methods: The hands-on fluoroscopy safety class is taught in an FGI suite, unique to each department. A patient equivalent phantom is set on the patient table with an ion chamber positioned at the x-ray beam entrance to the phantom. This provides a surrogatemore » measure of patient entrance dose. Multiple solid state dosimeters (RaySafe i2 dosimetry systemTM) are deployed at different distances from the phantom (0.1, 1, 3 meters), which provide surrogate measures of staff dose. Instructors direct participating clinical staff to operate the fluoroscopy system as they view live fluoroscopic images, patient entrance dose, and staff doses in real-time. During class, instructors work with clinical staff to investigate how patient entrance dose, staff doses, and image quality are affected by different parameters, including pulse rate, magnification, collimation, beam angulation, imaging mode, system geometry, distance, and shielding. Results: Real-time dose visualization enables clinical staff to directly see and learn how to optimize their use of their own fluoroscopy system to minimize patient and staff dose, yet maintain sufficient image quality for FGI. As a direct result of the class, multiple hospital departments have implemented changes to their imaging protocols, including reduction of the default fluoroscopy pulse rate and increased use of collimation and lower dose fluoroscopy modes. Conclusion: Hands-on fluoroscopy safety training substantially benefits from real-time patient and staff dosimetry incorporated into the class. Real-time dose display helps clinical staff visualize, internalize, and ultimately utilize the safety techniques learned during the training. RaySafe/Unfors/Fluke lent us a portable version of their RaySafe i2 Dosimetry System for 6 months.« less
Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee
2011-01-01
Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089
NASA Astrophysics Data System (ADS)
Borhan, Hoseinali
Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may result in the need for repeated control system redesign. To address these shortcomings, we formulate the power management problem as a nonlinear and constrained optimal control problem. Solution of this optimal control problem in real-time on chronometric- and memory-constrained automotive microcontrollers is quite challenging; this computational complexity is due to the highly nonlinear dynamics of the powertrain subsystems, mixed-integer switching modes of their operation, and time-varying and nonlinear hard constraints that system variables should satisfy. The main contribution of the first part of the dissertation is that it establishes methods for systematic and step-by step improvements in fuel economy while maintaining the algorithmic computational requirements in a real-time implementable framework. More specifically a linear time-varying model predictive control approach is employed first which uses sequential quadratic programming to find sub-optimal solutions to the power management problem. Next the objective function is further refined and broken into a short and a long horizon segments; the latter approximated as a function of the state using the connection between the Pontryagin minimum principle and Hamilton-Jacobi-Bellman equations. The power management problem is then solved using a nonlinear MPC framework with a dynamic programming solver and the fuel economy is further improved. Typical simplifying academic assumptions are minimal throughout this work, thanks to close collaboration with research scientists at Ford research labs and their stringent requirement that the proposed solutions be tested on high-fidelity production models. Simulation results on a high-fidelity model of a hybrid electric vehicle over multiple standard driving cycles reveal the potential for substantial fuel economy gains. To address the control calibration challenges, we also present a novel and fast calibration technique utilizing parallel computing techniques. ^ The second part of this dissertation presents an optimization-based control strategy for the power management of a wind farm with battery storage. The strategy seeks to minimize the error between the power delivered by the wind farm with battery storage and the power demand from an operator. In addition, the strategy attempts to maximize battery life. The control strategy has two main stages. The first stage produces a family of control solutions that minimize the power error subject to the battery constraints over an optimization horizon. These solutions are parameterized by a given value for the state of charge at the end of the optimization horizon. The second stage screens the family of control solutions to select one attaining an optimal balance between power error and battery life. The battery life model used in this stage is a weighted Amp-hour (Ah) throughput model. The control strategy is modular, allowing for more sophisticated optimization models in the first stage, or more elaborate battery life models in the second stage. The strategy is implemented in real-time in the framework of Model Predictive Control (MPC).
Real-Time IRI driven by GIRO data
NASA Astrophysics Data System (ADS)
Galkin, Ivan; Huang, Xueqin; Reinisch, Bodo; Bilitza, Dieter; Vesnin, Artem
Real-time extensions of the empirical International Reference Ionosphere (IRI) model are based on assimilative techniques that preserve the IRI formalism which is optimized for the description of climatological ionospheric features. The Global Ionosphere Radio Observatory (GIRO) team has developed critical parts of an IRI Real Time Assimilative Model (IRTAM) for the global ionospheric plasma distribution using measured data available in real time from ~50 ionosondes of the GIRO network, The current assimilation results present global assimilative maps of foF2 and hmF2 that reproduce available data at the sensor sites and smoothly return to the climatological specifications when and where the data are missing, and are free from artificial sharp gradients and short-lived artifacts when viewed in time progression. Animated real-time maps of foF2 and hmF2 are published with a few minutes latency at http://giro.uml.edu/IRTAM/. Our real-time IRI modeling uses morphing, a technique that transforms the climatological ionospheric specifications to match the observations by iteratively computing corrections to the original coefficients of the diurnal/spatial expansions, used in IRI to map the key ionospheric characteristics, while keeping the IRI expansion basis formalism intact. Computation of the updated coefficient set for a given point in time includes analysis of the latest 24-hour history of observations, which allows the morphing technique to sense evolving ionospheric dynamics even with a sparse sensor network. A Non-linear Error Compensation Technique for Associative Restoration (NECTAR), one of the features in our morphing approach, has been in operation at the Lowell GIRO Data Center since 2013. The cornerstone of NECTAR is a recurrent neural network optimizer that is responsible for smoothing the transitions between the grid cells where observations are available. NECTAR has proved suitable for real-time operations that require the assimilation code to be considerate of data uncertainties (noise) and immune to data errors. Future IRTAM work is directed toward accepting a greater diversity of near-real-time sensor data, and the paper discusses potential new data sources and challenges associated with their assimilation.
Panthu, Baptiste; Ohlmann, Théophile; Perrier, Johan; Schlattner, Uwe; Jalinot, Pierre; Elena-Herrmann, Bénédicte; Rautureau, Gilles J P
2018-01-19
A counterintuitive cell-free protein synthesis (CFPS) strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL), triggers the development of hybrid systems composed of RRL ribosome-free supernatant complemented with ribosomes from different mammalian cell-types. Hybrid RRL systems maintain translational properties of the original ribosome cell types, and deliver protein expression levels similar to RRL. Here, we show that persistent ribosome-associated metabolic activity consuming ATP is a major obstacle for maximal protein yield. We provide a detailed picture of hybrid CFPS systems energetic metabolism based on real-time nuclear magnetic resonance (NMR) investigation of metabolites kinetics. We demonstrate that protein synthesis capacity has an upper limit at native ribosome concentration and that lower amounts of the ribosomal fraction optimize energy fluxes toward protein translation, consequently increasing CFPS yield. These results provide a rationalized strategy for further mammalian CFPS developments and reveal the potential of real-time NMR metabolism phenotyping for optimization of cell-free protein expression systems.
NASA Astrophysics Data System (ADS)
Serrano, Rafael; González, Luis Carlos; Martín, Francisco Jesús
2009-11-01
Under the project SENSOR-IA which has had financial funding from the Order of Incentives to the Regional Technology Centers of the Counsil of Innovation, Science and Enterprise of Andalusia, an architecture for the optimization of a machining process in real time through rule-based expert system has been developed. The architecture consists of an acquisition system and sensor data processing engine (SATD) from an expert system (SE) rule-based which communicates with the SATD. The SE has been designed as an inference engine with an algorithm for effective action, using a modus ponens rule model of goal-oriented rules.The pilot test demonstrated that it is possible to govern in real time the machining process based on rules contained in a SE. The tests have been done with approximated rules. Future work includes an exhaustive collection of data with different tool materials and geometries in a database to extract more precise rules.
Development of a real-time transport performance optimization methodology
NASA Technical Reports Server (NTRS)
Gilyard, Glenn
1996-01-01
The practical application of real-time performance optimization is addressed (using a wide-body transport simulation) based on real-time measurements and calculation of incremental drag from forced response maneuvers. Various controller combinations can be envisioned although this study used symmetric outboard aileron and stabilizer. The approach is based on navigation instrumentation and other measurements found on state-of-the-art transports. This information is used to calculate winds and angle of attack. Thrust is estimated from a representative engine model as a function of measured variables. The lift and drag equations are then used to calculate lift and drag coefficients. An expression for drag coefficient, which is a function of parasite drag, induced drag, and aileron drag, is solved from forced excitation response data. Estimates of the parasite drag, curvature of the aileron drag variation, and minimum drag aileron position are produced. Minimum drag is then obtained by repositioning the symmetric aileron. Simulation results are also presented which evaluate the affects of measurement bias and resolution.
A high-efficiency real-time digital signal averager for time-of-flight mass spectrometry.
Wang, Yinan; Xu, Hui; Li, Qingjiang; Li, Nan; Huang, Zhengxu; Zhou, Zhen; Liu, Husheng; Sun, Zhaolin; Xu, Xin; Yu, Hongqi; Liu, Haijun; Li, David D-U; Wang, Xi; Dong, Xiuzhen; Gao, Wei
2013-05-30
Analog-to-digital converter (ADC)-based acquisition systems are widely applied in time-of-flight mass spectrometers (TOFMS) due to their ability to record the signal intensity of all ions within the same pulse. However, the acquisition system raises the requirement for data throughput, along with increasing the conversion rate and resolution of the ADC. It is therefore of considerable interest to develop a high-performance real-time acquisition system, which can relieve the limitation of data throughput. We present in this work a high-efficiency real-time digital signal averager, consisting of a signal conditioner, a data conversion module and a signal processing module. Two optimization strategies are implemented using field programmable gate arrays (FPGAs) to enhance the efficiency of the real-time processing. A pipeline procedure is used to reduce the time consumption of the accumulation strategy. To realize continuous data transfer, a high-efficiency transmission strategy is developed, based on a ping-pong procedure. The digital signal averager features good responsiveness, analog bandwidth and dynamic performance. The optimal effective number of bits reaches 6.7 bits. For a 32 µs record length, the averager can realize 100% efficiency with an extraction frequency below 31.23 kHz by modifying the number of accumulation steps. In unit time, the averager yields superior signal-to-noise ratio (SNR) compared with data accumulation in a computer. The digital signal averager is combined with a vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer (VUV-SPI-TOFMS). The efficiency of the real-time processing is tested by analyzing the volatile organic compounds (VOCs) from ordinary printed materials. In these experiments, 22 kinds of compounds are detected, and the dynamic range exceeds 3 orders of magnitude. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Campana, P. E.; Zhang, J.; Yao, T.; Melton, F. S.; Yan, J.
2017-12-01
Climate change and drought have severe impacts on the agricultural sector affecting crop yields, water availability, and energy consumption for irrigation. Monitoring, assessing and mitigating the effects of climate change and drought on the agricultural and energy sectors are fundamental challenges that require investigation for water, food, and energy security issues. Using an integrated water-food-energy nexus approach, this study is developing a comprehensive drought management system through integration of real-time drought monitoring with real-time irrigation management. The spatially explicit model developed, GIS-OptiCE, can be used for simulation, multi-criteria optimization and generation of forecasts to support irrigation management. To demonstrate the value of the approach, the model has been applied to one major corn region in Nebraska to study the effects of the 2012 drought on crop yield and irrigation water/energy requirements as compared to a wet year such as 2009. The water-food-energy interrelationships evaluated show that significant water volumes and energy are required to halt the negative effects of drought on the crop yield. The multi-criteria optimization problem applied in this study indicates that the optimal solutions of irrigation do not necessarily correspond to those that would produce the maximum crop yields, depending on both water and economic constraints. In particular, crop pricing forecasts are extremely important to define the optimal irrigation management strategy. The model developed shows great potential in precision agriculture by providing near real-time data products including information on evapotranspiration, irrigation volumes, energy requirements, predicted crop growth, and nutrient requirements.
NASA Astrophysics Data System (ADS)
Jorris, Timothy R.
2007-12-01
To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no-fly zone constraints.
Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm
NASA Astrophysics Data System (ADS)
Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.
2015-03-01
High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.
NASA Technical Reports Server (NTRS)
Kasahara, Hironori; Honda, Hiroki; Narita, Seinosuke
1989-01-01
Parallel processing of real-time dynamic systems simulation on a multiprocessor system named OSCAR is presented. In the simulation of dynamic systems, generally, the same calculation are repeated every time step. However, we cannot apply to Do-all or the Do-across techniques for parallel processing of the simulation since there exist data dependencies from the end of an iteration to the beginning of the next iteration and furthermore data-input and data-output are required every sampling time period. Therefore, parallelism inside the calculation required for a single time step, or a large basic block which consists of arithmetic assignment statements, must be used. In the proposed method, near fine grain tasks, each of which consists of one or more floating point operations, are generated to extract the parallelism from the calculation and assigned to processors by using optimal static scheduling at compile time in order to reduce large run time overhead caused by the use of near fine grain tasks. The practicality of the scheme is demonstrated on OSCAR (Optimally SCheduled Advanced multiprocessoR) which has been developed to extract advantageous features of static scheduling algorithms to the maximum extent.
Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong
2011-01-01
Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mozaffari, Ahmad; Vajedi, Mahyar; Azad, Nasser L.
2015-06-01
The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categorizing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomie software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.
Shell-vial culture and real-time PCR applied to Rickettsia typhi and Rickettsia felis detection.
Segura, Ferran; Pons, Immaculada; Pla, Júlia; Nogueras, María-Mercedes
2015-11-01
Murine typhus is a zoonosis transmitted by fleas, whose etiological agent is Rickettsia typhi. Rickettsia felis infection can produces similar symptoms. Both are intracellular microorganisms. Therefore, their diagnosis is difficult and their infections can be misdiagnosed. Early diagnosis prevents severity and inappropriate treatment regimens. Serology can't be applied during the early stages of infection because it requires seroconversion. Shell-vial (SV) culture assay is a powerful tool to detect Rickettsia. The aim of the study was to optimize SV using a real-time PCR as monitoring method. Moreover, the study analyzes which antibiotics are useful to isolate these microorganisms from fleas avoiding contamination by other bacteria. For the first purpose, SVs were inoculated with each microorganism. They were incubated at different temperatures and monitored by real-time PCR and classical methods (Gimenez staining and indirect immunofluorescence assay). R. typhi grew at all temperatures. R. felis grew at 28 and 32 °C. Real-time PCR was more sensitive than classical methods and it detected microorganisms much earlier. Besides, the assay sensitivity was improved by increasing the number of SV. For the second purpose, microorganisms and fleas were incubated and monitored in different concentrations of antibiotics. Gentamicin, sufamethoxazole, trimethoprim were useful for R. typhi isolation. Gentamicin, streptomycin, penicillin, and amphotericin B were useful for R. felis isolation. Finally, the optimized conditions were used to isolate R. felis from fleas collected at a veterinary clinic. R. felis was isolated at 28 and 32 °C. However, successful establishment of cultures were not possible probably due to sub-optimal conditions of samples.
Method for providing real-time control of a gaseous propellant rocket propulsion system
NASA Technical Reports Server (NTRS)
Morris, Brian G. (Inventor)
1991-01-01
The new and improved methods and apparatus disclosed provide effective real-time management of a spacecraft rocket engine powered by gaseous propellants. Real-time measurements representative of the engine performance are compared with predetermined standards to selectively control the supply of propellants to the engine for optimizing its performance as well as efficiently managing the consumption of propellants. A priority system is provided for achieving effective real-time management of the propulsion system by first regulating the propellants to keep the engine operating at an efficient level and thereafter regulating the consumption ratio of the propellants. A lower priority level is provided to balance the consumption of the propellants so significant quantities of unexpended propellants will not be left over at the end of the scheduled mission of the engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qifang; Wang, Fei; Hodge, Bri-Mathias
A real-time price (RTP)-based automatic demand response (ADR) strategy for PV-assisted electric vehicle (EV) Charging Station (PVCS) without vehicle to grid is proposed. The charging process is modeled as a dynamic linear program instead of the normal day-ahead and real-time regulation strategy, to capture the advantages of both global and real-time optimization. Different from conventional price forecasting algorithms, a dynamic price vector formation model is proposed based on a clustering algorithm to form an RTP vector for a particular day. A dynamic feasible energy demand region (DFEDR) model considering grid voltage profiles is designed to calculate the lower and uppermore » bounds. A deduction method is proposed to deal with the unknown information of future intervals, such as the actual stochastic arrival and departure times of EVs, which make the DFEDR model suitable for global optimization. Finally, both the comparative cases articulate the advantages of the developed methods and the validity in reducing electricity costs, mitigating peak charging demand, and improving PV self-consumption of the proposed strategy are verified through simulation scenarios.« less
NASA Technical Reports Server (NTRS)
Brown, Nelson
2013-01-01
A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.
NASA Technical Reports Server (NTRS)
Qin, J. X.; Shiota, T.; Thomas, J. D.
2000-01-01
Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.
Qin, J X; Shiota, T; Thomas, J D
2000-11-01
Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.
Neural Architectures for Control
NASA Technical Reports Server (NTRS)
Peterson, James K.
1991-01-01
The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.
Sandeu, Maurice Marcel; Moussiliou, Azizath; Moiroux, Nicolas; Padonou, Gilles G.; Massougbodji, Achille; Corbel, Vincent; Tuikue Ndam, Nicaise
2012-01-01
Background An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. Methods Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. Results The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. Conclusion This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations. PMID:23285168
Petraco, Ricardo; Al-Lamee, Rasha; Gotberg, Matthias; Sharp, Andrew; Hellig, Farrel; Nijjer, Sukhjinder S; Echavarria-Pinto, Mauro; van de Hoef, Tim P; Sen, Sayan; Tanaka, Nobuhiro; Van Belle, Eric; Bojara, Waldemar; Sakoda, Kunihiro; Mates, Martin; Indolfi, Ciro; De Rosa, Salvatore; Vrints, Christian J; Haine, Steven; Yokoi, Hiroyoshi; Ribichini, Flavio L; Meuwissen, Martjin; Matsuo, Hitoshi; Janssens, Luc; Katsumi, Ueno; Di Mario, Carlo; Escaned, Javier; Piek, Jan; Davies, Justin E
2014-11-01
To evaluate the first experience of real-time instantaneous wave-free ratio (iFR) measurement by clinicians. The iFR is a new vasodilator-free index of coronary stenosis severity, calculated as a trans-lesion pressure ratio during a specific period of baseline diastole, when distal resistance is lowest and stable. Because all previous studies have calculated iFR offline, the feasibility of real-time iFR measurement has never been assessed. Three hundred ninety-two stenoses with angiographically intermediate stenoses were included in this multicenter international analysis. Instantaneous wave-free ratio and fractional flow reserve (FFR) were performed in real time on commercially available consoles. The classification agreement of coronary stenoses between iFR and FFR was calculated. Instantaneous wave-free ratio and FFR maintain a close level of diagnostic agreement when both are measured by clinicians in real time (for a clinical 0.80 FFR cutoff: area under the receiver operating characteristic curve [ROC(AUC)] 0.87, classification match 80%, and optimal iFR cutoff 0.90; for a ischemic 0.75 FFR cutoff: iFR ROC(AUC) 0.90, classification match 88%, and optimal iFR cutoff 0.85; if the FFR 0.75-0.80 gray zone is accounted for: ROC(AUC) 0.93, classification match 92%). When iFR and FFR are evaluated together in a hybrid decision-making strategy, 61% of the population is spared from vasodilator while maintaining a 94% overall agreement with FFR lesion classification. When measured in real time, iFR maintains the close relationship to FFR reported in offline studies. These findings confirm the feasibility and reliability of real-time iFR calculation by clinicians. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.
Tacke, Martin; Nill, Simeon; Oelfke, Uwe
2007-11-21
Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v(max) while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information.
DOT National Transportation Integrated Search
2006-12-01
Over the last several years, researchers at the University of Arizonas ATLAS Center have developed an adaptive ramp : metering system referred to as MILOS (Multi-Objective, Integrated, Large-Scale, Optimized System). The goal of this project : is ...
NASA Astrophysics Data System (ADS)
Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.
2017-02-01
Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.
ANN based Real-Time Estimation of Power Generation of Different PV Module Types
NASA Astrophysics Data System (ADS)
Syafaruddin; Karatepe, Engin; Hiyama, Takashi
Distributed generation is expected to become more important in the future generation system. Utilities need to find solutions that help manage resources more efficiently. Effective smart grid solutions have been experienced by using real-time data to help refine and pinpoint inefficiencies for maintaining secure and reliable operating conditions. This paper proposes the application of Artificial Neural Network (ANN) for the real-time estimation of the maximum power generation of PV modules of different technologies. An intelligent technique is necessary required in this case due to the relationship between the maximum power of PV modules and the open circuit voltage and temperature is nonlinear and can't be easily expressed by an analytical expression for each technology. The proposed ANN method is using input signals of open circuit voltage and cell temperature instead of irradiance and ambient temperature to determine the estimated maximum power generation of PV modules. It is important for the utility to have the capability to perform this estimation for optimal operating points and diagnostic purposes that may be an early indicator of a need for maintenance and optimal energy management. The proposed method is accurately verified through a developed real-time simulator on the daily basis of irradiance and cell temperature changes.
A Novel, Real-Time, In Vivo Mouse Retinal Imaging System
Butler, Mark C.; Sullivan, Jack M.
2015-01-01
Purpose To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. Methods Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. Results The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. Conclusions A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies. PMID:26551329
Optimized Two-Party Video Chat with Restored Eye Contact Using Graphics Hardware
NASA Astrophysics Data System (ADS)
Dumont, Maarten; Rogmans, Sammy; Maesen, Steven; Bekaert, Philippe
We present a practical system prototype to convincingly restore eye contact between two video chat participants, with a minimal amount of constraints. The proposed six-fold camera setup is easily integrated into the monitor frame, and is used to interpolate an image as if its virtual camera captured the image through a transparent screen. The peer user has a large freedom of movement, resulting in system specifications that enable genuine practical usage. Our software framework thereby harnesses the powerful computational resources inside graphics hardware, and maximizes arithmetic intensity to achieve over real-time performance up to 42 frames per second for 800 ×600 resolution images. Furthermore, an optimal set of fine tuned parameters are presented, that optimizes the end-to-end performance of the application to achieve high subjective visual quality, and still allows for further algorithmic advancement without loosing its real-time capabilities.
Huang, Kun; Caplan, Jeff; Sweigard, James A; Czymmek, Kirk J; Donofrio, Nicole M
2017-02-01
Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant-pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H 2 O 2 ) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H 2 O 2 dynamics in real time during important stages of the plant infection process. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Steam distribution and energy delivery optimization using wireless sensors
NASA Astrophysics Data System (ADS)
Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.
2011-05-01
The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.
Locational Marginal Pricing in the Campus Power System at the Power Distribution Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Jun; Gu, Yi; Zhang, Yingchen
2016-11-14
In the development of smart grid at distribution level, the realization of real-time nodal pricing is one of the key challenges. The research work in this paper implements and studies the methodology of locational marginal pricing at distribution level based on a real-world distribution power system. The pricing mechanism utilizes optimal power flow to calculate the corresponding distributional nodal prices. Both Direct Current Optimal Power Flow and Alternate Current Optimal Power Flow are utilized to calculate and analyze the nodal prices. The University of Denver campus power grid is used as the power distribution system test bed to demonstrate themore » pricing methodology.« less
Feedback Implementation of Zermelo's Optimal Control by Sugeno Approximation
NASA Technical Reports Server (NTRS)
Clifton, C.; Homaifax, A.; Bikdash, M.
1997-01-01
This paper proposes an approach to implement optimal control laws of nonlinear systems in real time. Our methodology does not require solving two-point boundary value problems online and may not require it off-line either. The optimal control law is learned using the original Sugeno controller (OSC) from a family of optimal trajectories. We compare the trajectories generated by the OSC and the trajectories yielded by the optimal feedback control law when applied to Zermelo's ship steering problem.
A Distribution-class Locational Marginal Price (DLMP) Index for Enhanced Distribution Systems
NASA Astrophysics Data System (ADS)
Akinbode, Oluwaseyi Wemimo
The smart grid initiative is the impetus behind changes that are expected to culminate into an enhanced distribution system with the communication and control infrastructure to support advanced distribution system applications and resources such as distributed generation, energy storage systems, and price responsive loads. This research proposes a distribution-class analog of the transmission LMP (DLMP) as an enabler of the advanced applications of the enhanced distribution system. The DLMP is envisioned as a control signal that can incentivize distribution system resources to behave optimally in a manner that benefits economic efficiency and system reliability and that can optimally couple the transmission and the distribution systems. The DLMP is calculated from a two-stage optimization problem; a transmission system OPF and a distribution system OPF. An iterative framework that ensures accurate representation of the distribution system's price sensitive resources for the transmission system problem and vice versa is developed and its convergence problem is discussed. As part of the DLMP calculation framework, a DCOPF formulation that endogenously captures the effect of real power losses is discussed. The formulation uses piecewise linear functions to approximate losses. This thesis explores, with theoretical proofs, the breakdown of the loss approximation technique when non-positive DLMPs/LMPs occur and discusses a mixed integer linear programming formulation that corrects the breakdown. The DLMP is numerically illustrated in traditional and enhanced distribution systems and its superiority to contemporary pricing mechanisms is demonstrated using price responsive loads. Results show that the impact of the inaccuracy of contemporary pricing schemes becomes significant as flexible resources increase. At high elasticity, aggregate load consumption deviated from the optimal consumption by up to about 45 percent when using a flat or time-of-use rate. Individual load consumption deviated by up to 25 percent when using a real-time price. The superiority of the DLMP is more pronounced when important distribution network conditions are not reflected by contemporary prices. The individual load consumption incentivized by the real-time price deviated by up to 90 percent from the optimal consumption in a congested distribution network. While the DLMP internalizes congestion management, the consumption incentivized by the real-time price caused overloads.
Real-time inverse planning for Gamma Knife radiosurgery.
Wu, Q Jackie; Chankong, Vira; Jitprapaikulsarn, Suradet; Wessels, Barry W; Einstein, Douglas B; Mathayomchan, Boonyanit; Kinsella, Timothy J
2003-11-01
The challenges of real-time Gamma Knife inverse planning are the large number of variables involved and the unknown search space a priori. With limited collimator sizes, shots have to be heavily overlapped to form a smooth prescription isodose line that conforms to the irregular target shape. Such overlaps greatly influence the total number of shots per plan, making pre-determination of the total number of shots impractical. However, this total number of shots usually defines the search space, a pre-requisite for most of the optimization methods. Since each shot only covers part of the target, a collection of shots in different locations and various collimator sizes selected makes up the global dose distribution that conforms to the target. Hence, planning or placing these shots is a combinatorial optimization process that is computationally expensive by nature. We have previously developed a theory of shot placement and optimization based on skeletonization. The real-time inverse planning process, reported in this paper, is an expansion and the clinical implementation of this theory. The complete planning process consists of two steps. The first step is to determine an optimal number of shots including locations and sizes and to assign initial collimator size to each of the shots. The second step is to fine-tune the weights using a linear-programming technique. The objective function is to minimize the total dose to the target boundary (i.e., maximize the dose conformity). Results of an ellipsoid test target and ten clinical cases are presented. The clinical cases are also compared with physician's manual plans. The target coverage is more than 99% for manual plans and 97% for all the inverse plans. The RTOG PITV conformity indices for the manual plans are between 1.16 and 3.46, compared to 1.36 to 2.4 for the inverse plans. All the inverse plans are generated in less than 2 min, making real-time inverse planning a reality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, James T.; Thompson, Scott J.; Watson, Scott M.
We present a multi-channel, fast neutron/gamma ray detector array system that utilizes ZnS(Ag) scintillator detectors. The system employs field programmable gate arrays (FPGAs) to do real-time all digital neutron/gamma ray discrimination with pulse height and time histograms to allow count rates in excess of 1,000,000 pulses per second per channel. The system detector number is scalable in blocks of 16 channels.
NASA Technical Reports Server (NTRS)
Mannucci, A. J.; Anderson, D. N.; Abdu, A. M.
1994-01-01
The Parametrized Real-Time Ionosphere Specification Model (PRISM) is a global ionospheric specification model that can incorporate real-time data to compute accurate electron density profiles. Time series of computed and measured data are compared in this paper. This comparison can be used to suggest methods of optimizing the PRISM adjustment algorithm for TEC data obtained at low altitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X; Belcher, AH; Grelewicz, Z
Purpose: Real-time kV fluoroscopic tumor tracking has the benefit of direct tumor position monitoring. However, there is clinical concern over the excess kV imaging dose cost to the patient when imaging in continuous fluoroscopic mode. This work addresses this specific issue by proposing a combined MV+kV direct-aperture optimization (DAO) approach to integrate the kV imaging beam into a treatment planning such that the kV radiation is considered as a contributor to the overall dose delivery. Methods: The combined MV+kV DAO approach includes three algorithms. First, a projected Quasi-Newton algorithm (L-BFGS) is used to find optimized fluence with MV+kV dose formore » the best possible dose distribution. Then, Engel’s algorithm is applied to optimize the total number of monitor units and heuristically optimize the number of apertures. Finally, an aperture shape optimization (ASO) algorithm is applied to locally optimize the leaf positions of MLC. Results: Compared to conventional DAO MV plans with continuous kV fluoroscopic tracking, combined MV+kV DAO plan leads to a reduction in the total number of MV monitor units due to inclusion of kV dose as part of the PTV, and was also found to reduce the mean and maximum doses on the organs at risk (OAR). Compared to conventional DAO MV plan without kV tracking, the OAR dose in the combined MV+kV DAO plan was only slightly higher. DVH curves show that combined MV+kV DAO plan provided about the same PTV coverage as that in the conventional DAO plans without kV imaging. Conclusion: We report a combined MV+kV DAO approach that allows real time kV imager tumor tracking with only a trivial increasing on the OAR doses while providing the same coverage to PTV. The approach is suitable for clinic implementation.« less
Real-time monitoring of peanut drying parameters in semitrailers
USDA-ARS?s Scientific Manuscript database
Knowledge of peanut drying parameters such as temperature and relative humidity of the ambient air, temperature and relative humidity of the air being blown into the peanuts and kernel moisture content is essential in managing the dryer for optimal drying rate. The optimal drying rate is required to...
Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics
NASA Astrophysics Data System (ADS)
Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.
2018-02-01
Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.
Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics.
Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L
2018-02-07
Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.
NASA Astrophysics Data System (ADS)
Alkasem, Ameen; Liu, Hongwei; Zuo, Decheng; Algarash, Basheer
2018-01-01
The volume of data being collected, analyzed, and stored has exploded in recent years, in particular in relation to the activity on the cloud computing. While large-scale data processing, analysis, storage, and platform model such as cloud computing were previously and currently are increasingly. Today, the major challenge is it address how to monitor and control these massive amounts of data and perform analysis in real-time at scale. The traditional methods and model systems are unable to cope with these quantities of data in real-time. Here we present a new methodology for constructing a model for optimizing the performance of real-time monitoring of big datasets, which includes a machine learning algorithms and Apache Spark Streaming to accomplish fine-grained fault diagnosis and repair of big dataset. As a case study, we use the failure of Virtual Machines (VMs) to start-up. The methodology proposition ensures that the most sensible action is carried out during the procedure of fine-grained monitoring and generates the highest efficacy and cost-saving fault repair through three construction control steps: (I) data collection; (II) analysis engine and (III) decision engine. We found that running this novel methodology can save a considerate amount of time compared to the Hadoop model, without sacrificing the classification accuracy or optimization of performance. The accuracy of the proposed method (92.13%) is an improvement on traditional approaches.
A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)
NASA Astrophysics Data System (ADS)
Li, Minghui; Hayward, Gordon
2017-02-01
The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.
A hybrid Jaya algorithm for reliability-redundancy allocation problems
NASA Astrophysics Data System (ADS)
Ghavidel, Sahand; Azizivahed, Ali; Li, Li
2018-04-01
This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.
Fault Tolerant Real-Time Networks
2007-05-30
Alberto Sangiovanni-Vincentelli, editors Hybrid Systems: Computation and Control. Fourth International Workshop (HSCC, Rome, Italy, March 2001...average dwell time by solving optimization problems. In Ashish Tiwari and Joao P. Hespanha, editors, Hybrid Systems: Computation and Control (HSCC 06
Manenti, Diego R; Módenes, Aparecido N; Soares, Petrick A; Boaventura, Rui A R; Palácio, Soraya M; Borba, Fernando H; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Vilar, Vítor J P
2015-01-01
In this work, the application of an iron electrode-based electrocoagulation (EC) process on the treatment of a real textile wastewater (RTW) was investigated. In order to perform an efficient integration of the EC process with a biological oxidation one, an enhancement in the biodegradability and low toxicity of final compounds was sought. Optimal values of EC reactor operation parameters (pH, current density and electrolysis time) were achieved by applying a full factorial 3(3) experimental design. Biodegradability and toxicity assays were performed on treated RTW samples obtained at the optimal values of: pH of the solution (7.0), current density (142.9 A m(-2)) and different electrolysis times. As response variables for the biodegradability and toxicity assessment, the Zahn-Wellens test (Dt), the ratio values of dissolved organic carbon (DOC) relative to low-molecular-weight carboxylates anions (LMCA) and lethal concentration 50 (LC50) were used. According to the Dt, the DOC/LMCA ratio and LC50, an electrolysis time of 15 min along with the optimal values of pH and current density were suggested as suitable for a next stage of treatment based on a biological oxidation process.
Portable inference engine: An extended CLIPS for real-time production systems
NASA Technical Reports Server (NTRS)
Le, Thach; Homeier, Peter
1988-01-01
The present C-Language Integrated Production System (CLIPS) architecture has not been optimized to deal with the constraints of real-time production systems. Matching in CLIPS is based on the Rete Net algorithm, whose assumption of working memory stability might fail to be satisfied in a system subject to real-time dataflow. Further, the CLIPS forward-chaining control mechanism with a predefined conflict resultion strategy may not effectively focus the system's attention on situation-dependent current priorties, or appropriately address different kinds of knowledge which might appear in a given application. Portable Inference Engine (PIE) is a production system architecture based on CLIPS which attempts to create a more general tool while addressing the problems of real-time expert systems. Features of the PIE design include a modular knowledge base, a modified Rete Net algorithm, a bi-directional control strategy, and multiple user-defined conflict resolution strategies. Problems associated with real-time applications are analyzed and an explanation is given for how the PIE architecture addresses these problems.
Real-time MSE measurements for current profile control on KSTAR.
De Bock, M F M; Aussems, D; Huijgen, R; Scheffer, M; Chung, J
2012-10-01
To step up from current day fusion experiments to power producing fusion reactors, it is necessary to control long pulse, burning plasmas. Stability and confinement properties of tokamak fusion reactors are determined by the current or q profile. In order to control the q profile, it is necessary to measure it in real-time. A real-time motional Stark effect diagnostic is being developed at Korean Superconducting Tokamak for Advanced Research for this purpose. This paper focuses on 3 topics important for real-time measurements: minimize the use of ad hoc parameters, minimize external influences and a robust and fast analysis algorithm. Specifically, we have looked into extracting the retardance of the photo-elastic modulators from the signal itself, minimizing the influence of overlapping beam spectra by optimizing the optical filter design and a multi-channel, multiharmonic phase locking algorithm.
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J. N.; Turner, J. D.; Chun, H. M.
1986-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. An example involving the feedback slewing of a flexible spacecraft is given to illustrate the validity and usefulness of the formulations.
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.
Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun
2016-07-08
Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.
Real-time image reconstruction and display system for MRI using a high-speed personal computer.
Haishi, T; Kose, K
1998-09-01
A real-time NMR image reconstruction and display system was developed using a high-speed personal computer and optimized for the 32-bit multitasking Microsoft Windows 95 operating system. The system was operated at various CPU clock frequencies by changing the motherboard clock frequency and the processor/bus frequency ratio. When the Pentium CPU was used at the 200 MHz clock frequency, the reconstruction time for one 128 x 128 pixel image was 48 ms and that for the image display on the enlarged 256 x 256 pixel window was about 8 ms. NMR imaging experiments were performed with three fast imaging sequences (FLASH, multishot EPI, and one-shot EPI) to demonstrate the ability of the real-time system. It was concluded that in most cases, high-speed PC would be the best choice for the image reconstruction and display system for real-time MRI. Copyright 1998 Academic Press.
Rosa, Rossana; Zavala, Bruno; Cain, Natalie; Anjan, Shweta; Aragon, Laura; Abbo, Lilian M
2018-03-01
Antimicrobial stewardship programs can optimize the management of Staphylococcus aureus bacteremia by integrating information technology and microbiology laboratory resources. This study describes our experience implementing an intervention consisting of real-time feedback and the use of an electronic order set for the management of S. aureus bacteremia. Infect Control Hosp Epidemiol 2018;39:346-349.
Optimal generalized multistep integration formulae for real-time digital simulation
NASA Technical Reports Server (NTRS)
Moerder, D. D.; Halyo, N.
1985-01-01
The problem of discretizing a dynamical system for real-time digital simulation is considered. Treating the system and its simulation as stochastic processes leads to a statistical characterization of simulator fidelity. A plant discretization procedure based on an efficient matrix generalization of explicit linear multistep discrete integration formulae is introduced, which minimizes a weighted sum of the mean squared steady-state and transient error between the system and simulator outputs.
Current techniques for the real-time processing of complex radar signatures
NASA Astrophysics Data System (ADS)
Clay, E.
A real-time processing technique has been developed for the microwave receiver of the Brahms radar station. The method allows such target signatures as the radar cross section (RCS) of the airframes and rotating parts, the one-dimensional tomography of aircraft, and the RCS of electromagnetic decoys to be characterized. The method allows optimization of experimental parameters including the analysis frequency band, the receiver gain, and the wavelength range of EM analysis.
Head movement compensation in real-time magnetoencephalographic recordings.
Little, Graham; Boe, Shaun; Bardouille, Timothy
2014-01-01
Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.
Practical synchronization on complex dynamical networks via optimal pinning control
NASA Astrophysics Data System (ADS)
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.
Jensen, Morten Hasselstrøm; Christensen, Toke Folke; Tarnow, Lise; Seto, Edmund; Dencker Johansen, Mette; Hejlesen, Ole Kristian
2013-07-01
Hypoglycemia is a potentially fatal condition. Continuous glucose monitoring (CGM) has the potential to detect hypoglycemia in real time and thereby reduce time in hypoglycemia and avoid any further decline in blood glucose level. However, CGM is inaccurate and shows a substantial number of cases in which the hypoglycemic event is not detected by the CGM. The aim of this study was to develop a pattern classification model to optimize real-time hypoglycemia detection. Features such as time since last insulin injection and linear regression, kurtosis, and skewness of the CGM signal in different time intervals were extracted from data of 10 male subjects experiencing 17 insulin-induced hypoglycemic events in an experimental setting. Nondiscriminative features were eliminated with SEPCOR and forward selection. The feature combinations were used in a Support Vector Machine model and the performance assessed by sample-based sensitivity and specificity and event-based sensitivity and number of false-positives. The best model was composed by using seven features and was able to detect 17 of 17 hypoglycemic events with one false-positive compared with 12 of 17 hypoglycemic events with zero false-positives for the CGM alone. Lead-time was 14 min and 0 min for the model and the CGM alone, respectively. This optimized real-time hypoglycemia detection provides a unique approach for the diabetes patient to reduce time in hypoglycemia and learn about patterns in glucose excursions. Although these results are promising, the model needs to be validated on CGM data from patients with spontaneous hypoglycemic events.
Optimization and Control of Cyber-Physical Vehicle Systems
Bradley, Justin M.; Atkins, Ella M.
2015-01-01
A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined. PMID:26378541
Optimization and Control of Cyber-Physical Vehicle Systems.
Bradley, Justin M; Atkins, Ella M
2015-09-11
A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.
NASA Astrophysics Data System (ADS)
Tian, Yuexin; Gao, Kun; Liu, Ying; Han, Lu
2015-08-01
Aiming at the nonlinear and non-Gaussian features of the real infrared scenes, an optimal nonlinear filtering based algorithm for the infrared dim target tracking-before-detecting application is proposed. It uses the nonlinear theory to construct the state and observation models and uses the spectral separation scheme based Wiener chaos expansion method to resolve the stochastic differential equation of the constructed models. In order to improve computation efficiency, the most time-consuming operations independent of observation data are processed on the fore observation stage. The other observation data related rapid computations are implemented subsequently. Simulation results show that the algorithm possesses excellent detection performance and is more suitable for real-time processing.
Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.
Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S
2008-07-01
A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.
Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data
Minson, Sarah E.; Murray, Jessica R.; Langbein, John O.; Gomberg, Joan S.
2015-01-01
We present an inversion strategy capable of using real-time high-rate GPS data to simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can solve this complex inversion problem (including calculating the uncertainties on our results) in real time. Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time, the time required to obtain a source model of the earthquake does not depend on the computational cost. Instead, the time required is controlled by the duration of the rupture and the time required for information to propagate from the source to the receivers. We apply our modeling approach, called Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases, the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time series are the best data to use for determining the moment magnitude of the event, but slightly smoothing the raw time series helps stabilize the inversion for fault geometry.
A comparison of time-optimal interception trajectories for the F-8 and F-15
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Pettengill, James B.
1990-01-01
The simulation results of a real time control algorithm for onboard computation of time-optimal intercept trajectories for the F-8 and F-15 aircraft are given. Due to the inherent aerodynamic and propulsion differences in the aircraft, there are major differences in their optimal trajectories. The significant difference in the two aircrafts are their flight envelopes. The F-8's optimal cruise velocity is thrust limited, while the F-15's optimal cruise velocity is at the intersection of the Mach and dynamic pressure constraint boundaries. This inherent difference necessitated the development of a proportional thrust controller for use as the F-15 approaches it's optimal cruise energy. Documented here is the application of singular perturbation theory to the trajectory optimization problem, along with a summary of the control algorithms. Numerical results for the two aircraft are compared to illustrate the performance of the minimum time algorithm, and to compute the resulting flight paths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, T; Fujii, Y; Hitachi Ltd., Hitachi-shi, Ibaraki
2015-06-15
Purpose: We have developed a gated spot scanning proton beam therapy system with real-time tumor-tracking. This system has the ability of multiple-gated irradiation in a single synchrotron operation cycle controlling the wait-time for consecutive gate signals during a flat-top phase so that the decrease in irradiation efficiency induced by irregular variation of gate signal is reduced. Our previous studies have shown that a 200 ms wait-time is appropriate to increase the average irradiation efficiency, but the optimal wait-time can vary patient by patient and day by day. In this research, we have developed an evaluation system of the optimal wait-timemore » in each irradiation based on the log data of the real-time-image gated proton beam therapy (RGPT) system. Methods: The developed system consists of logger for operation of RGPT system and software for evaluation of optimal wait-time. The logger records timing of gate on/off, timing and the dose of delivered beam spots, beam energy and timing of X-ray irradiation. The evaluation software calculates irradiation time in the case of different wait-time by simulating the multiple-gated irradiation operation using several timing information. Actual data preserved in the log data are used for gate on and off time, spot irradiation time, and time moving to the next spot. Design values are used for the acceleration and deceleration times. We applied this system to a patient treated with the RGPT system. Results: The evaluation system found the optimal wait-time of 390 ms that reduced the irradiation time by about 10 %. The irradiation time with actual wait-time used in treatment was reproduced with accuracy of 0.2 ms. Conclusion: For spot scanning proton therapy system with multiple-gated irradiation in one synchrotron operation cycle, an evaluation system of the optimal wait-time in each irradiation based on log data has been developed. Funding Support: Japan Society for the Promotion of Science (JSPS) through the FIRST Program.« less
A hyperspectral image optimizing method based on sub-pixel MTF analysis
NASA Astrophysics Data System (ADS)
Wang, Yun; Li, Kai; Wang, Jinqiang; Zhu, Yajie
2015-04-01
Hyperspectral imaging is used to collect tens or hundreds of images continuously divided across electromagnetic spectrum so that the details under different wavelengths could be represented. A popular hyperspectral imaging methods uses a tunable optical band-pass filter settled in front of the focal plane to acquire images of different wavelengths. In order to alleviate the influence of chromatic aberration in some segments in a hyperspectral series, in this paper, a hyperspectral optimizing method uses sub-pixel MTF to evaluate image blurring quality was provided. This method acquired the edge feature in the target window by means of the line spread function (LSF) to calculate the reliable position of the edge feature, then the evaluation grid in each line was interpolated by the real pixel value based on its relative position to the optimal edge and the sub-pixel MTF was used to analyze the image in frequency domain, by which MTF calculation dimension was increased. The sub-pixel MTF evaluation was reliable, since no image rotation and pixel value estimation was needed, and no artificial information was introduced. With theoretical analysis, the method proposed in this paper is reliable and efficient when evaluation the common images with edges of small tilt angle in real scene. It also provided a direction for the following hyperspectral image blurring evaluation and the real-time focal plane adjustment in real time in related imaging system.
De Monte, Anne; Cannavo, Isabelle; Caramella, Anne; Ollier, Laurence; Giordanengo, Valérie
2016-01-01
Congenital cytomegalovirus (CMV) infection is the leading cause of sensoneurinal disability due to infectious congenital disease. The diagnosis of congenital CMV infection is based on the search of CMV in the urine within the first two weeks of life. Viral culture of urine is the gold standard. However, the PCR is highly sensitive and faster. It is becoming an alternative choice. The objective of this study is the validation of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine. Repeatability, reproducibility, detection limit and inter-sample contamination were evaluated. Urine samples from patients (n=141) were collected and analyzed simultaneously in culture and PCR in order to assess the correlation of these two methods. The sensitivity and specificity of PCR were also calculated. The Abbott RealTime CMV PCR in urine is an automated and sensitive method (detection limit 200 UI/mL). Fidelity is very good (standard deviation of repeatability: 0.08 to 0.15 LogUI/mL and reproducibility 0.18 LogUI/mL). We can note a good correlation between culture and Abbott RealTime CMV PCR (kappa 96%). When considering rapid culture as reference, real-time PCR was highly sensitive (100%) and specific (98.2%). The real-time PCR by Abbott RealTime CMV with m2000 is optimal for CMV detection in urine.
Back, Alexandre; Rossignol, Tristan; Krier, François; Nicaud, Jean-Marc; Dhulster, Pascal
2016-08-23
Because the model yeast Yarrowia lipolytica can synthesize and store lipids in quantities up to 20 % of its dry weight, it is a promising microorganism for oil production at an industrial scale. Typically, optimization of the lipid production process is performed in the laboratory and later scaled up for industrial production. However, the scale-up process can be complicated by genetic modifications that are optimized for one set of growing conditions can confer a less-than-optimal phenotype in a different environment. To address this issue, small cultivation systems have been developed that mimic the conditions in benchtop bioreactors. In this work, we used one such microbioreactor system, the BioLector, to develop high-throughput fermentation procedures that optimize growth and lipid accumulation in Y. lipolytica. Using this system, we were able to monitor lipid and biomass production in real time throughout the culture duration. The BioLector can monitor the growth of Y. lipolytica in real time by evaluating scattered light; this produced accurate measurements until cultures reached an equivalent of OD600nm = 115 and a cell dry weight of 100 g L(-1). In addition, a lipid-specific fluorescent probe was applied which reliably monitored lipid production up to a concentration of 12 g L(-1). Through screening various growing conditions, we determined that a carbon/nitrogen ratio of 35 was the most efficient for lipid production. Further screening showed that ammonium chloride and glycerol were the most valuable nitrogen and carbon sources, respectively, for growth and lipid production. Moreover, a carbon concentration above 1 M appeared to impair growth and lipid accumulation. Finally, we used these optimized conditions to screen engineered strains of Y. lipolytica with high lipid-accumulation capability. The growth and lipid content of the strains cultivated in the BioLector were compared to those grown in benchtop bioreactors. To our knowledge, this is the first time that the BioLector has been used to track lipid production in real time and to monitor the growth of Y. lipolytica. The present study also showed the efficacy of the BioLector in screening growing conditions and engineered strains prior to scale-up. The method described here could be applied to other oleaginous microorganisms.
Smart EV Energy Management System to Support Grid Services
NASA Astrophysics Data System (ADS)
Wang, Bin
Under smart grid scenarios, the advanced sensing and metering technologies have been applied to the legacy power grid to improve the system observability and the real-time situational awareness. Meanwhile, there is increasing amount of distributed energy resources (DERs), such as renewable generations, electric vehicles (EVs) and battery energy storage system (BESS), etc., being integrated into the power system. However, the integration of EVs, which can be modeled as controllable mobile energy devices, brings both challenges and opportunities to the grid planning and energy management, due to the intermittency of renewable generation, uncertainties of EV driver behaviors, etc. This dissertation aims to solve the real-time EV energy management problem in order to improve the overall grid efficiency, reliability and economics, using online and predictive optimization strategies. Most of the previous research on EV energy management strategies and algorithms are based on simplified models with unrealistic assumptions that the EV charging behaviors are perfectly known or following known distributions, such as the arriving time, leaving time and energy consumption values, etc. These approaches fail to obtain the optimal solutions in real-time because of the system uncertainties. Moreover, there is lack of data-driven strategy that performs online and predictive scheduling for EV charging behaviors under microgrid scenarios. Therefore, we develop an online predictive EV scheduling framework, considering uncertainties of renewable generation, building load and EV driver behaviors, etc., based on real-world data. A kernel-based estimator is developed to predict the charging session parameters in real-time with improved estimation accuracy. The efficacy of various optimization strategies that are supported by this framework, including valley-filling, cost reduction, event-based control, etc., has been demonstrated. In addition, the existing simulation-based approaches do not consider a variety of practical concerns of implementing such a smart EV energy management system, including the driver preferences, communication protocols, data models, and customized integration of existing standards to provide grid services. Therefore, this dissertation also solves these issues by designing and implementing a scalable system architecture to capture the user preferences, enable multi-layer communication and control, and finally improve the system reliability and interoperability.
Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU
NASA Astrophysics Data System (ADS)
Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.
2007-03-01
In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.
Conjugated polyelectrolyte based real-time fluorescence assay for phospholipase C.
Liu, Yan; Ogawa, Katsu; Schanze, Kirk S
2008-01-01
A fluorescence turnoff assay for phospholipase C (PLC) from Clostridium perfringens is developed based on the reversible interaction between the natural substrate, phosphatidylcholine, and a fluorescent, water-soluble conjugated polyelectrolyte (CPE). The fluorescence intensity of the CPE in water is increased substantially by the addition of the phospholipid due to the formation of a CPE-lipid complex. Incubation of the CPE-lipid complex with the enzyme PLC causes the fluorescence intensity to decrease (turnoff sensor); the response arises due to PLC-catalyzed hydrolysis of the phosphatidylcholine, which effectively disrupts the CPE-lipid complex. The PLC assay operates with phospholipid substrate concentrations in the micromolar range, and the analytical detection limit for PLC is <1 nM. The optimized assay provides a convenient, rapid, and real-time sensor for PLC activity. The real-time fluorescence intensity from the CPE can be converted to substrate concentration by using an ex situ calibration curve, allowing PLC-catalyzed reaction rates and kinetic parameters to be determined. PLC activation by Ca2+ and inhibition by EDTA and fluoride ion are demonstrated using the optimized sensor.
Use of NTRIP for optimizing the decoding algorithm for real-time data streams.
He, Zhanke; Tang, Wenda; Yang, Xuhai; Wang, Liming; Liu, Jihua
2014-10-10
As a network transmission protocol, Networked Transport of RTCM via Internet Protocol (NTRIP) is widely used in GPS and Global Orbiting Navigational Satellite System (GLONASS) Augmentation systems, such as Continuous Operational Reference System (CORS), Wide Area Augmentation System (WAAS) and Satellite Based Augmentation Systems (SBAS). With the deployment of BeiDou Navigation Satellite system(BDS) to serve the Asia-Pacific region, there are increasing needs for ground monitoring of the BeiDou Navigation Satellite system and the development of the high-precision real-time BeiDou products. This paper aims to optimize the decoding algorithm of NTRIP Client data streams and the user authentication strategies of the NTRIP Caster based on NTRIP. The proposed method greatly enhances the handling efficiency and significantly reduces the data transmission delay compared with the Federal Agency for Cartography and Geodesy (BKG) NTRIP. Meanwhile, a transcoding method is proposed to facilitate the data transformation from the BINary EXchange (BINEX) format to the RTCM format. The transformation scheme thus solves the problem of handing real-time data streams from Trimble receivers in the BeiDou Navigation Satellite System indigenously developed by China.
A real-time approximate optimal guidance law for flight in a plane
NASA Technical Reports Server (NTRS)
Feeley, Timothy S.; Speyer, Jason L.
1990-01-01
A real-time guidance scheme is presented for the problem of maximizing the payload into orbit subject to the equations of motion of a rocket over a nonrotating spherical earth. The flight is constrained to a path in the equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of the problem can be separated into primary and perturbation effects by a small parameter, epsilon, which is the ratio of the atmospheric scale height to the radius of the earth. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form. The neglected perturbation terms are included in the higher-order terms of the expansion, which are determined from the solution of first-order linear partial differential equations requiring only integrations which are quadratures. The quadratures can be performed rapidly with emerging computer capability, so that real-time approximate optimization can be used to construct the launch guidance law. The application of this technique to flight in three-dimensions is made apparent from the solution presented.
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging.
Tremsin, Anton S; Perrodin, Didier; Losko, Adrian S; Vogel, Sven C; Bourke, Mark A M; Bizarri, Gregory A; Bourret, Edith D
2017-04-20
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
NASA Astrophysics Data System (ADS)
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; Vogel, Sven C.; Bourke, Mark A. M.; Bizarri, Gregory A.; Bourret, Edith D.
2017-04-01
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of “blind” processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; Vogel, Sven C.; Bourke, Mark A.M.; Bizarri, Gregory A.; Bourret, Edith D.
2017-01-01
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of “blind” processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes. PMID:28425461
NASA Astrophysics Data System (ADS)
Wang, L.; Koike, T.
2010-12-01
The climate change-induced variability in hydrological cycles directly affects regional water resources management. For improved multiple multi-objective reservoir operation, an integrated modeling system has been developed by incorporating a global optimization system (SCE-UA) into a distributed biosphere hydrological model (WEB-DHM) coupled with the reservoir routing module. The reservoir storage change is estimated from the difference between the simulated inflows and outflows; while the reservoir water level can be defined from the updated reservoir storage by using the H-V curve. According to the reservoir water level, the new operation rule can be decided. For optimization: (1) WEB-DHM is calibrated for each dam’s inflows separately; (2) then the calibrated WEB-DHM is used to simulate inflows and outflows by assuming outflow proportional to inflow; and (3) the proportion coefficients are optimized with Shuffle Complex Evolution method (SCE-UA), to fulfill an objective function towards minimum flood risk at downstream and maximum reservoir water storage for future use. The GSMaP product offers hourly global precipitation maps in near real-time (about four hours after observation). Aiming at near real-time reservoir operation in large river basins, the integrated modeling system takes the inputs from both an operational global quantitative precipitation forecast (JMA-GPV; to achieve an optimal operation rule in the assumed lead time period) and the GSMaP product (to perform current operation with the obtained optimal rule, after correction by gauge rainfall). The newly-developed system was then applied to the Red River Basin, with an area of 160,000 km2, to test its performance for near real-time dam operation. In Vietnam, three reservoirs are located in the upstream of Hanoi city, with Hoa Binh the largest (69% of total volume). After calibration with the gauge rainfall, the inflows to three reservoirs are well simulated; the discharge and water level at Hanoi city are also well reproduced with the actual dam releases. With the corrected GSMaP rainfall (by using gauge rainfall), the inflows to reservoirs and the water level at Hanoi city can be also reasonably reproduced. The study aims at achieving an optimal operation rule in the lead time period (with the quantitative precipitation forecast) and then using it to perform current operation (with the corrected GSMaP rainfall). At Hanoi, there are relatively low flows in July, but high floods in August 2005. Results show that with the actual operation, dangerous water level in Hanoi was observed; while with the lead-time operation, the water level in Hanoi can be obviously cut down, and maximum water storage is also achieved for Hoa Binh reservoir at the end of flood season.
NASA Astrophysics Data System (ADS)
Rahmawati, E.; Ibrahim, F.; Imran, D.; Sudarmono, P.
2017-08-01
Focal brain lesion is a neurological complication in HIV, which is marked as a space occupying lesion (SOL) and needs rapid and effective treatment. This lesion is mainly caused by encephalitis toxoplasma and primary central nervous system lymphoma related to the Epstein-Barr virus (EBV) infection, which is difficult to distinguish using CT scan or magnetic resonance imaging (MRI). The gold standard of diagnosing focal brain lesion has been brain biopsy, but this examination is an invasive procedure that causes complications. The objective of this study is to obtain the rapid laboratory diagnosis of Toxoplasma gondii (T. gondii) and EBV infection. In this experimental study, blood and cerebrospinal fluid were obtained from HIV patients who were admitted to the Neurology Department of Cipto Mangunkusumo Hospital. The samples were examined using duplex real-time polymerase chain reaction (PCR) to detect T. gondii and EBV. The first step was the optimization of duplex real-time PCR, including the annealing temperature, primer and probe concentration, elution volume, and template volume. Minimal DNA detection was used to measure minimal T. gondii and EBV. Cross reactions were determined for technical specificity using the bacteria and viruses Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa, Mycobacterium tuberculosis H37Rv, Candida spp, cytomegalovirus, herpes zoster virus, and varicella zoster virus. Duplex real-time PCR was applied optimally to patients. In the optimization of duplex real-time PCR, the annealing temperature of T. gondii and EBV were 58 °C, the concentration of primer forward and reverse for T. gondii and EBV were 0.2 μM, the concentration of probe for T. gondii and EBV were 0.4μM and 0.2 μM, respectively. Minimal DNA detection of T. gondii and EBV were 5.68 copy/ml and 1.31 copy/ml, respectively. There was no cross reaction between another bacteria and virus that were used as the primer and probe for T. gondii and EBV. The blood duplex real-time PCR was positive for T. gondii (16%), EBV (40%), and both (16%). The cerebrospinal fluid samples were positive for T. gondii (20%), EBV (28%), and both (4%).
NASA Technical Reports Server (NTRS)
Duong, T. A.
2004-01-01
In this paper, we present a new, simple, and optimized hardware architecture sequential learning technique for adaptive Principle Component Analysis (PCA) which will help optimize the hardware implementation in VLSI and to overcome the difficulties of the traditional gradient descent in learning convergence and hardware implementation.
Video Games for Neuro-Cognitive Optimization.
Mishra, Jyoti; Anguera, Joaquin A; Gazzaley, Adam
2016-04-20
Sophisticated video games that integrate engaging cognitive training with real-time biosensing and neurostimulation have the potential to optimize cognitive performance in health and disease. We argue that technology development must be paired with rigorous scientific validation and discuss academic and industry opportunities in this field. Copyright © 2016 Elsevier Inc. All rights reserved.
Polyhedral Interpolation for Optimal Reaction Control System Jet Selection
NASA Technical Reports Server (NTRS)
Gefert, Leon P.; Wright, Theodore
2014-01-01
An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.
Sharif, Behzad; Bresler, Yoram
2013-01-01
Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding (PARADISE) is a dynamic MR imaging scheme that optimally combines parallel imaging and model-based adaptive acquisition. In this work, we propose the application of PARADISE to real-time cardiac MRI. We introduce a physiologically improved version of a realistic four-dimensional cardiac-torso (NCAT) phantom, which incorporates natural beat-to-beat heart rate and motion variations. Cardiac cine imaging using PARADISE is simulated and its performance is analyzed by virtue of the improved phantom. Results verify the effectiveness of PARADISE for high resolution un-gated real-time cardiac MRI and its superiority over conventional acquisition methods. PMID:24398475
NASA Astrophysics Data System (ADS)
Ahmed, S.; Salucci, M.; Miorelli, R.; Anselmi, N.; Oliveri, G.; Calmon, P.; Reboud, C.; Massa, A.
2017-10-01
A quasi real-time inversion strategy is presented for groove characterization of a conductive non-ferromagnetic tube structure by exploiting eddy current testing (ECT) signal. Inversion problem has been formulated by non-iterative Learning-by-Examples (LBE) strategy. Within the framework of LBE, an efficient training strategy has been adopted with the combination of feature extraction and a customized version of output space filling (OSF) adaptive sampling in order to get optimal training set during offline phase. Partial Least Squares (PLS) and Support Vector Regression (SVR) have been exploited for feature extraction and prediction technique respectively to have robust and accurate real time inversion during online phase.
Optimal electromagnetic energy transmission and real-time dissipation in extended media.
Glasgow, S; Ware, M
2014-02-24
Pulse reshaping effects that give rise to fast and slow light phenomena are inextricably linked to the dynamics of energy exchange between the pulse and the propagation medium. Energy that is dissipated from the pulse can no longer participate in this exchange process, but previous methods of calculating real-time dissipation are not valid for extended propagation media. We present a method for calculating real-time dissipation that is valid for electromagnetic pulse propagation in extended media. This method allows one to divide the energy stored in an extended medium into the portion that can be later transmitted out of the medium, and that portion which must be lost to either dissipation or reflection.
Optimal current waveforms for brushless permanent magnet motors
NASA Astrophysics Data System (ADS)
Moehle, Nicholas; Boyd, Stephen
2015-07-01
In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor)
1994-01-01
Real-time video presentations are provided in the field of operator-supervised automation and teleoperation, particularly in control stations having movable cameras for optimal viewing of a region of interest in robotics and teleoperations for performing different types of tasks. Movable monitors to match the corresponding camera orientations (pan, tilt, and roll) are provided in order to match the coordinate systems of all the monitors to the operator internal coordinate system. Automated control of the arrangement of cameras and monitors, and of the configuration of system parameters, is provided for optimal viewing and performance of each type of task for each operator since operators have different individual characteristics. The optimal viewing arrangement and system parameter configuration is determined and stored for each operator in performing each of many types of tasks in order to aid the automation of setting up optimal arrangements and configurations for successive tasks in real time. Factors in determining what is optimal include the operator's ability to use hand-controllers for each type of task. Robot joint locations, forces and torques are used, as well as the operator's identity, to identify the current type of task being performed in order to call up a stored optimal viewing arrangement and system parameter configuration.
Scheduling Policies for an Antiterrorist Surveillance System
2008-06-27
times; for example, see Reiman and Wein [17] and Olsen [15]. For real-time scheduling problems involving impatient customers, see Gaver et al. [2...heavy traffic with throughput time constraints: Asymptotically optimal dynamic controls. Queueing Systems 39, 23–54. 30 [17] Reiman , M. I. and Wein
Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi
2012-10-22
This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second.
Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi
2012-01-01
This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second. PMID:23202040
Beganovic, Maya; Costello, Michael; Wieczorkiewicz, Sarah M
2017-05-01
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) decreases the time to organism identification and improves clinical and financial outcomes. The purpose of this study was to evaluate the impact of MALDI-TOF MS alone versus MALDI-TOF MS combined with real-time, pharmacist-driven, antimicrobial stewardship (AMS) intervention on patient outcomes. This single-center, pre-post, quasiexperimental study evaluated hospitalized patients with positive blood cultures identified via MALDI-TOF MS combined with prospective AMS intervention compared to a control cohort with MALDI-TOF MS identification without AMS intervention. AMS intervention included: real-time MALDI-TOF MS pharmacist notification and prospective AMS provider feedback. The primary outcome was the time to optimal therapy (TTOT). A total of 252 blood cultures, 126 in each group, were included in the final analysis. MALDI-TOF MS plus AMS intervention significantly reduced the overall TTOT (75.17 versus 43.06 h; P < 0.001), the Gram-positive contaminant TTOT (48.21 versus 11.75 h; P < 0.001), the Gram-negative infection (GNI) TTOT (71.83 versus 35.98 h; P < 0.001), and the overall hospital length of stay (LOS; 15.03 versus 9.02 days; P = 0.021). The TTOT for Gram-positive infection (GPI) was improved (64.04 versus 41.61 h; P = 0.082). For GPI, the hospital LOS (14.64 versus 10.31 days; P = 0.002) and length of antimicrobial therapy 24.30 versus 18.97 days; P = 0.018) were reduced. For GNI, the time to microbiologic clearance (51.13 versus 34.51 h; P < 0.001), the hospital LOS (15.40 versus 7.90 days; P = 0.027), and the intensive care unit LOS (5.55 versus 1.19 days; P = 0.035) were reduced. To achieve optimal outcomes, rapid identification with MALDI-TOF MS combined with real-time AMS intervention is more impactful than MALDI-TOF MS alone. Copyright © 2017 American Society for Microbiology.
Real option valuation of a decremental regulation service provided by electricity storage.
Szabó, Dávid Zoltán; Martyr, Randall
2017-08-13
This paper is a quantitative study of a reserve contract for real-time balancing of a power system. Under this contract, the owner of a storage device, such as a battery, helps smooth fluctuations in electricity demand and supply by using the device to increase electricity consumption. The battery owner must be able to provide immediate physical cover, and should therefore have sufficient storage available in the battery before entering the contract. Accordingly, the following problem can be formulated for the battery owner: determine the optimal time to enter the contract and, if necessary, the optimal time to discharge electricity before entering the contract. This problem is formulated as one of optimal stopping, and is solved explicitly in terms of the model parameters and instantaneous values of the power system imbalance. The optimal operational strategies thus obtained ensure that the battery owner has positive expected economic profit from the contract. Furthermore, they provide explicit conditions under which the optimal discharge time is consistent with the overall objective of power system balancing. This paper also carries out a preliminary investigation of the 'lifetime value' aggregated from an infinite sequence of these balancing reserve contracts. This lifetime value, which can be viewed as a single project valuation of the battery, is shown to be positive and bounded. Therefore, in the long run such reserve contracts can be beneficial to commercial operators of electricity storage, while reducing some of the financial and operational risks in power system balancing.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Zhu, Xiang; Zhang, Dianwen
2013-01-01
We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785
Gentilini, Fabio; Turba, Maria E
2014-01-01
A novel technique, called Divergent, for single-tube real-time PCR genotyping of point mutations without the use of fluorescently labeled probes has recently been reported. This novel PCR technique utilizes a set of four primers and a particular denaturation temperature for simultaneously amplifying two different amplicons which extend in opposite directions from the point mutation. The two amplicons can readily be detected using the melt curve analysis downstream to a closed-tube real-time PCR. In the present study, some critical aspects of the original method were specifically addressed to further implement the technique for genotyping the DNM1 c.G767T mutation responsible for exercise-induced collapse in Labrador retriever dogs. The improved Divergent assay was easily set up using a standard two-step real-time PCR protocol. The melting temperature difference between the mutated and the wild-type amplicons was approximately 5°C which could be promptly detected by all the thermal cyclers. The upgraded assay yielded accurate results with 157pg of genomic DNA per reaction. This optimized technique represents a flexible and inexpensive alternative to the minor grove binder fluorescently labeled method and to high resolution melt analysis for high-throughput, robust and cheap genotyping of single nucleotide variations. Copyright © 2014 Elsevier B.V. All rights reserved.
Martinon, Alice; Cronin, Ultan P; Wilkinson, Martin G
2012-01-01
In this article, four types of standards were assessed in a SYBR Green-based real-time PCR procedure for the quantification of Staphylococcus aureus (S. aureus) in DNA samples. The standards were purified S. aureus genomic DNA (type A), circular plasmid DNA containing a thermonuclease (nuc) gene fragment (type B), DNA extracted from defined populations of S. aureus cells generated by Fluorescence Activated Cell Sorting (FACS) technology with (type C) or without purification of DNA by boiling (type D). The optimal efficiency of 2.016 was obtained on Roche LightCycler(®) 4.1. software for type C standards, whereas the lowest efficiency (1.682) corresponded to type D standards. Type C standards appeared to be more suitable for quantitative real-time PCR because of the use of defined populations for construction of standard curves. Overall, Fieller Confidence Interval algorithm may be improved for replicates having a low standard deviation in Cycle Threshold values such as found for type B and C standards. Stabilities of diluted PCR standards stored at -20°C were compared after 0, 7, 14 and 30 days and were lower for type A or C standards compared with type B standards. However, FACS generated standards may be useful for bacterial quantification in real-time PCR assays once optimal storage and temperature conditions are defined.
de Souza, Isaac D T; Silva, Sergio N; Teles, Rafael M; Fernandes, Marcelo A C
2014-10-15
The development of new embedded algorithms for automation and control of industrial equipment usually requires the use of real-time testing. However, the equipment required is often expensive, which means that such tests are often not viable. The objective of this work was therefore to develop an embedded platform for the distributed real-time simulation of dynamic systems. This platform, called the Real-Time Simulator for Dynamic Systems (RTSDS), could be applied in both industrial and academic environments. In industrial applications, the RTSDS could be used to optimize embedded control algorithms. In the academic sphere, it could be used to support research into new embedded solutions for automation and control and could also be used as a tool to assist in undergraduate and postgraduate teaching related to the development of projects concerning on-board control systems.
Platform for Real-Time Simulation of Dynamic Systems and Hardware-in-the-Loop for Control Algorithms
de Souza, Isaac D. T.; Silva, Sergio N.; Teles, Rafael M.; Fernandes, Marcelo A. C.
2014-01-01
The development of new embedded algorithms for automation and control of industrial equipment usually requires the use of real-time testing. However, the equipment required is often expensive, which means that such tests are often not viable. The objective of this work was therefore to develop an embedded platform for the distributed real-time simulation of dynamic systems. This platform, called the Real-Time Simulator for Dynamic Systems (RTSDS), could be applied in both industrial and academic environments. In industrial applications, the RTSDS could be used to optimize embedded control algorithms. In the academic sphere, it could be used to support research into new embedded solutions for automation and control and could also be used as a tool to assist in undergraduate and postgraduate teaching related to the development of projects concerning on-board control systems. PMID:25320906
NASA Astrophysics Data System (ADS)
Zhao, Fang-Ming; Jiang, Ling-Ge; He, Chen
In this paper, a channel allocation scheme is studied for overlay wireless networks to optimize connection-level QoS. The contributions of our work are threefold. First, a channel allocation strategy using both horizontal channel borrowing and vertical traffic overflowing (HCBVTO) is presented and analyzed. When all the channels in a given macrocell are used, high-mobility real-time handoff requests can borrow channels from adjacent homogeneous cells. In case that the borrowing requests fail, handoff requests may also be overflowed to heterogeneous cells, if possible. Second, high-mobility real-time service is prioritized by allowing it to preempt channels currently used by other services. And third, to meet the high QoS requirements of some services and increase the utilization of radio resources, certain services can be transformed between real-time services and non-real-time services as necessary. Simulation results demonstrate that the proposed schemes can improve system performance.
Video enhancement workbench: an operational real-time video image processing system
NASA Astrophysics Data System (ADS)
Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.
1993-01-01
Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.
Real-Time Model and Simulation Architecture for Half- and Full-Bridge Modular Multilevel Converters
NASA Astrophysics Data System (ADS)
Ashourloo, Mojtaba
This work presents an equivalent model and simulation architecture for real-time electromagnetic transient analysis of either half-bridge or full-bridge modular multilevel converter (MMC) with 400 sub-modules (SMs) per arm. The proposed CPU/FPGA-based architecture is optimized for the parallel implementation of the presented MMC model on the FPGA and is beneficiary of a high-throughput floating-point computational engine. The developed real-time simulation architecture is capable of simulating MMCs with 400 SMs per arm at 825 nanoseconds. To address the difficulties of the sorting process implementation, a modified Odd-Even Bubble sorting is presented in this work. The comparison of the results under various test scenarios reveals that the proposed real-time simulator is representing the system responses in the same way of its corresponding off-line counterpart obtained from the PSCAD/EMTDC program.
A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems
Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik; ...
2017-07-25
Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.
A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik
Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.
Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao
The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity providedmore » by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.« less
Windprofiler optimization using digital deconvolution procedures
NASA Astrophysics Data System (ADS)
Hocking, W. K.; Hocking, A.; Hocking, D. G.; Garbanzo-Salas, M.
2014-10-01
Digital improvements to data acquisition procedures used for windprofiler radars have the potential for improving the height coverage at optimum resolution, and permit improved height resolution. A few newer systems already use this capability. Real-time deconvolution procedures offer even further optimization, and this has not been effectively employed in recent years. In this paper we demonstrate the advantages of combining these features, with particular emphasis on the advantages of real-time deconvolution. Using several multi-core CPUs, we have been able to achieve speeds of up to 40 GHz from a standard commercial motherboard, allowing data to be digitized and processed without the need for any type of hardware except for a transmitter (and associated drivers), a receiver and a digitizer. No Digital Signal Processor chips are needed, allowing great flexibility with analysis algorithms. By using deconvolution procedures, we have then been able to not only optimize height resolution, but also have been able to make advances in dealing with spectral contaminants like ground echoes and other near-zero-Hz spectral contamination. Our results also demonstrate the ability to produce fine-resolution measurements, revealing small-scale structures within the backscattered echoes that were previously not possible to see. Resolutions of 30 m are possible for VHF radars. Furthermore, our deconvolution technique allows the removal of range-aliasing effects in real time, a major bonus in many instances. Results are shown using new radars in Canada and Costa Rica.
Key Technology of Real-Time Road Navigation Method Based on Intelligent Data Research
Tang, Haijing; Liang, Yu; Huang, Zhongnan; Wang, Taoyi; He, Lin; Du, Yicong; Ding, Gangyi
2016-01-01
The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction. PMID:27872637
A new proof of the generalized Hamiltonian–Real calculus
Gao, Hua; Mandic, Danilo P.
2016-01-01
The recently introduced generalized Hamiltonian–Real (GHR) calculus comprises, for the first time, the product and chain rules that makes it a powerful tool for quaternion-based optimization and adaptive signal processing. In this paper, we introduce novel dual relationships between the GHR calculus and multivariate real calculus, in order to provide a new, simpler proof of the GHR derivative rules. This further reinforces the theoretical foundation of the GHR calculus and provides a convenient methodology for generic extensions of real- and complex-valued learning algorithms to the quaternion domain.
A real-time biomimetic acoustic localizing system using time-shared architecture
NASA Astrophysics Data System (ADS)
Nourzad Karl, Marianne; Karl, Christian; Hubbard, Allyn
2008-04-01
In this paper a real-time sound source localizing system is proposed, which is based on previously developed mammalian auditory models. Traditionally, following the models, which use interaural time delay (ITD) estimates, the amount of parallel computations needed by a system to achieve real-time sound source localization is a limiting factor and a design challenge for hardware implementations. Therefore a new approach using a time-shared architecture implementation is introduced. The proposed architecture is a purely sample-base-driven digital system, and it follows closely the continuous-time approach described in the models. Rather than having dedicated hardware on a per frequency channel basis, a specialized core channel, shared for all frequency bands is used. Having an optimized execution time, which is much less than the system's sample rate, the proposed time-shared solution allows the same number of virtual channels to be processed as the dedicated channels in the traditional approach. Hence, the time-shared approach achieves a highly economical and flexible implementation using minimal silicon area. These aspects are particularly important in efficient hardware implementation of a real time biomimetic sound source localization system.
Efficiently Scheduling Multi-core Guest Virtual Machines on Multi-core Hosts in Network Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoginath, Srikanth B; Perumalla, Kalyan S
2011-01-01
Virtual machine (VM)-based simulation is a method used by network simulators to incorporate realistic application behaviors by executing actual VMs as high-fidelity surrogates for simulated end-hosts. A critical requirement in such a method is the simulation time-ordered scheduling and execution of the VMs. Prior approaches such as time dilation are less efficient due to the high degree of multiplexing possible when multiple multi-core VMs are simulated on multi-core host systems. We present a new simulation time-ordered scheduler to efficiently schedule multi-core VMs on multi-core real hosts, with a virtual clock realized on each virtual core. The distinguishing features of ourmore » approach are: (1) customizable granularity of the VM scheduling time unit on the simulation time axis, (2) ability to take arbitrary leaps in virtual time by VMs to maximize the utilization of host (real) cores when guest virtual cores idle, and (3) empirically determinable optimality in the tradeoff between total execution (real) time and time-ordering accuracy levels. Experiments show that it is possible to get nearly perfect time-ordered execution, with a slight cost in total run time, relative to optimized non-simulation VM schedulers. Interestingly, with our time-ordered scheduler, it is also possible to reduce the time-ordering error from over 50% of non-simulation scheduler to less than 1% realized by our scheduler, with almost the same run time efficiency as that of the highly efficient non-simulation VM schedulers.« less
Real options valuation and optimization of energy assets
NASA Astrophysics Data System (ADS)
Thompson, Matthew
In this thesis we present algorithms for the valuation and optimal operation of natural gas storage facilities, hydro-electric power plants and thermal power generators in competitive markets. Real options theory is used to derive nonlinear partial-integro-differential equations (PIDEs) for the valuation and optimal operating strategies of all types of facilities. The equations are designed to incorporate a wide class of spot price models that can exhibit the same time-dependent, mean-reverting dynamics and price spikes as those observed in most energy markets. Particular attention is paid to the operational characteristics of real energy assets. For natural gas storage facilities these characteristics include: working gas capacities, variable deliverability and injection rates and cycling limitations. For thermal power plants relevant operational characteristics include variable start-up times and costs, control response time lags, minimum generating levels, nonlinear output functions, structural limitations on ramp rates, and minimum up/down time restrictions. For hydro-electric units, head effects and environmental constraints are addressed. We illustrate the models with numerical examples of a gas storage facility, a hydro-electric pump storage facility and a thermal power plant. This PIDE framework is the first in the literature to achieve second order accuracy in characterizing the operating states of hydro-electric and hydro-thermal power plants. The continuous state space representation derived in this thesis can therefore achieve far greater realism in terms of operating state specification than any other method in the literature to date. This thesis is also the first and only to allow for any continuous time jump diffusion processes in order to account for price spikes.
Experimental Optimization of Exposure Index and Quality of Service in Wlan Networks.
Plets, David; Vermeeren, Günter; Poorter, Eli De; Moerman, Ingrid; Goudos, Sotirios K; Luc, Martens; Wout, Joseph
2017-07-01
This paper presents the first real-life optimization of the Exposure Index (EI). A genetic optimization algorithm is developed and applied to three real-life Wireless Local Area Network scenarios in an experimental testbed. The optimization accounts for downlink, uplink and uplink of other users, for realistic duty cycles, and ensures a sufficient Quality of Service to all users. EI reductions up to 97.5% compared to a reference configuration can be achieved in a downlink-only scenario, in combination with an improved Quality of Service. Due to the dominance of uplink exposure and the lack of WiFi power control, no optimizations are possible in scenarios that also consider uplink traffic. However, future deployments that do implement WiFi power control can be successfully optimized, with EI reductions up to 86% compared to a reference configuration and an EI that is 278 times lower than optimized configurations under the absence of power control. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Houssin, Timothée; Cramer, Jérémy; Grojsman, Rébecca; Bellahsene, Lyes; Colas, Guillaume; Moulet, Hélène; Minnella, Walter; Pannetier, Christophe; Leberre, Maël; Plecis, Adrien; Chen, Yong
2016-04-21
To control future infectious disease outbreaks, like the 2014 Ebola epidemic, it is necessary to develop ultrafast molecular assays enabling rapid and sensitive diagnoses. To that end, several ultrafast real-time PCR systems have been previously developed, but they present issues that hinder their wide adoption, notably regarding their sensitivity and detection volume. An ultrafast, sensitive and large-volume real-time PCR system based on microfluidic thermalization is presented herein. The method is based on the circulation of pre-heated liquids in a microfluidic chip that thermalize the PCR chamber by diffusion and ultrafast flow switches. The system can achieve up to 30 real-time PCR cycles in around 2 minutes, which makes it the fastest PCR thermalization system for regular sample volume to the best of our knowledge. After biochemical optimization, anthrax and Ebola simulating agents could be respectively detected by a real-time PCR in 7 minutes and a reverse transcription real-time PCR in 7.5 minutes. These detections are respectively 6.4 and 7.2 times faster than with an off-the-shelf apparatus, while conserving real-time PCR sample volume, efficiency, selectivity and sensitivity. The high-speed thermalization also enabled us to perform sharp melting curve analyses in only 20 s and to discriminate amplicons of different lengths by rapid real-time PCR. This real-time PCR microfluidic thermalization system is cost-effective, versatile and can be then further developed for point-of-care, multiplexed, ultrafast and highly sensitive molecular diagnoses of bacterial and viral diseases.
Evaluation of the quality of herbal teas by DART/TOF-MS.
Prchalová, J; Kovařík, F; Rajchl, A
2017-02-01
The paper focuses on the optimization, settings and validation of direct analysis in real time coupled with time-of-flight detector when used for the evaluation of the quality of selected herbal teas (fennel, chamomile, nettle, linden, peppermint, thyme, lemon balm, marigold, sage, rose hip and St. John's wort). The ionization mode, the optimal ionization temperature and the type of solvent for sample extraction were optimized. The characteristic compounds of the analysed herbal teas (glycosides, flavonoids and phenolic and terpenic substances, such as chamazulene, anethole, menthol, thymol, salviol and hypericin) were detected. The obtained mass spectra were evaluated by multidimensional chemometric methods, such as cluster analysis, linear discriminate analysis and principal component analysis. The chemometric methods showed that the single variety herbal teas were grouped according to their taxonomic affiliation. The developed method is suitable for quick identification of herbs and can be potentially used for assessing the quality and authenticity of herbal teas. Direct analysis in real time/time-of-flight-MS is also suitable for the evaluation of selected substances contained in the mentioned herbs and herbal products. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
A systematic FPGA acceleration design for applications based on convolutional neural networks
NASA Astrophysics Data System (ADS)
Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao
2018-04-01
Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.
NASA Astrophysics Data System (ADS)
Dinkins, Matthew; Colley, Stephen
2008-07-01
Hardware and software specialized for real time control reduce the timing jitter of executables when compared to off-the-shelf hardware and software. However, these specialized environments are costly in both money and development time. While conventional systems have a cost advantage, the jitter in these systems is much larger and potentially problematic. This study analyzes the timing characterstics of a standard Dell server running a fully featured Linux operating system to determine if such a system would be capable of meeting the timing requirements for closed loop operations. Investigations are preformed on the effectiveness of tools designed to make off-the-shelf system performance closer to specialized real time systems. The Gnu Compiler Collection (gcc) is compared to the Intel C Compiler (icc), compiler optimizations are investigated, and real-time extensions to Linux are evaluated.
Sroka-Oleksiak, Agnieszka; Ufir, Krzysztof; Salamon, Dominika; Bulanda, Malgorzata; Gosiewski, Tomasz
Lyme disease, caused by Borrelia burgdorferi, is a multisystem disease that often makes difficulties to recognize caused by their genetic heterogenity. Currently, the gold standard for the detection of Lyme disease (LD) is serologic diagnostics based mainly on tests: ELISA and Western blot (WB). These methods, however, are subject to consider- able defect, especially in the initial phase of infection due to the occurrence of so-called serological window period and low specificity. For this reason, they might be replaced by molecular methods, for example polymerase chain reaction (PCR), which should be more sensitivity and specificity. In the present study we attempt to optimize the PCR reaction conditions and enhance existing test sensitivity by applying the equivalent of real time PCR - nested PCR for detection B. burgdorferi DNA in the patient's blood. The study involved 94 blood samples of patients with suspected LD. From each sample, 1.5 ml of blood was used for the isolation of bacterial DNA and PCR real time am- plification and its equivalent, in nested version. The remaining part earmarked for serologi- cal testing. Optimization of the reaction conditions made experimentally, using gradient of the temperature and gradient of the magnesium ions concentration for reaction real time in nested-PCR and PCR version. The results show that the nested-PCR real time, has a much higher sensitivity 45 (47.8%) of positive results for the detection of B. burgdorferi compared to the single- variety, without a preceding pre-amplification 2 (2.1%). Serological methods allowed the detection of infection in 41 (43.6%) samples. These results support of the nested PCR method as a better molecular tool for the detection of B. burgdorferi infection than classical PCR real time reaction. The nested-PCR real time method may be considered as a complement to ELISA and WB mainly in the early stages of infection, when in the blood circulating B. burgdorferi cells. By contrast, the results of serological and molecular tests should always be carried out tak- ing into account the patient's clinical status.
Murphy, Helen R; Lee, Seulgi; da Silva, Alexandre J
2017-07-01
Cyclospora cayetanensis is a protozoan parasite that causes human diarrheal disease associated with the consumption of fresh produce or water contaminated with C. cayetanensis oocysts. In the United States, foodborne outbreaks of cyclosporiasis have been linked to various types of imported fresh produce, including cilantro and raspberries. An improved method was developed for identification of C. cayetanensis in produce at the U.S. Food and Drug Administration. The method relies on a 0.1% Alconox produce wash solution for efficient recovery of oocysts, a commercial kit for DNA template preparation, and an optimized TaqMan real-time PCR assay with an internal amplification control for molecular detection of the parasite. A single laboratory validation study was performed to assess the method's performance and compare the optimized TaqMan real-time PCR assay and a reference nested PCR assay by examining 128 samples. The samples consisted of 25 g of cilantro or 50 g of raspberries seeded with 0, 5, 10, or 200 C. cayetanensis oocysts. Detection rates for cilantro seeded with 5 and 10 oocysts were 50.0 and 87.5%, respectively, with the real-time PCR assay and 43.7 and 94.8%, respectively, with the nested PCR assay. Detection rates for raspberries seeded with 5 and 10 oocysts were 25.0 and 75.0%, respectively, with the real-time PCR assay and 18.8 and 68.8%, respectively, with the nested PCR assay. All unseeded samples were negative, and all samples seeded with 200 oocysts were positive. Detection rates using the two PCR methods were statistically similar, but the real-time PCR assay is less laborious and less prone to amplicon contamination and allows monitoring of amplification and analysis of results, making it more attractive to diagnostic testing laboratories. The improved sample preparation steps and the TaqMan real-time PCR assay provide a robust, streamlined, and rapid analytical procedure for surveillance, outbreak response, and regulatory testing of foods for detection of C. cayetanensis.
NASA Technical Reports Server (NTRS)
Patten, William Neff
1989-01-01
There is an evident need to discover a means of establishing reliable, implementable controls for systems that are plagued by nonlinear and, or uncertain, model dynamics. The development of a generic controller design tool for tough-to-control systems is reported. The method utilizes a moving grid, time infinite element based solution of the necessary conditions that describe an optimal controller for a system. The technique produces a discrete feedback controller. Real time laboratory experiments are now being conducted to demonstrate the viability of the method. The algorithm that results is being implemented in a microprocessor environment. Critical computational tasks are accomplished using a low cost, on-board, multiprocessor (INMOS T800 Transputers) and parallel processing. Progress to date validates the methodology presented. Applications of the technique to the control of highly flexible robotic appendages are suggested.
Sensibility study in a flexible job shop scheduling problem
NASA Astrophysics Data System (ADS)
Curralo, Ana; Pereira, Ana I.; Barbosa, José; Leitão, Paulo
2013-10-01
This paper proposes the impact assessment of the jobs order in the optimal time of operations in a Flexible Job Shop Scheduling Problem. In this work a real assembly cell was studied: the AIP-PRIMECA cell at the Université de Valenciennes et du Hainaut-Cambrésis, in France, which is considered as a Flexible Job Shop problem. The problem consists in finding the machines operations schedule, taking into account the precedence constraints. The main objective is to minimize the batch makespan, i.e. the finish time of the last operation completed in the schedule. Shortly, the present study consists in evaluating if the jobs order affects the optimal time of the operations schedule. The genetic algorithm was used to solve the optimization problem. As a conclusion, it's assessed that the jobs order influence the optimal time.
NASA Astrophysics Data System (ADS)
Xiao, Jingjie
A key hurdle for implementing real-time pricing of electricity is a lack of consumers' responses. Solutions to overcome the hurdle include the energy management system that automatically optimizes household appliance usage such as plug-in hybrid electric vehicle charging (and discharging with vehicle-to-grid) via a two-way communication with the grid. Real-time pricing, combined with household automation devices, has a potential to accommodate an increasing penetration of plug-in hybrid electric vehicles. In addition, the intelligent energy controller on the consumer-side can help increase the utilization rate of the intermittent renewable resource, as the demand can be managed to match the output profile of renewables, thus making the intermittent resource such as wind and solar more economically competitive in the long run. One of the main goals of this dissertation is to present how real-time retail pricing, aided by control automation devices, can be integrated into the wholesale electricity market under various uncertainties through approximate dynamic programming. What distinguishes this study from the existing work in the literature is that whole- sale electricity prices are endogenously determined as we solve a system operator's economic dispatch problem on an hourly basis over the entire optimization horizon. This modeling and algorithm framework will allow a feedback loop between electricity prices and electricity consumption to be fully captured. While we are interested in a near-optimal solution using approximate dynamic programming; deterministic linear programming benchmarks are use to demonstrate the quality of our solutions. The other goal of the dissertation is to use this framework to provide numerical evidence to the debate on whether real-time pricing is superior than the current flat rate structure in terms of both economic and environmental impacts. For this purpose, the modeling and algorithm framework is tested on a large-scale test case with hundreds of power plants based on data available for California, making our findings useful for policy makers, system operators and utility companies to gain a concrete understanding on the scale of the impact with real-time pricing.
Dueholm, M; Christensen, J W; Rydbjerg, S; Hansen, E S; Ørtoft, G
2015-06-01
To evaluate the diagnostic efficiency of two-dimensional (2D) and three-dimensional (3D) transvaginal ultrasonography, power Doppler angiography (PDA) and gel infusion sonography (GIS) at offline analysis for recognition of malignant endometrium compared with real-time evaluation during scanning, and to determine optimal image parameters at 3D analysis. One hundred and sixty-nine consecutive women with postmenopausal bleeding and endometrial thickness ≥ 5 mm underwent systematic evaluation of endometrial pattern on 2D imaging, and 2D videoclips and 3D volumes were later analyzed offline. Histopathological findings at hysteroscopy or hysterectomy were used as the reference standard. The efficiency of the different techniques for diagnosis of malignancy was calculated and compared. 3D image parameters, endometrial volume and 3D vascular indices were assessed. Optimal 3D image parameters were transformed by logistic regression into a risk of endometrial cancer (REC) score, including scores for body mass index, endometrial thickness and endometrial morphology at gray-scale and PDA and GIS. Offline 2D and 3D analysis were equivalent, but had lower diagnostic performance compared with real-time evaluation during scanning. Their diagnostic performance was not markedly improved by the addition of PDA or GIS, but their efficiency was comparable with that of real-time 2D-GIS in offline examinations of good image quality. On logistic regression, the 3D parameters from the REC-score system had the highest diagnostic efficiency. The area under the curve of the REC-score system at 3D-GIS (0.89) was not improved by inclusion of vascular indices or endometrial volume calculations. Real-time evaluation during scanning is most efficient, but offline 2D and 3D analysis is useful for prediction of endometrial cancer when good image quality can be obtained. The diagnostic efficiency at 3D analysis may be improved by use of REC-scoring systems, without the need for calculation of vascular indices or endometrial volume. The optimal imaging modality appears to be real-time 2D-GIS. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.
How to determine an optimal threshold to classify real-time crash-prone traffic conditions?
Yang, Kui; Yu, Rongjie; Wang, Xuesong; Quddus, Mohammed; Xue, Lifang
2018-08-01
One of the proactive approaches in reducing traffic crashes is to identify hazardous traffic conditions that may lead to a traffic crash, known as real-time crash prediction. Threshold selection is one of the essential steps of real-time crash prediction. And it provides the cut-off point for the posterior probability which is used to separate potential crash warnings against normal traffic conditions, after the outcome of the probability of a crash occurring given a specific traffic condition on the basis of crash risk evaluation models. There is however a dearth of research that focuses on how to effectively determine an optimal threshold. And only when discussing the predictive performance of the models, a few studies utilized subjective methods to choose the threshold. The subjective methods cannot automatically identify the optimal thresholds in different traffic and weather conditions in real application. Thus, a theoretical method to select the threshold value is necessary for the sake of avoiding subjective judgments. The purpose of this study is to provide a theoretical method for automatically identifying the optimal threshold. Considering the random effects of variable factors across all roadway segments, the mixed logit model was utilized to develop the crash risk evaluation model and further evaluate the crash risk. Cross-entropy, between-class variance and other theories were employed and investigated to empirically identify the optimal threshold. And K-fold cross-validation was used to validate the performance of proposed threshold selection methods with the help of several evaluation criteria. The results indicate that (i) the mixed logit model can obtain a good performance; (ii) the classification performance of the threshold selected by the minimum cross-entropy method outperforms the other methods according to the criteria. This method can be well-behaved to automatically identify thresholds in crash prediction, by minimizing the cross entropy between the original dataset with continuous probability of a crash occurring and the binarized dataset after using the thresholds to separate potential crash warnings against normal traffic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Bodson, Marc
2012-01-01
Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.
Kurihara, Miki; Ikeda, Koji; Izawa, Yoshinori; Deguchi, Yoshihiro; Tarui, Hitoshi
2003-10-20
A laser-induced breakdown spectroscopy (LIBS) technique has been applied for detection of unburned carbon in fly ash, and an automated LIBS unit has been developed and applied in a 1000-MW pulverized-coal-fired power plant for real-time measurement, specifically of unburned carbon in fly ash. Good agreement was found between measurement results from the LIBS method and those from the conventional method (Japanese Industrial Standard 8815), with a standard deviation of 0.27%. This result confirms that the measurement of unburned carbon in fly ash by use of LIBS is sufficiently accurate for boiler control. Measurements taken by this apparatus were also integrated into a boiler-control system with the objective of achieving optimal and stable combustion. By control of the rotating speed of a mill rotary separator relative to measured unburned-carbon content, it has been demonstrated that boiler control is possible in an optimized manner by use of the value of the unburned-carbon content of fly ash.
Optimization and real-time control for laser treatment of heterogeneous soft tissues.
Feng, Yusheng; Fuentes, David; Hawkins, Andrea; Bass, Jon M; Rylander, Marissa Nichole
2009-01-01
Predicting the outcome of thermotherapies in cancer treatment requires an accurate characterization of the bioheat transfer processes in soft tissues. Due to the biological and structural complexity of tumor (soft tissue) composition and vasculature, it is often very difficult to obtain reliable tissue properties that is one of the key factors for the accurate treatment outcome prediction. Efficient algorithms employing in vivo thermal measurements to determine heterogeneous thermal tissues properties in conjunction with a detailed sensitivity analysis can produce essential information for model development and optimal control. The goals of this paper are to present a general formulation of the bioheat transfer equation for heterogeneous soft tissues, review models and algorithms developed for cell damage, heat shock proteins, and soft tissues with nanoparticle inclusion, and demonstrate an overall computational strategy for developing a laser treatment framework with the ability to perform real-time robust calibrations and optimal control. This computational strategy can be applied to other thermotherapies using the heat source such as radio frequency or high intensity focused ultrasound.
Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fijany, A.; Milman, M.; Redding, D.
1994-12-31
In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm,more » designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.« less
NASA Technical Reports Server (NTRS)
Elliott, Kenny B.; Ugoletti, Roberto; Sulla, Jeff
1992-01-01
The evolution and optimization of a real-time digital control system is presented. The control system is part of a testbed used to perform focused technology research on the interactions of spacecraft platform and instrument controllers with the flexible-body dynamics of the platform and platform appendages. The control system consists of Computer Automated Measurement and Control (CAMAC) standard data acquisition equipment interfaced to a workstation computer. The goal of this work is to optimize the control system's performance to support controls research using controllers with up to 50 states and frame rates above 200 Hz. The original system could support a 16-state controller operating at a rate of 150 Hz. By using simple yet effective software improvements, Input/Output (I/O) latencies and contention problems are reduced or eliminated in the control system. The final configuration can support a 16-state controller operating at 475 Hz. Effectively the control system's performance was increased by a factor of 3.
Information fusion based techniques for HEVC
NASA Astrophysics Data System (ADS)
Fernández, D. G.; Del Barrio, A. A.; Botella, Guillermo; Meyer-Baese, Uwe; Meyer-Baese, Anke; Grecos, Christos
2017-05-01
Aiming at the conflict circumstances of multi-parameter H.265/HEVC encoder system, the present paper introduces the analysis of many optimizations' set in order to improve the trade-off between quality, performance and power consumption for different reliable and accurate applications. This method is based on the Pareto optimization and has been tested with different resolutions on real-time encoders.
Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches
NASA Technical Reports Server (NTRS)
Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.
2005-01-01
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.
Leung, Eric T Y; Zheng, L; Wong, Rity Y K; Chan, Edward W C; Au, T K; Chan, Raphael C Y; Lui, Grace; Lee, Nelson; Ip, Margaret
2011-07-01
Rapid diagnosis and genotyping of Mycobacterium tuberculosis by molecular methods are often limited by the amount and purity of DNA extracted from body fluids. In this study, we evaluated 12 DNA extraction methods and developed a highly sensitive protocol for mycobacterial DNA extraction directly from sputa using surface-coated magnetic particles. We have also developed a novel multiplex real-time PCR for simultaneous identification of M. tuberculosis complex and the Beijing/W genotype (a hypervirulent sublineage of M. tuberculosis) by using multiple fluorogenic probes targeting both the M. tuberculosis IS6110 and the Rv0927c-pstS3 intergenic region. With reference strains and clinical isolates, our real-time PCR accurately identified 20 non-Beijing/W and 20 Beijing/W M. tuberculosis strains from 17 different species of nontuberculosis Mycobacterium (NTM). Further assessment of our DNA extraction protocol and real-time PCR with 335 nonduplicate sputum specimens correctly identified all 74 M. tuberculosis culture-positive specimens. In addition, 15 culture-negative specimens from patients with confirmed tuberculosis were also identified. No cross-reactivity was detected with NTM specimens (n = 31). The detection limit of the assay is 10 M. tuberculosis bacilli, as determined by endpoint dilution analysis. In conclusion, an optimized DNA extraction protocol coupled with a novel multiprobe multiplex real-time PCR for the direct detection of M. tuberculosis, including Beijing/W M. tuberculosis, was found to confer high sensitivity and specificity. The combined procedure has the potential to compensate for the drawbacks of conventional mycobacterial culture in routine clinical laboratory setting, such as the lengthy incubation period and the limitation to viable organisms.
Reducing usage of the computational resources by event driven approach to model predictive control
NASA Astrophysics Data System (ADS)
Misik, Stefan; Bradac, Zdenek; Cela, Arben
2017-08-01
This paper deals with a real-time and optimal control of dynamic systems while also considers the constraints which these systems might be subject to. Main objective of this work is to propose a simple modification of the existing Model Predictive Control approach to better suit needs of computational resource-constrained real-time systems. An example using model of a mechanical system is presented and the performance of the proposed method is evaluated in a simulated environment.
Recent advances in the development and transfer of machine vision technologies for space
NASA Technical Reports Server (NTRS)
Defigueiredo, Rui J. P.; Pendleton, Thomas
1991-01-01
Recent work concerned with real-time machine vision is briefly reviewed. This work includes methodologies and techniques for optimal illumination, shape-from-shading of general (non-Lambertian) 3D surfaces, laser vision devices and technology, high level vision, sensor fusion, real-time computing, artificial neural network design and use, and motion estimation. Two new methods that are currently being developed for object recognition in clutter and for 3D attitude tracking based on line correspondence are discussed.
NASA Astrophysics Data System (ADS)
Chen, Y. W.; Chang, L. C.
2012-04-01
Typhoons which normally bring a great amount of precipitation are the primary natural hazard in Taiwan during flooding season. Because the plentiful rainfall quantities brought by typhoons are normally stored for the usage of the next draught period, the determination of release strategies for flood operation of reservoirs which is required to simultaneously consider not only the impact of reservoir safety and the flooding damage in plain area but also for the water resource stored in the reservoir after typhoon becomes important. This study proposes a two-steps study process. First, this study develop an optimal flood operation model (OFOM) for the planning of flood control and also applies the OFOM on Tseng-wun reservoir and the downstream plain related to the reservoir. Second, integrating a typhoon event database with the OFOM mentioned above makes the proposed planning model have ability to deal with a real-time flood control problem and names as real-time flood operation model (RTFOM). Three conditions are considered in the proposed models, OFOM and RTFOM, include the safety of the reservoir itself, the reservoir storage after typhoons and the impact of flooding in the plain area. Besides, the flood operation guideline announced by government is also considered in the proposed models. The these conditions and the guideline can be formed as an optimization problem which is solved by the genetic algorithm (GA) in this study. Furthermore, a distributed runoff model, kinematic-wave geomorphic instantaneous unit hydrograph (KW-GIUH), and a river flow simulation model, HEC-RAS, are used to simulate the river water level of Tseng-wun basin in the plain area and the simulated level is shown as an index of the impact of flooding. Because the simulated levels are required to re-calculate iteratively in the optimization model, applying a recursive artificial neural network (recursive ANN) instead of the HEC-RAS model can significantly reduce the computational burden of the entire optimization problem. This study applies the developed methodology to Tseng-wun Reservoir. Forty typhoon events are collected as the historical database and six typhoon events are used to verify the proposed model. These typhoons include Typhoon Sepat and Typhoon Korsa in 2007 and Typhoon Kalmaegi, Typhoon Fung-Wong, Typhoon Sinlaku and Typhoon Jangmi in 2008. The results show that the proposed model can reduce the flood duration at the downstream area. For example, the real-time flood control model can reduce the flood duration by four and three hours for Typhoon Korsa and Typhoon Sinlaku respectively. This results indicate that the developed model can be a very useful tool for real-time flood control operation of reservoirs.
Performance and evaluation of real-time multicomputer control systems
NASA Technical Reports Server (NTRS)
Shin, K. G.
1983-01-01
New performance measures, detailed examples, modeling of error detection process, performance evaluation of rollback recovery methods, experiments on FTMP, and optimal size of an NMR cluster are discussed.
Cho, Gyoun-Yon; Lee, Seo-Joon; Lee, Tae-Ro
2015-01-01
Recent medical information systems are striving towards real-time monitoring models to care patients anytime and anywhere through ECG signals. However, there are several limitations such as data distortion and limited bandwidth in wireless communications. In order to overcome such limitations, this research focuses on compression. Few researches have been made to develop a specialized compression algorithm for ECG data transmission in real-time monitoring wireless network. Not only that, recent researches' algorithm is not appropriate for ECG signals. Therefore this paper presents a more developed algorithm EDLZW for efficient ECG data transmission. Results actually showed that the EDLZW compression ratio was 8.66, which was a performance that was 4 times better than any other recent compression method widely used today.
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production.more » This technique is widely applicable and is not limited to crystal growth processes.« less
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; ...
2017-04-20
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production.more » This technique is widely applicable and is not limited to crystal growth processes.« less
2D and 3D Traveling Salesman Problem
ERIC Educational Resources Information Center
Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt
2011-01-01
When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
2015-07-01
This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the controlmore » of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.« less
MNE Scan: Software for real-time processing of electrophysiological data.
Esch, Lorenz; Sun, Limin; Klüber, Viktor; Lew, Seok; Baumgarten, Daniel; Grant, P Ellen; Okada, Yoshio; Haueisen, Jens; Hämäläinen, Matti S; Dinh, Christoph
2018-06-01
Magnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive techniques to study the electrophysiological activity of the human brain. Thus, they are well suited for real-time monitoring and analysis of neuronal activity. Real-time MEG/EEG data processing allows adjustment of the stimuli to the subject's responses for optimizing the acquired information especially by providing dynamically changing displays to enable neurofeedback. We introduce MNE Scan, an acquisition and real-time analysis software based on the multipurpose software library MNE-CPP. MNE Scan allows the development and application of acquisition and novel real-time processing methods in both research and clinical studies. The MNE Scan development follows a strict software engineering process to enable approvals required for clinical software. We tested the performance of MNE Scan in several device-independent use cases, including, a clinical epilepsy study, real-time source estimation, and Brain Computer Interface (BCI) application. Compared to existing tools we propose a modular software considering clinical software requirements expected by certification authorities. At the same time the software is extendable and freely accessible. We conclude that MNE Scan is the first step in creating a device-independent open-source software to facilitate the transition from basic neuroscience research to both applied sciences and clinical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays
Salt, Julián; Guinaldo, María; Chacón, Jesús
2018-01-01
In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n-input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant. PMID:29747441
Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays.
Aranda-Escolástico, Ernesto; Salt, Julián; Guinaldo, María; Chacón, Jesús; Dormido, Sebastián
2018-05-09
In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n -input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant.
Motion control of 7-DOF arms - The configuration control approach
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Long, Mark K.; Lee, Thomas S.
1993-01-01
Graphics simulation and real-time implementation of configuration control schemes for a redundant 7-DOF Robotics Research arm are described. The arm kinematics and motion control schemes are described briefly. This is followed by a description of a graphics simulation environment for 7-DOF arm control on the Silicon Graphics IRIS Workstation. Computer simulation results are presented to demonstrate elbow control, collision avoidance, and optimal joint movement as redundancy resolution goals. The laboratory setup for experimental validation of motion control of the 7-DOF Robotics Research arm is then described. The configuration control approach is implemented on a Motorola-68020/VME-bus-based real-time controller, with elbow positioning for redundancy resolution. Experimental results demonstrate the efficacy of configuration control for real-time control.
NASA Astrophysics Data System (ADS)
Larumbe, Belen; Laviada, Jaime; Ibáñez-Loinaz, Asier; Teniente, Jorge
2018-01-01
A real-time imaging system based on a frequency scanning antenna for conveyor belt setups is presented in this paper. The frequency scanning antenna together with an inexpensive parabolic reflector operates at the W band enabling the detection of details with dimensions in the order of 2 mm. In addition, a low level of sidelobes is achieved by optimizing unequal dividers to window the power distribution for sidelobe reduction. Furthermore, the quality of the images is enhanced by the radiation pattern properties. The performance of the system is validated by showing simulation as well as experimental results obtained in real time, proving the feasibility of these kinds of frequency scanning antennas for cost-effective imaging applications.
NASA Technical Reports Server (NTRS)
Chelberg, David; Drews, Frank; Fleeman, David; Welch, Lonnie; Marquart, Jane; Pfarr, Barbara
2003-01-01
One of the current trends in spacecraft software design is to increase the autonomy of onboard flight and science software. This is especially true when real-time observations may affect the observation schedule of a mission. For many science missions, such as those conducted by the Swift Burst Alert Telescope, the ability of the spacecraft to autonomously respond in real-time to unpredicted science events is crucial for mission success. We apply utility theory within resource management middleware to optimize the real-time performance of application software and achieve maximum system level benefit. We then explore how this methodology can be extended to manage both software and observational resources onboard a spacecraft to achieve the best possible observations.
NASA Astrophysics Data System (ADS)
Souvatzoglou, G.; Papaioannou, A.; Mavromichalaki, H.; Dimitroulakos, J.; Sarlanis, C.
2014-11-01
Whenever a significant intensity increase is being recorded by at least three neutron monitor stations in real-time mode, a ground level enhancement (GLE) event is marked and an automated alert is issued. Although, the physical concept of the algorithm is solid and has efficiently worked in a number of cases, the availability of real-time data is still an open issue and makes timely GLE alerts quite challenging. In this work we present the optimization of the GLE alert that has been set into operation since 2006 at the Athens Neutron Monitor Station. This upgrade has led to GLE Alert Plus, which is currently based upon the Neutron Monitor Database (NMDB). We have determined the critical values per station allowing us to issue reliable GLE alerts close to the initiation of the event while at the same time we keep the false alert rate at low levels. Furthermore, we have managed to treat the problem of data availability, introducing the Go-Back-N algorithm. A total of 13 GLE events have been marked from January 2000 to December 2012. GLE Alert Plus issued an alert for 12 events. These alert times are compared to the alert times of GOES Space Weather Prediction Center and Solar Energetic Particle forecaster of the University of Málaga (UMASEP). In all cases GLE Alert Plus precedes the GOES alert by ≈8-52 min. The comparison with UMASEP demonstrated a remarkably good agreement. Real-time GLE alerts by GLE Alert Plus may be retrieved by http://cosray.phys.uoa.gr/gle_alert_plus.html, http://www.nmdb.eu, and http://swe.ssa.esa.int/web/guest/space-radiation. An automated GLE alert email notification system is also available to interested users.
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors
Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun
2016-01-01
Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722
Shin, Saeam; Kim, Juwon; Kim, Yoonjung; Cho, Sun-Mi; Lee, Kyung-A
2017-10-26
EGFR mutation is an emerging biomarker for treatment selection in non-small-cell lung cancer (NSCLC) patients. However, optimal mutation detection is hindered by complications associated with the biopsy procedure, tumor heterogeneity and limited sensitivity of test methodology. In this study, we evaluated the diagnostic utility of real-time PCR using malignant pleural effusion samples. A total of 77 pleural fluid samples from 77 NSCLC patients were tested using the cobas EGFR mutation test (Roche Molecular Systems). Pleural fluid was centrifuged, and separated cell pellets and supernatants were tested in parallel. Results were compared with Sanger sequencing and/or peptide nucleic acid (PNA)-mediated PCR clamping of matched tumor tissue or pleural fluid samples. All samples showed valid real-time PCR results in one or more DNA samples extracted from cell pellets and supernatants. Compared with other molecular methods, the sensitivity of real-time PCR method was 100%. Concordance rate of real-time PCR and Sanger sequencing plus PNA-mediated PCR clamping was 98.7%. We have confirmed that real-time PCR using pleural fluid had a high concordance rate compared to conventional methods, with no failed samples. Our data demonstrated that the parallel real-time PCR testing using supernatant and cell pellet could offer reliable and robust surrogate strategy when tissue is not available.
Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons.
Yaeli, Steve; Meir, Ron
2010-01-01
Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.
On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment
Alonso-Mora, Javier; Samaranayake, Samitha; Wallar, Alex; Frazzoli, Emilio; Rus, Daniela
2017-01-01
Ride-sharing services are transforming urban mobility by providing timely and convenient transportation to anybody, anywhere, and anytime. These services present enormous potential for positive societal impacts with respect to pollution, energy consumption, congestion, etc. Current mathematical models, however, do not fully address the potential of ride-sharing. Recently, a large-scale study highlighted some of the benefits of car pooling but was limited to static routes with two riders per vehicle (optimally) or three (with heuristics). We present a more general mathematical model for real-time high-capacity ride-sharing that (i) scales to large numbers of passengers and trips and (ii) dynamically generates optimal routes with respect to online demand and vehicle locations. The algorithm starts from a greedy assignment and improves it through a constrained optimization, quickly returning solutions of good quality and converging to the optimal assignment over time. We quantify experimentally the tradeoff between fleet size, capacity, waiting time, travel delay, and operational costs for low- to medium-capacity vehicles, such as taxis and van shuttles. The algorithm is validated with ∼3 million rides extracted from the New York City taxicab public dataset. Our experimental study considers ride-sharing with rider capacity of up to 10 simultaneous passengers per vehicle. The algorithm applies to fleets of autonomous vehicles and also incorporates rebalancing of idling vehicles to areas of high demand. This framework is general and can be used for many real-time multivehicle, multitask assignment problems. PMID:28049820
On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment.
Alonso-Mora, Javier; Samaranayake, Samitha; Wallar, Alex; Frazzoli, Emilio; Rus, Daniela
2017-01-17
Ride-sharing services are transforming urban mobility by providing timely and convenient transportation to anybody, anywhere, and anytime. These services present enormous potential for positive societal impacts with respect to pollution, energy consumption, congestion, etc. Current mathematical models, however, do not fully address the potential of ride-sharing. Recently, a large-scale study highlighted some of the benefits of car pooling but was limited to static routes with two riders per vehicle (optimally) or three (with heuristics). We present a more general mathematical model for real-time high-capacity ride-sharing that (i) scales to large numbers of passengers and trips and (ii) dynamically generates optimal routes with respect to online demand and vehicle locations. The algorithm starts from a greedy assignment and improves it through a constrained optimization, quickly returning solutions of good quality and converging to the optimal assignment over time. We quantify experimentally the tradeoff between fleet size, capacity, waiting time, travel delay, and operational costs for low- to medium-capacity vehicles, such as taxis and van shuttles. The algorithm is validated with ∼3 million rides extracted from the New York City taxicab public dataset. Our experimental study considers ride-sharing with rider capacity of up to 10 simultaneous passengers per vehicle. The algorithm applies to fleets of autonomous vehicles and also incorporates rebalancing of idling vehicles to areas of high demand. This framework is general and can be used for many real-time multivehicle, multitask assignment problems.
Real-time CO2 sensor for the optimal control of electronic EGR system
NASA Astrophysics Data System (ADS)
Kim, Gwang-jung; Choi, Byungchul; Choi, Inchul
2013-12-01
In modern diesel engines, EGR (Exhaust Gas Recirculation) is an important technique used in nitrogen oxide (NOx) emission reduction. This paper describes the development and experimental results of a fiber-optical sensor using a 2.7 μm wavelength absorption to quantify the simultaneous CO2 concentration which is the primary variable of EGR rate (CO2 in the exhaust gas versus CO2 in the intake gas, %). A real-time laser absorption method was developed using a DFB (distributed feedback) diode laser and waveguide to make optimal design and control of electronic EGR system required for `Euro-6' and `Tier 4 Final' NOx emission regulations. While EGR is effective to reduce NOx significantly, the amount of HC and CO is increased in the exhaust gas if EGR rate is not controlled based on driving conditions. Therefore, it is important to recirculate an appropriate amount of exhaust gas in the operation condition generating high volume of NOx. In this study, we evaluated basic characteristics and functions of our optical sensor and studied basically in order to find out optimal design condition. We demonstrated CO2 measurement speed, accuracy and linearity as making a condition similar to real engine through the bench-scale experiment.
DOT National Transportation Integrated Search
2010-10-25
Real-time information is important for travelers' routing decisions in uncertain networks by enabling online adaptation to revealed traffic conditions. Usually there are spatial and/or temporal limitations in traveler information. In this research, a...
Real-Time Load-Side Control of Electric Power Systems
NASA Astrophysics Data System (ADS)
Zhao, Changhong
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
NASA Astrophysics Data System (ADS)
Abdulaal, Ahmed
The work in this study addresses the current limitations of the price-driven demand response (DR) approach. Mainly, the dependability on consumers to respond in an energy aware conduct, the response timeliness, the difficulty of applying DR in a busy industrial environment, and the problem of load synchronization are of utmost concern. In order to conduct a simulation study, realistic price simulation model and consumers' building load models are created using real data. DR action is optimized using an autonomous control method, which eliminates the dependency on frequent consumer engagement. Since load scheduling and long-term planning approaches are infeasible in the industrial environment, the proposed method utilizes instantaneous DR in response to hour-ahead price signals (RTP-HA). Preliminary simulation results concluded savings at the consumer-side at the cost of increased supplier-side burden due to the aggregate effect of the universal DR policies. Therefore, a consumer disaggregation strategy is briefly discussed. Finally, a refined discrete-continuous control system is presented, which utilizes multi-objective Pareto optimization, evolutionary programming, utility functions, and bidirectional loads. Demonstrated through a virtual testbed fit with real data, the new system achieves momentary optimized DR in real-time while maximizing the consumer's wellbeing.
NASA Technical Reports Server (NTRS)
Chen, Guanrong
1991-01-01
An optimal trajectory planning problem for a single-link, flexible joint manipulator is studied. A global feedback-linearization is first applied to formulate the nonlinear inequality-constrained optimization problem in a suitable way. Then, an exact and explicit structural formula for the optimal solution of the problem is derived and the solution is shown to be unique. It turns out that the optimal trajectory planning and control can be done off-line, so that the proposed method is applicable to both theoretical analysis and real time tele-robotics control engineering.
NASA Astrophysics Data System (ADS)
Leung, Nelson; Abdelhafez, Mohamed; Koch, Jens; Schuster, David
2017-04-01
We implement a quantum optimal control algorithm based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them in the optimization process with ease. We show that the use of GPUs can speedup calculations by more than an order of magnitude. Our strategy facilitates efficient numerical simulations on affordable desktop computers and exploration of a host of optimization constraints and system parameters relevant to real-life experiments. We demonstrate optimization of quantum evolution based on fine-grained evaluation of performance at each intermediate time step, thus enabling more intricate control on the evolution path, suppression of departures from the truncated model subspace, as well as minimization of the physical time needed to perform high-fidelity state preparation and unitary gates.
Expósito-Rodríguez, Marino; Borges, Andrés A; Borges-Pérez, Andrés; Pérez, José A
2008-01-01
Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC), SGN-U321250 (TIP41), SGN-U346908 ("Expressed") and SGN-U316474 (SAND) genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real-time RT-PCR studies of gene expression during tomato development process. From our study a tool-kit of control genes emerges that outperform the traditional genes in terms of expression stability. PMID:19102748
Optimal Window and Lattice in Gabor Transform. Application to Audio Analysis.
Lachambre, Helene; Ricaud, Benjamin; Stempfel, Guillaume; Torrésani, Bruno; Wiesmeyr, Christoph; Onchis-Moaca, Darian
2015-01-01
This article deals with the use of optimal lattice and optimal window in Discrete Gabor Transform computation. In the case of a generalized Gaussian window, extending earlier contributions, we introduce an additional local window adaptation technique for non-stationary signals. We illustrate our approach and the earlier one by addressing three time-frequency analysis problems to show the improvements achieved by the use of optimal lattice and window: close frequencies distinction, frequency estimation and SNR estimation. The results are presented, when possible, with real world audio signals.
NASA Astrophysics Data System (ADS)
Smits, K. M.; Drumheller, Z. W.; Lee, J. H.; Illangasekare, T. H.; Regnery, J.; Kitanidis, P. K.
2015-12-01
Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. Scientists and engineers have begun to revisit the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. This research seeks to develop and validate a general simulation-based control optimization algorithm that relies on real-time data collected though embedded sensors that can be used to ease the operational challenges of MAR facilities. Experiments to validate the control algorithm were conducted at the laboratory scale in a two-dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. The synthetic aquifer used well characterized technical sands and the electrical conductivity signal of an inorganic conservative tracer as a surrogate measure for water quality. The synthetic aquifer was outfitted with an array of sensors and an autonomous pumping system. Experimental results verified the feasibility of the approach and suggested that the system can improve the operation of MAR facilities. The dynamic parameter inversion reduced the average error between the simulated and observed pressures between 12.5 and 71.4%. The control optimization algorithm ran smoothly and generated optimal control decisions. Overall, results suggest that with some improvements to the inversion and interpolation algorithms, which can be further advanced through testing with laboratory experiments using sensors, the concept can successfully improve the operation of MAR facilities.
Cyber Physical Intelligence for Oil Spills (CPI)
NASA Astrophysics Data System (ADS)
Lary, D. J.
2015-12-01
The National Academy of Sciences estimate 1.7 to 8.8 million tons of oil are released into global waters every year. The effects of these spills include dead wildlife, oil covered marshlands and contaminated water. Deepwater horizon cost approximately $50 billion and severely challenged response capabilities. In such large spills optimizing a coordinated response is a particular challenge. This challenge can be met in a revolutionary new way by using an objectively optimized Cyber Physical Decision Making System (CPS) for rapid response products and a framework for objectively optimized decision-making in an uncertain environment. The CPS utilizes machine learning for the processing of the massive real-time streams of Big Data from comprehensive hyperspectral remote sensing acquired by a team of low-cost robotic aerial vehicles, providing a real-time aerial view and stream of hyperspectral imagery from the near UV to the thermal infrared, and a characterization of oil thickness, oil type and oil weathering. The objective decision making paradigm is modeled on the human brain and provides the optimal course trajectory for response vessels to achieve the most expeditious cleanup of oil spills using the available resources. In addition, oil spill cleanups often involve surface oil burns that can lead to air quality issues. The aerial vehicles comprehensively characterize air quality in real-time, streaming location, temperature, pressure, humidity, the abundance of 6 criterion pollutants (O3, CO, NO, NO2, SO2, and H2S) and the full size distribution of airborne particulates. This CPS can be readily applied to other systems in agriculture, water conversation, monitoring of stream quality, air quality, diagnosing risk of wild fires, etc..
Optimization of the performance of the polymerase chain reaction in silicon-based microstructures.
Taylor, T B; Winn-Deen, E S; Picozza, E; Woudenberg, T M; Albin, M
1997-01-01
We have demonstrated the ability to perform real-time homogeneous, sequence specific detection of PCR products in silicon microstructures. Optimal design/ processing result in equivalent performance (yield and specificity) for high surface-to-volume silicon structures as compared to larger volume reactions in polypropylene tubes. Amplifications in volumes as small as 0.5 microl and thermal cycling times reduced as much as 5-fold from that of conventional systems have been demonstrated for the microstructures. PMID:9224619
Scheduling for energy and reliability management on multiprocessor real-time systems
NASA Astrophysics Data System (ADS)
Qi, Xuan
Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.
Ghosh, Sayan; Das, Swagatam; Vasilakos, Athanasios V; Suresh, Kaushik
2012-02-01
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.
Real-time motion compensation for EM bronchoscope tracking with smooth output - ex-vivo validation
NASA Astrophysics Data System (ADS)
Reichl, Tobias; Gergel, Ingmar; Menzel, Manuela; Hautmann, Hubert; Wegner, Ingmar; Meinzer, Hans-Peter; Navab, Nassir
2012-02-01
Navigated bronchoscopy provides benefits for endoscopists and patients, but accurate tracking information is needed. We present a novel real-time approach for bronchoscope tracking combining electromagnetic (EM) tracking, airway segmentation, and a continuous model of output. We augment a previously published approach by including segmentation information in the tracking optimization instead of image similarity. Thus, the new approach is feasible in real-time. Since the true bronchoscope trajectory is continuous, the output is modeled using splines and the control points are optimized with respect to displacement from EM tracking measurements and spatial relation to segmented airways. Accuracy of the proposed method and its components is evaluated on a ventilated porcine ex-vivo lung with respect to ground truth data acquired from a human expert. We demonstrate the robustness of the output of the proposed method against added artificial noise in the input data. Smoothness in terms of inter-frame distance is shown to remain below 2 mm, even when up to 5 mm of Gaussian noise are added to the input. The approach is shown to be easily extensible to include other measures like image similarity.
Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy.
Nouri, S; Hosseini Pooya, S M; Soltani Nabipour, J
2017-03-01
The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients. This study evaluates the accuracy of some artificial intelligence methods including neural network and those of combination with genetic algorithm as well as particle swarm optimization (PSO) estimating tumor positions in real-time radiotherapy. One hundred recorded signals of three external markers were used as input data. The signals from 3 markers thorough 10 breathing cycles of a patient treated via a cyber-knife for a lung tumor were used as data input. Then, neural network method and its combination with genetic or PSO algorithms were applied determining the tumor locations using MATLAB© software program. The accuracies were obtained 0.8%, 12% and 14% in neural network, genetic and particle swarm optimization algorithms, respectively. The internal target volume (ITV) should be determined based on the applied neural network algorithm on training steps.
NASA Astrophysics Data System (ADS)
Suarez, Hernan; Zhang, Yan R.
2015-05-01
New radar applications need to perform complex algorithms and process large quantity of data to generate useful information for the users. This situation has motivated the search for better processing solutions that include low power high-performance processors, efficient algorithms, and high-speed interfaces. In this work, hardware implementation of adaptive pulse compression for real-time transceiver optimization are presented, they are based on a System-on-Chip architecture for Xilinx devices. This study also evaluates the performance of dedicated coprocessor as hardware accelerator units to speed up and improve the computation of computing-intensive tasks such matrix multiplication and matrix inversion which are essential units to solve the covariance matrix. The tradeoffs between latency and hardware utilization are also presented. Moreover, the system architecture takes advantage of the embedded processor, which is interconnected with the logic resources through the high performance AXI buses, to perform floating-point operations, control the processing blocks, and communicate with external PC through a customized software interface. The overall system functionality is demonstrated and tested for real-time operations using a Ku-band tested together with a low-cost channel emulator for different types of waveforms.
Real-time, aptamer-based tracking of circulating therapeutic agents in living animals
Ferguson, B. Scott; Hoggarth, David A.; Maliniak, Dan; Ploense, Kyle; White, Ryan J.; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J.; Eisenstein, Michael; Kippin, Tod; Plaxco, Kevin W.; Soh, H. Tom
2014-01-01
A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients’ health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lactose, and oxygen, and the few existing platforms for continuous measurement are not generalizable for the monitoring of other analytes, such as small-molecule therapeutics. In response, we have developed a real-time biosensor capable of continuously tracking a wide range of circulating drugs in living subjects. Our microfluidic electrochemical detector for in vivo continuous monitoring (MEDIC) requires no exogenous reagents, operates at room temperature, and can be reconfigured to measure different target molecules by exchanging probes in a modular manner. To demonstrate the system's versatility, we measured therapeutic in vivo concentrations of doxorubicin (a chemotherapeutic) and kanamycin (an antibiotic) in live rats and in human whole blood for several hours with high sensitivity and specificity at sub-minute temporal resolution. Importantly, we show that MEDIC can also obtain pharmacokineticparameters for individual animals in real-time. Accordingly, just as continuous glucose monitoring technology is currently revolutionizing diabetes care, we believe MEDIC could be a powerful enabler for personalized medicine by ensuring delivery of optimal drug doses for individual patients based on direct detection of physiological parameters. PMID:24285484
Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.
van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y
2016-01-01
Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.
Implicit methods for efficient musculoskeletal simulation and optimal control
van den Bogert, Antonie J.; Blana, Dimitra; Heinrich, Dieter
2011-01-01
The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a direct collocation method was developed for implicitly formulated models. The method was applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one hour of computation time and demonstrated how patients may adapt their gait to compensate for limitations of a specific prosthetic limb design. The optimal control method was also applied to a state estimation problem in sports biomechanics, where forces during skiing were estimated from noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state estimation had the additional advantage that forward dynamic simulations, could be done with the same implicitly formulated model to simulate injuries and perturbation responses. While these methods are powerful and allow solution of previously intractable problems, there are still considerable numerical challenges, especially related to the convergence of gradient-based solvers. PMID:22102983
An Optimal Scheduling Algorithm with a Competitive Factor for Real-Time Systems
1991-07-29
real - time systems in which the value of a task is proportional to its computation time. The system obtains the value of a given task if the task completes by its deadline. Otherwise, the system obtains no value for the task. When such a system is underloaded (i.e. there exists a schedule for which all tasks meet their deadlines), Dertouzos [6] showed that the earliest deadline first algorithm will achieve 100% of the possible value. We consider the case of a possibly overloaded system and present an algorithm which: 1. behaves like the earliest deadline first
Real-time PCR detection of Plasmodium directly from whole blood and filter paper samples
2011-01-01
Background Real-time PCR is a sensitive and specific method for the analysis of Plasmodium DNA. However, prior purification of genomic DNA from blood is necessary since PCR inhibitors and quenching of fluorophores from blood prevent efficient amplification and detection of PCR products. Methods Reagents designed to specifically overcome PCR inhibition and quenching of fluorescence were evaluated for real-time PCR amplification of Plasmodium DNA directly from blood. Whole blood from clinical samples and dried blood spots collected in the field in Colombia were tested. Results Amplification and fluorescence detection by real-time PCR were optimal with 40× SYBR® Green dye and 5% blood volume in the PCR reaction. Plasmodium DNA was detected directly from both whole blood and dried blood spots from clinical samples. The sensitivity and specificity ranged from 93-100% compared with PCR performed on purified Plasmodium DNA. Conclusions The methodology described facilitates high-throughput testing of blood samples collected in the field by fluorescence-based real-time PCR. This method can be applied to a broad range of clinical studies with the advantages of immediate sample testing, lower experimental costs and time-savings. PMID:21851640
System-level power optimization for real-time distributed embedded systems
NASA Astrophysics Data System (ADS)
Luo, Jiong
Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as well. Variable-frequency links have been designed by circuit designers for both parallel and serial links, which can adaptively regulate the supply voltage of transceivers to a desired link frequency, to exploit the variations in bandwidth requirement for power savings. We propose solutions for simultaneous dynamic voltage scaling of processors and links. The proposed solution considers real-time scheduling, flow control, and packet routing jointly. It can trade off the power consumption on processors and communication links via efficient slack allocation, and lead to more power savings than dynamic voltage scaling on processors alone. For battery-operated systems, the battery lifespan is an important concern. Due to the effects of discharge rate and battery recovery, the discharge pattern of batteries has an impact on the battery lifespan. Battery models indicate that even under the same average power consumption, reducing peak power current and variance in the power profile can increase the battery efficiency and thereby prolong battery lifetime. To take advantage of these effects, we propose battery-driven scheduling techniques for embedded applications, to reduce the peak power and the variance in the power profile of the overall system under real-time constraints. The proposed scheduling algorithms are also beneficial in addressing reliability and signal integrity concerns by effectively controlling peak power and variance of the power profile.
Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L; Wang, Xueding; Liu, Xiaojun
2013-08-01
Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.
Yilmaz Eroglu, Duygu; Caglar Gencosman, Burcu; Cavdur, Fatih; Ozmutlu, H. Cenk
2014-01-01
In this paper, we analyze a real-world OVRP problem for a production company. Considering real-world constrains, we classify our problem as multicapacitated/heterogeneous fleet/open vehicle routing problem with split deliveries and multiproduct (MCHF/OVRP/SDMP) which is a novel classification of an OVRP. We have developed a mixed integer programming (MIP) model for the problem and generated test problems in different size (10–90 customers) considering real-world parameters. Although MIP is able to find optimal solutions of small size (10 customers) problems, when the number of customers increases, the problem gets harder to solve, and thus MIP could not find optimal solutions for problems that contain more than 10 customers. Moreover, MIP fails to find any feasible solution of large-scale problems (50–90 customers) within time limits (7200 seconds). Therefore, we have developed a genetic algorithm (GA) based solution approach for large-scale problems. The experimental results show that the GA based approach reaches successful solutions with 9.66% gap in 392.8 s on average instead of 7200 s for the problems that contain 10–50 customers. For large-scale problems (50–90 customers), GA reaches feasible solutions of problems within time limits. In conclusion, for the real-world applications, GA is preferable rather than MIP to reach feasible solutions in short time periods. PMID:25045735
The timing of adoption of positron emission tomography: a real options approach.
Pertile, Paolo; Torri, Emanuele; Flor, Luciano; Tardivo, Stefano
2009-09-01
This paper presents the economic evaluation from a hospital's perspective of the investment in positron emission tomography, adopting a real options approach. The installation of this equipment requires a major capital outlay, while uncertainty on several key variables is substantial. The value of several timing strategies, including sequential investment, is determined taking into account that future decisions will be based on the information available at that time. The results show that adopting this approach may have an impact on the timing of investment, because postponing the investment may be optimal even when the Expected Net Present Value of the project is positive.
Asha, Raju C; Kumar, Mathava
2015-01-01
The presence of sulfamethoxazole (SMX) in a real-time poultry wastewater was identified via HPLC analysis. Subsequently, SMX removal from the poultry wastewater was investigated using a continuous-mode membrane-photocatalytic slurry reactor (MPSR). The real-time poultry wastewater was found to have an SMX concentration of 0-2.3 mg L(-1). A granular activated carbon supported TiO2 (GAC-TiO2) was synthesized, characterized and used in MPSR experiments. The optimal MPSR condition, i.e., HRT ∼ 125 min and catalyst dosage 529.3 mg L(-1), for complete SMX removal was found out using unconstrained optimization technique. Under the optimized condition, the effect of SMX concentration on MPSR performance was investigated by synthetic addition of SMX (i.e., 1, 25, 50, 75 and 100 mg L(-1)) into the wastewater. Interestingly, complete removals of total volatile solids (TVS), biochemical oxygen demand (BOD) and SMX were observed under all SMX concentrations investigated. However, a decline in SMX removal rate and proportionate increase in transmembrane-pressure (TMP) were observed when the SMX concentration was increased to higher levels. In the MPSR, the SMX mineralization was through one of the following degradation pathways: (i) fragmentation of the isoxazole ring and (ii) the elimination of methyl and amide moieties followed by the formation of phenyl sulfinate ion. These results show that the continuous-mode MPSR has great potential in the removal for SMX contaminated real-time poultry wastewater and similar organic micropollutants from wastewater.
Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus
NASA Technical Reports Server (NTRS)
Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud
1996-01-01
The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the GP model which in turn produces the pre-schedule of the optimal control model. Some preliminary results based on a hypothetical test case will be presented for the load forecasting module. The computer codes for the three modules will be made available fe adoption by bus operating agencies. Sample results will be provided using these models. The software will be a useful tool for supporting the control systems for the Electric Bus project of NASA.
Point Positioning Service for Natural Hazard Monitoring
NASA Astrophysics Data System (ADS)
Bar-Sever, Y. E.
2014-12-01
In an effort to improve natural hazard monitoring, JPL has invested in updating and enlarging its global real-time GNSS tracking network, and has launched a unique service - real-time precise positioning for natural hazard monitoring, entitled GREAT Alert (GNSS Real-Time Earthquake and Tsunami Alert). GREAT Alert leverages the full technological and operational capability of the JPL's Global Differential GPS System [www.gdgps.net] to offer owners of real-time dual-frequency GNSS receivers: Sub-5 cm (3D RMS) real-time, absolute positioning in ITRF08, regardless of location Under 5 seconds turnaround time Full covariance information Estimates of ancillary parameters (such as troposphere) optionally provided This service enables GNSS networks operators to instantly have access to the most accurate and reliable real-time positioning solutions for their sites, and also to the hundreds of participating sites globally, assuring inter-consistency and uniformity across all solutions. Local authorities with limited technical and financial resources can now access to the best technology, and share environmental data to the benefit of the entire pacific region. We will describe the specialized precise point positioning techniques employed by the GREAT Alert service optimized for natural hazard monitoring, and in particular Earthquake monitoring. We address three fundamental aspects of these applications: 1) small and infrequent motion, 2) the availability of data at a central location, and 3) the need for refined solutions at several time scales
True logarithmic amplification of frequency clock in SS-OCT for calibration
Liu, Bin; Azimi, Ehsan; Brezinski, Mark E.
2011-01-01
With swept source optical coherence tomography (SS-OCT), imprecise signal calibration prevents optimal imaging of biological tissues such as coronary artery. This work demonstrates an approach using a true logarithmic amplifier to precondition the clock signal, with the effort to minimize the noises and phase errors for optimal calibration. This method was validated and tested with a high-speed SS-OCT. The experimental results manifest its superior ability on optimization of the calibration and improvement of the imaging performance. Particularly, this hardware-based approach is suitable for real-time calibration in a high-speed system where computation time is constrained. PMID:21698036
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea
This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less
Some Results of Weak Anticipative Concept Applied in Simulation Based Decision Support in Enterprise
NASA Astrophysics Data System (ADS)
Kljajić, Miroljub; Kofjač, Davorin; Kljajić Borštnar, Mirjana; Škraba, Andrej
2010-11-01
The simulation models are used as for decision support and learning in enterprises and in schools. Tree cases of successful applications demonstrate usefulness of weak anticipative information. Job shop scheduling production with makespan criterion presents a real case customized flexible furniture production optimization. The genetic algorithm for job shop scheduling optimization is presented. Simulation based inventory control for products with stochastic lead time and demand describes inventory optimization for products with stochastic lead time and demand. Dynamic programming and fuzzy control algorithms reduce the total cost without producing stock-outs in most cases. Values of decision making information based on simulation were discussed too. All two cases will be discussed from optimization, modeling and learning point of view.
NASA Technical Reports Server (NTRS)
Chen, Robert T. N.; Zhao, Yi-Yuan; Aiken, Edwin W. (Technical Monitor)
1995-01-01
Engine failure represents a major safety concern to helicopter operations, especially in the critical flight phases of takeoff and landing from/to small, confined areas. As a result, the JAA and FAA both certificate a transport helicopter as either Category-A or Category-B according to the ability to continue its operations following engine failures. A Category-B helicopter must be able to land safely in the event of one or all engine failures. There is no requirement, however, for continued flight capability. In contrast, Category-A certification, which applies to multi-engine transport helicopters with independent engine systems, requires that they continue the flight with one engine inoperative (OEI). These stringent requirements, while permitting its operations from rooftops and oil rigs and flight to areas where no emergency landing sites are available, restrict the payload of a Category-A transport helicopter to a value safe for continued flight as well as for landing with one engine inoperative. The current certification process involves extensive flight tests, which are potentially dangerous, costly, and time consuming. These tests require the pilot to simulate engine failures at increasingly critical conditions, Flight manuals based on these tests tend to provide very conservative recommendations with regard to maximum takeoff weight or required runway length. There are very few theoretical studies on this subject to identify the fundamental parameters and tradeoff factors involved. Furthermore, a capability for real-time generation of OEI optimal trajectories is very desirable for providing timely cockpit display guidance to assist the pilot in reducing his workload and to increase safety in a consistent and reliable manner. A joint research program involving NASA Ames Research Center, the FAA, and the University of Minnesota is being conducted to determine OEI optimal control strategies and the associated optimal,trajectories for continued takeoff (CTO), rejected takeoff (RTO), balked landing (BL), and continued landing (CL) for a twin engine helicopter in both VTOL and STOL terminal-area operations. This proposed paper will present the problem formulation, the optimal control solution methods, and the key results of the trajectory optimization studies for both STOL and VTOL OEI operations. In addition, new results concerning the recently developed methodology, which enable a real-time generation of optimal OEI trajectories, will be presented in the paper. This new real-time capability was developed to support the second piloted simulator investigation on cockpit displays for Category-A operations being scheduled for the NASA Ames Vertical Motion Simulator in June-August of 1995. The first VMS simulation was conducted in 1994 and reported.
Aircraft Fault Detection Using Real-Time Frequency Response Estimation
NASA Technical Reports Server (NTRS)
Grauer, Jared A.
2016-01-01
A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.
Real-time estimation of BDS/GPS high-rate satellite clock offsets using sequential least squares
NASA Astrophysics Data System (ADS)
Fu, Wenju; Yang, Yuanxi; Zhang, Qin; Huang, Guanwen
2018-07-01
The real-time precise satellite clock product is one of key prerequisites for real-time Precise Point Positioning (PPP). The accuracy of the 24-hour predicted satellite clock product with 15 min sampling interval and an update of 6 h provided by the International GNSS Service (IGS) is only 3 ns, which could not meet the needs of all real-time PPP applications. The real-time estimation of high-rate satellite clock offsets is an efficient method for improving the accuracy. In this paper, the sequential least squares method to estimate real-time satellite clock offsets with high sample rate is proposed to improve the computational speed by applying an optimized sparse matrix operation to compute the normal equation and using special measures to take full advantage of modern computer power. The method is first applied to BeiDou Navigation Satellite System (BDS) and provides real-time estimation with a 1 s sample rate. The results show that the amount of time taken to process a single epoch is about 0.12 s using 28 stations. The Standard Deviation (STD) and Root Mean Square (RMS) of the real-time estimated BDS satellite clock offsets are 0.17 ns and 0.44 ns respectively when compared to German Research Center for Geosciences (GFZ) final clock products. The positioning performance of the real-time estimated satellite clock offsets is evaluated. The RMSs of the real-time BDS kinematic PPP in east, north, and vertical components are 7.6 cm, 6.4 cm and 19.6 cm respectively. The method is also applied to Global Positioning System (GPS) with a 10 s sample rate and the computational time of most epochs is less than 1.5 s with 75 stations. The STD and RMS of the real-time estimated GPS satellite clocks are 0.11 ns and 0.27 ns, respectively. The accuracies of 5.6 cm, 2.6 cm and 7.9 cm in east, north, and vertical components are achieved for the real-time GPS kinematic PPP.
Automated Guidance from Physiological Sensing to Reduce Thermal-Work Strain Levels on a Novel Task
USDA-ARS?s Scientific Manuscript database
This experiment demonstrated that automated pace guidance generated from real-time physiological monitoring allowed least stressful completion of a timed (60 minute limit) 5 mile treadmill exercise. An optimal pacing policy was estimated from a Markov decision process that balanced the goals of the...
Real-Time Geospatial Data Viewer (RETIGO)
This is a web-based method that allows the users to upload their air monitoring data and explore the data on graphical interface. The method is optimized for mobile monitoring data sets, showing the data on a map, on a time series, and referenced to a hypothesized line and/or poi...
USDA-ARS?s Scientific Manuscript database
The performance of conventional filtering methods can be degraded by ignoring the time lag between soil moisture and discharge response when discharge observations are assimilated into streamflow modelling. This has led to the ongoing development of more optimal ways to implement sequential data ass...
Optimization of ramp area aircraft push back time windows in the presence of uncertainty
NASA Astrophysics Data System (ADS)
Coupe, William Jeremy
It is well known that airport surface traffic congestion at major airports is responsible for increased taxi-out times, fuel burn and excess emissions and there is potential to mitigate these negative consequences through optimizing airport surface traffic operations. Due to a highly congested voice communication channel between pilots and air traffic controllers and a data communication channel that is used only for limited functions, one of the most viable near-term strategies for improvement of the surface traffic is issuing a push back advisory to each departing aircraft. This dissertation focuses on the optimization of a push back time window for each departing aircraft. The optimization takes into account both spatial and temporal uncertainties of ramp area aircraft trajectories. The uncertainties are described by a stochastic kinematic model of aircraft trajectories, which is used to infer distributions of combinations of push back times that lead to conflict among trajectories from different gates. The model is validated and the distributions are included in the push back time window optimization. Under the assumption of a fixed taxiway spot schedule, the computed push back time windows can be integrated with a higher level taxiway scheduler to optimize the flow of traffic from the gate to the departure runway queue. To enable real-time decision making the computational time of the push back time window optimization is critical and is analyzed throughout.
NASA Astrophysics Data System (ADS)
Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng
2018-02-01
De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.
iDriving (Intelligent Driving)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas
2012-09-17
iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in responses to actual driving conditions to improve fuel efficiency.
Optical Sensor for real-time Monitoring of CO(2) Laser Welding Process.
Ancona, A; Spagnolo, V; Lugarà, P M; Ferrara, M
2001-11-20
An optical sensor for real-time monitoring of laser welding based on a spectroscopic study of the optical emission of plasma plumes has been developed. The welding plasma's electron temperature was contemporarily monitored for three of the chemical species that constitute the plasma plume by use of related emission lines. The evolution of electron temperature was recorded and analyzed during several welding procedures carried out under various operating conditions. A clear correlation between the mean value and the standard deviation of the plasma's electron temperature and the quality of the welded joint has been found. We used this information to find optimal welding parameters and for real-time detection of weld defects such as crater formation, lack of penetration, weld disruptions, and seam oxidation.
A real-time hybrid neuron network for highly parallel cognitive systems.
Christiaanse, Gerrit Jan; Zjajo, Amir; Galuzzi, Carlo; van Leuken, Rene
2016-08-01
For comprehensive understanding of how neurons communicate with each other, new tools need to be developed that can accurately mimic the behaviour of such neurons and neuron networks under `real-time' constraints. In this paper, we propose an easily customisable, highly pipelined, neuron network design, which executes optimally scheduled floating-point operations for maximal amount of biophysically plausible neurons per FPGA family type. To reduce the required amount of resources without adverse effect on the calculation latency, a single exponent instance is used for multiple neuron calculation operations. Experimental results indicate that the proposed network design allows the simulation of up to 1188 neurons on Virtex7 (XC7VX550T) device in brain real-time yielding a speed-up of x12.4 compared to the state-of-the art.
Real-time high dynamic range laser scanning microscopy
NASA Astrophysics Data System (ADS)
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-04-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.
End-User Applications of Real-Time Earthquake Information in Europe
NASA Astrophysics Data System (ADS)
Cua, G. B.; Gasparini, P.; Giardini, D.; Zschau, J.; Filangieri, A. R.; Reakt Wp7 Team
2011-12-01
The primary objective of European FP7 project REAKT (Strategies and Tools for Real-Time Earthquake Risk Reduction) is to improve the efficiency of real-time earthquake risk mitigation methods and their capability of protecting structures, infrastructures, and populations. REAKT aims to address the issues of real-time earthquake hazard and response from end-to-end, with efforts directed along the full spectrum of methodology development in earthquake forecasting, earthquake early warning, and real-time vulnerability systems, through optimal decision-making, and engagement and cooperation of scientists and end users for the establishment of best practices for use of real-time information. Twelve strategic test cases/end users throughout Europe have been selected. This diverse group of applications/end users includes civil protection authorities, railway systems, hospitals, schools, industrial complexes, nuclear plants, lifeline systems, national seismic networks, and critical structures. The scale of target applications covers a wide range, from two school complexes in Naples, to individual critical structures, such as the Rion Antirion bridge in Patras, and the Fatih Sultan Mehmet bridge in Istanbul, to large complexes, such as the SINES industrial complex in Portugal and the Thessaloniki port area, to distributed lifeline and transportation networks and nuclear plants. Some end-users are interested in in-depth feasibility studies for use of real-time information and development of rapid response plans, while others intend to install real-time instrumentation and develop customized automated control systems. From the onset, REAKT scientists and end-users will work together on concept development and initial implementation efforts using the data products and decision-making methodologies developed with the goal of improving end-user risk mitigation. The aim of this scientific/end-user partnership is to ensure that scientific efforts are applicable to operational, real-world problems.
High-fidelity real-time maritime scene rendering
NASA Astrophysics Data System (ADS)
Shyu, Hawjye; Taczak, Thomas M.; Cox, Kevin; Gover, Robert; Maraviglia, Carlos; Cahill, Colin
2011-06-01
The ability to simulate authentic engagements using real-world hardware is an increasingly important tool. For rendering maritime environments, scene generators must be capable of rendering radiometrically accurate scenes with correct temporal and spatial characteristics. When the simulation is used as input to real-world hardware or human observers, the scene generator must operate in real-time. This paper introduces a novel, real-time scene generation capability for rendering radiometrically accurate scenes of backgrounds and targets in maritime environments. The new model is an optimized and parallelized version of the US Navy CRUISE_Missiles rendering engine. It was designed to accept environmental descriptions and engagement geometry data from external sources, render a scene, transform the radiometric scene using the electro-optical response functions of a sensor under test, and output the resulting signal to real-world hardware. This paper reviews components of the scene rendering algorithm, and details the modifications required to run this code in real-time. A description of the simulation architecture and interfaces to external hardware and models is presented. Performance assessments of the frame rate and radiometric accuracy of the new code are summarized. This work was completed in FY10 under Office of Secretary of Defense (OSD) Central Test and Evaluation Investment Program (CTEIP) funding and will undergo a validation process in FY11.
A real-time path rating calculation tool powered by HPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
If transmission path ratings are determined in real time and optimized control methods can be implemented, congestion problems can be more effectively managed using the existing transmission assets, reducing congestion costs, avoiding capital expenditures for new physical assets, increasing revenues from the existing system, and maintaining reliability. In just one illustrative case, a BPA study has shown that a 1000-MW rating increase for a transmission path generates $15M in annual revenue, even if only 25% of the increased margin can be tapped for just 25% of the year.
Limpoco, F Ted; Bailey, Ryan C
2011-09-28
We directly monitor in parallel and in real time the temporal profiles of polymer brushes simultaneously grown via multiple ATRP reaction conditions on a single substrate using arrays of silicon photonic microring resonators. In addition to probing relative polymerization rates, we show the ability to evaluate the dynamic properties of the in situ grown polymers. This presents a powerful new platform for studying modified interfaces that may allow for the combinatorial optimization of surface-initiated polymerization conditions.
A Multi-Objective Approach to Tactical Maneuvering Within Real Time Strategy Games
The resulting agent does not require the usage of training or tree searches to optimize, allowing for consist effective performance across all scenarios against a variety of opposing tactical options.
Dynamic vehicle routing with time windows in theory and practice.
Yang, Zhiwei; van Osta, Jan-Paul; van Veen, Barry; van Krevelen, Rick; van Klaveren, Richard; Stam, Andries; Kok, Joost; Bäck, Thomas; Emmerich, Michael
2017-01-01
The vehicle routing problem is a classical combinatorial optimization problem. This work is about a variant of the vehicle routing problem with dynamically changing orders and time windows. In real-world applications often the demands change during operation time. New orders occur and others are canceled. In this case new schedules need to be generated on-the-fly. Online optimization algorithms for dynamical vehicle routing address this problem but so far they do not consider time windows. Moreover, to match the scenarios found in real-world problems adaptations of benchmarks are required. In this paper, a practical problem is modeled based on the procedure of daily routing of a delivery company. New orders by customers are introduced dynamically during the working day and need to be integrated into the schedule. A multiple ant colony algorithm combined with powerful local search procedures is proposed to solve the dynamic vehicle routing problem with time windows. The performance is tested on a new benchmark based on simulations of a working day. The problems are taken from Solomon's benchmarks but a certain percentage of the orders are only revealed to the algorithm during operation time. Different versions of the MACS algorithm are tested and a high performing variant is identified. Finally, the algorithm is tested in situ: In a field study, the algorithm schedules a fleet of cars for a surveillance company. We compare the performance of the algorithm to that of the procedure used by the company and we summarize insights gained from the implementation of the real-world study. The results show that the multiple ant colony algorithm can get a much better solution on the academic benchmark problem and also can be integrated in a real-world environment.
Soltani, Maryam; Kerachian, Reza
2018-04-15
In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shupp, Aaron M.; Rodier, Dan; Rowley, Steven
2007-03-01
Monitoring and controlling Airborne Molecular Contamination (AMC) has become essential in deep ultraviolet (DUV) photolithography for both optimizing yields and protecting tool optics. A variety of technologies have been employed for both real-time and grab-sample monitoring. Real-time monitoring has the advantage of quickly identifying "spikes" and upset conditions, while 2 - 24 hour plus grab sampling allows for extremely low detection limits by concentrating the mass of the target contaminant over a period of time. Employing a combination of both monitoring techniques affords the highest degree of control, lowest detection limits, and the most detailed data possible in terms of speciation. As happens with many technologies, there can be concern regarding the accuracy and agreement between real-time and grab-sample methods. This study utilizes side by side comparisons of two different real-time monitors operating in parallel with both liquid impingers and dry sorbent tubes to measure NIST traceable gas standards as well as real world samples. By measuring in parallel, a truly valid comparison is made between methods while verifying the results against a certified standard. The final outcome for this investigation is that a dry sorbent tube grab-sample technique produced results that agreed in terms of accuracy with NIST traceable standards as well as the two real-time techniques Ion Mobility Spectrometry (IMS) and Pulsed Fluorescence Detection (PFD) while a traditional liquid impinger technique showed discrepancies.
NASA Technical Reports Server (NTRS)
Li,Hui; Faruque, Fazlay; Williams, Worth; Al-Hamdan, Mohammad; Luvall, Jeffrey; Crosson, William; Rickman, Douglas; Limaye, Ashutosh
2008-01-01
Aerosol optical depth (AOD), derived from satellite measurements using Moderate Resolution Imaging Spectrometer (MODIS), offers indirect estimates of particle matter. Research shows a significant positive correlation between satellite-based measurements of AOD and ground-based measurements of particulate matter with aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5). In addition, satellite observations have also shown great promise in improving estimates of PM2.5 air quality surface. Research shows that correlations between AOD and ground PM2.5 are affected by a combination of many factors such as inherent characteristics of satellite observations, terrain, cloud cover, height of the mixing layer, and weather conditions, and thus might vary widely in different regions, different seasons, and even different days in a same location. Analysis of correlating AOD with ground measured PM2.5 on a day-to-day basis suggests the temporal scale, a number of immediate latest days for a given run's day, for their correlations needs to be considered to improve air quality surface estimates, especially when satellite observations are used in a real-time pollution system. The second reason is that correlation coefficients between AOD and ground PM2.5 cannot be predetermined and needs to be calculated for each day's run for a real-time system because the coefficients can vary over space and time. Few studies have been conducted to explore the optimal way to apply AOD data to improve model accuracies of PM2.5 surface estimation in a real-time air quality system. This paper discusses the best temporal scale to calculate the correlation of AOD and ground particle matter data to improve the results of pollution models in real-time system.
NASA Astrophysics Data System (ADS)
Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I.
2017-04-01
Solving and analyzing the exact time-dependent optimized effective potential (TDOEP) integral equation has been a longstanding challenge due to its highly nonlinear and nonlocal nature. To meet the challenge, we derive an exact time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham orbitals and effective memory orbitals. For illustration, the dipole evolution dynamics of a one-dimension-model chain of hydrogen atoms is numerically evaluated and examined to demonstrate the utility of the proposed time-local formulation. Importantly, it is shown that the zero-force theorem, violated by the time-dependent Krieger-Li-Iafrate approximation, is fulfilled in the current TDOEP framework. This work was partially supported by DOE.
Design and development of bio-inspired framework for reservoir operation optimization
NASA Astrophysics Data System (ADS)
Asvini, M. Sakthi; Amudha, T.
2017-12-01
Frameworks for optimal reservoir operation play an important role in the management of water resources and delivery of economic benefits. Effective utilization and conservation of water from reservoirs helps to manage water deficit periods. The main challenge in reservoir optimization is to design operating rules that can be used to inform real-time decisions on reservoir release. We develop a bio-inspired framework for the optimization of reservoir release to satisfy the diverse needs of various stakeholders. In this work, single-objective optimization and multiobjective optimization problems are formulated using an algorithm known as "strawberry optimization" and tested with actual reservoir data. Results indicate that well planned reservoir operations lead to efficient deployment of the reservoir water with the help of optimal release patterns.
On optimal infinite impulse response edge detection filters
NASA Technical Reports Server (NTRS)
Sarkar, Sudeep; Boyer, Kim L.
1991-01-01
The authors outline the design of an optimal, computationally efficient, infinite impulse response edge detection filter. The optimal filter is computed based on Canny's high signal to noise ratio, good localization criteria, and a criterion on the spurious response of the filter to noise. An expression for the width of the filter, which is appropriate for infinite-length filters, is incorporated directly in the expression for spurious responses. The three criteria are maximized using the variational method and nonlinear constrained optimization. The optimal filter parameters are tabulated for various values of the filter performance criteria. A complete methodology for implementing the optimal filter using approximating recursive digital filtering is presented. The approximating recursive digital filter is separable into two linear filters operating in two orthogonal directions. The implementation is very simple and computationally efficient, has a constant time of execution for different sizes of the operator, and is readily amenable to real-time hardware implementation.
Bus-stop Based Real Time Passenger Information System - Case Study Maribor
NASA Astrophysics Data System (ADS)
Čelan, Marko; Klemenčič, Mitja; Mrgole, Anamarija L.; Lep, Marjan
2017-10-01
Real time passenger information system is one of the key element of promoting public transport. For the successful implementation of real time passenger information systems, various components should be considered, such as: passenger needs and requirements, stakeholder involvement, technological solution for tracking, data transfer, etc. This article carrying out designing and evaluation of real time passenger information (RTPI) in the city of Maribor. The design phase included development of methodology for selection of appropriate macro and micro location of the real-time panel, development of a real-time passenger algorithm, definition of a technical specification, financial issues and time frame. The evaluation shows that different people have different requirements; therefore, the system should be adaptable to be used by various types of people, according to the age, the purpose of journey, experience of using public transport, etc. The average difference between perceived waiting time for a bus is 35% higher than the actual waiting time and grow with the headway increase. Experiences from Maribor have shown that the reliability of real time passenger system (from technical point of view) must be close to 100%, otherwise the system may have negative impact on passengers and may discourage the use of public transport. Among considered events of arrivals during the test period, 92% of all prediction were accurate. The cost benefit analysis has focused only on potential benefits from reduced perceived users waiting time and foreseen costs of real time information system in Maribor for 10 years’ period. Analysis shows that the optimal number for implementing real time passenger information system at the bus stops in Maribor is set on 83 bus stops (approx. 20 %) with the highest number of passenger. If we consider all entries at the chosen bus stops, the total perceived waiting time on yearly level could be decreased by about 60,000 hours.
Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S
2014-10-01
This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture
Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S
2014-01-01
BACKGROUND This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. RESULTS An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. CONCLUSION This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25506115
Ahirwal, M K; Kumar, Anil; Singh, G K
2013-01-01
This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.
The Deep Lens Survey : Real--time Optical Transient and Moving Object Detection
NASA Astrophysics Data System (ADS)
Becker, Andy; Wittman, David; Stubbs, Chris; Dell'Antonio, Ian; Loomba, Dinesh; Schommer, Robert; Tyson, J. Anthony; Margoniner, Vera; DLS Collaboration
2001-12-01
We report on the real-time optical transient program of the Deep Lens Survey (DLS). Meeting the DLS core science weak-lensing objective requires repeated visits to the same part of the sky, 20 visits for 63 sub-fields in 4 filters, on a 4-m telescope. These data are reduced in real-time, and differenced against each other on all available timescales. Our observing strategy is optimized to allow sensitivity to transients on several minute, one day, one month, and one year timescales. The depth of the survey allows us to detect and classify both moving and stationary transients down to ~ 25th magnitude, a relatively unconstrained region of astronomical variability space. All transients and moving objects, including asteroids, Kuiper belt (or trans-Neptunian) objects, variable stars, supernovae, 'unknown' bursts with no apparent host, orphan gamma-ray burst afterglows, as well as airplanes, are posted on the web in real-time for use by the community. We emphasize our sensitivity to detect and respond in real-time to orphan afterglows of gamma-ray bursts, and present one candidate orphan in the field of Abell 1836. See http://dls.bell-labs.com/transients.html.
NASA Astrophysics Data System (ADS)
Telban, Robert J.
While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.
Póvoa, P; Oehmen, A; Inocêncio, P; Matos, J S; Frazão, A
2017-05-01
The main objective of this paper is to demonstrate the importance of applying dynamic modelling and real energy prices on a full scale water resource recovery facility (WRRF) for the evaluation of control strategies in terms of energy costs with aeration. The Activated Sludge Model No. 1 (ASM1) was coupled with real energy pricing and a power consumption model and applied as a dynamic simulation case study. The model calibration is based on the STOWA protocol. The case study investigates the importance of providing real energy pricing comparing (i) real energy pricing, (ii) weighted arithmetic mean energy pricing and (iii) arithmetic mean energy pricing. The operational strategies evaluated were (i) old versus new air diffusers, (ii) different DO set-points and (iii) implementation of a carbon removal controller based on nitrate sensor readings. The application in a full scale WRRF of the ASM1 model coupled with real energy costs was successful. Dynamic modelling with real energy pricing instead of constant energy pricing enables the wastewater utility to optimize energy consumption according to the real energy price structure. Specific energy cost allows the identification of time periods with potential for linking WRRF with the electric grid to optimize the treatment costs, satisfying operational goals.
Time-optimal Aircraft Pursuit-evasion with a Weapon Envelope Constraint
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1990-01-01
The optimal pursuit-evasion problem between two aircraft including a realistic weapon envelope is analyzed using differential game theory. Six order nonlinear point mass vehicle models are employed and the inclusion of an arbitrary weapon envelope geometry is allowed. The performance index is a linear combination of flight time and the square of the vehicle acceleration. Closed form solution to this high-order differential game is then obtained using feedback linearization. The solution is in the form of a feedback guidance law together with a quartic polynomial for time-to-go. Due to its modest computational requirements, this nonlinear guidance law is useful for on-board real-time implementation.
Real-Time Optimization of Distribution Grids for Increased Flexibility and
ensure a stable system operation. Now let's go a little bit to the math, because there are some technical math. This one looks very complicated, but it's actually very simple, because, for example, you take stability and optimality. However, I'm not going to delve into the math. I'm going to move to some test
Evaluations of Some Scheduling Algorithms for Hard Real-Time Systems
1990-06-01
construct because the mechanism is a dispatching procedure. Since all nonpreemptive schedules are contained in the set of all preemptive schedules, the...optimal value of Tmax in the preemptive case is at least a lower bound on the optimal Tmax for the nonpreemptive schedules. This principle is the basis...23 b. Nonpreemptable Version .............................................. 24 4. The Minimize Maximum Tardiness with Earliest Start
2014-11-01
Paradigm ............................................................................19 3.4 Collaborative BCI for Improving Overall Performance...interfaces ( BCIs ) provide the biggest improvement in performance? Can we demonstrate clear advantages with BCIs ? 2 2. Simulator Development and...stimuli in real time. Fig. 18 ROC curves for each subject after the combination of 2 trials 3.4 Collaborative BCI for Improving Overall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemov, V. V.; Kasilov, S. V.; Institut für Theoretische Physik—Computational Physics, Technische Universität Graz, Fusion@ÖAW, Petersgasse 16, A-8010 Graz
An approach for the direct computation of collisionless losses of high energy charged particles is developed for stellarator magnetic fields given in real space coordinates. With this approach, the corresponding computations can be performed for magnetic fields with three-dimensional inhomogeneities in the presence of stochastic regions as well as magnetic islands. A code, which is based on this approach, is applied to various stellarator configurations. It is found that the life time of fast particles obtained in real-space coordinates can be smaller than that obtained in magnetic coordinates.
Design of a robust baseband LPC coder for speech transmission over 9.6 kbit/s noisy channels
NASA Astrophysics Data System (ADS)
Viswanathan, V. R.; Russell, W. H.; Higgins, A. L.
1982-04-01
This paper describes the design of a baseband Linear Predictive Coder (LPC) which transmits speech over 9.6 kbit/sec synchronous channels with random bit errors of up to 1%. Presented are the results of our investigation of a number of aspects of the baseband LPC coder with the goal of maximizing the quality of the transmitted speech. Important among these aspects are: bandwidth of the baseband, coding of the baseband residual, high-frequency regeneration, and error protection of important transmission parameters. The paper discusses these and other issues, presents the results of speech-quality tests conducted during the various stages of optimization, and describes the details of the optimized speech coder. This optimized speech coding algorithm has been implemented as a real-time full-duplex system on an array processor. Informal listening tests of the real-time coder have shown that the coder produces good speech quality in the absence of channel bit errors and introduces only a slight degradation in quality for channel bit error rates of up to 1%.
NASA Astrophysics Data System (ADS)
Wei, J.; Wang, G.; Liu, R.
2008-12-01
The Tarim River Basin is the longest inland river in China. Due to water scarcity, ecologically-fragile is becoming a significant constraint to sustainable development in this region. To effectively manage the limited water resources for ecological purposes and for conventional water utilization purposes, a real-time water resources allocation Decision Support System (DSS) has been developed. Based on workflows of the water resources regulations and comprehensive analysis of the efficiency and feasibility of water management strategies, the DSS includes information systems that perform data acquisition, management and visualization, and model systems that perform hydrological forecast, water demand prediction, flow routing simulation and water resources optimization of the hydrological and water utilization process. An optimization and process control strategy is employed to dynamically allocate the water resources among the different stakeholders. The competitive targets and constraints are taken into considered by multi-objective optimization and with different priorities. The DSS of the Tarim River Basin has been developed and been successfully utilized to support the water resources management of the Tarim River Basin since 2005.
Local sharpening and subspace wavefront correction with predictive dynamic digital holography
NASA Astrophysics Data System (ADS)
Sulaiman, Sennan; Gibson, Steve
2017-09-01
Digital holography holds several advantages over conventional imaging and wavefront sensing, chief among these being significantly fewer and simpler optical components and the retrieval of complex field. Consequently, many imaging and sensing applications including microscopy and optical tweezing have turned to using digital holography. A significant obstacle for digital holography in real-time applications, such as wavefront sensing for high energy laser systems and high speed imaging for target racking, is the fact that digital holography is computationally intensive; it requires iterative virtual wavefront propagation and hill-climbing to optimize some sharpness criteria. It has been shown recently that minimum-variance wavefront prediction can be integrated with digital holography and image sharpening to reduce significantly large number of costly sharpening iterations required to achieve near-optimal wavefront correction. This paper demonstrates further gains in computational efficiency with localized sharpening in conjunction with predictive dynamic digital holography for real-time applications. The method optimizes sharpness of local regions in a detector plane by parallel independent wavefront correction on reduced-dimension subspaces of the complex field in a spectral plane.
Real-time simulation of three-dimensional shoulder girdle and arm dynamics.
Chadwick, Edward K; Blana, Dimitra; Kirsch, Robert F; van den Bogert, Antonie J
2014-07-01
Electrical stimulation is a promising technology for the restoration of arm function in paralyzed individuals. Control of the paralyzed arm under electrical stimulation, however, is a challenging problem that requires advanced controllers and command interfaces for the user. A real-time model describing the complex dynamics of the arm would allow user-in-the-loop type experiments where the command interface and controller could be assessed. Real-time models of the arm previously described have not included the ability to model the independently controlled scapula and clavicle, limiting their utility for clinical applications of this nature. The goal of this study therefore was to evaluate the performance and mechanical behavior of a real-time, dynamic model of the arm and shoulder girdle. The model comprises seven segments linked by eleven degrees of freedom and actuated by 138 muscle elements. Polynomials were generated to describe the muscle lines of action to reduce computation time, and an implicit, first-order Rosenbrock formulation of the equations of motion was used to increase simulation step-size. The model simulated flexion of the arm faster than real time, simulation time being 92% of actual movement time on standard desktop hardware. Modeled maximum isometric torque values agreed well with values from the literature, showing that the model simulates the moment-generating behavior of a real human arm. The speed of the model enables experiments where the user controls the virtual arm and receives visual feedback in real time. The ability to optimize potential solutions in simulation greatly reduces the burden on the user during development.
Speech recognition for embedded automatic positioner for laparoscope
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Yin, Qingyun; Wang, Yi; Yu, Daoyin
2014-07-01
In this paper a novel speech recognition methodology based on Hidden Markov Model (HMM) is proposed for embedded Automatic Positioner for Laparoscope (APL), which includes a fixed point ARM processor as the core. The APL system is designed to assist the doctor in laparoscopic surgery, by implementing the specific doctor's vocal control to the laparoscope. Real-time respond to the voice commands asks for more efficient speech recognition algorithm for the APL. In order to reduce computation cost without significant loss in recognition accuracy, both arithmetic and algorithmic optimizations are applied in the method presented. First, depending on arithmetic optimizations most, a fixed point frontend for speech feature analysis is built according to the ARM processor's character. Then the fast likelihood computation algorithm is used to reduce computational complexity of the HMM-based recognition algorithm. The experimental results show that, the method shortens the recognition time within 0.5s, while the accuracy higher than 99%, demonstrating its ability to achieve real-time vocal control to the APL.
SVM-Based Synthetic Fingerprint Discrimination Algorithm and Quantitative Optimization Strategy
Chen, Suhang; Chang, Sheng; Huang, Qijun; He, Jin; Wang, Hao; Huang, Qiangui
2014-01-01
Synthetic fingerprints are a potential threat to automatic fingerprint identification systems (AFISs). In this paper, we propose an algorithm to discriminate synthetic fingerprints from real ones. First, four typical characteristic factors—the ridge distance features, global gray features, frequency feature and Harris Corner feature—are extracted. Then, a support vector machine (SVM) is used to distinguish synthetic fingerprints from real fingerprints. The experiments demonstrate that this method can achieve a recognition accuracy rate of over 98% for two discrete synthetic fingerprint databases as well as a mixed database. Furthermore, a performance factor that can evaluate the SVM's accuracy and efficiency is presented, and a quantitative optimization strategy is established for the first time. After the optimization of our synthetic fingerprint discrimination task, the polynomial kernel with a training sample proportion of 5% is the optimized value when the minimum accuracy requirement is 95%. The radial basis function (RBF) kernel with a training sample proportion of 15% is a more suitable choice when the minimum accuracy requirement is 98%. PMID:25347063
Real-time position reconstruction with hippocampal place cells.
Guger, Christoph; Gener, Thomas; Pennartz, Cyriel M A; Brotons-Mas, Jorge R; Edlinger, Günter; Bermúdez I Badia, S; Verschure, Paul; Schaffelhofer, Stefan; Sanchez-Vives, Maria V
2011-01-01
Brain-computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat's trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat's position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5-6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral-neuronal feedback loops or for implementing neuroprosthetic control.
Real-Time Position Reconstruction with Hippocampal Place Cells
Guger, Christoph; Gener, Thomas; Pennartz, Cyriel M. A.; Brotons-Mas, Jorge R.; Edlinger, Günter; Bermúdez i Badia, S.; Verschure, Paul; Schaffelhofer, Stefan; Sanchez-Vives, Maria V.
2011-01-01
Brain–computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat's trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat's position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5–6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral–neuronal feedback loops or for implementing neuroprosthetic control. PMID:21808603
Vukovic, Vladimir; Tabares-Velasco, Paulo Cesar; Srebric, Jelena
2010-09-01
A growing interest in security and occupant exposure to contaminants revealed a need for fast and reliable identification of contaminant sources during incidental situations. To determine potential contaminant source positions in outdoor environments, current state-of-the-art modeling methods use computational fluid dynamic simulations on parallel processors. In indoor environments, current tools match accidental contaminant distributions with cases from precomputed databases of possible concentration distributions. These methods require intensive computations in pre- and postprocessing. On the other hand, neural networks emerged as a tool for rapid concentration forecasting of outdoor environmental contaminants such as nitrogen oxides or sulfur dioxide. All of these modeling methods depend on the type of sensors used for real-time measurements of contaminant concentrations. A review of the existing sensor technologies revealed that no perfect sensor exists, but intensity of work in this area provides promising results in the near future. The main goal of the presented research study was to extend neural network modeling from the outdoor to the indoor identification of source positions, making this technology applicable to building indoor environments. The developed neural network Locator of Contaminant Sources was also used to optimize number and allocation of contaminant concentration sensors for real-time prediction of indoor contaminant source positions. Such prediction should take place within seconds after receiving real-time contaminant concentration sensor data. For the purpose of neural network training, a multizone program provided distributions of contaminant concentrations for known source positions throughout a test building. Trained networks had an output indicating contaminant source positions based on measured concentrations in different building zones. A validation case based on a real building layout and experimental data demonstrated the ability of this method to identify contaminant source positions. Future research intentions are focused on integration with real sensor networks and model improvements for much more complicated contamination scenarios.
Puig, V; Cembrano, G; Romera, J; Quevedo, J; Aznar, B; Ramón, G; Cabot, J
2009-01-01
This paper deals with the global control of the Riera Blanca catchment in the Barcelona sewer network using a predictive optimal control approach. This catchment has been modelled using a conceptual modelling approach based on decomposing the catchments in subcatchments and representing them as virtual tanks. This conceptual modelling approach allows real-time model calibration and control of the sewer network. The global control problem of the Riera Blanca catchment is solved using a optimal/predictive control algorithm. To implement the predictive optimal control of the Riera Blanca catchment, a software tool named CORAL is used. The on-line control is simulated by interfacing CORAL with a high fidelity simulator of sewer networks (MOUSE). CORAL interchanges readings from the limnimeters and gate commands with MOUSE as if it was connected with the real SCADA system. Finally, the global control results obtained using the predictive optimal control are presented and compared against the results obtained using current local control system. The results obtained using the global control are very satisfactory compared to those obtained using the local control.
Nair, Bala G; Newman, Shu-Fang; Peterson, Gene N; Wu, Wei-Ying; Schwid, Howard A
2010-11-01
Administration of prophylactic antibiotics during surgery is generally performed by the anesthesia providers. Timely antibiotic administration within the optimal time window before incision is critical for prevention of surgical site infections. However, this often becomes a difficult task for the anesthesia team during the busy part of a case when the patient is being anesthetized. Starting with the implementation of an anesthesia information management system (AIMS), we designed and implemented several feedback mechanisms to improve compliance of proper antibiotic delivery and documentation. This included generating e-mail feedback of missed documentation, distributing monthly summary reports, and generating real-time electronic alerts with a decision support system. In 20,974 surgical cases for the period, June 2008 to January 2010, the interventions of AIMS install, e-mail feedback, summary reports, and real-time alerts changed antibiotic compliance by -1.5%, 2.3%, 4.9%, and 9.3%, respectively, when compared with the baseline value of 90.0% ± 2.9% when paper anesthesia records were used. Highest antibiotic compliance was achieved when using real-time alerts. With real-time alerts, monthly compliance was >99% for every month between June 2009 and January 2010. Installation of AIMS itself did not improve antibiotic compliance over that achieved with paper anesthesia records. However, real-time guidance and reminders through electronic messages generated by a computerized decision support system (Smart Anesthesia Messenger, or SAM) significantly improved compliance. With such a system a consistent compliance of >99% was achieved.
A mobile asset sharing policy for hospitals with real time locating systems.
Demircan-Yıldız, Ece Arzu; Fescioglu-Unver, Nilgun
2016-01-01
Each year, hospitals lose a considerable amount of time and money due to misplaced mobile assets. In addition the assets which remain in departments that frequently use them depreciate early, while other assets of the same type in different departments are rarely used. A real time locating system can prevent these losses when used with appropriate asset sharing policies. This research quantifies the amount of time a medium size hospital saves by using real time locating system and proposes an asset selection rule to eliminate the asset usage imbalance problem. The asset selection rule proposed is based on multi objective optimization techniques. The effectiveness of this rule on asset to patient time and asset utilization rate variance performance measures were tested using discrete event simulation method. Results show that the proposed asset selection rule improved the usage balance significantly. Sensitivity analysis showed that the proposed rule is robust to changes in demand rates and user preferences. Real time locating systems enable saving considerable amount of time in hospitals, and they can still be improved by integrating decision support mechanisms. Combining tracking technology and asset selection rules helps improve healthcare services.
Optimal Real-time Dispatch for Integrated Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Ryan Michael
This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem.more » The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and (4) most of the trade-off between least-cost and least-carbon IES is determined during the system design stage; for the IES system considered, there is little difference between least-cost control and least-carbon control.« less
A real-time spike sorting method based on the embedded GPU.
Zelan Yang; Kedi Xu; Xiang Tian; Shaomin Zhang; Xiaoxiang Zheng
2017-07-01
Microelectrode arrays with hundreds of channels have been widely used to acquire neuron population signals in neuroscience studies. Online spike sorting is becoming one of the most important challenges for high-throughput neural signal acquisition systems. Graphic processing unit (GPU) with high parallel computing capability might provide an alternative solution for increasing real-time computational demands on spike sorting. This study reported a method of real-time spike sorting through computing unified device architecture (CUDA) which was implemented on an embedded GPU (NVIDIA JETSON Tegra K1, TK1). The sorting approach is based on the principal component analysis (PCA) and K-means. By analyzing the parallelism of each process, the method was further optimized in the thread memory model of GPU. Our results showed that the GPU-based classifier on TK1 is 37.92 times faster than the MATLAB-based classifier on PC while their accuracies were the same with each other. The high-performance computing features of embedded GPU demonstrated in our studies suggested that the embedded GPU provide a promising platform for the real-time neural signal processing.
Connected Vehicle Technologies for Efficient Urban Transportation
DOT National Transportation Integrated Search
2016-10-24
Connected vehicle technology is employed to optimize the vehicle's control system in real-time to reduce congestion, improve fuel economy, and reduce emissions. This project's goal was to develop a two-way communication system to upload vehicle data ...
Analytical Models of Cross-Layer Protocol Optimization in Real-Time Wireless Sensor Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
The real-time interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors are modeled. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. Multivariate point process (MVPP) models of discrete random events in WSNs establish stochastic characteristics of optimal cross-layer protocols. Discrete-event, cross-layer interactions in mobile ad hoc network (MANET) protocols have been modeled using a set of concatenated design parameters and associated resource levels by the MVPPs. Characterization of the "best" cross-layer designs for a MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Modeling limitations to determination of closed-form solutions versus explicit iterative solutions for ad hoc WSN controls are examined.
NASA Technical Reports Server (NTRS)
Seldner, K.
1976-01-01
The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.
Wavefront correction using machine learning methods for single molecule localization microscopy
NASA Astrophysics Data System (ADS)
Tehrani, Kayvan F.; Xu, Jianquan; Kner, Peter
2015-03-01
Optical Aberrations are a major challenge in imaging biological samples. In particular, in single molecule localization (SML) microscopy techniques (STORM, PALM, etc.) a high Strehl ratio point spread function (PSF) is necessary to achieve sub-diffraction resolution. Distortions in the PSF shape directly reduce the resolution of SML microscopy. The system aberrations caused by the imperfections in the optics and instruments can be compensated using Adaptive Optics (AO) techniques prior to imaging. However, aberrations caused by the biological sample, both static and dynamic, have to be dealt with in real time. A challenge for wavefront correction in SML microscopy is a robust optimization approach in the presence of noise because of the naturally high fluctuations in photon emission from single molecules. Here we demonstrate particle swarm optimization for real time correction of the wavefront using an intensity independent metric. We show that the particle swarm algorithm converges faster than the genetic algorithm for bright fluorophores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di; Lian, Jianming; Sun, Yannan
Demand response is representing a significant but largely untapped resource that can greatly enhance the flexibility and reliability of power systems. In this paper, a hierarchical control framework is proposed to facilitate the integrated coordination between distributed energy resources and demand response. The proposed framework consists of coordination and device layers. In the coordination layer, various resource aggregations are optimally coordinated in a distributed manner to achieve the system-level objectives. In the device layer, individual resources are controlled in real time to follow the optimal power generation or consumption dispatched from the coordination layer. For the purpose of practical applications,more » a method is presented to determine the utility functions of controllable loads by taking into account the real-time load dynamics and the preferences of individual customers. The effectiveness of the proposed framework is validated by detailed simulation studies.« less
NASA Astrophysics Data System (ADS)
Fan, Dehui; Gao, Shan
This paper implemented an intelligent cold chain distribution system based on the technology of Internet of things, and took the protoplasmic beer logistics transport system as example. It realized the remote real-time monitoring material status, recorded the distribution information, dynamically adjusted the distribution tasks and other functions. At the same time, the system combined the Internet of things technology with weighted filtering algorithm, realized the real-time query of condition curve, emergency alarming, distribution data retrieval, intelligent distribution task arrangement, etc. According to the actual test, it can realize the optimization of inventory structure, and improve the efficiency of cold chain distribution.
Real-Time Frequency Response Estimation Using Joined-Wing SensorCraft Aeroelastic Wind-Tunnel Data
NASA Technical Reports Server (NTRS)
Grauer, Jared A; Heeg, Jennifer; Morelli, Eugene A
2012-01-01
A new method is presented for estimating frequency responses and their uncertainties from wind-tunnel data in real time. The method uses orthogonal phase-optimized multi- sine excitation inputs and a recursive Fourier transform with a least-squares estimator. The method was first demonstrated with an F-16 nonlinear flight simulation and results showed that accurate short period frequency responses were obtained within 10 seconds. The method was then applied to wind-tunnel data from a previous aeroelastic test of the Joined- Wing SensorCraft. Frequency responses describing bending strains from simultaneous control surface excitations were estimated in a time-efficient manner.
The optimization of total laboratory automation by simulation of a pull-strategy.
Yang, Taho; Wang, Teng-Kuan; Li, Vincent C; Su, Chia-Lo
2015-01-01
Laboratory results are essential for physicians to diagnose medical conditions. Because of the critical role of medical laboratories, an increasing number of hospitals use total laboratory automation (TLA) to improve laboratory performance. Although the benefits of TLA are well documented, systems occasionally become congested, particularly when hospitals face peak demand. This study optimizes TLA operations. Firstly, value stream mapping (VSM) is used to identify the non-value-added time. Subsequently, batch processing control and parallel scheduling rules are devised and a pull mechanism that comprises a constant work-in-process (CONWIP) is proposed. Simulation optimization is then used to optimize the design parameters and to ensure a small inventory and a shorter average cycle time (CT). For empirical illustration, this approach is applied to a real case. The proposed methodology significantly improves the efficiency of laboratory work and leads to a reduction in patient waiting times and increased service level.
Lindahl, S; Båverud, V; Egenvall, A; Aspán, A; Pringle, J
2013-01-01
Strangles is a contagious equine-specific disease caused by Streptococcus equi subsp. equi. Unfortunately, detection of S. equi can fail in up to 40% of horses with strangles. Whereas recent molecular biologic methods and sampling techniques have improved recovery of S. equi optimal sampling methods and laboratory analyses remain ill-defined. To determine the yield of S. equi from horses with acute strangles in confirmed outbreaks by field-sampling methods subjected to culture and biochemical identification, and real-time PCR directly and after culture. Fifty-seven horses of varying breeds and ages from 8 strangles outbreaks. Prospective study. Culture with biochemical identification and real-time PCR directly, and from culture, were performed on nasal swabs, nasopharyngeal swabs, and nasopharyngeal lavages. Real-time PCR directly from samples identified the highest number of infected horses, with 45/57 nasal swabs, 41/57 nasopharyngeal swabs, and 48/57 nasopharyngeal lavages S. equi positive. Biochemical identification (highest positives 22/57) was inferior to real-time PCR for S. equi recovery regardless of sampling method. Real-time PCR of nasopharyngeal lavage directly and after culture yielded 52/57 positives whereas direct real-time PCR of nasopharyngeal lavage combined with either nasopharyngeal swabs or nasal swabs yielded 53/57 positives. Three horses were negative on all samples. Nasopharyngeal lavage analyzed by a combination of real-time PCR directly and after culture or, alternatively, real-time PCR directly on a nasopharyngeal lavage and a nasal/nasopharyngeal swab can identify S. equi in over 90% of acute strangles cases. Copyright © 2013 by the American College of Veterinary Internal Medicine.
Real-time synchronized multiple-sensor IR/EO scene generation utilizing the SGI Onyx2
NASA Astrophysics Data System (ADS)
Makar, Robert J.; O'Toole, Brian E.
1998-07-01
An approach to utilize the symmetric multiprocessing environment of the Silicon Graphics Inc.R (SGI) Onyx2TM has been developed to support the generation of IR/EO scenes in real-time. This development, supported by the Naval Air Warfare Center Aircraft Division (NAWC/AD), focuses on high frame rate hardware-in-the-loop testing of multiple sensor avionics systems. In the past, real-time IR/EO scene generators have been developed as custom architectures that were often expensive and difficult to maintain. Previous COTS scene generation systems, designed and optimized for visual simulation, could not be adapted for accurate IR/EO sensor stimulation. The new Onyx2 connection mesh architecture made it possible to develop a more economical system while maintaining the fidelity needed to stimulate actual sensors. An SGI based Real-time IR/EO Scene Simulator (RISS) system was developed to utilize the Onyx2's fast multiprocessing hardware to perform real-time IR/EO scene radiance calculations. During real-time scene simulation, the multiprocessors are used to update polygon vertex locations and compute radiometrically accurate floating point radiance values. The output of this process can be utilized to drive a variety of scene rendering engines. Recent advancements in COTS graphics systems, such as the Silicon Graphics InfiniteRealityR make a total COTS solution possible for some classes of sensors. This paper will discuss the critical technologies that apply to infrared scene generation and hardware-in-the-loop testing using SGI compatible hardware. Specifically, the application of RISS high-fidelity real-time radiance algorithms on the SGI Onyx2's multiprocessing hardware will be discussed. Also, issues relating to external real-time control of multiple synchronized scene generation channels will be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Bernstein, Andrey; Simonetto, Andrea
This paper develops an online optimization method to maximize operational objectives of distribution-level distributed energy resources (DERs), while adjusting the aggregate power generated (or consumed) in response to services requested by grid operators. The design of the online algorithm is based on a projected-gradient method, suitably modified to accommodate appropriate measurements from the distribution network and the DERs. By virtue of this approach, the resultant algorithm can cope with inaccuracies in the representation of the AC power flows, it avoids pervasive metering to gather the state of noncontrollable resources, and it naturally lends itself to a distributed implementation. Optimality claimsmore » are established in terms of tracking of the solution of a well-posed time-varying convex optimization problem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Bernstein, Andrey; Simonetto, Andrea
This paper develops an online optimization method to maximize the operational objectives of distribution-level distributed energy resources (DERs) while adjusting the aggregate power generated (or consumed) in response to services requested by grid operators. The design of the online algorithm is based on a projected-gradient method, suitably modified to accommodate appropriate measurements from the distribution network and the DERs. By virtue of this approach, the resultant algorithm can cope with inaccuracies in the representation of the AC power, it avoids pervasive metering to gather the state of noncontrollable resources, and it naturally lends itself to a distributed implementation. Optimality claimsmore » are established in terms of tracking of the solution of a well-posed time-varying optimization problem.« less
Optimal symmetric flight studies
NASA Technical Reports Server (NTRS)
Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.
1985-01-01
Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.
Optimal Achievable Encoding for Brain Machine Interface
2017-12-22
dictionary-based encoding approach to translate a visual image into sequential patterns of electrical stimulation in real time , in a manner that...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...networks, and by applying linear decoding to complete recorded populations of retinal ganglion cells for the first time . Third, we developed a greedy
NASA Astrophysics Data System (ADS)
Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.
2012-06-01
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.
Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A L
2012-06-13
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.
Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.
Harris, S C; Walker, D S
2000-09-01
This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.
Schmid, Verena
2012-01-01
Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests’ site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions. PMID:25540476
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
NASA Astrophysics Data System (ADS)
Gibson, Wayne H.; Levesque, Daniel
2000-03-01
This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.
Kamihigashi, Takashi
2017-01-01
Given a sequence [Formula: see text] of measurable functions on a σ -finite measure space such that the integral of each [Formula: see text] as well as that of [Formula: see text] exists in [Formula: see text], we provide a sufficient condition for the following inequality to hold: [Formula: see text] Our condition is considerably weaker than sufficient conditions known in the literature such as uniform integrability (in the case of a finite measure) and equi-integrability. As an application, we obtain a new result on the existence of an optimal path for deterministic infinite-horizon optimization problems in discrete time.
Optimal distribution of integration time for intensity measurements in Stokes polarimetry.
Li, Xiaobo; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie; Hu, Haofeng
2015-10-19
We consider the typical Stokes polarimetry system, which performs four intensity measurements to estimate a Stokes vector. We show that if the total integration time of intensity measurements is fixed, the variance of the Stokes vector estimator depends on the distribution of the integration time at four intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the Stokes vector estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time by employing Lagrange multiplier method. According to the theoretical analysis and real-world experiment, it is shown that the total variance of the Stokes vector estimator can be significantly decreased about 40% in the case discussed in this paper. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improves the measurement accuracy of the polarimetric system.
Li, Xiaobo; Hu, Haofeng; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie
2016-04-04
We consider the degree of linear polarization (DOLP) polarimetry system, which performs two intensity measurements at orthogonal polarization states to estimate DOLP. We show that if the total integration time of intensity measurements is fixed, the variance of the DOLP estimator depends on the distribution of integration time for two intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the DOLP estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time in an approximate way by employing Delta method and Lagrange multiplier method. According to the theoretical analyses and real-world experiments, it is shown that the variance of the DOLP estimator can be decreased for any value of DOLP. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improve the measurement accuracy of the polarimetry system.
Application of Spatial Neural Network Model for Optimal Operation of Urban Drainage System
NASA Astrophysics Data System (ADS)
KIM, B. J.; Lee, J. Y.; KIM, H. I.; Son, A. L.; Han, K. Y.
2017-12-01
The significance of real-time operation of drainage pump and warning system for inundation becomes recently increased in order to coping with runoff by high intensity precipitation such as localized heavy rain that frequently and suddenly happen. However existing operation of drainage pump station has been made a decision according to opinion of manager based on stage because of not expecting exact time that peak discharge occur in pump station. Therefore the scale of pump station has been excessively estimated. Although it is necessary to perform quick and accurate inundation in analysis downtown area due to huge property damage from flood and typhoon, previous studies contained risk deducting incorrect result that differs from actual result owing to the diffusion aspect of flow by effect on building and road. The purpose of this study is to develop the data driven model for the real-time operation of drainage pump station and two-dimensional inundation analysis that are improved the problems of the existing hydrology and hydrological model. Neuro-Fuzzy system for real time prediction about stage was developed by estimating the type and number of membership function. Based on forecasting stage, it was decided when pump machine begin to work and how much water scoop up by using penalizing genetic algorithm. It is practicable to forecast stage, optimize pump operation and simulate inundation analysis in real time through the methodologies suggested in this study. This study can greatly contribute to the establishment of disaster information map that prevent and mitigate inundation in urban drainage area. The applicability of the development model for the five drainage pump stations in the Mapo drainage area was verified. It is considered to be able to effectively manage urban drainage facilities in the development of these operating rules. Keywords : Urban flooding; Geo-ANFIS method; Optimal operation; Drainage system; AcknowlegementThis research was supported by a grant (17AWMP-B079625-04) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Stent deployment protocol for optimized real-time visualization during endovascular neurosurgery.
Silva, Michael A; See, Alfred P; Dasenbrock, Hormuzdiyar H; Ashour, Ramsey; Khandelwal, Priyank; Patel, Nirav J; Frerichs, Kai U; Aziz-Sultan, Mohammad A
2017-05-01
Successful application of endovascular neurosurgery depends on high-quality imaging to define the pathology and the devices as they are being deployed. This is especially challenging in the treatment of complex cases, particularly in proximity to the skull base or in patients who have undergone prior endovascular treatment. The authors sought to optimize real-time image guidance using a simple algorithm that can be applied to any existing fluoroscopy system. Exposure management (exposure level, pulse management) and image post-processing parameters (edge enhancement) were modified from traditional fluoroscopy to improve visualization of device position and material density during deployment. Examples include the deployment of coils in small aneurysms, coils in giant aneurysms, the Pipeline embolization device (PED), the Woven EndoBridge (WEB) device, and carotid artery stents. The authors report on the development of the protocol and their experience using representative cases. The stent deployment protocol is an image capture and post-processing algorithm that can be applied to existing fluoroscopy systems to improve real-time visualization of device deployment without hardware modifications. Improved image guidance facilitates aneurysm coil packing and proper positioning and deployment of carotid artery stents, flow diverters, and the WEB device, especially in the context of complex anatomy and an obscured field of view.
Electrolyzers Enhancing Flexibility in Electric Grids
Mohanpurkar, Manish; Luo, Yusheng; Terlip, Danny; ...
2017-11-10
This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed, which enables an optimal operation of the load on themore » basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. In conclusion, the FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.« less
Using LabView for real-time monitoring and tracking of multiple biological objects
NASA Astrophysics Data System (ADS)
Nikolskyy, Aleksandr I.; Krasilenko, Vladimir G.; Bilynsky, Yosyp Y.; Starovier, Anzhelika
2017-04-01
Today real-time studying and tracking of movement dynamics of various biological objects is important and widely researched. Features of objects, conditions of their visualization and model parameters strongly influence the choice of optimal methods and algorithms for a specific task. Therefore, to automate the processes of adaptation of recognition tracking algorithms, several Labview project trackers are considered in the article. Projects allow changing templates for training and retraining the system quickly. They adapt to the speed of objects and statistical characteristics of noise in images. New functions of comparison of images or their features, descriptors and pre-processing methods will be discussed. The experiments carried out to test the trackers on real video files will be presented and analyzed.
The use of UNIX in a real-time environment
NASA Technical Reports Server (NTRS)
Luken, R. D.; Simons, P. C.
1986-01-01
This paper describes a project to evaluate the feasibility of using commercial off-the-shelf hardware and the UNIX operating system, to implement a real-time control and monitor system. A functional subset of the Checkout, Control and Monitor System was chosen as the test bed for the project. The project consists of three separate architecture implementations: a local area bus network, a star network, and a central host. The motivation for this project stemmed from the need to find a way to implement real-time systems, without the cost burden of developing and maintaining custom hardware and unique software. This has always been accepted as the only option because of the need to optimize the implementation for performance. However, with the cost/performance of today's hardware, the inefficiencies of high-level languages and portable operating systems can be effectively overcome.
Real-time high dynamic range laser scanning microscopy
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-01-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979
NASA Astrophysics Data System (ADS)
Liu, Yu-Che; Huang, Chung-Lin
2013-03-01
This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.
Abbasi, Ibrahim; Kirstein, Oscar D; Hailu, Asrat; Warburg, Alon
2016-10-01
Visceral leishmaniasis (VL), one of the most important neglected tropical diseases, is caused by Leishmania donovani eukaryotic protozoan parasite of the genus Leishmania, the disease is prevalent mainly in the Indian sub-continent, East Africa and Brazil. VL can be diagnosed by PCR amplifying ITS1 and/or kDNA genes. The current study involved the optimization of Loop-mediated isothermal amplification (LAMP) for the detection of Leishmania DNA in human blood or tissue samples. Three LAMP systems were developed; in two of those the primers were designed based on shared regions of the ITS1 gene among different Leishmania species, while the primers for the third LAMP system were derived from a newly identified repeated region in the Leishmania genome. The LAMP tests were shown to be sufficiently sensitive to detect 0.1pg of DNA from most Leishmania species. The green nucleic acid stain SYTO16, was used here for the first time to allow real-time monitoring of LAMP amplification. The advantage of real time-LAMP using SYTO 16 over end-point LAMP product detection is discussed. The efficacy of the real time-LAMP tests for detecting Leishmania DNA in dried blood samples from volunteers living in endemic areas, was compared with that of qRT-kDNA PCR. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Dragas, Jelena; Jäckel, David; Hierlemann, Andreas; Franke, Felix
2017-01-01
Reliable real-time low-latency spike sorting with large data throughput is essential for studies of neural network dynamics and for brain-machine interfaces (BMIs), in which the stimulation of neural networks is based on the networks' most recent activity. However, the majority of existing multi-electrode spike-sorting algorithms are unsuited for processing high quantities of simultaneously recorded data. Recording from large neuronal networks using large high-density electrode sets (thousands of electrodes) imposes high demands on the data-processing hardware regarding computational complexity and data transmission bandwidth; this, in turn, entails demanding requirements in terms of chip area, memory resources and processing latency. This paper presents computational complexity optimization techniques, which facilitate the use of spike-sorting algorithms in large multi-electrode-based recording systems. The techniques are then applied to a previously published algorithm, on its own, unsuited for large electrode set recordings. Further, a real-time low-latency high-performance VLSI hardware architecture of the modified algorithm is presented, featuring a folded structure capable of processing the activity of hundreds of neurons simultaneously. The hardware is reconfigurable “on-the-fly” and adaptable to the nonstationarities of neuronal recordings. By transmitting exclusively spike time stamps and/or spike waveforms, its real-time processing offers the possibility of data bandwidth and data storage reduction. PMID:25415989
Dragas, Jelena; Jackel, David; Hierlemann, Andreas; Franke, Felix
2015-03-01
Reliable real-time low-latency spike sorting with large data throughput is essential for studies of neural network dynamics and for brain-machine interfaces (BMIs), in which the stimulation of neural networks is based on the networks' most recent activity. However, the majority of existing multi-electrode spike-sorting algorithms are unsuited for processing high quantities of simultaneously recorded data. Recording from large neuronal networks using large high-density electrode sets (thousands of electrodes) imposes high demands on the data-processing hardware regarding computational complexity and data transmission bandwidth; this, in turn, entails demanding requirements in terms of chip area, memory resources and processing latency. This paper presents computational complexity optimization techniques, which facilitate the use of spike-sorting algorithms in large multi-electrode-based recording systems. The techniques are then applied to a previously published algorithm, on its own, unsuited for large electrode set recordings. Further, a real-time low-latency high-performance VLSI hardware architecture of the modified algorithm is presented, featuring a folded structure capable of processing the activity of hundreds of neurons simultaneously. The hardware is reconfigurable “on-the-fly” and adaptable to the nonstationarities of neuronal recordings. By transmitting exclusively spike time stamps and/or spike waveforms, its real-time processing offers the possibility of data bandwidth and data storage reduction.
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Optimized efflux assay for the NorA multidrug efflux pump in Staphylococcus aureus.
Zimmermann, Saskia; Tuchscherr, Lorena; Rödel, Jürgen; Löffler, Bettina; Bohnert, Jürgen A
2017-11-01
Real-time fluorescent efflux assays are commonly used for measuring the efflux of bacterial pumps. Here we describe an optimized protocol for the NorA efflux pump in S. aureus using DiOC 3 instead of ethidium bromide. Glucose and sodium formate were tested as energy carriers. This novel method is fast and reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimal dynamic voltage scaling for wireless sensor nodes with real-time constraints
NASA Astrophysics Data System (ADS)
Cassandras, Christos G.; Zhuang, Shixin
2005-11-01
Sensors are increasingly embedded in manufacturing systems and wirelessly networked to monitor and manage operations ranging from process and inventory control to tracking equipment and even post-manufacturing product monitoring. In building such sensor networks, a critical issue is the limited and hard to replenish energy in the devices involved. Dynamic voltage scaling is a technique that controls the operating voltage of a processor to provide desired performance while conserving energy and prolonging the overall network's lifetime. We consider such power-limited devices processing time-critical tasks which are non-preemptive, aperiodic and have uncertain arrival times. We treat voltage scaling as a dynamic optimization problem whose objective is to minimize energy consumption subject to hard or soft real-time execution constraints. In the case of hard constraints, we build on prior work (which engages a voltage scaling controller at task completion times) by developing an intra-task controller that acts at all arrival times of incoming tasks. We show that this optimization problem can be decomposed into two simpler ones whose solution leads to an algorithm that does not actually require solving any nonlinear programming problems. In the case of soft constraints, this decomposition must be partly relaxed, but it still leads to a scalable (linear in the number of tasks) algorithm. Simulation results are provided to illustrate performance improvements in systems with intra-task controllers compared to uncontrolled systems or those using inter-task control.
NASA Astrophysics Data System (ADS)
Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas
2010-03-01
Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.
NASA Astrophysics Data System (ADS)
Santosa, B.; Siswanto, N.; Fiqihesa
2018-04-01
This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Review of design optimization methods for turbomachinery aerodynamics
NASA Astrophysics Data System (ADS)
Li, Zhihui; Zheng, Xinqian
2017-08-01
In today's competitive environment, new turbomachinery designs need to be not only more efficient, quieter, and ;greener; but also need to be developed at on much shorter time scales and at lower costs. A number of advanced optimization strategies have been developed to achieve these requirements. This paper reviews recent progress in turbomachinery design optimization to solve real-world aerodynamic problems, especially for compressors and turbines. This review covers the following topics that are important for optimizing turbomachinery designs. (1) optimization methods, (2) stochastic optimization combined with blade parameterization methods and the design of experiment methods, (3) gradient-based optimization methods for compressors and turbines and (4) data mining techniques for Pareto Fronts. We also present our own insights regarding the current research trends and the future optimization of turbomachinery designs.
Zhang, Xiong; Zhao, Yacong; Zhang, Yu; Zhong, Xuefei; Fan, Zhaowen
2018-01-01
The novel human-computer interface (HCI) using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG) signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC) and Fisher discrimination (FD) criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT) and recognition rate (RR). The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU) performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR) were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF) performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s, respectively. These experiments validate the feasibility of proposed real-time wearable HCI system and algorithms, providing a potential assistive device interface for persons with disabilities. PMID:29543737
Slama, Matous; Benes, Peter M.; Bila, Jiri
2015-01-01
During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time. PMID:25893194
Near real-time digital holographic microscope based on GPU parallel computing
NASA Astrophysics Data System (ADS)
Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan
2018-01-01
A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,
Bukovsky, Ivo; Homma, Noriyasu; Ichiji, Kei; Cejnek, Matous; Slama, Matous; Benes, Peter M; Bila, Jiri
2015-01-01
During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time.
Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Douglas, E-mail: douglas.moore@utsouthwestern.edu; Sawant, Amit; Ruan, Dan
2016-01-15
Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for themore » trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al. approach, while performing comparably to Ruan and Keall. Conclusions: This work improves upon the quality of the Sawant et al. approach, but does so without sacrificing run-time performance. In addition, using this framework allows for complex leaf-fitting strategies that can be used to account for PTV/OAR trade-off during real-time MLC tracking.« less
Cheng, Kung-Shan; Dewhirst, Mark W; Stauffer, Paul R; Das, Shiva
2010-03-01
This paper investigates overall theoretical requirements for reducing the times required for the iterative learning of a real-time image-guided adaptive control routine for multiple-source heat applicators, as used in hyperthermia and thermal ablative therapy for cancer. Methods for partial reconstruction of the physical system with and without model reduction to find solutions within a clinically practical timeframe were analyzed. A mathematical analysis based on the Fredholm alternative theorem (FAT) was used to compactly analyze the existence and uniqueness of the optimal heating vector under two fundamental situations: (1) noiseless partial reconstruction and (2) noisy partial reconstruction. These results were coupled with a method for further acceleration of the solution using virtual source (VS) model reduction. The matrix approximation theorem (MAT) was used to choose the optimal vectors spanning the reduced-order subspace to reduce the time for system reconstruction and to determine the associated approximation error. Numerical simulations of the adaptive control of hyperthermia using VS were also performed to test the predictions derived from the theoretical analysis. A thigh sarcoma patient model surrounded by a ten-antenna phased-array applicator was retained for this purpose. The impacts of the convective cooling from blood flow and the presence of sudden increase of perfusion in muscle and tumor were also simulated. By FAT, partial system reconstruction directly conducted in the full space of the physical variables such as phases and magnitudes of the heat sources cannot guarantee reconstructing the optimal system to determine the global optimal setting of the heat sources. A remedy for this limitation is to conduct the partial reconstruction within a reduced-order subspace spanned by the first few maximum eigenvectors of the true system matrix. By MAT, this VS subspace is the optimal one when the goal is to maximize the average tumor temperature. When more than 6 sources present, the steps required for a nonlinear learning scheme is theoretically fewer than that of a linear one, however, finite number of iterative corrections is necessary for a single learning step of a nonlinear algorithm. Thus, the actual computational workload for a nonlinear algorithm is not necessarily less than that required by a linear algorithm. Based on the analysis presented herein, obtaining a unique global optimal heating vector for a multiple-source applicator within the constraints of real-time clinical hyperthermia treatments and thermal ablative therapies appears attainable using partial reconstruction with minimum norm least-squares method with supplemental equations. One way to supplement equations is the inclusion of a method of model reduction.
NASA Astrophysics Data System (ADS)
Wan, Meng; Wu, Chao; Wang, Jing; Qiu, Yulei; Xin, Liping; Mullender, Sjoerd; Mühleisen, Hannes; Scheers, Bart; Zhang, Ying; Nes, Niels; Kersten, Martin; Huang, Yongpan; Deng, Jinsong; Wei, Jianyan
2016-11-01
The ground-based wide-angle camera array (GWAC), a part of the SVOM space mission, will search for various types of optical transients by continuously imaging a field of view (FOV) of 5000 degrees2 every 15 s. Each exposure consists of 36 × 4k × 4k pixels, typically resulting in 36 × ˜175,600 extracted sources. For a modern time-domain astronomy project like GWAC, which produces massive amounts of data with a high cadence, it is challenging to search for short timescale transients in both real-time and archived data, and to build long-term light curves for variable sources. Here, we develop a high-cadence, high-density light curve pipeline (HCHDLP) to process the GWAC data in real-time, and design a distributed shared-nothing database to manage the massive amount of archived data which will be used to generate a source catalog with more than 100 billion records during 10 years of operation. First, we develop HCHDLP based on the column-store DBMS of MonetDB, taking advantage of MonetDB’s high performance when applied to massive data processing. To realize the real-time functionality of HCHDLP, we optimize the pipeline in its source association function, including both time and space complexity from outside the database (SQL semantic) and inside (RANGE-JOIN implementation), as well as in its strategy of building complex light curves. The optimized source association function is accelerated by three orders of magnitude. Second, we build a distributed database using a two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE technology of MonetDB. Intensive tests validate that our database architecture is able to achieve both linear scalability in response time and concurrent access by multiple users. In summary, our studies provide guidance for a solution to GWAC in real-time data processing and management of massive data.
Maessen, J G; Phelps, B; Dekker, A L A J; Dijkman, B
2004-05-01
To optimize resynchronization in biventricular pacing with epicardial leads, mapping to determine the best pacing site, is a prerequisite. A port access surgical mapping technique was developed that allowed multiple pace site selection and reproducible lead evaluation and implantation. Pressure-volume loops analysis was used for real time guidance in targeting epicardial lead placement. Even the smallest changes in lead position revealed significantly different functional results. Optimizing the pacing site with this technique allowed functional improvement up to 40% versus random pace site selection.
The Investigation of Optimal Discrete Approximations for Real Time Flight Simulations
NASA Technical Reports Server (NTRS)
Parrish, E. A.; Mcvey, E. S.; Cook, G.; Henderson, K. C.
1976-01-01
The results are presented of an investigation of discrete approximations for real time flight simulation. Major topics discussed include: (1) consideration of the particular problem of approximation of continuous autopilots by digital autopilots; (2) use of Bode plots and synthesis of transfer functions by asymptotic fits in a warped frequency domain; (3) an investigation of the various substitution formulas, including the effects of nonlinearities; (4) use of pade approximation to the solution of the matrix exponential arising from the discrete state equations; and (5) an analytical integration of the state equation using interpolated input.
NASA Technical Reports Server (NTRS)
Chamitoff, Gregory Errol
1992-01-01
Intelligent optimization methods are applied to the problem of real-time flight control for a class of airbreathing hypersonic vehicles (AHSV). The extreme flight conditions that will be encountered by single-stage-to-orbit vehicles, such as the National Aerospace Plane, present a tremendous challenge to the entire spectrum of aerospace technologies. Flight control for these vehicles is particularly difficult due to the combination of nonlinear dynamics, complex constraints, and parametric uncertainty. An approach that utilizes all available a priori and in-flight information to perform robust, real time, short-term trajectory planning is presented.
Real-time control system for adaptive resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flath, L; An, J; Brase, J
2000-07-24
Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.
NASA Astrophysics Data System (ADS)
Charfi, Imen; Miteran, Johel; Dubois, Julien; Atri, Mohamed; Tourki, Rached
2013-10-01
We propose a supervised approach to detect falls in a home environment using an optimized descriptor adapted to real-time tasks. We introduce a realistic dataset of 222 videos, a new metric allowing evaluation of fall detection performance in a video stream, and an automatically optimized set of spatio-temporal descriptors which fed a supervised classifier. We build the initial spatio-temporal descriptor named STHF using several combinations of transformations of geometrical features (height and width of human body bounding box, the user's trajectory with her/his orientation, projection histograms, and moments of orders 0, 1, and 2). We study the combinations of usual transformations of the features (Fourier transform, wavelet transform, first and second derivatives), and we show experimentally that it is possible to achieve high performance using support vector machine and Adaboost classifiers. Automatic feature selection allows to show that the best tradeoff between classification performance and processing time is obtained by combining the original low-level features with their first derivative. Hence, we evaluate the robustness of the fall detection regarding location changes. We propose a realistic and pragmatic protocol that enables performance to be improved by updating the training in the current location with normal activities records.
Sung, Wen-Tsai; Chiang, Yen-Chun
2012-12-01
This study examines wireless sensor network with real-time remote identification using the Android study of things (HCIOT) platform in community healthcare. An improved particle swarm optimization (PSO) method is proposed to efficiently enhance physiological multi-sensors data fusion measurement precision in the Internet of Things (IOT) system. Improved PSO (IPSO) includes: inertia weight factor design, shrinkage factor adjustment to allow improved PSO algorithm data fusion performance. The Android platform is employed to build multi-physiological signal processing and timely medical care of things analysis. Wireless sensor network signal transmission and Internet links allow community or family members to have timely medical care network services.
Graumann, Johannes; Scheltema, Richard A; Zhang, Yong; Cox, Jürgen; Mann, Matthias
2012-03-01
In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides "on-the-fly" within 30 ms, well within the time constraints of a shotgun fragmentation "topN" method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available.
Graumann, Johannes; Scheltema, Richard A.; Zhang, Yong; Cox, Jürgen; Mann, Matthias
2012-01-01
In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides “on-the-fly” within 30 ms, well within the time constraints of a shotgun fragmentation “topN” method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available. PMID:22171319
A Microcomputer Based Aircraft Flight Control System.
1980-04-01
time control of an aircraft using a microcomputer system . The applicability of two optimal control 5 1 theories--singular perturbation theory and output...increased controller execution time if implemented in software. This may be unavoidable if the plant is not stabilizable without feedback from such...From the real- time testing of the controller designs, it is seen that when dealing with systems possessing a two- time -scale property, output * * 61 K
Real-Time Classification of Exercise Exertion Levels Using Discriminant Analysis of HRV Data.
Jeong, In Cheol; Finkelstein, Joseph
2015-01-01
Heart rate variability (HRV) was shown to reflect activation of sympathetic nervous system however it is not clear which set of HRV parameters is optimal for real-time classification of exercise exertion levels. There is no studies that compared potential of two types of HRV parameters (time-domain and frequency-domain) in predicting exercise exertion level using discriminant analysis. The main goal of this study was to compare potential of HRV time-domain parameters versus HRV frequency-domain parameters in classifying exercise exertion level. Rest, exercise, and recovery categories were used in classification models. Overall 79.5% classification agreement by the time-domain parameters as compared to overall 52.8% classification agreement by frequency-domain parameters demonstrated that the time-domain parameters had higher potential in classifying exercise exertion levels.
Scalable Prediction of Energy Consumption using Incremental Time Series Clustering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmhan, Yogesh; Noor, Muhammad Usman
2013-10-09
Time series datasets are a canonical form of high velocity Big Data, and often generated by pervasive sensors, such as found in smart infrastructure. Performing predictive analytics on time series data can be computationally complex, and requires approximation techniques. In this paper, we motivate this problem using a real application from the smart grid domain. We propose an incremental clustering technique, along with a novel affinity score for determining cluster similarity, which help reduce the prediction error for cumulative time series within a cluster. We evaluate this technique, along with optimizations, using real datasets from smart meters, totaling ~700,000 datamore » points, and show the efficacy of our techniques in improving the prediction error of time series data within polynomial time.« less
Real-time locating systems (RTLS) in healthcare: a condensed primer
2012-01-01
Real-time locating systems (RTLS, also known as real-time location systems) have become an important component of many existing ubiquitous location aware systems. While GPS (global positioning system) has been quite successful as an outdoor real-time locating solution, it fails to repeat this success indoors. A number of RTLS technologies have been used to solve indoor tracking problems. The ability to accurately track the location of assets and individuals indoors has many applications in healthcare. This paper provides a condensed primer of RTLS in healthcare, briefly covering the many options and technologies that are involved, as well as the various possible applications of RTLS in healthcare facilities and their potential benefits, including capital expenditure reduction and workflow and patient throughput improvements. The key to a successful RTLS deployment lies in picking the right RTLS option(s) and solution(s) for the application(s) or problem(s) at hand. Where this application-technology match has not been carefully thought of, any technology will be doomed to failure or to achieving less than optimal results. PMID:22741760
Real-time locating systems (RTLS) in healthcare: a condensed primer.
Kamel Boulos, Maged N; Berry, Geoff
2012-06-28
Real-time locating systems (RTLS, also known as real-time location systems) have become an important component of many existing ubiquitous location aware systems. While GPS (global positioning system) has been quite successful as an outdoor real-time locating solution, it fails to repeat this success indoors. A number of RTLS technologies have been used to solve indoor tracking problems. The ability to accurately track the location of assets and individuals indoors has many applications in healthcare. This paper provides a condensed primer of RTLS in healthcare, briefly covering the many options and technologies that are involved, as well as the various possible applications of RTLS in healthcare facilities and their potential benefits, including capital expenditure reduction and workflow and patient throughput improvements. The key to a successful RTLS deployment lies in picking the right RTLS option(s) and solution(s) for the application(s) or problem(s) at hand. Where this application-technology match has not been carefully thought of, any technology will be doomed to failure or to achieving less than optimal results.
Knowledge Reasoning with Semantic Data for Real-Time Data Processing in Smart Factory
Wang, Shiyong; Li, Di; Liu, Chengliang
2018-01-01
The application of high-bandwidth networks and cloud computing in manufacturing systems will be followed by mass data. Industrial data analysis plays important roles in condition monitoring, performance optimization, flexibility, and transparency of the manufacturing system. However, the currently existing architectures are mainly for offline data analysis, not suitable for real-time data processing. In this paper, we first define the smart factory as a cloud-assisted and self-organized manufacturing system in which physical entities such as machines, conveyors, and products organize production through intelligent negotiation and the cloud supervises this self-organized process for fault detection and troubleshooting based on data analysis. Then, we propose a scheme to integrate knowledge reasoning and semantic data where the reasoning engine processes the ontology model with real time semantic data coming from the production process. Based on these ideas, we build a benchmarking system for smart candy packing application that supports direct consumer customization and flexible hybrid production, and the data are collected and processed in real time for fault diagnosis and statistical analysis. PMID:29415444
Real Time Data Acquisition and Online Signal Processing for Magnetoencephalography
NASA Astrophysics Data System (ADS)
Rongen, H.; Hadamschek, V.; Schiek, M.
2006-06-01
To establish improved therapies for patients suffering from severe neurological and psychiatric diseases, a demand controlled and desynchronizing brain-pacemaker has been developed with techniques from statistical physics and nonlinear dynamics. To optimize the novel therapeutic approach, brain activity is investigated with a Magnetoencephalography (MEG) system prior to surgery. For this, a real time data acquisition system for a 148 channel MEG and online signal processing for artifact rejection, filtering, cross trial phase resetting analysis and three-dimensional (3-D) reconstruction of the cerebral current sources was developed. The developed PCI bus hardware is based on a FPGA and DSP design, using the benefits from both architectures. The reconstruction and visualization of the 3-D volume data is done by the PC which hosts the real time DAQ and pre-processing board. The framework of the MEG-online system is introduced and the architecture of the real time DAQ board and online reconstruction is described. In addition we show first results with the MEG-Online system for the investigation of dynamic brain activities in relation to external visual stimulation, based on test data sets.
Probabilistic Cloning of Three Real States with Optimal Success Probabilities
NASA Astrophysics Data System (ADS)
Rui, Pin-shu
2017-06-01
We investigate the probabilistic quantum cloning (PQC) of three real states with average probability distribution. To get the analytic forms of the optimal success probabilities we assume that the three states have only two pairwise inner products. Based on the optimal success probabilities, we derive the explicit form of 1 →2 PQC for cloning three real states. The unitary operation needed in the PQC process is worked out too. The optimal success probabilities are also generalized to the M→ N PQC case.
NASA Astrophysics Data System (ADS)
Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua
2018-01-01
In a practical continuous-variable quantum key distribution (CVQKD) system, real-time shot-noise measurement (RTSNM) is an essential procedure for preventing the eavesdropper exploiting the practical security loopholes. However, the performance of this procedure itself is not analyzed under the real-world condition. Therefore, we indicate the RTSNM practical performance and investigate its effects on the CVQKD system. In particular, due to the finite-size effect, the shot-noise measurement at the receiver's side may decrease the precision of parameter estimation and consequently result in a tight security bound. To mitigate that, we optimize the block size for RTSNM under the ensemble size limitation to maximize the secure key rate. Moreover, the effect of finite dynamics of amplitude modulator in this scheme is studied and its mitigation method is also proposed. Our work indicates the practical performance of RTSNM and provides the real secret key rate under it.
Metallurgical Plant Optimization Through the use of Flowsheet Simulation Modelling
NASA Astrophysics Data System (ADS)
Kennedy, Mark William
Modern metallurgical plants typically have complex flowsheets and operate on a continuous basis. Real time interactions within such processes can be complex and the impacts of streams such as recycles on process efficiency and stability can be highly unexpected prior to actual operation. Current desktop computing power, combined with state-of-the-art flowsheet simulation software like Metsim, allow for thorough analysis of designs to explore the interaction between operating rate, heat and mass balances and in particular the potential negative impact of recycles. Using plant information systems, it is possible to combine real plant data with simple steady state models, using dynamic data exchange links to allow for near real time de-bottlenecking of operations. Accurate analytical results can also be combined with detailed unit operations models to allow for feed-forward model-based-control. This paper will explore some examples of the application of Metsim to real world engineering and plant operational issues.
Biffi, E.; Ghezzi, D.; Pedrocchi, A.; Ferrigno, G.
2010-01-01
Neurons cultured in vitro on MicroElectrode Array (MEA) devices connect to each other, forming a network. To study electrophysiological activity and long term plasticity effects, long period recording and spike sorter methods are needed. Therefore, on-line and real time analysis, optimization of memory use and data transmission rate improvement become necessary. We developed an algorithm for amplitude-threshold spikes detection, whose performances were verified with (a) statistical analysis on both simulated and real signal and (b) Big O Notation. Moreover, we developed a PCA-hierarchical classifier, evaluated on simulated and real signal. Finally we proposed a spike detection hardware design on FPGA, whose feasibility was verified in terms of CLBs number, memory occupation and temporal requirements; once realized, it will be able to execute on-line detection and real time waveform analysis, reducing data storage problems. PMID:20300592
X-Ray Imaging Applied to Problems in Planetary Materials
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Mih, D. T.; Jones, S. M.; Connolly, H.
2000-01-01
Real-time radiography (X-ray imaging) can be a useful tool for tasks such as (1) the non-destructive, preliminary examination of opaque samples and (2) optimizing how to section opaque samples for more traditional microscopy and chemical analysis.
OPEX: Optimized Eccentricity Computation in Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Keith
2011-11-14
Real-world graphs have many properties of interest, but often these properties are expensive to compute. We focus on eccentricity, radius and diameter in this work. These properties are useful measures of the global connectivity patterns in a graph. Unfortunately, computing eccentricity for all nodes is O(n2) for a graph with n nodes. We present OPEX, a novel combination of optimizations which improves computation time of these properties by orders of magnitude in real-world experiments on graphs of many different sizes. We run OPEX on graphs with up to millions of links. OPEX gives either exact results or bounded approximations, unlikemore » its competitors which give probabilistic approximations or sacrifice node-level information (eccentricity) to compute graphlevel information (diameter).« less
Real time 3D structural and Doppler OCT imaging on graphics processing units
NASA Astrophysics Data System (ADS)
Sylwestrzak, Marcin; Szlag, Daniel; Szkulmowski, Maciej; Gorczyńska, Iwona; Bukowska, Danuta; Wojtkowski, Maciej; Targowski, Piotr
2013-03-01
In this report the application of graphics processing unit (GPU) programming for real-time 3D Fourier domain Optical Coherence Tomography (FdOCT) imaging with implementation of Doppler algorithms for visualization of the flows in capillary vessels is presented. Generally, the time of the data processing of the FdOCT data on the main processor of the computer (CPU) constitute a main limitation for real-time imaging. Employing additional algorithms, such as Doppler OCT analysis, makes this processing even more time consuming. Lately developed GPUs, which offers a very high computational power, give a solution to this problem. Taking advantages of them for massively parallel data processing, allow for real-time imaging in FdOCT. The presented software for structural and Doppler OCT allow for the whole processing with visualization of 2D data consisting of 2000 A-scans generated from 2048 pixels spectra with frame rate about 120 fps. The 3D imaging in the same mode of the volume data build of 220 × 100 A-scans is performed at a rate of about 8 frames per second. In this paper a software architecture, organization of the threads and optimization applied is shown. For illustration the screen shots recorded during real time imaging of the phantom (homogeneous water solution of Intralipid in glass capillary) and the human eye in-vivo is presented.
NASA Astrophysics Data System (ADS)
Kano, Masayuki; Miyazaki, Shin'ichi; Ishikawa, Yoichi; Hiyoshi, Yoshihisa; Ito, Kosuke; Hirahara, Kazuro
2015-10-01
Data assimilation is a technique that optimizes the parameters used in a numerical model with a constraint of model dynamics achieving the better fit to observations. Optimized parameters can be utilized for the subsequent prediction with a numerical model and predicted physical variables are presumably closer to observations that will be available in the future, at least, comparing to those obtained without the optimization through data assimilation. In this work, an adjoint data assimilation system is developed for optimizing a relatively large number of spatially inhomogeneous frictional parameters during the afterslip period in which the physical constraints are a quasi-dynamic equation of motion and a laboratory derived rate and state dependent friction law that describe the temporal evolution of slip velocity at subduction zones. The observed variable is estimated slip velocity on the plate interface. Before applying this method to the real data assimilation for the afterslip of the 2003 Tokachi-oki earthquake, a synthetic data assimilation experiment is conducted to examine the feasibility of optimizing the frictional parameters in the afterslip area. It is confirmed that the current system is capable of optimizing the frictional parameters A-B, A and L by adopting the physical constraint based on a numerical model if observations capture the acceleration and decaying phases of slip on the plate interface. On the other hand, it is unlikely to constrain the frictional parameters in the region where the amplitude of afterslip is less than 1.0 cm d-1. Next, real data assimilation for the 2003 Tokachi-oki earthquake is conducted to incorporate slip velocity data inferred from time dependent inversion of Global Navigation Satellite System time-series. The optimized values of A-B, A and L are O(10 kPa), O(102 kPa) and O(10 mm), respectively. The optimized frictional parameters yield the better fit to the observations and the better prediction skill of slip velocity afterwards. Also, further experiment shows the importance of employing a fine-mesh model. It will contribute to the further understanding of the frictional properties on plate interfaces and lead to the forecasting system that provides useful information on the possibility of consequent earthquakes.
Mathematical Sciences Division 1992 Programs
1992-10-01
statistical theory that underlies modern signal analysis . There is a strong emphasis on stochastic processes and time series , particularly those which...include optimal resource planning and real- time scheduling of stochastic shop-floor processes. Scheduling systems will be developed that can adapt to...make forecasts for the length-of-service time series . Protocol analysis of these sessions will be used to idenify relevant contextual features and to
Dynamic Restructuring Of Problems In Artificial Intelligence
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.
1992-01-01
"Dynamic tradeoff evaluation" (DTE) denotes proposed method and procedure for restructuring problem-solving strategies in artificial intelligence to satisfy need for timely responses to changing conditions. Detects situations in which optimal problem-solving strategies cannot be pursued because of real-time constraints, and effects tradeoffs among nonoptimal strategies in such way to minimize adverse effects upon performance of system.
Receding horizon online optimization for torque control of gasoline engines.
Kang, Mingxin; Shen, Tielong
2016-11-01
This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Real-Time Dosimetry and Optimization of Prostate Photodynamic Therapy
2006-09-01
photodynamic therapy in patients with prostate cancer,” IPA 9th World Congress of Photodynamic Medicine, (2003). 2. Zhu TC, Diana S, Dimofte A...photodynamic therapy,” IPA 9th World Congress of Photodynamic Medicine, (2003). 3. Zhu TC, Altschuler M, Xiao Y, Finlay J, Dimofte A, Hahn SM, “Light...Optimization of treatment plan using Cimmino algorithm in prostate photodynamic therapy,” IPA 10th World Congress of Photodynamic Medicine, Munich
Optimized Flight Path for Localization Using Line of Bearing
2015-03-26
minimizing the semi-major axis of the error ellipse. (a) Thin Ellipse (area = 1000 · π) (b) Fat Ellipse (area = 1020 · π) Figure 15. Comparison of Ellipse...California, San Diego, 2012. [5] Deghat, Mohammad, Iman Shames , Brian D. O. Anderson, and Changbin Yu. “Target Localization and Circumnavigation Using...Real-Time Optimal Control for Bearing-Only Trajectory Planning”, International Journal of Micro Air Vehicles, 2014. [12] Shames , Iman, Baris Fidan
NASA Technical Reports Server (NTRS)
Oakley, Celia M.; Barratt, Craig H.
1990-01-01
Recent results in linear controller design are used to design an end-point controller for an experimental two-link flexible manipulator. A nominal 14-state linear-quadratic-Gaussian (LQG) controller was augmented with a 528-tap finite-impulse-response (FIR) filter designed using convex optimization techniques. The resulting 278-state controller produced improved end-point trajectory tracking and disturbance rejection in simulation and experimentally in real time.
NASA Astrophysics Data System (ADS)
Tsutsui, Shigeyosi
This paper proposes an aggregation pheromone system (APS) for solving real-parameter optimization problems using the collective behavior of individuals which communicate using aggregation pheromones. APS was tested on several test functions used in evolutionary computation. The results showed APS could solve real-parameter optimization problems fairly well. The sensitivity analysis of control parameters of APS is also studied.
NASA Astrophysics Data System (ADS)
Zhang, Hong; Li, Na; Zhao, Dandan; Jiang, Jie; You, Hong
2017-09-01
Real-time monitoring of photocatalytic reactions facilitates the elucidation of the mechanisms of the reactions. However, suitable tools for real-time monitoring are lacking. Herein, a novel method based on droplet spray ionization named substrate-coated illumination droplet spray ionization (SCI-DSI) for direct analysis of photocatalytic reaction solution is reported. SCI-DSI addresses many of the analytical limitations of electrospray ionization (ESI) for analysis of photocatalytic-reaction intermediates, and has potential for both in situ analysis and real-time monitoring of photocatalytic reactions. In SCI-DSI-mass spectrometry (MS), a photocatalytic reaction occurs by loading sample solutions onto the substrate-coated cover slip and by applying UV light above the modified slip; one corner of this slip adjacent to the inlet of a mass spectrometer is the high-electric-field location for launching a charged-droplet spray. After both testing and optimizing the performance of SCI-DSI, the value of this method for in situ analysis and real-time monitoring of photocatalytic reactions was demonstrated by the removal of cyclophosphamide (CP) in TiO2/UV. Reaction times ranged from seconds to minutes, and the proposed reaction intermediates were captured and identified by tandem mass spectrometry. Moreover, the free hydroxyl radical (·OH) was identified as the main radicals for CP removal. These results show that SCI-DSI is suitable for in situ analysis and real-time monitoring of CP removal under TiO2-based photocatalytic reactions. SCI-DSI is also a potential tool for in situ analysis and real-time assessment of the roles of radicals during CP removal under TiO2-based photocatalytic reactions. Graphical Abstract[Figure not available: see fulltext.
Energy management of three-dimensional minimum-time intercept. [for aircraft flight optimization
NASA Technical Reports Server (NTRS)
Kelley, H. J.; Cliff, E. M.; Visser, H. G.
1985-01-01
A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission. The proposed scheme has roots in two well known techniques: singular perturbations and neighboring-optimal guidance. Use of singular-perturbation ideas is made in terms of the assumed trajectory-family structure. A heading/energy family of prestored point-mass-model state-Euler solutions is used as the baseline in this scheme. The next step is to generate a near-optimal guidance law that will transfer the aircraft to the vicinity of this reference family. The control commands fed to the autopilot (bank angle and load factor) consist of the reference controls plus correction terms which are linear combinations of the altitude and path-angle deviations from reference values, weighted by a set of precalculated gains. In this respect the proposed scheme resembles neighboring-optimal guidance. However, in contrast to the neighboring-optimal guidance scheme, the reference control and state variables as well as the feedback gains are stored as functions of energy and heading in the present approach. Some numerical results comparing open-loop optimal and approximate feedback solutions are presented.
Narayanan, Shrikanth
2009-01-01
We describe a method for unsupervised region segmentation of an image using its spatial frequency domain representation. The algorithm was designed to process large sequences of real-time magnetic resonance (MR) images containing the 2-D midsagittal view of a human vocal tract airway. The segmentation algorithm uses an anatomically informed object model, whose fit to the observed image data is hierarchically optimized using a gradient descent procedure. The goal of the algorithm is to automatically extract the time-varying vocal tract outline and the position of the articulators to facilitate the study of the shaping of the vocal tract during speech production. PMID:19244005