Science.gov

Sample records for real time stagger

  1. Exploratory analysis of longitudinal trials with staggered intervention times.

    PubMed

    Sousa, Inês; Chetwynd, Amanda G; Diggle, Peter J

    2005-07-01

    Longitudinal trials involving surgical interventions commonly have subject-specific intervention times, due to constraints on the availability of surgeons and operating theatres. Moreover, the intervention often effects a discontinuous change in the mean response. We propose a nonparametric estimator for the mean response profile of longitudinal data with staggered intervention times and a discontinuity at the times of intervention, as an exploratory tool to assist the formulation of a suitable parametric model. We use an adaptation of the standard generalized additive model algorithm for estimation, with smoothing constants chosen by a cross-validation criterion. We illustrate the method using longitudinal data from a trial to assess the effect of lung resection surgery in the treatment of emphysema patients.

  2. Prestack reverse-time migration with a time-space domain adaptive high-order staggered-grid finite-difference method

    NASA Astrophysics Data System (ADS)

    Yan, Hongyong; Liu, Yang; Zhang, Hao

    2013-03-01

    With advanced computational power, prestack reverse-time migration (RTM) is being used increasingly in seismic imaging. The accuracy and efficiency of RTM strongly depends on the algorithms used for numerical solutions of wave equations. Hence, how to solve the wave equation accurately and rapidly is very important in the process of RTM. In this paper, in order to improve the accuracy of the numerical solution, we use a time-space domain staggered-grid finite-difference (SFD) method to solve the acoustic wave equation, and develop a new acoustic prestack RTM scheme based on this time-space domain high-order SFD. Synthetic and real data tests demonstrate that the RTM scheme improves the imaging quality significantly compared with the conventional SFD RTM. Meanwhile, in the process of wavefield extrapolation, we apply adaptive variable-length spatial operators to compute spatial derivatives to decrease computational costs effectively with little reduction of the accuracy of the numerical solutions.

  3. Three-dimensional viscoelastic time-domain finite-difference seismic modelling using the staggered Adams-Bashforth time integrator

    NASA Astrophysics Data System (ADS)

    Bohlen, Thomas; Wittkamp, Florian

    2016-03-01

    We analyse the performance of a higher order accurate staggered viscoelastic time-domain finite-difference method, in which the staggered Adams-Bashforth (ABS) third-order and fourth-order accurate time integrators are used for temporal discretization. ABS is a multistep method that uses previously calculated wavefields to increase the order of accuracy in time. The analysis shows that the numerical dispersion is much lower than that of the widely used second-order leapfrog method. Numerical dissipation is introduced by the ABS method which is significantly smaller for fourth-order than third-order accuracy. In 1-D and 3-D simulation experiments, we verify the convincing improvements of simulation accuracy of the fourth-order ABS method. In a realistic elastic 3-D scenario, the computing time reduces by a factor of approximately 2.4, whereas the memory requirements increase by approximately a factor of 2.2. The ABS method thus provides an alternative strategy to increase the simulation accuracy in time by investing computer memory instead of computing time.

  4. Analysis of a regularized, time-staggered discretization method and its link to the semi-implicit method

    NASA Astrophysics Data System (ADS)

    Frank, J.; Reich, S.; Staniforth, A.; White, A.; Wood, N.

    2005-04-01

    A key aspect of the recently proposed Hamiltonian particle-mesh (HPM) method is its time-staggered discretization combined with a regularization of the continuous governing equations. In this article, the time discretization aspect of the HPM method is analysed for the linearized, rotating, shallow-water equations with orography, and the combined effect of time-staggering and regularization is compared analytically with the popular two-time-level semi-implicit time discretization of the unregularized equations. It is found that the two approaches are essentially equivalent, provided the regularization parameter is chosen appropriately in terms of the time step t. The article treats space as a continuum and, hence, its analysis is not limited to the HPM method.

  5. Acoustic Reverse-time Migration using Optimal Staggered-grid Finite-difference Operator Based on Least Squares

    NASA Astrophysics Data System (ADS)

    Yan, Hongyong; Yang, Lei; Liu, Hong

    2015-06-01

    Reverse-time migration (RTM) directly solves the two-way wave equation for wavefield propagation; therefore, how to solve the wave equation accurately and quickly is very important for RTM. The conventional staggered-grid finite-difference (SFD) operators are usually based on the Taylor-series expansion theory. If they are used to solve wave equation on a larger frequency content, a strong dispersion will occur, which directly affects the seismic image quality. In this paper, we propose an optimal SFD operator based on least squares to solve acoustic wave equation for prestack RTM, and obtain a new antidispersion RTM algorithm that can use short spatial difference operators. The synthetic and real data tests demonstrate that the least squares SFD (LSSFD) operator can mitigate the numerical dispersion, and the acoustic RTM using the LSSFD operator can effectively improve image quality comparing with that using the Taylor-series expansion SFD (TESFD) operator. Moreover, the LSSFD method can adopt a shorter spatial difference operator to reduce the computing cost.

  6. Real Time Network Assessment

    DTIC Science & Technology

    2013-07-12

    Demonstrate a simple system Conduct a feasibility assessment of data storage, maintenance, and integration requirements Test a web-based data feed...Real Time Network Assessment Prototype We demonstrated the feasibility of linking near real time network analytics to mashups and web- based...combining similar concepts into single node) Stemmers Thesauri application Network position Statistical common patterns Pronoun identification

  7. Sweepless time-dependent transport calculations using the staggered block Jacobi method

    SciTech Connect

    Davidson, G; Larsen, E W

    2009-01-01

    The Staggered-Block Jacobi (SBJ) method is a new numerical SN transport method for solving time-dependent problems without sweeps or low-order acceleration. Because it is a Jacobian method, it is trivial to parallelize and will scale linearly with the number of processors, It is highly accurate in thick-diffusive problems and unconditionally stable when combined with the lumped linear discontinuous finite element spatial discretization. In this way, the SBJ method is complementary to sweep-based methods, which are accurate and efficient in thin, streaming regions but inefficient in thick, diffusive problems without acceleration. We have extended previous work by demonstrating how sweep-based methods and the SBJ method may be combined to produce a method which is accurate and efficient without acceleration in all optical thicknesses while still retaining good parallel efficiency. Furthermore, iterations may also be added to the SBJ method. This is particularly useful for improving the accuracy of the SBJ method in intermediate-thickness problems.

  8. Relaxing the closure assumption in single-season occupancy models: staggered arrival and departure times

    USGS Publications Warehouse

    Kendall, William L.; Hines, James E.; Nichols, James D.; Grant, Evan H. Campbell

    2013-01-01

    Occupancy statistical models that account for imperfect detection have proved very useful in several areas of ecology, including species distribution and spatial dynamics, disease ecology, and ecological responses to climate change. These models are based on the collection of multiple samples at each of a number of sites within a given season, during which it is assumed the species is either absent or present and available for detection while each sample is taken. However, for some species, individuals are only present or available for detection seasonally. We present a statistical model that relaxes the closure assumption within a season by permitting staggered entry and exit times for the species of interest at each site. Based on simulation, our open model eliminates bias in occupancy estimators and in some cases increases precision. The power to detect the violation of closure is high if detection probability is reasonably high. In addition to providing more robust estimation of occupancy, this model permits comparison of phenology across sites, species, or years, by modeling variation in arrival or departure probabilities. In a comparison of four species of amphibians in Maryland we found that two toad species arrived at breeding sites later in the season than a salamander and frog species, and departed from sites earlier.

  9. Statin prescribing for people with severe mental illnesses: a staggered cohort study of ‘real-world’ impacts

    PubMed Central

    Blackburn, R; Osborn, D; Falcaro, M; Nazareth, I; Petersen, I

    2017-01-01

    Objectives To estimate the ‘real-world effectiveness of statins for primary prevention of cardiovascular disease (CVD) and for lipid modification in people with severe mental illnesses (SMI), including schizophrenia and bipolar disorder. Design Series of staggered cohorts. We estimated the effect of statin prescribing on CVD outcomes using a multivariable Poisson regression model or linear regression for cholesterol outcomes. Setting 587 general practice (GP) surgeries across the UK reporting data to The Health Improvement Network. Participants All permanently registered GP patients aged 40–84 years between 2002 and 2012 who had a diagnosis of SMI. Exclusion criteria were pre-existing CVD, statin-contraindicating conditions or a statin prescription within the 24 months prior to the study start. Exposure One or more statin prescriptions during a 24-month ‘baseline’ period (vs no statin prescription during the same period). Main outcome measures The primary outcome was combined first myocardial infarction and stroke. All-cause mortality and total cholesterol concentration were secondary outcomes. Results We identified 2944 statin users and 42 886 statin non-users across the staggered cohorts. Statin prescribing was not associated with significant reduction in CVD events (incident rate ratio 0.89; 95% CI 0.68 to 1.15) or all-cause mortality (0.89; 95% CI 0.78 to 1.02). Statin prescribing was, however, associated with statistically significant reductions in total cholesterol of 1.2 mmol/L (95% CI 1.1 to 1.3) for up to 2 years after adjusting for differences in baseline characteristics. On average, total cholesterol decreased from 6.3 to 4.6 in statin users and 5.4 to 5.3 mmol/L in non-users. Conclusions We found that statin prescribing to people with SMI in UK primary care was effective for lipid modification but not CVD events. The latter finding may reflect insufficient power to detect a smaller effect size than that observed in randomised

  10. Time-dependent radiation transport using the staggered-block Jacobi method

    NASA Astrophysics Data System (ADS)

    Davidson, Gregory Grant

    The time-dependent radiation transport equation describes the dynamics of radiation traveling through and interacting with a background medium. These dynamics are important in a diversity of fields including nuclear reactor kinetics, stellar evolution, and inertial confinement fusion. Except for trivial problems, the transport equation must be solved numerically. This research is concerned with developing a new deterministic time discretization for numerical solutions of the radiation transport equation. To preserve maximal parallelism, a deterministic transport method must maintain locality, meaning that the solution at a point in space is dependent only upon information that is locally available. Furthermore, computational efficiency requires that a method be unconditionally stable, meaning that it provides positive, physically permissible solutions for time steps of any length. Existing unconditionally stable radiation transport methods require mesh sweeps, which make the methods non-local and inhibit their parallelism, thereby reducing their efficiency on large supercomputers. We present a new Staggered-Block Jacobi (SBJ) method, which produces unconditionally stable numerical solutions while maintaining locality. The SBJ time discretization operates by forming blocks of cells. In one dimension, a block is composed of two cells. The incident information into the block is evaluated at the beginning of the time step. This decouples every block, and allows the solution in the blocks to be computed in parallel. We apply the SBJ method to the linear diffusion and transport equations, as well as the linearized thermal radiation transport equations. We find that the SBJ time discretization, applied to the linear diffusion and transport equations, produces methods that are accurate and efficient when the particle wave advances about 20% of a cell per time step, i.e., where the time steps are small or the problem is optically thick. In the case of the thermal radiation

  11. Energy preservation and entropy in Lagrangian space- and time-staggered hydrodynamic schemes

    NASA Astrophysics Data System (ADS)

    Llor, Antoine; Claisse, Alexandra; Fochesato, Christophe

    2016-03-01

    Usual space- and time-staggered (STS) ;leap-frog; Lagrangian hydrodynamic schemes-such as von Neumann-Richtmyer's (1950), Wilkins' (1964), and their variants-are widely used for their simplicity and robustness despite their known lack of exact energy conservation. Since the seminal work of Trulio and Trigger (1950) and despite the later corrections of Burton (1991), it is generally accepted that these schemes cannot be modified to exactly conserve energy while retaining all of the following properties: STS stencil with velocities half-time centered with respect to positions, explicit second-order algorithm (locally implicit for internal energy), and definite positive kinetic energy. It is shown here that it is actually possible to modify the usual STS hydrodynamic schemes in order to be exactly energy-preserving, regardless of the evenness of their time centering assumptions and retaining their simple algorithmic structure. Burton's conservative scheme (1991) is found as a special case of time centering which cancels the term here designated as ;incompatible displacements residue.; In contrast, von Neumann-Richtmyer's original centering can be preserved provided this residue is properly corrected. These two schemes are the only special cases able to capture isentropic flow with a third order entropy error, instead of second order in general. The momentum equation is presently obtained by application of a variational principle to an action integral discretized in both space and time. The internal energy equation follows from the discrete conservation of total energy. Entropy production by artificial dissipation is obtained to second order by a prediction-correction step on the momentum equation. The overall structure of the equations (explicit for momentum, locally implicit for internal energy) remains identical to that of usual STS ;leap-frog; schemes, though complementary terms are required to correct the effects of time-step changes and artificial viscosity

  12. Real-time radiography

    SciTech Connect

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  13. Real time obscuration monitoring

    NASA Astrophysics Data System (ADS)

    Agricola, Koos

    2016-09-01

    Recently a real time particle deposition monitoring system is developed. After discussions with optical system engineers a new feature has been added. This enables the real time monitoring of obscuration of exposed optical components by counting the deposited particles and sizing the obscuration area of each particle. This way the Particle Obscuration Rate (POR) can be determined. The POR can be used to determine the risk of product contamination during exposure. The particle size distribution gives information on the type of potential particle sources. The deposition moments will indicate when these sources were present.

  14. Real-time cosmology

    NASA Astrophysics Data System (ADS)

    Quercellini, Claudia; Amendola, Luca; Balbi, Amedeo; Cabella, Paolo; Quartin, Miguel

    2012-12-01

    In recent years, improved astrometric and spectroscopic techniques have opened the possibility of measuring the temporal change of radial and transverse position of sources in the sky over relatively short time intervals. This has made at least conceivable to establish a novel research domain, which we dub “real-time cosmology”. We review for the first time most of the work already done in this field, analysing the theoretical framework as well as some foreseeable observational strategies and their capability to constrain models. We first focus on real-time measurements of the overall redshift drift and angular separation shift in distant sources, which allows the observer to trace the background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper accelerations in clustered systems, and therefore their gravitational potential. The last two sections are devoted to the future change of the cosmic microwave background on “short” time scales, as well as to the temporal shift of the temperature anisotropy power spectrum and maps. We conclude revisiting in this context the usefulness of upcoming experiments (like CODEX and Gaia) for real-time observations.

  15. Thermodynamics of lattice QCD with 2 light dynamical (staggered) quark flavours on a 16 sup 3 times 8 lattice

    SciTech Connect

    Gottlieb, S.; Krasnitz, A. . Dept. of Physics); Heller, U.M.; Kennedy, A.D. . Supercomputer Computations Research Inst.); Kogut, J.B. . Dept. of Physics); Liu, W. ); Renken, R.L. (University of Central F

    1991-01-01

    Lattice QCD with 2 light staggered quark flavours is being simulated on a 16{sup 3} {times} 8 lattice to study the transition from hadronic matter to a quark gluon plasma. We have completed runs at m{sub q} = 0.0125 and are extending this to m{sub q} = 0.00625. We also examine the addition of a non-dynamical strange'' quark. Thermodynamic order parameters are being measured across the transition and further into the plasma phase, as are various screening lengths. No evidence for a first order transition is seen, and we estimate the transition temperature to be {Tc} = 143(7)MeV.

  16. Thermodynamics of lattice QCD with 2 light dynamical (staggered) quark flavours on a 16{sup 3} {times} 8 lattice

    SciTech Connect

    Gottlieb, S.; Krasnitz, A.; Heller, U.M.; Kennedy, A.D.; Kogut, J.B.; Liu, W.; Renken, R.L.; Sinclair, D.K.; Sugar, R.L.; Toussaint, D.; Wang, K.C.

    1991-12-31

    Lattice QCD with 2 light staggered quark flavours is being simulated on a 16{sup 3} {times} 8 lattice to study the transition from hadronic matter to a quark gluon plasma. We have completed runs at m{sub q} = 0.0125 and are extending this to m{sub q} = 0.00625. We also examine the addition of a non-dynamical ``strange`` quark. Thermodynamic order parameters are being measured across the transition and further into the plasma phase, as are various screening lengths. No evidence for a first order transition is seen, and we estimate the transition temperature to be {Tc} = 143(7)MeV.

  17. A Non-Dissipative Staggered Fourth-Order Accurate Explicit Finite Difference Scheme for the Time-Domain Maxwell's Equations

    NASA Technical Reports Server (NTRS)

    Yefet, Amir; Petropoulos, Peter G.

    1999-01-01

    We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not aligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.

  18. Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Evrard, A.; Boulle, N.; Lutfalla, G. S.

    Over the past few years there has been a considerable development of DNA amplification by polymerase chain reaction (PCR), and real-time PCR has now superseded conventional PCR techniques in many areas, e.g., the quantification of nucleic acids and genotyping. This new approach is based on the detection and quantification of a fluorescent signal proportional to the amount of amplicons generated by PCR. Real-time detection is achieved by coupling a thermocycler with a fluorimeter. This chapter discusses the general principles of quantitative real-time PCR, the different steps involved in implementing the technique, and some examples of applications in medicine. The polymerase chain reaction (PCR) provides a way of obtaining a large number of copies of a double-stranded DNA fragment of known sequence. This DNA amplification technique, developed in 1985 by K. Mullis (Cetus Corporation), saw a spectacular development over the space of a few years, revolutionising the methods used up to then in molecular biology. Indeed, PCR has many applications, such as the detection of small amounts of DNA, cloning, and quantitative analysis (assaying), each of which will be discussed further below.

  19. A family of time-staggered schemes for integrating hybrid DPD models for polymers: Algorithms and applications

    SciTech Connect

    Symeonidis, Vasileios; Karniadakis, George Em . E-mail: gk@dam.brown.edu

    2006-10-10

    We propose new schemes for integrating the stochastic differential equations of dissipative particle dynamics (DPD) in simulations of dilute polymer solutions. The hybrid DPD models consist of hard potentials that describe the microscopic dynamics of polymers and soft potentials that describe the mesoscopic dynamics of the solvent. In particular, we develop extensions to the velocity-Verlet and Lowe's approaches - two representative DPD time-integrators - following a subcycling procedure whereby the solvent is advanced with a timestep much larger than the one employed in the polymer time-integration. The introduction of relaxation parameters allows optimization studies for accuracy while maintaining the low computational complexity of standard DPD algorithms. We demonstrate through equilibrium simulations that a 10-fold gain in efficiency can be obtained with the time-staggered algorithms without loss of accuracy compared to the non-staggered schemes. We then apply the new approach to investigate the scaling response of polymers in equilibrium as well as the dynamics of {lambda}-phage DNA molecules subjected to shear.

  20. A family of time-staggered schemes for integrating hybrid DPD models for polymers: Algorithms and applications

    NASA Astrophysics Data System (ADS)

    Symeonidis, Vasileios; Karniadakis, George Em

    2006-10-01

    We propose new schemes for integrating the stochastic differential equations of dissipative particle dynamics (DPD) in simulations of dilute polymer solutions. The hybrid DPD models consist of hard potentials that describe the microscopic dynamics of polymers and soft potentials that describe the mesoscopic dynamics of the solvent. In particular, we develop extensions to the velocity-Verlet and Lowe's approaches - two representative DPD time-integrators - following a subcycling procedure whereby the solvent is advanced with a timestep much larger than the one employed in the polymer time-integration. The introduction of relaxation parameters allows optimization studies for accuracy while maintaining the low computational complexity of standard DPD algorithms. We demonstrate through equilibrium simulations that a 10-fold gain in efficiency can be obtained with the time-staggered algorithms without loss of accuracy compared to the non-staggered schemes. We then apply the new approach to investigate the scaling response of polymers in equilibrium as well as the dynamics of λ-phage DNA molecules subjected to shear.

  1. Real-Time Revolution?

    PubMed

    Berlin, Joey

    2016-03-01

    Austin Regional Clinic (ARC) physicians and officials know patient feedback is important, but getting patients to provide it can be a challenge. A pilot program of a new, real-time feedback system provided ARC patients a high-tech convenience previous attempts lacked and produced participation numbers dwarfing those past efforts. ARC's initial results with the system, in which patients answer five to seven questions on a computer tablet and can leave free-text comments, were so successful the clinic is already planning to expand it to all of its locations by the end of June.

  2. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  3. Real time automated inspection

    DOEpatents

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  4. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  5. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    SciTech Connect

    Aldridge, David Franklin; Collier, Sandra L.; Marlin, David H.; Ostashev, Vladimir E.; Symons, Neill Phillip; Wilson, D. Keith

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  6. A Staggered Fourth-Order Accurate Explicit Finite Difference Scheme for the Time-Domain Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Yefet, Amir; Petropoulos, Peter G.

    2001-04-01

    We consider a model explicit fourth-order staggered finite-difference method for the hyperbolic Maxwell's equations. Appropriate fourth-order accurate extrapolation and one-sided difference operators are derived in order to complete the scheme near metal boundaries and dielectric interfaces. An eigenvalue analysis of the overall scheme provides a necessary, but not sufficient, stability condition and indicates long-time stability. Numerical results verify both the stability analysis, and the scheme's fourth-order convergence rate over complex domains that include dielectric interfaces and perfectly conducting surfaces. For a fixed error level, we find the fourth-order scheme is computationally cheaper in comparison to the Yee scheme by more than an order of magnitude. Some open problems encountered in the application of such high-order schemes are also discussed.

  7. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects.

  8. Real Time Baseball Database

    NASA Astrophysics Data System (ADS)

    Fukue, Yasuhiro

    The author describes the system outline, features and operations of "Nikkan Sports Realtime Basaball Database" which was developed and operated by Nikkan Sports Shimbun, K. K. The system enables to input numerical data of professional baseball games as they proceed simultaneously, and execute data updating at realtime, just-in-time. Other than serving as supporting tool for prepareing newspapers it is also available for broadcasting media, general users through NTT dial Q2 and others.

  9. STAGGERS IN SHEEP IN PATAGONIA

    PubMed Central

    Jones, F. S.; Arnold, J. F.

    1917-01-01

    After observations and experimental work both in the field and laboratory, the following conclusions seem justified. 1. Staggers is a non-infectious disorder affecting horses, cattle, and sheep. 2. The disease is characterized by weakness, muscular twitching, irregular movements of the head, stiffness of the limbs, and transient motor paralysis, accompanied with spastic spasms on excitement. There is also a derangement of vision and conjunctivitis. 3. The postmortem lesions are not characteristic. 4. We readily produced the disease by feeding susceptible sheep on a coarse tuft grass commonly known as coiron or pampa grass (Poa argentina). 5. The time required to produce definite symptoms by feeding the grass varied. Two animals developed typical staggers after two feedings; in another instance a period of 21 days of feeding was required. The average time for the production of unmistakable symptoms in our experiments was 10 days. 6. Many sheep recover from staggers spontaneously. A complete change of diet will usually effect a cure within 2 weeks. 7. Older .animals that have pastured for long periods on lands where the grass grows become tolerant and are rarely affected with staggers. 8. The grass is toxic to sheep at all seasons of the year. We fed late winter and early spring grass and grass in flower, and produced staggers in every instance. The young green grass is as toxic as any edible portion of the plant. PMID:19868185

  10. Staggering Structure

    NASA Image and Video Library

    2017-09-06

    This view from NASA's Cassini spacecraft shows a wave structure in Saturn's rings known as the Janus 2:1 spiral density wave. Resulting from the same process that creates spiral galaxies, spiral density waves in Saturn's rings are much more tightly wound. In this case, every second wave crest is actually the same spiral arm which has encircled the entire planet multiple times. This is the only major density wave visible in Saturn's B ring. Most of the B ring is characterized by structures that dominate the areas where density waves might otherwise occur, but this innermost portion of the B ring is different. The radius from Saturn at which the wave originates (toward lower-right in this image) is 59,796 miles (96,233 kilometers) from the planet. At this location, ring particles orbit Saturn twice for every time the moon Janus orbits once, creating an orbital resonance. The wave propagates outward from the resonance (and away from Saturn), toward upper-left in this view. For reasons researchers do not entirely understand, damping of waves by larger ring structures is very weak at this location, so this wave is seen ringing for hundreds of bright wave crests, unlike density waves in Saturn's A ring. The image gives the illusion that the ring plane is tilted away from the camera toward upper-left, but this is not the case. Because of the mechanics of how this kind of wave propagates, the wavelength decreases with distance from the resonance. Thus, the upper-left of the image is just as close to the camera as the lower-right, while the wavelength of the density wave is simply shorter. This wave is remarkable because Janus, the moon that generates it, is in a strange orbital configuration. Janus and Epimetheus share practically the same orbit and trade places every four years. Every time one of those orbit swaps takes place, the ring at this location responds, spawning a new crest in the wave. The distance between any pair of crests corresponds to four years' worth of

  11. The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics

    NASA Astrophysics Data System (ADS)

    Festa, Gaetano; Vilotte, Jean-Pierre

    2005-06-01

    Perfectly matched layers (PMLs) provide an exponential decay, independent of the frequency, of any propagating field along an assigned direction without producing spurious reflections at the interface with the elastic volume. For this reason PMLs have been applied as absorbing boundary conditions (ABCs) and their efficiency in attenuating outgoing wave fields on the outskirts of numerical grids is more and more recognized. However, PMLs are designed for first-order differential equations and a natural extension to second-order Partial Differential Equations (PDEs) involves either additional variables in the time evolution scheme or convolutional operations. Both techniques are computationally expensive when implemented in a spectral element (SE) code and other ABCs (e.g. paraxial or standard sponge methods) still remain more attractive than PMLs. Here, an efficient second-order implementation of PMLs for SE is developed from interpreting the Newmark scheme as a time-staggered velocity-stress algorithm. The discrete equivalence with the standard scheme is based on an L2 approximation of the stress field, with the same polynomial order as the velocity. In this case, PMLs can be introduced as for first-order equations preserving the natural second-order time stepping. Subsequently, a non-classical frequency-dependent perfectly matched layer is introduced by moving the pole of the stretching along the imaginary axis. In this case, the absorption depends on the frequency and the layer switches from a transparent behaviour at low frequencies to a uniform absorption as the frequency goes to infinity. It turns out to be more efficient than classical PMLs in the absorption of the incident waves, as the grazing incidence approaches, at the cost of a memory variable for any split component. Finally, an extension of PMLs to general curvilinear coordinates is proposed.

  12. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  13. Dynamic inversion method based on the time-staggered stereo-modeling scheme and its acceleration

    NASA Astrophysics Data System (ADS)

    Jing, Hao; Yang, Dinghui; Wu, Hao

    2016-12-01

    A set of second-order differential equations describing the space-time behaviour of derivatives of displacement with respect to model parameters (i.e. waveform sensitivities) is obtained via taking the derivative of the original wave equations. The dynamic inversion method obtains sensitivities of the seismic displacement field with respect to earth properties directly by solving differential equations for them instead of constructing sensitivities from the displacement field itself. In this study, we have taken a new perspective on the dynamic inversion method and used acceleration approaches to reduce the computational time and memory usage to improve its ability of performing high-resolution imaging. The dynamic inversion method, which can simultaneously use different waves and multicomponent observation data, is appropriate for directly inverting elastic parameters, medium density or wave velocities. Full wavefield information is utilized as much as possible at the expense of a larger amount of calculations. To mitigate the computational burden, two ways are proposed to accelerate the method from a computer-implementation point of view. One is source encoding which uses a linear combination of all shots, and the other is to reduce the amount of calculations on forward modeling. We applied a new finite-difference (FD) method to the dynamic inversion to improve the computational accuracy and speed up the performance. Numerical experiments indicated that the new FD method can effectively suppress the numerical dispersion caused by the discretization of wave equations, resulting in enhanced computational efficiency with less memory cost for seismic modeling and inversion based on the full wave equations. We present some inversion results to demonstrate the validity of this method through both checkerboard and Marmousi models. It shows that this method is also convergent even with big deviations for the initial model. Besides, parallel calculations can be easily

  14. Real-time vision systems

    SciTech Connect

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  15. A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

    NASA Astrophysics Data System (ADS)

    Tavelli, Maurizio; Dumbser, Michael

    2016-08-01

    In this paper we propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. As is typical for space-time DG schemes, the discrete solution is represented in terms of space-time basis functions. This allows to achieve very high order of accuracy also in time, which is not easy to obtain for the incompressible Navier-Stokes equations. Similarly to staggered finite difference schemes, in our approach the discrete pressure is defined on the primary tetrahedral grid, while the discrete velocity is defined on a face-based staggered dual grid. While staggered meshes are state of the art in classical finite difference schemes for the incompressible Navier-Stokes equations, their use in high order DG schemes is still quite rare. A very simple and efficient Picard iteration is used in order to derive a space-time pressure correction algorithm that achieves also high order of accuracy in time and that avoids the direct solution of global nonlinear systems. Formal substitution of the discrete momentum equation on the dual grid into the discrete continuity equation on the primary grid yields a very sparse five-point block system for the scalar pressure, which is conveniently solved with a matrix-free GMRES algorithm. From numerical experiments we find that the linear system seems to be reasonably well conditioned, since all simulations shown in this paper could be run without the use of any preconditioner, even up to very high polynomial degrees. For a piecewise constant polynomial approximation in time and if pressure boundary conditions are specified at least in one point, the resulting system is, in addition, symmetric and positive definite. This allows us to use even faster iterative solvers, like the conjugate gradient method. The flexibility and accuracy of high order space-time DG methods on curved

  16. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2006-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  17. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2007-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  18. Real Time Conference 2014 Overview

    NASA Astrophysics Data System (ADS)

    Nomachi, Masaharu

    2015-06-01

    This article presents an overview of the 19th Real Time Conference held last May 26-30, 2014, at the Nara Prefectural New Public Hall, Nara, Japan, organized by the Research Center for Nuclear Physics of the Osaka University. The program included many invited talks and oral sessions offering an extensive overview on the following topics: real-time system architectures, intelligent signal processing, fast data transfer links and networks, trigger systems, data acquisition, processing-farms, control, monitoring and test systems, emerging real-time technologies, new standards, real-time safety and security, and some feedback on experiences. In parallel to the oral and poster presentations, industrial exhibits by companies, workshops and short courses also ran through the week.

  19. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Muratore, John F.

    1991-01-01

    Lessons learned from operational real time expert systems are examined. The basic system architecture is discussed. An expert system is any software that performs tasks to a standard that would normally require a human expert. An expert system implies knowledge contained in data rather than code. And an expert system implies the use of heuristics as well as algorithms. The 15 top lessons learned by the operation of a real time data system are presented.

  20. Staggered quantum walks with Hamiltonians

    NASA Astrophysics Data System (ADS)

    Portugal, R.; de Oliveira, M. C.; Moqadam, J. K.

    2017-01-01

    Quantum walks are recognizably useful for the development of new quantum algorithms, as well as for the investigation of several physical phenomena in quantum systems. Actual implementations of quantum walks face technological difficulties similar to the ones for quantum computers, though. Therefore, there is a strong motivation to develop new quantum-walk models which might be easier to implement. In this work we present an extension of the staggered quantum walk model that is fitted for physical implementations in terms of time-independent Hamiltonians. We demonstrate that this class of quantum walk includes the entire class of staggered quantum walk model, Szegedy's model, and an important subset of the coined model.

  1. Staggered eigenvalue mimicry

    SciTech Connect

    Duerr, Stephan; Hoelbling, Christian; Wenger, Urs

    2004-11-01

    We study the infrared part of the spectrum for UV-filtered staggered Dirac operators and compare them to the overlap counterpart. With sufficient filtering and at small enough lattice spacing the staggered spectra manage to 'mimic' the overlap version. They show a 4-fold near degeneracy, and a clear separation between would-be zero modes and nonzero modes. This suggests an approximate index theorem for filtered staggered fermions and a correct sensitivity to the topology of QCD. Moreover, it supports square-rooting the staggered determinant to obtain dynamical ensembles with N{sub f}=2.

  2. Dependable Real-Time Systems

    DTIC Science & Technology

    1991-09-30

    and F. Wang, "On thle Competitiveness of On-Line Real-Time Task Sc~eduling," to appear. Proc. Icai - Time Systemns Symposium, Dec 1991. 6. Biyabaiii, S...Stankovic, and K. Ramrnamritham, "System Support for lRal-’Vi111C Al: A Spring Project Perspective," Workshop on Real-Time .A1, ICAI ., August 198!). 29...Informatics, Computer S,,iety ,f India , t,, aptpear. 41 . Shilh, C. and J. A. Stankovic, "Distributed Deadlock Detection in Ada IRuntinv En vi- ronments," TRI

  3. HEVC real-time decoding

    NASA Astrophysics Data System (ADS)

    Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas

    2013-09-01

    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.

  4. Real Time Conference 2016 Overview

    NASA Astrophysics Data System (ADS)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  5. Real Time Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  6. POSIX real-time extensions

    NASA Technical Reports Server (NTRS)

    Robbins, Henry H.

    1992-01-01

    POSIX is an evolving set of operating system interface standards, whose parts are in varying stages of production in a number of standards working groups. This presentation separates the real-time POSIX standards work in process from the rest and provides an overview of the purpose, status, dependencies, content, and project schedule of each.

  7. Real Time Data Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Silberberg, George G.

    1983-03-01

    By the early 1970s, classical photo-optical range instrumentation technology (as a means of gathering weapons' system performance data) had become a costly and inefficient process. Film costs were increasing due to soaring silver prices. Time required to process, read, and produce optical data was becoming unacceptable as a means of supporting weapon system development programs. NWC investigated the feasibility of utilizing Closed Circuit Television (CCTV) technology as an alternative solution for providing optical data. In 1978 a program entitled Metric Video (measurements from video images) was formulated at the Naval Weapons Center, China Lake, California. The purpose of this program was to provide timely data, to reduce the number of operating personnel, and to lower data acquisition costs. Some of the task elements for this program included a near real-time vector miss-distance system, a weapons scoring system, a velocity measuring system, a time-space position system, and a system to replace film cameras for gathering real-time engineering sequential data. These task elements and the development of special hardware and techniques to achieve real-time data will be discussed briefly in this paper.

  8. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  9. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  10. Interactive real time flow simulations

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, I.; Tiwari, S. N.

    1990-01-01

    An interactive real time flow simulation technique is developed for an unsteady channel flow. A finite-volume algorithm in conjunction with a Runge-Kutta time stepping scheme was developed for two-dimensional Euler equations. A global time step was used to accelerate convergence of steady-state calculations. A raster image generation routine was developed for high speed image transmission which allows the user to have direct interaction with the solution development. In addition to theory and results, the hardware and software requirements are discussed.

  11. Real-time simulation of nonequilibrium transport of magnetization in large open quantum spin systems driven by dissipation

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Hebenstreit, F.; Jiang, F.-J.; Wiese, U.-J.

    2015-09-01

    Using quantum Monte Carlo, we study the nonequilibrium transport of magnetization in large open strongly correlated quantum spin-1/2 systems driven by purely dissipative processes that conserve the uniform or staggered magnetization, disregarding unitary Hamiltonian dynamics. We prepare both a low-temperature Heisenberg ferromagnet and an antiferromagnet in two parts of the system that are initially isolated from each other. We then bring the two subsystems in contact and study their real-time dissipative dynamics for different geometries. The flow of the uniform or staggered magnetization from one part of the system to the other is described by a diffusion equation that can be derived analytically.

  12. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. The agent needs to be able to fall back on an ability to construct plans at run time under time constraints. This thesis presents a method for planning at run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies. The method has been implemented, and experiments have been run to validate the overall approach and the theoretical model.

  13. Real-time flutter analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  14. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, R.

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. This thesis presents a method for planning a run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies.

  15. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  16. Real-time streamflow conditions

    USGS Publications Warehouse

    Graczyk, David J.; Gebert, Warren A.

    1996-01-01

    Would you like to know streamflow conditions before you go fishing in Wisconsin or in more distant locations? Real-time streamflow data throughout Wisconsin and the United States are available on the Internet from the U.S. Geological Survey. You can see if the stream you are interested in fishing is high due to recent rain or low because of an extended dry spell. Flow conditions at more than 100 stream-gaging stations located throughout Wisconsin can be viewed by accessing the Wisconsin District Home Page at: http://wwwdwimdn.er.usgs.gov

  17. Real-time pulmonary graphics.

    PubMed

    Mammel, Mark C; Donn, Steven M

    2015-06-01

    Real-time pulmonary graphics now enable clinicians to view lung mechanics and patient-ventilator interactions on a breath-to-breath basis. Displays of pressure, volume, and flow waveforms, pressure-volume and flow-volume loops, and trend screens enable clinicians to customize ventilator settings based on the underlying pathophysiology and responses of the individual patient. This article reviews the basic concepts of pulmonary graphics and demonstrates how they contribute to our understanding of respiratory physiology and the management of neonatal respiratory failure.

  18. Real time analysis under EDS

    NASA Astrophysics Data System (ADS)

    Schneberk, D.

    1985-07-01

    The analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL) is described. Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis.

  19. Real-time analysis keratometer

    NASA Technical Reports Server (NTRS)

    Adachi, Iwao P. (Inventor); Adachi, Yoshifumi (Inventor); Frazer, Robert E. (Inventor)

    1987-01-01

    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis.

  20. Real time analysis under EDS

    SciTech Connect

    Schneberk, D.

    1985-07-01

    This paper describes the analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL). Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis. Each of these components are described with an emphasis upon how each contributes to overall system capability. 3 figs.

  1. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  2. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  3. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  4. Real-time optical tweezing

    NASA Astrophysics Data System (ADS)

    Rahman, Shah Mohammed Tamzidur

    In this thesis a new approach called ‘space-time-wavelength mapping’ has been developed for real-time electronic control of optical tweezers. The proposed technique enables precise control of optical signals in space, time, and frequency through time-domain dispersion and diffractive optics, which in turn enables generation of controlled radiation forces acting on small particles. In this study we show that 150 fs ultrafast optical pulses can be dispersed in time and space to achieve a 20 μm x 2 μm focused elliptical beam. The force field at the focal plane of the beam is dependent on local intensity gradients along the plane. The spatial intensity profile can be electronically controlled by assigning local power levels to each wavelength using time-domain RF modulation of dispersed pulses, and sending each wavelength, and hence the assigned power level, to a specific location in space through diffractive optics. We show that by choosing the appropriate RF waveform, one is able to create force fields for cell stretching and compression as well as multiple force hot-spots (of >200 pN force per pulse) for attractive and repulsive forces. A detailed theoretical model and simulation results from a proposed experimental setup are presented. This approach is significantly more advantageous in terms of flexibility and control, compared to conventional optical tweezers that require mechanical steering or holographic optical tweezers that produce undesired ‘ghost traps’. In addition, it is shown how the technique can also be extended to create tunable 2D force field distributions using a virtually-imaged phased-array (VIPA).

  5. Clinical virology in real time.

    PubMed

    Niesters, Hubert G M

    2002-12-01

    The ability to detect nucleic acids has had and still has a major impact on diagnostics in clinical virology. Both quantitative and qualitative techniques, whether signal or target amplification based systems, are currently used routinely in most if not all virology laboratories. Technological improvements, from automated sample isolation to real time amplification technology, have given the ability to develop and introduce systems for most viruses of clinical interest, and to obtain clinical relevant information needed for optimal antiviral treatment options. Both polymerase chain reaction (PCR) and nucleic acid sequence-based amplification (NASBA) can currently be used together with real time detection to generate results in a short turn-around time and to determine whether variants relevant for antiviral resistance are present. These new technologies enable the introduction of an individual patient disease management concept. Within our clinical setting, we have introduced this e.g. for quantitative detection of Epstein-Barr Virus (EBV) in T-dell depleted allogeneic stem cell transplant patients. This enabled us to develop models for pre-emptive anti B-cell immunotherapy for EBV reactivation, thereby effectively reducing not the incidence of EBV-lymphoproliferative disease but the virus related mortality. Furthermore, additional clinically relevant viruses can now easily be detected simultaneously. It also becomes more feasible to introduce molecular testing for those viruses that can easily be detected using classical virological methods, like culture techniques or antigen detection. Prospective studies are needed to evaluate the clinical importance of the additional positive samples detected. It should however be made clear that a complete exchange of technologies is unlikely to occur, and that some complementary technologies should stay operational enabling the discovery of new viruses. The implementation of these molecular diagnostic technologies furthermore

  6. Real-Time Data Display

    NASA Technical Reports Server (NTRS)

    Pedings, Marc

    2007-01-01

    RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.

  7. Holin triggering in real time.

    PubMed

    White, Rebecca; Chiba, Shinobu; Pang, Ting; Dewey, Jill S; Savva, Christos G; Holzenburg, Andreas; Pogliano, Kit; Young, Ry

    2011-01-11

    During λ infections, the holin S105 accumulates harmlessly in the membrane until, at an allele-specific time, suddenly triggering to form irregular holes of unprecedented size (>300 nm), releasing the endolysin from the cytoplasm, resulting in lysis within seconds. Here we used a functional S105-GFP chimera and real-time deconvolution fluorescence microscopy to show that the S105-GFP fusion accumulated in a uniformly distributed fashion, until suddenly, within 1 min, it formed aggregates, or rafts, at the time of lethal triggering. Moreover, the isogenic fusion to a nonlethal S105 mutant remained uniformly distributed, whereas a fusion to an early-lysing mutant showed early triggering and early raft formation. Protein accumulation rates of the WT, early, and nonlethal alleles were identical. Fluorescence recovery after photobleaching (FRAP) revealed that the nonlethal mutant and untriggered WT hybrids were highly mobile in the membrane, whereas the WT raft was essentially immobile. Finally, an antiholin allele, S105(ΔTMD1)-mcherryfp, in the product of which the S105 sequence deleted for the first transmembrane domain was fused to mCherryFP. This hybrid retained full antiholin activity, in that it blocked lethal hole formation by the S105-GFP fusion, accumulated uniformly throughout the host membrane and prevented the S105-GFP protein from forming rafts. These findings suggest that phage lysis occurs when the holin reaches a critical concentration and nucleates to form rafts, analogous to the initiation of purple membrane formation after the induction of bacteriorhodopsin in halobacteria. This model for holin function may be relevant for processes in mammalian cells, including the release of nonenveloped viruses and apoptosis.

  8. Holin triggering in real time

    PubMed Central

    White, Rebecca; Chiba, Shinobu; Pang, Ting; Dewey, Jill S.; Savva, Christos G.; Holzenburg, Andreas; Pogliano, Kit; Young, Ry

    2011-01-01

    During λ infections, the holin S105 accumulates harmlessly in the membrane until, at an allele-specific time, suddenly triggering to form irregular holes of unprecedented size (>300 nm), releasing the endolysin from the cytoplasm, resulting in lysis within seconds. Here we used a functional S105–GFP chimera and real-time deconvolution fluorescence microscopy to show that the S105–GFP fusion accumulated in a uniformly distributed fashion, until suddenly, within 1 min, it formed aggregates, or rafts, at the time of lethal triggering. Moreover, the isogenic fusion to a nonlethal S105 mutant remained uniformly distributed, whereas a fusion to an early-lysing mutant showed early triggering and early raft formation. Protein accumulation rates of the WT, early, and nonlethal alleles were identical. Fluorescence recovery after photobleaching (FRAP) revealed that the nonlethal mutant and untriggered WT hybrids were highly mobile in the membrane, whereas the WT raft was essentially immobile. Finally, an antiholin allele, S105ΔTMD1–mcherryfp, in the product of which the S105 sequence deleted for the first transmembrane domain was fused to mCherryFP. This hybrid retained full antiholin activity, in that it blocked lethal hole formation by the S105–GFP fusion, accumulated uniformly throughout the host membrane and prevented the S105–GFP protein from forming rafts. These findings suggest that phage lysis occurs when the holin reaches a critical concentration and nucleates to form rafts, analogous to the initiation of purple membrane formation after the induction of bacteriorhodopsin in halobacteria. This model for holin function may be relevant for processes in mammalian cells, including the release of nonenveloped viruses and apoptosis. PMID:21187415

  9. Real-Time Nonlinear Optical Information Processing.

    DTIC Science & Technology

    1979-06-01

    operations aree presented. One approach realizes the halftone method of nonlinear optical processing in real time by replacing the conventional...photographic recording medium with a real-time image transducer. In the second approach halftoning is eliminated and the real-time device is used directly

  10. Real-time Tsunami Inundation Prediction Using High Performance Computers

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  11. Mobile real time radiography system

    SciTech Connect

    Vigil, J.; Taggart, D.; Betts, S.

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  12. Students Collecting Real time Data

    NASA Astrophysics Data System (ADS)

    Miller, P.

    2006-05-01

    Students Collecting Real-Time Data The Hawaiian Islands Humpback Whale National Marine Sanctuary has created opportunities for middle and high school students to become Student Researchers and to be involved in real-time marine data collection. It is important that we expose students to different fields of science and encourage them to enter scientific fields of study. The Humpback Whale Sanctuary has an education visitor center in Kihei, Maui. Located right on the beach, the site has become a living classroom facility. There is a traditional Hawaiian fishpond fronting the property. The fishpond wall is being restored, using traditional methods. The site has the incredible opportunity of incorporating Hawaiian cultural practices with scientific studies. The Sanctuary offers opportunities for students to get involved in monitoring and data collection studies. Invasive Seaweed Study: Students are collecting data on invasive seaweed for the University of Hawaii. They pull a large net through the shallow waters. Seaweed is sorted, identified and weighed. The invasive seaweeds are removed. The data is recorded and sent to UH. Remote controlled monitoring boats: The sanctuary has 6 boogie board sized remote controlled boats used to monitor reefs. Boats have a camera with lights on the underside. The boats have water quality monitoring devices and GPS units. The video from the underwater camera is transmitted via a wireless transmission. Students are able to monitor the fish, limu and invertebrate populations on the reef and collect water quality data via television monitors or computers. The boat can also pull a small plankton tow net. Data is being compiled into data bases. Artificial Reef Modules: The Sanctuary has a scientific permit from the state to build and deploy artificial reef modules. High school students are designing and building modules. These are deployed out in the Fishpond fronting the Sanctuary site and students are monitoring them on a weekly basis

  13. Staggered Costas signals

    NASA Astrophysics Data System (ADS)

    Freedman, Avraham; Levanon, Nadav

    1986-11-01

    A radar signal, based on coherent processing of a train of staggered Costas (1984) bursts is based on a minimum number of collocation of their individual ambiguity function sidelobe peaks. The resulting ambiguity function combines qualities of both 'thumbtack' and 'bed of nails' signals. Comparison with linear-FM, V-FM, and complementary phase coded signals is given, as well as comparison with hybrid signals consisting of both phase and frequency coding.

  14. Research in Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  15. Staggered chiral random matrix theory

    SciTech Connect

    Osborn, James C.

    2011-02-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  16. Real time programming environment for Windows

    SciTech Connect

    LaBelle, D.R.

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  17. The ALMA Real Time Control System

    NASA Astrophysics Data System (ADS)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  18. Quantitative real-time imaging of glutathione

    USDA-ARS?s Scientific Manuscript database

    Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can quantitatively monitor the real-time ...

  19. Real-time medical applications and telecommunications.

    PubMed

    Stravs, M

    1999-01-01

    Telecommunications play an important role in telemedicine. Many forms of telecommunication services based on different telecommunication technologies are developed for various needs. The paper deals with complex real-time applications which demand high telecommunication requirements. At the beginning, medical applications are categorised and real-time applications qualified as multimedia applications. Requirements for multimedia elements are listed separately. Later on, short introduction of related telecommunication protocols is given. Real-time medical applications can show their ability in case of guaranteed quality of services delivered by telecommunication network as it is explained in the end.

  20. Achieving real-time performance in FIESTA

    NASA Technical Reports Server (NTRS)

    Wilkinson, William; Happell, Nadine; Miksell, Steve; Quillin, Robert; Carlisle, Candace

    1988-01-01

    The Fault Isolation Expert System for TDRSS Applications (FIESTA) is targeted for operation in a real-time online environment. Initial stages of the prototype development concentrated on acquisition and representation of the knowledge necessary to isolate faults in the TDRSS Network. Recent efforts focused on achieving real-time performance including: a discussion of the meaning of FIESTA real-time requirements, determination of performance levels (benchmarking) and techniques for optimization. Optimization techniques presented include redesign of critical relations, filtering of redundant data and optimization of patterns used in rules. Results are summarized.

  1. Real Time Computer Graphics From Body Motion

    NASA Astrophysics Data System (ADS)

    Fisher, Scott; Marion, Ann

    1983-10-01

    This paper focuses on the recent emergence and development of real, time, computer-aided body tracking technologies and their use in combination with various computer graphics imaging techniques. The convergence of these, technologies in our research results, in an interactive display environment. in which multipde, representations of a given body motion can be displayed in real time. Specific reference, to entertainment applications is described in the development of a real time, interactive stage set in which dancers can 'draw' with their bodies as they move, through the space. of the stage or manipulate virtual elements of the set with their gestures.

  2. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  3. Real-time monitoring of landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Baum, Rex L.; Kean, Jason W.; Schulz, William H.; Highland, Lynn M.

    2012-01-01

    Landslides cause fatalities and property damage throughout the Nation. To reduce the impact from hazardous landslides, the U.S. Geological Survey develops and uses real-time and near-real-time landslide monitoring systems. Monitoring can detect when hillslopes are primed for sliding and can provide early indications of rapid, catastrophic movement. Continuous information from up-to-the-minute or real-time monitoring provides prompt notification of landslide activity, advances our understanding of landslide behavior, and enables more effective engineering and planning efforts.

  4. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  5. Achieving real-time performance in FIESTA

    NASA Technical Reports Server (NTRS)

    Wilkinson, William; Happell, Nadine; Miksell, Steve; Quillin, Robert; Carlisle, Candace

    1988-01-01

    The Fault Isolation Expert System for TDRSS Applications (FIESTA) is targeted for operation in a real-time online environment. Initial stages of the prototype development concentrated on acquisition and representation of the knowledge necessary to isolate faults in the TDRSS Network. Recent efforts focused on achieving real-time performance including: a discussion of the meaning of FIESTA real-time requirements, determination of performance levels (benchmarking) and techniques for optimization. Optimization techniques presented include redesign of critical relations, filtering of redundant data and optimization of patterns used in rules. Results are summarized.

  6. Staggered Multiple-PRF Ultrafast Color Doppler.

    PubMed

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  7. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  8. Interferometer real time control development for SIM

    NASA Astrophysics Data System (ADS)

    Bell, Charles E.

    2003-02-01

    Real Time Control (RTC) for the Space Interferometry Mission will build on the real time core interferometer control technology under development at JPL since the mid 1990s, with heritage from the ground based MKII and Palomar Testbed Interferometer projects developed in the late '80s and early '90s. The core software and electronics technology for SIM interferometer real time control is successfully operating on several SIM technology demonstration testbeds, including the Real-time Interferometer Control System Testbed, System Testbed-3, and the Microarcsecond Metrology testbed. This paper provides an overview of the architecture, design, integration, and test of the SIM flight interferometer real time control to meet challenging flight system requirements for the high processor throughput, low-latency interconnect, and precise synchronization to support microarcsecond-level astrometric measurements for greater than five years at 1 AU in Earth-trailing orbit. The electronics and software architecture of the interferometer real time control core and its adaptation to a flight design concept are described. Control loops for pointing and pathlength control within each of four flight interferometers and for coordination of control and data across interferometers are illustrated. The nature of onboard data processing to fit average downlink rates while retaining post-processed astrometric measurement precision and accuracy is also addressed. Interferometer flight software will be developed using a software simulation environment incorporating models of the metrology and starlight sensors and actuators to close the real time control loops. RTC flight software and instrument flight electronics will in turn be integrated utilizing the same simulation architecture for metrology and starlight component models to close real time control loops and verify RTC functionality and performance prior to delivery to flight interferometer system integration at Lockheed Martin

  9. Real-Time Ada Problem Study

    DTIC Science & Technology

    1989-03-24

    define this set of problems. The authors were chosen because of their proven expertise in real-time development with Ada. They could enrich the results of...for Real-Time Embedded Systems". LabTek Corporation, the author , had proven expertise in embedded system design utilizing Motorola MC680XO- based...processors. The second report is entitledSoftware Enineering Problems Using Ada in Computers Integral to Weapons Systems. Its author , Sonicraft, had

  10. Real-time scheduling using minimum search

    NASA Technical Reports Server (NTRS)

    Tadepalli, Prasad; Joshi, Varad

    1992-01-01

    In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it sppears that reasonably good schedules can be produced with a relatively shallow search.

  11. Real-time interferometric synthetic aperture microscopy

    PubMed Central

    Ralston, Tyler S.; Marks, Daniel L.; Carney, P. Scott; Boppart, Stephen A.

    2010-01-01

    An interferometric synthetic aperture microscopy (ISAM) system design with real-time 2D cross-sectional processing is described in detail. The system can acquire, process, and display the ISAM reconstructed images at frame rates of 2.25 frames per second for 512 × 1024 pixel images. This system provides quantitatively meaningful structural information from previously indistinguishable scattering intensities and provides proof of feasibility for future real-time ISAM systems. PMID:18542337

  12. The LAA real-time benchmarks

    SciTech Connect

    Block, R.K.; Krischer, W.; Lone, S.

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  13. Real Time Cockpit Resource Management (CRM) Training

    DTIC Science & Technology

    2010-10-01

    i AFRL-RH-AZ-TR-2011-0005 Real Time Cockpit Resource Management ( CRM ) Training David Kaiser Jeffery Eberhart Chris Butler Gregg...Resource Management ( CRM ) Training 5a. CONTRACT NUMBER FA8650-08-C-6848 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kaiser, David...283 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 Real Time Cockpit Resource Management ( CRM ) Training 4 Table of

  14. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  15. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  16. Magnetic-free non-reciprocity based on staggered commutation

    PubMed Central

    Reiskarimian, Negar; Krishnaswamy, Harish

    2016-01-01

    Lorentz reciprocity is a fundamental characteristic of the vast majority of electronic and photonic structures. However, non-reciprocal components such as isolators, circulators and gyrators enable new applications ranging from radio frequencies to optical frequencies, including full-duplex wireless communication and on-chip all-optical information processing. Such components today dominantly rely on the phenomenon of Faraday rotation in magneto-optic materials. However, they are typically bulky, expensive and not suitable for insertion in a conventional integrated circuit. Here we demonstrate magnetic-free linear passive non-reciprocity based on the concept of staggered commutation. Commutation is a form of parametric modulation with very high modulation ratio. We observe that staggered commutation enables time-reversal symmetry breaking within very small dimensions (λ/1,250 × λ/1,250 in our device), resulting in a miniature radio-frequency circulator that exhibits reduced implementation complexity, very low loss, strong non-reciprocity, significantly enhanced linearity and real-time reconfigurability, and is integrated in a conventional complementary metal–oxide–semiconductor integrated circuit for the first time. PMID:27079524

  17. Magnetic-free non-reciprocity based on staggered commutation.

    PubMed

    Reiskarimian, Negar; Krishnaswamy, Harish

    2016-04-15

    Lorentz reciprocity is a fundamental characteristic of the vast majority of electronic and photonic structures. However, non-reciprocal components such as isolators, circulators and gyrators enable new applications ranging from radio frequencies to optical frequencies, including full-duplex wireless communication and on-chip all-optical information processing. Such components today dominantly rely on the phenomenon of Faraday rotation in magneto-optic materials. However, they are typically bulky, expensive and not suitable for insertion in a conventional integrated circuit. Here we demonstrate magnetic-free linear passive non-reciprocity based on the concept of staggered commutation. Commutation is a form of parametric modulation with very high modulation ratio. We observe that staggered commutation enables time-reversal symmetry breaking within very small dimensions (λ/1,250 × λ/1,250 in our device), resulting in a miniature radio-frequency circulator that exhibits reduced implementation complexity, very low loss, strong non-reciprocity, significantly enhanced linearity and real-time reconfigurability, and is integrated in a conventional complementary metal-oxide-semiconductor integrated circuit for the first time.

  18. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  19. Real-Time Gauge/Gravity Duality

    SciTech Connect

    Skenderis, Kostas; Rees, Balt C. van

    2008-08-22

    We present a general prescription for the holographic computation of real-time n-point functions in nontrivial states. In quantum field theory such real-time computations involve a choice of a time contour in the complex time plane. The holographic prescription amounts to 'filling in' this contour with bulk solutions: real segments of the contour are filled in with Lorentzian solutions while imaginary segments are filled in with Riemannian solutions and appropriate matching conditions are imposed at the corners of the contour. We illustrate the general discussion by computing the 2-point function of a scalar operator using this prescription and by showing that this leads to an unambiguous answer with the correct i{epsilon} insertions.

  20. Imaging of living cells in real time

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.; Nikandrov, Serguei L.

    1996-12-01

    Parameters of intrinsic cell motility is one of the cell activity characteristics which can be measured in real-time. For evaluation of certain organelles velocity we propose to use high sensitivity of computer-aided phase microscope airyscan to local phase changes connected with refractive index. This method is based on periodical scanning of cell profile in direction perpendicular to organelles movement. Analysis of the obtained 2-dimensional time-coordinate matrix allows us to define organelle velocity in quasi-real time and areas of cell activity. The experiments with onion cells confirm the method applicability for cell activity investigation.

  1. Quantitative Real-Time PCR: Recent Advances.

    PubMed

    Singh, Charanjeet; Roy-Chowdhuri, Sinchita

    2016-01-01

    Quantitative real-time polymerase chain reaction is a technique for simultaneous amplification and product quantification of a target DNA as the process takes place in real time in a "closed-tube" system. Although this technique can provide an absolute quantification of the initial template copy number, quantification relative to a control sample or second sequence is typically adequate. The quantification process employs melting curve analysis and/or fluorescent detection systems and can provide amplification and genotyping in a relatively short time. Here we describe the properties and uses of various fluorescent detection systems used for quantification.

  2. Cascadia's Staggering Losses

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Vogt, B.

    2001-05-01

    Recent worldwide earthquakes have resulted in staggering losses. The Northridge, California; Kobe, Japan; Loma Prieta, California; Izmit, Turkey; Chi-Chi, Taiwan; and Bhuj, India earthquakes, which range from magnitudes 6.7 to 7.7, have all occurred near populated areas. These earthquakes have resulted in estimated losses between \\3 and \\300 billion, with tens to tens of thousands of fatalities. Subduction zones are capable of producing the largest earthquakes. The 1939 M7.8 Chilean, the 1960 M9.5 Chilean, the 1964 M9.2 Alaskan, the 1970 M7.8 Peruvian, the 1985 M7.9 Mexico City and the 2001 M7.7 Bhuj earthquakes are damaging subduction zone quakes. The Cascadia fault zone poses a tremendous hazard in the Pacific Northwest due to the ground shaking and tsunami inundation hazards combined with the population. To address the Cascadia subduction zone threat, the Oregon Department of Geology and Mineral Industries conducted a preliminary statewide loss study. The 1998 Oregon study incorporated a M8.5 quake, the influence of near surface soil effects and default building, social and economic data available in FEMA's HAZUS97 software. Direct financial losses are projected at over \\$12 billion. Casualties are estimated at about 13,000. Over 5,000 of the casualties are estimated to result in fatalities from hazards relating to tsunamis and unreinforced masonry buildings.

  3. Hard Real-Time: C++ Versus RTSJ

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel L.; Reinholtz, William K.

    2004-01-01

    In the domain of hard real-time systems, which language is better: C++ or the Real-Time Specification for Java (RTSJ)? Although ordinary Java provides a more productive programming environment than C++ due to its automatic memory management, that benefit does not apply to RTSJ when using NoHeapRealtimeThread and non-heap memory areas. As a result, RTSJ programmers must manage non-heap memory explicitly. While that's not a deterrent for veteran real-time programmers-where explicit memory management is common-the lack of certain language features in RTSJ (and Java) makes that manual memory management harder to accomplish safely than in C++. This paper illustrates the problem for practitioners in the context of moving data and managing memory in a real-time producer/consumer pattern. The relative ease of implementation and safety of the C++ programming model suggests that RTSJ has a struggle ahead in the domain of hard real-time applications, despite its other attractive features.

  4. Visualization of Real-Time Data

    NASA Technical Reports Server (NTRS)

    Stansifer, Ryan; Engrand, Peter

    1996-01-01

    In this project we explored various approaches to presenting real-time data from the numerous systems monitored on the space shuttle to computer users. We examined the approach that several projects at the Kennedy Space Center (KSC) used to accomplish this. We undertook to build a prototype system to demonstrate that the Internet and the Java programming language could be used to present the real-time data conveniently. Several Java programs were developed that presented real-time data in different forms including one form that emulated the display screens of the PC GOAL system which is familiar to many at KSC. Also, we developed several communications programs to supply the data continuously. Furthermore, a framework was created using the World Wide Web (WWW) to organize the collection and presentation of the real-time data. We believe our demonstration project shows the great flexibility of the approach. We had no particular use of the data in mind, instead we wanted the most general and the least complex framework possible. People who wish to view data need only know how to use a WWW browser and the address (the URL). People wanting to build WWW documents containing real-time data need only know the values of a few parameters, they do not need to program in Java or any other language. These are stunning advantages over more monolithic systems.

  5. Personnel real time dosimetry in interventional radiology.

    PubMed

    Servoli, L; Bissi, L; Fabiani, S; Magalotti, D; Placidi, P; Scorzoni, A; Calandra, A; Cicioni, R; Chiocchini, S; Dipilato, A C; Forini, N; Paolucci, M; Di Lorenzo, R; Cappotto, F P; Scarpignato, M; Maselli, A; Pentiricci, A

    2016-12-01

    Interventional radiology and hemodynamic procedures have rapidly grown in number in the past decade, increasing the importance of personnel dosimetry not only for patients but also for medical staff. The optimization of the absorbed dose during operations is one of the goals that fostered the development of real-time dosimetric systems. Indeed, introducing proper procedure optimization, like correlating dose rate measurements with medical staff position inside the operating room, the absorbed dose could be reduced. Real-time dose measurements would greatly facilitate this task through real-time monitoring and automatic data recording. Besides real-time dose monitoring could allow automatic data recording. In this work, we will describe the calibration and validation of a wireless real-time prototype dosimeter based on a new sensor device (CMOS imager). The validation measurement campaign in clinical conditions has demonstrated the prototype capability of measuring dose-rates with a frequency in the range of few Hz, and an uncertainty smaller than 10%. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Real-time Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-Ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-01-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  7. A Methodology for Tsunami Wave Propagation Forecast in Real Time

    NASA Astrophysics Data System (ADS)

    Wang, D.; Walsh, D.; Becker, N. C.; Fryer, G. J.

    2009-12-01

    U.S. Tsunami Warning Centers (TWCs) forecast tsunami wave heights using databases of pre-computed tsunami scenarios such as the Standby Inundation Forecasting of Tsunamis (SIFT) model developed by the Pacific Marine Environmental Laboratory and the database model of the West Coast and Alaska Tsunami Warning Center. These models, however, cannot anticipate all possible earthquake hypocenters and focal mechanisms. We have therefore developed a new wave-height model complimentary to the database approach that uses real-time earthquake parameters to produce a real-time wave propagation forecast, a model we call real-time inundation forecasting of tsunamis (RIFT). Our model employs a mass-conserving second order finite difference method of linear shallow water equations with a leapfrog scheme in time and a staggered grid in space. The model's user may customize its domain by selecting one of twenty predefined ocean basins and marginal seas. The user may also let RIFT choose the computation domain automatically, in which case it will determine its computational domain by calculating tsunami travel time for the earthquake to cover the region specified by the TWCs' warning criteria based on the earthquake's magnitude. For example, the US Tsunami Warning Centers will issue a Tsunami Warning for the region within three hours travel time from the epicenter of a magnitude 7.9 earthquake. We demonstrate that RIFT can produce a tsunami wave-height forecast for this region at 4-arc-minute resolution in less than one minute using a modern 4-CPU Linux workstation, including the time needed to dynamically compute the boundaries of the domain. The user may also use smaller domains to generate a tsunami forecast much more quickly when an earthquake poses only a local tsunami threat, such as a large earthquake in Hawaii. In this case, the model can forecast tsunami wave heights for the entire state of Hawaii in less than five seconds at 1-arc-minute resolution. RIFT needs an earthquake

  8. Feedback as Real-Time Constructions

    ERIC Educational Resources Information Center

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  9. Feedback as Real-Time Constructions

    ERIC Educational Resources Information Center

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  10. Making Real-Time Data "Real" for General Interest Users

    NASA Astrophysics Data System (ADS)

    Hotaling, L.

    2003-04-01

    Helping educators realize the benefits of integrating technology into curricula to effectively engage student learning and improve student achievement, particularly in science and mathematics, is the core mission of the Center for Improved Engineering and Science Education (CIESE). To achieve our mission, we focus on projects utilizing real-time data available from the Internet, and collaborative projects utilizing the Internet's potential to reach peers and experts around the world. As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (COSEE), the Center for Improved Engineering and Science Education (CIESE), is committed to delivering relevant ocean science education to diverse audiences, including K-12 teachers, students, coastal managers, families and tourists. The highest priority of the Mid-Atlantic COSEE is to involve scientists and educators in the translation of data and information from the coastal observatories into instructional materials and products usable by educators and the public. A combination of three regional observing systems, the New Jersey Shelf Observing System (NJSOS), Chesapeake Bay Observing System (CBOS), and the York River observing system will provide the scientific backbone for an integrated program of science and education that improves user access to, and understanding of, modern ocean science and how it affects our daily lives. At present, the Mid-Atlantic COSEE offers three projects that enable users to apply and validate scientific concepts to real world situations. (1) The Gulf Stream Voyage is an online multidisciplinary project that utilizes both real-time data and primary source materials to help guide students to discover the science and history of the Gulf Stream current. (2) C.O.O.L. Classroom is an online project that utilizes concepts and real-time data collected through the NJSOS. The C.O.O.L. Classroom is based on the concept of the Rutgers-IMCS Coastal Ocean Observation Laboratory, a real

  11. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  12. Real-time inspection by submarine images

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Zingaretti, Primo; Conte, Giuseppe

    1996-10-01

    A real-time application of computer vision concerning tracking and inspection of a submarine pipeline is described. The objective is to develop automatic procedures for supporting human operators in the real-time analysis of images acquired by means of cameras mounted on underwater remotely operated vehicles (ROV) Implementation of such procedures gives rise to a human-machine system for underwater pipeline inspection that can automatically detect and signal the presence of the pipe, of its structural or accessory elements, and of dangerous or alien objects in its neighborhood. The possibility of modifying the image acquisition rate in the simulations performed on video- recorded images is used to prove that the system performs all necessary processing with an acceptable robustness working in real-time up to a speed of about 2.5 kn, widely greater than that the actual ROVs and the security features allow.

  13. Network protocols for real-time applications

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1987-01-01

    The Fiber Distributed Data Interface (FDDI) and the SAE AE-9B High Speed Ring Bus (HSRB) are emerging standards for high-performance token ring local area networks. FDDI was designed to be a general-purpose high-performance network. HSRB was designed specifically for military real-time applications. A workshop was conducted at NASA Ames Research Center in January, 1987 to compare and contrast these protocols with respect to their ability to support real-time applications. This report summarizes workshop presentations and includes an independent comparison of the two protocols. A conclusion reached at the workshop was that current protocols for the upper layers of the Open Systems Interconnection (OSI) network model are inadequate for real-time applications.

  14. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  15. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  16. Real-time photo-magnetic imaging

    PubMed Central

    Nouizi, Farouk; Erkol, Hakan; Luk, Alex; Unlu, Mehmet B.; Gulsen, Gultekin

    2016-01-01

    We previously introduced a new high resolution diffuse optical imaging modality termed, photo-magnetic imaging (PMI). PMI irradiates the object under investigation with near-infrared light and monitors the variations of temperature using magnetic resonance thermometry (MRT). In this paper, we present a real-time PMI image reconstruction algorithm that uses analytic methods to solve the forward problem and assemble the Jacobian matrix much faster. The new algorithm is validated using real MRT measured temperature maps. In fact, it accelerates the reconstruction process by more than 250 times compared to a single iteration of the FEM-based algorithm, which opens the possibility for the real-time PMI. PMID:27867701

  17. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  18. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  19. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  20. Software Package For Real-Time Graphics

    NASA Technical Reports Server (NTRS)

    Malone, Jacqueline C.; Moore, Archie L.

    1991-01-01

    Software package for master graphics interactive console (MAGIC) at Western Aeronautical Test Range (WATR) of NASA Ames Research Center provides general-purpose graphical display system for real-time and post-real-time analysis of data. Written in C language and intended for use on workstation of interactive raster imaging system (IRIS) equipped with level-V Unix operating system. Enables flight researchers to create their own displays on basis of individual requirements. Applicable to monitoring of complicated processes in chemical industry.

  1. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  2. Robotic real-time radiographic inspection system

    SciTech Connect

    McNair, J.

    1987-01-01

    A computer-controlled real-time radiographic system with remote robotic material handling has been developed and installed at the US Army's Yuma Proving Ground. This system is used for the nondestructive examination of a variety of munition types tested at the proving ground. This paper describes the system and its capabilities. The system consists of an overhead robot for material handling, a five-axis manipulator for positioning the item being inspected, and the real-time radiographic image acquisition and analysis equipment. The system is fully automated and uses a single minicomputer as the system controller.

  3. Real-time elastography of the prostate.

    PubMed

    Junker, D; De Zordo, T; Quentin, M; Ladurner, M; Bektic, J; Horniger, W; Jaschke, W; Aigner, F

    2014-01-01

    Palpation of organs is one of the oldest clinical examination techniques, for instance, if you think of the palpation of the breast or the digital rectal examination of the prostate, where hard palpable regions are suspicious for cancer. This is the basic principle of real-time elastography, an ultrasound technique, which is able to visualise tissue elasticity. Since prostate cancer features an increased stiffness due to the higher cell and vessel density than the normal surrounding tissue, real-time elastography has been used for several years for prostate cancer detection. This review introduces the different techniques of ultrasound elastography and furthermore summarises its limitations and potentials.

  4. Real-Time Elastography of the Prostate

    PubMed Central

    Junker, D.; De Zordo, T.; Quentin, M.; Ladurner, M.; Bektic, J.; Horniger, W.; Jaschke, W.; Aigner, F.

    2014-01-01

    Palpation of organs is one of the oldest clinical examination techniques, for instance, if you think of the palpation of the breast or the digital rectal examination of the prostate, where hard palpable regions are suspicious for cancer. This is the basic principle of real-time elastography, an ultrasound technique, which is able to visualise tissue elasticity. Since prostate cancer features an increased stiffness due to the higher cell and vessel density than the normal surrounding tissue, real-time elastography has been used for several years for prostate cancer detection. This review introduces the different techniques of ultrasound elastography and furthermore summarises its limitations and potentials. PMID:24967334

  5. High energy real-time imaging studies

    SciTech Connect

    Haskins, J.J.; Dolan, K.W.; Perkins, D.E.; Rikard, D.; Schneberk, D.J.

    1993-04-01

    Performance characteristics of high energy real-time radiography (RTR) systems were optimized by interchanging components and varying optical coupling methods. Phosphor screens, fiber optic scintillation plates, monolithic high density glass scintillation plates, mirror coatings, different cameras and integration times were studied. X-ray sources were 4- and 9-MeV linear accelerators. High density monolithic glass, high resolution and wide dynamic range CCD cameras, and special focusing and fixturing methods have provided significantly improved spatial resolution and contrast for our high energy real-rime imaging. RTR systems with improved performance characteristics and proper translational/rotational staging were adapted for computed tomography applications.

  6. Software Package For Real-Time Graphics

    NASA Technical Reports Server (NTRS)

    Malone, Jacqueline C.; Moore, Archie L.

    1991-01-01

    Software package for master graphics interactive console (MAGIC) at Western Aeronautical Test Range (WATR) of NASA Ames Research Center provides general-purpose graphical display system for real-time and post-real-time analysis of data. Written in C language and intended for use on workstation of interactive raster imaging system (IRIS) equipped with level-V Unix operating system. Enables flight researchers to create their own displays on basis of individual requirements. Applicable to monitoring of complicated processes in chemical industry.

  7. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  8. Real-time Shakemap implementation in Austria

    NASA Astrophysics Data System (ADS)

    Weginger, Stefan; Jia, Yan; Papi Isaba, Maria; Horn, Nikolaus

    2017-04-01

    ShakeMaps provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. They are automatically generated within a few minutes after occurrence of an earthquake. We tested and included the USGS ShakeMap 4.0 (experimental code) based on python in the Antelope real-time system with local modified GMPE and Site Effects based on the conditions in Austria. The ShakeMaps are provided in terms of Intensity, PGA, PGV and PSA. Future presentation of ShakeMap contour lines and Ground Motion Parameter with interactive maps and data exchange over Web-Services are shown.

  9. Mobile waste inspection real time radiography system

    SciTech Connect

    Vigil, J.; Taggart, D.; Betts, S.; Rael, C.; Martinez, F.; Mendez, J.

    1995-10-01

    The 450-KeV Mobile Real Time Radiography System was designed and purchased to inspect containers of radioactive waste produced at Los Alamos National Laboratory (LANL). The Mobile Real Time Radiography System has the capability of inspecting waste containers of various sizes from 5-gal. buckets to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). The fact that this unit is mobile makes it an attractive alternative to the costly road closures associated with moving waste from the waste generator to storage or disposal facilities.

  10. Real-time ISEE data system

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Baker, D. N.

    1979-01-01

    A real-time ISEE data system directed toward predicting geomagnetic substorms and storms is discussed. Such a system may allow up to 60+ minutes advance warning of magnetospheric substorms and up to 30 minute warnings of geomagnetic storms (and other disturbances) induced by high-speed streams and solar flares. The proposed system utilizes existing capabilities of several agencies (NASA, NOAA, USAF), and thereby minimizes costs. This same concept may be applicable to data from other spacecraft, and other NASA centers; thus, each individual experimenter can receive quick-look data in real time at his or her base institution.

  11. Axial tomography from digitized real time radiography

    SciTech Connect

    Zolnay, A.S.; McDonald, W.M.; Doupont, P.A.; McKinney, R.L.; Lee, M.M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  12. Real-Time Occupancy Change Analyzer

    SciTech Connect

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector to the detected change, it provides the actual x,y position of the change.

  13. Real-time Metadata Capture Implementations

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Arko, R. A.

    2002-12-01

    The current rate of data acquisition in the ocean sciences precludes the manual generation of appropriate metadata after the fact. Recognizing this fact, we have begun to implement methods for creating metadata and inserting them into relational databases in real-time. We have also created web-based tools for watchstanders and maintenance personnel to enter logbook data in real-time. Several examples will be addressed in this poster. Enhancements to the Hudson Interactive River Observatory (HIRO) real-time data logging system have been made that create metadata records and insert them (as SQL transactions over a secure wireless TCP/IP connection) into a relational database in real-time. These records document the start and stop time of individual data files, of sensor-specific data streams and of the logging system as a whole. An interactive watchstanders logbook has been developed and used on the R/V Maurice Ewing to create and log metadata records associated with upgrades to the Hydrosweep DS2 multibeam system. A similar version of this tool is being used to capture the maintenance and update records associated with the HRIO system.

  14. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  15. Efficiency and optimal allocation in the staggered entry design

    USGS Publications Warehouse

    Link, W.A.

    1993-01-01

    The staggered entry design for survival analysis specifies that r left-truncated samples are to be used in estimation of a population survival function. The ith sample is taken at time Bi, from the subpopulation of individuals having survival time exceeding Bi. This paper investigates the performance of the staggered entry design relative to the usual design in which all samples have a common time origin. The staggered entry design is shown to be an attractive alternative, even when not necessitated by logistical constraints. The staggered entry design allows for increased precision in estimation of the right tail of the survival function, especially when some of the data may be censored. A trade-off between the range of values for which the increased precision occurs and the magnitude of the increased precision is demonstrated.

  16. A practical guide to the staggered herringbone mixer

    PubMed Central

    Williams, Manda S.; Longmuir, Kenneth J.; Yager, Paul

    2009-01-01

    An analytical model of mixing in the staggered herringbone mixer (SHM) was derived to estimate mixing parameters and provide practical expressions to guide mixer design and operation for a wide range of possible solutes and flow conditions. Mixing in microfluidic systems has historically been characterized by the mixing of a specific solute system or by the redistribution of flow streams; this approach does not give any insight into the ideal operational parameters of the mixer with an arbitrary real system. For Stokes-flow mixers, mixing can be computed from a relationship between solute diffusivity, flow rate, and mixer length. Confocal microscopy and computational fluid dynamics (CFD) modeling were used to directly determine the extent of mixing for several solutes in the staggered herringbone mixer over a range of Reynolds numbers (Re) and Péclet numbers (Pe); the results were used to develop and evaluate an analytical model of its behavior. Mixing was found to be a function of only Pe and downstream position in the mixer. Required mixer length was proportional to Log(Pe); this analytical model matched well with the confocal data and CFD model for Pe < 5×104, at which point the experiments reached the limit of resolution. For particular solutes, required length and mixing time depend upon Re and diffusivity. This analytical model is applicable to other solute systems, and possibly to other embodiments of the mixer, to enable optimal design, operation, and estimation of performance. PMID:18584088

  17. Real-time distributed multimedia systems

    SciTech Connect

    Rahurkar, S.S.; Bourbakis, N.G.

    1996-12-31

    This paper presents a survey on distributed multimedia systems and discusses real-time issues. In particular, different subsystems are reviewed that impact on multimedia networking, the networking for multimedia, the networked multimedia systems, and the leading edge research and developments efforts and issues in networking.

  18. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  19. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  20. Real Time Grid Reliability Management 2005

    SciTech Connect

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  1. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  2. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  3. Real-time analysis of telemetry data

    NASA Technical Reports Server (NTRS)

    Kao, Simon A.; Laffey, Thomas J.; Schmidt, James L.; Read, Jackson Y.; Dunham, Larry L.

    1987-01-01

    This paper descibes a knowledge-based system for performing real-time monitoring and analysis of telemetry data from the NASA Hubble Space Telescope (HST). In order to handle asynchronous inputs and perform in real time the system consists of three or more separate processes, which run concurrently and communicate via a message passing scheme. The data management process gathers, compresses, and scales the incoming telemetry data befoe sending it to the other tasks. The inferencing process uses the incoming data to perform a real-time analysis of the state and health of the Space Telescope. The I/O process receives telemetry monitors from the data management process, updates its graphical displays in real time, and acts as the interface to the console operator. The three processes may run on the same or different computers. This system is currently under development and is being used to monitor testcases produced by the Bass Telemetry System in the Hardware/Software Integration Facility at Lockheed Missile and Space Co. in Sunnyvale, California.

  4. Real-Time Operating System/360

    NASA Technical Reports Server (NTRS)

    Hoffman, R. L.; Kopp, R. S.; Mueller, H. H.; Pollan, W. D.; Van Sant, B. W.; Weiler, P. W.

    1969-01-01

    RTOS has a cost savings advantage for real-time applications, such as those with random inputs requiring a flexible data routing facility, display systems simplified by a device independent interface language, and complex applications needing added storage protection and data queuing.

  5. Real-time optoacoustic monitoring during thermotherapy

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Motamedi, Massoud

    2000-05-01

    Optoacoustic monitoring of tissue optical properties and speed of sound in real time can provide fast and accurate feedback information during thermotherapy performed with various heating or cooling agents. Amplitude and temporal characteristics of optoacoustic pressure waves are dependent on tissue properties. Detection and measurement of the optoacoustic waves may be used to monitor the extent of tissue hyperthermia, coagulation, or freezing with high resolution and contrast. We studied real-time optoacoustic monitoring of thermal coagulation induced by conductive heating and laser radiation and cryoablation with liquid nitrogen. Q-switched Nd:YAG laser pulses were used as probing radiation to induce optoacoustic waves in tissues. Dramatic changes in optoacoustic signal parameters were detected during tissue freezing and coagulation due to sharp changes in tissue properties. The dimensions of thermally- induced lesions were measured in real time with the optoacoustic technique. Our studies demonstrated that the laser optoacoustic technique is capable of real-time monitoring of tissue coagulation and freezing front with submillimeter spatial resolution. This may allow accurate thermal ablation or cryotherapy of malignant and benign lesions with minimal damage to normal tissues.

  6. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  7. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  8. Real Time Radiation Exposure And Health Risks

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  9. Tradeoffs for real-time hyperspectral analysis

    NASA Astrophysics Data System (ADS)

    Winter, Edwin M.; Schlangen, Michael J.; Hill, Anthony B.; Simi, Christopher G.; Winter, Michael E.

    2002-08-01

    There has been considerable interest in the application of real-time processing techniques to the problem of hyperspectral scene analysis. Recent satellite and aircraft systems can produce data at a rate far faster than the data can be analyzed by interactive computer procedures. Automated and fast procedures for preparing the data for analyst inspection are required for even laboratory use of the large quantities of data. In addition, there are several real-time applications where the data must be processed as it is being acquired. A typical application is a computing system on-board an airplane for operator analysis of the scene as the hyperspectral sensor collects data. In this paper the possible tradeoffs fore rapid analysis are discussed, including choice of algorithm, possible dimensionality reduction, and reduced display level. A real time anomaly detection processing system based on the N- FINDR algorithm has been designed and implemented for the Night Vision Imaging Spectrometer (NVIS). The N-FINDR algorithm is a linear unmixing based algorithm that automatically finds spectral endmembers. The algorithm works by inflating a simplex inside the data, beginning with a random set of pixels. Once these endmember spectra have been found, the image cube can be unmixed using a least-squares approach into a map of fractional abundances of each endmember material in each pixel. In addition to the N-FINDR algorithm, the real-time processing system performs calibration, bad pixel removal, and display of selected fraction planes. The real-time processor is implemented in a commercial Pentium IV computer.

  10. Object detection in real-time

    NASA Astrophysics Data System (ADS)

    Solder, Ulrich; Graefe, Volker

    1991-03-01

    An algorithm working on monocular gray-scale image sequences for object detection combined with a road tracker is presented. This algorithm appropriate for the real-time demands of an autonomous car driving with speeds over 40 km/h may be used for triggering obstacle avoidance maneuvers such as coming to a safe stop automatically in front of an obstacle or following another car. Moving and static objects have been detected in real-world experiments on various types of roads even under unfavorable weather conditions. . Morgenthaler and

  11. Real-Time Dynamics of String Breaking

    NASA Astrophysics Data System (ADS)

    Hebenstreit, F.; Berges, J.; Gelfand, D.

    2013-11-01

    We study the real-time dynamics of string breaking in quantum electrodynamics in one spatial dimension. A two-stage process with a clear separation of time and energy scales for the fermion-antifermion pair creation and subsequent charge separation leading to the screening of external charges is found. Going away from the traditional setup of external static charges, we establish the phenomenon of multiple string breaking by considering dynamical charges flying apart.

  12. Applications of real-time holography

    NASA Astrophysics Data System (ADS)

    Feinberg, J.

    1985-01-01

    Holographic principles are discussed, with a description of the steps of hologram production and reconstruction and the materials used in storage of the images. Real-time holography applications, including photolithography, double-exposure interferometry, time-averaged holography, parallel optical processing, optical phase conjugation, beam steering, and moving holograms, are described in detail. In addition, current areas of active research and some experimental applications are discussed.

  13. Nonlinear Real-Time Optical Signal Processing.

    DTIC Science & Technology

    1981-06-30

    bandwidth and space-bandwidth products. Real-time homonorphic and loga- rithmic filtering by halftone nonlinear processing has been achieved. A...Page ABSTRACT 1 1. RESEARCH OBJECTIVES AND PROGRESS 3 I-- 1.1 Introduction and Project overview 3 1.2 Halftone Processing 9 1.3 Direct Nonlinear...time homomorphic and logarithmic filtering by halftone nonlinear processing has been achieved. A detailed analysis of degradation due to the finite gamma

  14. Real Time Pricing and the Real Live Firm

    SciTech Connect

    Moezzi, Mithra; Goldman, Charles; Sezgen, Osman; Bharvirkar, Ranjit; Hopper, Nicole

    2004-05-26

    Energy economists have long argued the benefits of real time pricing (RTP) of electricity. Their basis for modeling customers response to short-term fluctuations in electricity prices are based on theories of rational firm behavior, where management strives to minimize operating costs and optimize profit, and labor, capital and energy are potential substitutes in the firm's production function. How well do private firms and public sector institutions operating conditions, knowledge structures, decision-making practices, and external relationships comport with these assumptions and how might this impact price response? We discuss these issues on the basis of interviews with 29 large (over 2 MW) industrial, commercial, and institutional customers in the Niagara Mohawk Power Corporation service territory that have faced day-ahead electricity market prices since 1998. We look at stories interviewees told about why and how they respond to RTP, why some customers report that they can't, and why even if they can, they don't. Some firms respond as theorized, and we describe their load curtailment strategies. About half of our interviewees reported that they were unable to either shift or forego electricity consumption even when prices are high ($0.50/kWh). Reasons customers gave for why they weren't price-responsive include implicit value placed on reliability, pricing structures, lack of flexibility in adjusting production inputs, just-in-time practices, perceived barriers to onsite generation, and insufficient time. We draw these observations into a framework that could help refine economic theory of dynamic pricing by providing real-world descriptions of how firms behave and why.

  15. Real Time RF Simulator (RTS) and control

    SciTech Connect

    Cancelo, G.; Armiento, C.; Treptow, K.; Vignoni, A.; Zmuda, T.; /Fermilab

    2008-10-01

    The multi-cavity RTS allows LLRF algorithm development and lab testing prior to commissioning with real cavities and cryomodules. The RTS is a valuable tool since it models the functions, errors and disturbances of real RF systems. The advantage of a RTS over an off-line simulator is that it can be implemented on the actual LLRF hardware, on the same FPGA and processor, and run at the same speed of the LLRF control loop. Additionally the RTS can be shared by collaborators who do not have access to RF systems or when the systems are not available to LLRF engineers. The RTS simulator incorporates hardware, firmware and software errors and limitations of a real implementation, which would be hard to identify and time consuming to model in off-line simulations.

  16. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  17. Real time processor for array speckle interferometry

    NASA Technical Reports Server (NTRS)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-01-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  18. Real time processor for array speckle interferometry

    NASA Technical Reports Server (NTRS)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-01-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  19. Real Time Correction of Aircraft Flight Fonfiguration

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.

  20. A feedback control system for real-time formant estimation. I--Static and dynamic analysis for sinusoidal input signals.

    PubMed

    Zierhofer, C M; Hochmair, E S

    1993-09-01

    This paper presents a novel analog scheme suitable for the real-time estimation of formant frequencies. Formant tracking is based on a feedback technique which uses both the amplitude and phase characteristics of two stagger-tuned bandpass filters to give an improved dynamic behavior. The implementation of the system requires a small number of components, and is practical for low-power applications. An analysis of the static and dynamic behavior is given for sinusoidal input signals. The transient response is independent of the amplitude level of the input signal. The system is designed for second formant detection in a cochlear prosthesis system.

  1. Real-Time Seismology in Portugal

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Marreiros, C.; Carvalho, S.; Vales, D.; Lima, V.; Carrilho, F.

    2012-12-01

    Portugal is located next to the plate boundary between Eurasia (Iberia) and Africa (Nubia). The country has been repeatedly affected by some of the largest earthquakes, both onshore and offshore, in the historical European record, including the largest historical European earthquake, the great Lisbon earthquake of 1755 (~M8.5). The Portuguese territory has suffered directly the consequences of strong ground shaking (collapse of buildings, etc) and also some of the most destructive consequences of earthquakes (e.g. tsunamis, fires, etc). However, the rate of tectonic deformation in the Portuguese territory is low (the Eurasian-African plates converge at a rate of ~ 5 mm/yr), which results in long recurrence intervals between earthquakes. This low to moderate rate of seismic activity has two major negative effects: 1) it is difficult to study the regional seismo-tectonics with traditional passive methods; 2) the population is little aware of earthquake risk and unprepared to react in case of disaster. In this scenario, real-time seismology is key to monitoring earthquake crisis in real-time, providing early warnings about potentially destructive events, and assisting in the channeling of recovery efforts in case of disaster. In this paper we will present the real-time algorithms implemented at Instituto de Meteorologia (IM), the institution responsible for seismic monitoring in Portugal. In particular, we will focus on the following aspects: 1) Data collection and real-time transmission to the headquarters. Broadband seismological stations are owned and operated by five different institutions. The last years have witnessed an effort for integration, and presently most data arrives at IM lab in real-time. 2) Earthquake location and local magnitude determination. Data is automatically analyzed in order to obtain a first earthquake hypocenter and ML. While this process is mostly automatic, it still requires the revision by an operator, who is available 24h. 3

  2. A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers

    NASA Astrophysics Data System (ADS)

    Tavelli, Maurizio; Dumbser, Michael

    2017-07-01

    We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In

  3. Real-time earthquake data feasible

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.

  4. CUDA-based real time surgery simulation.

    PubMed

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  5. Real-time video image processing

    NASA Astrophysics Data System (ADS)

    Smedley, Kirk G.; Yool, Stephen R.

    1990-11-01

    Lockheed has designed and implemented a prototype real-time Video Enhancement Workbench (VEW) using commercial offtheshelf hardware and custom software. The hardware components include a Sun workstation Aspex PIPE image processor time base corrector VCR video camera and realtime disk subsystem. A cornprehensive set of image processing functions can be invoked by the analyst at any time during processing enabling interactive enhancement and exploitation of video sequences. Processed images can be transmitted and stored within the system in digital or video form. VEW also provides image output to a laser printer and to Interleaf technical publishing software.

  6. AMON: Transition to real-time operations

    NASA Astrophysics Data System (ADS)

    Cowen, D. F.; Keivani, A.; Tešić, G.

    2016-04-01

    The Astrophysical Multimessenger Observatory Network (AMON) will link the world's leading high-energy neutrino, cosmic-ray, gamma-ray and gravitational wave observatories by performing real-time coincidence searches for multimessenger sources from observatories' subthreshold data streams. The resulting coincidences will be distributed to interested parties in the form of electronic alerts for real-time follow-up observation. We will present the science case, design elements, current and projected partner observatories, status of the AMON project, and an initial AMON-enabled analysis. The prototype of the AMON server has been online since August 2014 and processing archival data. Currently, we are deploying new high-uptime servers and will be ready to start issuing alerts as early as winter 2015/16.

  7. Real-time imaging of quantum entanglement.

    PubMed

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  8. System Equivalent for Real Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Lin, Xi

    2011-07-01

    The purpose of this research is to develop a method of making system equivalents for the Real Time Digital Simulator (RTDS), which should enhance its capability of simulating large power systems. The proposed equivalent combines a Frequency Dependent Network Equivalent (FDNE) for the high frequency electromagnetic transients and a Transient Stability Analysis (TSA) type simulation block for the electromechanical transients. The frequency dependent characteristic for FDNE is obtained by curve-fitting frequency domain admittance characteristics using the Vector Fitting method. An approach for approximating the frequency dependent characteristic of large power networks from readily available typical power-flow data is also introduced. A new scheme of incorporating TSA solution in RTDS is proposed. This report shows how the TSA algorithm can be adapted to a real time platform. The validity of this method is confirmed with examples, including the study of a multi in-feed HVDC system based network.

  9. Real-time remote scientific model validation

    NASA Technical Reports Server (NTRS)

    Frainier, Richard; Groleau, Nicolas

    1994-01-01

    This paper describes flight results from the use of a CLIPS-based validation facility to compare analyzed data from a space life sciences (SLS) experiment to an investigator's preflight model. The comparison, performed in real-time, either confirms or refutes the model and its predictions. This result then becomes the basis for continuing or modifying the investigator's experiment protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator team are able to react to their experiment data in real time. This facility, part of a larger science advisor system called Principal Investigator in a Box, was flown on the space shuttle in October, 1993. The software system aided the conduct of a human vestibular physiology experiment and was able to outperform humans in the tasks of data integrity assurance, data analysis, and scientific model validation. Of twelve preflight hypotheses associated with investigator's model, seven were confirmed and five were rejected or compromised.

  10. The Real-Time Data Distribution Service

    NASA Astrophysics Data System (ADS)

    Corsaro, A.; Karoui, R.; Richard-Foy, M.

    2011-08-01

    A large class of Aerospace applications, such as, very large telescopes, shuttle launch systems, ground satellite systems, etc., are characterised by the need of distributing very large volumes of data in real-time. Some of this applications, especially those involved in the control of telescopes mirrors or launch systems require that the system predictability is maintained in face of partial failure and overload.The Data Distribution Service of Real-Time Systems (DDS) is an Object Management Group standard that was introduced in 2004 to address the needs of applications requiring high performance and determinism. Since its inception, implementation of this standard have been adopted in different domains, such as Aerospace, Defence, Capital Market, and SCADA. This paper introduces the key features of DDS, provides some performance characterisation of OpenSplice DDS, an Open Source DDS implementation, and concludes by providing a use case to Aerospace where DDS is applied to overcome APEX ARINC653 communication system limitations.

  11. Visualizations for Real-time Pricing Demonstration

    SciTech Connect

    Marinovici, Maria C.; Hammerstrom, Janelle L.; Widergren, Steven E.; Dayley, Greg K.

    2014-10-13

    In this paper, the visualization tools created for monitoring the operations of a real-time pricing demonstration system that runs at a distribution feeder level are presented. The information these tools provide gives insights into demand behavior from automated price responsive devices, distribution feeder characteristics, impact of weather on system’s development, and other significant dynamics. Given the large number of devices that bid into a feeder-level real-time electricity market, new techniques are explored to summarize the present state of the system and contrast that with previous trends as well as future projections. To better understand the system behavior and correctly inform decision-making procedures, effective visualization of the data is imperative.

  12. Real-Time Imaging of Quantum Entanglement

    PubMed Central

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056

  13. Distributed Real-Time Computing with Harness

    SciTech Connect

    Di Saverio, Emanuele; Cesati, Marco; Di Biagio, Christian; Pennella, Guido; Engelmann, Christian

    2007-01-01

    Modern parallel and distributed computing solutions are often built onto a ''middleware'' software layer providing a higher and common level of service between computational nodes. Harness is an adaptable, plugin-based middleware framework for parallel and distributed computing. This paper reports recent research and development results of using Harness for real-time distributed computing applications in the context of an industrial environment with the needs to perform several safety critical tasks. The presented work exploits the modular architecture of Harness in conjunction with a lightweight threaded implementation to resolve several real-time issues by adding three new Harness plug-ins to provide a prioritized lightweight execution environment, low latency communication facilities, and local timestamped event logging.

  14. Nonlinear Real-Time Optical Signal Processing.

    DTIC Science & Technology

    1984-10-01

    DTIC ELECTE I B IIMAGE PROCESSING INSTITUTE 84 11 26 107 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Dota Entered), REPORT DOCUMENTATION...30, 1984 N NONLINEAR REAL-TIME OPTICAL SIGNAL PROCESSING i E~ A.A. Sawchuk, Principal Investigator T.C. Strand and A.R. Tanguay. Jr. October 1, 1984...RDepartment of Electrical Engineering Image Processing institute University of Southern California University Park-MC 0272 Los Angeles, California

  15. Real time computer controlled weld skate

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  16. Real-Time X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Bulthuis, Ronald V.

    1988-01-01

    X-ray imaging instrument adapted to continuous scanning. Modern version of fluoroscope enables rapid x-ray inspection of parts. Developed for detection of buckling in insulated ducts. Uses radiation from radioactive gadolinium or thallium source. Instrument weighs only 6 1/2 lb. Quickly scanned by hand along duct surface, providing real-time image. Based on Lixiscope, developed at Goddard Space Flight Center.

  17. Real-Time Ocean Modeling Systems

    DTIC Science & Technology

    2013-10-22

    2002 2. REPORT TYPE 3. DATES COVERED (From - To) Journal Article 4 . TITLE AND SUBTITLE Real-time 16iebaf Modeling Systems \\&&»A 5a...Director NCST E.O. Hartwig, 7000 Public Affairs (Unclassified/ Unlimited Only), Code 7n30 4 Division, Code Author, Code HQ-NRL 5511/6 (Rev. 12-93...according to the routing in Section 4 . 1. NRL Reports Submit the diskette (if available), manuscript, typed double-spaced, complete with tables

  18. Real-time radiographic inspection facility

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.

    1977-01-01

    A real time radiographic inspection facility has been developed for nondestructive evaluation applications. It consists of an X-ray source, an X-ray sensitive television imaging system, an electronic analog image processing system, and a digital image processing system. The digital image processing system is composed of a computer with the necessary software to drive the overall facility. Descriptions are given of the design strategy, the facility's components, and its current capabilities.

  19. Neural Network Retinal Model Real Time Implementation

    DTIC Science & Technology

    1992-09-02

    addresses the specific needs of vision processing. The goal of this SBIR Phase I project has been to take a significant neural network vision...application and to map it onto dedicated hardware for real time implementation. The neural network was already demonstrated using software simulation on a...general purpose computer. During Phase 1, HNC took a neural network model of the retina and, using HNC’s Vision Processor (ViP) prototype hardware

  20. Real-time RGBD SLAM system

    NASA Astrophysics Data System (ADS)

    Czupryński, BłaŻej; Strupczewski, Adam

    2015-09-01

    A real-time tracking and mapping SLAM system is presented. The developed system uses input from an RGBD sensor and tracks the camera pose from frame to frame. The tracking is based on matched feature points and is performed with respect to selected keyframes. The system is robust and scalable, as an arbitrary number of keyframes can be chosen for visualization and tracking depending on the desired accuracy and speed. The presented system is also a good platform for further research.

  1. Thermal imaging with real time picture presentation.

    PubMed

    Borg, S B

    1968-09-01

    The accomplishment of thermal imaging with real-time picture presentation represents a significant advance in nondestructive testing. Described here is the AGA Thermovision, capable of producing such imaging. Operating principles, basic features, and recording techniques are reviewed, and a survey is made of the range of applications. Examples include electrical power distribution elements, a turbine blade, and a missile model in a wind tunnel.

  2. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  3. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  4. Real-time Interactive Tree Animation.

    PubMed

    Quigley, Ed; Yu, Yue; Huang, Jingwei; Lin, Winnie; Fedkiw, Ronald

    2017-01-30

    We present a novel method for posing and animating botanical tree models interactively in real time. Unlike other state of the art methods which tend to produce trees that are overly flexible, bending and deforming as if they were underwater plants, our approach allows for arbitrarily high stiffness while still maintaining real-time frame rates without spurious artifacts, even on quite large trees with over ten thousand branches. This is accomplished by using an articulated rigid body model with as-stiff-as-desired rotational springs in conjunction with our newly proposed simulation technique, which is motivated both by position based dynamics and the typical O(N) algorithms for articulated rigid bodies. The efficiency of our algorithm allows us to pose and animate trees with millions of branches or alternatively simulate a small forest comprised of many highly detailed trees. Even using only a single CPU core, we can simulate ten thousand branches in real time while still maintaining quite crisp user interactivity. This has allowed us to incorporate our framework into a commodity game engine to run interactively even on a low-budget tablet. We show that our method is amenable to the incorporation of a large variety of desirable effects such as wind, leaves, fictitious forces, collisions, fracture, etc.

  5. Real-time preprocessing of holographic information

    NASA Astrophysics Data System (ADS)

    Schilling, Bradley W.; Poon, Ting-Chung

    1995-11-01

    Optical scanning holography (OSH) is a holographic recording technique that uses active optical heterodyne scanning to generate holographic information pertaining to an object. The holographic information manifests itself as an electrical signal suitable for real-time image reconstruction using a spatial light modulator. The electrical signal that carries the holographic information can also be digitized for computer storage and processing, allowing the image reconstruction to be performed numerically. In previous experiments with this technique, holographic information has been recorded using the interference pattern of a plane wave and a spherical wave of different temporal frequencies to scan an object. However, the proper manipulation of the pupil functions in the recording stage can result in real-time processing of the holographic edge extraction technique as an important example of real-time preprocessing of holographic information that utilizes alternate pupils in the OSH recording stage. We investigate the theory of holographic preprocessing using a spatial frequency-domain analysis based on the recording system's optical transfer function. The theory is reinforced through computer simulation.

  6. Real-time optical image processing techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Kuang

    1988-10-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  7. Real-time speckle photography: a breakthrough

    NASA Astrophysics Data System (ADS)

    Petrov, Valery

    1996-12-01

    Speckle photography for small displacements can be carried out rather easily. It is a well established method. Unfortunately problems arise when specklegrams must be obtained in real time. Silver halide media infer lengthy multi-stage photoprocessing of specklegrams. Real time speckle photography utilizing non-silver media can be implemented but the techniques involved are rather complicated. Extremely simple and inexpensive approaches to speckle photography are introduced here. They combine positive features of speckle photography and momental holography. This permits the user to produce quasi real time specklegrams within a few seconds. High quality speckle photographs were obtained with different laser sources on high resolution silver halide media: Russian PFG-03, PFG-03 C (color), Agfa-Gevaert 8E 75 HD films and plates. Very good specklegrams were obtained also in lighted environment. Hybrid holospecklegrams i.e. holograms and speckle photographs of the same object were obtained simultaneously on the same media. Such holospecklegrams were also produced within fa few seconds. Quite unexpectedly good specklegrams were recorded even in water. Photographs of momentally produced specklegrams are given.

  8. The IGS Real-Time Service

    NASA Astrophysics Data System (ADS)

    Caissy, Mark; Agrotis, Loukis; Weber, Georg; Fisher, Steven

    2013-04-01

    The IGS Real-Time Service (RTS) is being rolled out in 2013 following the successful completion of the IGS Real-Time Pilot Project. The RTS has recently completed beta testing and is now operating at the level of initial operating capability. The service will reach full operating capability by the end of 2013. RTS products include GNSS data streams and GNSS orbit and clock correction streams. These products are available in real-time in accordance with the IGS open-data policy using RTCM standard formats and the NTRIP transportation protocol. The RTS is key to IGS's support of the GGOS Natural Hazards theme. Of particular importance in this context is the high degree of redundancy that is build into the RTS in order to reliably support public-good scientific applications commonly associated with natural hazards; for example, precise-point positioning applications requiring high accuracy and low latency related to earthquakes and tsunamis . This presentation will illustrate the data gathering through product generation to user distribution design of the RTS, highlighting built-in robustness at various stages. The presentation will also present an assessment of the performance of the service to date.

  9. Real-time monitoring system for microfluidics

    NASA Astrophysics Data System (ADS)

    Sapuppo, F.; Cantelli, G.; Fortuna, L.; Arena, P.; Bucolo, M.

    2007-05-01

    A new non-invasive real-time system for the monitoring and control of microfluidodynamic phenomena is proposed. The general purpose design of such system is suitable for in vitro and in vivo experimental setup and therefore for microfluidic application in the biomedical field such as lab-on-chip and for research studies in the field of microcirculation. The system consists of an ad hoc optical setup for image magnification providing images suitable for image acquisition and processing. The optic system was designed and developed using discrete opto-mechanic components mounted on a breadboard in order to provide an optic path accessible at any point where the information needs to be acquired. The optic sensing, acquisition, and processing were performed using an integrated vision system based on the Cellular Nonlinear Networks (CNNs) analogic technology called Focal Plane Processor (FPP, Eye-RIS, Anafocus) and inserted in the optic path. Ad hoc algorithms were implemented for the real-time analysis and extraction of fluido-dynamic parameters in micro-channels. They were tested on images recorded during in vivo microcirculation experiments on hamsters and then they were applied on images optically acquired and processed in real-time during in vitro experiments on a continuous microfluidic device (serpentine mixer, ThinXXS) with a two-phase fluid.

  10. Mining the Optical Sky in Real Time

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.

    2002-05-01

    While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations of less than a day is a rich area of research that remains largely unexplored. The fact that spectacular optical transients exist was clearly demonstrated by the detection of an optical flash associated with a Gamma Ray Burst at redshift z=1.6. However, the depth and breath of optical sky monitoring is so incomplete that this cosmological optical transient, which reached the astounding apparent magnitude of 9, would have been missed but for the real-time position provided by a high-energy satellite. Since there are many reasons to suspect the existence of rapid optical transients that cannot be found through sky monitoring by high-energy satellites, we need all-sky optical monitoring systems that can locate rapid transients in real time. We discuss how with existing technology it is possible to construct robotic telescope systems for monitoring all of the optical sky that can autonomously locate celestial optical transients with timescales as short as a fraction of a minute. The data from such a monitoring system could also be used to recognize important variations of known sources. Real-time alerts from such an optical all-sky monitoring system would enable otherwise impossible observations with more powerful, narrow-field telescopes that more deeply probe the physics of the rapidly varying sources. As an example of this new type of sky monitoring system, we discuss the RAPTOR telescope system at Los Alamos National Laboratory that is designed to identify and make follow-up observations of optical transients in real time. The system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1500 square degrees for transients down to about 12th magnitude in 30 seconds. Each array also contains a sensitive, higher resolution "fovea" telescope, capable of imaging at a faster cadence

  11. Real-time optical fiber dosimeter probe

    NASA Astrophysics Data System (ADS)

    Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy

    2011-03-01

    There is a pressing need for a passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on a thin film of the radiochromic material on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively.

  12. [Development of real-time CT fluoroscopy].

    PubMed

    Katada, K; Anno, H; Takeshita, G; Ogura, Y; Koga, S; Ida, Y; Nonomura, K; Kanno, T; Ohashi, A; Sata, S

    1994-10-25

    A new CT system that permits real-time monitoring of CT images was developed. Phantom and volunteer studies revealed that the images were displayed at a rate of six per second with a delay time of 0.83 second with clinically sufficient resolution (256 x 256) using the newly developed fast image processor and partial-reconstruction algorithm. The clinical trial of stereotactic aspiration of intracerebral hematoma was successful. The initial trial with CT fluoroscopy revealed potential usefulness of the system in biopsy and other CT-guided interventions.

  13. A staggered-grid convolutional differentiator for elastic wave modelling

    NASA Astrophysics Data System (ADS)

    Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun

    2015-11-01

    The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.

  14. Machine learning for real time remote detection

    NASA Astrophysics Data System (ADS)

    Labbé, Benjamin; Fournier, Jérôme; Henaff, Gilles; Bascle, Bénédicte; Canu, Stéphane

    2010-10-01

    Infrared systems are key to providing enhanced capability to military forces such as automatic control of threats and prevention from air, naval and ground attacks. Key requirements for such a system to produce operational benefits are real-time processing as well as high efficiency in terms of detection and false alarm rate. These are serious issues since the system must deal with a large number of objects and categories to be recognized (small vehicles, armored vehicles, planes, buildings, etc.). Statistical learning based algorithms are promising candidates to meet these requirements when using selected discriminant features and real-time implementation. This paper proposes a new decision architecture benefiting from recent advances in machine learning by using an effective method for level set estimation. While building decision function, the proposed approach performs variable selection based on a discriminative criterion. Moreover, the use of level set makes it possible to manage rejection of unknown or ambiguous objects thus preserving the false alarm rate. Experimental evidences reported on real world infrared images demonstrate the validity of our approach.

  15. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  16. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  17. Subsystem real-time time dependent density functional theory.

    PubMed

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-21

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  18. Subsystem real-time time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-01

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  19. Real-time monitoring of swimming performance.

    PubMed

    Delgado-Gonzalo, R; Lemkaddem, A; Renevey, Ph; Calvo, E Muntane; Lemay, M; Cox, K; Ashby, D; Willardson, J; Bertschi, M

    2016-08-01

    This article presents the performance results of a novel algorithm for swimming analysis in real-time within a low-power wrist-worn device. The estimated parameters are: lap count, stroke count, time in lap, total swimming time, pace/speed per lap, total swam distance, and swimming efficiency (SWOLF). In addition, several swimming styles are automatically detected. Results were obtained using a database composed of 13 different swimmers spanning 646 laps and 858.78 min of total swam time. The final precision achieved in lap detection ranges between 99.7% and 100%, and the classification of the different swimming styles reached a sensitivity and specificity above 98%. We demonstrate that a swimmers performance can be fully analyzed with the smart bracelet containing the novel algorithm. The presented algorithm has been licensed to ICON Health & Fitness Inc. for their line of wearables under the brand iFit.

  20. Real time visualization of quantum walk

    SciTech Connect

    Miyazaki, Akihide; Hamada, Shinji; Sekino, Hideo

    2014-02-20

    Time evolution of quantum particles like electrons is described by time-dependent Schrödinger equation (TDSE). The TDSE is regarded as the diffusion equation of electrons with imaginary diffusion coefficients. And the TDSE is solved by quantum walk (QW) which is regarded as a quantum version of a classical random walk. The diffusion equation is solved in discretized space/time as in the case of classical random walk with additional unitary transformation of internal degree of freedom typical for quantum particles. We call the QW for solution of the TDSE a Schrödinger walk (SW). For observation of one quantum particle evolution under a given potential in atto-second scale, we attempt a successive computation and visualization of the SW. Using Pure Data programming, we observe the correct behavior of a probability distribution under the given potential in real time for observers of atto-second scale.

  1. Exploring Earthquakes in Real-Time

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  2. Real-time structured light depth extraction

    NASA Astrophysics Data System (ADS)

    Keller, Kurtis; Ackerman, Jeremy D.

    2000-03-01

    Gathering depth data using structured light has been a procedure for many different environments and uses. Many of these system are utilized instead of laser line scanning because of their quickness. However, to utilize depth extraction for some applications, in our case laparoscopic surgery, the depth extraction must be in real time. We have developed an apparatus that speeds up the raw image display and grabbing in structured light depth extraction from 30 frames per second to 60 and 180 frames per second. This results in an updated depth and texture map of about 15 times per second versus about 3. This increased update rate allows for real time depth extraction for use in augmented medical/surgical applications. Our miniature, fist-sized projector utilizes an internal ferro-reflective LCD display that is illuminated with cold light from a flex light pipe. The miniature projector, attachable to a laparoscope, displays inverted pairs of structured light into the body where these images are then viewed by a high-speed camera set slightly off axis from the projector that grabs images synchronously. The images from the camera are ported to a graphics-processing card where six frames are worked on simultaneously to extract depth and create mapped textures from these images. This information is then sent to the host computer with 3D coordinate information of the projector/camera and the associated textures. The surgeon is then able to view body images in real time from different locations without physically moving the laparoscope imager/projector, thereby, reducing the trauma of moving laparoscopes in the patient.

  3. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  4. Real-time design with peer tasks

    NASA Technical Reports Server (NTRS)

    Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.

    1995-01-01

    We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.

  5. Taste changing in staggered quarks

    SciTech Connect

    Quentin Mason et al.

    2004-01-05

    The authors present results from a systematic perturbative investigation of taste-changing in improved staggered quarks. They show one-loop taste-changing interactions can be removed perturbatively by an effective four-quark term and calculate the necessary coefficients.

  6. On staggered indecomposable Virasoro modules

    NASA Astrophysics Data System (ADS)

    Kytölä, Kalle; Ridout, David

    2009-12-01

    In this article, certain indecomposable Virasoro modules are studied. Specifically, the Virasoro mode L0 is assumed to be nondiagonalizable, possessing Jordan blocks of rank 2. Moreover, the module is further assumed to have a highest weight submodule, the "left module," and that the quotient by this submodule yields another highest weight module, the "right module." Such modules, which have been called staggered, have appeared repeatedly in the logarithmic conformal field theory literature, but their theory has not been explored in full generality. Here, such a theory is developed for the Virasoro algebra using rather elementary techniques. The focus centers on two different but related questions typically encountered in practical studies: How can one identify a given staggered module, and how can one demonstrate the existence of a proposed staggered module. Given just the values of the highest weights of the left and right modules, themselves subject to simple necessary conditions, invariants are defined which together with the knowledge of the left and right modules uniquely identify a staggered module. The possible values of these invariants form a vector space of dimension 0, 1, or 2, and the structures of the left and right modules limit the isomorphism classes of the corresponding staggered modules to an affine subspace (possibly empty). The number of invariants and affine restrictions is purely determined by the structures of the left and right modules. Moreover, in order to facilitate applications, the expressions for the invariants and restrictions are given by formulas as explicit as possible (they generally rely on expressions for Virasoro singular vectors). Finally, the text is liberally peppered throughout with examples illustrating the general concepts. These have been carefully chosen for their physical relevance or for the novel features they exhibit.

  7. Real Time Simulation of Power Grid Disruptions

    SciTech Connect

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  8. Real-time PCR in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Hansen-Hagge, Thomas; Gärtner, Claudia

    2014-03-01

    A central method in a standard biochemical laboratory is represented by the polymerase chain reaction (PCR), therefore many attempts have been performed so far to implement this technique in lab-on-a-chip (LOC) devices. PCR is an ideal candidate for miniaturization because of a reduction of assay time and decreased costs for expensive bio-chemicals. In case of the "classical" PCR, detection is done by identification of DNA fragments electrophoretically separated in agarose gels. This method is meanwhile frequently replaced by the so-called Real-Time-PCR because here the exponential increase of amplificates can be observed directly by measurement of DNA interacting fluorescent dyes. Two main methods for on-chip PCRs are available: traditional "batch" PCR in chambers on a chip using thermal cycling, requiring about 30 minutes for a typical PCR protocol and continuous-flow PCR, where the liquid is guided over stationary temperature zones. In the latter case, the PCR protocol can be as fast as 5 minutes. In the presented work, a proof of concept is demonstrated for a real-time-detection of PCR products in microfluidic systems.

  9. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  10. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E. )

    1989-10-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas e.g. improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. In this paper, such issues are considered, examples given and possibilities discussed.

  11. Image denoising for real-time MRI.

    PubMed

    Klosowski, Jakob; Frahm, Jens

    2017-03-01

    To develop an image noise filter suitable for MRI in real time (acquisition and display), which preserves small isolated details and efficiently removes background noise without introducing blur, smearing, or patch artifacts. The proposed method extends the nonlocal means algorithm to adapt the influence of the original pixel value according to a simple measure for patch regularity. Detail preservation is improved by a compactly supported weighting kernel that closely approximates the commonly used exponential weight, while an oracle step ensures efficient background noise removal. Denoising experiments were conducted on real-time images of healthy subjects reconstructed by regularized nonlinear inversion from radial acquisitions with pronounced undersampling. The filter leads to a signal-to-noise ratio (SNR) improvement of at least 60% without noticeable artifacts or loss of detail. The method visually compares to more complex state-of-the-art filters as the block-matching three-dimensional filter and in certain cases better matches the underlying noise model. Acceleration of the computation to more than 100 complex frames per second using graphics processing units is straightforward. The sensitivity of nonlocal means to small details can be significantly increased by the simple strategies presented here, which allows partial restoration of SNR in iteratively reconstructed images without introducing a noticeable time delay or image artifacts. Magn Reson Med 77:1340-1352, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. A Flexible Real-Time Architecture

    SciTech Connect

    WICKSTROM,GREGORY L.

    2000-08-17

    Assuring hard real-time characteristics of I/O associated with embedded software is often a difficult task. Input-Output related statements are often intermixed with the computational code, resulting in I/O timing that is dependent on the execution path and computational load. One way to mitigate this problem is through the use of interrupts. However, the non-determinism that is introduced by interrupt driven I/O may be so difficult to analyze that it is prohibited in some high consequence systems. This paper describes a balanced hardware/software solution to obtain consistent interrupt-free I/O timing, and results in software that is much more amenable to analysis.

  13. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Cao, Ying (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  14. Real-time failure control (SAFD)

    NASA Technical Reports Server (NTRS)

    Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.

    1990-01-01

    The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.

  15. Teaching with Real-Time Seismic Data

    NASA Astrophysics Data System (ADS)

    Baldwin, T. K.; Ortiz, A.; Hall-Wallace, M.; Taber, J.; Braile, L.

    2002-12-01

    Many terabytes of digital seismic data have been gathered in the past decade. These data include summary tables of events as well as raw seismograms. The event information, which can be plotted, analyzed statistically and interpreted in the context of plate tectonics and geologic hazards, make excellent classroom investigations. However, the bulk of the data are raw seismograms that require advanced knowledge and specific software to analyze and manipulate thus, they are generally inaccessible to a non-seismologist. To make real-time seismic data more accessible to students in high schools and colleges, we are developing a network of school seismometers through the IRIS Seismometer in Schools Program. The goal of this program is to promote seismology as a platform for teaching principles of physics and Earth science in schools across the nation. When studying plate tectonics and earthquakes, a seismometer in the classroom promotes awareness of earthquake activity around the world and provides an opportunity to teach with real-time data and real-world examples. The AS-1 seismometer is a low cost, durable, yet precise instrument that allows students to both investigate how a seismometer works and the recordings of the instrument, making it ideal for student and classroom use. The AS-1 recording and analysis software, AmaSeis, is simple to use yet includes all the basic tools needed for analysis: waveform display, filtering, and phase picking. The software also includes travel time curves to determine event distance and location. The seismometer keeps time using the computer's clock, which can be updated regularly through the Internet. While each instrument's response is unique, it is possible to calibrate the instrument and determine accurate magnitudes for events. In the past year our efforts have resulted in teachers using the seismometer effectively in high school classrooms. For example, using data from their own station and several others, students located

  16. Real-Time Ada Demonstration Project

    DTIC Science & Technology

    1989-05-31

    CENER OR OFTAREENGINEERING ADVANCED SOFTWARE TECHNOLOGY Subject: Final Report - Real-Time Ada Demonstration Proj e-t- --.-. SEP 0 1989 D SEA)~ CIN...C02 0921I 6))00 I 31 MAY 1989 *:i ’C O~ 0"ed ~ 842 190 ?’ 45 DEMONSTRATION PROJECT FINAL REPORT PREPARED FOR: U.S. Army HQ CECOM Center for Software ...Engineering Advanced Software Technology Fort Monmouth, NJ 07703-5000 Accession For NTIS G1A&I DTIC TAB PREPARED BY: unannou:1r2d E LabTek Corporation

  17. Systems Analyze Water Quality in Real Time

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  18. Real-Time Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Cameron, Kelly B.; Owsley, Patrick A.

    1994-01-01

    Generic Reed-Solomon decoder fast enough to correct errors in real time in practical applications designed to be implemented in fewer and smaller very-large-scale integrated, VLSI, circuit chips. Configured to operate in pipelined manner. One outstanding aspect of decoder design is that Euclid multiplier and divider modules contain Galoisfield multipliers configured as combinational-logic cells. Operates at speeds greater than older multipliers. Cellular configuration highly regular and requires little interconnection area, making it ideal for implementation in extraordinarily dense VLSI circuitry. Flight electronics single chip version of this technology implemented and available.

  19. Real-time teleteaching in medical physics

    PubMed Central

    Woo, M; Ng, KH

    2008-01-01

    Medical physics is a relatively small professional community, usually with a scarcity of expertise that could greatly benefit students entering the field. However, the reach of the profession can span great geographical distances, making the training of students a difficult task. In addition to the requirement of training new students, the evolving field of medical physics, with its many emerging advanced techniques and technologies, could benefit greatly from ongoing continuing education as well as consultation with experts. Many continuing education courses and workshops are constantly being offered, including many web-based study courses and virtual libraries. However, one mode of education and communication that has not been widely used is the real-time interactive process. Video-based conferencing systems do exist, but these usually require a substantial amount of effort and cost to set up. The authors have been working on promoting the ever-expanding capability of the Internet to facilitate the education of medical physics to students entering the field. A pilot project has been carried out for six years and reported previously. The project is a collaboration between the Department of Medical Physics at the Toronto Odette Cancer Centre in Canada and the Department of Biomedical Imaging at the University of Malaya in Malaysia. Since 2001, medical physics graduate students at the University of Malaya have been taught by lecturers from Toronto every year, using the Internet as the main tool of communication. The pilot study explored the different methods that can be used to provide real-time interactive remote education, and delivered traditional classroom lectures as well as hands-on workshops. Another similar project was started in 2007 to offer real-time teaching to a class of medical physics students at Wuhan University in Hubei, China. There are new challenges as well as new opportunities associated with this project. By building an inventory of tools and

  20. Low cost real time interactive analysis system

    NASA Technical Reports Server (NTRS)

    Stetina, F.

    1988-01-01

    Efforts continue to develop a low cost real time interactive analysis system for the reception of satellite data. A multi-purpose ingest hardware software frame formatter was demonstrated for GOES and TIROS data and work is proceeding on extending the capability to receive GMS data. A similar system was proposed as an archival and analysis system for use with INSAT data and studies are underway to modify the system to receive the planned SeaWiFS (ocean color) data. This system was proposed as the core of a number of international programs in support of U.S. AID activities. Systems delivered or nearing final testing are listed.

  1. Real-time teleteaching in medical physics.

    PubMed

    Woo, M; Ng, Kh

    2008-01-01

    Medical physics is a relatively small professional community, usually with a scarcity of expertise that could greatly benefit students entering the field. However, the reach of the profession can span great geographical distances, making the training of students a difficult task. In addition to the requirement of training new students, the evolving field of medical physics, with its many emerging advanced techniques and technologies, could benefit greatly from ongoing continuing education as well as consultation with experts.Many continuing education courses and workshops are constantly being offered, including many web-based study courses and virtual libraries. However, one mode of education and communication that has not been widely used is the real-time interactive process. Video-based conferencing systems do exist, but these usually require a substantial amount of effort and cost to set up.The authors have been working on promoting the ever-expanding capability of the Internet to facilitate the education of medical physics to students entering the field. A pilot project has been carried out for six years and reported previously. The project is a collaboration between the Department of Medical Physics at the Toronto Odette Cancer Centre in Canada and the Department of Biomedical Imaging at the University of Malaya in Malaysia. Since 2001, medical physics graduate students at the University of Malaya have been taught by lecturers from Toronto every year, using the Internet as the main tool of communication.The pilot study explored the different methods that can be used to provide real-time interactive remote education, and delivered traditional classroom lectures as well as hands-on workshops.Another similar project was started in 2007 to offer real-time teaching to a class of medical physics students at Wuhan University in Hubei, China. There are new challenges as well as new opportunities associated with this project. By building an inventory of tools and

  2. Real-Time Surface Traffic Adviser

    NASA Technical Reports Server (NTRS)

    Glass, Brian J. (Inventor); Spirkovska, Liljana (Inventor); McDermott, William J. (Inventor); Reisman, Ronald J. (Inventor); Gibson, James (Inventor); Iverson, David L. (Inventor)

    2001-01-01

    A real-time data management system which uses data generated at different rates by multiple heterogeneous incompatible data sources are presented. In one embodiment, the invention is as an airport surface traffic data management system (traffic adviser) that electronically interconnects air traffic control, airline, and airport operations user communities to facilitate information sharing and improve taxi queuing. The system uses an expert system to fuse dam from a variety of airline, airport operations, ramp control, and air traffic control sources, in order to establish, predict, and update reference data values for every aircraft surface operation.

  3. Real time analysis of voiced sounds

    NASA Technical Reports Server (NTRS)

    Hong, J. P. (Inventor)

    1976-01-01

    A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.

  4. Terrestrial Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  5. Real-time sensor data validation

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1994-01-01

    This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.

  6. REal-time COsmic Ray Database (RECORD)

    NASA Astrophysics Data System (ADS)

    Usoskin, I.; Kozlov, Valery; Ksenofontov, Leonid, Kudela, Karel; Starodubtsev, Sergei; Turpanov, Alexey; Yanke, Victor

    2003-07-01

    In this paper we present a first distributed REal-time COsmic Ray Database (RECORD). The aim of the project is to develop a unified database with data from different neutron monitors collected together, in unified format and to provide a user with several commonly used data access methods. The database contains not only original cosmic ray data but also auxiliary data necessary for scientific data analysis. Currently the database includes Lomn.Stit, Moscow, Oulu; Tixie Bay, Yakutsk stations. The main database server is located in IKFIA SB RAS (Yakutsk) but there will be several mirrors of the database. The database and all its mirrors are up dated on the nearly real-time (1 hour) basis. The data access software includes WWW-interface, Perl scripts and C library, which may be linked to a user program. Most of frequently used functions are implemented to make it operable to users without SQL language knowledge. A draft of the data representation standard is suggested, based on common practice of neutron monitor community. The database engine is freely distributed open-sourced PostgreSQL server coupled with a set of replication to ols developed at Bio engineering division of the IRCCS E.Medea, Italy.

  7. An efficient real time superresolution ASIC system

    NASA Astrophysics Data System (ADS)

    Reddy, Dikpal; Yue, Zhanfeng; Topiwala, Pankaj

    2008-04-01

    Superresolution of images is an important step in many applications like target recognition where the input images are often grainy and of low quality due to bandwidth constraints. In this paper, we present a real-time superresolution application implemented in ASIC/FPGA hardware, and capable of 30 fps of superresolution by 16X in total pixels. Consecutive frames from the video sequence are grouped and the registered values between them are used to fill the pixels in the higher resolution image. The registration between consecutive frames is evaluated using the algorithm proposed by Schaum et al. The pixels are filled by averaging a fixed number of frames associated with the smallest error distances. The number of frames (the number of nearest neighbors) is a user defined parameter whereas the weights in the averaging process are decided by inverting the corresponding smallest error distances. Wiener filter is used to post process the image. Different input parameters, such as size of input image, enlarging factor and the number of nearest neighbors, can be tuned conveniently by the user. We use a maximum word size of 32 bits to implement the algorithm in Matlab Simulink as well as the hardware, which gives us a fine balance between the number of bits and performance. The algorithm performs with real time speed with very impressive superresolution results.

  8. Neutron monitor database in real time

    NASA Astrophysics Data System (ADS)

    Kozlov, Valery; Kudela, Karel; Starodubtsev, Sergei; Turpanov, Alexey; Usoskin, Ilya; Yanke, Victor

    2003-09-01

    A first distributed Real Time Cosmic Ray Database using measurements of several neutron monitors is presented. The aim of the project is to develop a unified database with data from different neutron monitors collected together, in unified format and to provide a user with several commonly used data access methods. The database contains original cosmic ray as well as all housekeeping and technical data necessary for scientific data analysis. Currently the database includes Lomnicky Stit, Moscow, Oulu, Tixie Bay, Yakutsk stations and it is opened for other neutron monitors. The main database server is located in IKFIA SB RAS (Yakutsk) but there will be several mirrors of the database. The datbase and all its mirrors are updated on the nearly real-time (1 hour) basis. The data access software includes WWW-interface, Perl scipts and C library, which may be linked to a user program. Most of frequently used functions are implemented to make it operable to users without SQL language knowledge. A draft of the data representation standard is suggested, based on common practice of neutron monitor community. The database engine is freely distributed open-sourced PostgreSQL server coupled with a set of replication tools developed at Bioengineering division of the IRCCS E. Medea, Italy.

  9. Real-time protein kinase assay.

    PubMed

    Sun, Hongye; Low, Karen E; Woo, Sam; Noble, Richard L; Graham, Ronald J; Connaughton, Sonia S; Gee, Melissa A; Lee, Linda G

    2005-04-01

    We report a novel, real-time fluorogenic kinase assay. The peptide substrates are synthesized with a fluorescent dye and a hydrocarbon tail. The substrate self-assembles into micelles, increasing the local concentration of the dye and quenching its fluorescence. Upon phosphorylation, the fluorescence intensity increases 4-6-fold due to micelle reorganization. Both dynamic light scattering data and cryoelectron microscope images show that the size and the shape of the phosphopeptide micelles are significantly different from micelles of substrate peptide. The system provides a robust fluorescence increase in a real-time protein kinase assay. Unlike other fluorogenic systems, the fluorophore may be distant from the serine, threonine, or tyrosine that is phosphorylated. Assays for several kinases, including PKA, PKC, p38, MAPKAP K2, akt, Erk1, and src-family kinases, have been developed. IC(50) values of inhibitors for PKC betaII determined with this technology are consistent with published values. The utility of this assay to high-throughput screening was demonstrated with Sigma's LOPAC library, a collection of 640 compounds with known biological activities, and satisfactory results were obtained.

  10. NSTX power supply real time controller

    SciTech Connect

    Neumeyer, C.; Hatcher, R.; Marsala, R.; Ramakrishnan, S.

    2000-01-06

    The NSTX is a new national facility for the study of plasma confinement, heating, and current drive in a low aspect ratio, spherical torus (ST) configuration. The ST configuration is an alternate magnetic confinement concept which is characterized by high beta (ratio plasma pressure to magnetic field pressure) and low toroidal field compared to conventional tokamaks, and could provide a pathway to the realization of a practical fusion power source. The NSTX depends on a real time, high speed, synchronous, and deterministic control system acting on a system of thyristor rectifier power supplies to (1) establish the initial magnetic field configuration; (2) initiate plasma within the vacuum vessel; (3) inductively drive plasma current; and (4) control plasma position and shape. For the initial ``day 0'' 1st plasma operations (Feb. 1999), the system was limited to closed loop proportional-integral current control of the power supplies based on preprogrammed reference waveforms. For the ``day 1'' phase of operations beginning Sept. 1999 the loop has been closed on plasma current and position. This paper focuses on the Power Supply Real Time Controller (PSRTC).

  11. Reconfigurable real-time distributed processing network

    NASA Astrophysics Data System (ADS)

    Page, S. F.; Seely, R. D.; Hickman, D.

    2011-06-01

    This paper describes a novel real-time image and signal processing network, RONINTM, which facilitates the rapid design and deployment of systems providing advanced geospatial surveillance and situational awareness capability. RONINTM is a distributed software architecture consisting of multiple agents or nodes, which can be configured to implement a variety of state-of-the-art computer vision and signal processing algorithms. The nodes operate in an asynchronous fashion and can run on a variety of hardware platforms, thus providing a great deal of scalability and flexibility. Complex algorithmic configuration chains can be assembled using an intuitive graphical interface in a plug-and- play manner. RONINTM has been successfully exploited for a number of applications, ranging from remote event detection to complex multiple-camera real-time 3D object reconstruction. This paper describes the motivation behind the creation of the network, the core design features, and presents details of an example application. Finally, the on-going development of the network is discussed, which is focussed on dynamic network reconfiguration. This allows to the network to automatically adapt itself to node or communications failure by intelligently re-routing network communications and through adaptive resource management.

  12. Real-time Raman sensing without spectrometer

    NASA Astrophysics Data System (ADS)

    Kim, Min Ju; Kim, Sungho; Yang, Timothy K.; Kumar, Dinesh; Bae, Sung Chul

    2015-03-01

    Raman spectroscopy has been a powerful tool in various fields of science and technology ranging from analytical chemistry to biomedical imaging. In spite of unique features, Raman spectroscopy has also some limitations. Among them are weak Raman signal compared to strong fluorescence and relatively complicated setup with expensive and bulky spectrometer. In order to increase the sensitivity of Raman technique, many clever attempts have been made and some of them were very successful including CARS, SRS, and so on. However, these still requires expensive and more complicated setup. In this work, we have attempted to build a real-time compact Raman sensor without spectrometer. Conventional spectrometer was replaced with a narrow-band optical filter and alternatively modulated two lasers with slightly different wavelengths. At one laser, Raman signal from a target molecule was transmitted through the optical filter. At the other laser, this signal was blocked by the optical filter and could not be detected by photon detector. The alternative modulation of two lasers will modulate the Raman signal from a target molecule at the same modulation frequency. This modulated weak Raman signal was amplified by a lock-in amplifier. The advantages of this setup include compactness, low cost, real-time monitoring, and so on. We have tested the sensitivity of this setup and we found that it doesn't have enough sensitivity to detect single molecule-level, but it is still good enough to monitor the change of major chemical composition in the sample.

  13. Real-time animation of complex hairstyles.

    PubMed

    Volino, Pascal; Magnenat-Thalmann, Nadia

    2006-01-01

    True real-time animation of complex hairstyles on animated characters is the goal of this work, and the challenge is to build a mechanical model of the hairstyle which is sufficiently fast for real-time performance while preserving the particular behavior of the hair medium and maintaining sufficient versatility for simulating any kind of complex hairstyles. Rather than building a complex mechanical model directly related to the structure of the hair strands, we take advantage of a volume free-form deformation scheme. We detail the construction of an efficient lattice mechanical deformation model which represents the volume behavior of the hair strands. The lattice is deformed as a particle system using state-of-the-art numerical methods, and animates the hairs using quadratic B-Spline interpolation. The hairstyle reacts to the body skin through collisions with a metaball-based approximation. The model is highly scalable and allows hairstyles of any complexity to be simulated in any rendering context with the appropriate trade off between accuracy and computation speed, fitting the need of Level-of-Detail optimization schemes.

  14. Semi-implicit discontinuous Galerkin methods for the incompressible Navier-Stokes equations on adaptive staggered Cartesian grids

    NASA Astrophysics Data System (ADS)

    Fambri, Francesco; Dumbser, Michael

    2017-09-01

    In this paper a new high order semi-implicit discontinuous Galerkin method (SI-DG) is presented for the solution of the incompressible Navier-Stokes equations on staggered space-time adaptive Cartesian grids (AMR) in two and three space-dimensions. The pressure is written in the form of piecewise polynomials on the main grid, which is dynamically adapted within a cell-by-cell AMR framework. According to the time dependent main grid, different face-based spatially staggered dual grids are defined for the piece-wise polynomials of the respective velocity components. Arbitrary high order of accuracy is achieved in space, while a very simple semi-implicit time discretization is obtained via an explicit discretization of the nonlinear convective terms, and an implicit discretization of the pressure gradient in the momentum equation and of the divergence of the velocity field in the continuity equation. The real advantages of the staggered grid arise in the solution of the Schur complement associated with the saddle point problem of the discretized incompressible Navier-Stokes equations, i.e. after substituting the discrete momentum equations into the discrete continuity equation. This leads to a linear system for only one unknown, the scalar pressure. Indeed, the resulting linear pressure system is shown to be symmetric and positive-definite. The new space-time adaptive staggered DG scheme has been thoroughly verified for a large set of non-trivial test problems in two and three space dimensions, for which analytical, numerical or experimental reference solutions exist. To the knowledge of the authors, this is the first staggered semi-implicit DG scheme for the incompressible Navier-Stokes equations on space-time adaptive meshes in two and three space dimensions.

  15. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  16. PCs stir reliability, real-time concerns

    SciTech Connect

    Strothman, J.

    1994-11-01

    While pre-Christmas price wars regularly boost personal computer sales this time of year, price cuts alone won`t cause process control systems designers to open their wallets and buy PCs. User studies and user feedback to process control equipment suppliers show several other issues continue to rank higher than price including: (1) Hardware and software reliability; (2) easy-to-use user interfaces; (3) ability to do multitasking; (4) need for real-time updates. These and several other non-price issues - including open versus proprietary systems, slower scan rates from PCs compared to programmable controllers, and assurances that the PC will work in an industrial environment - scored high in a study authored earlier this year by Jesse Yoder, owner of Idea Network, Clinton, NJ. The report, titled {open_quotes}The World Market for Process Control Equipment,{close_quotes} was written for FIND/SVP, a New York City market research firm.

  17. Near Real Time Quantitative Gas Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Herget, William F.; Tromp, Marianne L.; Anderson, Charles R.

    1985-12-01

    A Fourier transform infrared (FT-IR) - based system has been developed and is undergoing evaluation for near real time multicomponent quantitative analysis of undiluted gaseous automotive exhaust emissions. The total system includes: (1) a gas conditioning system (GCS) for tracer gas injection, gas mixing, and temperature stabilization; and (2) an exhaust gas analyzer (EGA) consisting of a sample cell, an FT-IR system, and a computerized data processing system. Tests have shown that the system can monitor about 20 individual species (concentrations down to the 1-20 ppm range) with a time resolution of one second. Tests have been conducted on a chassis dynamometer system utilizing different autos, different fuels, and different driving cycles. Results were compared with those obtained using a standard constant volume sampling (CVS) system.

  18. Identifying financial crises in real time

    NASA Astrophysics Data System (ADS)

    da Fonseca, Eder Lucio; Ferreira, Fernando F.; Muruganandam, Paulsamy; Cerdeira, Hilda A.

    2013-03-01

    Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities.

  19. Real-time forecasts of dengue epidemics

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Shaman, J. L.

    2015-12-01

    Dengue is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas with endemic dengue, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission is a significant public health challenge. Here we present a model of dengue transmission and a framework for optimizing model simulations with real-time observational data of dengue cases and environmental variables in order to generate ensemble-based forecasts of the timing and severity of disease outbreaks. The model-inference system is validated using synthetic data and dengue outbreak records. Retrospective forecasts are generated for a number of locations and the accuracy of these forecasts is quantified.

  20. Towards real time speckle controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf

    2016-03-01

    Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.

  1. Real Time Monitor of Grid job executions

    NASA Astrophysics Data System (ADS)

    Colling, D. J.; Martyniak, J.; McGough, A. S.; Křenek, A.; Sitera, J.; Mulač, M.; Dvořák, F.

    2010-04-01

    In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.

  2. Ovarian abnormalities in the staggerer mutant mouse.

    PubMed

    Guastavino, Jean-Marie; Boufares, Salima; Crusio, Wim E

    2005-08-24

    Disturbances in several reproductive functions of the staggerer cerebellar mutant mouse have been observed. In this study, reproductive efficiency of staggerer mice was compared to normal mice by recording the number of pups produced and the number of oocytes occurring. It was found that staggerer mothers produced smaller litters than controls and the number of oocytes produced in their ovaries was reduced by the staggerer mutation. These results indicate a pleiotropic effect on fertility of the Rora(sg) gene underlying the cerebellar abnormalities of the staggerer mutant.

  3. Real-time visualization of joint cavitation.

    PubMed

    Kawchuk, Gregory N; Fryer, Jerome; Jaremko, Jacob L; Zeng, Hongbo; Rowe, Lindsay; Thompson, Richard

    2015-01-01

    Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking.

  4. Real-Time Visualization of Joint Cavitation

    PubMed Central

    Rowe, Lindsay

    2015-01-01

    Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking. PMID:25875374

  5. Dating Concurrent Objects: Real-Time Modeling and Schedulability Analysis

    NASA Astrophysics Data System (ADS)

    de Boer, Frank S.; Jaghoori, Mohammad Mahdi; Johnsen, Einar Broch

    In this paper we introduce a real-time extension of the concurrent object modeling language Creol which is based on duration statements indicating best and worst case execution times and deadlines. We show how to analyze schedulability of an abstraction of real-time concurrent objects in terms of timed automata. Further, we introduce techniques for testing the conformance between these behavioral abstractions and the executable semantics of Real-Time Creol in Real-Time Maude.

  6. A real-time prediction of UTC

    NASA Astrophysics Data System (ADS)

    Thomas, Claudine; Allan, David W.

    1994-05-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  7. A real-time prediction of UTC

    NASA Technical Reports Server (NTRS)

    Thomas, Claudine; Allan, David W.

    1994-01-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  8. Real-time data flow and product generating for GNSS

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Caissy, Mark

    2004-01-01

    The last IGS workshop with the theme 'Towards Real-Time' resulted in the design of a prototype for real-time data and sharing within the IGS. A prototype real-time network is being established that will serve as a test bed for real-time activities within the IGS. We review the developments of the prototype and discuss some of the existing methods and related products of real-time GNSS systems. Recommendations are made concerning real-time data distribution and product generation.

  9. A tool for modeling concurrent real-time computation

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.

    1990-01-01

    Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.

  10. In-line real time air monitor

    DOEpatents

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  11. In-line real time air monitor

    DOEpatents

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  12. Real-time, face recognition technology

    SciTech Connect

    Brady, S.

    1995-11-01

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory recently developed the real-time, face recognition technology KEN. KEN uses novel imaging devices such as silicon retinas developed at Caltech or off-the-shelf CCD cameras to acquire images of a face and to compare them to a database of known faces in a robust fashion. The KEN-Online project makes that recognition technology accessible through the World Wide Web (WWW), an internet service that has recently seen explosive growth. A WWW client can submit face images, add them to the database of known faces and submit other pictures that the system tries to recognize. KEN-Online serves to evaluate the recognition technology and grow a large face database. KEN-Online includes the use of public domain tools such as mSQL for its name-database and perl scripts to assist the uploading of images.

  13. Real time speech formant analyzer and display

    DOEpatents

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  14. Real time speech formant analyzer and display

    DOEpatents

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  15. Cerebral Autoregulation Real-Time Monitoring

    PubMed Central

    Tsalach, Adi; Ratner, Eliahu; Lokshin, Stas; Silman, Zmira; Breskin, Ilan; Budin, Nahum; Kamar, Moshe

    2016-01-01

    Cerebral autoregulation is a mechanism which maintains constant cerebral blood flow (CBF) despite changes in mean arterial pressure (MAP). Assessing whether this mechanism is intact or impaired and determining its boundaries is important in many clinical settings, where primary or secondary injuries to the brain may occur. Herein we describe the development of a new ultrasound tagged near infra red light monitor which tracks CBF trends, in parallel, it continuously measures blood pressure and correlates them to produce a real time autoregulation index. Its performance is validated in both in-vitro experiment and a pre-clinical case study. Results suggest that using such a tool, autoregulation boundaries as well as its impairment or functioning can be identified and assessed. It may therefore assist in individualized MAP management to ensure adequate organ perfusion and reduce the risk of postoperative complications, and might play an important role in patient care. PMID:27571474

  16. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect

    BROCK CT

    2011-01-13

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  17. Real-time value-driven diagnosis

    NASA Technical Reports Server (NTRS)

    Dambrosio, Bruce

    1995-01-01

    Diagnosis is often thought of as an isolated task in theoretical reasoning (reasoning with the goal of updating our beliefs about the world). We present a decision-theoretic interpretation of diagnosis as a task in practical reasoning (reasoning with the goal of acting in the world), and sketch components of our approach to this task. These components include an abstract problem description, a decision-theoretic model of the basic task, a set of inference methods suitable for evaluating the decision representation in real-time, and a control architecture to provide the needed continuing coordination between the agent and its environment. A principal contribution of this work is the representation and inference methods we have developed, which extend previously available probabilistic inference methods and narrow, somewhat, the gap between probabilistic and logical models of diagnosis.

  18. Real-time value-driven diagnosis

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Bruce

    1994-03-01

    Diagnosis is often thought of as an isolated task in theoretical reasoning (reasoning with the goal of updating our beliefs about the world). We present a decision-theoretic interpretation of diagnosis as a task in practical reasoning (reasoning with the goal of acting in the world) and sketch components of our approach to this task. These components include an abstract problem description, a decision-theoretic model of the basic task, a set of inference methods suitable for evaluating the decision representation in real time, and a control architecture to provide the needed continuing coordination between the agent and its environment. A principal contribution of this work is the representation and inference methods we have developed, which extend previously available probabilistic inference methods and narrow, somewhat, the gap between probabilistic and logical models of diagnosis.

  19. Optimal, real-time control--colliders

    SciTech Connect

    Spencer, J.E.

    1991-05-01

    With reasonable definitions, optimal control is possible for both classical and quantal systems with new approaches called PISC(Parallel) and NISC(Neural) from analogy with RISC (Reduced Instruction Set Computing). If control equals interaction, observation and comparison to some figure of merit with interaction via external fields, then optimization comes from varying these fields to give design or operating goals. Structural stability can then give us tolerance and design constraints. But simulations use simplified models, are not in real-time and assume fixed or stationary conditions, so optimal control goes far beyond convergence rates of algorithms. It is inseparable from design and this has many implications for colliders. 12 refs., 3 figs.

  20. Real-time slicing of data space

    SciTech Connect

    Crawfis, R.A.

    1996-07-01

    Real-time rendering of iso-contour surfaces is problematic for large complex data sets. In this paper, an algorithm is presented that allows very rapid representation of an interval set surrounding a iso-contour surface. The algorithm draws upon three main ideas. A fast indexing scheme is used to select only those data points near the contour surface. Hardware assisted splatting is then employed on these data points to produce a volume rendering of the interval set. Finally, by shifting a small window through the indexing scheme or data space, animated volumes are produced showing the changing contour values. In addition to allowing fast selection and rendering of the data, the indexing scheme allows a much compressed representation of the data by eliminating ``noise`` data points.

  1. A Measure of Real-Time Intelligence

    NASA Astrophysics Data System (ADS)

    Gavane, Vaibhav

    2013-03-01

    We propose a new measure of intelligence for general reinforcement learning agents, based on the notion that an agent's environment can change at any step of execution of the agent. That is, an agent is considered to be interacting with its environment in real-time. In this sense, the resulting intelligence measure is more general than the universal intelligence measure (Legg and Hutter, 2007) and the anytime universal intelligence test (Hernández-Orallo and Dowe, 2010). A major advantage of the measure is that an agent's computational complexity is factored into the measure in a natural manner. We show that there exist agents with intelligence arbitrarily close to the theoretical maximum, and that the intelligence of agents depends on their parallel processing capability. We thus believe that the measure can provide a better evaluation of agents and guidance for building practical agents with high intelligence.

  2. Real-Time Inspection Of Currency

    NASA Astrophysics Data System (ADS)

    Blazek, Henry

    1986-12-01

    An automatic inspection machine, designed and manufactured by the Perkin-Elmer Corporation for the U.S. Bureau of Engraving and Printing, is capable of real-time inspection of currency at rates compatible with the output of modern high-speed printing presses. Inspection is accomplished by comparing test notes (in 32-per-sheet format) with reference notes stored in the memory of a digital computer. This paper describes the development of algorithms for detecting defective notes, one of the key problems solved during the development of the inspection system. Results achieved on an analytical model, used for predicting probability of false alarms and probability of detecting typically defective notes, are compared to those obtained by system simulation.

  3. Near real-time stereo vision system

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  4. Public Science with Real-Time Experiments

    NASA Astrophysics Data System (ADS)

    Lenardic, A.

    2013-12-01

    One of the best ways for professional scientists to engage in public outreach is to get outside of the university and/or lab walls and go out into the public. That is, go to public spaces to do some science experiments with the public - this includes students of all ages that constitute that public. Technological advance in portable measurement gear now allow one to do real, or near real, time experiments in outdoor, public spaces. We have been running a meta-experiment of this sort, aimed at the public display of science, for about a year now in Houston TX at the Lee and Joe Jamail Skatepark. The project goes under the title of Sk8Lab Houston and has introduced students of all ages to the power of scientific experimentation. We bring a portable science pack with us to the park. The pack has a range of wireless measurement gear that allow experiments to be done on the spot. Some of the experiments are designed by us but many are designed on by whoever suggests them to us that day. Over time the Sk8Lab scientists have built up a level of "trust" with the people who frequent the park (no one feels like we are gonna grade them at the park and they know that the learning is not on some regimented clock). This has broken down some learning walls and allowed for a more informal mode of exploration and a more genuine mode of experimentation (as compared to what often happens in class labs when students feel like they are just being forced to reproduce some known result). We will describe some of the test case experiments we have run and also discuss some of the trials, tribulations, and happy successes (many unplanned) along the way.

  5. Otolaryngology consultations by real-time telemedicine.

    PubMed Central

    Ullah, R.; Gilliland, D.; Adams, D.

    2002-01-01

    We aimed to assess the value of real-time telemedicine using low cost videoconferencing equipment for otorhinolaryngology consultations. A general practitioner, using low cost videoconferencing equipment, presented patients to an otorhinolaryngologist. After history taking and clinical examination, investigations were requested if required and a diagnosis and management plan formulated. The patients were then seen, by the same otorhinolaryngologist, for a conventional face-to-face consultation. Differences in the history, clinical examination and investigation requests were reported. The accuracy of diagnosis and correlation of management plans between the two consultations were analysed. Forty-three patients were admitted to the study but one, a young child, refused examination either by tele-link or the conventional approach and had to be excluded. There were thus 42 patients with 55 diagnoses included in the trial, 26 (62%) females and 16 (38%) males. Age range was 5 months to 70 years. There was no difficulty with any of the patients in obtaining an accurate history and ordering investigations, if required, via the telelink. Clinical examination during the tele-link consultation was inadequate for eight out of the first 20 patients, resulting in a wrong diagnosis in three patients and a missed diagnosis in five patients. All of the next 22 patients had a correct diagnosis and management plan. Comparison of data from the two types of consultation showed that a correct diagnosis and management plan was made in 34 patients. Low cost real-time telemedicine is a useful technique, providing reliable otorhinolaryngology consultations in a general practice setting. However initial difficulties due to inexperience in using the equipment need to be overcome. PMID:12137160

  6. Real Time Seismic Prediction while Drilling

    NASA Astrophysics Data System (ADS)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  7. Real-Time Optical Antimicrobial Susceptibility Testing

    PubMed Central

    Andersen, Klaus R.; Jørgensen, Erik; Droce, Aida; Olesen, Tom; Jensen, Bent B.; Rosenvinge, Flemming S.; Sondergaard, Teis E.

    2013-01-01

    Rapid antibiotic susceptibility testing is in high demand in health care fields as antimicrobial-resistant bacterial strains emerge and spread. Here, we describe an optical screening system (oCelloScope) which, based on time-lapse imaging of 96 bacteria-antibiotic combinations at a time, introduces real-time detection of bacterial growth and antimicrobial susceptibility with imaging material to support the automatically generated graphs. Automated antibiotic susceptibility tests of a monoculture showed statistically significant antibiotic effects within 6 min and within 30 min in complex samples from pigs suffering from catheter-associated urinary tract infections. The oCelloScope system provides a fast high-throughput screening method for detecting bacterial susceptibility that might entail an earlier diagnosis and introduction of appropriate targeted therapy and thus combat the threat from multidrug-resistant pathogenic bacteria. The oCelloScope system can be employed for a broad range of applications within bacteriology and might present new vistas as a point-of-care instrument in clinical and veterinary settings. PMID:23596243

  8. The INGV Real Time Strong Motion Database

    NASA Astrophysics Data System (ADS)

    Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo

    2017-04-01

    The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD (http://ismd.mi.ingv.it) was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (www.postgresql.org), an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, http://cnt.rm.ingv.it). Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121

  9. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    PubMed

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays.

  10. Clinical experience with real-time ultrasound

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Wolfman, Neil T.; Covitz, Wesley

    1995-05-01

    After testing the extended multimedia interface (EMMI) product which is an asynchronous transmission mode (ATM) user to network interface (UNI) of AT&T at the Society for Computer Applications in Radiology conference in Winston-Salem, the Department of Radiology together with AT&T are implementing a tele-ultrasound system to combine real- time ultrasound with the static imaging features of more traditional digital ultrasound systems. Our current ultrasound system archives digital images to an optical disk system. Static images are sent using our digital radiology systems. This could be transferring images from one digital imaging and communications (DICOM)-compliant machine to another, or the current image transfer methodologies. The prototype of a live ultrasound system using the EMMI demonstrated the feasibility of doing live ultrasound. We now are developing the scenarios using a mix of the two methodologies. Utilizing EMMI technology, radiologists at the BGSM review at a workstation both static images and real-time scanning done by a technologist on patients at a remote site in order to render on-line primary diagnosis. Our goal is to test the feasibility of operating an ultrasound laboratory at a remote site utilizing a trained technologist without the necessity of having a full-time radiologist at that site. Initial plans are for a radiologist to review an initial set of static images on a patient taken by the technologist. If further scanning is required, the EMMI is used to transmit real-time imaging and audio using the audio input of a standard microphone system and the National Television Standards Committee (NTSC) output of the ultrasound equipment from the remote site to the radiologist in the department review station. The EMMI digitally encodes this data and places it in an ATM format. This ATM data stream goes to the GCNS2000 and then to the other EMMI where the ATM data stream is decoded into the live studies and voice communication which are then

  11. Real-Time Principal-Component Analysis

    NASA Technical Reports Server (NTRS)

    Duong, Vu; Duong, Tuan

    2005-01-01

    A recently written computer program implements dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN), which was described in Method of Real-Time Principal-Component Analysis (NPO-40034) NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 59. To recapitulate: DOGEDYN is a method of sequential principal-component analysis (PCA) suitable for such applications as data compression and extraction of features from sets of data. In DOGEDYN, input data are represented as a sequence of vectors acquired at sampling times. The learning algorithm in DOGEDYN involves sequential extraction of principal vectors by means of a gradient descent in which only the dominant element is used at each iteration. Each iteration includes updating of elements of a weight matrix by amounts proportional to a dynamic initial learning rate chosen to increase the rate of convergence by compensating for the energy lost through the previous extraction of principal components. In comparison with a prior method of gradient-descent-based sequential PCA, DOGEDYN involves less computation and offers a greater rate of learning convergence. The sequential DOGEDYN computations require less memory than would parallel computations for the same purpose. The DOGEDYN software can be executed on a personal computer.

  12. Real-time optoacoustic monitoring of stroke

    NASA Astrophysics Data System (ADS)

    Kneipp, Moritz; Turner, Jake; Hambauer, Sebastian; Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-03-01

    Characterizing disease progression and identifying possible therapeutic interventions in stroke is greatly aided by the use of longitudinal function imaging studies. In this study, we investigate the applicability of real-time multispectral optoacoustic tomography (MSOT) as a tool for non-invasive monitoring of the progression of stroke in the whole brain. The middle cerebral artery occlusion (MCAO) method was used to induce stroke. Mice were imaged under isoflurane anesthesia preoperatively and at several time points during and after the 60-minute occlusion. The animals were sacrificed after 24 hours and their excised brains frozen at -80°C for sectioning. The cryosection were stained using H&E staining to identify the ischemic lesion. Major vessels are readily identifiable in the whole mouse head in the in vivo optoacoustic scans. During ischemia, a reduction in cerebral blood volume is detectable in the cortex. Post ischemia, spectral unmixing of the optoacoustic signals shows an asymmetry of the deoxygenated hemoglobin in the hemisphere affected by MCAO. This hypoxic area was mainly located around the boundary of the ischemic lesion and was therefore identified as the ischemic penumbra. Non-invasive functional MSOT imaging is able to visualize the hypoxic penumbra in brains affected by stroke. Stopping the spread of the infarct area and revitalizing the penumbra is central in stroke research, this new imaging technique may therefore prove to be a valuable tool in the monitoring and developing new treatments.

  13. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2016-07-12

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  14. Ames Lab 101: Real-Time 3D Imaging

    SciTech Connect

    Zhang, Song

    2010-01-01

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  15. Effect of Stagger on the Vibroacoustic Loads from Clustered Rockets

    NASA Technical Reports Server (NTRS)

    Rojo, Raymundo; Tinney, Charles E.; Ruf, Joseph H.

    2016-01-01

    The effect of stagger startup on the vibro-acoustic loads that form during the end- effects-regime of clustered rockets is studied using both full-scale (hot-gas) and laboratory scale (cold gas) data. Both configurations comprise three nozzles with thrust optimized parabolic contours that undergo free shock separated flow and restricted shock separated flow as well as an end-effects regime prior to flowing full. Acoustic pressure waveforms recorded at the base of the nozzle clusters are analyzed using various statistical metrics as well as time-frequency analysis. The findings reveal a significant reduction in end- effects-regime loads when engine ignition is staggered. However, regardless of stagger, both the skewness and kurtosis of the acoustic pressure time derivative elevate to the same levels during the end-effects-regime event thereby demonstrating the intermittence and impulsiveness of the acoustic waveforms that form during engine startup.

  16. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    NASA Technical Reports Server (NTRS)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  17. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    NASA Technical Reports Server (NTRS)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  18. Real-time closed-loop control for micro mirrors with quasistatic comb drives

    NASA Astrophysics Data System (ADS)

    Schroedter, Richard; Sandner, Thilo; Janschek, Klaus; Roth, Matthias; Hruschka, Clemens

    2016-03-01

    This paper presents the application of a real-time closed-loop control for the quasistatic axis of electrostatic micro scanning mirrors. In comparison to resonantly driven mirrors, the quasistatic comb drive allows arbitrary motion profiles with frequencies up to its eigenfrequency. A current mirror setup at Fraunhofer IPMS is manufactured with a staggered vertical comb (SVC) drive and equipped with an integrated piezo-resistive deflection sensor, which can potentially be used as position feedback sensor. The control design is accomplished based on a nonlinear mechatronic system model and the preliminary parameter characterization. In previous papers [1, 2] we have shown that jerk-limited trajectories, calculated offline, provide a suitable method for parametric trajectory design, taking into account physical limitations given by the electrostatic comb and thus decreasing the dynamic requirements. The open-loop control shows in general unfavorable residual eigenfrequency oscillations leading to considerable tracking errors for desired triangle trajectories [3]. With real-time closed-loop control, implemented on a dSPACE system using an optical feedback, we can significantly reduce these errors and stabilize the mirror motion against external disturbances. In this paper we compare linear and different nonlinear closed-loop control strategies as well as two observer variants for state estimation. Finally, we evaluate the simulation and experimental results in terms of steady state accuracy and the concept feasibility for a low-cost realization.

  19. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  20. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  1. Real-time support for high performance aircraft operation

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1989-01-01

    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.

  2. Real-time or faster-than-real-time simulation of airflow in buildings.

    PubMed

    Zuo, W; Chen, Q

    2009-02-01

    Real-time flow simulation is crucial for emergency management in buildings, such as fire and accidental or intentional release of chemical/biological agents (contaminants). The simulation results can then be used to impose proper measures to minimize casualties. Computational fluid dynamics (CFD) is accurate, but too time-consuming. Nodal models are fast, but not informative. To obtain a quick and informative solution, this study proposes an intermediate approach between nodal models and CFD by introducing a fast fluid dynamics (FFD) method. This investigation used the FFD methods with and without turbulence treatments to study systematically four basic flows in buildings, and compared the numerical results with the corresponding CFD results and the data from the literature. The results show that, on one hand, the FFD can offer much richer flow information than nodal models, but less accurate results than CFD. On the other hand, the FFD is 50 times faster than the CFD. The results also show that the FFD with the laminar assumption has the best overall performance as regards both accuracy and speed. It is possible to conduct faster-than-real-time flow simulations with detailed flow information by using the FFD method. The paper introduces a fast fluid dynamics (FFD) method, which can simulate airflow and contaminant dispersion in buildings with real-time or faster-than-real-time speed and provide informative solutions. As an intermediate approach between nodal models and the computational fluid dynamics (CFD), the FFD can be a very useful tool for emergency management in case of fire and accidental or intentional release of chemical or biological agents in a building or around the buildings. The FFD can also be used as a preliminary test tool for quick assessment of indoor airflows before a detailed CFD analysis.

  3. Real-time flexible preventive maintenance scheduling.

    PubMed

    Kendall, E B; Cronk, J W; White, R N

    1993-01-01

    There are still obstacles to overcome as we enter the programming phase of this project. We envision an automated system, similar to an expert system, that performs the interval/history analysis and makes the changes. Initially a field will need to be added to the inventory to denote whether a device belongs to one of the previously described groups that are exempt from interval changes. An intermediate step will be the formatting of a periodic report showing equipment that meets the change criteria as described in the two rules. For now, the actual changes would be reviewed and made by our management and technical staff. This report would be retained as documentation of the basis for each change, for our own benefit and to meet JCAHO requirements. We are still discussing whether the repair count should include all repairs (user error, abuse, unpredictable failure, etc.) or just those that are "significant and preventable" and could have been averted by PM. This is perhaps a question whose answer might vary from hospital to hospital, depending upon size and patient mix. With more emphasis being placed on process outcomes, on quality of work, and on getting the most benefit for our efforts, we believe our flexible, real-time PM scheduling program is a major step in the right direction. It is outcome-driven and it focuses resources where they are needed the most.

  4. Real-time adaptive radiometric compensation.

    PubMed

    Grundhöfer, Anselm; Bimber, Oliver

    2008-01-01

    Recent radiometric compensation techniques make it possible to project images onto colored and textured surfaces. This is realized with projector-camera systems by scanning the projection surface on a per-pixel basis. Using the captured information, a compensation image is calculated that neutralizes geometric distortions and color blending caused by the underlying surface. As a result, the brightness and the contrast of the input image is reduced compared to a conventional projection onto a white canvas. If the input image is not manipulated in its intensities, the compensation image can contain values that are outside the dynamic range of the projector. These will lead to clipping errors and to visible artifacts on the surface. In this article, we present an innovative algorithm that dynamically adjusts the content of the input images before radiometric compensation is carried out. This reduces the perceived visual artifacts while simultaneously preserving a maximum of luminance and contrast. The algorithm is implemented entirely on the GPU and is the first of its kind to run in real-time.

  5. Real-time Detection of Locked Modes

    NASA Astrophysics Data System (ADS)

    Angelini, S.; Granetz, R. S.; Wolfe, S. M.

    2007-11-01

    Disruptions are one of the largest problems facing tokamaks. In a large-scale experiment such as ITER, disruptions would cause crippling damage and severe setbacks in experimentation. One method for disruption mitigation involves the use of a gas jet which has been tested on both normally running plasmas and vertical displacement events (VDEs) on Alcator C-Mod. In both cases, the jet was successful in mitigating disruption effects. The gas jet has not yet been tested on other types of disruptions. Locked-mode major disruptions are easily created in C-Mod and could be used to test the effectiveness of the gas jet as a mitigation method if the jet could be fired early enough. It has been empirically observed that the electron cyclotron emissions (ECE) signal displays a flattening of the normally-present sawteeth before the current quench occurs in certain locked-mode major disruptions. A procedure is being written which will detect the ECE flattening by reading changes in the standard deviation of the signal. This procedure will be programmed into the digital plasma control system (DPCS) for real-time testing.

  6. High sensitivity real-time NVR monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D. (Inventor); Chuan, Raymond L. (Inventor)

    1997-01-01

    A real time non-volatile residue (NVR) monitor, which utilizes surface acoustic wave (SAW) resonators to detect molecular contamination in a given environment. The SAW resonators operate at a resonant frequency of approximately 200 MHz-2,000 MHz which enables the NVR monitor to detect molecular contamination on the order of 10.sup.-11 g-cm.sup.-2 to 10.sup.-13 g-cm.sup.2. The NVR monitor utilizes active temperature control of (SAW) resonators to achieve a stable resonant frequency. The temperature control system of the NVR monitor is able to directly heat and cool the SAW resonators utilizing a thermoelectric element to maintain the resonators at a present temperature independent of the environmental conditions. In order to enable the direct heating and cooling of the SAW resonators, the SAW resonators are operatively mounted to a heat sink. In one embodiment, the heat sink is located in between the SAW resonators and an electronic circuit board which contains at least a portion of the SAW control electronics. The electrical leads of the SAW resonators are connected through the heat sink to the circuit board via an electronic path which prevents inaccurate frequency measurement.

  7. Real-Time Accumulative Computation Motion Detectors

    PubMed Central

    Fernández-Caballero, Antonio; López, María Teresa; Castillo, José Carlos; Maldonado-Bascón, Saturnino

    2009-01-01

    The neurally inspired accumulative computation (AC) method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a) A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b) A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively. PMID:22303161

  8. Real-time sensing of optical alignment

    NASA Technical Reports Server (NTRS)

    Stier, Mark T.; Wissinger, Alan B.

    1988-01-01

    The Large Deployable Reflector and other future segmented optical systems may require autonomous, real-time alignment of their optical surfaces. Researchers have developed gratings located directly on a mirror surface to provide interferometric sensing of the location and figure of the mirror. The grating diffracts a small portion of the incident beam to a diffractive focus where the designed diagnostics can be performed. Mirrors with diffraction gratings were fabricated in two separate ways. The formation of a holographic grating over the entire surface of a mirror, thereby forming a Zone Plate Mirror (ZPM) is described. Researchers have also used computer-generated hologram (CGH) patches for alignment and figure sensing of mirrors. When appropriately illuminated, a grid of patches spread over a mirror segment will yield a grid of point images at a wavefront sensor, with the relative location of the points providing information on the figure and location of the mirror. A particular advantage of using the CGH approach is that the holographic patches can be computed, fabricated, and replicated on a mirror segment in a mass production 1-g clean room environment.

  9. VLTI fringe tracking real time computer architecture

    NASA Astrophysics Data System (ADS)

    Abuter, Roberto; di Lieto, Nicola; Schmid, Christian

    2012-07-01

    Fringe tracking is a CPU intensive real time application. Rates of up to 1 KHz are needed to be able to freeze the atmosphere; in addition, each available baseline must be tracked independently. To be able to overcome the CPU performance limits, VLTI 1st generation trackers PRIMA fringe sensor unit (FSU) and FINITO were implemented in a distributed architecture separating the sensor from the controller. A side effect of this design was that the control loop delay increases as the system runs asynchronously causing an increase of the phase RMS value. This is in conflict with the objective of stabilizing the fringes with the smallest possible phase RMS. VLTI 2nd generation trackers (GRAVITY 6 and ESO 2GFT) currently being designed, will operate with up to six baselines and need to achieve phase RMS values smaller than 200 [nm]. This paper will present the computer architecture of the first generation trackers. Using simulations carried out in the PRIMA testbed, the induction of phase RMS by additional pure delays of the control loop will be precisely quantify. Afterwards, using the current architecture as reference, expected values of pure delays will be estimated for a six baselines tracker. Finally, an in order to overcome this problem, a new design that exploits the inherent parallelism of the multiples baselines and integrates the sensor and the controller in a single computer will be briefly proposed.

  10. Real-time DIRCM system modeling

    NASA Astrophysics Data System (ADS)

    Petersson, Mikael

    2004-12-01

    Directed infrared countermeasures (DIRCM) play an increasingly important role in electronic warfare to counteract threats posed by infrared seekers. The usefulness and performance of such countermeasures depend, for example, on atmospheric conditions (attenuation and turbulence) and platform vibrations, causing pointing and tracking errors for the laser beam and reducing the power transferred to the seeker aperture. These problems make it interesting to simulate the performance of a DIRCM system in order to understand how easy or difficult it is to counteract an approaching threat and evaluate limiting factors in various situations. This paper describes a DIRCM model that has been developed, including atmospheric effects such as attenuation and turbulence as well as closed loop tracking algorithms, where the retro reflex of the laser is used for the pointing control of the beam. The DIRCM model is part of a large simulation framework (EWSim), which also incorporates several descriptions of different seekers (e.g. reticle, rosette, centroid, nutating cross) and models of robot dynamics. Effects of a jamming laser on a specific threat can be readily verified by simulations within this framework. The duel between missile and countermeasure is simulated in near real-time and visualized graphically in 3D. A typical simulation with a reticle seeker jammed by a modulated laser is included in the paper.

  11. Handheld Real-Time PCR Device

    PubMed Central

    Ahrberg, Christian D.; Ilic, Bojan Robert; Manz, Andreas; Neužil, Pavel

    2016-01-01

    Here we report one of the smallest real-time polymerase chain reaction (PCR) system up to date with approximate size of 100 mm × 60 mm × 33 mm. The system is an autonomous unit requiring an external 12 V power supply. Four simultaneous reactions are performed in form of virtual reaction chambers (VRC) where a ≈ 200 nL sample is covered with mineral oil and placed on a glass cover slip. Fast, 40 cycle amplification of an amplicon from the H7N9 gene was used to demonstrate PCR performance. The standard curve slope was (−3.02 ± 0.16) cycles at threshold per decade (mean ± standard deviation) corresponding to an amplification efficiency of (0.91 ± 0.05) per cycle (mean ± standard deviation). The PCR device was capable of detecting a single deoxyribonucleic acid (DNA) copy. These results further suggest that our handheld PCR device may have broad, technologically-relevant applications extending to rapid detection of infectious diseases in small clinics. PMID:26753557

  12. Recommendations for real-time speech MRI.

    PubMed

    Lingala, Sajan Goud; Sutton, Brad P; Miquel, Marc E; Nayak, Krishna S

    2016-01-01

    Real-time magnetic resonance imaging (RT-MRI) is being increasingly used for speech and vocal production research studies. Several imaging protocols have emerged based on advances in RT-MRI acquisition, reconstruction, and audio-processing methods. This review summarizes the state-of-the-art, discusses technical considerations, and provides specific guidance for new groups entering this field. We provide recommendations for performing RT-MRI of the upper airway. This is a consensus statement stemming from the ISMRM-endorsed Speech MRI summit held in Los Angeles, February 2014. A major unmet need identified at the summit was the need for consensus on protocols that can be easily adapted by researchers equipped with conventional MRI systems. To this end, we provide a discussion of tradeoffs in RT-MRI in terms of acquisition requirements, a priori assumptions, artifacts, computational load, and performance for different speech tasks. We provide four recommended protocols and identify appropriate acquisition and reconstruction tools. We list pointers to open-source software that facilitate implementation. We conclude by discussing current open challenges in the methodological aspects of RT-MRI of speech. © 2015 Wiley Periodicals, Inc.

  13. Recommendations for Real-Time Speech MRI

    PubMed Central

    Lingala, Sajan Goud; Sutton, Brad P.; Miquel, Marc E.; Nayak, Krishna S.

    2016-01-01

    Real-time magnetic resonance imaging (RT-MRI) is being increasingly used for speech and vocal production research studies. Several imaging protocols have emerged based on advances in RT-MRI acquisition, reconstruction, and audio-processing methods. This review summarizes the state-of-the-art, discusses technical considerations, and provides specific guidance for new groups entering this field. We provide recommendations for performing RT-MRI of the upper airway. This is a consensus statement stemming from the ISMRM-endorsed Speech MRI summit held in Los Angeles, February 2014. A major unmet need identified at the summit was the need for consensus on protocols that can be easily adapted by researchers equipped with conventional MRI systems. To this end, we provide a discussion of tradeoffs in RT-MRI in terms of acquisition requirements, a priori assumptions, artifacts, computational load, and performance for different speech tasks. We provide four recommended protocols and identify appropriate acquisition and reconstruction tools. We list pointers to open-source software that facilitate implementation. We conclude by discussing current open challenges in the methodological aspects of RT-MRI of speech. PMID:26174802

  14. Real-Time 3D Visualization

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  15. Near Real Time Ship Detection Experiments

    NASA Astrophysics Data System (ADS)

    Brusch, S.; Lehner, S.; Schwarz, E.; Fritz, T.

    2010-04-01

    A new Near Real Time (NRT) ship detection processor SAINT (SAR AIS Integrated Toolbox) was developed in the framework of the ESA project MARISS. Data are received at DLRs ground segment DLR-BN (Neustrelitz, Germany). Results of the ship detection are available on ftp server within 30 min after the acquisition started. The detectability of ships on Synthetic Aperture Radar (SAR) ERS-2, ENVISAT ASAR and TerraSAR-X (TS-X) images is validated by coastal (live) AIS and space AIS. The monitoring areas chosen for surveillance are the North-, Baltic Sea, and Cape Town. The detectability in respect to environmental parameters like wind field, sea state, currents and changing coastlines due to tidal effects is investigated. In the South Atlantic a tracking experiment of the German research vessel Polarstern has been performed. Issues of piracy in particular in respect to ships hijacked at the Somali coast are discussed. Some examples using high resolution images from TerraSAR-X are given.

  16. Real-time virtual Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Khoshniat, Mahdieh; Thorne, Meghan L.; Poepping, Tamie L.; Holdsworth, David W.; Steinman, David A.

    2004-04-01

    Doppler ultrasound (DUS) is widely used to diagnose and plan treatments for vascular diseases, but the relationship between complex blood flow dynamics and the observed DUS signal is not completely understood. In this paper, we demonstrate that Doppler ultrasound can be realistically simulated in a real-time manner via the coupling of a known, previously computed velocity field with a simple model of the ultrasound physics. In the present case a 3D computational fluid dynamics (CFD) model of physiologically pulsatile flow a stenosed carotid bifurcation was interrogated using a sample volume of known geometry and power distribution. Velocity vectors at points within the sample volume were interpolated using a fast geometric search algorithm and, using the specified US probe characteristics and orientation, converted into Doppler shifts for subsequent display as a Doppler spectrogram or color DUS image. The important effect of the intrinsic spectral broadening was simulated by convolving the velocity at each point within the sample volume by a triangle function whose width was proportional to velocity. A spherical sample volume with a Gaussian power distribution was found to be adequate for producing realistic Doppler spectrogram in regions of uniform, jet, and recirculation flow. Fewer than 1000 points seeded uniformly within a radius comprising more than 99% of the total power were required, allowing spectra to be generated from high resolution CFD data at 100Hz frame rates on an inexpensive desktop workstation.

  17. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  18. Real-time {sup 90}Sr Counter

    SciTech Connect

    Kaneko, Naomi; Kawai, Hideyuki; Kodama, Satoshi; Kobayashi, Atsushi; Tabata, Makoto; Ito, Hiroshi; Han, Soorim

    2015-07-01

    Radioisotopes have been emitted around Japan due to a nuclear accident at the Fukushima Daiichi nuclear power station in March 2011. A problem is the contaminated water including the atomic nucleus which relatively has a long half- life time and soluble such as {sup 90}Sr, {sup 137}Cs. Internal exposures by {sup 90}Sr are more dangerous than {sup 137}Cs's because Sr has effective half-life time of 18 years and property of accumulation in a born. We have developed real-time {sup 90}Sr counter which is sensitive beta-ray of maximum kinematic energy of 2.28 MeV from {sup 90}Sr and insensitive of beta-ray of maximum kinematic energy of 1.17 MeV and gamma-ray from {sup 90}Sr by Cherenkov detection. This counter composes of Cerenkov counter, trigger scintillation counter and veto counter. Silica aerogel for Cherenkov counter can obtain refractive index between 1.017 and 1.049 easily. And wavelength shifting fiber (WLSF) is used as a light guide for extending effective area and producing lower cost. A mechanism of the identification of {sup 90}Sr is explained in following. In case of {sup 90}Sr, when the trigger counter reacts on the beta-ray from {sup 90}Sr, aerogel emits the Cherenkov light and WLSF reacts and read the Cherenkov light. On the other hand, in case of {sup 137}Cs, the trigger counter reacts on the beta-ray, aerogel stops the beta- ray and Cherenkov light is not emitted. Therefore, aerogel has a function as a radiator and shielding material. the gamma-ray is not reacted on the lower density detector. Cosmic rays would be also reacted by the veto counter. A prototype counter whose the effective area is 30 cm x 10 cm was obtained (2.0±1.2){sup 3} of mis-identification as {sup 137}Cs/{sup 90}Sr. Detection limit in the surface contamination inspection depends on measurement time and effective area mainly. The sensitivity of wide range, 10{sup -2} - 10{sup 4} Bq/cm{sup 2}, is obtained by adjustment of detection level in circuit of this counter. A lower

  19. Apparatus Characterizes Transient Voltages in Real Time

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    is received, a volatile memory is filled with data for a total time of 200 ms. After the data are transferred to nonvolatile memory, the recorder rearms itself within 400 ms to enable recording of subsequent transients. Unfortunately, the recorded data must be retrieved through a serial communication link. Depending on the amount of data recorded, the memory can be filled before retrieval is completed. Although large amounts of data are recorded and retrieved, only a small part of the information (the selected parameters) is usually required. The present transient-voltage recorder provides the required information, without incurring the overhead associated with the recording, storage, and retrieval of complete transient-waveform data. In operation, this apparatus processes transient voltage waveforms in real time to extract and record the selected parameters. An analog-to-digital converter that operates at a speed of as much as 100 mega-samples per second is used to sample a transient waveform. A real-time comparator and peak detector are implemented by use of fast field-programmable gate arrays.

  20. ControlShell - A real-time software framework

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Ullman, Marc A.; Chen, Vincent W.

    1991-01-01

    ControlShell is designed to enable modular design and impplementation of real-time software. It is an object-oriented tool-set for real-time software system programming. It provides a series of execution and data interchange mechansims that form a framework for building real-time applications. These mechanisms allow a component-based approach to real-time software generation and mangement. By defining a set of interface specifications for intermodule interaction, ControlShell provides a common platform that is the basis for real-time code development and exchange.

  1. Benchmarking real-time HEVC streaming

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2012-06-01

    Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently gaining pace. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC). Thus far, work on HEVC has concentrated on improvements to the coding efficiency and has not yet addressed transmission in networks other than to mandate byte stream compliance with Annex B of H.264/AVC. For practical networked HEVC applications a number of essential building blocks have yet to be defined. In this work, we design and prototype a real-time HEVC streaming system and empirically evaluate its performance, in particular we consider the robustness of the current Test Model under Consideration (TMuC HM4.0) for HEVC to packet loss caused by a reduction in available bandwidth both in terms of decoder resilience and degradation in perceptual video quality. A NAL unit packetisation and streaming framework for HEVC encoded video streams is designed, implemented and empirically tested in a number of streaming environments including wired, wireless, single path and multiple path network scenarios. As a first step the HEVC decoder's error resilience is tested under a comprehensive set of packet loss conditions and a simple error concealment method for HEVC is implemented. Similarly to H.264 encoded streams, the size and distribution of NAL units within an HEVC stream and the nature of the NAL unit dependencies influences the packetisation and streaming strategies which may be employed for such streams. The relationships between HEVC encoding mode and the quality of the received video are shown under a wide range of bandwidth constraints. HEVC streaming is evaluated in both single and multipath network configuration scenarios. Through the use of extensive experimentation, we establish a comprehensive set of benchmarks for HEVC streaming in loss prone network environments. We show the visual quality

  2. Practical Real-Time Imaging Stereo Matcher

    NASA Astrophysics Data System (ADS)

    Nishihara, H. K.

    1984-10-01

    A binocular-stereo-matching algorithm for making rapid visual range measurements in noisy images is described. This technique is developed for application to problems in robotics where noise tolerance, reliability, and speed are predominant issues. A high speed pipelined convolver for preprocessing images and an unstructured light technique for improving signal quality are introduced to help enhance performance to meet the demands of this task domain. These optimizations, however, are not sufficient. A closer examination of the problems encountered suggests that broader interpretations of both the objective of binocular stereo and of the zero-crossing theory of Marr and Poggio [Proc. R. Soc. Lond. B 204, 301 (1979)] are required. In this paper, we restrict ourselves to the problem of making a single primitive surface measurement for example, to determine whether or not a specified volume of space is occupied, to measure the range to a surface at an indicated image location, or to determine the elevation gradient at that position. In this framework we make a subtle but important shift from the explicit use of zero-crossing contours (in bandpass-filtered images) as the elements matched between left and right images, to the use of the signs between zero crossings. With this change, we obtain a simpler algorithm with a reduced sensitivity to noise and a more predictable behavior. The practical real-time imaging stereo matcher (PRISM) system incorporates this algorithm with the unstructured light technique and a high speed digital convolver. It has been used successfully by others as a sensor in a path-planning system and a bin-picking system.

  3. Real-time volumetric scintillation dosimetry

    NASA Astrophysics Data System (ADS)

    Beddar, S.

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential.

  4. Variational optical flow computation in real time.

    PubMed

    Bruhn, Andrés; Weickert, Joachim; Feddern, Christian; Kohlberger, Timo; Schnörr, Christoph

    2005-05-01

    This paper investigates the usefulness of bidirectional multigrid methods for variational optical flow computations. Although these numerical schemes are among the fastest methods for solving equation systems, they are rarely applied in the field of computer vision. We demonstrate how to employ those numerical methods for the treatment of variational optical flow formulations and show that the efficiency of this approach even allows for real-time performance on standard PCs. As a representative for variational optic flow methods, we consider the recently introduced combined local-global method. It can be considered as a noise-robust generalization of the Horn and Schunck technique. We present a decoupled, as well as a coupled, version of the classical Gauss-Seidel solver, and we develop several multgrid implementations based on a discretization coarse grid approximation. In contrast, with standard bidirectional multigrid algorithms, we take advantage of intergrid transfer operators that allow for nondyadic grid hierarchies. As a consequence, no restrictions concerning the image size or the number of traversed levels have to be imposed. In the experimental section, we juxtapose the developed multigrid schemes and demonstrate their superior performance when compared to unidirectional multgrid methods and nonhierachical solvers. For the well-known 316 x 252 Yosemite sequence, we succeeded in computing the complete set of dense flow fields in three quarters of a second on a 3.06-GHz Pentium4 PC. This corresponds to a frame rate of 18 flow fields per second which outperforms the widely-used Gauss-Seidel method by almost three orders of magnitude.

  5. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  6. Real-Time Feature Tracking Using Homography

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel S.; Cheng, Yang; Ansar, Adnan I.; Trotz, David C.; Padgett, Curtis W.

    2010-01-01

    This software finds feature point correspondences in sequences of images. It is designed for feature matching in aerial imagery. Feature matching is a fundamental step in a number of important image processing operations: calibrating the cameras in a camera array, stabilizing images in aerial movies, geo-registration of images, and generating high-fidelity surface maps from aerial movies. The method uses a Shi-Tomasi corner detector and normalized cross-correlation. This process is likely to result in the production of some mismatches. The feature set is cleaned up using the assumption that there is a large planar patch visible in both images. At high altitude, this assumption is often reasonable. A mathematical transformation, called an homography, is developed that allows us to predict the position in image 2 of any point on the plane in image 1. Any feature pair that is inconsistent with the homography is thrown out. The output of the process is a set of feature pairs, and the homography. The algorithms in this innovation are well known, but the new implementation improves the process in several ways. It runs in real-time at 2 Hz on 64-megapixel imagery. The new Shi-Tomasi corner detector tries to produce the requested number of features by automatically adjusting the minimum distance between found features. The homography-finding code now uses an implementation of the RANSAC algorithm that adjusts the number of iterations automatically to achieve a pre-set probability of missing a set of inliers. The new interface allows the caller to pass in a set of predetermined points in one of the images. This allows the ability to track the same set of points through multiple frames.

  7. 75 FR 68418 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... System Management Information Program that provides, in all States, the capability to monitor, in real... traveler information. The purposes of the Real-Time System Management Information Program are to:...

  8. Satellite clock corrections estimation to accomplish real time ppp: experiments for brazilian real time network

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo; Monico, João; Aquino, Marcio; Melo, Weyller

    2014-05-01

    The real time PPP method requires the availability of real time precise orbits and satellites clocks corrections. Currently, it is possible to apply the solutions of clocks and orbits available by BKG within the context of IGS Pilot project or by using the operational predicted IGU ephemeris. The accuracy of the satellite position available in the IGU is enough for several applications requiring good quality. However, the satellites clocks corrections do not provide enough accuracy (3 ns ~ 0.9 m) to accomplish real time PPP with the same level of accuracy. Therefore, for real time PPP application it is necessary to further research and develop appropriated methodologies for estimating the satellite clock corrections in real time with better accuracy. Currently, it is possible to apply the real time solutions of clocks and orbits available by Federal Agency for Cartography and Geodesy (BKG) within the context of IGS Pilot project. The BKG corrections are disseminated by a new proposed format of the RTCM 3.x and can be applied in the broadcasted orbits and clocks. Some investigations have been proposed for the estimation of the satellite clock corrections using GNSS code and phase observable at the double difference level between satellites and epochs (MERVAT, DOUSA, 2007). Another possibility consists of applying a Kalman Filter in the PPP network mode (HAUSCHILD, 2010) and it is also possible the integration of both methods, using network PPP and observables at double difference level in specific time intervals (ZHANG; LI; GUO, 2010). For this work the methodology adopted consists in the estimation of the satellite clock corrections based on the data adjustment in the PPP mode, but for a network of GNSS stations. The clock solution can be solved by using two types of observables: code smoothed by carrier phase or undifferenced code together with carrier phase. In the former, we estimate receiver clock error; satellite clock correction and troposphere, considering

  9. Real-Time Wireless Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non-time

  10. Implementation and evaluation of Google Glass for visualizing real-time image and patient data in the primary care office

    NASA Astrophysics Data System (ADS)

    Monroy, Guillermo L.; Shemonski, Nathan D.; Shelton, Ryan L.; Nolan, Ryan M.; Boppart, Stephen A.

    2014-02-01

    Primary care physicians must conduct a staggering number of comprehensive physical exams and medical record reviews, resulting in demanding daily schedules. Few commercial technologies have been marketed towards the primary care market, which has stifled improvements in disease screening and detection, work flow, and records management, taking time away from interactions with patients. In efforts to improve the quality of care in primary care medicine, we integrated our handheld primary care optical imaging system with Google Glass©, a commercial heads-up display (HUD). The integration of a HUD allows the physician to focus on the patient during the medical history review and during the patient exam, resulting in potential improvements to the quality of care and efficient access to real-time data for display and analysis.

  11. Instrumentation development for real time brainwave monitoring.

    SciTech Connect

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could capture, analyze, and communicate

  12. Real Time Seismic Loss Estimation in Italy

    NASA Astrophysics Data System (ADS)

    Goretti, A.; Sabetta, F.

    2009-04-01

    By more than 15 years the Seismic Risk Office is able to perform a real-time evaluation of the earthquake potential loss in any part of Italy. Once the epicentre and the magnitude of the earthquake are made available by the National Institute for Geophysiscs and Volca-nology, the model, based on the Italian Geographic Information Sys-tems, is able to evaluate the extent of the damaged area and the consequences on the built environment. In recent years the model has been significantly improved with new methodologies able to conditioning the uncertainties using observa-tions coming from the fields during the first days after the event. However it is reputed that the main challenges in loss analysis are related to the input data, more than to methodologies. Unlike the ur-ban scenario, where the missing data can be collected with enough accuracy, the country-wise analysis requires the use of existing data bases, often collected for other purposed than seismic scenario evaluation, and hence in some way lacking of completeness and homogeneity. Soil properties, building inventory and population dis-tribution are the main input data that are to be known in any site of the whole Italian territory. To this end the National Census on Popu-lation and Dwellings has provided information on the residential building types and the population that lives in that building types. The critical buildings, such as Hospital, Fire Brigade Stations, Schools, are not included in the inventory, since the national plan for seismic risk assessment of critical buildings is still under way. The choice of a proper soil motion parameter, its attenuation with distance and the building type fragility are important ingredients of the model as well. The presentation will focus on the above mentioned issues, highlight-ing the different data sets used and their accuracy, and comparing the model, input data and results when geographical areas with dif-ferent extent are considered: from the urban scenarios

  13. Real-time Forensic Disaster Analysis

    NASA Astrophysics Data System (ADS)

    Wenzel, F.; Daniell, J.; Khazai, B.; Mühr, B.; Kunz-Plapp, T.; Markus, M.; Vervaeck, A.

    2012-04-01

    The Center for Disaster Management and Risk Reduction Technology (CEDIM, www.cedim.de) - an interdisciplinary research center founded by the German Research Centre for Geoscience (GFZ) and Karlsruhe Institute of Technology (KIT) - has embarked on a new style of disaster research known as Forensic Disaster Analysis. The notion has been coined by the Integrated Research on Disaster Risk initiative (IRDR, www.irdrinternational.org) launched by ICSU in 2010. It has been defined as an approach to studying natural disasters that aims at uncovering the root causes of disasters through in-depth investigations that go beyond the reconnaissance reports and case studies typically conducted after disasters. In adopting this comprehensive understanding of disasters CEDIM adds a real-time component to the assessment and evaluation process. By comprehensive we mean that most if not all relevant aspects of disasters are considered and jointly analysed. This includes the impact (human, economy, and infrastructure), comparisons with recent historic events, social vulnerability, reconstruction and long-term impacts on livelihood issues. The forensic disaster analysis research mode is thus best characterized as "event-based research" through systematic investigation of critical issues arising after a disaster across various inter-related areas. The forensic approach requires (a) availability of global data bases regarding previous earthquake losses, socio-economic parameters, building stock information, etc.; (b) leveraging platforms such as the EERI clearing house, relief-web, and the many sources of local and international sources where information is organized; and (c) rapid access to critical information (e.g., crowd sourcing techniques) to improve our understanding of the complex dynamics of disasters. The main scientific questions being addressed are: What are critical factors that control loss of life, of infrastructure, and for economy? What are the critical interactions

  14. Real Time Wide Area Radiation Surveillance System

    NASA Astrophysics Data System (ADS)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  15. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1993-01-01

    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.

  16. Fast Simulation of Tsunamis in Real Time

    NASA Astrophysics Data System (ADS)

    Fryer, G. J.; Wang, D.; Becker, N. C.; Weinstein, S. A.; Walsh, D.

    2011-12-01

    The U.S. Tsunami Warning Centers primarily base their wave height forecasts on precomputed tsunami scenarios, such as the SIFT model (Standby Inundation Forecasting of Tsunamis) developed by NOAA's Center for Tsunami Research. In SIFT, tsunami simulations for about 1600 individual earthquake sources, each 100x50 km, define shallow subduction worldwide. These simulations are stored in a database and combined linearly to make up the tsunami from any great earthquake. Precomputation is necessary because the nonlinear shallow-water wave equations are too time consuming to compute during an event. While such scenario-based models are valuable, they tacitly assume all energy in a tsunami comes from thrust at the décollement. The thrust assumption is often violated (e.g., 1933 Sanriku, 2007 Kurils, 2009 Samoa), while a significant number of tsunamigenic earthquakes are completely unrelated to subduction (e.g., 1812 Santa Barbara, 1939 Accra, 1975 Kalapana). Finally, parts of some subduction zones are so poorly defined that precomputations may be of little value (e.g., 1762 Arakan, 1755 Lisbon). For all such sources, a fast means of estimating tsunami size is essential. At the Pacific Tsunami Warning Center, we have been using our model RIFT (Real-time Inundation Forecasting of Tsunamis) experimentally for two years. RIFT is fast by design: it solves only the linearized form of the equations. At 4 arc-minutes resolution calculations for the entire Pacific take just a few minutes on an 8-processor Linux box. Part of the rationale for developing RIFT was earthquakes of M 7.8 or smaller, which approach the lower limit of the more complex SIFT's abilities. For such events we currently issue a fixed warning to areas within 1,000 km of the source, which typically means a lot of over-warning. With sources defined by W-phase CMTs, exhaustive comparison with runup data shows that we can reduce the warning area significantly. Even before CMTs are available, we routinely run models

  17. Easy and hard testbeds for real-time search algorithms

    SciTech Connect

    Koenig, S.; Simmons, R.G.

    1996-12-31

    Although researchers have studied which factors influence the behavior of traditional search algorithms, currently not much is known about how domain properties influence the performance of real-time search algorithms. In this paper we demonstrate, both theoretically and experimentally, that Eulerian state spaces (a super set of undirected state spaces) are very easy for some existing real-time search algorithms to solve: even real-time search algorithms that can be intractable, in general, are efficient for Eulerian state spaces. Because traditional real-time search testbeds (such as the eight puzzle and gridworlds) are Eulerian, they cannot be used to distinguish between efficient and inefficient real-time search algorithms. It follows that one has to use non-Eulerian domains to demonstrate the general superiority of a given algorithm. To this end, we present two classes of hard-to-search state spaces and demonstrate the performance of various real-time search algorithms on them.

  18. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1991-01-01

    We discuss an ongoing project to build a Prototyping Environment for Real-Time Systems, called PERTS. PERTS is a unique prototyping environment in that it has (1) tools and performance models for the analysis and evaluation of real-time prototype systems, (2) building blocks for flexible real-time programs and the support system software, (3) basic building blocks of distributed and intelligent real time applications, and (4) an execution environment. PERTS will make the recent and future theoretical advances in real-time system design and engineering readily usable to practitioners. In particular, it will provide an environment for the use and evaluation of new design approaches, for experimentation with alternative system building blocks and for the analysis and performance profiling of prototype real-time systems.

  19. The Near Real Time Information System.

    DTIC Science & Technology

    1988-03-01

    process must strive to attain. These goals are as follows: * deployability, 26 1 11 * reliable and efficient systems, * complementary systems, * near real...is maximized. The optimum design of a system is one that is self-deployable or one that is wholly contained in a self-deployable system. Reliable and... reliable and dependable in any environment, on any terrain. Any supporting component of a system must be easily replaceable and not so critical that

  20. Prototype Real-Time Monitor: Ada Code.

    DTIC Science & Technology

    1987-11-01

    Internal_1o 85 package body ConvertEnumerations 89 package Internallo 89 package TypesManager 93 package body Types-Manager 96 package Rtm_Reals 98...Module Name: / TypesManager o -- I -/Module Type: -,I Package Specification -- I Module Purpose: -- / This package is the interface to...Use the type "address". package TypesManager is -- Type identifier, used externally to refer to a named type. -- type Valid_RtmType is private

  1. Possible Aoki phase for staggered fermions

    SciTech Connect

    Aubin, C.; Wang Qinghai

    2004-12-01

    The phase diagram for staggered fermions is discussed in the context of the staggered chiral Lagrangian, extending previous work on the subject. When the discretization errors are significant, there may be an Aoki-like phase for staggered fermions, where the remnant SO(4) taste-symmetry is broken down to SO(3). We solve explicitly for the mass spectrum in the 3-flavor degenerate mass case and discuss qualitatively the 2+1-flavor case. From numerical results we find that current simulations are outside the staggered-Aoki phase. As for near-future simulations with more-improved versions of the staggered action, it seems unlikely that these will be in the Aoki phase for any realistic value of the quark mass, although the evidence is not conclusive.

  2. Real Time Flux Control in PM Motors

    SciTech Connect

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

  3. Real Time Quality Control Methods for Cued EMI Data Collection

    DTIC Science & Technology

    2016-01-12

    source solvers in the in-field inversion to account for magnetic soil effects and high target densities. ESTCP-MR-201264 Real Time Quality Control ...project, we evaluated an in-field Quality Control (QC) software module that incorporates a real-time inversion capability to provide field operators...several operators indicate that the interpretation of inversion results is more ESTCP-MR-201264 Real Time Quality Control Methods for Cued EMI Data

  4. A Real-Time Linux for Multicore Platforms

    DTIC Science & Technology

    2013-12-20

    B . Chattopadhyay , S. Baruah. A lookup-table driven approach to partitioned scheduling, IEEE Real-Time Technology and Applications Symposium...reviewed journals: Number of Papers published in non peer-reviewed journals: ( b ) Papers published in non-peer-reviewed journals (N/ A for none) James H...Herman, B . Brandenburg, A . Mills, J. Anderson. Soft Real-Time on Multiprocessors:Are Analysis-Based Schedulers ReallyWorth It?, 32nd IEEE Real-Time

  5. Advancements in real-time engine simulation technology

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.

    1982-01-01

    The approaches used to develop real-time engine simulations are reviewed. Both digital and hybrid (analog and digital) techniques are discussed and specific examples of each are cited. These approaches are assessed from the standpoint of their usefulness for digital engine control development. A number of NASA-sponsored simulation research activities, aimed at exploring real-time simulation techniques, are described. These include the development of a microcomputer-based, parallel processor system for real-time engine simulation.

  6. Extensions to Real-time Hierarchical Mine Detection Algorithm

    DTIC Science & Technology

    2002-09-01

    Extensions to Real-Time Hierarchical Mine Detection Algorithm System Number: Patron Number: Requester: Notes: DSIS Use only: Deliver to: DK...Recherche et developpement pour Ia defense Canada Extensions to Real-Time Hierarchical Mine Detection Algorithm Final Report Sinh Duong and Mabo R. Ito...EXTENSIONS TO REAL-TIME HIERARCHICAL MINE DETECTION ALGORITHM FINAL REPORT by Smh Duong and Mabo R Ito The Univer~ity of Bntl~h Columbia Vancouver

  7. Real-Time Polymerase Chain Reaction Assays for Rickettsial Diseases

    DTIC Science & Technology

    2004-06-01

    agents in the blood stream the diseases are also difficult to diagnose by laboratory methods. For that reason we have developed real - time PCR assays to...detect rickettsial disease agents both at the genus and the species level. Real - time PCR assays were developed to identify: 1) pathogenic Rickettsia...calculate the sensitivity of the assays. These real - time PCR assays were found to be capable of detecting rickettsial disease agents quickly and with great sensitivity and specificity.

  8. A 3D staggered-grid finite difference scheme for poroelastic wave equation

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai

    2014-10-01

    Three dimensional numerical modeling has been a viable tool for understanding wave propagation in real media. The poroelastic media can better describe the phenomena of hydrocarbon reservoirs than acoustic and elastic media. However, the numerical modeling in 3D poroelastic media demands significantly more computational capacity, including both computational time and memory. In this paper, we present a 3D poroelastic staggered-grid finite difference (SFD) scheme. During the procedure, parallel computing is implemented to reduce the computational time. Parallelization is based on domain decomposition, and communication between processors is performed using message passing interface (MPI). Parallel analysis shows that the parallelized SFD scheme significantly improves the simulation efficiency and 3D decomposition in domain is the most efficient. We also analyze the numerical dispersion and stability condition of the 3D poroelastic SFD method. Numerical results show that the 3D numerical simulation can provide a real description of wave propagation.

  9. Real-time monitoring for bioaerosols--flow cytometry.

    PubMed

    Chen, Pei-Shih; Li, Chih-Shan

    2007-01-01

    Bioaerosol detection in real time is an urgent civilian and military requirement. In this article, bioaerosol mass spectrometry, an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence, real-time qPCR, and FCM/FL were discussed. Although, challenging work remains to determine the interfering substances (e.g. particulates) of different environments, distinguish the specific species with specific probe, and overcome the high detection limit of FCM (10(4)-10(8) cells ml(-1)), literature reports suggested that FCM/FL has a great potential for real-time monitoring of bioaerosols.

  10. Geographically distributed real-time digital simulations using linear prediction

    SciTech Connect

    Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank; Hovsapian, Rob; Srivastava, Anurag; Suryanarayanan, Siddharth

    2016-07-04

    Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce the effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.

  11. Geographically distributed real-time digital simulations using linear prediction

    DOE PAGES

    Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank; ...

    2016-07-04

    Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less

  12. Real-Time MENTAT programming language and architecture

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  13. Real-Time MENTAT programming language and architecture

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  14. Real time simulation using position sensing

    NASA Technical Reports Server (NTRS)

    Studor, George F. (Inventor); Womack, Robert W. (Inventor); Hilferty, Michael F. (Inventor); Isbell, William B. (Inventor); Taylor, Jason A. (Inventor); Bacon, Bruce R. (Inventor)

    2000-01-01

    An interactive exercise system including exercise equipment having a resistance system, a speed sensor, a controller that varies the resistance setting of the exercise equipment, and a playback device for playing pre-recorded video and audio. The controller, operating in conjunction with speed information from the speed sensor and terrain information from media table files, dynamically varies the resistance setting of the exercise equipment in order to simulate varying degrees of difficulty while the playback device concurrently plays back the video and audio to create the simulation that the user is exercising in a natural setting such as a real-world exercise course.

  15. Real-Time Visualization System for Computational Offloading

    DTIC Science & Technology

    2015-01-01

    Real -Time Visualization System for Computational Offloading by Bryan Dawson and David L Doria ARL-TN-0655 January 2015...needed. Do not return it to the originator. Army Research Laboratory Aberdeen Proving Ground, MD 21005-5067 ARL-TN-0655 January 2015 Real ...3. DATES COVERED (From - To) May 2014 4. TITLE AND SUBTITLE Real -Time Visualization System for Computational Offloading 5a. CONTRACT NUMBER 5b

  16. Casi real-time surface-laid mine detection system

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Stephen B.; McFee, John E.; Anger, Clifford D.

    2001-10-01

    A ground vehicle-based, real-time, surface mine detection system, utilizing a Compact Airborne Spectrographic Image (casi), efficient mine detection algorithms, and real-time processing systems, was designed and tested. The combined real-time system was capable of 'learning' the in-situ spectra of various mines, thus providing a spectral library for the detection algorithms. The real-time processing of the casi data involved three steps. The first step was the radiometric correction of the raw data. The second step involved the application of the mine detection algorithms to the corrected data, referencing the spectral library. In the final step, the results of the real-time processes were stored and displayed, usually within a few frame times of the data acquisition. To the authors knowledge, this system represents the first hyperspectral imager to detect mines in real-time. This paper describes the generation of the in-situ mine spectral library, the collection of the scene data, the real-time processing of the scene data and the subsequent display and recording of the detection data. The limitation and expansion capabilities of the real-time system are discussed as well as various techniques that were implemented to achieve the goals. Planned future improvements that have been identified to create a more robust and higher performance, yet simpler processing systems are also discussed.

  17. 76 FR 42536 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... additional comments relating to the costs and benefits of the Real-Time System Management Information Program... System Management Information Program on November 8, 2010, at 75 FR 68418. The final rule document...

  18. Real-time hyperspectral imaging for food safety applications

    USDA-ARS?s Scientific Manuscript database

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  19. Hardware configuration for a real-time multiprocessor simulator

    NASA Technical Reports Server (NTRS)

    Blech, R. A.; Williams, A. D.

    1986-01-01

    The Real-Time Multiprocessor Simulator (RTMPS) is a multiple microcomputer system used to investigate the application of parallel-processing concepts to real-time simulation. This users manual describes the set-up and installation considerations for the RTMPS hardware. Any modifications or further improvements to the RTMPS hardware will be documented in an addendum to this manual.

  20. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  1. Real-time fault diagnosis for propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet

    1991-01-01

    Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.

  2. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  3. "Real-Time" Case Studies in Organizational Communication

    ERIC Educational Resources Information Center

    Long, Shawn D.

    2005-01-01

    This article presents an activity that integrates theory and application by examining the multiple communication events affecting a single organization in "real time" over the course of an academic term. The "real-time" case study (RTCS) avails students of the opportunity to examine organizational communication events as they are occurring in…

  4. Real-Time Simulation of a Smart Inverter

    NASA Astrophysics Data System (ADS)

    Thiagarajan, Ramanathan

    With the increasing penetration of Photovoltaic inverters, there is a necessity for recent PV inverters to have smart grid support features for increased power system reliability and security. The grid support features include voltage support, active and reactive power control. These support features mean that inverters should have bidirectional power and communication capabilities. The inverter should be able to communicate with the grid utility and other inverter modules. This thesis studies the real time simulation of smart inverters using PLECS Real Time Box. The real time simulation is performed as a Controller Hardware in the Loop (CHIL) real time simulation. In this thesis, the power stage of the smart inverter is emulated in the PLECS Real Time Box and the controller stage of the inverter is programmed in the Digital Signal Processor (DSP) connected to the real time box. The power stage emulated in the real time box and the controller implemented in the DSP form a closed loop smart inverter. This smart inverter, with power stage and controller together, is then connected to an OPAL-RT simulator which emulates the power distribution system of the Arizona State University Poly campus. The smart inverter then sends and receives commands to supply power and support the grid. The results of the smart inverter with the PLECS Real time box and the smart inverter connected to an emulated distribution system are discussed under various conditions based on the commands received by the smart inverter.

  5. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  6. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  7. Recent achievements in real-time computational seismology in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liang, W.; Huang, B.

    2012-12-01

    Real-time computational seismology is currently possible to be achieved which needs highly connection between seismic database and high performance computing. We have developed a real-time moment tensor monitoring system (RMT) by using continuous BATS records and moment tensor inversion (CMT) technique. The real-time online earthquake simulation service is also ready to open for researchers and public earthquake science education (ROS). Combine RMT with ROS, the earthquake report based on computational seismology can provide within 5 minutes after an earthquake occurred (RMT obtains point source information < 120 sec; ROS completes a 3D simulation < 3 minutes). All of these computational results are posted on the internet in real-time now. For more information, welcome to visit real-time computational seismology earthquake report webpage (RCS).

  8. Hardware for a real-time multiprocessor simulator

    NASA Technical Reports Server (NTRS)

    Blech, R. A.; Arpasi, D. J.

    1984-01-01

    The hardware for a real time multiprocessor simulator (RTMPS) developed at the NASA Lewis Research Center is described. The RTMPS is a multiple microprocessor system used to investigate the application of parallel processing concepts to real time simulation. It is designed to provide flexible data exchange paths between processors by using off the shelf microcomputer boards and minimal customized interfacing. A dedicated operator interface allows easy setup of the simulator and quick interpreting of simulation data. Simulations for the RTMPS are coded in a NASA designed real time multiprocessor language (RTMPL). This language is high level and geared to the multiprocessor environment. A real time multiprocessor operating system (RTMPOS) has also been developed that provides a user friendly operator interface. The RTMPS and supporting software are currently operational and are being evaluated at Lewis. The results of this evaluation will be used to specify the design of an optimized parallel processing system for real time simulation of dynamic systems.

  9. Real-Time MEG Source Localization using Regional Clustering

    PubMed Central

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S.

    2015-01-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject’s reaction and increases time efficiency by shortening acquisition and offline analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping (dSPM) for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements. PMID:25782980

  10. Reviewing real-time performance of nuclear reactor safety systems

    SciTech Connect

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  11. Real-Time MEG Source Localization Using Regional Clustering.

    PubMed

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S

    2015-11-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject's reaction and increases time efficiency by shortening acquisition and off-line analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements.

  12. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  13. Real-time simulation of hand motion for prosthesis control.

    PubMed

    Blana, Dimitra; Chadwick, Edward K; van den Bogert, Antonie J; Murray, Wendy M

    2017-04-01

    Individuals with hand amputation suffer substantial loss of independence. Performance of sophisticated prostheses is limited by the ability to control them. To achieve natural and simultaneous control of all wrist and hand motions, we propose to use real-time biomechanical simulation to map between residual EMG and motions of the intact hand. Here we describe a musculoskeletal model of the hand using only extrinsic muscles to determine whether real-time performance is possible. Simulation is 1.3 times faster than real time, but the model is locally unstable. Methods are discussed to increase stability and make this approach suitable for prosthesis control.

  14. Real-Time Geospatial Data Viewer (RETIGO)

    EPA Science Inventory

    This is a web-based method that allows the users to upload their air monitoring data and explore the data on graphical interface. The method is optimized for mobile monitoring data sets, showing the data on a map, on a time series, and referenced to a hypothesized line and/or poi...

  15. Real-Time Geospatial Data Viewer (RETIGO)

    EPA Science Inventory

    This is a web-based method that allows the users to upload their air monitoring data and explore the data on graphical interface. The method is optimized for mobile monitoring data sets, showing the data on a map, on a time series, and referenced to a hypothesized line and/or poi...

  16. Scheduling Dependent Real-Time Activities

    DTIC Science & Technology

    1990-08-01

    missed deadlines. [ HiPAC 88] reports on a project where database system researchers explore approaches to resolve time-constrained data management...Technical Report CMU-CS-88-140, Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, May, 1988. [ HiPAC 88] Dayal, U., Blaustein, B...Buchmann, A., Chakravarthy, U., Hsu, M., Ledin, R., McCarthy, D., Rosenthal, A., Sarin, S. Carey, M. J., Livny, M. and Jauhari, R. The HiPAC Project

  17. An Automated Real Time Capillary Viscometer

    DTIC Science & Technology

    2007-11-02

    blood viscosity accounts for clinical manifestations of Polycythemia that have been observed in approximately 50 % of newborn infants with...Merlob and S.H. Reisner, "Neonatal Polycythemia . I. Early diagnosis and incidence relating to time of sampling," Pediatrics, vol. 73, pp. 7-10, 1984...10] T.E. Wiswell, J.D. Cornish and R.S. Northam, "Neonatal Polycythemia : frequency of clinical manifestations and other associated findings

  18. Toward Real Time Uavs' Image Mosaicking

    NASA Astrophysics Data System (ADS)

    Mehrdad, S.; Satari, M.; Safdary, M.; Moallem, P.

    2016-06-01

    Anyone knows that sudden catastrophes can instantly do great damage. Fast and accurate acquisition of catastrophe information is an essential task for minimize life and property damage. Compared with other ways of catastrophe data acquisition, UAV based platforms can optimize time, cost and accuracy of the data acquisition, as a result UAVs' data has become the first choice in such condition. In this paper, a novel and fast strategy is proposed for registering and mosaicking of UAVs' image data. Firstly, imprecise image positions are used to find adjoining frames. Then matching process is done by a novel matching method. With keeping Sift in mind, this fast matching method is introduced, which uses images exposure time geometry, SIFT point detector and rBRIEF descriptor vector in order to match points efficiency, and by efficiency we mean not only time efficiency but also elimination of mismatch points. This method uses each image sequence imprecise attitude in order to use Epipolar geometry to both restricting search space of matching and eliminating mismatch points. In consideration of reaching to images imprecise attitude and positions we calibrated the UAV's sensors. After matching process, RANSAC is used to eliminate mismatched tie points. In order to obtain final mosaic, image histograms are equalized and a weighted average method is used to image composition in overlapping areas. The total RMSE over all matching points is 1.72 m.

  19. Real-time adaptive aircraft scheduling

    NASA Technical Reports Server (NTRS)

    Kolitz, Stephan E.; Terrab, Mostafa

    1990-01-01

    One of the most important functions of any air traffic management system is the assignment of ground-holding times to flights, i.e., the determination of whether and by how much the take-off of a particular aircraft headed for a congested part of the air traffic control (ATC) system should be postponed in order to reduce the likelihood and extent of airborne delays. An analysis is presented for the fundamental case in which flights from many destinations must be scheduled for arrival at a single congested airport; the formulation is also useful in scheduling the landing of airborne flights within the extended terminal area. A set of approaches is described for addressing a deterministic and a probabilistic version of this problem. For the deterministic case, where airport capacities are known and fixed, several models were developed with associated low-order polynomial-time algorithms. For general delay cost functions, these algorithms find an optimal solution. Under a particular natural assumption regarding the delay cost function, an extremely fast (O(n ln n)) algorithm was developed. For the probabilistic case, using an estimated probability distribution of airport capacities, a model was developed with an associated low-order polynomial-time heuristic algorithm with useful properties.

  20. Faster and cleaner real-time pure shift NMR experiments.

    PubMed

    Mauhart, Johannes; Glanzer, Simon; Sakhaii, Peyman; Bermel, Wolfgang; Zangger, Klaus

    2015-10-01

    Real-time pure shift experiments provide highly resolved proton NMR spectra which do not require any special processing. Although being more sensitive than their pseudo 2D counterparts, their signal intensities per unit time are still far below regular NMR spectra. In addition, scalar coupling evolution during the individual data chunks produces decoupling sidebands. Here we show that faster and cleaner real-time pure shift spectra can be obtained through the implementation of two parameter alterations. Variation of the FID chunk lengths between individual transients significantly suppresses decoupling sidebands for any kind of real-time pure shift spectra and thus allows for example the analysis of minor components in compound mixtures. Shifting the excitation frequency between individual scans of real-time slice-selective pure shift spectra increases their sensitivity obtainable in unit time by allowing faster repetitions of acquisitions.

  1. Space Shuttle Main Engine real time stability analysis

    NASA Technical Reports Server (NTRS)

    Kuo, F. Y.

    1993-01-01

    The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.

  2. Vector processing enhancements for real-time image analysis.

    SciTech Connect

    Shoaf, S.; APS Engineering Support Division

    2008-01-01

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  3. Semantics and Pragmatics of Real-Time Maude

    DTIC Science & Technology

    2007-01-01

    hybrid automata, such as UPPAAL [19,5], HyTech [15], and Kronos [32]. While the restrictive specification formalism of these tools ensures that...UPPAAL [19,5] and Kronos [32], as follows: Many large and complex systems can be naturally modeled in Real-Time Maude but not in UPPAAL or Kronos ...untimed) CTL [5] while Real-Time Maude al- lows us to define any propositional linear temporal logic formula. Kronos ’ query language is timed CTL (TCTL

  4. Black Hole Formation in Real Time

    NASA Astrophysics Data System (ADS)

    Nissanke, Samaya

    2015-08-01

    Gravity plays a fundamental role in the formation, evolution and fate of stars. However, it remains unclear how massive stars, almost always in pairs, end their lives as extreme gravity objects (neutron stars and black holes) and what their eventual fate is. The physics driving these events in strong-field gravity are complex, rich but still remain elusive. Theoretical work in general relativity has long predicted that the formation of black holes through neutron star mergers emit vast amounts of gravitational radiation, through gravitational waves (GWs), and conventional electromagnetic (EM) radiation. Observing GWs and EM radiation from these elusive short-lived mergers remains one of the holy grails of modern astronomy and is only now possible with a suite of new time-domain telescopes and experiments. I will first review the most recent advances in this blossoming field of EM+GW astronomy, which combines three active disciplines: time-domain astronomy, computational astrophysics and general relativity. I will discuss the promises of this new convergence by illustrating the wealth of astrophysical information that a combined EM+GW measurement would immediately bring. I will then outline the main challenges that lie ahead for this new field in pinpointing the sky location of neutron star mergers using GW detectors and optical and radio wide-field synoptic surveys.

  5. Real-time dynamic simulation of the Cassini spacecraft using DARTS. Part 2: Parallel/vectorized real-time implementation

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Roberts, J. A.; Jain, A.; Man, G. K.

    1993-01-01

    Part 1 of this paper presented the requirements for the real-time simulation of Cassini spacecraft along with some discussion of the DARTS algorithm. Here, in Part 2 we discuss the development and implementation of parallel/vectorized DARTS algorithm and architecture for real-time simulation. Development of the fast algorithms and architecture for real-time hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it represents a hard real-time problem, in the sense that the correctness of the simulation depends on both the numerical accuracy and the exact timing of the computation. For a given model fidelity, the computation should be computed within a predefined time period. Further reduction in computation time allows increasing the fidelity of the model (i.e., inclusion of more flexible modes) and the integration routine.

  6. Method for Real-Time Model Based Structural Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Smith, Timothy A. (Inventor); Urnes, James M., Sr. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  7. Enhancements to the EPANET-RTX (Real-Time Analytics) ...

    EPA Pesticide Factsheets

    Technical brief and software The U.S. Environmental Protection Agency (EPA) developed EPANET-RTX as a collection of object-oriented software libraries comprising the core data access, data transformation, and data synthesis (real-time analytics) components of a real-time hydraulic and water quality modeling system. While EPANET-RTX uses the hydraulic and water quality solvers of EPANET, the object libraries are a self-contained set of building blocks for software developers. “Real-time EPANET” promises to change the way water utilities, commercial vendors, engineers, and the water community think about modeling.

  8. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  9. Real-time cosmography with redshift derivatives

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Martinelli, M.; Calabrese, E.; Ramos, M. P. L. P.

    2016-08-01

    The drift in the redshift of objects passively following the cosmological expansion has long been recognized as a key model-independent probe of cosmology. Here, we study the cosmological relevance of measurements of time or redshift derivatives of this drift, arguing that the combination of first and second redshift derivatives is a powerful test of the Λ CDM cosmological model. In particular, the latter can be obtained numerically from a set of measurements of the drift at different redshifts. We show that, in the low-redshift limit, a measurement of the derivative of the drift can provide a constraint on the jerk parameter, which is j =1 for flat Λ CDM , while generically j ≠1 for other models. We emphasize that such a measurement is well within the reach of the ELT-HIRES and SKA Phase 2 array surveys.

  10. Real time control for NASA robotic gripper

    NASA Technical Reports Server (NTRS)

    Salter, Carole A.; Baras, John S.

    1989-01-01

    Control laws (in some optimal sense) are being developed for the gripper/nut runner end effector. Control laws for the gripper and nut runner portions of the end effector may be developed independently since these two systems are decoupled. A hybrid force/position controller will be used for both the gripper and nut runner. The development of the gripper controller is explained. Sensory data available to the controller is obtained from an array of strain gages as well as a linear potentiometer. Applying well known optimal control theoretic principles, the control which minimizes the transition time between positions is obtained. In addition, a robust force control scheme is developed to contend with the strain gage drift caused by extreme temperature variations encountered in space.

  11. Real time control for NASA robotic gripper

    NASA Technical Reports Server (NTRS)

    Salter, Carole A.; Baras, John S.

    1990-01-01

    The ability to easily manipulate objects in a zero gravity environment will pay a key role in future space activities. Emphasis will be placed on robotic manipulation. This will serve to increase astronaut safety and utility in addition to several other benefits. The aim is to develop control laws for the zero gravity robotic end effectors. A hybrid force/position controller will be used. Sensory data available to the controller are obtained from an array of strain gauges and a linear potentiometer. Applying well known optimal control theoretical principles, the control which minimizes the transition time between positions is obtained. A robust force control scheme is developed which allows the desired holding force to be achieved smoothly without oscillation. In addition, an algorithm is found to determine contact force and contact location.

  12. Real-time airborne particle analyzer

    SciTech Connect

    Reilly, Peter T.A.

    2012-10-16

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  13. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  14. Real-time and reliable human detection in clutter scene

    NASA Astrophysics Data System (ADS)

    Tan, Yumei; Luo, Xiaoshu; Xia, Haiying

    2013-10-01

    To solve the problem that traditional HOG approach for human detection can not achieve real-time detection due to its time-consuming detection, an efficient algorithm based on first segmentation then identify method for real-time human detection is proposed to achieve real-time human detection in clutter scene. Firstly, the ViBe algorithm is used to segment all possible human target regions quickly, and more accurate moving objects is obtained by using the YUV color space to eliminate the shadow; secondly, using the body geometry knowledge can help to found the valid human areas by screening the regions of interest; finally, linear support vector machine (SVM) classifier and HOG are applied to train for human body classifier, to achieve accurate positioning of human body's locations. The results of our comparative experiments demonstrated that the approach proposed can obtain high accuracy, good real-time performance and strong robustness.

  15. Nonlinear real-time optical signal processing

    NASA Astrophysics Data System (ADS)

    Sawchuk, A. A.; Jenkins, B. J.

    1986-07-01

    During the period 1 July 1984 - 30 June 1985, the research under Grant AFOSR-84-0181 has concentrated on four major areas. First, work has continued on an experimental sequential optical binary parallel architecture that is constructed from an array of binary optical switching elements (NOR gates) with interconnections done by a computer-generated hologram. We are examining new binary array SLM's, high efficiency, high space-bandwidth product (SBWP) interconnection holograms, and compact reflection versions of the general architecture with the intent of building a larger demonstration system with great capabilities. Next, we have studied improved methods of providing the interconnections in these systems by the use of hybrid digital/analog (facet) holograms. We have examined analytical techniques for mapping circuit diagrams into gate locations and hologram arrays, and optimization procedures to determine the minimum set of necessary space-invariant basis functions and minimum set of space-variant indexing holograms. Another area of study has been the evaluation of devices and materials for high speed optical switching and bistability. Switching energies of 1 to 10 pJ and response times of 10 ns have been experimentally demonstrated at the University of Arizona for devices consisting of an array of Fabry-Perot cavities filled with a nonlinear material. We have begun to use the specifications of these devices and other high speed switching technologies in order to determine better designs and fundamental limits of the binary optical computing architectures under consideration.

  16. Near real-time skin deformation mapping

    NASA Astrophysics Data System (ADS)

    Kacenjar, Steve; Chen, Suzie; Jafri, Madiha; Wall, Brian; Pedersen, Richard; Bezozo, Richard

    2013-02-01

    A novel in vivo approach is described that provides large area mapping of the mechanical properties of the skin in human patients. Such information is important in the understanding of skin health, cosmetic surgery[1], aging, and impacts of sun exposure. Currently, several methods have been developed to estimate the local biomechanical properties of the skin, including the use of a physical biopsy of local areas of the skin (in vitro methods) [2, 3, and 4], and also the use of non-invasive methods (in vivo) [5, 6, and 7]. All such methods examine localized areas of the skin. Our approach examines the local elastic properties via the generation of field displacement maps of the skin created using time-sequence imaging [9] with 2D digital imaging correlation (DIC) [10]. In this approach, large areas of the skin are reviewed rapidly, and skin displacement maps are generated showing the contour maps of skin deformation. These maps are then used to precisely register skin images for purposes of diagnostic comparison. This paper reports on our mapping and registration approach, and demonstrates its ability to accurately measure the skin deformation through a described nulling interpolation process. The result of local translational DIC alignment is compared using this interpolation process. The effectiveness of the approach is reported in terms of residual RMS, image entropy measures, and differential segmented regional errors.

  17. Real Time & Power Efficient Adaptive - Robust Control

    NASA Astrophysics Data System (ADS)

    Ioan Gliga, Lavinius; Constantin Mihai, Cosmin; Lupu, Ciprian; Popescu, Dumitru

    2017-01-01

    A design procedure for a control system suited for dynamic variable processes is presented in this paper. The proposed adaptive - robust control strategy considers both adaptive control advantages and robust control benefits. It estimates the degradation of the system’s performances due to the dynamic variation in the process and it then utilizes it to determine when the system must be adapted with a redesign of the robust controller. A single integral criterion is used for the identification of the process, and for the design of the control algorithm, which is expressed in direct form, through a cost function defined in the space of the parameters of both the process and the controller. For the minimization of this nonlinear function, an adequate mathematical programming minimization method is used. The theoretical approach presented in this paper was validated for a closed loop control system, simulated in an application developed in C. Because of the reduced number of operations, this method is suitable for implementation on fast processes. Due to its effectiveness, it increases the idle time of the CPU, thereby saving electrical energy.

  18. Real time viability detection of bacterial spores

    DOEpatents

    Vanderberg, Laura A.; Herdendorf, Timothy J.; Obiso, Richard J.

    2003-07-29

    This invention relates to a process for detecting the presence of viable bacterial spores in a sample and to a spore detection system, the process including placing a sample in a germination medium for a period of time sufficient for commitment of any present viable bacterial spores to occur, mixing the sample with a solution of a lanthanide capable of forming a fluorescent complex with dipicolinic acid, and, measuring the sample for the presence of dipicolinic acid, and the system including a germination chamber having inlets from a sample chamber, a germinant chamber and a bleach chamber, the germination chamber further including an outlet through a filtering means, the outlet connected to a detection chamber, the detection chamber having an inlet from a fluorescence promoting metal chamber and the detection chamber including a spectral excitation source and a means of measuring emission spectra from a sample, the detection chamber further connected to a waste chamber. A germination reaction mixture useful for promoting commitment of any viable bacterial spores in a sample including a combination of L-alanine, L-asparagine and D-glucose is also described.

  19. Real-time feedback from iterative electronic structure calculations.

    PubMed

    Vaucher, Alain C; Haag, Moritz P; Reiher, Markus

    2016-04-05

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semiempirical methods as the data source and apply the surrogate-potential mediator to deliver reliable real-time feedback.

  20. Real-time estimation of dynamic functional connectivity networks.

    PubMed

    Monti, Ricardo Pio; Lorenz, Romy; Braga, Rodrigo M; Anagnostopoulos, Christoforos; Leech, Robert; Montana, Giovanni

    2017-01-01

    Two novel and exciting avenues of neuroscientific research involve the study of task-driven dynamic reconfigurations of functional connectivity networks and the study of functional connectivity in real-time. While the former is a well-established field within neuroscience and has received considerable attention in recent years, the latter remains in its infancy. To date, the vast majority of real-time fMRI studies have focused on a single brain region at a time. This is due in part to the many challenges faced when estimating dynamic functional connectivity networks in real-time. In this work, we propose a novel methodology with which to accurately track changes in time-varying functional connectivity networks in real-time. The proposed method is shown to perform competitively when compared to state-of-the-art offline algorithms using both synthetic as well as real-time fMRI data. The proposed method is applied to motor task data from the Human Connectome Project as well as to data obtained from a visuospatial attention task. We demonstrate that the algorithm is able to accurately estimate task-related changes in network structure in real-time. Hum Brain Mapp 38:202-220, 2017. © 2016 Wiley Periodicals, Inc.

  1. Building flexible real-time systems using the Flex language

    NASA Technical Reports Server (NTRS)

    Kenny, Kevin B.; Lin, Kwei-Jay

    1991-01-01

    The design and implementation of a real-time programming language called Flex, which is a derivative of C++, are presented. It is shown how different types of timing requirements might be expressed and enforced in Flex, how they might be fulfilled in a flexible way using different program models, and how the programming environment can help in making binding and scheduling decisions. The timing constraint primitives in Flex are easy to use yet powerful enough to define both independent and relative timing constraints. Program models like imprecise computation and performance polymorphism can carry out flexible real-time programs. In addition, programmers can use a performance measurement tool that produces statistically correct timing models to predict the expected execution time of a program and to help make binding decisions. A real-time programming environment is also presented.

  2. The First Real-Time Tsunami Animation

    NASA Astrophysics Data System (ADS)

    Becker, N. C.; Wang, D.; McCreery, C.; Weinstein, S.; Ward, B.

    2014-12-01

    For the first time a U.S. tsunami warning center created and issued a tsunami forecast model animation while the tsunami was still crossing an ocean. Pacific Tsunami Warning Center (PTWC) scientists had predicted they would have this ability (Becker et al., 2012) with their RIFT forecast model (Wang et al., 2009) by using rapidly-determined W-phase centroid-moment tensor earthquake focal mechanisms as tsunami sources in the RIFT model (Wang et al., 2012). PTWC then acquired its own YouTube channel in 2013 for its outreach efforts that showed animations of historic tsunamis (Becker et al., 2013), but could also be a platform for sharing future tsunami animations. The 8.2 Mw earthquake of 1 April 2014 prompted PTWC to issue official warnings for a dangerous tsunami in Chile, Peru and Ecuador. PTWC ended these warnings five hours later, then issued its new tsunami marine hazard product (i.e., no coastal evacuations) for the State of Hawaii. With the international warning canceled but with a domestic hazard still present PTWC generated a forecast model animation and uploaded it to its YouTube channel six hours before the arrival of the first waves in Hawaii. PTWC also gave copies of this animation to television reporters who in turn passed it on to their national broadcast networks. PTWC then created a version for NOAA's Science on a Sphere system so it could be shown on these exhibits as the tsunami was still crossing the Pacific Ocean. While it is difficult to determine how many people saw this animation since local, national, and international news networks showed it in their broadcasts, PTWC's YouTube channel provides some statistics. As of 1 August 2014 this animation has garnered more than 650,000 views. Previous animations, typically released during significant anniversaries, rarely get more than 10,000 views, and even then only when external websites share them. Clearly there is a high demand for a tsunami graphic that shows both the speed and the severity of a

  3. Developing infrared array controller with software real time operating system

    NASA Astrophysics Data System (ADS)

    Sako, Shigeyuki; Miyata, Takashi; Nakamura, Tomohiko; Motohara, Kentaro; Uchimoto, Yuka Katsuno; Onaka, Takashi; Kataza, Hirokazu

    2008-07-01

    Real-time capabilities are required for a controller of a large format array to reduce a dead-time attributed by readout and data transfer. The real-time processing has been achieved by dedicated processors including DSP, CPLD, and FPGA devices. However, the dedicated processors have problems with memory resources, inflexibility, and high cost. Meanwhile, a recent PC has sufficient resources of CPUs and memories to control the infrared array and to process a large amount of frame data in real-time. In this study, we have developed an infrared array controller with a software real-time operating system (RTOS) instead of the dedicated processors. A Linux PC equipped with a RTAI extension and a dual-core CPU is used as a main computer, and one of the CPU cores is allocated to the real-time processing. A digital I/O board with DMA functions is used for an I/O interface. The signal-processing cores are integrated in the OS kernel as a real-time driver module, which is composed of two virtual devices of the clock processor and the frame processor tasks. The array controller with the RTOS realizes complicated operations easily, flexibly, and at a low cost.

  4. Real-Time Collision Avoidance for Dexterous 7-DOF Arms

    NASA Technical Reports Server (NTRS)

    Bon, Bruce; Seraji, Homayoun

    1996-01-01

    A new approach to real-time collison avoidance for dexterous 7-DOF arms and supportive simulation and experimental results are presented. The collision avoidance problem is formulated and solved as a force control problem.

  5. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  6. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  7. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary J. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1990-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  8. Real-time Position Control of Concentric Tube Robots.

    PubMed

    Dupont, Pierre E; Lock, Jesse; Itkowitz, Brandon

    2010-05-03

    A novel approach to constructing robots is based on concentrically combining pre-curved elastic tubes. By rotating and extending the tubes with respect to each other, their curvatures interact elastically to position and orient the robot's tip, as well as to control the robot's shape along its length. Since these robots form slender curves, they are well suited for minimally invasive medical procedures. A substantial challenge to their practical use is the real-time solution of their kinematics that are described by differential equations with split boundary equations. This paper proposes a numerically efficient approach to real-time position control. It is shown that the forward kinematics are smooth functions that can be pre-computed and accurately approximated using Fourier series. The inverse kinematics can be solved in real time using root finding applied to the functional approximation. Experimental demonstration of real-time position control using this approach is also described.

  9. Application of real time PCR for diagnosis of Swine Dysentery.

    PubMed

    Akase, Satoru; Uchitani, Yumi; Sohmura, Yoshiko; Tatsuta, Keikichi; Sadamasu, Kenji; Adachi, Yoshikazu

    2009-03-01

    Evaluation of a genetic diagnostic technique using real time PCR of Swine Dysentery (SD) was performed using nox primers. Culture, ordinary PCR and real time PCR were compared in this experiment. Sixty-seven specimens from pigs with clinical signs of SD brought to a slaughterhouse in Shibaura, Tokyo, were used. B. hyodysenteriae was isolated from 49 of the pigs, was detected by ordinary PCR in 49 of the pigs and was detected by real time PCR in 54 of the pigs. Furthermore, we were able to determine the numbers of B. hyodysenteriae cells in all positive specimens by real time PCR. The rapid diagnostic technique established in this experiment was useful for detection of B. hyodysenteriae because it was more effective than ordinary PCR and culture.

  10. Cluster Computing for Embedded/Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Katz, D.; Kepner, J.

    1999-01-01

    Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.

  11. The Effects of Real-Time Interactive Multimedia Teleradiology System

    PubMed Central

    Al-Safadi, Lilac

    2016-01-01

    This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists' reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care. PMID:27294118

  12. Real-time water quality monitoring and providing water quality ...

    EPA Pesticide Factsheets

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  13. Challenges of AVHRR Vegetation Data for Real Time Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly

    2008-01-01

    Remote sensing data has long been used to monitor global ecosystems for floods and droughts and AVHRR data, as one of the first product, has many users interested in receiving the data within hours of acquisition. With the introduction of a new series of sensors in 2000 (the AVHRR/3 series), the quality of the NDVI datasets available for real time environmental monitoring has declined. This paper provides evidence of problems of cloud contamination, calibration and noise in the real time data which are not present in the historical AVHRR NDVIg dataset. These differences introduce significant uncertainty in the use of the real time data, degrading their utility for detecting climate variations in near real time.

  14. Prototype real-time baseband signal combiner. [deep space network

    NASA Technical Reports Server (NTRS)

    Howard, L. D.

    1980-01-01

    The design and performance of a prototype real-time baseband signal combiner, used to enhance the received Voyager 2 spacecraft signals during the Jupiter flyby, is described. Hardware delay paths, operating programs, and firmware are discussed.

  15. Real-time interactive speech technology at Threshold Technology, Incorporated

    NASA Technical Reports Server (NTRS)

    Herscher, Marvin B.

    1977-01-01

    Basic real-time isolated-word recognition techniques are reviewed. Industrial applications of voice technology are described in chronological order of their development. Future research efforts are also discussed.

  16. Near-Real-Time and Laboratory Data by State

    EPA Pesticide Factsheets

    RadNet data from individual near-real-time air monitors is available on a clickable map and is also listed by state and city. Sampling locations for drinking water, precipitation and air filters are also listed.

  17. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  18. Intelligent data management for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  19. Real-Time Engineering Simulation of Lunar Excavation

    SciTech Connect

    Bruce Damer, George Tompkins, Sheldon Freid, Dave Rasmussen, Peter Newman, Brad Blair

    2007-06-12

    DigitalSpace Corporation has been building an open source real-time three-dimensional (3-D) collaborative design engineering and training platform called Digital Spaces (DSS) in support of the Exploration Vision of the National Aeronautics and Space Administration (NASA). Real-time 3-D simulation has reached a level of maturity where it is capable of supporting engineering design and operations using off-the-shelf game chipsets and open source physics and rendering technologies. This paper will illustrate a state-of-the-art real-time engineering simulation utilizing DSS in support of NASA lunar excavation studies. During the project DigitalSpace building driveable 3-D models of lunar excavators and South Polar terrain, and added a soil mechanics physics model as well as a random failure generator to the repertoire of standard mobility platform physics in prior use for real-time engineering and operational analysis at NASA.

  20. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  1. ARTEMIS. Ares Real Time Environment for Modeling, Integrating, and Simulation

    NASA Technical Reports Server (NTRS)

    Walker, David; Hughes, Ryan

    2009-01-01

    This slide presentation reviews the ARTEMIS (Ares Real Time Environment for Modeling, Integration, and Simulation) for Ares hardware testing. It includes information on the ARTEMIS organization, SIL architecture, and I/O layer.

  2. Decision graphs: a tool for developing real-time software

    SciTech Connect

    Kozubal, A.J.

    1981-01-01

    The use of decision graphs in the preparation of, in particular, real-time software is briefly described. The usefulness of decision graphs in software design, testing, and maintenance is pointed out. 2 figures. (RWR)

  3. The Effects of Real-Time Interactive Multimedia Teleradiology System.

    PubMed

    Al-Safadi, Lilac

    2016-01-01

    This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists' reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care.

  4. Staggered scheduling of sensor estimation and fusion for tracking over long-haul links

    SciTech Connect

    Liu, Qiang; Rao, Nageswara S. V.; Wang, Xin

    2016-08-01

    Networked sensing can be found in a multitude of real-world applications. Here, we focus on the communication-and computation-constrained long-haul sensor networks, where sensors are remotely deployed over a vast geographical area to perform certain tasks. Of special interest is a class of such networks where sensors take measurements of one or more dynamic targets and send their state estimates to a remote fusion center via long-haul satellite links. The severe loss and delay over such links can easily reduce the amount of sensor data received by the fusion center, thereby limiting the potential information fusion gain and resulting in suboptimal tracking performance. In this paper, starting with the temporal-domain staggered estimation for an individual sensor, we explore the impact of the so-called intra-state prediction and retrodiction on estimation errors. We then investigate the effect of such estimation scheduling across different sensors on the spatial-domain fusion performance, where the sensing time epochs across sensors are scheduled in an asynchronous and staggered manner. In particular, the impact of communication delay and loss as well as sensor bias on such scheduling is explored by means of numerical and simulation studies that demonstrate the validity of our analysis.

  5. Staggered scheduling of sensor estimation and fusion for tracking over long-haul links

    SciTech Connect

    Liu, Qiang; Rao, Nageswara S. V.; Wang, Xin

    2016-08-01

    Networked sensing can be found in a multitude of real-world applications. Here, we focus on the communication-and computation-constrained long-haul sensor networks, where sensors are remotely deployed over a vast geographical area to perform certain tasks. Of special interest is a class of such networks where sensors take measurements of one or more dynamic targets and send their state estimates to a remote fusion center via long-haul satellite links. The severe loss and delay over such links can easily reduce the amount of sensor data received by the fusion center, thereby limiting the potential information fusion gain and resulting in suboptimal tracking performance. In this paper, starting with the temporal-domain staggered estimation for an individual sensor, we explore the impact of the so-called intra-state prediction and retrodiction on estimation errors. We then investigate the effect of such estimation scheduling across different sensors on the spatial-domain fusion performance, where the sensing time epochs across sensors are scheduled in an asynchronous and staggered manner. In particular, the impact of communication delay and loss as well as sensor bias on such scheduling is explored by means of numerical and simulation studies that demonstrate the validity of our analysis.

  6. Maximum group velocity in a one-dimensional model with a sinusoidally varying staggered potential

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Sen, Diptiman; Dutta, Amit

    2015-06-01

    We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an "engineered" initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.

  7. Staggered scheduling of sensor estimation and fusion for tracking over long-haul links

    DOE PAGES

    Liu, Qiang; Rao, Nageswara S. V.; Wang, Xin

    2016-08-01

    Networked sensing can be found in a multitude of real-world applications. Here, we focus on the communication-and computation-constrained long-haul sensor networks, where sensors are remotely deployed over a vast geographical area to perform certain tasks. Of special interest is a class of such networks where sensors take measurements of one or more dynamic targets and send their state estimates to a remote fusion center via long-haul satellite links. The severe loss and delay over such links can easily reduce the amount of sensor data received by the fusion center, thereby limiting the potential information fusion gain and resulting in suboptimalmore » tracking performance. In this paper, starting with the temporal-domain staggered estimation for an individual sensor, we explore the impact of the so-called intra-state prediction and retrodiction on estimation errors. We then investigate the effect of such estimation scheduling across different sensors on the spatial-domain fusion performance, where the sensing time epochs across sensors are scheduled in an asynchronous and staggered manner. In particular, the impact of communication delay and loss as well as sensor bias on such scheduling is explored by means of numerical and simulation studies that demonstrate the validity of our analysis.« less

  8. Evaluation of Open-Source Hard Real Time Software Packages

    NASA Technical Reports Server (NTRS)

    Mattei, Nicholas S.

    2004-01-01

    Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of

  9. Evaluation of Open-Source Hard Real Time Software Packages

    NASA Technical Reports Server (NTRS)

    Mattei, Nicholas S.

    2004-01-01

    Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of

  10. Performance of the RealStar Chikungunya Virus Real-Time Reverse Transcription-PCR Kit▿

    PubMed Central

    Panning, Marcus; Hess, Markus; Fischer, Waldemar; Grywna, Klaus; Pfeffer, Martin; Drosten, Christian

    2009-01-01

    A novel commercial Chikungunya virus real-time reverse transcription-PCR (RT-PCR) kit was evaluated on a comprehensive panel of original patient samples. The assay was 100% sensitive and specific in comparison to a published real-time RT-PCR. Viral loads from both assays were highly correlated. The kit proved to be suitable for routine use in patient care. PMID:19625474

  11. Real-time transesophageal echocardiography facilitates antegrade balloon aortic valvuloplasty

    PubMed Central

    Ito, Kazato; Yano, Kentaro; Tanaka, Chiharu; Nakashoji, Tomohiro; Tonomura, Daisuke; Takehara, Kosuke; Kino, Naoto; Yoshida, Masataka; Kurotobi, Toshiya; Tsuchida, Takao; Fukumoto, Hitoshi

    2016-01-01

    We report two cases of severe aortic stenosis (AS) where antegrade balloon aortic valvuloplasty (BAV) was performed under real-time transesophageal echocardiography (TEE) guidance. Real-time TEE can provide useful information for evaluating the aortic valve response to valvuloplasty during the procedure. It was led with the intentional wire-bias technique in order to compress the severely calcified leaflet, and consequently allowed the balloon to reach the largest possible size and achieve full expansion of the aortic annulus. PMID:27054107

  12. Real Time Data Mining-Based Intrusion Detection

    DTIC Science & Technology

    2001-06-01

    In this paper, we present an overview of our research in real time data mining -based intrusion detection systems (IDSs). We focus on issues related...to deploying a data mining -based IDS in a real time environment. We describe our approaches to address three types of issues: accuracy, efficiency, and...usability. To improve accuracy, data mining programs are used to analyze audit data and extract features that can distinguish normal activities from

  13. Real-time laser holographic Interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee, George

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil presssure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer.

  14. Real-time laser holographic interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee, George

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer.

  15. Integrating Security in Real-Time Embedded Systems

    DTIC Science & Technology

    2017-04-26

    Embedded Systems Sb. GRANT NUMBER N00014-13-1-0707 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Mohan, Sibin ; Bobba, Rakesh B... systems . Currently, there does not exist a comprehensive theoretical framework for the integration of security in embedded real-time systems ...need for security policies to adhere to the strict guidelines imposed as a result. 1S. SUBJECT TERMS Real-Time Embedded Systems , security

  16. High speed, real-time, camera bandwidth converter

    DOEpatents

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  17. Real-time flight test data distribution and display

    NASA Technical Reports Server (NTRS)

    Nesel, Michael C.; Hammons, Kevin R.

    1988-01-01

    Enhancements to the real-time processing and display systems of the NASA Western Aeronautical Test Range are described. Display processing has been moved out of the telemetry and radar acquisition processing systems super-minicomputers into user/client interactive graphic workstations. Real-time data is provided to the workstations by way of Ethernet. Future enhancement plans include use of fiber optic cable to replace the Ethernet.

  18. Near real-time stereo matching using geodesic diffusion.

    PubMed

    De-Maeztu, Leonardo; Villanueva, Arantxa; Cabeza, Rafael

    2012-02-01

    Adaptive-weight algorithms currently represent the state of the art in local stereo matching. However, due to their computational requirements, these types of solutions are not suitable for real-time implementation. Here, we present a novel aggregation method inspired by the anisotropic diffusion technique used in image filtering. The proposed aggregation algorithm produces results similar to adaptive-weight solutions while reducing the computational requirements. Moreover, near real-time performance is demonstrated with a GPU implementation of the algorithm.

  19. Evaluation Criteria for Real-Time Specification Languages

    DTIC Science & Technology

    1992-02-11

    languages designed to specify the requirements of real-time systems. It is intended for a reader who is beginning a real-time development project and... project staffed with unskilled or inexperienced personnel than one with seasoned veterans; sophisticated support tools may be irrelevant to a project ...motivate the project manager to think about long-term issues and provide a justification framework for choosing a particular language and rejecting

  20. Documentation Driven Development for Complex Real-Time Systems

    DTIC Science & Technology

    2004-12-01

    REPORT Documentation Driven Development for Complex Real-Time Systems 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: This paper presents a novel approach...5000 REPORT DOCUMENTATION PAGE b. ABSTRACT UU c. THIS PAGE UU 2. REPORT TYPE Old Reprint 17. LIMITATION OF ABSTRACT UU 15. NUMBER OF PAGES 5d...Prescribed by ANSI Std. Z39.18 - Documentation Driven Development for Complex Real-Time Systems Report Title ABSTRACT This paper presents a novel

  1. Final report on Arete's real-time processor

    SciTech Connect

    Sanborn, J.; Reder, L.; Tong, K. )

    1990-01-12

    This is Arete Associates' final report on the initial phase of a project to develop a real-time processor for an airborne lidar system. Arete has developed a programmable Real-Time Processor (RTP) and image display and recording system. It is presently integrated with an ocean (water) lidar sensor (OWLS) system onboard one of the Navel Air Development Center's (NADC's) P-3A aircraft. The RTP is a rack mounted, PF/AT based system.

  2. Real-time shipboard orbit determination using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Brammer, R. F.

    1974-01-01

    The real-time tracking and orbit determination program used on board the NASA tracking ship, the USNS Vanguard, is described in this paper. The computer program uses a variety of filtering algorithms, including an extended Kalman filter, to derive real-time orbit determinations (position-velocity state vectors) from shipboard tracking and navigation data. Results from Apollo missions are given to show that orbital parameters can be estimated quickly and accurately using these methods.

  3. Improving Predictability in Embedded Real-Time Systems

    DTIC Science & Technology

    2000-12-01

    Systems CMU/SEI-2000-SR-011 Peter H. Feiler , Software Engineering Institute Bruce Lewis, U.S. Army Aviation and Missile Command Steve Vestal...SUBTITLE Improving Predictability in Embedded Real-Time Systems 5. FUNDING NUMBERS F19628-00-C-0003 6. AUTHOR(S) Peter H. Feiler , Bruce ...Carnegie Metton Software Engineering Institute Improving Predictability in Embedded Real-Time Systems Peter H. Feiler , Software Engineering

  4. Real-Time Optical Correlator Based On GaAs

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi; Cheng, Li-Jen

    1992-01-01

    Apparatus performs correlation between input image and reference image in real time by means of degenerate four-wave mixing in photorefractive crystal, which serves as real-time holographic medium. Gallium arsenide chosen to be photorefractive material in this application because at frame rate and level of illumination used in experiments, offers adequate diffraction efficiency. Frame rates as high as 1,000 s to negative 1st power achievable.

  5. Real time magnetic resonance guided endomyocardial local delivery

    PubMed Central

    Corti, R; Badimon, J; Mizsei, G; Macaluso, F; Lee, M; Licato, P; Viles-Gonzalez, J F; Fuster, V; Sherman, W

    2005-01-01

    Objective: To investigate the feasibility of targeting various areas of left ventricle myocardium under real time magnetic resonance (MR) imaging with a customised injection catheter equipped with a miniaturised coil. Design: A needle injection catheter with a mounted resonant solenoid circuit (coil) at its tip was designed and constructed. A 1.5 T MR scanner with customised real time sequence combined with in-room scan running capabilities was used. With this system, various myocardial areas within the left ventricle were targeted and injected with a gadolinium-diethylenetriaminepentaacetic acid (DTPA) and Indian ink mixture. Results: Real time sequencing at 10 frames/s allowed clear visualisation of the moving catheter and its transit through the aorta into the ventricle, as well as targeting of all ventricle wall segments without further image enhancement techniques. All injections were visualised by real time MR imaging and verified by gross pathology. Conclusion: The tracking device allowed real time in vivo visualisation of catheters in the aorta and left ventricle as well as precise targeting of myocardial areas. The use of this real time catheter tracking may enable precise and adequate delivery of agents for tissue regeneration. PMID:15710717

  6. Real-time Java for on-board systems

    NASA Astrophysics Data System (ADS)

    Cechticky, V.; Pasetti, A.

    2002-07-01

    The Java language has several attractive features but cannot at present be used in on-board systems primarily because it lacks support for hard real-time operation. This shortcoming is in being addressed: some suppliers are already providing implementations of Java that are RT-compliant; Sun Microsystem has approved a formal specification for a real-time extension of the language; and an independent consortium is working on an alternative specification for real-time Java. It is therefore expected that, within a year or so, standardized commercial implementations of real-time Java will be on the market. Availability of real-time implementations now opens the way to its use on-board. Within this context, this paper has two objectives. Firstly, it discusses the suitability of Java for on-board applications. Secondly, it reports the results of an ESA study to port a software framework for on-board control systems to a commercial real-time version of Java.

  7. Real-time logic modelling on SpaceWire

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Ma, Yunpeng; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. However, it cannot meet the deterministic requirement for safety/time critical application in spacecraft, where the delay of real-time (RT) message streams must be guaranteed. Therefore, SpaceWire-D is developed that provides deterministic delivery over a SpaceWire network. Formal analysis and verification of real-time systems is critical to their development and safe implementation, and is a prerequisite for obtaining their safety certification. Failure to meet specified timing constraints such as deadlines in hard real-time systems may lead to catastrophic results. In this paper, a formal verification method, Real-Time Logic (RTL), has been proposed to specify and verify timing properties of SpaceWire-D network. Based on the principal of SpaceWire-D protocol, we firstly analyze the timing properties of fundamental transactions, such as RMAP WRITE, and RMAP READ. After that, the RMAP WRITE transaction structure is modeled in Real-Time Logic (RTL) and Presburger Arithmetic representations. And then, the associated constraint graph and safety analysis is provided. Finally, it is suggested that RTL method can be useful for the protocol evaluation and provision of recommendation for further protocol evolutions.

  8. Real-time airborne hyperspectral imaging of land mines

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Steve; McFee, John E.; Anger, Cliff; Young, Jane

    2007-04-01

    DRDC Suffeld and Itres Research have jointly investigated the use of visible and infrared hyperspectral imaging (HSI) for surface and buried land mine detection since 1989. These studies have demonstrated reliable passive HSI detection of surface-laid mines, based on their reflectance spectra, from airborne and ground-based platforms. Commercial HSI instruments collect and store image data at aircraft speeds, but the data are analysed off- line. This is useful for humanitarian demining, but unacceptable for military countermine operations. We have developed a hardware and software system with algorithms that can process the raw hyperspectral data in real time to detect mines. The custom algorithms perform radiometric correction of the raw data, then classify pixels of the corrected data, referencing a spectral signature library. The classification results are stored and displayed in real time, that is, within a few frame times of the data acquisition. Such real-time mine detection was demonstrated for the first time from a slowly moving land vehicle in March 2000. This paper describes an improved system which can achieve real-time detection of mines from an airborne platform, with its commensurately higher data rates. The system is presently compatible with the Itres family of visible/near infrared, short wave infrared and thermal infrared pushbroom hyperspectral imagers and its broadband thermal infrared pushbroom imager. Experiments to detect mines from an airborne platform in real time were conducted at DRDC Suffield in November 2006. Surface-laid land mines were detected in real time from a slowly moving helicopter with generally good detection rates and low false alarm rates. To the authors' knowledge, this is the first time that land mines have been detected from an airborne platform in real time using hyperspectral imaging.

  9. A Scheduling Algorithm for Replicated Real-Time Tasks

    NASA Technical Reports Server (NTRS)

    Yu, Albert C.; Lin, Kwei-Jay

    1991-01-01

    We present an algorithm for scheduling real-time periodic tasks on a multiprocessor system under fault-tolerant requirement. Our approach incorporates both the redundancy and masking technique and the imprecise computation model. Since the tasks in hard real-time systems have stringent timing constraints, the redundancy and masking technique are more appropriate than the rollback techniques which usually require extra time for error recovery. The imprecise computation model provides flexible functionality by trading off the quality of the result produced by a task with the amount of processing time required to produce it. It therefore permits the performance of a real-time system to degrade gracefully. We evaluate the algorithm by stochastic analysis and Monte Carlo simulations. The results show that the algorithm is resilient under hardware failures.

  10. A Scheduling Algorithm for Replicated Real-Time Tasks

    NASA Technical Reports Server (NTRS)

    Yu, Albert C.; Lin, Kwei-Jay

    1991-01-01

    We present an algorithm for scheduling real-time periodic tasks on a multiprocessor system under fault-tolerant requirement. Our approach incorporates both the redundancy and masking technique and the imprecise computation model. Since the tasks in hard real-time systems have stringent timing constraints, the redundancy and masking technique are more appropriate than the rollback techniques which usually require extra time for error recovery. The imprecise computation model provides flexible functionality by trading off the quality of the result produced by a task with the amount of processing time required to produce it. It therefore permits the performance of a real-time system to degrade gracefully. We evaluate the algorithm by stochastic analysis and Monte Carlo simulations. The results show that the algorithm is resilient under hardware failures.

  11. Explaining How to Play Real-Time Strategy Games

    NASA Astrophysics Data System (ADS)

    Metoyer, Ronald; Stumpf, Simone; Neumann, Christoph; Dodge, Jonathan; Cao, Jill; Schnabel, Aaron

    Real-time strategy games share many aspects with real situations in domains such as battle planning, air traffic control, and emergency response team management which makes them appealing test-beds for Artificial Intelligence (AI) and machine learning. End user annotations could help to provide supplemental information for learning algorithms, especially when training data is sparse. This paper presents a formative study to uncover how experienced users explain game play in real-time strategy games. We report the results of our analysis of explanations and discuss their characteristics that could support the design of systems for use by experienced real-time strategy game users in specifying or annotating strategy-oriented behavior.

  12. Real time microcontroller implementation of an adaptive myoelectric filter.

    PubMed

    Bagwell, P J; Chappell, P H

    1995-03-01

    This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.

  13. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  14. Staggered heavy baryon chiral perturbation theory

    SciTech Connect

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  15. Designing a fuzzy scheduler for hard real-time systems

    NASA Technical Reports Server (NTRS)

    Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami

    1992-01-01

    In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.

  16. Two essays on real-time pricing of electric power

    NASA Astrophysics Data System (ADS)

    Gupta, Nainish Kumar

    1997-09-01

    This dissertation contains two essays on a new innovative pricing mechanism in the electric power industry known as Real Time Pricing (RTP). RTP is a method of pricing electric power wherein at least one component of the price is set at or near levels that reflect the marginal costs of providing power during each time-specific interval. These prices vary in accord with time-specific, incremental supplier costs. RTP allows customers to manage their own bills by adjusting their consumption as spot prices and supplier costs vary, which may amount during a single day from 2 cents to 85 cents for one kilowatt hour (kWh) of usage. Using 1995 data the hypothesis that industrial customers shift their usage patterns of electricity in response to real time prices is tested. To measure customer responsiveness to real time electric rates, econometric techniques are applied to estimate demand elasticities.

  17. Optimal Designs of Staggered Dean Vortex Micromixers

    PubMed Central

    Chen, Jyh Jian; Chen, Chun Huei; Shie, Shian Ruei

    2011-01-01

    A novel parallel laminar micromixer with a two-dimensional staggered Dean Vortex micromixer is optimized and fabricated in our study. Dean vortices induced by centrifugal forces in curved rectangular channels cause fluids to produce secondary flows. The split-and-recombination (SAR) structures of the flow channels and the impinging effects result in the reduction of the diffusion distance of two fluids. Three different designs of a curved channel micromixer are introduced to evaluate the mixing performance of the designed micromixer. Mixing performances are demonstrated by means of a pH indicator using an optical microscope and fluorescent particles via a confocal microscope at different flow rates corresponding to Reynolds numbers (Re) ranging from 0.5 to 50. The comparison between the experimental data and numerical results shows a very reasonable agreement. At a Re of 50, the mixing length at the sixth segment, corresponding to the downstream distance of 21.0 mm, can be achieved in a distance 4 times shorter than when the Re equals 1. An optimization of this micromixer is performed with two geometric parameters. These are the angle between the lines from the center to two intersections of two consecutive curved channels, θ, and the angle between two lines of the centers of three consecutive curved channels, ϕ. It can be found that the maximal mixing index is related to the maximal value of the sum of θ and ϕ, which is equal to 139.82°. PMID:21747691

  18. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    NASA Astrophysics Data System (ADS)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  19. Real-time simulation of thermal shadows with EMIT

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.

  20. Development of automated system for real-time LIBS analysis

    NASA Astrophysics Data System (ADS)

    Mazalan, Elham; Ali, Jalil; Tufail, Kashif; Haider, Zuhaib

    2017-03-01

    Recent developments in Laser Induced Breakdown Spectroscopy (LIBS) instrumentation allow the acquisition of several spectra in a second. The dataset from a typical LIBS experiment can consist of a few thousands of spectra. To extract the useful information from that dataset is painstaking effort and time consuming process. Most of the currently available softwares for spectral data analysis are expensive and used for offline data analysis. LabVIEW software compatible with spectrometer (in this case Ocean Optics Maya pro spectrometer), can be used to for data acquisition and real time analysis. In the present work, a LabVIEW based automated system for real-time LIBS analysis integrated with spectrometer device is developed. This system is capable of performing real time analysis based on as-acquired LIBS spectra. Here, we have demonstrated the LIBS data acquisition and real time calculations of plasma temperature and electron density. Data plots and variations in spectral intensity in response to laser energy were observed on LabVIEW monitor interface. Routine laboratory samples of brass and calcine bone were utilized in this experiment. Developed program has shown impressive performance in real time data acquisition and analysis.

  1. Lightweight distributed computing for intraoperative real-time image guidance

    NASA Astrophysics Data System (ADS)

    Suwelack, Stefan; Katic, Darko; Wagner, Simon; Spengler, Patrick; Bodenstedt, Sebastian; Röhl, Sebastian; Dillmann, Rüdiger; Speidel, Stefanie

    2012-02-01

    In order to provide real-time intraoperative guidance, computer assisted surgery (CAS) systems often rely on computationally expensive algorithms. The real-time constraint is especially challenging if several components such as intraoperative image processing, soft tissue registration or context aware visualization are combined in a single system. In this paper, we present a lightweight approach to distribute the workload over several workstations based on the OpenIGTLink protocol. We use XML-based message passing for remote procedure calls and native types for transferring data such as images, meshes or point coordinates. Two different, but typical scenarios are considered in order to evaluate the performance of the new system. First, we analyze a real-time soft tissue registration algorithm based on a finite element (FE) model. Here, we use the proposed approach to distribute the computational workload between a primary workstation that handles sensor data processing and visualization and a dedicated workstation that runs the real-time FE algorithm. We show that the additional overhead that is introduced by the technique is small compared to the total execution time. Furthermore, the approach is used to speed up a context aware augmented reality based navigation system for dental implant surgery. In this scenario, the additional delay for running the computationally expensive reasoning server on a separate workstation is less than a millisecond. The results show that the presented approach is a promising strategy to speed up real-time CAS systems.

  2. Real-Time Tropospheric Delay Estimation using IGS Products

    NASA Astrophysics Data System (ADS)

    Stürze, Andrea; Liu, Sha; Söhne, Wolfgang

    2014-05-01

    The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it

  3. Real-time attitude determination and gyro calibration

    NASA Technical Reports Server (NTRS)

    Challa, M.; Filla, O.; Sedlak, J.; Chu, D.

    1993-01-01

    We present results for two real-time filters prototyped for the Compton Gamma Ray Observatory (GRO), the Extreme Ultraviolet Explorer (EUVE), the Cosmic Background Explorer (COBE), and the next generation of Geostationary Operational Environmental Satellites (GOES). Both real and simulated data were used to solve for attitude and gyro biases. These filters promise advantages over single-frame and batch methods for missions like GOES, where startup and transfer-orbit operations require quick knowledge of attitude and gyro biases.

  4. A framework for building real-time expert systems

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel

    1991-01-01

    The Space Station Freedom is an example of complex systems that require both traditional and artificial intelligence (AI) real-time methodologies. It was mandated that Ada should be used for all new software development projects. The station also requires distributed processing. Catastrophic failures on the station can cause the transmission system to malfunction for a long period of time, during which ground-based expert systems cannot provide any assistance to the crisis situation on the station. This is even more critical for other NASA projects that would have longer transmission delays (e.g., the lunar base, Mars missions, etc.). To address these issues, a distributed agent architecture (DAA) is proposed that can support a variety of paradigms based on both traditional real-time computing and AI. The proposed testbed for DAA is an autonomous power expert (APEX) which is a real-time monitoring and diagnosis expert system for the electrical power distribution system of the space station.

  5. Safe Runtime Verification of Real-Time Properties

    NASA Astrophysics Data System (ADS)

    Colombo, Christian; Pace, Gordon J.; Schneider, Gerardo

    Introducing a monitor on a system typically changes the system’s behaviour by slowing the system down and increasing memory consumption. This may possibly result in creating new bugs, or possibly even ‘fixing’ bugs, only to reappear as the monitor is removed. Properties written in a real-time logic, such as duration calculus, can be particularly sensitive to such changes induced through monitoring. The same problem occurs in other scenarios such as when a system is ported to a faster machine. In this paper, we identify a class of real-time properties, in duration calculus, which are monotonic under the slowing down (speeding up) of the underlying system. We apply this approach to the real-time runtime monitoring tool Larva, where we use duration calculus as a monitoring property specification language, so we automatically identify properties which can be shown to be monotonic with respect to system re-timing.

  6. Coordinated scheduling for dynamic real-time systems

    NASA Technical Reports Server (NTRS)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  7. A real-time VLC to UART protocol conversion system

    NASA Astrophysics Data System (ADS)

    Deng, Jian-zhi; Yao, Meng; Cheng, Xiao-hui; Deng, Zhuo-hong

    2016-07-01

    A real-time visible light communication (VLC) to universal asynchronous receiver/transmitter (UART) conversion system is made up of a transmitter with a light emitting diode (LED) and a receiver with a photodiode (PD), by which a VLC system is connected to traditional communication modes, and the data are transferred by wireless visible light. UART packets are converted to light packets by the modulation of a 10 kHz on-off-keying (OOK) light signal, and the data losses in the transportation are avoided by the protection of a data buffer mechanism. The experimental results reveal that the real-time VLC to UART conversion system can provide a real-time VLC transmission way for two UART devices in not less than 10 m at a baud rate not less than 19 200 Bd with stable ambient lighting at the same time.

  8. Inorganic scintillator detectors for real-time verification during brachytherapy

    NASA Astrophysics Data System (ADS)

    Kertzscher, G.; Beddar, S.

    2017-05-01

    Widespread use of real-time dose measurement technology to verify brachytherapy (BT) treatments is currently limited because only few detectors exhibit the large dynamic range and signal intensities that is required to accurately report the data. Inorganic scintillator detectors (ISDs) are promising for real-time BT verification because they can exhibit large signal intensities. Luminescence properties of ISDs based on ruby, Y2O3:Eu and CsI:Tl were compared with BCF-60 plastic scintillators to determine their potential for BT verification. Measurements revealed that ISDs can exhibit signal intensities 1800 times larger than BCF-60 and that the Čerenkov and fluorescence light contamination is negligible. The favourable luminescence properties of ISDs opens the possibility to manufacture simplified detector systems that can lead to more widespread real-time verification during BT treatment deliveries.

  9. Real-Time Parameter Estimation Using Output Error

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2014-01-01

    Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.

  10. Modeling and Real-Time Simulation of UPFC

    NASA Astrophysics Data System (ADS)

    Kimura, Misao; Takahashi, Choei; Kishibe, Hideto; Miyazaki, Yasuyuki; Noro, Yasuhiro; Iio, Naotaka

    We have developed a digital real time simulator of Power Electronics Controllers, so called FACTS (Flexible AC Transmission Systems) Controllers and/or Custom Power by using MATLABTM/SIMULINKTM and dSPACETM System. This paper describes the modeling and the calculation accuracy of a UPFC (Unified Power Flow Controller) model. Hence the developed simulator operates at a large time step, in order to improve simulation accuracy, a correction processing of the switching delay is implemented into the UPFC model. Calculation accuracy of the real time UPFC model is the same level as EMTDCTM results. We confirm stable operation of the developed UPFC model with connecting a commercial real time digital simulator (RTDSTM).

  11. High-fidelity real-time maritime scene rendering

    NASA Astrophysics Data System (ADS)

    Shyu, Hawjye; Taczak, Thomas M.; Cox, Kevin; Gover, Robert; Maraviglia, Carlos; Cahill, Colin

    2011-06-01

    The ability to simulate authentic engagements using real-world hardware is an increasingly important tool. For rendering maritime environments, scene generators must be capable of rendering radiometrically accurate scenes with correct temporal and spatial characteristics. When the simulation is used as input to real-world hardware or human observers, the scene generator must operate in real-time. This paper introduces a novel, real-time scene generation capability for rendering radiometrically accurate scenes of backgrounds and targets in maritime environments. The new model is an optimized and parallelized version of the US Navy CRUISE_Missiles rendering engine. It was designed to accept environmental descriptions and engagement geometry data from external sources, render a scene, transform the radiometric scene using the electro-optical response functions of a sensor under test, and output the resulting signal to real-world hardware. This paper reviews components of the scene rendering algorithm, and details the modifications required to run this code in real-time. A description of the simulation architecture and interfaces to external hardware and models is presented. Performance assessments of the frame rate and radiometric accuracy of the new code are summarized. This work was completed in FY10 under Office of Secretary of Defense (OSD) Central Test and Evaluation Investment Program (CTEIP) funding and will undergo a validation process in FY11.

  12. Real-time selective sequencing using nanopore technology

    PubMed Central

    Loose, Matthew; Malla, Sunir; Stout, Michael

    2016-01-01

    The Oxford Nanopore MinION sequences DNA by sensing changes in electrical current flow in real-time as molecules traverse nanopores. Optionally, the voltage across specific nanopores can be reversed, ejecting the DNA molecule. This enables “Read Until”, the selection of specific DNA molecules for sequencing. We use dynamic time warping to match reads to reference, selecting regions of small genomes, individual amplicons, or normalization of the amplicon set. This first demonstration of direct selection of specific DNA molecules in real-time enables many novel future applications. PMID:27454285

  13. Handling Flight-Research Data In Real Time

    NASA Technical Reports Server (NTRS)

    Moore, Archie L.

    1988-01-01

    Researchers at widely separated locations able to participate in tests and analyze data immediately. Basic data-handling needs common: Communicates with vehicle, pilot, and test team; Acquires, computes, and displays data; knows exact location of research vehicle at all times. Continuing challenge for designers and operators of ground support facilities to perform tasks in real time and present integrated results to research team in real time. Paper presents several approaches to satisfaction of requirements of representative types of aircraft research programs at NASA Western Aeronautical Test Range of Ames Research Center.

  14. Real-time space system control with expert systems

    NASA Technical Reports Server (NTRS)

    Leinweber, David; Hawkinson, Lowell; Perry, John

    1988-01-01

    Many aspects of space system operations involve continuous control of real time processes. These processes include electrical power system monitoring, prelaunch and ongoing propulsion system health and maintenance, environmental and life support systems, space suit checkout, onboard manufacturing, and vehicle servicing including satellites, shuttles, orbital maneuvering vehicles, orbital transfer vehicles and remote teleoperators. Traditionally, monitoring of these critical real time processes has been done by trained human experts monitoring telemetry data. However, the long duration of future space missions and the high cost of crew time in space creates a powerful economic incentive for the development of highly autonomous knowledge based expert control procedures for these space systems.

  15. Real-Time Holographic Image Correction Using Bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1994-01-01

    We present experimental results of one-way coherent imaging through a thin phase-aberrating medium using a holographic technique with bacteriorhodopsin as a real-time holographic material. Bacteriorhodopsin is well suited for the application when the aberration is time varying because of its real-time writing and erasing characteristics, sensitivity, and spatial resolution. We show results with final image resolution of greater than 20 line pairs/mm and high signal-to-noise ratio using a polarization-holography approach.

  16. Real-time alerts and reminders using information systems.

    PubMed

    Wanderer, Jonathan P; Sandberg, Warren S; Ehrenfeld, Jesse M

    2011-09-01

    Adoption of information systems throughout the hospital environment has enabled the development of real-time physiologic alerts and clinician reminder systems. These clinical tools can be made available through the deployment of anesthesia information management systems (AIMS). Creating usable alert systems requires understanding of technical considerations. Various successful implementations are reviewed, encompassing cost reduction, improved revenue capture, timely antibiotic administration, and postoperative nausea and vomiting prophylaxis. Challenges to the widespread use of real-time alerts and reminders include AIMS adoption rates and the difficulty in choosing appropriate areas and approaches for information systems support. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The improved broadband Real-Time Seismic Network in Romania

    NASA Astrophysics Data System (ADS)

    Neagoe, C.; Ionescu, C.

    2009-04-01

    Starting with 2002 the National Institute for Earth Physics (NIEP) has developed its real-time digital seismic network. This network consists of 96 seismic stations of which 48 broad band and short period stations and two seismic arrays are transmitted in real-time. The real time seismic stations are equipped with Quanterra Q330 and K2 digitizers, broadband seismometers (STS2, CMG40T, CMG 3ESP, CMG3T) and strong motions sensors Kinemetrics episensors (+/- 2g). SeedLink and AntelopeTM (installed on MARMOT) program packages are used for real-time (RT) data acquisition and exchange. The communication from digital seismic stations to the National Data Center in Bucharest is assured by 5 providers (GPRS, VPN, satellite communication, radio lease line and internet), which will assure the back-up communications lines. The processing centre runs BRTT's AntelopeTM 4.10 data acquisition and processing software on 2 workstations for real-time processing and post processing. The Antelope Real-Time System is also providing automatic event detection, arrival picking, event location and magnitude calculation. It provides graphical display and reporting within near-real-time after a local or regional event occurred. Also at the data center was implemented a system to collect macroseismic information using the internet on which macro seismic intensity maps are generated. In the near future at the data center will be install Seiscomp 3 data acquisition processing software on a workstation. The software will run in parallel with Antelope software as a back-up. The present network will be expanded in the near future. In the first half of 2009 NIEP will install 8 additional broad band stations in Romanian territory, which also will be transmitted to the data center in real time. The Romanian Seismic Network is permanently exchanging real -time waveform data with IRIS, ORFEUS and different European countries through internet. In Romania, magnitude and location of an earthquake are now

  18. An optimal staggered harvesting strategy for herbaceous biomass energy crops

    SciTech Connect

    Bhat, M.G.; English, B.C.

    1993-12-31

    Biofuel research over the past two decades indicates lignocellulosic crops are a reliable source of feedstock for alternative energy. However, under the current technology of producing, harvesting and converting biomass crops, the cost of biofuel is not competitive with conventional biofuel. Cost of harvesting biomass feedstock is a single largest component of feedstock cost so there is a cost advantage in designing a biomass harvesting system. Traditional farmer-initiated harvesting operation causes over investment. This study develops a least-cost, time-distributed (staggered) harvesting system for example switch grass, that calls for an effective coordination between farmers, processing plant and a single third-party custom harvester. A linear programming model explicitly accounts for the trade-off between yield loss and benefit of reduced machinery overhead cost, associated with the staggered harvesting system. Total cost of producing and harvesting switch grass will decline by 17.94 percent from conventional non-staggered to proposed staggered harvesting strategy. Harvesting machinery cost alone experiences a significant reduction of 39.68 percent from moving from former to latter. The net return to farmers is estimated to increase by 160.40 percent. Per tonne and per hectare costs of feedstock production will decline by 17.94 percent and 24.78 percent, respectively. These results clearly lend support to the view that the traditional system of single period harvesting calls for over investment on agricultural machinery which escalates the feedstock cost. This social loss to the society in the form of escalated harvesting cost can be avoided if there is a proper coordination among farmers, processing plant and custom harvesters as to when and how biomass crop needs to be planted and harvested. Such an institutional arrangement benefits producers, processing plant and, in turn, end users of biofuels.

  19. Real-time Simulation of Turboprop Engine Control System

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi

    2017-05-01

    On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.

  20. Real-time multispectral imaging application for poultry safety inspection

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Snead, Matthew P.

    2006-02-01

    The ARS imaging research group in Athens, Georgia has developed a real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses for poultry industry. The industrial scale system includes a common aperture camera with three visible wavelength optical trim filters. This paper demonstrates calibration of common aperture multispectral imaging hardware and real-time image processing software. The software design, especially the Unified Modeling Language (UML) design approach was used to develop real-time image processing software for on-line application. The UML models including class, object, activity, sequence, and collaboration diagram were presented. Both hardware and software for a real-time fecal and ingesta contaminant detection were tested at the pilot-scale poultry processing line. The test results of industrial sacle real-time system showed that the multispectral imaging technique performed well for detecting fecal contaminants with a commercial processing speed (currently 140 birds per minute). The accuracy for the detection of fecal and ingesta contaminates was approximately 96%.

  1. A Practical Approach to Implementing Real-Time Semantics

    NASA Technical Reports Server (NTRS)

    Luettgen, Gerald; Bhat, Girish; Cleaveland, Rance

    1999-01-01

    This paper investigates implementations of process algebras which are suitable for modeling concurrent real-time systems. It suggests an approach for efficiently implementing real-time semantics using dynamic priorities. For this purpose a proces algebra with dynamic priority is defined, whose semantics corresponds one-to-one to traditional real-time semantics. The advantage of the dynamic-priority approach is that it drastically reduces the state-space sizes of the systems in question while preserving all properties of their functional and real-time behavior. The utility of the technique is demonstrated by a case study which deals with the formal modeling and verification of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North Carolina, an automated verification tool in which the process algebra with dynamic priority is implemented. It turns out that the state space of the bus-protocol model is about an order of magnitude smaller than the one resulting from real-time semantics. The accuracy of the model is proved by applying model checking for verifying several mandatory properties of the bus protocol.

  2. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Schmidt, James L.; Kao, Simon M.; Read, Jackson Y.; Weitzenkamp, Scott M.; Laffey, Thomas J.

    1988-01-01

    A multitasking architecture for performing real-time monitoring and analysis using knowledge-based problem solving techniques is described. To handle asynchronous inputs and perform in real time, the system consists of three or more distributed processes which run concurrently and communicate via a message passing scheme. The Data Management Process acquires, compresses, and routes the incoming sensor data to other processes. The Inference Process consists of a high performance inference engine that performs a real-time analysis on the state and health of the physical system. The I/O Process receives sensor data from the Data Management Process and status messages and recommendations from the Inference Process, updates its graphical displays in real time, and acts as the interface to the console operator. The distributed architecture has been interfaced to an actual spacecraft (NASA's Hubble Space Telescope) and is able to process the incoming telemetry in real-time (i.e., several hundred data changes per second). The system is being used in two locations for different purposes: (1) in Sunnyville, California at the Space Telescope Test Control Center it is used in the preflight testing of the vehicle; and (2) in Greenbelt, Maryland at NASA/Goddard it is being used on an experimental basis in flight operations for health and safety monitoring.

  3. Real-time operating systems at higher control

    SciTech Connect

    Jensen, E.D.

    1995-01-01

    Although virtually all development of real-time operating systems focuses on the lowest of the three traditional control levels, sheet economics demands higher level real-time OSs. Meeting this demand requires a major change in the mindset of the people who have been focusing on the lowest level of control. {open_quotes}These people are trying to deal with an elephant`s tail, but they don`t realize that there is an elephant attached to it.{close_quotes} For more than three decades, the historical real-time mindset, concepts and techniques have been driven by a particular pair of contexts. First is the application context, which can be characterized as {open_quotes}small, simple, centralized, static subsystems for low-level, sampled data, monitoring and first-order control.{close_quotes} Second is the hardware context, characterized by a scarcity of hardware resources due to size, weight, power and cost considerations. Both of these contexts are changing dramatically in ways that {open_quotes}have a significant impact on the concepts and techniques of real-time computing.{close_quotes} Hardware now offers much higher performance and the real-time domain is expanding upward in the application control hierarchy.

  4. Spatio-temporal modeling for real-time ozone forecasting.

    PubMed

    Paci, Lucia; Gelfand, Alan E; Holland, David M

    2013-05-01

    The accurate assessment of exposure to ambient ozone concentrations is important for informing the public and pollution monitoring agencies about ozone levels that may lead to adverse health effects. High-resolution air quality information can offer significant health benefits by leading to improved environmental decisions. A practical challenge facing the U.S. Environmental Protection Agency (USEPA) is to provide real-time forecasting of current 8-hour average ozone exposure over the entire conterminous United States. Such real-time forecasting is now provided as spatial forecast maps of current 8-hour average ozone defined as the average of the previous four hours, current hour, and predictions for the next three hours. Current 8-hour average patterns are updated hourly throughout the day on the EPA-AIRNow web site. The contribution here is to show how we can substantially improve upon current real-time forecasting systems. To enable such forecasting, we introduce a downscaler fusion model based on first differences of real-time monitoring data and numerical model output. The model has a flexible coefficient structure and uses an efficient computational strategy to fit model parameters. Our hybrid computational strategy blends continuous background updated model fitting with real-time predictions. Model validation analyses show that we are achieving very accurate and precise ozone forecasts.

  5. Operational real-time GPS-enhanced earthquake early warning

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Johanson, I. A.; Allen, R. M.

    2014-10-01

    Moment magnitudes for large earthquakes (Mw≥7.0) derived in real time from near-field seismic data can be underestimated due to instrument limitations, ground tilting, and saturation of frequency/amplitude-magnitude relationships. Real-time high-rate GPS resolves the buildup of static surface displacements with the S wave arrival (assuming nonsupershear rupture), thus enabling the estimation of slip on a finite fault and the event's geodetic moment. Recently, a range of high-rate GPS strategies have been demonstrated on off-line data. Here we present the first operational system for real-time GPS-enhanced earthquake early warning as implemented at the Berkeley Seismological Laboratory (BSL) and currently analyzing real-time data for Northern California. The BSL generates real-time position estimates operationally using data from 62 GPS stations in Northern California. A fully triangulated network defines 170+ station pairs processed with the software trackRT. The BSL uses G-larmS, the Geodetic Alarm System, to analyze these positioning time series and determine static offsets and preevent quality parameters. G-larmS derives and broadcasts finite fault and magnitude information through least-squares inversion of the static offsets for slip based on a priori fault orientation and location information. This system tightly integrates seismic alarm systems (CISN-ShakeAlert, ElarmS-2) as it uses their P wave detections to trigger its processing; quality control runs continuously. We use a synthetic Hayward Fault earthquake scenario on real-time streams to demonstrate recovery of slip and magnitude. Reanalysis of the Mw7.2 El Mayor-Cucapah earthquake tests the impact of dynamic motions on offset estimation. Using these test cases, we explore sensitivities to disturbances of a priori constraints (origin time, location, and fault strike/dip).

  6. Staggered baryon operators with flavor SU(3) quantum numbers

    SciTech Connect

    Bailey, Jon A.

    2007-06-01

    The construction of the first baryon operators for staggered lattice QCD exploited the taste symmetry to emulate physical quark flavor; contemporary 2+1 flavor simulations explicitly include three physical quark flavors and necessitate interpreting a valence sector with 12 quarks. After discussing expected features of the resulting baryon spectrum, I consider the spectra of operators transforming irreducibly under SU(3){sub F}xGTS, the direct product of flavor SU(3){sub F} and the geometrical time-slice group of the 1-flavor staggered theory. I then describe the construction of a set of maximally local baryon operators transforming irreducibly under SU(3){sub F}xGTS and enumerate this set. In principle, the operators listed here could be used to extract the masses of all the lightest spin-(1/2) and spin-(3/2) baryon resonances of staggered QCD. Using appropriate operators from this set in partially quenched simulations should allow for particularly clean 2+1 flavor calculations of the masses of the nucleon, {delta}, {sigma}*, {xi}*, and {omega}{sup -}.

  7. Real-time pair-feeding of animals

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Connolly, J. P.; Hitchman, M. J.; Humbert, J. E.

    1972-01-01

    Automatic pair-feeding system was developed which immediately dispenses same amount of food to control animal as has been consumed by experimental animal that has free access to food. System consists of: master feeding system; slave feeding station; and control mechanism. Technique performs real time pair-feeding without attendant time lag.

  8. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  9. Building influenza surveillance pyramids in near real time, Australia.

    PubMed

    Dalton, Craig B; Carlson, Sandra J; Butler, Michelle T; Elvidge, Elissa; Durrheim, David N

    2013-11-01

    A timely measure of circulating influenza virus severity has been elusive. Flutracking, the Australian online influenza-like illness surveillance system, was used to construct a surveillance pyramid in near real time for 2011/2012 participants and demonstrated a striking difference between years. Such pyramids will facilitate rapid estimation of attack rates and disease severity.

  10. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  11. Building Influenza Surveillance Pyramids in Near Real Time, Australia

    PubMed Central

    Carlson, Sandra J.; Butler, Michelle T.; Elvidge, Elissa; Durrheim, David N.

    2013-01-01

    A timely measure of circulating influenza virus severity has been elusive. Flutracking, the Australian online influenza-like illness surveillance system, was used to construct a surveillance pyramid in near real time for 2011/2012 participants and demonstrated a striking difference between years. Such pyramids will facilitate rapid estimation of attack rates and disease severity. PMID:24207165

  12. Time will show: real time predictions during interpersonal action perception.

    PubMed

    Manera, Valeria; Schouten, Ben; Verfaillie, Karl; Becchio, Cristina

    2013-01-01

    Predictive processes are crucial not only for interpreting the actions of individual agents, but also to predict how, in the context of a social interaction between two agents, the actions of one agent relate to the actions of a second agent. In the present study we investigated whether, in the context of a communicative interaction between two agents, observers can use the actions of one agent to predict when the action of a second agent will take place. Participants observed point-light displays of two agents (A and B) performing separate actions. In the communicative condition, the action performed by agent B responded to a communicative gesture performed by agent A. In the individual condition, agent A's communicative action was substituted with a non-communicative action. For each condition, we manipulated the temporal coupling of the actions of the two agents, by varying the onset of agent A's action. Using a simultaneous masking detection task, we demonstrated that the timing manipulation had a critical effect on the communicative condition, with the visual discrimination of agent B increasing linearly while approaching the original interaction timing. No effect of the timing manipulation was found for the individual condition. Our finding complements and extends previous evidence for interpersonal predictive coding, suggesting that the communicative gestures of one agent can serve not only to predict what the second agent will do, but also when his/her action will take place.

  13. Real-time Ethernet based on passive optical networks

    NASA Astrophysics Data System (ADS)

    Wu, Guiling; Su, Feirang; Li, Xinwan; Zou, Weiwen; Chen, Jianping

    2013-02-01

    A passive optical network (PON) based real-time Ethernet (PONRTE), which can take advantage of PON features such as broad bandwidth, high reliability, and easy maintenance to satisfy the determination and real-time requirements of high performance industrial applications, is proposed. The protocol model and network architecture having a compatible physical layer and MAC layer with Ethernet passive optical network are presented for the proposed PONRTE. A fixed periodic time slot allocation mechanism including a synchronic time division multiplexing transmission and an asynchronic data transmission is adopted to guarantee the determination and real-time of the communication. A simple and easy to implement time synchronization approach, where the starting time of the first transmission slot of an access node is synchronized by a relative time synchronization while the starting time of subsequent slots is determined by the fixed period and a dynamic time synchronization, is designed to support the fixed time slot allocation mechanism and avoid the collision in PONRTE. A 100 Mb/s PONRTE experimental testbed with 16 access nodes and a time allocation period of 240 μs is demonstrated. The results show that the experimental PONRTE can work stably and reliably with a frame loss ratio less than 10-7.

  14. Toward Real Time Data Analysis for Smart Grids

    SciTech Connect

    Yin, Jian; Gorton, Ian; Sharma, Poorva

    2012-11-10

    This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL’s FPGI and show that our system can provide real time guarantees to a diverse set of applications.

  15. Toward real-time performance benchmarks for Ada

    NASA Technical Reports Server (NTRS)

    Clapp, Russell M.; Duchesneau, Louis; Volz, Richard A.; Mudge, Trevor N.; Schultze, Timothy

    1986-01-01

    The issue of real-time performance measurements for the Ada programming language through the use of benchmarks is addressed. First, the Ada notion of time is examined and a set of basic measurement techniques are developed. Then a set of Ada language features believed to be important for real-time performance are presented and specific measurement methods discussed. In addition, other important time related features which are not explicitly part of the language but are part of the run-time related features which are not explicitly part of the language but are part of the run-time system are also identified and measurement techniques developed. The measurement techniques are applied to the language and run-time system features and the results are presented.

  16. Distributed simulation using a real-time shared memory network

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Mattern, Duane L.; Wong, Edmond; Musgrave, Jeffrey L.

    1993-01-01

    The Advanced Control Technology Branch of the NASA Lewis Research Center performs research in the area of advanced digital controls for aeronautic and space propulsion systems. This work requires the real-time implementation of both control software and complex dynamical models of the propulsion system. We are implementing these systems in a distributed, multi-vendor computer environment. Therefore, a need exists for real-time communication and synchronization between the distributed multi-vendor computers. A shared memory network is a potential solution which offers several advantages over other real-time communication approaches. A candidate shared memory network was tested for basic performance. The shared memory network was then used to implement a distributed simulation of a ramjet engine. The accuracy and execution time of the distributed simulation was measured and compared to the performance of the non-partitioned simulation. The ease of partitioning the simulation, the minimal time required to develop for communication between the processors and the resulting execution time all indicate that the shared memory network is a real-time communication technique worthy of serious consideration.

  17. Intelligent data presentation for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, U. M.; Quan, A. G.; Holder, B.

    1993-01-01

    This paper describes an intelligent user interface that is currently under development. The interface serves as a front end for real-time spacecraft monitoring software. The software operates under circumstances in which neither an intelligent human without automated assistance nor an automated system without intelligence are sufficiently effective. The user interface is supported by dynamic trade-off evaluation (DTE), a new technique that has been developed to automate general types of performance trade-offs in real-time problem solving systems. In this application, DTE is used to perform dynamic input data management for the purpose of determining which input data should be monitored in time constrained situations and how to present the monitoring information to a human analyst who has the ultimate responsibility for the spacecraft. This application has demonstrated that DTE can be used to dynamically vary the data that is monitored, making it possible to detect and correctly analyze all anomalous data by examining only a subset of the total input data. In carefully structured experimental evaluations that use real spacecraft data and real decision making, DTE provides the ability to handle a three-fold increase in input data (in real-time) without loss of performance and to intelligently present the information to a mission analyst.

  18. A new real-time tsunami detection algorithm

    NASA Astrophysics Data System (ADS)

    Chierici, Francesco; Embriaco, Davide; Pignagnoli, Luca

    2017-01-01

    Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection based on the real-time tide removal and real-time band-pass filtering of seabed pressure recordings. The algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability with respect to the most widely used tsunami detection algorithm, while containing the computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. Pressure data sets acquired by Bottom Pressure Recorders in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event which occurred at Haida Gwaii on 28 October 2012 using data recorded by the Bullseye underwater node of Ocean Networks Canada. The algorithm successfully ran for test purpose in year-long missions onboard abyssal observatories, deployed in the Gulf of Cadiz and in the Western Ionian Sea.

  19. Towards real-time registration of 4D ultrasound images.

    PubMed

    Foroughi, Pezhman; Abolmaesumi, Purang; Hashtrudi-Zaad, Keyvan

    2006-01-01

    In this paper, we demonstrate a method for fast registration of sequences of 3D liver images, which could be used for the future real-time applications. In our method, every image is elastically registered to a so called fixed ultrasound image exploiting the information from previous registration. A few feature points are automatically selected, and tracked inside the images, while the deformation of other points are extrapolated with respect to the tracked points employing a fast free-form approach. The main intended application of the proposed method is real-time tracking of tumors for radiosurgery. The algorithm is evaluated on both naturally and artificially deformed images. Experimental results show that for around 85 percent accuracy, the process of tracking is completed very close to real time.

  20. Real-Time GNSS Positioning with JPL's new GIPSYx Software

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    2016-12-01

    The JPL Global Differential GPS (GDGPS) System is now producing real-time orbit and clock solutions for GPS, GLONASS, BeiDou, and Galileo. The operations are based on JPL's next generation geodetic analysis and data processing software, GIPSYx (also known at RTGx). We will examine the impact of the nascent GNSS constellations on real-time kinematic positioning for earthquake monitoring, and assess the marginal benefits from each constellation. We will discus the options for signal selection, inter-signal bias modeling, and estimation strategies in the context of real-time point positioning. We will provide a brief overview of the key features and attributes of GIPSYx. Finally we will describe the current natural hazard monitoring services from the GDGPS System.

  1. Towards real-time medical diagnostics using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Randeberg, Lise L.

    2015-07-01

    Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.

  2. Single-protein nanomechanical mass spectrometry in real time

    PubMed Central

    Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L.

    2012-01-01

    Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs upon the NEMS resonator, its mass and the position-of-adsorption are determined by continuously tracking two driven vibrational modes of the device. We demonstrate the potential of multimode NEMS-based mass spectrometry by analyzing IgM antibody complexes in real-time. NEMS-MS is a unique and promising new form of mass spectrometry: it can resolve neutral species, provides resolving power that increases markedly for very large masses, and allows acquisition of spectra, molecule-by-molecule, in real-time. PMID:22922541

  3. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  4. Continuous real-time water information: an important Kansas resource

    USGS Publications Warehouse

    Loving, Brian L.; Putnam, James E.; Turk, Donita M.

    2014-01-01

    Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.

  5. Real-time Experiment Interface for Biological Control Applications

    PubMed Central

    Lin, Risa J.; Bettencourt, Jonathan; White, John A.; Christini, David J.; Butera, Robert J.

    2013-01-01

    The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org). PMID:21096883

  6. Test applications for heterogeneous real-time network testbed

    SciTech Connect

    Mines, R.F.; Knightly, E.W.

    1994-07-01

    This paper investigates several applications for a heterogeneous real-time network testbed. The network is heterogeneous in terms of network devices, technologies, protocols, and algorithms. The network is real-time in that its services can provide per-connection end-to-end performance guarantees. Although different parts of the network use different algorithms, all components have the necessary mechanisms to provide performance guarantees: admission control and priority scheduling. Three applications for this network are described in this paper: a video conferencing tool, a tool for combustion modeling using distributed computing, and an MPEG video archival system. Each has minimum performance requirements that must be provided by the network. By analyzing these applications, we provide insights to the traffic characteristics and performance requirements of practical real-time loads.

  7. Real-time skills of robot manipulators for unstructured environments

    NASA Astrophysics Data System (ADS)

    Kalaycioglu, Serdar

    1993-12-01

    This paper presents an overview of the developed modified impedance control (MIC) concept and provides real-time sensor based robot capabilities (gross and fine motion-skills). These skills are mandatory requirements for the telerobotics systems to execute unstructured tasks in an unstructured/uncertain environment (i.e., space, defence operations, etc.). A special emphasis is given to the applications of Space Station Freedom operations. The first part of the paper focuses on the (free) gross motion of the robot manipulators and provides a real-time collision avoidance approach for complete posture (all links) of a robot manipulator in an unstructured environment based on MIC concept. The second part of the paper presents contact motion skills. The experimental demonstrations show that the MIC concept is very efficient, satisfactory, and an important candidate for manipulation control of complex tasks since it allows real-time collision avoidance as well as contact motion capability.

  8. Real-time structured light intraoral 3D measurement pipeline

    NASA Astrophysics Data System (ADS)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  9. Real-time experiment interface for biological control applications.

    PubMed

    Lin, Risa J; Bettencourt, Jonathan; Wha Ite, John; Christini, David J; Butera, Robert J

    2010-01-01

    The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org).

  10. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  11. Real time lobster posture estimation for behavior research

    NASA Astrophysics Data System (ADS)

    Yan, Sheng; Alfredsen, Jo Arve

    2017-02-01

    In animal behavior research, the main task of observing the behavior of an animal is usually done manually. The measurement of the trajectory of an animal and its real-time posture description is often omitted due to the lack of automatic computer vision tools. Even though there are many publications for pose estimation, few are efficient enough to apply in real-time or can be used without the machine learning algorithm to train a classifier from mass samples. In this paper, we propose a novel strategy for the real-time lobster posture estimation to overcome those difficulties. In our proposed algorithm, we use the Gaussian mixture model (GMM) for lobster segmentation. Then the posture estimation is based on the distance transform and skeleton calculated from the segmentation. We tested the algorithm on a serials lobster videos in different size and lighting conditions. The results show that our proposed algorithm is efficient and robust under various conditions.

  12. Modular Real Time Architectures For Image Understanding Applications

    NASA Astrophysics Data System (ADS)

    Wehner, William W.

    1985-07-01

    Diverse image understanding (IU) system applications and attendant reduced life cycle cost requirements call for real time system architectures which are increasingly flexible, maintainable, reprogrammable, and upgradable. The requirements for algorithm mapping to architecture are sufficiently complex to require automated functional analysis tools. Algorithm complexity dictates higher order language (HOL) system programmability for acceptable software development cycles. Architecture complexity requires automated architecture simulation/emulation support for acceptable hardware development cycles. Honeywell, through external contracts and IR&D, is pursuing the definition and development of real time IU architectures (and algorithms) which cost-effectively support diverse applications including tactical targeting and reconnaissance, scene analysis, robot vision, and autonomous navigation. We are addressing the systems requirements of these applications with designs which are modular, expandable, and software configurable. Our presentation will overview the IU applications we are pursuing, our architectural approach to meeting system real time throughput requirements, and our underlying design methodology for architecture development.

  13. Seismic monitoring and real time damage estimation for lifelines

    SciTech Connect

    Takada, Shiro; Ogawa, Yasuo

    1995-12-31

    This paper presents a methodology for estimating the number of damaged locations of lifeline systems based on seismic monitoring ground motions taking consideration of liquefaction phenomena. The liquefaction area and the number of damage to the lifeline facilities can be synthetically indicated by a personal computer program developed for this purpose. The method is based on the real time observed data of strong ground motions. Osaka Gas Company had been developing the real time damage simulation system by planning to set additional tele-meter seismographs when the Hanshin Great Earthquake occurred. Other lifelines such as electricity, telecommunication, water and sewage systems in quake-hit area had not such a real time damage simulation tool based on observed ground motions. On the other hand, these lifelines have their own damage detection system such as pressure, flow, relay signal, etc.

  14. Real-time RNA profiling within a single bacterium.

    PubMed

    Le, Thuc T; Harlepp, Sébastien; Guet, Calin C; Dittmar, Kimberly; Emonet, Thierry; Pan, Tao; Cluzel, Philippe

    2005-06-28

    Characterizing the dynamics of specific RNA levels requires real-time RNA profiling in a single cell. We show that the combination of a synthetic modular genetic system with fluorescence correlation spectroscopy allows us to directly measure in real time the activity of any specific promoter in prokaryotes. Using a simple inducible gene expression system, we found that induced RNA levels within a single bacterium of Escherichia coli exhibited a pulsating profile in response to a steady input of inducer. The genetic deletion of an efflux pump system, a key determinant of antibiotic resistance, altered the pulsating transcriptional dynamics and caused overexpression of induced RNA. In contrast with population measurements, real-time RNA profiling permits identifying relationships between genotypes and transcriptional dynamics that are accessible only at the level of the single cell.

  15. The VLBA Correlator---Real-Time in the Distributed ERA

    NASA Astrophysics Data System (ADS)

    Wells, Donald C.

    1993-01-01

    The Correlator is the signal processing engine of the Very Long Baseline Array [VLBA]. Radio signals are recorded on special wideband digital recorders at the 10 VLBA antennas and are shipped to the Array Operations Center in Socorro, New Mexico, where they are played back simultaneously into the Correlator. Real-time software and firmware controls the playback drives to achieve synchronization, compute models of the wavefront delay, control the numerous modules of the Correlator, and record FITS files of the fringe visibilities at the back-end of the Correlator. The Correlator system contains a total of more than 100 programmable computers, which communicate by means of various protocols. The VLBA Correlator's dependence on network protocols is an example of the radical transformation of the real-time world over the past five years: real-time is becoming more like conventional computing.

  16. Real-Time Statistical Modeling of Blood Sugar.

    PubMed

    Otoom, Mwaffaq; Alshraideh, Hussam; Almasaeid, Hisham M; López-de-Ipiña, Diego; Bravo, José

    2015-10-01

    Diabetes is considered a chronic disease that incurs various types of cost to the world. One major challenge in the control of Diabetes is the real time determination of the proper insulin dose. In this paper, we develop a prototype for real time blood sugar control, integrated with the cloud. Our system controls blood sugar by observing the blood sugar level and accordingly determining the appropriate insulin dose based on patient's historical data, all in real time and automatically. To determine the appropriate insulin dose, we propose two statistical models for modeling blood sugar profiles, namely ARIMA and Markov-based model. Our experiment used to evaluate the performance of the two models shows that the ARIMA model outperforms the Markov-based model in terms of prediction accuracy.

  17. Kalman filtering for real-time navigator processing.

    PubMed

    Spincemaille, Pascal; Nguyen, Thanh D; Prince, Martin R; Wang, Yi

    2008-07-01

    Navigator echoes are used in high-resolution cardiac MRI for tracking physiological motion to suppress motion artifacts. Alternatives to the conventional diaphragm navigator such as the cardiac fat navigator and the k-space center signal (self-navigator) were developed to monitor heart motion directly. These navigator data can be noisy or may contain undesirable frequency components. Real-time filtering of navigator data without delay, as opposed to the previously used retrospective frequency band filtering, is required for effective prospective navigator gating. One of the commonly used real-time filtering techniques is the Kalman filter, which adaptively estimates motion and suppresses measurement noise by using Bayesian statistics and a motion model. The Kalman filter is investigated in this work to filter noise and distinguish cardiac and respiratory components in navigator data. Preliminary imaging data demonstrate the feasibility of real-time Kalman filtering for prospective respiratory self-gating in CINE cardiac MRI.

  18. Real time ultrasound tomography of the adult brain.

    PubMed

    Smith, S W; von Ramm, O T; Kisslo, J A; Thurstone, F L

    1978-01-01

    Initial clinical results are reported from a new real time, 2-dimensional ultrasound scanner modified for adult cephalic applications. An optimized transducer design and the use of the dynamically focused phased array imaging system have resulted in ultrasound tomograms of the brain which are significant improvements over previous attempts. Horizontal and coronal images of the ventricles, the corpus callosum and other midline structures are routinely displayed in a 45 degrees sector format. In addition, pulsating cerebral arteries are displayed in real time. Quantitative information can be obtained concerning cerebral vascular patency by using the selectable M-mode feature of this system. The results indicate that real time ultrasound tomography has potential for clinical application.

  19. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  20. New real-time strain imaging concepts using diagnostic ultrasound.

    PubMed

    Pesavento, A; Lorenz, A; Siebers, S; Ermert, H

    2000-06-01

    Two real-time strain imaging concepts and systems are presented. Both systems are based on a conventional ultrasound scanner that is connected to a PC with an A/D converter card for real-time data acquisition of rf data. Differential strain between successively acquired rf frames are estimated using phase root seeking. The first concept uses a special real-time implementation of manual elastography. In the second concept, denoted 'vibrography', the static compression is replaced by low-frequency axial vibration of the probe, still operating in quasistatic acquisition mode. The properties of both concepts are discussed with regard to noise and motion artefacts, and it is shown, using simulations and phantom experiments, that both imaging concepts yield the same kind of strain images. Vibrography has the advantage that no manual compression has to be applied, total compression can be very low and some motion artefacts are better suppressed.