Sample records for real time technical

  1. Real Time Large Memory Optical Pattern Recognition.

    DTIC Science & Technology

    1984-06-01

    AD-Ri58 023 REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION(U) - h ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE D A GREGORY JUN...TECHNICAL REPORT RR-84-9 Ln REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION Don A. Gregory Research Directorate US Army Missile Laboratory JUNE 1984 L...RR-84-9 , ___/_ _ __ _ __ _ __ _ __"__ _ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Real Time Large Memory Optical Pattern Technical

  2. IDA and the Technical Cooperation Program Real-Time Systems and Ada Workshop, 21-23 June 1988

    DTIC Science & Technology

    1988-06-01

    IDA Memorandum Report M-540, IDA and the Technical Cooperation Program Real - Time Systems and Ada Workshop, 21-23 June 1988, documents the results of... time systems , (2) identify and clarify known Ada real-time issues, (3) identify near-term and long-term solutions, and (4) provide assessment and...Technology (ODUSD R&AT). Funding was provided by the STARS Joint Program Office. The objectives were to (1) define requirements for using Ada in real

  3. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  4. A Microprocessor-Based Real-Time Simulator of a Turbofan Engine

    DTIC Science & Technology

    1988-01-01

    NASA AVSCOM Technical Memorandum 100889 Technical Report 88-C-011 Lfl A Microprocessor-Based Real-Time Simulator of a Turbofan Engine CD I Jonathan S...Accession For NTIS GRA&I A MICROPROCESSOR-BASED REAL-TIME SIMULATOR DTIC TABUnannounced OF A TURBOFAN ENGINE Justifiaation, Jonathan S. Litt Propulsion...the F100 engine without augmentation (without afterburning). HYTESS is a simplified simulation written in FORTRAN of a generalized turbofan engine . To

  5. A new generation of real-time DOS technology for mission-oriented system integration and operation

    NASA Technical Reports Server (NTRS)

    Jensen, E. Douglas

    1988-01-01

    Information is given on system integration and operation (SIO) requirements and a new generation of technical approaches for SIO. Real-time, distribution, survivability, and adaptability requirements and technical approaches are covered. An Alpha operating system program management overview is outlined.

  6. 76 FR 28022 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Market and Planning Efficiency Through Improved Software; Notice of Technical Conference: Increasing Real-Time and Day- Ahead Market Efficiency Through Improved Software Take notice that Commission staff will... for increasing real-time and day-ahead market efficiency through improved software. This conference...

  7. 78 FR 65641 - Midcontinent Independent System Operator, Inc.; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... the allocation of real-time Revenue Sufficiency Guarantee (RSG) costs.\\1\\ In its order, the Commission... to discuss the issues raised by MISO's proposed revisions to its real-time RSG cost allocation... Independent System Operator, Inc.; Notice of Technical Conference By order dated October 16, 2013, in Docket...

  8. Heterogeneous Embedded Real-Time Systems Environment

    DTIC Science & Technology

    2003-12-01

    AFRL-IF-RS-TR-2003-290 Final Technical Report December 2003 HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT Integrated...HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT 6. AUTHOR(S) Cosmo Castellano and James Graham 5. FUNDING NUMBERS C - F30602-97-C-0259

  9. A Real-Time Systems Symposium Preprint.

    DTIC Science & Technology

    1983-09-01

    Real - Time Systems Symposium Preprint Interim Tech...estimate of the occurence of the error. Unclassii ledSECUqITY CLASSIF’ICA T" NO MI*IA If’ inDI /’rrd erter for~~ble. ’Corrputnqg A REAL - TIME SYSTEMS SYMPOSIUM...ABSTRACT This technical report contains a preprint of a paper accepted for presentation at the REAL - TIME SYSTEMS SYMPOSIUM, Arlington,

  10. Design Specifications for Adaptive Real-Time Systems

    DTIC Science & Technology

    1991-12-01

    TICfl \\ E CT E Design Specifications for JAN’\\ 1992 Adaptive Real - Time Systems fl Randall W. Lichota U, Alice H. Muntz - December 1991 \\ \\\\/ 0 / r...268-2056 Technical Report CMU/SEI-91-TR-20 ESD-91-TR-20 December 1991 Design Specifications for Adaptive Real - Time Systems Randall W. Lichota Hughes...Design Specifications for Adaptive Real - Time Systems Abstract: The design specification method described in this report treats a software

  11. Design Recovery Technology for Real-Time Systems.

    DTIC Science & Technology

    1995-10-01

    RL-TR-95-208 Final Technical Report October 1995 DESIGN RECOVERY TECHNOLOGY FOR REAL TIME SYSTEMS The MITRE Corporation Lester J. Holtzblatt...92 - Jan 95 4. TTTLE AND SUBTITLE DESIGN RECOVERY TECHNOLOGY FOR REAL - TIME SYSTEMS 6. AUTHOR(S) Lester J. Holtzblatt, Richard Piazza, and Susan...behavior of real - time systems in general, our initial efforts have centered on recovering this information from one system in particular, the Modular

  12. Proceedings of the Real-Time Systems Engineering Workshop

    DTIC Science & Technology

    2001-08-01

    real - time systems engineering. The workshop was held as part of the SEI Symposium in...Washington, DC, during September 2000. The objective of the workshop was to identify key issues and obtain feedback from attendees concerning real - time systems engineering...and interoperability. This report summarizes the workshop in terms of foundation, management, and technical topics, and it contains a discussion related to developing a community of interest for real - time systems

  13. An Experimental Device for Real Time Determination of Slant Path Atmospheric Contrast Transmittance.

    DTIC Science & Technology

    1982-03-01

    copies ftom th Defense Technical Information Caster. AN others ioM apply to the National Technical Information Service. UNCLASSIFIED SECURITV...EXPERIMENTAL DEVICE FOR REAL TIME DETERMINATION OF SLANT PATH ATMOSPHERIC CONTRAST TRANSMITTANCE Richard W. Johnson 1. INTRODUCTION 2. BASIC CONCEPTS As...and z is an altitude parameter. primary optical channel uses a cosine corrected and PE- ASSIG SYSTM DEPIS1ttt STAGE I DSIN STAGEM Pgormiy TES

  14. Technical challenges related to implementation of a formula one real time data acquisition and analysis system in a paediatric intensive care unit.

    PubMed

    Matam, B Rajeswari; Duncan, Heather

    2018-06-01

    Most existing, expert monitoring systems do not provide the real time continuous analysis of the monitored physiological data that is necessary to detect transient or combined vital sign indicators nor do they provide long term storage of the data for retrospective analyses. In this paper we examine the feasibility of implementing a long term data storage system which has the ability to incorporate real-time data analytics, the system design, report the main technical issues encountered, the solutions implemented and the statistics of the data recorded. McLaren Electronic Systems expertise used to continually monitor and analyse the data from F1 racing cars in real time was utilised to implement a similar real-time data recording platform system adapted with real time analytics to suit the requirements of the intensive care environment. We encountered many technical (hardware and software) implementation challenges. However there were many advantages of the system once it was operational. They include: (1) The ability to store the data for long periods of time enabling access to historical physiological data. (2) The ability to alter the time axis to contract or expand periods of interest. (3) The ability to store and review ECG morphology retrospectively. (4) Detailed post event (cardiac/respiratory arrest or other clinically significant deteriorations in patients) data can be reviewed clinically as opposed to trend data providing valuable clinical insight. Informed mortality and morbidity reviews can be conducted. (5) Storage of waveform data capture to use for algorithm development for adaptive early warning systems. Recording data from bed-side monitors in intensive care/wards is feasible. It is possible to set up real time data recording and long term storage systems. These systems in future can be improved with additional patient specific metrics which predict the status of a patient thus paving the way for real time predictive monitoring.

  15. Predictable and Adaptable Complex Real-Time Systems

    DTIC Science & Technology

    1993-09-30

    Predictable and Adaptable Complex Real - Time Systems Grant or Contract Number: N00014-92-J-1048 Reporting Period: 1 Oct 91 - 30 Sep 93 1... Real - Time Systems Grant or Contract Number: N00014-92-J-1048 Reporting Period: 1 Oct 91 - 30 Sep 93 2. Summary of Technical Progress Our...cs.umass.edu Grant or Contract Title: Predictable and Adaptable Complex Real - Time Systems Grant or Contract Number: N00014-92-J-1048 Reporting Period: 1 Oct 91

  16. EQUAL-quant: an international external quality assessment scheme for real-time PCR.

    PubMed

    Ramsden, Simon C; Daly, Sarah; Geilenkeuser, Wolf-Jochen; Duncan, Graeme; Hermitte, Fabienne; Marubini, Ettore; Neumaier, Michael; Orlando, Claudio; Palicka, Vladimir; Paradiso, Angelo; Pazzagli, Mario; Pizzamiglio, Sara; Verderio, Paolo

    2006-08-01

    Quantitative gene expression analysis by real-time PCR is important in several diagnostic areas, such as the detection of minimum residual disease in leukemia and the prognostic assessment of cancer patients. To address quality assurance in this technically challenging area, the European Union (EU) has funded the EQUAL project to develop methodologic external quality assessment (EQA) relevant to diagnostic and research laboratories among the EU member states. We report here the results of the EQUAL-quant program, which assesses standards in the use of TaqMan probes, one of the most widely used assays in the implementation of real-time PCR. The EQUAL-quant reagent set was developed to assess the technical execution of a standard TaqMan assay, including RNA extraction, reverse transcription, and real-time PCR quantification of target DNA copy number. The multidisciplinary EQA scheme included 137 participating laboratories from 29 countries. We demonstrated significant differences in performance among laboratories, with 20% of laboratories reporting at least one result lacking in precision and/or accuracy according to the statistical procedures described. No differences in performance were observed for the >10 different testing platforms used by the study participants. This EQA scheme demonstrated both the requirement and demand for external assessment of technical standards in real-time PCR. The reagent design and the statistical tools developed within this project will provide a benchmark for defining acceptable working standards in this emerging technology.

  17. Project Management in Real Time: A Service-Learning Project

    ERIC Educational Resources Information Center

    Larson, Erik; Drexler, John A., Jr.

    2010-01-01

    This article describes a service-learning assignment for a project management course. It is designed to facilitate hands-on student learning of both the technical and the interpersonal aspects of project management, and it involves student engagement with real customers and real stakeholders in the creation of real events with real outcomes. As…

  18. 77 FR 19280 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Market and Planning Efficiency Through Improved Software; Notice of Technical Conference: Increasing Real-Time and Day- Ahead Market Efficiency Through Improved Software Take notice that Commission staff will...-time and day-ahead market efficiency through improved software. A detailed agenda with the list of and...

  19. Enhancements to the EPANET-RTX (Real-Time Analytics) ...

    EPA Pesticide Factsheets

    Technical brief and software The U.S. Environmental Protection Agency (EPA) developed EPANET-RTX as a collection of object-oriented software libraries comprising the core data access, data transformation, and data synthesis (real-time analytics) components of a real-time hydraulic and water quality modeling system. While EPANET-RTX uses the hydraulic and water quality solvers of EPANET, the object libraries are a self-contained set of building blocks for software developers. “Real-time EPANET” promises to change the way water utilities, commercial vendors, engineers, and the water community think about modeling.

  20. Subordinated continuous-time AR processes and their application to modeling behavior of mechanical system

    NASA Astrophysics Data System (ADS)

    Gajda, Janusz; Wyłomańska, Agnieszka; Zimroz, Radosław

    2016-12-01

    Many real data exhibit behavior adequate to subdiffusion processes. Very often it is manifested by so-called ;trapping events;. The visible evidence of subdiffusion we observe not only in financial time series but also in technical data. In this paper we propose a model which can be used for description of such kind of data. The model is based on the continuous time autoregressive time series with stable noise delayed by the infinitely divisible inverse subordinator. The proposed system can be applied to real datasets with short-time dependence, visible jumps and mentioned periods of stagnation. In this paper we extend the theoretical considerations in analysis of subordinated processes and propose a new model that exhibits mentioned properties. We concentrate on the main characteristics of the examined subordinated process expressed mainly in the language of the measures of dependence which are main tools used in statistical investigation of real data. We present also the simulation procedure of the considered system and indicate how to estimate its parameters. The theoretical results we illustrate by the analysis of real technical data.

  1. Improving a health information system for real-time data entries: An action research project using socio-technical systems theory.

    PubMed

    Adaba, Godfried Bakiyem; Kebebew, Yohannes

    2018-03-01

    This paper presents the findings of an action research (AR) project to improve a health information system (HIS) at the Operating Theater Department (OTD) of a National Health Service (NHS) hospital in South East England, the UK. Informed by socio-technical systems (STS) theory, AR was used to design an intervention to enhance an existing patient administration system (PAS) to enable data entries in real time while contributing to the literature. The study analyzed qualitative data collected through interviews, participant observations, and document reviews. The study found that the design of the PAS was unsuitable to the work of the three units of the OTD. Based on the diagnoses and STS theory, the project developed and implemented a successful intervention to enhance the legacy system for data entries in real time. The study demonstrates the value of AR from a socio-technical perspective for improving existing systems in healthcare settings. The steps adopted in this study could be applied to improve similar systems. A follow-up study will be essential to assess the sustainability of the improved system.

  2. STC synthesis of real-time driver information for congestion management : research project capsule.

    DOT National Transportation Integrated Search

    2014-02-01

    The main focus of this synthesis report is to compile a technical summary of past and current research, as : well as the state of the practice, on the role of real-time information in congestion mitigation programs. The : speci c objectives are to...

  3. Blurring the Lines: Leveraging Internet Technology for Successful Blending of Secondary/Post-Secondary Technical Education

    ERIC Educational Resources Information Center

    Ryan, Kenneth; Kopischke, Kevin

    2008-01-01

    The Remote Automation Management Platform (RAMP) is a real-time, interactive teaching tool which leverages common off-the-shelf internet technologies to provide high school learners extraordinary access to advanced technical education opportunities. This outreach paradigm is applicable to a broad range of advanced technical skills from automation…

  4. Gigabit Ethernet: A Technical Assessment.

    ERIC Educational Resources Information Center

    Axner, David

    1997-01-01

    Describes gigabit ethernet for LAN (local area network) technology that will expand ethernet bandwidth. Technical details are discussed, including protocol stacks, optical fiber, deployment strategy for performance improvement, ATM (Asynchronous Transfer Mode), real-time protocol, reserve reservation protocol, and standards. (LRW)

  5. Bus-stop Based Real Time Passenger Information System - Case Study Maribor

    NASA Astrophysics Data System (ADS)

    Čelan, Marko; Klemenčič, Mitja; Mrgole, Anamarija L.; Lep, Marjan

    2017-10-01

    Real time passenger information system is one of the key element of promoting public transport. For the successful implementation of real time passenger information systems, various components should be considered, such as: passenger needs and requirements, stakeholder involvement, technological solution for tracking, data transfer, etc. This article carrying out designing and evaluation of real time passenger information (RTPI) in the city of Maribor. The design phase included development of methodology for selection of appropriate macro and micro location of the real-time panel, development of a real-time passenger algorithm, definition of a technical specification, financial issues and time frame. The evaluation shows that different people have different requirements; therefore, the system should be adaptable to be used by various types of people, according to the age, the purpose of journey, experience of using public transport, etc. The average difference between perceived waiting time for a bus is 35% higher than the actual waiting time and grow with the headway increase. Experiences from Maribor have shown that the reliability of real time passenger system (from technical point of view) must be close to 100%, otherwise the system may have negative impact on passengers and may discourage the use of public transport. Among considered events of arrivals during the test period, 92% of all prediction were accurate. The cost benefit analysis has focused only on potential benefits from reduced perceived users waiting time and foreseen costs of real time information system in Maribor for 10 years’ period. Analysis shows that the optimal number for implementing real time passenger information system at the bus stops in Maribor is set on 83 bus stops (approx. 20 %) with the highest number of passenger. If we consider all entries at the chosen bus stops, the total perceived waiting time on yearly level could be decreased by about 60,000 hours.

  6. 76 FR 41790 - Increasing Market and Planning Efficiency Through Improved Software; Notice Establishing Date for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Market and Planning Efficiency Through Improved Software; Notice Establishing Date for Comments From June... real-time and day- ahead market efficiency through improved software.\\1\\ \\1\\ Notice of technical conference: increasing real-time and day-ahead market efficiency through improved software, 76 Fed. Reg. 28...

  7. The smartphone brain scanner: a portable real-time neuroimaging system.

    PubMed

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg; Petersen, Michael Kai; Hansen, Lars Kai

    2014-01-01

    Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system--Smartphone Brain Scanner--combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real-time reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal in a mobile solution using an off-the-shelf consumer neuroheadset is lower than the signal obtained using high-density standard EEG equipment, we propose mobile application development may offset the disadvantages and provide completely new opportunities for neuroimaging in natural settings.

  8. Real-Time Network Management

    DTIC Science & Technology

    1998-07-01

    Report No. WH97JR00-A002 Sponsored by REAL-TIME NETWORK MANAGEMENT FINAL TECHNICAL REPORT K CD July 1998 CO CO O W O Defense Advanced...Approved for public release; distribution unlimited. t^GquALmmsPEami Report No. WH97JR00-A002 REAL-TIME NETWORK MANAGEMENT Synectics Corporation...2.1.2.1 WAN-class Networks 12 2.1.2.2 IEEE 802.3-class Networks 13 2.2 Task 2 - Object Modeling for Architecture 14 2.2.1 Managed Objects 14 2.2.2

  9. Real-time seismic monitoring and functionality assessment of a building

    USGS Publications Warehouse

    Celebi, M.; ,

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  10. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  11. Real-Time Transliteration of Speech into Print for Hearing-Impaired Students in Regular Classes.

    ERIC Educational Resources Information Center

    Stuckless, E. Ross

    1983-01-01

    A system is described whereby a stenotypist records the classroom instructor's and students' speech which a computer then translates to words on the screen for hearing impaired postsecondary students. Initial results include a high degree of verbatim accuracy, support for real-time operation, and several technical problems including lack of…

  12. 78 FR 69079 - Midcontinent Independent System Operator, Inc.; Supplemental Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... Schedule 46. a. For step one, define the terms ``Hourly Real-Time RSG MWP'' and ``Resource CMC Real-time... RSG credits and the difference between one and the Constraint Management Charge Allocation Factor... and Headroom Need is (1) less than or equal to zero, (2) greater than or equal to the Economic...

  13. 78 FR 62788 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... fees for real- time and historic data sets of transactions in TRACE-Eligible Securities \\5\\ that are... data sets; and (3) make other technical amendments. \\5\\ The term TRACE-Eligible Security is defined in... transactions and to establish real-time and historic data sets for Rule 144A transactions. The effective date...

  14. Technical aspects of contrast-enhanced ultrasound (CEUS) examinations: tips and tricks.

    PubMed

    Greis, C

    2014-01-01

    Ultrasound contrast agents have substantially extended the clinical value of ultrasound, allowing the assessment of blood flow and distribution in real-time down to microcapillary level. Selective imaging of contrast agent signals requires a contrast-specific imaging mode on the ultrasound scanner, allowing real-time separation of tissue and contrast agent signals. The creation of a contrast image requires a specific interaction between the insonated ultrasound wave and the contrast agent microbubbles, leading to persistent oscillation of the bubbles. Several technical and procedural parameters have a significant influence on the quality of CEUS images and should be controlled carefully to obtain good image quality and a reliable diagnosis. Achieving the proper balance between the respective parameters is a matter of technical knowledge and experience. Appropriate training and education should be mandatory for every investigator performing CEUS examinations.

  15. Real-Time 3D Fluoroscopy-Guided Large Core Needle Biopsy of Renal Masses: A Critical Early Evaluation According to the IDEAL Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeze, Stephanie G. C.; Huisman, Merel; Verkooijen, Helena M.

    2012-06-15

    Introduction: Three-dimensional (3D) real-time fluoroscopy cone beam CT is a promising new technique for image-guided biopsy of solid tumors. We evaluated the technical feasibility, diagnostic accuracy, and complications of this technique for guidance of large-core needle biopsy in patients with suspicious renal masses. Methods: Thirteen patients with 13 suspicious renal masses underwent large-core needle biopsy under 3D real-time fluoroscopy cone beam CT guidance. Imaging acquisition and subsequent 3D reconstruction was done by a mobile flat-panel detector (FD) C-arm system to plan the needle path. Large-core needle biopsies were taken by the interventional radiologist. Technical success, accuracy, and safety were evaluatedmore » according to the Innovation, Development, Exploration, Assessment, Long-term study (IDEAL) recommendations. Results: Median tumor size was 2.6 (range, 1.0-14.0) cm. In ten (77%) patients, the histological diagnosis corresponded to the imaging findings: five were malignancies, five benign lesions. Technical feasibility was 77% (10/13); in three patients biopsy results were inconclusive. The lesion size of these three patients was <2.5 cm. One patient developed a minor complication. Median follow-up was 16.0 (range, 6.4-19.8) months. Conclusions: 3D real-time fluoroscopy cone beam CT-guided biopsy of renal masses is feasible and safe. However, these first results suggest that diagnostic accuracy may be limited in patients with renal masses <2.5 cm.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stabilitymore » monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.« less

  17. Compressed multi-block local binary pattern for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao

    2018-04-01

    Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.

  18. The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System

    PubMed Central

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg; Petersen, Michael Kai; Hansen, Lars Kai

    2014-01-01

    Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system – Smartphone Brain Scanner – combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real-time reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal in a mobile solution using an off-the-shelf consumer neuroheadset is lower than the signal obtained using high-density standard EEG equipment, we propose mobile application development may offset the disadvantages and provide completely new opportunities for neuroimaging in natural settings. PMID:24505263

  19. Real-time alerts and reminders using information systems.

    PubMed

    Wanderer, Jonathan P; Sandberg, Warren S; Ehrenfeld, Jesse M

    2011-09-01

    Adoption of information systems throughout the hospital environment has enabled the development of real-time physiologic alerts and clinician reminder systems. These clinical tools can be made available through the deployment of anesthesia information management systems (AIMS). Creating usable alert systems requires understanding of technical considerations. Various successful implementations are reviewed, encompassing cost reduction, improved revenue capture, timely antibiotic administration, and postoperative nausea and vomiting prophylaxis. Challenges to the widespread use of real-time alerts and reminders include AIMS adoption rates and the difficulty in choosing appropriate areas and approaches for information systems support. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Grid Stability Awareness System (GSAS) Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuerborn, Scott; Ma, Jian; Black, Clifton

    The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less

  1. Software engineering aspects of real-time programming concepts

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1986-08-01

    Real-time programming is a discipline of great importance not only in process control, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other. The second part deals with structuring and modularization of technical processes to build reliable and maintainable real time systems. Software-quality and software engineering aspects are considered throughout the paper.

  2. SSME propellant path leak detection real-time

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Smith, L. M.

    1994-01-01

    Included are four documents that outline the technical aspects of the research performed on NASA Grant NAG8-140: 'A System for Sequential Step Detection with Application to Video Image Processing'; 'Leak Detection from the SSME Using Sequential Image Processing'; 'Digital Image Processor Specifications for Real-Time SSME Leak Detection'; and 'A Color Change Detection System for Video Signals with Applications to Spectral Analysis of Rocket Engine Plumes'.

  3. A real-time MPEG software decoder using a portable message-passing library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, Man Kam; Tang, P.T. Peter; Lin, Biquan

    1995-12-31

    We present a real-time MPEG software decoder that uses message-passing libraries such as MPL, p4 and MPI. The parallel MPEG decoder currently runs on the IBM SP system but can be easil ported to other parallel machines. This paper discusses our parallel MPEG decoding algorithm as well as the parallel programming environment under which it uses. Several technical issues are discussed, including balancing of decoding speed, memory limitation, 1/0 capacities, and optimization of MPEG decoding components. This project shows that a real-time portable software MPEG decoder is feasible in a general-purpose parallel machine.

  4. Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series.

    PubMed

    Lekht, Ilya; Brauner, Noah; Bakhsheshian, Joshua; Chang, Ki-Eun; Gulati, Mittul; Shiroishi, Mark S; Grant, Edward G; Christian, Eisha; Zada, Gabriel

    2016-03-01

    Intraoperative contrast-enhanced ultrasound (iCEUS) offers dynamic imaging and provides functional data in real time. However, no standardized protocols or validated quantitative data exist to guide its routine use in neurosurgery. The authors aimed to provide further clinical data on the versatile application of iCEUS through a technical note and illustrative case series. Five patients undergoing craniotomies for suspected tumors were included. iCEUS was performed using a contrast agent composed of lipid shell microspheres enclosing perflutren (octafluoropropane) gas. Perfusion data were acquired through a time-intensity curve analysis protocol obtained using iCEUS prior to biopsy and/or resection of all lesions. Three primary tumors (gemistocytic astrocytoma, glioblastoma multiforme, and meningioma), 1 metastatic lesion (melanoma), and 1 tumefactive demyelinating lesion (multiple sclerosis) were assessed using real-time iCEUS. No intraoperative complications occurred following multiple administrations of contrast agent in all cases. In all neoplastic cases, iCEUS replicated enhancement patterns observed on preoperative Gd-enhanced MRI, facilitated safe tumor debulking by differentiating neoplastic tissue from normal brain parenchyma, and helped identify arterial feeders and draining veins in and around the surgical cavity. Intraoperative CEUS was also useful in guiding a successful intraoperative needle biopsy of a cerebellar tumefactive demyelinating lesion obtained during real-time perfusion analysis. Intraoperative CEUS has potential for safe, real-time, dynamic contrast-based imaging for routine use in neurooncological surgery and image-guided biopsy. Intraoperative CEUS eliminates the effect of anatomical distortions associated with standard neuronavigation and provides quantitative perfusion data in real time, which may hold major implications for intraoperative diagnosis, tissue differentiation, and quantification of extent of resection. Further prospective studies will help standardize the role of iCEUS in neurosurgery.

  5. The expanded role of computers in Space Station Freedom real-time operations

    NASA Technical Reports Server (NTRS)

    Crawford, R. Paul; Cannon, Kathleen V.

    1990-01-01

    The challenges that NASA and its international partners face in their real-time operation of the Space Station Freedom necessitate an increased role on the part of computers. In building the operational concepts concerning the role of the computer, the Space Station program is using lessons learned experience from past programs, knowledge of the needs of future space programs, and technical advances in the computer industry. The computer is expected to contribute most significantly in real-time operations by forming a versatile operating architecture, a responsive operations tool set, and an environment that promotes effective and efficient utilization of Space Station Freedom resources.

  6. Principal Investigator in a Box Technical Description Document. 2.0

    NASA Technical Reports Server (NTRS)

    Groleau, Nick; Frainier, Richard

    1994-01-01

    This document provides a brief overview of the PI-in-a-Box system, which can be used for automatic real-time reaction to incoming data. We will therefore outline the current system's capabilities and limitations, and hint at how best to think about PI-in-a-Box as a tool for real-time analysis and reaction in section two, below. We also believe that the solution to many commercial real-time process problems requires data acquisition and analysis combined with rule-based reasoning and/or an intuitive user interface. We will develop the technology reuse potential in section three. Currently, the system runs only on Apple Computer's Macintosh series.

  7. Common spaceborne multicomputer operating system and development environment

    NASA Technical Reports Server (NTRS)

    Craymer, L. G.; Lewis, B. F.; Hayes, P. J.; Jones, R. L.

    1994-01-01

    A preliminary technical specification for a multicomputer operating system is developed. The operating system is targeted for spaceborne flight missions and provides a broad range of real-time functionality, dynamic remote code-patching capability, and system fault tolerance and long-term survivability features. Dataflow concepts are used for representing application algorithms. Functional features are included to ensure real-time predictability for a class of algorithms which require data-driven execution on an iterative steady state basis. The development environment supports the development of algorithm code, design of control parameters, performance analysis, simulation of real-time dataflow applications, and compiling and downloading of the resulting application.

  8. Ubiquitous health monitoring and real-time cardiac arrhythmias detection: a case study.

    PubMed

    Li, Jian; Zhou, Haiying; Zuo, Decheng; Hou, Kun-Mean; De Vaulx, Christophe

    2014-01-01

    As the symptoms and signs of heart diseases that cause sudden cardiac death, cardiac arrhythmia has attracted great attention. Due to limitations in time and space, traditional approaches to cardiac arrhythmias detection fail to provide a real-time continuous monitoring and testing service applicable in different environmental conditions. Integrated with the latest technologies in ECG (electrocardiograph) analysis and medical care, the pervasive computing technology makes possible the ubiquitous cardiac care services, and thus brings about new technical challenges, especially in the formation of cardiac care architecture and realization of the real-time automatic ECG detection algorithm dedicated to care devices. In this paper, a ubiquitous cardiac care prototype system is presented with its architecture framework well elaborated. This prototype system has been tested and evaluated in all the clinical-/home-/outdoor-care modes with a satisfactory performance in providing real-time continuous cardiac arrhythmias monitoring service unlimitedly adaptable in time and space.

  9. Data, network, and application: technical description of the Utah RODS Winter Olympic Biosurveillance System.

    PubMed Central

    Tsui, Fu-Chiang; Espino, Jeremy U.; Wagner, Michael M.; Gesteland, Per; Ivanov, Oleg; Olszewski, Robert T.; Liu, Zhen; Zeng, Xiaoming; Chapman, Wendy; Wong, Weng Keen; Moore, Andrew

    2002-01-01

    Given the post September 11th climate of possible bioterrorist attacks and the high profile 2002 Winter Olympics in the Salt Lake City, Utah, we challenged ourselves to deploy a computer-based real-time automated biosurveillance system for Utah, the Utah Real-time Outbreak and Disease Surveillance system (Utah RODS), in six weeks using our existing Real-time Outbreak and Disease Surveillance (RODS) architecture. During the Olympics, Utah RODS received real-time HL-7 admission messages from 10 emergency departments and 20 walk-in clinics. It collected free-text chief complaints, categorized them into one of seven prodromes classes using natural language processing, and provided a web interface for real-time display of time series graphs, geographic information system output, outbreak algorithm alerts, and details of the cases. The system detected two possible outbreaks that were dismissed as the natural result of increasing rates of Influenza. Utah RODS allowed us to further understand the complexities underlying the rapid deployment of a RODS-like system. PMID:12463938

  10. Data, network, and application: technical description of the Utah RODS Winter Olympic Biosurveillance System.

    PubMed

    Tsui, Fu-Chiang; Espino, Jeremy U; Wagner, Michael M; Gesteland, Per; Ivanov, Oleg; Olszewski, Robert T; Liu, Zhen; Zeng, Xiaoming; Chapman, Wendy; Wong, Weng Keen; Moore, Andrew

    2002-01-01

    Given the post September 11th climate of possible bioterrorist attacks and the high profile 2002 Winter Olympics in the Salt Lake City, Utah, we challenged ourselves to deploy a computer-based real-time automated biosurveillance system for Utah, the Utah Real-time Outbreak and Disease Surveillance system (Utah RODS), in six weeks using our existing Real-time Outbreak and Disease Surveillance (RODS) architecture. During the Olympics, Utah RODS received real-time HL-7 admission messages from 10 emergency departments and 20 walk-in clinics. It collected free-text chief complaints, categorized them into one of seven prodromes classes using natural language processing, and provided a web interface for real-time display of time series graphs, geographic information system output, outbreak algorithm alerts, and details of the cases. The system detected two possible outbreaks that were dismissed as the natural result of increasing rates of Influenza. Utah RODS allowed us to further understand the complexities underlying the rapid deployment of a RODS-like system.

  11. Nonlinear Real-Time Optical Signal Processing.

    DTIC Science & Technology

    1984-10-01

    I 1.8 IIII III1 1 / U , 0 7 USCIPI Report 1130 E ~C~,OUTfitA N Ivj) UNIVERSITY OF SOUTHERN CALIFORNIA - I FINAL TECHNICAL REPORT April 15, 1981 - June...30, 1984 N NONLINEAR REAL-TIME OPTICAL SIGNAL PROCESSING i E ~ A.A. Sawchuk, Principal Investigator T.C. Strand and A.R. Tanguay. Jr. October 1, 1984...Erter.d) logic system. A computer generated hologram fabricated on an e -beam system serves as a beamsteering interconnection element. A completely

  12. Scientist/AMPS equipment interface study

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.

    1977-01-01

    The principal objective was to determine for each experiment how the operating procedures and modes of equipment onboard shuttle can be managed in real-time or near-real-time to enhance the quality of results. As part of this determination the data and display devices that a man will need for real-time management are defined. The secondary objectives, as listed in the RFQ and technical proposal, were to: (1) determine what quantities are to be measured (2) determine permissible background levels (3) decide in what portions of space measurements are to be made (4) estimate bit rates (5) establish time-lines for operating the experiments on a mission or set of missions and (6) determine the minimum set of hardware needed for real-time display. Experiment descriptions and requirements were written. The requirements of the various experiments are combined and a minimal set of joint requirements are defined.

  13. Real Time Conference 2016 Overview

    NASA Astrophysics Data System (ADS)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  14. Real-Time Tropospheric Delay Estimation using IGS Products

    NASA Astrophysics Data System (ADS)

    Stürze, Andrea; Liu, Sha; Söhne, Wolfgang

    2014-05-01

    The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it opens the possibility to evaluate the potential of troposphere parameter determination in real-time and its effect to Precise Point Positioning. Starting with an offline investigation of the influence of different RTS products and a priori troposphere models the configuration delivering the best results is used for a real-time processing of the GREF (German Geodetic Reference) network over a suitable period of time. The evaluation of the derived ZTD parameters and station heights is done with respect to well proven GREF, EUREF, IGS, and E-GVAP analysis results. Keywords: GNSS, Zenith Tropospheric Delay, Real-time Precise Point Positioning

  15. A DICOM Based Collaborative Platform for Real-Time Medical Teleconsultation on Medical Images.

    PubMed

    Maglogiannis, Ilias; Andrikos, Christos; Rassias, Georgios; Tsanakas, Panayiotis

    2017-01-01

    The paper deals with the design of a Web-based platform for real-time medical teleconsultation on medical images. The proposed platform combines the principles of heterogeneous Workflow Management Systems (WfMSs), the peer-to-peer networking architecture and the SPA (Single-Page Application) concept, to facilitate medical collaboration among healthcare professionals geographically distributed. The presented work leverages state-of-the-art features of the web to support peer-to-peer communication using the WebRTC (Web Real Time Communication) protocol and client-side data processing for creating an integrated collaboration environment. The paper discusses the technical details of implementation and presents the operation of the platform in practice along with some initial results.

  16. Speedometer app videos to provide real-world velocity-time graph data 1: rail travel

    NASA Astrophysics Data System (ADS)

    King, Julien

    2018-03-01

    The use of modern rail travel as a source of real-life velocity-time data to aid in the teaching of velocity and acceleration is discussed. A technique for using GPS speedometer apps to produce videos of velocity and time figures during a rail journey is described. The technique is applied to a UK rail journey, demonstrating how students can use its results to produce a velocity-time graph from which acceleration and deceleration figures can be calculated. These are compared with theoretical maximum figures, calculated from the train’s technical specification.

  17. Expert Systems on Multiprocessor Architectures. Volume 3. Technical Reports

    DTIC Science & Technology

    1991-06-01

    choice of load balancing vs. load sharing 1141. While load balancing strives to keep all sites equally loaded, load sharing merely tries to prevent ...unnecessary idleness. Loo. balancing is appropriate to object- oriented real- time systems because * real-time systems ne ,l to prevent long waits for...oetavir ConClass siy51cr Iz a n ubjeU rephitation ’-enare ir order wo prevent a partic=Lar abiec:;ram heing (ntrlu ~lel Ar iic]en:f etautaan ire chanw

  18. The image acquisition system design of floor grinder

    NASA Astrophysics Data System (ADS)

    Wang, Yang-jiang; Liu, Wei; Liu, Hui-qin

    2018-01-01

    Based on linear CCD, high resolution image real-time acquisition system serves as designing a set of image acquisition system for floor grinder through the calculation of optical imaging system. The entire image acquisition system can collect images of ground before and after the work of the floor grinder, and the data is transmitted through the Bluetooth system to the computer and compared to realize real-time monitoring of its working condition. The system provides technical support for the design of unmanned ground grinders.

  19. Optimization of active distribution networks: Design and analysis of significative case studies for enabling control actions of real infrastructure

    NASA Astrophysics Data System (ADS)

    Moneta, Diana; Mora, Paolo; Viganò, Giacomo; Alimonti, Gianluca

    2014-12-01

    The diffusion of Distributed Generation (DG) based on Renewable Energy Sources (RES) requires new strategies to ensure reliable and economic operation of the distribution networks and to support the diffusion of DG itself. An advanced algorithm (DISCoVER - DIStribution Company VoltagE Regulator) is being developed to optimize the operation of active network by means of an advanced voltage control based on several regulations. Starting from forecasted load and generation, real on-field measurements, technical constraints and costs for each resource, the algorithm generates for each time period a set of commands for controllable resources that guarantees achievement of technical goals minimizing the overall cost. Before integrating the controller into the telecontrol system of the real networks, and in order to validate the proper behaviour of the algorithm and to identify possible critical conditions, a complete simulation phase has started. The first step is concerning the definition of a wide range of "case studies", that are the combination of network topology, technical constraints and targets, load and generation profiles and "costs" of resources that define a valid context to test the algorithm, with particular focus on battery and RES management. First results achieved from simulation activity on test networks (based on real MV grids) and actual battery characteristics are given, together with prospective performance on real case applications.

  20. Plug and Play web-based visualization of mobile air monitoring data (Abstract)

    EPA Science Inventory

    EPA’s Real-Time Geospatial (RETIGO) Data Viewer web-based tool is a new program reducing the technical barrier to visualize and understand geospatial air data time series collected using wearable, bicycle-mounted, or vehicle-mounted air sensors. The RETIGO tool, with anticipated...

  1. Head movement compensation in real-time magnetoencephalographic recordings.

    PubMed

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.

  2. The Real-Time Monitoring Service Platform for Land Supervision Based on Cloud Integration

    NASA Astrophysics Data System (ADS)

    Sun, J.; Mao, M.; Xiang, H.; Wang, G.; Liang, Y.

    2018-04-01

    Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.

  3. Handheld real-time volumetric imaging of the spine: technology development.

    PubMed

    Tiouririne, Mohamed; Nguyen, Sarah; Hossack, John A; Owen, Kevin; William Mauldin, F

    2014-03-01

    Technical difficulties, poor image quality and reliance on pattern identifications represent some of the drawbacks of two-dimensional ultrasound imaging of spinal bone anatomy. To overcome these limitations, this study sought to develop real-time volumetric imaging of the spine using a portable handheld device. The device measured 19.2 cm × 9.2 cm × 9.0 cm and imaged at 5 MHz centre frequency. 2D imaging under conventional ultrasound and volumetric (3D) imaging in real time was achieved and verified by inspection using a custom spine phantom. Further device performance was assessed and revealed a 75-min battery life and an average frame rate of 17.7 Hz in volumetric imaging mode. The results suggest that real-time volumetric imaging of the spine is a feasible technique for more intuitive visualization of the spine. These results may have important ramifications for a large array of neuraxial procedures.

  4. Design of real-time voice over internet protocol system under bandwidth network

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Gong, Lina

    2017-04-01

    With the increasing bandwidth of the network and network convergence accelerating, VoIP means of communication across the network is becoming increasingly popular phenomenon. The real-time identification and analysis for VOIP flow over backbone network become the urgent needs and research hotspot of network operations management. Based on this, the paper proposes a VoIP business management system over backbone network. The system first filters VoIP data stream over backbone network and further resolves the call signaling information and media voice. The system can also be able to design appropriate rules to complete real-time reduction and presentation of specific categories of calls. Experimental results show that the system can parse and process real-time backbone of the VoIP call, and the results are presented accurately in the management interface, VoIP-based network traffic management and maintenance provide the necessary technical support.

  5. Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology.

    PubMed

    Brewin, James; Tang, Jessica; Dasgupta, Prokar; Khan, Muhammad S; Ahmed, Kamran; Bello, Fernando; Kneebone, Roger; Jaye, Peter

    2015-07-01

    To evaluate the face, content and construct validity of the distributed simulation (DS) environment for technical and non-technical skills training in endourology. To evaluate the educational impact of DS for urology training. DS offers a portable, low-cost simulated operating room environment that can be set up in any open space. A prospective mixed methods design using established validation methodology was conducted in this simulated environment with 10 experienced and 10 trainee urologists. All participants performed a simulated prostate resection in the DS environment. Outcome measures included surveys to evaluate the DS, as well as comparative analyses of experienced and trainee urologist's performance using real-time and 'blinded' video analysis and validated performance metrics. Non-parametric statistical methods were used to compare differences between groups. The DS environment demonstrated face, content and construct validity for both non-technical and technical skills. Kirkpatrick level 1 evidence for the educational impact of the DS environment was shown. Further studies are needed to evaluate the effect of simulated operating room training on real operating room performance. This study has shown the validity of the DS environment for non-technical, as well as technical skills training. DS-based simulation appears to be a valuable addition to traditional classroom-based simulation training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  6. Technical aspects of a demonstration tape for three-dimensional sound displays

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1990-01-01

    This document was developed to accompany an audio cassette that demonstrates work in three-dimensional auditory displays, developed at the Ames Research Center Aerospace Human Factors Division. It provides a text version of the audio material, and covers the theoretical and technical issues of spatial auditory displays in greater depth than on the cassette. The technical procedures used in the production of the audio demonstration are documented, including the methods for simulating rotorcraft radio communication, synthesizing auditory icons, and using the Convolvotron, a real-time spatialization device.

  7. Evaluation of Copan FLOQSwab for the molecular detection of Chlamydia trachomatis by Abbott RealTime CT PCR.

    PubMed

    Coorevits, L; Vanscheeuwijck, C; Traen, A; Bingé, L; Ryckaert, I; Padalko, E

    2015-12-01

    We evaluated Copan FLOQSwabs next to Abbott swabs for the detection of Chlamydia trachomatis (CT) by Abbott RealTime PCR. We collected 1062 paired swabs from female sex workers. The study was divided in two arms, according to the order of swab collection. If the Abbott swab was collected first, 501 couples were concordant and two discordant (Abbott negative and Copan positive). If the Copan swab was collected first, 537 couples were concordant and 10 discordant (eight Abbott negative and Copan positive and two Abbott positive and Copan negative). All discordant samples contained low levels of C. trachomatis. Technical issues lead to retesting of 64 Copan and 21 Abbott swabs. Our results show that Copan FLOQSwabs can be used interchangeably with Abbott swabs. While appearing to have an advantage in detecting more positive samples, the use of Copan swabs led to a higher retesting rate due to technical errors.

  8. Definition of an auxiliary processor dedicated to real-time operating system kernels

    NASA Technical Reports Server (NTRS)

    Halang, Wolfgang A.

    1988-01-01

    In order to increase the efficiency of process control data processing, it is necessary to enhance the productivity of real time high level languages and to automate the task administration, because presently 60 percent or more of the applications are still programmed in assembly languages. This may be achieved by migrating apt functions for the support of process control oriented languages into the hardware, i.e., by new architectures. Whereas numerous high level languages have already been defined or realized, there are no investigations yet on hardware assisted implementation of real time features. The requirements to be fulfilled by languages and operating systems in hard real time environment are summarized. A comparison of the most prominent languages, viz. Ada, HAL/S, LTR, Pearl, as well as the real time extensions of FORTRAN and PL/1, reveals how existing languages meet these demands and which features still need to be incorporated to enable the development of reliable software with predictable program behavior, thus making it possible to carry out a technical safety approval. Accordingly, Pearl proved to be the closest match to the mentioned requirements.

  9. Influence of characteristics of time series on short-term forecasting error parameter changes in real time

    NASA Astrophysics Data System (ADS)

    Klevtsov, S. I.

    2018-05-01

    The impact of physical factors, such as temperature and others, leads to a change in the parameters of the technical object. Monitoring the change of parameters is necessary to prevent a dangerous situation. The control is carried out in real time. To predict the change in the parameter, a time series is used in this paper. Forecasting allows one to determine the possibility of a dangerous change in a parameter before the moment when this change occurs. The control system in this case has more time to prevent a dangerous situation. A simple time series was chosen. In this case, the algorithm is simple. The algorithm is executed in the microprocessor module in the background. The efficiency of using the time series is affected by its characteristics, which must be adjusted. In the work, the influence of these characteristics on the error of prediction of the controlled parameter was studied. This takes into account the behavior of the parameter. The values of the forecast lag are determined. The results of the research, in the case of their use, will improve the efficiency of monitoring the technical object during its operation.

  10. Validation of Prototype Continuous Real-Time Vital Signs Video Analytics Monitoring System CCATT Viewer

    DTIC Science & Technology

    2018-01-26

    attitude toward the use of the viewer. Clinicians may have different receptiveness to the new tool and various way to manage information during rounding...any patented invention that may relate to them. Qualified requestors may obtain copies of this report from the Defense Technical Information Center...This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s

  11. Lessons learned in control center technologies and non-technologies

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.

    1991-01-01

    Information is given in viewgraph form on the Solar Mesosphere Explorer (SME) Control Center and the Oculometer and Automated Space Interface System (OASIS). Topics covered include SME mission operations functions; technical and non-technical features of the SME control center; general tasks and objects within the Space Station Freedom (SSF) ground system nodes; OASIS-Real Time for the control and monitoring of of space systems and subsystems; and OASIS planning, scheduling, and PC architecture.

  12. First steps towards real-time radiography at the NECTAR facility

    NASA Astrophysics Data System (ADS)

    Bücherl, T.; Wagner, F. M.; v. Gostomski, Ch. Lierse

    2009-06-01

    The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm -2 s -1 (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.

  13. Guide for Preparation of Waterways Experiment Station Technical Information Reports

    DTIC Science & Technology

    1993-01-01

    Printing .......................... F1 Appendix G: Index .................................... GI SF 298 List of Figures Figure 1. Distribution statements...dimensional R rainwater riverside Ramm river wall Range 5 roadbed rattail rockbound (adj) real-time rockfall (n) reentrants rock-fill (adj

  14. Electromagnetic-Tracked Biopsy under Ultrasound Guidance: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakime, Antoine, E-mail: thakime@yahoo.com; Deschamps, Frederic; Marques De Carvalho, Enio Garcia

    2012-08-15

    Purpose: This study was designed to evaluate the accuracy and safety of electromagnetic needle tracking for sonographically guided percutaneous liver biopsies. Methods: We performed 23 consecutive ultrasound-guided liver biopsies for liver nodules with an electromagnetic tracking of the needle. A sensor placed at the tip of a sterile stylet (18G) inserted in a coaxial guiding trocar (16G) used for biopsy was localized in real time relative to the ultrasound imaging plane, thanks to an electromagnetic transmitter and two sensors on the ultrasound probe. This allows for electronic display of the needle tip location and the future needle path overlaid onmore » the real-time ultrasound image. Distance between needle tip position and its electronic display, number of needle punctures, number of needle pull backs for redirection, technical success (needle positioned in the target), diagnostic success (correct histopathology result), procedure time, and complication were evaluated according to lesion sizes, depth and location, operator experience, and 'in-plane' or 'out-of-plane' needle approach. Results: Electronic display was always within 2 mm from the real position of the needle tip. The technical success rate was 100%. A single needle puncture without repuncture was used in all patients. Pull backs were necessary in six patients (26%) to obtain correct needle placement. The overall diagnostic success rate was 91%. The overall true-positive, true-negative, false-negative, and failure rates of the biopsy were 100% (19/19) 100% (2/2), 0% (0/23), and 9% (2/23). The median total procedure time from the skin puncture to the needle in the target was 30 sec (from 5-60 s). Lesion depth and localizations, operator experience, in-plane or out-of-plane approach did not affect significantly the technical, diagnostic success, or procedure time. Even when the tumor size decreased, the procedure time did not increase. Conclusions: Electromagnetic-tracked biopsy is accurate to determine needle tip position and allows fast and accurate needle placement in targeted liver nodules.« less

  15. Agreement Rate of Rapid Urease Test, Conventional PCR, and Scorpion Real-Time PCR in Detecting Helicobacter Pylori from Tonsillar Samples of Patients with Chronic Tonsillitis

    PubMed Central

    Najafipour, Reza; Farivar, Taghi Naserpour; Pahlevan, Ali Akbar; Johari, Pouran; Safdarian, Farshid; Asefzadeh, Mina

    2012-01-01

    Background: Helicobacter pylori is capable of inducing systemic inflammatory reactions through immunological processes. There are several methods to identify the presence of H. pylori in clinical samples including rapid urease test (RUT), conventional polymerase chain reaction (PCR), and the Scorpion real-time PCR. Aim: The aim of the present study is to compare the agreement rate of these tests in identifying H. pylori in tonsillar biopsy specimens collected from patients with chronic tonsillitis. Materials and Methods: A total of 103 tonsil biopsy samples from patients with clinical signs of chronic tonsillitis were examined with RUT, PCR, and Scorpion real-time PCR. The degree of agreement between the three tests was later calculated. Results: There was a poor degree of agreement between RUT and PCR and also RUT and Scorpion real-time PCR (Kappa=0.269 and 0.249, respectively). In contrast with RUT, there was a strong degree of agreement between PCR and Scorpion real-time PCR (Kappa=0.970). Conclusion: The presence of a strong agreement between the Scorpion real-time PCR and PCR as well as its technical advantage over the conventional PCR assay, made the Scorpion real-time PCR an appropriate laboratory test to investigate the presence of H. pylori in tonsillar biopsy specimens in patients suffering from chronic tonsillitis. PMID:22754245

  16. Real-time magnetic resonance imaging of cardiac function and flow—recent progress

    PubMed Central

    Zhang, Shuo; Joseph, Arun A.; Voit, Dirk; Schaetz, Sebastian; Merboldt, Klaus-Dietmar; Unterberg-Buchwald, Christina; Hennemuth, Anja; Lotz, Joachim

    2014-01-01

    Cardiac structure, function and flow are most commonly studied by ultrasound, X-ray and magnetic resonance imaging (MRI) techniques. However, cardiovascular MRI is hitherto limited to electrocardiogram (ECG)-synchronized acquisitions and therefore often results in compromised quality for patients with arrhythmias or inabilities to comply with requested protocols—especially with breath-holding. Recent advances in the development of novel real-time MRI techniques now offer dynamic imaging of the heart and major vessels with high spatial and temporal resolution, so that examinations may be performed without the need for ECG synchronization and during free breathing. This article provides an overview of technical achievements, physiological validations, preliminary patient studies and translational aspects for a future clinical scenario of cardiovascular MRI in real time. PMID:25392819

  17. Real-time optically sectioned wide-field microscopy employing structured light illumination and a CMOS detector

    NASA Astrophysics Data System (ADS)

    Mitic, Jelena; Anhut, Tiemo; Serov, Alexandre; Lasser, Theo; Bourquin, Stephane

    2003-07-01

    Real-time optically sectioned microscopy is demonstrated using an AC-sensitive detection concept realized with smart CMOS image sensor and structured light illumination by a continuously moving periodic pattern. We describe two different detection systems based on CMOS image sensors for the detection and on-chip processing of the sectioned images in real time. A region-of-interest is sampled at high frame rate. The demodulated signal delivered by the detector corresponds to the depth discriminated image of the sample. The measured FWHM of the axial response depends on the spatial frequency of the projected grid illumination and is in the μm-range. The effect of using broadband incoherent illumination is discussed. The performance of these systems is demonstrated by imaging technical as well as biological samples.

  18. Novel techniques of real-time blood flow and functional mapping: technical note.

    PubMed

    Kamada, Kyousuke; Ogawa, Hiroshi; Saito, Masato; Tamura, Yukie; Anei, Ryogo; Kapeller, Christoph; Hayashi, Hideaki; Prueckl, Robert; Guger, Christoph

    2014-01-01

    There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies.

  19. Novel Techniques of Real-time Blood Flow and Functional Mapping: Technical Note

    PubMed Central

    KAMADA, Kyousuke; OGAWA, Hiroshi; SAITO, Masato; TAMURA, Yukie; ANEI, Ryogo; KAPELLER, Christoph; HAYASHI, Hideaki; PRUECKL, Robert; GUGER, Christoph

    2014-01-01

    There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies. PMID:25263624

  20. The new version 2.12 of BKG Ntrip Client (BNC)

    NASA Astrophysics Data System (ADS)

    Stürze, Andrea; Mervart, Leos; Weber, Georg; Rülke, Axel; Wiesensarter, Erwin; Neumaier, Peter

    2016-04-01

    A new version of the BKG Ntrip Client (BNC) has been released. Originally developed in cooperation of the Federal Agency for Cartography and Geodesy (BKG) and the Czech Technical University (CTU) with a focus on multi-stream real-time access to GPS observations, the software has once again been substantially extended. Promoting Open Standards as recommended by the Radio Technical Commission for Maritime Services (RTCM) remains the prime subject. Beside its Graphical User Interface (GUI), the real-time software for Windows, Linux, Mac, and Linux platforms now comes with complete Command Line Interface (CLI) and considerable post processing functionality. RINEX Version 3 file editing & Quality Check (QC) with full support of Galileo, BeiDou, and SBAS - besides GPS and GLONASS - is part of the new features. Comparison of satellite orbit/clock files in SP3 format is another fresh ability of BNC. Simultaneous multi-station Precise Point Positioning (PPP) for real-time displacement-monitoring of entire reference station networks is one more recent addition to BNC. Implemented RTCM messages for PPP (under development) comprise satellite orbit and clock corrections, code and phase observation biases, and the Vertical Total Electron Content (VTEC) of the ionosphere. The well established, mature codebase is mostly written in C++ language. Its publication under GNU GPL is thought to be well-suited for test, validation and demonstration of new approaches in precise real-time satellite navigation when IP streaming is involved. The poster highlights BNC features which are new in version 2.12 and beneficial to IAG institutions and services such as IGS/RT-IGS and to the interested public in general.

  1. Training and Maintaining System-Wide Reliability in Outcome Management.

    PubMed

    Barwick, Melanie A; Urajnik, Diana J; Moore, Julia E

    2014-01-01

    The Child and Adolescent Functional Assessment Scale (CAFAS) is widely used for outcome management, for providing real time client and program level data, and the monitoring of evidence-based practices. Methods of reliability training and the assessment of rater drift are critical for service decision-making within organizations and systems of care. We assessed two approaches for CAFAS training: external technical assistance and internal technical assistance. To this end, we sampled 315 practitioners trained by external technical assistance approach from 2,344 Ontario practitioners who had achieved reliability on the CAFAS. To assess the internal technical assistance approach as a reliable alternative training method, 140 practitioners trained internally were selected from the same pool of certified raters. Reliabilities were high for both practitioners trained by external technical assistance and internal technical assistance approaches (.909-.995, .915-.997, respectively). 1 and 3-year estimates showed some drift on several scales. High and consistent reliabilities over time and training method has implications for CAFAS training of behavioral health care practitioners, and the maintenance of CAFAS as a global outcome management tool in systems of care.

  2. Diving into Real World Challenges

    ERIC Educational Resources Information Center

    Saldana, Matt; Rodden, Leslie

    2012-01-01

    In this article, the authors discuss how educators can engage students in real world learning using their academic knowledge and technical skills. They describe how school districts have discovered that the world of robotics can help students use technical skills to solve simulated problems found in the real world, while understanding the…

  3. Key technology research of HILS based on real-time operating system

    NASA Astrophysics Data System (ADS)

    Wang, Fankai; Lu, Huiming; Liu, Che

    2018-03-01

    In order to solve the problems that the long development cycle of traditional simulation and digital simulation doesn't have the characteristics of real time, this paper designed a HILS(Hardware In the Loop Simulation) system based on the real-time operating platform xPC. This system solved the communication problems between HMI and Simulink models through the MATLAB engine interface, and realized the functions of system setting, offline simulation, model compiling and downloading, etc. Using xPC application interface and integrating the TeeChart ActiveX chart component to realize the monitoring function of real-time target application; Each functional block in the system is encapsulated in the form of DLL, and the data interaction between modules was realized by MySQL database technology. When the HILS system runs, search the address of the online xPC target by means of the Ping command, to establish the Tcp/IP communication between the two machines. The technical effectiveness of the developed system is verified through the typical power station control system.

  4. Point Positioning Service for Natural Hazard Monitoring

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    2014-12-01

    In an effort to improve natural hazard monitoring, JPL has invested in updating and enlarging its global real-time GNSS tracking network, and has launched a unique service - real-time precise positioning for natural hazard monitoring, entitled GREAT Alert (GNSS Real-Time Earthquake and Tsunami Alert). GREAT Alert leverages the full technological and operational capability of the JPL's Global Differential GPS System [www.gdgps.net] to offer owners of real-time dual-frequency GNSS receivers: Sub-5 cm (3D RMS) real-time, absolute positioning in ITRF08, regardless of location Under 5 seconds turnaround time Full covariance information Estimates of ancillary parameters (such as troposphere) optionally provided This service enables GNSS networks operators to instantly have access to the most accurate and reliable real-time positioning solutions for their sites, and also to the hundreds of participating sites globally, assuring inter-consistency and uniformity across all solutions. Local authorities with limited technical and financial resources can now access to the best technology, and share environmental data to the benefit of the entire pacific region. We will describe the specialized precise point positioning techniques employed by the GREAT Alert service optimized for natural hazard monitoring, and in particular Earthquake monitoring. We address three fundamental aspects of these applications: 1) small and infrequent motion, 2) the availability of data at a central location, and 3) the need for refined solutions at several time scales

  5. Final contract report : real-time EMS helicopter video feasibility study

    DOT National Transportation Integrated Search

    2001-11-01

    The purpose of this project was to determine whether the use of ground-based video imaging by local rescue squad personnel and Pegasus medical staff is technically and organizationally feasible as a tool to improve pre-hospital care provided to crash...

  6. Combined use of real-time PCR and nested sequence-based typing in survey of human Legionella infection.

    PubMed

    Qin, T; Zhou, H; Ren, H; Shi, W; Jin, H; Jiang, X; Xu, Y; Zhou, M; Li, J; Wang, J; Shao, Z; Xu, X

    2016-07-01

    Legionnaires' disease (LD) is a globally distributed systemic infectious disease. The burden of LD in many regions is still unclear, especially in Asian countries including China. A survey of Legionella infection using real-time PCR and nested sequence-based typing (SBT) was performed in two hospitals in Shanghai, China. A total of 265 bronchoalveolar lavage fluid (BALF) specimens were collected from hospital A between January 2012 and December 2013, and 359 sputum specimens were collected from hospital B throughout 2012. A total of 71 specimens were positive for Legionella according to real-time PCR focusing on the 5S rRNA gene. Seventy of these specimens were identified as Legionella pneumophila as a result of real-time PCR amplification of the dotA gene. Results of nested SBT revealed high genetic polymorphism in these L. pneumophila and ST1 was the predominant sequence type. These data revealed that the burden of LD in China is much greater than that recognized previously, and real-time PCR may be a suitable monitoring technology for LD in large sample surveys in regions lacking the economic and technical resources to perform other methods, such as urinary antigen tests and culture methods.

  7. Intraoperative Clinical Decision Support for Anesthesia: A Narrative Review of Available Systems.

    PubMed

    Nair, Bala G; Gabel, Eilon; Hofer, Ira; Schwid, Howard A; Cannesson, Maxime

    2017-02-01

    With increasing adoption of anesthesia information management systems (AIMS), there is growing interest in utilizing AIMS data for intraoperative clinical decision support (CDS). CDS for anesthesia has the potential for improving quality of care, patient safety, billing, and compliance. Intraoperative CDS can range from passive and post hoc systems to active real-time systems that can detect ongoing clinical issues and deviations from best practice care. Real-time CDS holds the most promise because real-time alerts and guidance can drive provider behavior toward evidence-based standardized care during the ongoing case. In this review, we describe the different types of intraoperative CDS systems with specific emphasis on real-time systems. The technical considerations in developing and implementing real-time CDS are systematically covered. This includes the functional modules of a CDS system, development and execution of decision rules, and modalities to alert anesthesia providers concerning clinical issues. We also describe the regulatory aspects that affect development, implementation, and use of intraoperative CDS. Methods and measures to assess the effectiveness of intraoperative CDS are discussed. Last, we outline areas of future development of intraoperative CDS, particularly the possibility of providing predictive and prescriptive decision support.

  8. Gamma-ray imaging system for real-time measurements in nuclear waste characterisation

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Albiol Colomer, F.; Corbi Bellot, A.; Domingo-Pardo, C.; Leganés Nieto, J. L.; Agramunt Ros, J.; Contreras, P.; Monserrate, M.; Olleros Rodríguez, P.; Pérez Magán, D. L.

    2018-03-01

    A compact, portable and large field-of-view gamma camera that is able to identify, locate and quantify gamma-ray emitting radioisotopes in real-time has been developed. The device delivers spectroscopic and imaging capabilities that enable its use it in a variety of nuclear waste characterisation scenarios, such as radioactivity monitoring in nuclear power plants and more specifically for the decommissioning of nuclear facilities. The technical development of this apparatus and some examples of its application in field measurements are reported in this article. The performance of the presented gamma-camera is also benchmarked against other conventional techniques.

  9. STS-114 Engine Cut-off Sensor Anomaly Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.; Kichak, Robert A.; Ungar, Eugene K.; Cherney, Robert; Rickman, Steve L.

    2009-01-01

    The NESC consultation team participated in real-time troubleshooting of the Main Propulsion System (MPS) Engine Cutoff (ECO) sensor system failures during STS-114 launch countdown. The team assisted with External Tank (ET) thermal and ECO Point Sensor Box (PSB) circuit analyses, and made real-time inputs to the Space Shuttle Program (SSP) problem resolution teams. Several long-term recommendations resulted. One recommendation was to conduct cryogenic tests of the ECO sensors to validate, or disprove, the theory that variations in circuit impedance due to cryogenic effects on swaged connections within the sensor were the root cause of STS-114 failures.

  10. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A., Jr.

    1989-01-01

    Advances in very large-scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible and potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for a DPCM-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the CODEC are described, and performance results are provided.

  11. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A.

    1991-01-01

    Advances in very large scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible an potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for DPCM (differential pulse code midulation)-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the codec are described, and performance results are provided.

  12. Real-Time Adaptive Control of Mixing in a Plane Shear Layer

    DTIC Science & Technology

    1992-01-01

    ODAT1 3*as ypt AND OAIU COVusa3 Ja 192A6ua Technical 15 Jan 91 - 14 Jan 𔃼 rrlTLAND SUR0(U) T a 192= Pij. m F N IEu M Real-Time Adaptive Control of...0465 Submitted to Air Force Office of Scientific Research Boiling Air Force Base, Building 410 Washington, D.C. 20332 Submitted by A. Glezer Acc&:io n F1...t ibu_:ion i ... ..... ... . Aw ilfbility Cc.C’ Dist Spec I A-1 92-05643 92 1 3a 12 TABLE OF CONTENTS IN TRO D U CTIO N

  13. Design and application of a web-based real-time personal PM2.5 exposure monitoring system.

    PubMed

    Sun, Qinghua; Zhuang, Jia; Du, Yanjun; Xu, Dandan; Li, Tiantian

    2018-06-15

    Growing demand from public health research for conduct large-scale epidemiological studies to explore health effect of PM 2.5 was well-documented. To address this need, we design a web-based real-time personal PM 2.5 exposure monitoring system (RPPM2.5 system) which can help researcher to get big data of personal PM 2.5 exposure with low-cost, low labor requirement, and low operating technical requirements. RPPM2.5 system can provide relative accurate real-time personal exposure data for individuals, researches, and decision maker. And this system has been used in a survey of PM 2.5 personal exposure level conducted in 5 cities of China and has provided mass of valuable data for epidemiological research. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The Development of Dispatcher Training Simulator in a Thermal Energy Generation System

    NASA Astrophysics Data System (ADS)

    Hakim, D. L.; Abdullah, A. G.; Mulyadi, Y.; Hasan, B.

    2018-01-01

    A dispatcher training simulator (DTS) is a real-time Human Machine Interface (HMI)-based control tool that is able to visualize industrial control system processes. The present study was aimed at developing a simulator tool for boilers in a thermal power station. The DTS prototype was designed using technical data of thermal power station boilers in Indonesia. It was then designed and implemented in Wonderware Intouch 10. The resulting simulator came with component drawing, animation, control display, alarm system, real-time trend, historical trend. This application used 26 tagnames and was equipped with a security system. The test showed that the principles of real-time control worked well. It is expected that this research could significantly contribute to the development of thermal power station, particularly in terms of its application as a training simulator for beginning dispatchers.

  15. Real-Time Workload Monitoring: Improving Cognitive Process Models

    DTIC Science & Technology

    2010-10-01

    Research or comparable systems with similar technical properties having been made available on the market by now. Remote sensors lack the required visual...questionnaire. This includes age, gender, alcohol and nicotine consumption, visual status, sleep during the last three days and last night, sportive

  16. Seizing the Future: How Ohio's Career-Technical Education Programs Fuse Academic Rigor and Real-World Experiences to Prepare Students for College and Careers

    ERIC Educational Resources Information Center

    Guarino, Heidi; Yoder, Shaun

    2015-01-01

    "Seizing the Future: How Ohio's Career and Technical Education Programs Fuse Academic Rigor and Real-World Experiences to Prepare Students for College and Work," demonstrates Ohio's progress in developing strong policies for career and technical education (CTE) programs to promote rigor, including college- and career-ready graduation…

  17. Algorithm for real-time detection of signal patterns using phase synchrony: an application to an electrode array

    NASA Astrophysics Data System (ADS)

    Sadeghi, Saman; MacKay, William A.; van Dam, R. Michael; Thompson, Michael

    2011-02-01

    Real-time analysis of multi-channel spatio-temporal sensor data presents a considerable technical challenge for a number of applications. For example, in brain-computer interfaces, signal patterns originating on a time-dependent basis from an array of electrodes on the scalp (i.e. electroencephalography) must be analyzed in real time to recognize mental states and translate these to commands which control operations in a machine. In this paper we describe a new technique for recognition of spatio-temporal patterns based on performing online discrimination of time-resolved events through the use of correlation of phase dynamics between various channels in a multi-channel system. The algorithm extracts unique sensor signature patterns associated with each event during a training period and ranks importance of sensor pairs in order to distinguish between time-resolved stimuli to which the system may be exposed during real-time operation. We apply the algorithm to electroencephalographic signals obtained from subjects tested in the neurophysiology laboratories at the University of Toronto. The extension of this algorithm for rapid detection of patterns in other sensing applications, including chemical identification via chemical or bio-chemical sensor arrays, is also discussed.

  18. Technical improvements for the dynamic measurement of general scour and landslides

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Su, Chih Chiang

    2017-04-01

    Disasters occurring near riverbeds, such as landslides, earth slides, debris flow, and general scour, are easily caused by flooding from typhoons. The occurrence of each type of disaster involves a process, so if a disaster event can be monitored in real time, hazards can be predicted, thereby enabling early warnings that could reduce the degree of loss engendered by the disaster. The study of technical improvements for the dynamic measurement of general scour and landslides could help to release these early warnings. In this study, improved wireless tracers were set up on site to ensure the feasibility of the improved measurement technology. A wireless tracer signal transmission system was simultaneously set up to avoid danger to surveyors caused by them having to be on site to take measurements. In order to understand the real-time dynamic riverbed scouring situation, after the flow path of the river was confirmed, the sites for riverbed scouring observation were established at the P30 pier of the Dajia River Bridge of National Highway No. 3, and approximately 100 m both upstream and downstream (for a total of three sites). A rainy event that caused riverbed erosion occurred in May 2015, and subsequently, Typhoons Soudelor, Goni, and Dujuan caused further erosion in the observed area. The results of the observations of several flood events revealed that wireless tracers can reflect the change in riverbed scour depth caused by typhoons and flooding in real time. The wireless tracer technique can be applied to real-time dynamic scouring observation of rivers, and these improvements in measurement technology could be helpful in preventing landslides in the future.

  19. Adaptive Image Processing Methods for Improving Contaminant Detection Accuracy on Poultry Carcasses

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract A real-time multispectral imaging system has demonstrated a science-based tool for fecal and ingesta contaminant detection during poultry processing. In order to implement this imaging system at commercial poultry processing industry, the false positives must be removed. For doi...

  20. Final technical report for ITS for voluntary emission reduction : an ITS operational test using real-time vehicle emissions detection

    DOT National Transportation Integrated Search

    1998-05-01

    The Smart Sign project has successfully demonstrated the merging of two separate technological disciplines of highway messaging and on-road vehicle emissions sensing into an advanced ITS public information system. This operational test has demonstrat...

  1. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  2. Reducing measurement errors during functional capacity tests in elders.

    PubMed

    da Silva, Mariane Eichendorf; Orssatto, Lucas Bet da Rosa; Bezerra, Ewertton de Souza; Silva, Diego Augusto Santos; Moura, Bruno Monteiro de; Diefenthaeler, Fernando; Freitas, Cíntia de la Rocha

    2018-06-01

    Accuracy is essential to the validity of functional capacity measurements. To evaluate the error of measurement of functional capacity tests for elders and suggest the use of the technical error of measurement and credibility coefficient. Twenty elders (65.8 ± 4.5 years) completed six functional capacity tests that were simultaneously filmed and timed by four evaluators by means of a chronometer. A fifth evaluator timed the tests by analyzing the videos (reference data). The means of most evaluators for most tests were different from the reference (p < 0.05), except for two evaluators for two different tests. There were different technical error of measurement between tests and evaluators. The Bland-Altman test showed difference in the concordance of the results between methods. Short duration tests showed higher technical error of measurement than longer tests. In summary, tests timed by a chronometer underestimate the real results of the functional capacity. Difference between evaluators' reaction time and perception to determine the start and the end of the tests would justify the errors of measurement. Calculation of the technical error of measurement or the use of the camera can increase data validity.

  3. Characteristic Functional of a Probability Measure Absolutely Continuous with Respect to a Gaussian Radon Measure

    DTIC Science & Technology

    1984-08-01

    12. PERSONAL AUTHORISI Hiroshi Sato 13* TYPE OF REPORT TECHNICAL 13b. TIME COVERED PROM TO 14. OATE OF REPORT (Yr. Mo., Day) Aug. 1984...nectuary and identify by bloc* number) Let p and p.. be probability measures on a locally convex Hausdorff real topological linear space E. C.R. Baker [1...THIS PAGE ABSTRACT Let y and y1 be probability measures on a locally convex Hausdorff real topological linear space E. C.R. Baker [1] posed the

  4. The Brave New World of Real-time GPS for Hazards Mitigation

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.

    2015-12-01

    Over 600 continuously-operating, real-time telemetered GPS receivers operate throughout California, Oregon, Washington and Alaska. These receivers straddle active crustal faults, volcanoes and landslides, the magnitude-9 Cascadia and northeastern Alaskan subduction zones and their attendant tsunamigenic regions along the Pacific coast. Around the circum-Pacific, there are hundreds more and the number is growing steadily as real-time networks proliferate. Despite offering the potential for sub-cm positioning accuracy in real-time useful for a broad array of hazards mitigation, these GPS stations are only now being incorporated into routine seismic, tsunami, volcanic, land-slide, space-weather, or meterologic monitoring. We will discuss NASA's READI (Real-time Earthquake Analysis for DIsasters) initiative. This effort is focussed on developing all aspects of real-time GPS for hazards mitigation, from establishing international data-sharing agreements to improving basic positioning algorithms. READI's long-term goal is to expand real-time GPS monitoring throughout the circum-Pacific as overseas data become freely available, so that it may be adopted by NOAA, USGS and other operational agencies responsible for natural hazards monitoring. Currently ~100 stations are being jointly processed by CWU and Scripps Inst. of Oceanography for algorithm comparison and downstream merging purposes. The resultant solution streams include point-position estimates in a global reference frame every second with centimeter accuracy, ionospheric total electron content and tropospheric zenith water content. These solutions are freely available to third-party agencies over several streaming protocols to enable their incorporation and use in hazards monitoring. This number will ramp up to ~400 stations over the next year. We will also discuss technical efforts underway to develop a variety of downstream applications of the real-time position streams, including the ability to broadcast solutions to thousands of users in real time, earthquake finite-fault and tsunami excitation estimations, and several user interfaces, both stand-alone client and browser-based, that allow interaction with both real-time position streams and their derived products.

  5. [The development and implementation of polymerase chain reaction to detect in real-time operation mode yersinia pestis in field material].

    PubMed

    Afanas'ev, M V; Chipanin, E V; Shestakov, V E; Denisov, A V; Fomina, L A; Ostiak, A S; Balakhonov, S V

    2013-03-01

    The article presents the results of development and practical implementation of system of polymerase chain reaction testing in real-time operation mode to detect agent of plague infield material. In laboratory conditions the system demonstrated good results and hence it was applied in conditions of field laboratory of epidemiologic team during planned epizootologic examination of Gorno-Altaisk hot spot of plague. The sampling consisted of more than 1400 objects. It was demonstrated that high sensitivity and specificity is immanent to proposed system. The adaptation of the system to the real time amplifier "Smart Cycler" (Cephid, USA) having some specific technical characteristics makes it possible to consider the proposed test-system as an effective sensitive and precise instrument for screening studies in the process of regular epizootologic examinations of hot spots of plague.

  6. Conducting real-time multiplayer experiments on the web.

    PubMed

    Hawkins, Robert X D

    2015-12-01

    Group behavior experiments require potentially large numbers of participants to interact in real time with perfect information about one another. In this paper, we address the methodological challenge of developing and conducting such experiments on the web, thereby broadening access to online labor markets as well as allowing for participation through mobile devices. In particular, we combine a set of recent web development technologies, including Node.js with the Socket.io module, HTML5 canvas, and jQuery, to provide a secure platform for pedagogical demonstrations and scalable, unsupervised experiment administration. Template code is provided for an example real-time behavioral game theory experiment which automatically pairs participants into dyads and places them into a virtual world. In total, this treatment is intended to allow those with a background in non-web-based programming to modify the template, which handles the technical server-client networking details, for their own experiments.

  7. Interoperability Is the Foundation for Successful Internet Telephony.

    ERIC Educational Resources Information Center

    Fromm, Larry

    1997-01-01

    More than 40 leading computer and telephony companies have united to lead the charge toward open standards and universal interoperability for Internet telephony products. The voice of IP Forum (VoIP) is working to define technical guidelines for two-party, real-time communications over IP networks, including provisions for compatibility with…

  8. 32 CFR 536.34 - Determination of correct statute.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... technical review. The sole exception to this rule is when a similar claim is filed citing the same time... exhaustion of any other remedy under the Government Travel Card Program or the Surface Deployment and... state authorities for action. (m) Real estate claims. Claims for rent, damage, or other payments...

  9. Using the Internet in Vocational Education. ERIC Digest No. 160.

    ERIC Educational Resources Information Center

    Wagner, Judith O.

    Vocational educators are using the Internet in various ways. The director and associate professor of vocational-technical education at Dakota State University uses the Internet primarily for electronic mail. Students in a secondary vocational teacher's international trade and marketing class have participated in real-time conferences with schools…

  10. Using SCADA Data, Field Studies, and Real-Time Modeling to Calibrate Flint's Hydraulic Model

    EPA Science Inventory

    EPA has been providing technical assistance to the City of Flint and the State of Michigan in response to the drinking water lead contamination incident. Responders quickly recognized the need for a water distribution system hydraulic model to provide insight on flow patterns an...

  11. Design and performance of a large vocabulary discrete word recognition system. Volume 1: Technical report. [real time computer technique for voice data processing

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development, construction, and test of a 100-word vocabulary near real time word recognition system are reported. Included are reasonable replacement of any one or all 100 words in the vocabulary, rapid learning of a new speaker, storage and retrieval of training sets, verbal or manual single word deletion, continuous adaptation with verbal or manual error correction, on-line verification of vocabulary as spoken, system modes selectable via verification display keyboard, relationship of classified word to neighboring word, and a versatile input/output interface to accommodate a variety of applications.

  12. Integrating SHM and Time Variant System Performance of Naval Ship Structures For Near Real Time Decision Making Under Uncertainty: A Comprehensive Framework

    DTIC Science & Technology

    2016-12-06

    direction and speed based on cost minimization and best estimated time of arrival (ETA). Sometimes, ships are forced to travel 43 Lehigh Technical...the allowable time to complete the travel . Another important aspect, addressed in the case study, is to investigate the optimal routing of aged...The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

  13. Sensei: A Multi-Modal Framework for Assessing Stress Resiliency

    DTIC Science & Technology

    2013-02-01

    Modal Framework for Assessing Stress Resiliency (February 1-28, 2013) From: Ajay Divakaran, Technical Leader Jeffrey Lubin, Senior Research...Progress and Accomplishments for Period 14 (February 2013): Task 3.1: Capture Behavioral Stress Markers in Real-Time in Lab Environment with...each data stream for each subject. In addition to these lab accomplishments, we also fine-tuned the timing of the Stroop /PDT presentations to

  14. Real-time cardiovascular magnetic resonance at 1.5 T using balanced SSFP and 40 ms resolution

    PubMed Central

    2013-01-01

    Background While cardiovascular magnetic resonance (CMR) commonly employs ECG-synchronized cine acquisitions with balanced steady-state free precession (SSFP) contrast at 1.5 T, recent developments at 3 T demonstrate significant potential for T1-weighted real-time imaging at high spatiotemporal resolution using undersampled radial FLASH. The purpose of this work was to combine both ideas and to evaluate a corresponding real-time CMR method at 1.5 T with SSFP contrast. Methods Radial gradient-echo sequences with fully balanced gradients and at least 15-fold undersampling were implemented on two CMR systems with different gradient performance. Image reconstruction by regularized nonlinear inversion (NLINV) was performed offline and resulted in real-time SSFP CMR images at a nominal resolution of 1.8 mm and with acquisition times of 40 ms. Results Studies of healthy subjects demonstrated technical feasibility in terms of robustness and general image quality. Clinical applicability with access to quantitative evaluations (e.g., ejection fraction) was confirmed by preliminary applications to 27 patients with typical indications for CMR including arrhythmias and abnormal wall motion. Real-time image quality was slightly lower than for cine SSFP recordings, but considered diagnostic in all cases. Conclusions Extending conventional cine approaches, real-time radial SSFP CMR with NLINV reconstruction provides access to individual cardiac cycles and allows for studies of patients with irregular heartbeat. PMID:24028285

  15. Feasibility of remote real-time guidance of a cardiac examination performed by novices using a pocket-sized ultrasound device.

    PubMed

    Mai, Tuan V; Ahn, David T; Phillips, Colin T; Agan, Donna L; Kimura, Bruce J

    2013-01-01

    Background. The potential of pocket-sized ultrasound devices (PUDs) to improve global healthcare delivery is limited by the lack of a suitable imaging protocol and trained users. Therefore, we investigated the feasibility of performing a brief, evidence-based cardiac limited ultrasound exam (CLUE) through wireless guidance of novice users. Methods. Three trainees applied PUDs on 27 subjects while directed by an off-site cardiologist to obtain a CLUE to screen for LV systolic dysfunction (LVSD), LA enlargement (LAE), ultrasound lung comets (ULC+), and elevated CVP (eCVP). Real-time remote audiovisual guidance and interpretation by the cardiologist were performed using the iPhone 4/iPod (FaceTime, Apple, Inc.) attached to the PUD and transmitted data wirelessly. Accuracy and technical quality of transmitted images were compared to on-site, gold-standard echo thresholds. Results. Novice versus sonographer imaging yielded technically adequate views in 122/135 (90%) versus 130/135 (96%) (P < 0.05). CLUE's combined SN, SP, and ACC were 0.67, 0.96, and 0.90. Technical adequacy (%) and accuracy for each abnormality (n) were LVSD (85%, 0.93, n = 5), LAE (89%, 0.74, n = 16), ULC+ (100%, 0.94, n = 5), and eCVP (78%, 0.91, n = 1). Conclusion. A novice can perform the CLUE using PUD when wirelessly guided by an expert. This method could facilitate PUD use for off-site bedside medical decision making and triaging of patients.

  16. Technical concept of the UK Tornado stand-off reconnaissance system

    NASA Astrophysics Data System (ADS)

    Dyer, Gavin R.

    1996-11-01

    The operational limitations exposed during the Gulf War have led to the formulation of a requirement for anew generation of tactical reconnaissance pod for the Royal Air Force Tornado aircraft. The pod will contain a high resolution Electro-Optical sensor capable of day and night-time operations, digital recording of the imagery for airborne replay and ground exploitation, and a data-link for real time/near real time imagery transmission. The program requirement includes a deployable ground exploitation system to provide a comprehensive independent capability. The interoperability of the air and ground segments with other systems is addressed through NATO standardization agreements. This system will provide the Tornado with a highly flexible stand-off imaging system for day/night operations from a range of altitudes.

  17. A low cost real-time motion tracking approach using webcam technology.

    PubMed

    Krishnan, Chandramouli; Washabaugh, Edward P; Seetharaman, Yogesh

    2015-02-05

    Physical therapy is an important component of gait recovery for individuals with locomotor dysfunction. There is a growing body of evidence that suggests that incorporating a motor learning task through visual feedback of movement trajectory is a useful approach to facilitate therapeutic outcomes. Visual feedback is typically provided by recording the subject's limb movement patterns using a three-dimensional motion capture system and displaying it in real-time using customized software. However, this approach can seldom be used in the clinic because of the technical expertise required to operate this device and the cost involved in procuring a three-dimensional motion capture system. In this paper, we describe a low cost two-dimensional real-time motion tracking approach using a simple webcam and an image processing algorithm in LabVIEW Vision Assistant. We also evaluated the accuracy of this approach using a high precision robotic device (Lokomat) across various walking speeds. Further, the reliability and feasibility of real-time motion-tracking were evaluated in healthy human participants. The results indicated that the measurements from the webcam tracking approach were reliable and accurate. Experiments on human subjects also showed that participants could utilize the real-time kinematic feedback generated from this device to successfully perform a motor learning task while walking on a treadmill. These findings suggest that the webcam motion tracking approach is a feasible low cost solution to perform real-time movement analysis and training. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A low cost real-time motion tracking approach using webcam technology

    PubMed Central

    Krishnan, Chandramouli; Washabaugh, Edward P.; Seetharaman, Yogesh

    2014-01-01

    Physical therapy is an important component of gait recovery for individuals with locomotor dysfunction. There is a growing body of evidence that suggests that incorporating a motor learning task through visual feedback of movement trajectory is a useful approach to facilitate therapeutic outcomes. Visual feedback is typically provided by recording the subject’s limb movement patterns using a three-dimensional motion capture system and displaying it in real-time using customized software. However, this approach can seldom be used in the clinic because of the technical expertise required to operate this device and the cost involved in procuring a three-dimensional motion capture system. In this paper, we describe a low cost two-dimensional real-time motion tracking approach using a simple webcam and an image processing algorithm in LabVIEW Vision Assistant. We also evaluated the accuracy of this approach using a high precision robotic device (Lokomat) across various walking speeds. Further, the reliability and feasibility of real-time motion-tracking were evaluated in healthy human participants. The results indicated that the measurements from the webcam tracking approach were reliable and accurate. Experiments on human subjects also showed that participants could utilize the real-time kinematic feedback generated from this device to successfully perform a motor learning task while walking on a treadmill. These findings suggest that the webcam motion tracking approach is a feasible low cost solution to perform real-time movement analysis and training. PMID:25555306

  19. Vessel thermal map real-time system for the JET tokamak

    NASA Astrophysics Data System (ADS)

    Alves, D.; Felton, R.; Jachmich, S.; Lomas, P.; McCullen, P.; Neto, A.; Valcárcel, D. F.; Arnoux, G.; Card, P.; Devaux, S.; Goodyear, A.; Kinna, D.; Stephen, A.; Zastrow, K.-D.

    2012-05-01

    The installation of international thermonuclear experimental reactor-relevant materials for the plasma facing components (PFCs) in the Joint European Torus (JET) is expected to have a strong impact on the operation and protection of the experiment. In particular, the use of all-beryllium tiles, which deteriorate at a substantially lower temperature than the formerly installed carbon fiber composite tiles, imposes strict thermal restrictions on the PFCs during operation. Prompt and precise responses are therefore required whenever anomalous temperatures are detected. The new vessel thermal map real-time application collects the temperature measurements provided by dedicated pyrometers and infrared cameras, groups them according to spatial location and probable offending heat source, and raises alarms that will trigger appropriate protective responses. In the context of the JET global scheme for the protection of the new wall, the system is required to run on a 10 ms cycle communicating with other systems through the real-time data network. In order to meet these requirements a commercial off-the-shelf solution has been adopted based on standard x86 multicore technology. Linux and the multithreaded application real-time executor (MARTe) software framework were respectively the operating system of choice and the real-time framework used to build the application. This paper presents an overview of the system with particular technical focus on the configuration of its real-time capability and the benefits of the modular development approach and advanced tools provided by the MARTe framework.

  20. ROADNET: A Real-time Data Aware System for Earth, Oceanographic, and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Hansen, T.; Lindquist, K.; Ludascher, B.; Orcutt, J.; Rajasekar, A.

    2003-12-01

    The Real-time Observatories, Application, and Data management Network (ROADNet) Program aims to develop an integrated, seamless, and transparent environmental information network that will deliver geophysical, oceanographic, hydrological, ecological, and physical data to a variety of users in real-time. ROADNet is a multidisciplinary, multinational partnership of researchers, policymakers, natural resource managers, educators, and students who aim to use the data to advance our understanding and management of coastal, ocean, riparian, and terrestrial Earth systems in Southern California, Mexico, and well off shore. To date, project activity and funding have focused on the design and deployment of network linkages and on the exploratory development of the real-time data management system. We are currently adapting powerful "Data Grid" technologies to the unique challenges associated with the management and manipulation of real-time data. Current "Grid" projects deal with static data files, and significant technical innovation is required to address fundamental problems of real-time data processing, integration, and distribution. The technologies developed through this research will create a system that dynamically adapt downstream processing, cataloging, and data access interfaces when sensors are added or removed from the system; provide for real-time processing and monitoring of data streams--detecting events, and triggering computations, sensor and logger modifications, and other actions; integrate heterogeneous data from multiple (signal) domains; and provide for large-scale archival and querying of "consolidated" data. The software tools which must be developed do not exist, although limited prototype systems are available. This research has implications for the success of large-scale NSF initiatives in the Earth sciences (EarthScope), ocean sciences (OOI- Ocean Observatories Initiative), biological sciences (NEON - National Ecological Observatory Network) and civil engineering (NEES - Network for Earthquake Engineering Simulation). Each of these large scale initiatives aims to collect real-time data from thousands of sensors, and each will require new technologies to process, manage, and communicate real-time multidisciplinary environmental data on regional, national, and global scales.

  1. Hybrid Approach for Biliary Interventions Employing MRI-Guided Bile Duct Puncture with Near-Real-Time Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wybranski, Christian, E-mail: Christian.Wybranski@uk-koeln.de; Pech, Maciej; Lux, Anke

    ObjectiveTo assess the feasibility of a hybrid approach employing MRI-guided bile duct (BD) puncture for subsequent fluoroscopy-guided biliary interventions in patients with non-dilated (≤3 mm) or dilated BD (≥3 mm) but unfavorable conditions for ultrasonography (US)-guided BD puncture.MethodsA total of 23 hybrid interventions were performed in 21 patients. Visualization of BD and puncture needles (PN) in the interventional MR images was rated on a 5-point Likert scale by two radiologists. Technical success, planning time, BD puncture time and positioning adjustments of the PN as well as technical success of the biliary intervention and complication rate were recorded.ResultsVisualization even of third-order non-dilated BDmore » and PN was rated excellent by both radiologists with good to excellent interrater agreement. MRI-guided BD puncture was successful in all cases. Planning and BD puncture times were 1:36 ± 2.13 (0:16–11:07) min. and 3:58 ± 2:35 (1:11–9:32) min. Positioning adjustments of the PN was necessary in two patients. Repeated capsular puncture was not necessary in any case. All biliary interventions were completed successfully without major complications.ConclusionA hybrid approach which employs MRI-guided BD puncture for subsequent fluoroscopy-guided biliary intervention is feasible in clinical routine and yields high technical success in patients with non-dilated BD and/or unfavorable conditions for US-guided puncture. Excellent visualization of BD and PN in near-real-time interventional MRI allows successful cannulation of the BD.« less

  2. Making intelligent systems team players: Overview for designers

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.

    1992-01-01

    This report is a guide and companion to the NASA Technical Memorandum 104738, 'Making Intelligent Systems Team Players,' Volumes 1 and 2. The first two volumes of this Technical Memorandum provide comprehensive guidance to designers of intelligent systems for real-time fault management of space systems, with the objective of achieving more effective human interaction. This report provides an analysis of the material discussed in the Technical Memorandum. It clarifies what it means for an intelligent system to be a team player, and how such systems are designed. It identifies significant intelligent system design problems and their impacts on reliability and usability. Where common design practice is not effective in solving these problems, we make recommendations for these situations. In this report, we summarize the main points in the Technical Memorandum and identify where to look for further information.

  3. LabVIEW application for motion tracking using USB camera

    NASA Astrophysics Data System (ADS)

    Rob, R.; Tirian, G. O.; Panoiu, M.

    2017-05-01

    The technical state of the contact line and also the additional equipment in electric rail transport is very important for realizing the repairing and maintenance of the contact line. During its functioning, the pantograph motion must stay in standard limits. Present paper proposes a LabVIEW application which is able to track in real time the motion of a laboratory pantograph and also to acquire the tracking images. An USB webcam connected to a computer acquires the desired images. The laboratory pantograph contains an automatic system which simulates the real motion. The tracking parameters are the horizontally motion (zigzag) and the vertically motion which can be studied in separate diagrams. The LabVIEW application requires appropriate tool-kits for vision development. Therefore the paper describes the subroutines that are especially programmed for real-time image acquisition and also for data processing.

  4. Estimation of light commercial vehicles dynamics by means of HIL-testbench simulation

    NASA Astrophysics Data System (ADS)

    Groshev, A.; Tumasov, A.; Toropov, E.; Sereda, P.

    2018-02-01

    The high level of active safety of vehicles is impossible without driver assistance electronic systems. Electronic stability control (ESC) system is one of them. Nowadays such systems are obligatory for installation on vehicles of different categories. The approval of active safety level of vehicles with ESC is possible by means of high speed road tests. The most frequently implemented tests are “fish hook” and “sine with dwell” tests. Such kind of tests provided by The Global technical regulation No. 8 are published by the United Nations Economic Commission for Europe as well as by ECE 13-11. At the same time, not only road tests could be used for estimation of vehicles dynamics. Modern software and hardware technologies allow imitating real tests with acceptable reliability and good convergence between real test data and simulation results. ECE 13-11 Annex 21 - Appendix 1 “Use Of The Dynamic Stability Simulation” regulates demands for special Simulation Test bench that could be used not only for preliminary estimation of vehicles dynamics, but also for official vehicles homologation. This paper describes the approach, proposed by the researchers from Nizhny Novgorod State Technical University n.a. R.E. Alekseev (NNSTU, Russia) with support of engineers of United Engineering Center GAZ Group, as well as specialists of Gorky Automobile Plant. The idea of approach is to use the special HIL (hardware in the loop) -test bench, that consists of Real Time PC with Real Time Software and braking system components including electronic control unit (ECU) of ESC system. The HIL-test bench allows imitating vehicle dynamics in condition of “fish hook” and “sine with dwell” tests. The paper describes the scheme and structure of HIL-test bench and some peculiarities that should be taken into account during HIL-simulation.

  5. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    PubMed

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  6. Airborne ultrasound applied to anthropometry--physical and technical principles.

    PubMed

    Lindström, K; Mauritzson, L; Benoni, G; Willner, S

    1983-01-01

    Airborne ultrasound has been utilized for remote measurement of distance, direction, size, form, volume and velocity. General anthropometrical measurements are performed with a newly constructed real-time linear array scanner. To make full use of the method, we expect a rapid development of high-frequency ultrasound transducers for use in air.

  7. Online Class Review: Using Streaming-Media Technology

    ERIC Educational Resources Information Center

    Loudon, Marc; Sharp, Mark

    2006-01-01

    We present an automated system that allows students to replay both audio and video from a large nonmajors' organic chemistry class as streaming RealMedia. Once established, this system requires no technical intervention and is virtually transparent to the instructor. This gives students access to online class review at any time. Assessment has…

  8. Financial and technical feasibility of dynamic congestion pricing as a revenue generation source in Indiana : exploiting the availability of real-time information and dynamic pricing technologies.

    DOT National Transportation Integrated Search

    2011-10-19

    "Highway stakeholders continue to support research studies that address critical issues of the current era, including congestion mitigation and revenue generation. A mechanism that addresses both concerns is congestion pricing which establishes a dir...

  9. A Comparison of Student Engaged Time in Agriculture Instruction

    ERIC Educational Resources Information Center

    Witt, Phillip A.; Ulmer, Jonathan D.; Burris, Scott; Brashears, Todd; Burley, Hansel

    2014-01-01

    Teacher and student behaviors in the classroom have been linked to student achievement. The hands-on, real world experiences which students are offered through career and technical education courses provide an opportunity for agricultural education to make contributions to student achievement. The purpose of this study was to compare engaged time…

  10. Internet Telephony: The Next Killer Application? (Or, How I Cut My Long-Distance Phone Bill to Nothing!).

    ERIC Educational Resources Information Center

    Learn, Larry L., Ed.

    1995-01-01

    Discusses the evolution of real-time telephony and broadcast applications using the Internet; resulting issues and opportunities; and future implications for regulators, Internet users, and service providers. Topics covered include bandpass, packetized voice, IP structures, class D datagrams, software, technical parameters, legal and regulatory…

  11. Integration of ultrasonography and endoscopy into transsphenoidal surgery with a "picture-in-picture" viewing system--technical note.

    PubMed

    Yamasaki, Toshiki; Moritake, Kouzo; Nagai, Hidemasa; Kimura, Yoriyoshi

    2002-06-01

    A technique to integrate ultrasonography and endoscopy is described for transsphenoidal surgery to prevent intraoperative internal carotid artery (ICA)-related, life-threatening complications such as aneurysmal formation and carotid-cavernous fistula. The ultrasound unit helps avoid direct injury to the ICA. The technical advantage of this system is the miniature 1-mm diameter microvascular probe, which does not disturb the operative field. An arterial or venous flow source of even an invisible vessel can be detected easily, noninvasively, and reproducibly. Real-time information with a 100% detection rate for the ICA is helpful for predicting localization even in the intracavernous portion, where the ICA is invisible. The endoscope unit can visualize the dead angle areas of the operating microscope by varying the endoscopic gateways and display on a "picture-in-picture" system. The advantage of both devices is the integration with a video processor, so that the real-time information from each unit can be switched intraoperatively onto the display as required. This method is of particular help for removing lesions with intracavernous invasion or encasement of the ICA.

  12. Real-Time Magnetic Resonance-Guided Stereotactic Laser Amygdalohippocampotomy for Mesial Temporal Lobe Epilepsy

    PubMed Central

    Willie, Jon T.; Laxpati, Nealen G.; Drane, Daniel L.; Gowda, Ashok; Appin, Christina; Hao, Chunhai; Brat, Daniel J.; Helmers, Sandra L.; Saindane, Amit; Nour, Sherif G.; Gross, Robert E.

    2014-01-01

    Background Open surgery effectively treats mesial temporal lobe epilepsy (MTLE), but carries risks of neurocognitive deficits, which may be reduced with minimally invasive alternatives. Objective To describe technical and clinical outcomes of stereotactic laser amygdalohippocampotomy (SLAH) with real-time magnetic resonance thermal imaging (MRTI) guidance. Methods Under general anesthesia and utilizing standard stereotactic methods, 13 adult patients with intractable MTLE (with and without mesial temporal sclerosis, MTS) prospectively underwent insertion of a saline-cooled fiber-optic laser applicator into amygdalohippocampal structures from an occipital trajectory. Computer-controlled laser ablation was performed during continuous MRTI followed by confirmatory contrast-enhanced anatomic imaging and volumetric reconstruction. Clinical outcomes were determined from seizure diaries. Results A mean 60% volume of the amygdalohippocampal complex was ablated in 13 patients (9 with MTS) undergoing 15 procedures. Median hospitalization was one day. With follow-up ranging from 5-26 (median 14) months, 77% (10/13) of patients achieved meaningful seizure reduction, of which 54% (7/13) were free of disabling seizures. Of patients with preoperative MTS, 67% (6/9) achieved seizure freedom. All recurrences were observed by<6 months. Variances in ablation volume and length did not account for individual clinical outcomes. Whereas no complications of laser therapy itself were observed, one significant complication, a visual field defect, resulted from deviated insertion of a stereotactic aligning rod, which was corrected prior to ablation. Conclusion Real-time MR-guided SLAH is a technically novel, safe, and effective alternative to open surgery. Further evaluation with larger cohorts over time is warranted. PMID:24618797

  13. Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance.

    PubMed

    Shenai, Mahesh B; Dillavou, Marcus; Shum, Corey; Ross, Douglas; Tubbs, Richard S; Shih, Alan; Guthrie, Barton L

    2011-03-01

    Surgery is a highly technical field that combines continuous decision-making with the coordination of spatiovisual tasks. We designed a virtual interactive presence and augmented reality (VIPAR) platform that allows a remote surgeon to deliver real-time virtual assistance to a local surgeon, over a standard Internet connection. The VIPAR system consisted of a "local" and a "remote" station, each situated over a surgical field and a blue screen, respectively. Each station was equipped with a digital viewpiece, composed of 2 cameras for stereoscopic capture, and a high-definition viewer displaying a virtual field. The virtual field was created by digitally compositing selected elements within the remote field into the local field. The viewpieces were controlled by workstations mutually connected by the Internet, allowing virtual remote interaction in real time. Digital renderings derived from volumetric MRI were added to the virtual field to augment the surgeon's reality. For demonstration, a fixed-formalin cadaver head and neck were obtained, and a carotid endarterectomy (CEA) and pterional craniotomy were performed under the VIPAR system. The VIPAR system allowed for real-time, virtual interaction between a local (resident) and remote (attending) surgeon. In both carotid and pterional dissections, major anatomic structures were visualized and identified. Virtual interaction permitted remote instruction for the local surgeon, and MRI augmentation provided spatial guidance to both surgeons. Camera resolution, color contrast, time lag, and depth perception were identified as technical issues requiring further optimization. Virtual interactive presence and augmented reality provide a novel platform for remote surgical assistance, with multiple applications in surgical training and remote expert assistance.

  14. Video-assisted palatopharyngeal surgery: a model for improved education and training.

    PubMed

    Allori, Alexander C; Marcus, Jeffrey R; Daluvoy, Sanjay; Bond, Jennifer

    2014-09-01

    Objective : The learning process for intraoral procedures is arguably more difficult than for other surgical procedures because of the assistant's severely limited visibility. Consequently, trainees may not be able to adequately see and follow all steps of the procedure, and attending surgeons may be less willing to entrust trainees with critical portions of the procedure. In this report, we propose a video-assisted approach to intraoral procedures that improves lighting, visibility, and potential for effective education and training. Design : Technical report (idea/innovation). Setting : Tertiary referral hospital. Patients : Children with cleft palate and velopharyngeal insufficiency requiring surgery. Interventions : Video-assisted palatoplasty, sphincteroplasty, and pharyngoplasty. Main Outcome Measures : Qualitative and semiquantitative educational outcomes, including learner perception regarding "real-time" (video-assisted surgery) and "non-real-time" (video-library-based) surgical education. Results : Trainees were strongly in favor of the video-assisted modality in "real-time" surgical training. Senior trainees identified more opportunities in which they had been safely entrusted to perform critical portions of the procedure, corresponding with satisfaction with the learning process scores, and they showed greater comfort/confidence scores related to performing the procedure under supervision and alone. Conclusions : Adoption of the video-assisted approach can be expected to markedly improve the learning curve for surgeons in training. This is now standard practice at our institution. We are presently conducting a full educational technology assessment to better characterize the effect on knowledge acquisition and technical improvement.

  15. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.

    PubMed

    Robison, R Aaron; Liu, Charles Y; Apuzzo, Michael L J

    2011-11-01

    To review virtual reality in neurosurgery, including the history of simulation and virtual reality and some of the current implementations; to examine some of the technical challenges involved; and to propose a potential paradigm for the development of virtual reality in neurosurgery going forward. A search was made on PubMed using key words surgical simulation, virtual reality, haptics, collision detection, and volumetric modeling to assess the current status of virtual reality in neurosurgery. Based on previous results, investigators extrapolated the possible integration of existing efforts and potential future directions. Simulation has a rich history in surgical training, and there are numerous currently existing applications and systems that involve virtual reality. All existing applications are limited to specific task-oriented functions and typically sacrifice visual realism for real-time interactivity or vice versa, owing to numerous technical challenges in rendering a virtual space in real time, including graphic and tissue modeling, collision detection, and direction of the haptic interface. With ongoing technical advancements in computer hardware and graphic and physical rendering, incremental or modular development of a fully immersive, multipurpose virtual reality neurosurgical simulator is feasible. The use of virtual reality in neurosurgery is predicted to change the nature of neurosurgical education, and to play an increased role in surgical rehearsal and the continuing education and credentialing of surgical practitioners. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Evaluation of Uranium-235 Measurement Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Lavender, Curt A.; Dibert, Mark W.

    2017-05-23

    Monolithic U-Mo fuel plates are rolled to final fuel element form from the original cast ingot, and thus any inhomogeneities in 235U distribution present in the cast ingot are maintained, and potentially exaggerated, in the final fuel foil. The tolerance for inhomogeneities in the 235U concentration in the final fuel element foil is very low. A near-real-time, nondestructive technique to evaluate the 235U distribution in the cast ingot is required in order to provide feedback to the casting process. Based on the technical analysis herein, gamma spectroscopy has been recommended to provide a near-real-time measure of the 235U distribution inmore » U-Mo cast plates.« less

  17. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  18. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    PubMed

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  19. A Bit-Encoding Based New Data Structure for Time and Memory Efficient Handling of Spike Times in an Electrophysiological Setup.

    PubMed

    Ljungquist, Bengt; Petersson, Per; Johansson, Anders J; Schouenborg, Jens; Garwicz, Martin

    2018-04-01

    Recent neuroscientific and technical developments of brain machine interfaces have put increasing demands on neuroinformatic databases and data handling software, especially when managing data in real time from large numbers of neurons. Extrapolating these developments we here set out to construct a scalable software architecture that would enable near-future massive parallel recording, organization and analysis of neurophysiological data on a standard computer. To this end we combined, for the first time in the present context, bit-encoding of spike data with a specific communication format for real time transfer and storage of neuronal data, synchronized by a common time base across all unit sources. We demonstrate that our architecture can simultaneously handle data from more than one million neurons and provide, in real time (< 25 ms), feedback based on analysis of previously recorded data. In addition to managing recordings from very large numbers of neurons in real time, it also has the capacity to handle the extensive periods of recording time necessary in certain scientific and clinical applications. Furthermore, the bit-encoding proposed has the additional advantage of allowing an extremely fast analysis of spatiotemporal spike patterns in a large number of neurons. Thus, we conclude that this architecture is well suited to support current and near-future Brain Machine Interface requirements.

  20. Quantification of Left Ventricular Linear, Areal and Volumetric Dimensions: A Phantom and in Vivo Comparison of 2-D and Real-Time 3-D Echocardiography with Cardiovascular Magnetic Resonance.

    PubMed

    Polte, Christian L; Lagerstrand, Kerstin M; Gao, Sinsia A; Lamm, Carl R; Bech-Hanssen, Odd

    2015-07-01

    Two-dimensional echocardiography and real-time 3-D echocardiography have been reported to underestimate human left ventricular volumes significantly compared with cardiovascular magnetic resonance. We investigated the ability of 2-D echocardiography, real-time 3-D echocardiography and cardiovascular magnetic resonance to delineate dimensions of increasing complexity (diameter-area-volume) in a multimodality phantom model and in vivo, with the aim of elucidating the main cause of underestimation. All modalities were able to delineate phantom dimensions with high precision. In vivo, 2-D and real-time 3-D echocardiography underestimated short-axis end-diastolic linear and areal and all left ventricular volumetric dimensions significantly compared with cardiovascular magnetic resonance, but not short-axis end-systolic linear and areal dimensions. Underestimation increased successively from linear to volumetric left ventricular dimensions. When analyzed according to the same principles, 2-D and real-time 3-DE echocardiography provided similar left ventricular volumes. In conclusion, echocardiographic underestimation of left ventricular dimensions is due mainly to inherent technical differences in the ability to differentiate trabeculated from compact myocardium. Identical endocardial border definition criteria are needed to minimize differences between the modalities and to ensure better comparability in clinical practice. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Guilt by Association-Based Discovery of Botnet Footprints

    DTIC Science & Technology

    2010-11-01

    our fast flux database using our Fast Flux Monitor ( FFM ); a Web service application designed to detect whether a domain exhibits fast flux (FF) or...double flux (DF) behaviour. The primary technical components of FFM include: (1) sensors which perform real-time detection of FF service networks...sensors for our FFM active sensors: (1) FF Activity Index, (2) Footprint Index, and (3) Time To Live (TTL), and (4) Guilt by Association Score. In

  2. A persuasive toothbrush to enhance oral hygiene adherence.

    PubMed

    Walji, Muhammad F; Coker, Ololade; Valenza, John A; Henson, Harold; Warren-Morris, Donna; Zhong, Lin

    2008-11-06

    In this research we propose that a real-time wireless monitoring and reminder system can assist patients in maintaining optimal oral health. We provide a conceptual framework that incorporates both the behavioral and technical aspects of the proposed system. Further we present preliminary results of a feasibility experiment of modifying an inexpensive electric toothbrush by attaching an accelerometer and determining the ability to track motion and time by wirelessly transmitting data via Bluetooth technology.

  3. Financial technical indicator based on chaotic bagging predictors for adaptive stock selection in Japanese and American markets

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya; Ohkura, Yuushi

    2016-01-01

    In order to examine the predictability and profitability of financial markets, we introduce three ideas to improve the traditional technical analysis to detect investment timings more quickly. Firstly, a nonlinear prediction model is considered as an effective way to enhance this detection power by learning complex behavioral patterns hidden in financial markets. Secondly, the bagging algorithm can be applied to quantify the confidence in predictions and compose new technical indicators. Thirdly, we also introduce how to select more profitable stocks to improve investment performance by the two-step selection: the first step selects more predictable stocks during the learning period, and then the second step adaptively and dynamically selects the most confident stock showing the most significant technical signal in each investment. Finally, some investment simulations based on real financial data show that these ideas are successful in overcoming complex financial markets.

  4. Advances in the in Vivo Raman Spectroscopy of Malignant Skin Tumors Using Portable Instrumentation

    PubMed Central

    Kourkoumelis, Nikolaos; Balatsoukas, Ioannis; Moulia, Violetta; Elka, Aspasia; Gaitanis, Georgios; Bassukas, Ioannis D.

    2015-01-01

    Raman spectroscopy has emerged as a promising tool for real-time clinical diagnosis of malignant skin tumors offering a number of potential advantages: it is non-intrusive, it requires no sample preparation, and it features high chemical specificity with minimal water interference. However, in vivo tissue evaluation and accurate histopathological classification remain a challenging task for the successful transition from laboratory prototypes to clinical devices. In the literature, there are numerous reports on the applications of Raman spectroscopy to biomedical research and cancer diagnostics. Nevertheless, cases where real-time, portable instrumentations have been employed for the in vivo evaluation of skin lesions are scarce, despite their advantages in use as medical devices in the clinical setting. This paper reviews the advances in real-time Raman spectroscopy for the in vivo characterization of common skin lesions. The translational momentum of Raman spectroscopy towards the clinical practice is revealed by (i) assembling the technical specifications of portable systems and (ii) analyzing the spectral characteristics of in vivo measurements. PMID:26132563

  5. Dust control at longwalls with water infusion and foam. Technical progress report through November 30, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Foam spray equipment and materials for dust suppression on longwall double drum shearer faces have been procured. This equipment includes metering pumps, foam generators and mounting brackets, foam solutions, flow meters, real time and gravimetric sampling equipment, hoses and valve banks. Initial tests have been conducted in the laboratory with three types of generators and five types of foam solutions. Based on these tests, Senior Conflow's cluster spray and Onyx Chemical Company's millifoam solution have been selected. For pumping foam solution to the shearer, Jon Bean's 2 hp, 120 VAC single-phase ceramic lined piston pump has been selected. For fieldmore » tests, equipment has been installed underground in Dobbin mine in Upper Freeport seam on Eickhoff EDW 300 double drum shearer. Foamspray tests have been conducted. Real time and gravimetric dust samples have been collected. Real time sampling results indicate a dust level reduction of up to 37 percent with foam spray compared to the base case of water sprays.« less

  6. Perspective on intelligent avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H.L.

    1987-01-01

    Technical issues which could potentially limit the capability and acceptibility of expert systems decision-making for avionics applications are addressed. These issues are: real-time AI, mission-critical software, conventional algorithms, pilot interface, knowledge acquisition, and distributed expert systems. Examples from on-going expert system development programs are presented to illustrate likely architectures and applications of future intelligent avionic systems. 13 references.

  7. Coaching Non-technical Skills Improves Surgical Residents' Performance in a Simulated Operating Room.

    PubMed

    Yule, Steven; Parker, Sarah Henrickson; Wilkinson, Jill; McKinley, Aileen; MacDonald, Jamie; Neill, Adrian; McAdam, Tim

    2015-01-01

    To investigate the effect of coaching on non-technical skills and performance during laparoscopic cholecystectomy in a simulated operating room (OR). Non-technical skills (situation awareness, decision making, teamwork, and leadership) underpin technical ability and are critical to the success of operations and the safety of patients in the OR. The rate of developing assessment tools in this area has outpaced development of workable interventions to improve non-technical skills in surgical training and beyond. A randomized trial was conducted with senior surgical residents (n = 16). Participants were randomized to receive either non-technical skills coaching (intervention) or to self-reflect (control) after each of 5 simulated operations. Coaching was based on the Non-Technical Skills For Surgeons (NOTSS) behavior observation system. Surgeon-coaches trained in this method coached participants in the intervention group for 10 minutes after each simulation. Primary outcome measure was non-technical skills, assessed from video by a surgeon using the NOTSS system. Secondary outcomes were time to call for help during bleeding, operative time, and path length of laparoscopic instruments. Non-technical skills improved in the intervention group from scenario 1 to scenario 5 compared with those in the control group (p = 0.04). The intervention group was faster to call for help when faced with unstoppable bleeding in the final scenario (no. 5; p = 0.03). Coaching improved residents' non-technical skills in the simulated OR compared with those in the control group. Important next steps are to implement non-technical skills coaching in the real OR and assess effect on clinically important process measures and patient outcomes. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  8. Novel System for Real-Time Integration of 3-D Echocardiography and Fluoroscopy for Image-Guided Cardiac Interventions: Preclinical Validation and Clinical Feasibility Evaluation.

    PubMed

    Arujuna, Aruna V; Housden, R James; Ma, Yingliang; Rajani, Ronak; Gao, Gang; Nijhof, Niels; Cathier, Pascal; Bullens, Roland; Gijsbers, Geert; Parish, Victoria; Kapetanakis, Stamatis; Hancock, Jane; Rinaldi, C Aldo; Cooklin, Michael; Gill, Jaswinder; Thomas, Martyn; O'neill, Mark D; Razavi, Reza; Rhode, Kawal S

    2014-01-01

    Real-time imaging is required to guide minimally invasive catheter-based cardiac interventions. While transesophageal echocardiography allows for high-quality visualization of cardiac anatomy, X-ray fluoroscopy provides excellent visualization of devices. We have developed a novel image fusion system that allows real-time integration of 3-D echocardiography and the X-ray fluoroscopy. The system was validated in the following two stages: 1) preclinical to determine function and validate accuracy; and 2) in the clinical setting to assess clinical workflow feasibility and determine overall system accuracy. In the preclinical phase, the system was assessed using both phantom and porcine experimental studies. Median 2-D projection errors of 4.5 and 3.3 mm were found for the phantom and porcine studies, respectively. The clinical phase focused on extending the use of the system to interventions in patients undergoing either atrial fibrillation catheter ablation (CA) or transcatheter aortic valve implantation (TAVI). Eleven patients were studied with nine in the CA group and two in the TAVI group. Successful real-time view synchronization was achieved in all cases with a calculated median distance error of 2.2 mm in the CA group and 3.4 mm in the TAVI group. A standard clinical workflow was established using the image fusion system. These pilot data confirm the technical feasibility of accurate real-time echo-fluoroscopic image overlay in clinical practice, which may be a useful adjunct for real-time guidance during interventional cardiac procedures.

  9. Quality of Service for Real-Time Applications Over Next Generation Data Networks

    NASA Technical Reports Server (NTRS)

    Atiquzzaman, Mohammed; Jain, Raj

    2001-01-01

    This project, which started on January 1, 2000, was funded by the NASA Glenn Research Center for duration of one year. The deliverables of the project included the following tasks: (1) Study of QoS mapping between the edge and core networks envisioned in the Next Generation networks will provide us with the QoS guarantees that can be obtained from next generation networks; (2) Buffer management techniques to provide strict guarantees to real-time end-to-end applications through preferential treatment to packets belonging to real-time applications. In particular, use of ECN to help reduce the loss on high bandwidth-delay product satellite networks needs to be studied; (3) Effect of Prioritized Packet Discard to increase goodput of the network and reduce the buffering requirements in the ATM switches; (4) Provision of new IP circuit emulation services over Satellite IP backbones using MPLS will be studied; and (5) Determine the architecture and requirements for internetworking ATN and the Next Generation Internet for real-time applications. The project has been completed on time. All the objectives and deliverables of the project have been completed. Research results obtained from this project have been published in a number of papers in journals, conferences, and technical reports, included in this document.

  10. Development of a Real-Time Repeated-Measures Assessment Protocol to Capture Change over the Course of a Drinking Episode

    PubMed Central

    Luczak, Susan E.; Rosen, I. Gary; Wall, Tamara L.

    2015-01-01

    Aims: We report on the development of a real-time assessment protocol that allows researchers to assess change in BrAC, alcohol responses, behaviors, and contexts over the course of a drinking event. Method: We designed a web application that uses timed text messages (adjusted based on consumption pattern) containing links to our website to obtain real-time participant reports; camera and location features were also incorporated into the protocol. We used a transdermal alcohol sensor device along with software we designed to convert transdermal data into estimated BrAC. Thirty-two college students completed a laboratory session followed by a 2-week field trial. Results: Results for the web application indicated we were able to create an effective tool for obtaining repeated measures real-time drinking data. Participants were willing to monitor their drinking behavior with the web application, and this did not appear to strongly affect drinking behavior during, or 6 weeks following, the field trial. Results for the transdermal device highlighted the willingness of participants to wear the device despite some discomfort, but technical difficulties resulted in limited valid data. Conclusion: The development of this protocol makes it possible to capture detailed assessment of change over the course of naturalistic drinking episodes. PMID:25568142

  11. Real Time Updating Genetic Network Programming for Adapting to the Change of Stock Prices

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro

    The key in stock trading model is to take the right actions for trading at the right time, primarily based on the accurate forecast of future stock trends. Since an effective trading with given information of stock prices needs an intelligent strategy for the decision making, we applied Genetic Network Programming (GNP) to creating a stock trading model. In this paper, we propose a new method called Real Time Updating Genetic Network Programming (RTU-GNP) for adapting to the change of stock prices. There are three important points in this paper: First, the RTU-GNP method makes a stock trading decision considering both the recommendable information of technical indices and the candlestick charts according to the real time stock prices. Second, we combine RTU-GNP with a Sarsa learning algorithm to create the programs efficiently. Also, sub-nodes are introduced in each judgment and processing node to determine appropriate actions (buying/selling) and to select appropriate stock price information depending on the situation. Third, a Real Time Updating system has been firstly introduced in our paper considering the change of the trend of stock prices. The experimental results on the Japanese stock market show that the trading model with the proposed RTU-GNP method outperforms other models without real time updating. We also compared the experimental results using the proposed method with Buy&Hold method to confirm its effectiveness, and it is clarified that the proposed trading model can obtain much higher profits than Buy&Hold method.

  12. Real-time tracking of respiratory-induced tumor motion by dose-rate regulation

    NASA Astrophysics Data System (ADS)

    Han-Oh, Yeonju Sarah

    We have developed a novel real-time tumor-tracking technology, called Dose-Rate-Regulated Tracking (DRRT), to compensate for tumor motion caused by breathing. Unlike other previously proposed tumor-tracking methods, this new method uses a preprogrammed dynamic multileaf collimator (MLC) sequence in combination with real-time dose-rate control. This new scheme circumvents the technical challenge in MLC-based tumor tracking, that is to control the MLC motion in real time, based on real-time detected tumor motion. The preprogrammed MLC sequence describes the movement of the tumor, as a function of breathing phase, amplitude, or tidal volume. The irregularity of tumor motion during treatment is handled by real-time regulation of the dose rate, which effectively speeds up or slows down the delivery of radiation as needed. This method is based on the fact that all of the parameters in dynamic radiation delivery, including MLC motion, are enslaved to the cumulative dose, which, in turn, can be accelerated or decelerated by varying the dose rate. Because commercially available MLC systems do not allow the MLC delivery sequence to be modified in real time based on the patient's breathing signal, previously proposed tumor-tracking techniques using a MLC cannot be readily implemented in the clinic today. By using a preprogrammed MLC sequence to handle the required motion, the task for real-time control is greatly simplified. We have developed and tested the pre- programmed MLC sequence and the dose-rate regulation algorithm using lung-cancer patients breathing signals. It has been shown that DRRT can track the tumor with an accuracy of less than 2 mm for a latency of the DRRT system of less than 0.35 s. We also have evaluated the usefulness of guided breathing for DRRT. Since DRRT by its very nature can compensate for breathing-period changes, guided breathing was shown to be unnecessary for real-time tracking when using DRRT. Finally, DRRT uses the existing dose-rate control system that is provided for current linear accelerators. Therefore, DRRT can be achieved with minimal modification of existing technology, and this can shorten substantially the time necessary to establish DRRT in clinical practice.

  13. The clinical and technical evaluation of a remote telementored telesonography system during the acute resuscitation and transfer of the injured patient.

    PubMed

    Dyer, Dianne; Cusden, Jane; Turner, Chris; Boyd, Jeff; Hall, Rob; Lautner, David; Hamilton, Douglas R; Shepherd, Lance; Dunham, Michael; Bigras, Andre; Bigras, Guy; McBeth, Paul; Kirkpatrick, Andrew W

    2008-12-01

    Ultrasound (US) has an ever increasing scope in the evaluation of trauma, but relies greatly on operator experience. NASA has refined telesongraphy (TS) protocols for traumatic injury, especially in reference to mentoring inexperienced users. We hypothesized that such TS might benefit remote terrestrial caregivers. We thus explored using real-time US and video communication between a remote (Banff) and central (Calgary) site during acute trauma resuscitations. A existing internet link, allowing bidirectional videoconferencing and unidirectional US transmission was used between the Banff and Calgary ERs. Protocols to direct or observe an extended focused assessment with sonography for trauma (EFAST) were adapted from NASA algorithms. A call rota was established. Technical feasibility was ascertained through review of completed checklists. Involved personnel were interviewed with a semistructured interview. In addition to three normal volunteers, 20 acute clinical examinations were completed. Technical challenges requiring solution included initiating US; audio and video communications; image freezing; and US transmission delays. FAST exams were completed in all cases and EFASTs in 14. The critical anatomic features of a diagnostic examination were identified in 98% of all FAST exams and a 100% of all EFASTs that were attempted. Enhancement of clinical care included confirmation of five cases of hemoperitoneum and two pneumothoraces (PTXs), as well as educational benefits. Remote personnel were appreciative of the remote direction particularly when instructions were given sequentially in simple, nontechnical language. The remote real-time guidance or observation of an EFAST using TS appears feasible. Most technical problems were quickly overcome. Further evaluation of this approach and technology is warranted in more remote settings with less experienced personnel.

  14. Design and implementation of an identification system in construction site safety for proactive accident prevention.

    PubMed

    Yang, Huanjia; Chew, David A S; Wu, Weiwei; Zhou, Zhipeng; Li, Qiming

    2012-09-01

    Identifying accident precursors using real-time identity information has great potential to improve safety performance in construction industry, which is still suffering from day to day records of accident fatality and injury. Based on the requirements analysis for identifying precursor and the discussion of enabling technology solutions for acquiring and sharing real-time automatic identification information on construction site, this paper proposes an identification system design for proactive accident prevention to improve construction site safety. Firstly, a case study is conducted to analyze the automatic identification requirements for identifying accident precursors in construction site. Results show that it mainly consists of three aspects, namely access control, training and inspection information and operation authority. The system is then designed to fulfill these requirements based on ZigBee enabled wireless sensor network (WSN), radio frequency identification (RFID) technology and an integrated ZigBee RFID sensor network structure. At the same time, an information database is also designed and implemented, which includes 15 tables, 54 queries and several reports and forms. In the end, a demonstration system based on the proposed system design is developed as a proof of concept prototype. The contributions of this study include the requirement analysis and technical design of a real-time identity information tracking solution for proactive accident prevention on construction sites. The technical solution proposed in this paper has a significant importance in improving safety performance on construction sites. Moreover, this study can serve as a reference design for future system integrations where more functions, such as environment monitoring and location tracking, can be added. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Safety management for polluted confined space with IT system: a running case.

    PubMed

    Hwang, Jing-Jang; Wu, Chien-Hsing; Zhuang, Zheng-Yun; Hsu, Yi-Chang

    2015-01-01

    This study traced a deployed real IT system to enhance occupational safety for a polluted confined space. By incorporating wireless technology, it automatically monitors the status of workers on the site and upon detected anomalous events, managers are notified effectively. The system, with a redefined standard operations process, is running well at one of Formosa Petrochemical Corporation's refineries. Evidence shows that after deployment, the system does enhance the safety level by real-time monitoring the workers and by managing well and controlling the anomalies. Therefore, such technical architecture can be applied to similar scenarios for safety enhancement purposes.

  16. Real-time video streaming using H.264 scalable video coding (SVC) in multihomed mobile networks: a testbed approach

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2011-03-01

    Users of the next generation wireless paradigm known as multihomed mobile networks expect satisfactory quality of service (QoS) when accessing streamed multimedia content. The recent H.264 Scalable Video Coding (SVC) extension to the Advanced Video Coding standard (AVC), offers the facility to adapt real-time video streams in response to the dynamic conditions of multiple network paths encountered in multihomed wireless mobile networks. Nevertheless, preexisting streaming algorithms were mainly proposed for AVC delivery over multipath wired networks and were evaluated by software simulation. This paper introduces a practical, hardware-based testbed upon which we implement and evaluate real-time H.264 SVC streaming algorithms in a realistic multihomed wireless mobile networks environment. We propose an optimised streaming algorithm with multi-fold technical contributions. Firstly, we extended the AVC packet prioritisation schemes to reflect the three-dimensional granularity of SVC. Secondly, we designed a mechanism for evaluating the effects of different streamer 'read ahead window' sizes on real-time performance. Thirdly, we took account of the previously unconsidered path switching and mobile networks tunnelling overheads encountered in real-world deployments. Finally, we implemented a path condition monitoring and reporting scheme to facilitate the intelligent path switching. The proposed system has been experimentally shown to offer a significant improvement in PSNR of the received stream compared with representative existing algorithms.

  17. Breaking Out of the Lab: Measuring Real-Time Responses to Televised Political Content in Real-World Settings.

    PubMed

    Maier, Jürgen; Hampe, J Felix; Jahn, Nico

    2016-01-01

    Real-time response (RTR) measurement is an important technique for analyzing human processing of electronic media stimuli. Although it has been demonstrated that RTR data are reliable and internally valid, some argue that they lack external validity. The reason for this is that RTR measurement is restricted to a laboratory environment due to its technical requirements. This paper introduces a smartphone app that 1) captures real-time responses using the dial technique and 2) provides a solution for one of the most important problems in RTR measurement, the (automatic) synchronization of RTR data. In addition, it explores the reliability and validity of mobile RTR measurement by comparing the real-time reactions of two samples of young and well-educated voters to the 2013 German televised debate. Whereas the first sample participated in a classical laboratory study, the second sample was equipped with our mobile RTR system and watched the debate at home. Results indicate that the mobile RTR system yields similar results to the lab-based RTR measurement, providing evidence that laboratory studies using RTR are externally valid. In particular, the argument that the artificial reception situation creates artificial results has to be questioned. In addition, we conclude that RTR measurement outside the lab is possible. Hence, mobile RTR opens the door for large-scale studies to better understand the processing and impact of electronic media content.

  18. Weight Regain, But Not Weight Loss, Is Related to Competitive Success in Real-life Mixed Martial Arts Competition.

    PubMed

    Coswig, Victor Silveira; Miarka, Bianca; Pires, Daniel Alvarez; da Silva, Levy Mendes; Bartel, Charles; Del Vecchio, Fabrício Boscolo

    2018-05-14

    We aimed to describe the nutritional and behavioural strategies for rapid weight loss (RWL), investigate the effects of RWL and weight regain (WRG) in winners and losers and verify mood state and technical-tactical/time-motion parameters in Mixed Martial Arts (MMA). The sample consisted of MMA athletes after a single real match and was separated into two groups: Winners (n=8, age: 25.4±6.1yo., height: 173.9±0.2cm, habitual body mass (BM): 89.9±17.3kg) and Losers (n=7, age: 24.4±6.8yo., height: 178.4±0.9cm, habitual BM: 90.8±19.5kg). Both groups exhibited RWL and WRG, verified their macronutrient intake, underwent weight and height assessments and completed two questionnaires (POMS and RWL) at i) 24 h before weigh-in, ii) weigh-in, iii) post-bout and iv) during a validated time-motion and technical-tactical analysis during the bout. Variance analysis, repeated measures and a logistic regression analysis were used. The main results showed significant differences between the time points in terms of total caloric intake as well as carbohydrate, protein and lipid ingestion. Statistical differences in combat analysis were observed between the winners and losers in terms of high-intensity relative time [58(10;98) s and 32(1;60) s, respectively], lower limb sequences [3.5(1.0;7.5) sequences and 1.0(0.0;1.0) sequences, respectively], and ground and pound actions [2.5(0.0;4.5) actions and 0.0(0.0;0.5) actions, respectively], and logistic regression confirmed the importance of high-intensity relative time and lower limb sequences on MMA performance. RWL and WRG strategies were related to technical-tactical and time-motion patterns as well as match outcomes. Weight management should be carefully supervised by specialized professionals to reduce health risks and raise competitive performance.

  19. Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance

    PubMed Central

    Schiepek, Günter; Aichhorn, Wolfgang; Gruber, Martin; Strunk, Guido; Bachler, Egon; Aas, Benjamin

    2016-01-01

    Objective: The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients' compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific) surveys. Methods: The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results: We found high compliance rates (mean: 78.3%, median: 89.4%) amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion: The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for the assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities). PMID:27199837

  20. Invention and Writing in Technical Work: Representing the Object.

    ERIC Educational Resources Information Center

    Winsor, Dorothy A.

    1994-01-01

    Describes the way invention is relevant to the practice of technical writing. Studies three engineering students engaged in a real-world project. Shows how the students' technical work and invention for the final report were simultaneous activities. Claims that invention for and through writing overlaps with technical invention. (HB)

  1. MEG dual scanning: a procedure to study real-time auditory interaction between two persons

    PubMed Central

    Baess, Pamela; Zhdanov, Andrey; Mandel, Anne; Parkkonen, Lauri; Hirvenkari, Lotta; Mäkelä, Jyrki P.; Jousmäki, Veikko; Hari, Riitta

    2012-01-01

    Social interactions fill our everyday life and put strong demands on our brain function. However, the possibilities for studying the brain basis of social interaction are still technically limited, and even modern brain imaging studies of social cognition typically monitor just one participant at a time. We present here a method to connect and synchronize two faraway neuromagnetometers. With this method, two participants at two separate sites can interact with each other through a stable real-time audio connection with minimal delay and jitter. The magnetoencephalographic (MEG) and audio recordings of both laboratories are accurately synchronized for joint offline analysis. The concept can be extended to connecting multiple MEG devices around the world. As a proof of concept of the MEG-to-MEG link, we report the results of time-sensitive recordings of cortical evoked responses to sounds delivered at laboratories separated by 5 km. PMID:22514530

  2. Teleneurosonology: a novel application of transcranial and carotid ultrasound.

    PubMed

    Rubin, Mark N; Barrett, Kevin M; Freeman, W David; Lee Iannotti, Joyce K; Channer, Dwight D; Rabinstein, Alejandro A; Demaerschalk, Bart M

    2015-03-01

    To demonstrate the technical feasibility of interfacing transcranial Doppler (TCD) and carotid "duplex" ultrasonography (CUS) peripherals with telemedicine end points to provide real-time spectral waveform and duplex imaging data for remote review and interpretation. We performed remote TCD and CUS examinations on a healthy, volunteer employee from our institution without known cerebrovascular disease. The telemedicine end point was stationed in our institution's hospital where the neurosonology examinations took place and the control station was in a dedicated telemedicine room in a separate building. The examinations were performed by a postgraduate level neurohospitalist trainee (M.N.R.) and interpreted by an attending vascular neurologist, both with experience in the performance and interpretation of TCD and CUS. Spectral waveform and duplex ultrasound data were successfully transmitted from TCD and CUS instruments through a telemedicine end point to a remote reviewer at a control station. Image quality was preserved in all cases, and technical failures were not encountered. This proof-of-concept study demonstrates the technical feasibility of interfacing TCD and CUS peripherals with a telemedicine end point to provide real-time spectral waveform and duplex imaging data for remote review and interpretation. Medical diagnostic and telemedicine devices should be equipped with interfaces that allow simple transmission of high-quality audio and video information from the medical devices to the telemedicine technology. Further study is encouraged to determine the clinical impact of teleneurosonology. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. Self-Regulated Learning Microanalysis as a Tool to Inform Professional Development Delivery in Real-Time

    ERIC Educational Resources Information Center

    Peters-Burton, Erin E.; Botov, Ivan S.

    2017-01-01

    Elementary teachers in the United States are tasked with teaching all core subject matter and have training that involves many topics, which may limit the depth of their subject matter knowledge. Since they have low content knowledge, they often feel less confident about teaching technical subject matter, such as science (Bleicher "Journal of…

  4. How the Writing Context Shapes College Students' Strategies for Writing from Sources. Technical Report No. 16.

    ERIC Educational Resources Information Center

    Nelson, Jennie; Hayes, John R.

    Observing the composing processes of students working over real time in naturalistic settings, two exploratory studies asked: (1) What skills and assumptions do freshman and advanced writers invoke when they are searching for information to be used in writing? (2) What strategies and goals do students bring to a typical writing-from-sources task…

  5. Interventional radiology virtual simulator for liver biopsy.

    PubMed

    Villard, P F; Vidal, F P; ap Cenydd, L; Holbrey, R; Pisharody, S; Johnson, S; Bulpitt, A; John, N W; Bello, F; Gould, D

    2014-03-01

    Training in Interventional Radiology currently uses the apprenticeship model, where clinical and technical skills of invasive procedures are learnt during practice in patients. This apprenticeship training method is increasingly limited by regulatory restrictions on working hours, concerns over patient risk through trainees' inexperience and the variable exposure to case mix and emergencies during training. To address this, we have developed a computer-based simulation of visceral needle puncture procedures. A real-time framework has been built that includes: segmentation, physically based modelling, haptics rendering, pseudo-ultrasound generation and the concept of a physical mannequin. It is the result of a close collaboration between different universities, involving computer scientists, clinicians, clinical engineers and occupational psychologists. The technical implementation of the framework is a robust and real-time simulation environment combining a physical platform and an immersive computerized virtual environment. The face, content and construct validation have been previously assessed, showing the reliability and effectiveness of this framework, as well as its potential for teaching visceral needle puncture. A simulator for ultrasound-guided liver biopsy has been developed. It includes functionalities and metrics extracted from cognitive task analysis. This framework can be useful during training, particularly given the known difficulties in gaining significant practice of core skills in patients.

  6. Modular AUV System with Integrated Real-Time Water Quality Analysis.

    PubMed

    Eichhorn, Mike; Ament, Christoph; Jacobi, Marco; Pfuetzenreuter, Torsten; Karimanzira, Divas; Bley, Kornelia; Boer, Michael; Wehde, Henning

    2018-06-05

    This paper describes the concept, the technical implementation and the practical application of a miniaturized sensor system integrated into an autonomous underwater vehicle (AUV) for real-time acquisition of water quality parameters. The main application field of the presented system is the analysis of the discharge of nitrates into Norwegian fjords near aqua farms. The presented system was developed within the research project SALMON (Sea Water Quality Monitoring and Management) over a three-year period. The development of the sensor system for water quality parameters represented a significant challenge for the research group, as it was to be integrated in the payload unit of the autonomous underwater vehicle in compliance with the underwater environmental conditions. The German company -4H- JENA engineering GmbH (4HJE), with experience in optical in situ-detection of nutrients, designed and built the measurement system. As a carrier platform, the remotely operated vehicle (ROV) "CWolf" from Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung - Institutsteil Angewandte Systemtechnik (IOSB-AST) modified to an AUV was deployed. The concept presented illustrates how the measurement system can be integrated easily into the vehicle with a minimum of hard- and software technical interfaces.

  7. The SIM Time Network

    PubMed Central

    Lombardi, Michael A.; Novick, Andrew N.; Lopez R, J. Mauricio; Jimenez, Francisco; de Carlos Lopez, Eduardo; Boulanger, Jean-Simon; Pelletier, Raymond; de Carvalho, Ricardo J.; Solis, Raul; Sanchez, Harold; Quevedo, Carlos Andres; Pascoe, Gregory; Perez, Daniel; Bances, Eduardo; Trigo, Leonardo; Masi, Victor; Postigo, Henry; Questelles, Anthony; Gittens, Anselm

    2011-01-01

    The Sistema Interamericano de Metrologia (SIM) is a regional metrology organization (RMO) whose members are the national metrology institutes (NMIs) located in the 34 nations of the Organization of American States (OAS). The SIM/OAS region extends throughout North, Central, and South America and the Caribbean Islands. About half of the SIM NMIs maintain national standards of time and frequency and must participate in international comparisons in order to establish metrological traceability to the International System (SI) of units. The SIM time network (SIMTN) was developed as a practical, cost effective, and technically sound way to automate these comparisons. The SIMTN continuously compares the time standards of SIM NMIs and produces measurement results in near real-time by utilizing the Internet and the Global Positioning System (GPS). Fifteen SIM NMIs have joined the network as of December 2010. This paper provides a brief overview of SIM and a technical description of the SIMTN. It presents international comparison results and examines the measurement uncertainties. It also discusses the metrological benefits that the network provides to its participants. PMID:26989584

  8. The SIM Time Network.

    PubMed

    Lombardi, Michael A; Novick, Andrew N; Lopez R, J Mauricio; Jimenez, Francisco; de Carlos Lopez, Eduardo; Boulanger, Jean-Simon; Pelletier, Raymond; de Carvalho, Ricardo J; Solis, Raul; Sanchez, Harold; Quevedo, Carlos Andres; Pascoe, Gregory; Perez, Daniel; Bances, Eduardo; Trigo, Leonardo; Masi, Victor; Postigo, Henry; Questelles, Anthony; Gittens, Anselm

    2011-01-01

    The Sistema Interamericano de Metrologia (SIM) is a regional metrology organization (RMO) whose members are the national metrology institutes (NMIs) located in the 34 nations of the Organization of American States (OAS). The SIM/OAS region extends throughout North, Central, and South America and the Caribbean Islands. About half of the SIM NMIs maintain national standards of time and frequency and must participate in international comparisons in order to establish metrological traceability to the International System (SI) of units. The SIM time network (SIMTN) was developed as a practical, cost effective, and technically sound way to automate these comparisons. The SIMTN continuously compares the time standards of SIM NMIs and produces measurement results in near real-time by utilizing the Internet and the Global Positioning System (GPS). Fifteen SIM NMIs have joined the network as of December 2010. This paper provides a brief overview of SIM and a technical description of the SIMTN. It presents international comparison results and examines the measurement uncertainties. It also discusses the metrological benefits that the network provides to its participants.

  9. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hai; Dong, Junhang; Lin, Jerry

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  10. A semi-nested real-time PCR method to detect low chimerism percentage in small quantity of hematopoietic stem cell transplant DNA samples.

    PubMed

    Aloisio, Michelangelo; Bortot, Barbara; Gandin, Ilaria; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2017-02-01

    Chimerism status evaluation of post-allogeneic hematopoietic stem cell transplantation samples is essential to predict post-transplant relapse. The most commonly used technique capable of detecting small increments of chimerism is quantitative real-time PCR. Although this method is already used in several laboratories, previously described protocols often lack sensitivity and the amount of the DNA required for each chimerism analysis is too high. In the present study, we compared a novel semi-nested allele-specific real-time PCR (sNAS-qPCR) protocol with our in-house standard allele-specific real-time PCR (gAS-qPCR) protocol. We selected two genetic markers and analyzed technical parameters (slope, y-intercept, R2, and standard deviation) useful to determine the performances of the two protocols. The sNAS-qPCR protocol showed better sensitivity and precision. Moreover, the sNAS-qPCR protocol requires, as input, only 10 ng of DNA, which is at least 10-fold less than the gAS-qPCR protocols described in the literature. Finally, the proposed sNAS-qPCR protocol could prove very useful for performing chimerism analysis with a small amount of DNA, as in the case of blood cell subsets.

  11. Genotyping of polyomavirus BK by Real Time PCR for VP1 gene.

    PubMed

    Gambarino, Stefano; Costa, Cristina; Astegiano, Sara; Piasentin, Elsa Alessio; Segoloni, Giuseppe P; Cavallo, Rossana; Bergallo, Massimiliano

    2011-10-01

    Polyomavirus BK latently persist in different sites, including the renourinary tract, and may reactivate causing nephropathy in renal transplant recipients or hemorrhagic cystitis in bone marrow recipients. Based on the sequence of the VP1 gene, four genotypes have been described, corresponding to the four serologically differentiated subtypes I-IV, with different prevalence and geographic distribution. In this study, the development and clinical validation of four different Real-Time PCR assays for the detection and discrimination of BKV genotypes as a substitute of DNA sequencing are described. 379 BK VP1 sequences, belonging to the main four genotypes, were aligned and "hot spots" of mutation specific for all the strains or isolates were identified. Specific primers and probes for the detection and discrimination of each genotype by four Real-Time PCR assays were designed and technically validated. Subsequently, the four Real-Time PCR assays were used to test 20 BK-positive urine specimens from renal transplant patients, and evidenced a prevalence of BK genotype I, as previously reported in Europe. Results were confirmed by sequencing. The availability of a rapid and simple genotyping method could be useful for the evaluation of BK genotypes prevalence and studies on the impact of the infecting genotype on viral biological behavior, pathogenic role, and immune evasion strategies.

  12. Use of a novel virus inactivation method for a multicenter avian influenza real-time reverse transcriptase-polymerase chain reaction proficiency study.

    PubMed

    Spackman, Erica; Suarez, David L

    2005-01-01

    Proficiency assessments are important elements in quality control for diagnostic laboratories. Traditionally, proficiency testing for polymerase chain reaction (PCR)-based assays has involved the use of clinical samples, samples "spiked" with live agents or DNA plasmids. Because of government regulations and biosecurity concerns, distribution of live high-consequence pathogens of livestock and poultry, such as avian influenza, is not possible, and DNA plasmids are not technically suitable for evaluating RNA virus detection. Therefore, a proficiency testing panel using whole avian influenza in a diluent containing a phenolic disinfectant that inactivates the virus while preserving the RNA for at least 8 weeks at -70 C was developed and used in a multicenter proficiency assessment for a type A influenza real-time reverse transcriptase (RT)-PCR test. The test, which was highly standardized, except for variation in the real-time RT-PCR equipment used, was shown to be highly reproducible by proficiency testing in 12 laboratories in the United States, Canada, and Hong Kong. Variation in cycle threshold values among 35 data sets and 490 samples was minimal (CV = 5.19%), and sample identifications were highly accurate (96.7% correct identifications) regardless of real-time PCR instrumentation.

  13. Feasibility of a real-time hand hygiene notification machine learning system in outpatient clinics.

    PubMed

    Geilleit, R; Hen, Z Q; Chong, C Y; Loh, A P; Pang, N L; Peterson, G M; Ng, K C; Huis, A; de Korne, D F

    2018-04-09

    Various technologies have been developed to improve hand hygiene (HH) compliance in inpatient settings; however, little is known about the feasibility of machine learning technology for this purpose in outpatient clinics. To assess the effectiveness, user experiences, and costs of implementing a real-time HH notification machine learning system in outpatient clinics. In our mixed methods study, a multi-disciplinary team co-created an infrared guided sensor system to automatically notify clinicians to perform HH just before first patient contact. Notification technology effects were measured by comparing HH compliance at baseline (without notifications) with real-time auditory notifications that continued till HH was performed (intervention I) or notifications lasting 15 s (intervention II). User experiences were collected during daily briefings and semi-structured interviews. Costs of implementation of the system were calculated and compared to the current observational auditing programme. Average baseline HH performance before first patient contact was 53.8%. With real-time auditory notifications that continued till HH was performed, overall HH performance increased to 100% (P < 0.001). With auditory notifications of a maximum duration of 15 s, HH performance was 80.4% (P < 0.001). Users emphasized the relevance of real-time notification and contributed to technical feasibility improvements that were implemented in the prototype. Annual running costs for the machine learning system were estimated to be 46% lower than the observational auditing programme. Machine learning technology that enables real-time HH notification provides a promising cost-effective approach to both improving and monitoring HH, and deserves further development in outpatient settings. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Data Handling Recording System (DHRS).

    DTIC Science & Technology

    1980-07-01

    er.. side Ittv-00MYe artc Identify by bock no.Imbe.) The final technical report submitted by Harris Corporation contains a brief synopsis of the...is several hours, plenty of time for enemy aircraft, tanks, ships, and convoys to relocate. The Harris /WEC DHRS allows real-time target reporting and...A-A089 952 HARRIS CORP MELBOURE FLA F/6 15/4 DATA HANDLING RECORDING SYSTEM (DHRS).(U) JUL80 V E TAYLOR F30602-79-C-0268 NCLASSIFIED RADC-TR-80-198

  15. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction.

    PubMed

    Zhang, Shuo; Uecker, Martin; Voit, Dirk; Merboldt, Klaus-Dietmar; Frahm, Jens

    2010-07-08

    Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR) commonly rely on (i) electrocardiographic (ECG) gating yielding pseudo real-time cine representations, (ii) balanced gradient-echo sequences referred to as steady-state free precession (SSFP), and (iii) breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts), and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle) with an opposed-phase or in-phase condition for water and fat signals (depending on echo time). They completely avoid (i) susceptibility-induced artefacts due to the very short echo times, (ii) radiofrequency power limitations due to excitations with flip angles of 10 degrees or less, and (iii) the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Though awaiting thorough clinical evaluation, this work describes a robust and flexible acquisition and reconstruction technique for real-time CMR at the ultimate limit of this technology.

  16. The Use of Ubiquitous Sensor Technology in Evaluating Student Thought Process during Practical Operations for Improving Student Technical and Creative Skills

    ERIC Educational Resources Information Center

    Jou, Min; Wang, Jingying

    2015-01-01

    This study investigated a Ubiquitous Sensor System (USS) that we developed to assess student thought process during practical lessons on a real-time basis and to provide students with a reflective learning environment. Behavioral curves and data obtained by the USS would help students understand where they had made mistakes during practical…

  17. Timing is the elusive connector of dreams

    NASA Astrophysics Data System (ADS)

    Lones, Joe J.; Lones, Lance

    2014-12-01

    Establishing San Diego as the venue for SPIE annual meetings was an activity loaded with unusual efforts and imagination on the part Joe Yaver, his wife, Anita, and some southern California members. Of interest is the origin (and retention) of SPIE as a name for the organization. Few know the associated logo has real technical meaning. Then there was moving SPIE headquarters to Bellingham, Washington, to complicate things.

  18. Real-Time Optimization of Distribution Grids for Increased Flexibility and

    Science.gov Websites

    ensure a stable system operation. Now let's go a little bit to the math, because there are some technical math. This one looks very complicated, but it's actually very simple, because, for example, you take stability and optimality. However, I'm not going to delve into the math. I'm going to move to some test

  19. Acquiring Technical Data With Renewable Real Options

    DTIC Science & Technology

    2016-04-30

    Development, and Engineering Center, 2009). Faced with diminishing sources for M2 .50 caliber machine gun parts , an Army engineering center entered the...data needed for life cycle sustainment functions such as maintenance or competitive spare parts procurement, but this expectation is more complicated...than it seems (DoD, 2015). The needs and timing for competitive spare parts procurement are uncertain, and changes in system configuration or

  20. Spatial Soliton Interactions for Photonic Switching. Part I

    DTIC Science & Technology

    2000-03-07

    technique , a fully vectorial, first-order nonlinear wave equation that consistently includes terms two -orders beyond the slowly-varying amplitude , slowly...by using two tunable mode-locked Er-doped fiber lasers ," in Conference on Optical Fiber Communications, OSA Technical Digest Series, vol. 4, 1994...instead, based on optical logic gates. In addition, optical logic could be used for contention resolution, real-time encryption /decryption, and other

  1. Repeated Judgements of Interest in Vocational Education: A Lens Model Analysis. Occasional Paper Number 6.

    ERIC Educational Resources Information Center

    Athanasou, James A.

    The topic of repeated judgments of interest in vocational education was examined in a study in which 10 female full-time technical and further education (TAFE) students (aged 15-60 years) were handed 120 randomly selected real profiles of TAFE students who had completed subject interest surveys in a previous study. The 10 TAFE students judged how…

  2. Real-time fluoroscopic needle guidance in the interventional radiology suite using navigational software for percutaneous bone biopsies in children.

    PubMed

    Shellikeri, Sphoorti; Setser, Randolph M; Hwang, Tiffany J; Srinivasan, Abhay; Krishnamurthy, Ganesh; Vatsky, Seth; Girard, Erin; Zhu, Xiaowei; Keller, Marc S; Cahill, Anne Marie

    2017-07-01

    Navigational software provides real-time fluoroscopic needle guidance for percutaneous procedures in the Interventional Radiology (IR) suite. We describe our experience with navigational software for pediatric percutaneous bone biopsies in the IR suite and compare technical success, diagnostic accuracy, radiation dose and procedure time with that of CT-guided biopsies. Pediatric bone biopsies performed using navigational software (Syngo iGuide, Siemens Healthcare) from 2011 to 2016 were prospectively included and anatomically matched CT-guided bone biopsies from 2008 to 2016 were retrospectively reviewed with institutional review board approval. C-arm CT protocols used for navigational software-assisted cases included institution-developed low-dose (0.1/0.17 μGy/projection), regular-dose (0.36 μGy/projection), or a combination of low-dose/regular-dose protocols. Estimated effective radiation dose and procedure times were compared between software-assisted and CT-guided biopsies. Twenty-six patients (15 male; mean age: 10 years) underwent software-assisted biopsies (15 pelvic, 7 lumbar and 4 lower extremity) and 33 patients (13 male; mean age: 9 years) underwent CT-guided biopsies (22 pelvic, 7 lumbar and 4 lower extremity). Both modality biopsies resulted in a 100% technical success rate. Twenty-five of 26 (96%) software-assisted and 29/33 (88%) CT-guided biopsies were diagnostic. Overall, the effective radiation dose was significantly lower in software-assisted than CT-guided cases (3.0±3.4 vs. 6.6±7.7 mSv, P=0.02). The effective dose difference was most dramatic in software-assisted cases using low-dose C-arm CT (1.2±1.8 vs. 6.6±7.7 mSv, P=0.001) or combined low-dose/regular-dose C-arm CT (1.9±2.4 vs. 6.6±7.7 mSv, P=0.04), whereas effective dose was comparable in software-assisted cases using regular-dose C-arm CT (6.0±3.5 vs. 6.6±7.7 mSv, P=0.7). Mean procedure time was significantly lower for software-assisted cases (91±54 vs. 141±68 min, P=0.005). In our experience, navigational software technology in the IR suite is a promising alternative to CT guidance for pediatric bone biopsies providing comparable technical success and diagnostic accuracy with lower radiation dose and procedure time, in addition to providing real-time fluoroscopic needle guidance.

  3. Analysis of the new health management based on health internet of things and cloud computing

    NASA Astrophysics Data System (ADS)

    Liu, Shaogang

    2018-05-01

    With the development and application of Internet of things and cloud technology in the medical field, it provides a higher level of exploration space for human health management. By analyzing the Internet of things technology and cloud technology, this paper studies a new form of health management system which conforms to the current social and technical level, and explores its system architecture, system characteristics and application. The new health management platform for networking and cloud can achieve the real-time monitoring and prediction of human health through a variety of sensors and wireless networks based on information and can be transmitted to the monitoring system, and then through the software analysis model, and gives the targeted prevention and treatment measures, to achieve real-time, intelligent health management.

  4. Instrument Development of Real Time Holographic Water Drop Size Measurement System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springston, Stephen

    2007-02-09

    BNL participated with multiple correspondences with Physical Optics Corporation (POC) on the design considerations of an airbome instrument. A pod for extemal deployment ofthe POC unit on the DOE Research Aircraft Facility (RAF), an instrumented, Grumman G-1 aircraft was loaned to POC. BNL proposed evaluation flight tests between the POC unit and the BNL Cloud Aerosol Probe Spectrometer (CAPS) as a reference method. BNL's involvement is described in the semi-annual report ofPOC to DOE. Because of unanticipated technical and engineering difficulties, POC was unable to fit their instrument into an aircraft pod. As a result they are now focusing onmore » a ground-based version first. A prototype laboratory version of the Real-Time Holographic Water Drop Size Measurement (WDSM) System has been constructed.« less

  5. Three Experiments Examining the Use of Electroencephalogram,Event-Related Potentials, and Heart-Rate Variability for Real-Time Human-Centered Adaptive Automation Design

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Parasuraman, Raja; Freeman, Frederick G.; Scerbo, Mark W.; Mikulka, Peter J.; Pope, Alan T.

    2003-01-01

    Adaptive automation represents an advanced form of human-centered automation design. The approach to automation provides for real-time and model-based assessments of human-automation interaction, determines whether the human has entered into a hazardous state of awareness and then modulates the task environment to keep the operator in-the-loop , while maintaining an optimal state of task engagement and mental alertness. Because adaptive automation has not matured, numerous challenges remain, including what the criteria are, for determining when adaptive aiding and adaptive function allocation should take place. Human factors experts in the area have suggested a number of measures including the use of psychophysiology. This NASA Technical Paper reports on three experiments that examined the psychophysiological measures of event-related potentials, electroencephalogram, and heart-rate variability for real-time adaptive automation. The results of the experiments confirm the efficacy of these measures for use in both a developmental and operational role for adaptive automation design. The implications of these results and future directions for psychophysiology and human-centered automation design are discussed.

  6. Musculoskeletal-see-through mirror: computational modeling and algorithm for whole-body muscle activity visualization in real time.

    PubMed

    Murai, Akihiko; Kurosaki, Kosuke; Yamane, Katsu; Nakamura, Yoshihiko

    2010-12-01

    In this paper, we present a system that estimates and visualizes muscle tensions in real time using optical motion capture and electromyography (EMG). The system overlays rendered musculoskeletal human model on top of a live video image of the subject. The subject therefore has an impression that he/she sees the muscles with tension information through the cloth and skin. The main technical challenge lies in real-time estimation of muscle tension. Since existing algorithms using mathematical optimization to distribute joint torques to muscle tensions are too slow for our purpose, we develop a new algorithm that computes a reasonable approximation of muscle tensions based on the internal connections between muscles known as neuronal binding. The algorithm can estimate the tensions of 274 muscles in only 16 ms, and the whole visualization system runs at about 15 fps. The developed system is applied to assisting sport training, and the user case studies show its usefulness. Possible applications include interfaces for assisting rehabilitation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Influence of typical faults over the dynamic behavior of pantograph-catenary contact force in electric rail transport

    NASA Astrophysics Data System (ADS)

    Rusu-Anghel, S.; Ene, A.

    2017-05-01

    The quality of electric energy capture and also the equipment operational safety depend essentially of the technical state of the contact line (CL). The present method for determining the technical state of CL based on advance programming is no longer efficient, due to the faults which can occur into the not programmed areas. Therefore, they cannot be remediated. It is expected another management method for the repairing and maintenance of CL based on its real state which must be very well known. In this paper a new method for determining the faults in CL is described. It is based on the analysis of the variation of pantograph-CL contact force in dynamical regime. Using mathematical modelling and also experimental tests, it was established that each type of fault is able to generate ‘signatures’ into the contact force diagram. The identification of these signatures can be accomplished by an informatics system which will provide the fault location, its type and also in the future, the probable evolution of the CL technical state. The measuring of the contact force is realized in optical manner using a railway inspection trolley which has appropriate equipment. The analysis of the desired parameters can be accomplished in real time by a data acquisition system, based on dedicated software.

  8. Education, Technology, and Media: A Peak into My Summer Internship at NASA Glenn Research Center in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senor at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time sohare applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community.

  9. 24 CFR 902.68 - Technical review of results of PHAS Indicators #1 or #4.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... both reviews, a request for technical review must be submitted in writing to the Director of the Real... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Technical review of results of PHAS... HOUSING AND URBAN DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM PHAS Scoring § 902.68 Technical review of...

  10. NASA Space Environments Technical Discipline Team Space Weather Activities

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  11. Augmenting breath regulation using a mobile driven virtual reality therapy framework.

    PubMed

    Abushakra, Ahmad; Faezipour, Miad

    2014-05-01

    This paper presents a conceptual framework of a virtual reality therapy to assist individuals, especially lung cancer patients or those with breathing disorders to regulate their breath through real-time analysis of respiration movements using a smartphone. Virtual reality technology is an attractive means for medical simulations and treatment, particularly for patients with cancer. The theories, methodologies and approaches, and real-world dynamic contents for all the components of this virtual reality therapy (VRT) via a conceptual framework using the smartphone will be discussed. The architecture and technical aspects of the offshore platform of the virtual environment will also be presented.

  12. Development of real-time motion verification system using in-room optical images for respiratory-gated radiotherapy.

    PubMed

    Park, Yang-Kyun; Son, Tae-geun; Kim, Hwiyoung; Lee, Jaegi; Sung, Wonmo; Kim, Il Han; Lee, Kunwoo; Bang, Young-bong; Ye, Sung-Joon

    2013-09-06

    Phase-based respiratory-gated radiotherapy relies on the reproducibility of patient breathing during the treatment. To monitor the positional reproducibility of patient breathing against a 4D CT simulation, we developed a real-time motion verification system (RMVS) using an optical tracking technology. The system in the treatment room was integrated with a real-time position management system. To test the system, an anthropomorphic phantom that was mounted on a motion platform moved on a programmed breathing pattern and then underwent a 4D CT simulation with RPM. The phase-resolved anterior surface lines were extracted from the 4D CT data to constitute 4D reference lines. In the treatment room, three infrared reflective markers were attached on the superior, middle, and inferior parts of the phantom along with the body midline and then RMVS could track those markers using an optical camera system. The real-time phase information extracted from RPM was delivered to RMVS via in-house network software. Thus, the real-time anterior-posterior positions of the markers were simultaneously compared with the 4D reference lines. The technical feasibility of RMVS was evaluated by repeating the above procedure under several scenarios such as ideal case (with identical motion parameters between simulation and treatment), cycle change, baseline shift, displacement change, and breathing type changes (abdominal or chest breathing). The system capability for operating under irregular breathing was also investigated using real patient data. The evaluation results showed that RMVS has a competence to detect phase-matching errors between patient's motion during the treatment and 4D CT simulation. Thus, we concluded that RMVS could be used as an online quality assurance tool for phase-based gating treatments.

  13. Automated real-time needle-guide tracking for fast 3-T MR-guided transrectal prostate biopsy: a feasibility study.

    PubMed

    Zamecnik, Patrik; Schouten, Martijn G; Krafft, Axel J; Maier, Florian; Schlemmer, Heinz-Peter; Barentsz, Jelle O; Bock, Michael; Fütterer, Jurgen J

    2014-12-01

    To assess the feasibility of automatic needle-guide tracking by using a real-time phase-only cross correlation ( POCC phase-only cross correlation ) algorithm-based sequence for transrectal 3-T in-bore magnetic resonance (MR)-guided prostate biopsies. This study was approved by the ethics review board, and written informed consent was obtained from all patients. Eleven patients with a prostate-specific antigen level of at least 4 ng/mL (4 μg/L) and at least one transrectal ultrasonography-guided biopsy session with negative findings were enrolled. Regions suspicious for cancer were identified on 3-T multiparametric MR images. During a subsequent MR-guided biopsy, the regions suspicious for cancer were reidentified and targeted by using the POCC phase-only cross correlation -based tracking sequence. Besides testing a general technical feasibility of the biopsy procedure by using the POCC phase-only cross correlation -based tracking sequence, the procedure times were measured, and a pathologic analysis of the biopsy cores was performed. Thirty-eight core samples were obtained from 25 regions suspicious for cancer. It was technically feasible to perform the POCC phase-only cross correlation -based biopsies in all regions suspicious for cancer in each patient, with adequate biopsy samples obtained with each biopsy attempt. The median size of the region suspicious for cancer was 8 mm (range, 4-13 mm). In each region suspicious for cancer (median number per patient, two; range, 1-4), a median of one core sample per region was obtained (range, 1-3). The median time for guidance per target was 1.5 minutes (range, 0.7-5 minutes). Nineteen of 38 core biopsy samples contained cancer. This study shows that it is feasible to perform transrectal 3-T MR-guided biopsies by using a POCC phase-only cross correlation algorithm-based real-time tracking sequence. © RSNA, 2014.

  14. The deep-tow marine controlled-source electromagnetic transmitter system for gas hydrate exploration

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Deng, Ming; Wu, Zhongliang; Luo, Xianhu; Jing, Jianen; Chen, Kai

    2017-02-01

    The Marine Controlled-Source Electromagnetic (MCSEM) method has been recognized as an important and effective tool to detect electrically resistive structures, such as oil, gas, and gas hydrate. The MCSEM performance is strongly influenced by the transmitter system design. We have developed a deep-tow MCSEM transmitter system. In this paper, some new technical details will be present. A 10,000 m optical-electrical composite cable is used to support high power transmission and fast data transfer; a new clock unit is designed to keep the synchronization between transmitter and receivers, and mark the time stamp into the transmission current full waveform; a data link is established to monitor the real-time altitude of the tail unit; an online insulation measuring instrument is adopted to monitor current leakage from high voltage transformer; a neutrally buoyant dipole antenna of copper cable and flexible electrodes are created to transmit the large power current into seawater; a new design method for the transmitter, which is called "real-time control technology of hardware parallelism", is described to achieve inverting and recording high-power current waveform, controlling functions, and collecting auxiliary information. We use a gas hydrate exploration test to verify the performance of the transmitter system, focusing on more technical details, rather than applications. The test shows that the transmitter can be used for gas hydrate exploration as an effective source.

  15. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Maddox, Marlo M.; Mullinix, Richard; Mays, M. Leila; Kuznetsova, Maria; Zheng, Yihua; Pulkkinen, Antti; Rastaetter, Lutz

    2013-03-01

    Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Research Center at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 300 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities including the utilization of data from the Solar Dynamics Observatory mission. http://iswa.gsfc.nasa.gov/

  16. A preliminary survey analysis of school shuttle bus system towards smart mobility solutions

    NASA Astrophysics Data System (ADS)

    Yue, Wong Seng; Hoy, Cheong Wan; Chye, Koh Keng

    2017-10-01

    Mobility and accessibility are crucial indicators of urban development. Public transport in the urban areas came into existence to fulfil transportation needs as well as mobility and accessibility demands. Ridership can be affected by the quality and quantity of transit service. However, technical improvements are needed for such as real-time bus information, controlling run time and headway delay. Thus, this paper is aimed to carry out a preliminary survey to determine the problems of school shuttle bus that faced by the students in a selected educational institution, their perceptions of using shuttle bus tracking and information mobile application and impacts of real-time information of public transits on bus ridership and towards smart mobility solutions. Efficient public transportation system needs further investigation about the role of mobile application for the bus tracking system in supporting smart mobility actions and real-time information. The proposed application also provides a smart solution for the management of public infrastructures and urban facilities in Malaysia in future. Eventually, this study opens an opportunity to improve Malaysian quality of life on the public value that created for the city as a whole.

  17. Real-time endoscopic image orientation correction system using an accelerometer and gyrosensor.

    PubMed

    Lee, Hyung-Chul; Jung, Chul-Woo; Kim, Hee Chan

    2017-01-01

    The discrepancy between spatial orientations of an endoscopic image and a physician's working environment can make it difficult to interpret endoscopic images. In this study, we developed and evaluated a device that corrects the endoscopic image orientation using an accelerometer and gyrosensor. The acceleration of gravity and angular velocity were retrieved from the accelerometer and gyrosensor attached to the handle of the endoscope. The rotational angle of the endoscope handle was calculated using a Kalman filter with transmission delay compensation. Technical evaluation of the orientation correction system was performed using a camera by comparing the optical rotational angle from the captured image with the rotational angle calculated from the sensor outputs. For the clinical utility test, fifteen anesthesiology residents performed a video endoscopic examination of an airway model with and without using the orientation correction system. The participants reported numbers written on papers placed at the left main, right main, and right upper bronchi of the airway model. The correctness and the total time it took participants to report the numbers were recorded. During the technical evaluation, errors in the calculated rotational angle were less than 5 degrees. In the clinical utility test, there was a significant time reduction when using the orientation correction system compared with not using the system (median, 52 vs. 76 seconds; P = .012). In this study, we developed a real-time endoscopic image orientation correction system, which significantly improved physician performance during a video endoscopic exam.

  18. Statistical aspects of quantitative real-time PCR experiment design.

    PubMed

    Kitchen, Robert R; Kubista, Mikael; Tichopad, Ales

    2010-04-01

    Experiments using quantitative real-time PCR to test hypotheses are limited by technical and biological variability; we seek to minimise sources of confounding variability through optimum use of biological and technical replicates. The quality of an experiment design is commonly assessed by calculating its prospective power. Such calculations rely on knowledge of the expected variances of the measurements of each group of samples and the magnitude of the treatment effect; the estimation of which is often uninformed and unreliable. Here we introduce a method that exploits a small pilot study to estimate the biological and technical variances in order to improve the design of a subsequent large experiment. We measure the variance contributions at several 'levels' of the experiment design and provide a means of using this information to predict both the total variance and the prospective power of the assay. A validation of the method is provided through a variance analysis of representative genes in several bovine tissue-types. We also discuss the effect of normalisation to a reference gene in terms of the measured variance components of the gene of interest. Finally, we describe a software implementation of these methods, powerNest, that gives the user the opportunity to input data from a pilot study and interactively modify the design of the assay. The software automatically calculates expected variances, statistical power, and optimal design of the larger experiment. powerNest enables the researcher to minimise the total confounding variance and maximise prospective power for a specified maximum cost for the large study. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Recent Evolutions of the GEOSCOPE Broadband Seismic Observatory

    NASA Astrophysics Data System (ADS)

    Stutzmann, E.; Vallee, M.; Zigone, D.; Bonaime, S.; Thore, J. Y.; Pesqueira, F.; Pardo, C.; Bernard, A.; Maggi, A.; Vincent, D.; Sayadi, J.

    2017-12-01

    The GEOSCOPE observatory provides 36 years of continuous broadband data to the scientific community. The 32 operational GEOSCOPE stations are installed in 17 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers (Q330HR). Seismometers are installed with warpless base plates, which decrease long period noise on horizontal components by up to 15dB. All stations send data in real time to the IPGP data center and are automatically transmitted to other data centers (IRIS-DMC and RESIF) and tsunami warning centers. Recent improvements include a new station in Wallis and Futuna (FUTU, South-Western Pacific Ocean) and the re-installation of WUS station in Western China. Data of the stations are technically validated by IPGP (25 stations) or EOST (6 stations) in order to check their continuity and integrity. A scientific data validation is also performed by analyzing seismic noise level of the continuous data and by comparing real and synthetic earthquake waveforms (body waves). After these validations, data are archived by the IPGP data center in Paris. They are made available to the international scientific community through different interfaces (see details on http://geoscope.ipgp.fr). All GEOSCOPE data are in miniseed format but using various conventions. An important technical work is done to homogenize the data miniseed formats of the whole GEOSCOPE database, in order to make easier the data duplication at the IRIS-DMC and RESIF data centers. The GEOSCOPE observatory also provides near-real time information on the World large seismicity (above magnitude 5.5-6) through the automated use of the SCARDEC method. Earthquake parameters (depth, moment magnitude, focal mechanism, source time function) are determined about 45 minutes after the occurrence of the event. A specific webpage is then generated, which also includes information for a non-seismologist audience (past seismicity, foreshocks and aftershocks, 3D representations of the fault motion…). This information is also disseminated in real-time through mailing lists and social networks. Examples for recent earthquakes can be seen in http://geoscope.ipgp.fr/index.php/en/data/earthquake-data/latest-earthquakes.

  20. Use of a Real-Time Training Software (Laerdal QCPR®) Compared to Instructor-Based Feedback for High-Quality Chest Compressions Acquisition in Secondary School Students: A Randomized Trial.

    PubMed

    Cortegiani, Andrea; Russotto, Vincenzo; Montalto, Francesca; Iozzo, Pasquale; Meschis, Roberta; Pugliesi, Marinella; Mariano, Dario; Benenati, Vincenzo; Raineri, Santi Maurizio; Gregoretti, Cesare; Giarratano, Antonino

    2017-01-01

    High-quality chest compressions are pivotal to improve survival from cardiac arrest. Basic life support training of school students is an international priority. The aim of this trial was to assess the effectiveness of a real-time training software (Laerdal QCPR®) compared to a standard instructor-based feedback for chest compressions acquisition in secondary school students. After an interactive frontal lesson about basic life support and high quality chest compressions, 144 students were randomized to two types of chest compressions training: 1) using Laerdal QCPR® (QCPR group- 72 students) for real-time feedback during chest compressions with the guide of an instructor who considered software data for students' correction 2) based on standard instructor-based feedback (SF group- 72 students). Both groups had a minimum of a 2-minute chest compressions training session. Students were required to reach a minimum technical skill level before the evaluation. We evaluated all students at 7 days from the training with a 2-minute chest compressions session. The primary outcome was the compression score, which is an overall measure of chest compressions quality calculated by the software expressed as percentage. 125 students were present at the evaluation session (60 from QCPR group and 65 from SF group). Students in QCPR group had a significantly higher compression score (median 90%, IQR 81.9-96.0) compared to SF group (median 67%, IQR 27.7-87.5), p = 0.0003. Students in QCPR group performed significantly higher percentage of fully released chest compressions (71% [IQR 24.5-99.0] vs 24% [IQR 2.5-88.2]; p = 0.005) and better chest compression rate (117.5/min [IQR 106-123.5] vs 125/min [115-135.2]; p = 0.001). In secondary school students, a training for chest compressions based on a real-time feedback software (Laerdal QCPR®) guided by an instructor is superior to instructor-based feedback training in terms of chest compression technical skill acquisition. Australian New Zealand Clinical Trials Registry ACTRN12616000383460.

  1. A Real-Time Recording Model of Key Indicators for Energy Consumption and Carbon Emissions of Sustainable Buildings

    PubMed Central

    Wu, Weiwei; Yang, Huanjia; Chew, David; Hou, Yanhong; Li, Qiming

    2014-01-01

    Buildings' sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID)-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability. PMID:24831109

  2. A real-time recording model of key indicators for energy consumption and carbon emissions of sustainable buildings.

    PubMed

    Wu, Weiwei; Yang, Huanjia; Chew, David; Hou, Yanhong; Li, Qiming

    2014-05-14

    Buildings' sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID)-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability.

  3. Core ITAC for Career-Focused Education. Integrated Technical & Academic Competencies.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This document introduces the underlying principles and components of Ohio's Integrated Technical and Academic Competencies (ITAC) system of career-focused education, which combines high-level academics and technical skills with a real-life context for learning that maximizes students' present and future academic and career success. The document…

  4. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm.

    PubMed

    Tizzoni, Michele; Bajardi, Paolo; Poletto, Chiara; Ramasco, José J; Balcan, Duygu; Gonçalves, Bruno; Perra, Nicola; Colizza, Vittoria; Vespignani, Alessandro

    2012-12-13

    Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches. We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability. Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model. Our results show that large-scale models can be used to provide valuable real-time forecasts of influenza spreading, but they require high-performance computing. The quality of the forecast depends on the level of data integration, thus stressing the need for high-quality data in population-based models, and of progressive updates of validated available empirical knowledge to inform these models.

  5. Hospital waste sterilization: A technical and economic comparison between radiation and microwaves treatments

    NASA Astrophysics Data System (ADS)

    Tata, A.; Beone, F.

    1995-09-01

    Hospital waste (HW) disposal is becoming a problem of increasing importance in almost all industrially advanced countries. In Italy the yearly hospital waste production is about 250,000 tons and only 60,000 tons are treated by incineration at present time. As by a recent Italian law a meaningful percentage of HW (50 to 60%), corresponding to food residuals, plastics, paper, various organic materials, etc., could be landfilled as municipal refuses if preliminarily submitted to a suitable sterilization treatment. Under this perspective, sterilization/sanitation techniques represent now a technically and commercially viable alternative to HW thermal destruction that, besides, is more and more socially and politically less accepted. Electron Beam (EB) and Microwave (MW) treatments are two of the most interesting and emerging HW sterilization techniques, and, based on engineering real data, a technical and economic comparison is carried out, focusing vantages and limits of each process.

  6. The technical consideration of multi-beam mask writer for production

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hee; Ahn, Byung-Sup; Choi, Jin; Shin, In Kyun; Tamamushi, Shuichi; Jeon, Chan-Uk

    2016-10-01

    Multi-beam mask writer is under development to solve the throughput and patterning resolution problems in VSB mask writer. Theoretically, the writing time is appropriate for future design node and the resolution is improved with multi-beam mask writer. Many previous studies show the feasible results of resolution, CD control and registration. Although such technical results of development tool seem to be enough for mass production, there are still many unexpected problems for real mass production. In this report, the technical challenges of multi-beam mask writer are discussed in terms of production and application. The problems and issues are defined based on the performance of current development tool compared with the requirements of mask quality. Using the simulation and experiment, we analyze the specific characteristics of electron beam in multi-beam mask writer scheme. Consequently, we suggest necessary specifications for mass production with multi-beam mask writer in the future.

  7. United States Military Academy Photonics Research Center, 2009 Program Review

    DTIC Science & Technology

    2009-01-01

    Publications Faculty: P. Patterson, PhD. Dissertation. George Washington University, May 2009. P. Patterson, R. Polcawich, and J. Zara ...States Military Academy Technical Symposium, Atlantic City, NJ, October 30-31, 2007. P. E. Patterson, J. M. Zara , "Real-time high-displacement amplified...2006. P. E. Patterson, M. Dubey, J. Pulskamp, R. Polcawich, L. Currano, and J. Zara , "Piezoelectric polyimide scanning micromirror" Proceedings of The

  8. TACS Central Control Facility.

    DTIC Science & Technology

    1981-02-12

    PULSE RTC REAL TIME CLOCK -{> I . SIGNAL INVERSION UASC UNIVERSAL ASYNCHRONOUS SERIAL - ---- 4w SPECIAL INTERFACE CONTROLLER Fiq. 2-1. MAC hardware...34 Universal Asynchronous Serial Controller" (UASC) cards. The cards implement an RS-232 standard interface. All controllers are set to operate at a data...Bridwell and I. Richer, "A Preliminary Design of a TDMA System for FLEETSAT," Technical Note 1975-5, Lincoln Laboratory, M.I.T. (12 March 1975), DDC

  9. Comparison of Intraoperative Portable CT Scanners in Skull Base and Endoscopic Sinus Surgery: Single Center Case Series

    PubMed Central

    Conley, David B.; Tan, Bruce; Bendok, Bernard R.; Batjer, H. Hunt; Chandra, Rakesh; Sidle, Douglas; Rahme, Rudy J.; Adel, Joseph G.; Fishman, Andrew J.

    2011-01-01

    Precise and safe management of complex skull base lesions can be enhanced by intraoperative computed tomography (CT) scanning. Surgery in these areas requires real-time feedback of anatomic landmarks. Several portable CT scanners are currently available. We present a comparison of our clinical experience with three portable scanners in skull base and craniofacial surgery. We present clinical case series and the participants were from the Northwestern Memorial Hospital. Three scanners are studied: one conventional multidetector CT (MDCT), two digital flat panel cone-beam CT (CBCT) devices. Technical considerations, ease of use, image characteristics, and integration with image guidance are presented for each device. All three scanners provide good quality images. Intraoperative scanning can be used to update the image guidance system in real time. The conventional MDCT is unique in its ability to resolve soft tissue. The flat panel CBCT scanners generally emit lower levels of radiation and have less metal artifact effect. In this series, intraoperative CT scanning was technically feasible and deemed useful in surgical decision-making in 75% of patients. Intraoperative portable CT scanning has significant utility in complex skull base surgery. This technology informs the surgeon of the precise extent of dissection and updates intraoperative stereotactic navigation. PMID:22470270

  10. A New Intraoperative Real-time Monitoring System for Reconstructive Middle Ear Surgery: An Experimental and Clinical Feasibility Study.

    PubMed

    Zahnert, Thomas; Metasch, Marie-Luise; Seidler, Hannes; Bornitz, Matthias; Lasurashvili, Nicoloz; Neudert, Marcus

    2016-12-01

    Electromagnetical excitation of ossicular vibration is suitable for middle ear transmission measurements in the experimental and clinical setting. Thereby, it can be used as a real-time monitoring system for quality control in ossiculoplasty. Positioning and coupling of middle ear prosthesis are a precondition for good postoperative hearing results, but at the same time completely dependent upon the surgeon's subjective judgment during surgery. We evaluated an electromagnetically driven measurement system that enables for in vitro and in vivo transmission measurements and thus can be used as a real-time monitoring tool in ossicular reconstruction. For electromagnetical excitation a magnet was placed on the umbo of the malleus handle and driven by a magnetic field. The induced stapes displacement was picked up by laser Doppler vibrometry on the footplate. Measurements were performed on the intact ossicular chain in five cadaveric temporal bones and during five cochlear implant surgeries. Additionally, two ossiculoplasties were performed under real-time transmission feedback with the monitoring system. Experimentally, the equivalent sound pressure level of the electromagnetic excitation was about 70 to 80 dB which is 10 to 20 dB less than the acoustic stimulation. In the intraoperative setup the generated stapes displacements were about 5 to 20 dB smaller compared with the temporal bone experiments. Applied as real-time feedback system, an improvement in the middle ear transfer function of 4.5 dB in total and 20 dB in partial ossicular reconstruction were achieved. The electromagnetical excitation and measurement system is comparable to the gold standard with acoustical stimulation in both, the experimental setup in temporal bones as well as in vivo. The technical feasibility of the electromagnetical excitation method has been proven and it is shown that it can be used as a real-time monitoring system for ossiculoplasty in the operation room.

  11. The Wisconsin immunization registry experience: comparing real-time and batched file submissions from health care providers.

    PubMed

    Schauer, Stephanie L; Maerz, Thomas R; Verdon, Matthew J; Hopfensperger, Daniel J; Davis, Jeffrey P

    2014-06-01

    The Wisconsin Immunization Registry is a confidential, web-based system used since 1999 as a centralized repository of immunization information for Wisconsin residents. Provide evidence based on Registry experiences with electronic data exchange, comparing the benefits and drawbacks of using the Health Level 7 standard, including the option for real time data exchange vs the flat file method. For data regarding vaccinations received by children aged 4 months through 6 years with Wisconsin addresses that were submitted to the Registry during 2010 and 2011, data timeliness (days from vaccine administration to date information was received) and completeness (percentage of records received that include core data elements for electronic storage) were compared by file submission method. Data submitted using Health Level 7 were substantially more timely than data submitted using the flat file method. Additionally, data submitted using Health Level 7 were substantially more complete for each of the core elements compared to flat file submission. Health care organizations that submit electronic data to immunization information systems should be aware that the technical decision to use the Health Level 7 format, particularly if real-time data exchange is employed, can result in more timely and accurate data. This will assist clinicians in adhering to the Advisory Committee on Immunization Practices schedule and reducing over-immunization.

  12. Improving linear accelerator service response with a real- time electronic event reporting system.

    PubMed

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-09-08

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations.

  13. Technical note: a novel method for routine genotyping of horse coat color gene polymorphisms.

    PubMed

    Royo, L J; Fernández, I; Azor, P J; Alvarez, I; Pérez-Pardal, L; Goyache, F

    2008-06-01

    The aim of this note is to describe a reliable, fast, and cost-effective real-time PCR method for routine genotyping of mutations responsible for most coat color variation in horses. The melanocortin-1 receptor, Agouti-signaling peptide, and membrane-associated transporter protein alleles were simultaneously determined using 2 PCR protocols. The assay described here is an alternative method for routine genotyping of a defined number of polymorphisms. Allelic variants are detected in real time and no post-PCR manipulations are required, therefore limiting costs and possible carryover contamination. Data can be copied to a Microsoft Excel spreadsheet for semiautomatic determination of the genotype using a macro freely available at http://www.igijon.com/personales/fgoyache/software_i.htm (last accessed February 26, 2007). The performance of the method is demonstrated on 156 Spanish Purebred horses.

  14. Space weather observational activities and data management in Europe

    NASA Astrophysics Data System (ADS)

    Stanisławska, Iwona; Belehaki, Anna

    2009-03-01

    One of the primary scientific and technical goals of Space Weather investigations is to produce data in order to study the Sun impact on the Earth and its environment. Studies based on data mining philosophy increase our knowledge of the physical properties of Space Weather, modelling capabilities, and gain applications of various procedures in Space Weather monitoring and forecasting. The paper focuses on an analysis of the availability on the Internet of near-real time and historical collections of the European ground-based and satellite observations, operational indices and parameters. A detailed description of data delivered is included. The following issues are discussed: (1) raw observations, and/or corrected/updated data, (2) resolution and availability of real-time and historical data, (3) products resulting from models and theory including maps, forecasts and alerts, (4) platforms for data delivery.

  15. Open-circuit respirometry: real-time, laboratory-based systems.

    PubMed

    Ward, Susan A

    2018-05-04

    This review explores the conceptual and technological factors integral to the development of laboratory-based, automated real-time open-circuit mixing-chamber and breath-by-breath (B × B) gas-exchange systems, together with considerations of assumptions and limitations. Advances in sensor technology, signal analysis, and digital computation led to the emergence of these technologies in the mid-20th century, at a time when investigators were beginning to recognise the interpretational advantages of nonsteady-state physiological-system interrogation in understanding the aetiology of exercise (in)tolerance in health, sport, and disease. Key milestones include the 'Auchincloss' description of an off-line system to estimate alveolar O 2 uptake B × B during exercise. This was followed by the first descriptions of real-time automated O 2 uptake and CO 2 output B × B measurement by Beaver and colleagues and by Linnarsson and Lindborg, and mixing-chamber measurement by Wilmore and colleagues. Challenges to both approaches soon emerged: e.g., the influence of mixing-chamber washout kinetics on mixed-expired gas concentration determination, and B × B alignment of gas-concentration signals with respired flow. The challenging algorithmic and technical refinements required for gas-exchange estimation at the alveolar level have also been extensively explored. In conclusion, while the technology (both hardware and software) underpinning real-time automated gas-exchange measurement has progressively advanced, there are still concerns regarding accuracy especially under the challenging conditions of changing metabolic rate.

  16. Development of a real-time repeated-measures assessment protocol to capture change over the course of a drinking episode.

    PubMed

    Luczak, Susan E; Rosen, I Gary; Wall, Tamara L

    2015-03-01

    We report on the development of a real-time assessment protocol that allows researchers to assess change in BrAC, alcohol responses, behaviors, and contexts over the course of a drinking event. We designed a web application that uses timed text messages (adjusted based on consumption pattern) containing links to our website to obtain real-time participant reports; camera and location features were also incorporated into the protocol. We used a transdermal alcohol sensor device along with software we designed to convert transdermal data into estimated BrAC. Thirty-two college students completed a laboratory session followed by a 2-week field trial. Results for the web application indicated we were able to create an effective tool for obtaining repeated measures real-time drinking data. Participants were willing to monitor their drinking behavior with the web application, and this did not appear to strongly affect drinking behavior during, or 6 weeks following, the field trial. Results for the transdermal device highlighted the willingness of participants to wear the device despite some discomfort, but technical difficulties resulted in limited valid data. The development of this protocol makes it possible to capture detailed assessment of change over the course of naturalistic drinking episodes. Published by Oxford University Press on behalf of Medical Council on Alcohol 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Real-time hydrological early warning system at national scale for surface water and groundwater with stakeholder involvement

    NASA Astrophysics Data System (ADS)

    He, X.; Stisen, S.; Henriksen, H. J.

    2015-12-01

    Hydrological models are important tools to support decision making in water resource management in the past few decades. Nowadays, frequent occurrence of extreme hydrological events has put focus on development of real-time hydrological modeling and forecasting systems. Among the various types of hydrological models, it is only the rainfall-runoff models for surface water that are commonly used in the online real-time fashion; and there is never a tradition to use integrated hydrological models for both surface water and groundwater with large scale perspective. At the Geological Survey of Denmark and Greenland (GEUS), we have setup and calibrated an integrated hydrological model that covers the entire nation, namely the DK-model. So far, the DK-model has only been used in offline mode for historical and future scenario simulations. Therefore, challenges arise when operating the DK-model in real-time mode due to lack of technical experiences and stakeholder awareness. In the present study, we try to demonstrate the process of bringing the DK-model online while actively involving the opinions of the stakeholders. Although the system is not yet fully operational, a prototype has been finished and presented to the stakeholders which can simulate groundwater levels, streamflow and water content in the root zone with a lead time of 48 hours and refreshed every 6 hours. The active involvement of stakeholders has provided very valuable insights and feedbacks for future improvements.

  18. Recent advances in the Lesser Antilles observatories Part 2 : WebObs - an integrated web-based system for monitoring and networks management

    NASA Astrophysics Data System (ADS)

    Beauducel, François; Bosson, Alexis; Randriamora, Frédéric; Anténor-Habazac, Christian; Lemarchand, Arnaud; Saurel, Jean-Marie; Nercessian, Alexandre; Bouin, Marie-Paule; de Chabalier, Jean-Bernard; Clouard, Valérie

    2010-05-01

    Seismological and Volcanological observatories have common needs and often common practical problems for multi disciplinary data monitoring applications. In fact, access to integrated data in real-time and estimation of measurements uncertainties are keys for an efficient interpretation, but instruments variety, heterogeneity of data sampling and acquisition systems lead to difficulties that may hinder crisis management. In Guadeloupe observatory, we have developed in the last years an operational system that attempts to answer the questions in the context of a pluri-instrumental observatory. Based on a single computer server, open source scripts (Matlab, Perl, Bash, Nagios) and a Web interface, the system proposes: an extended database for networks management, stations and sensors (maps, station file with log history, technical characteristics, meta-data, photos and associated documents); a web-form interfaces for manual data input/editing and export (like geochemical analysis, some of the deformation measurements, ...); routine data processing with dedicated automatic scripts for each technique, production of validated data outputs, static graphs on preset moving time intervals, and possible e-mail alarms; computers, acquisition processes, stations and individual sensors status automatic check with simple criteria (files update and signal quality), displayed as synthetic pages for technical control. In the special case of seismology, WebObs includes a digital stripchart multichannel continuous seismogram associated with EarthWorm acquisition chain (see companion paper Part 1), event classification database, location scripts, automatic shakemaps and regional catalog with associated hypocenter maps accessed through a user request form. This system leads to a real-time Internet access for integrated monitoring and becomes a strong support for scientists and technicians exchange, and is widely open to interdisciplinary real-time modeling. It has been set up at Martinique observatory and installation is planned this year at Montserrat Volcanological Observatory. It also in production at the geomagnetic observatory of Addis Abeba in Ethiopia.

  19. [Evaluation of residual osteomuscular function using computerised movement analysis for building sector workers: specificity and technical problem].

    PubMed

    D'Orso, M I; Centemeri, R; Latocca, R; Riva, M; Cesana, G

    2012-01-01

    Occupational Health Doctors active in building sector firms frequently have to evaluate residual workers' osteomuscular function in patients coming back to work after an accident happened during work time or free time. Definition of their specific individual work suitability is usually carried out utilizing semeiotic tests in which subjective evaluation of every single Medical Doctor is real important in definition of final results and this fact can cause legal controversies. In our research we describe the application of computerised movement analysis on 10 workers of building sector. In every patient examined this technical method has been able to study objectively the tridimensional ranges of motion of most important osteomuscular districts. The possibility to have an objective evaluation of residual osteomuscular function has a relevant importance both in definition of workers' work suitability at the moment in which they start again their activities and in possible future legal conflicts.

  20. Annual Report Fiscal Year 1980--Office of Technical Assistance and Training.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs, Brigham City, UT.

    The technical assistance and training services which the Office of Technical Assistance and Training (OTAT) offered for Alaskan Natives, Indian Tribes, and the Bureau of Indian Affairs personnel during 1980 are highlighted in this report. The Real Property Management and the Forestry training programs, developed in cooperation with the Office of…

  1. A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series.

    PubMed

    Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan

    2015-07-17

    Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS.

  2. A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series

    PubMed Central

    Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan

    2015-01-01

    Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS. PMID:26193283

  3. A method for real-time visual stimulus selection in the study of cortical object perception.

    PubMed

    Leeds, Daniel D; Tarr, Michael J

    2016-06-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A method for real-time visual stimulus selection in the study of cortical object perception

    PubMed Central

    Leeds, Daniel D.; Tarr, Michael J.

    2016-01-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1 cm3 brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. PMID:26973168

  5. A Physics-driven Neural Networks-based Simulation System (PhyNNeSS) for multimodal interactive virtual environments involving nonlinear deformable objects

    PubMed Central

    De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S.

    2012-01-01

    Background While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. Methods In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. Results We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. Conclusions A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal Interactive Simulation) for general use. PMID:22629108

  6. Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring

    NASA Astrophysics Data System (ADS)

    D'Anna, Giuseppe; D'Alessandro, Antonino; Fertitta, Gioacchino; Fraticelli, Nicola; Calore, Daniele

    2016-04-01

    From the early 1980's, Italian seismicity is monitored by the National Seismic Network (NSN). The network has been considerably enhanced by INGV since 2005 by 24-bit digital stations equipped with broad-band sensors. The NSN is nowadays constituted by about 300 on-land seismic station able to detect and locate also small magnitude earthquake in the whole Italian peninsula. However, the lack of offshore seismic stations does not allow the accurate estimation of hypocentral and focal parameters of small magnitude earthquakes occurring in offshore areas. As in the Mediterranean area there is an intense offshore seismic activity, an extension of the seismic monitoring to the sea would be beneficial. There are two types of stations that could be used to extend the network towards the sea: the first type is connected to the coast though a cable, the second type is isolated (or stand alone) and works autonomously. Both solutions have serious limitations: the first one, for several technical and economic problems, linked to the indispensable transmission/alimentation cable, cannot be installed far from the coast; the second one, allows access to the recorded data, only after they are recovered from the seabed. It is clear that these technical solutions are not suitable for the real time monitoring of the offshore seismicity or for the realization of a tsunami warning system. For this reason, in early 2010, the OBSLab of Gibilmanna begins the design of a submarine station able to overcome the limitations of the two systems above. The station isbuilt under the project EMSO-MedIT. The two stations built have already been tested in dock and ready for installation. One of this station will be installed, in few time, in the southern Tyrrhenian Sea, near the epicentre of the Palermo 2002 main shock. The sea bottom station will be equipped with 2 very broadband 3C seismometers, a broad band hydrophone, a differential and an absolute pressure gauge. The station includes a submarine module, which houses the sensors. The submarine module is connected via an electromechanical cable to a stopper buoy, which acts as tensioning device, and a "tethered" cable, to a surface buoy, which supply power to the underwater part. The surface buoy handles the communication with the submarine module and the transmission of real-time/near-real-time data to the monitoring centre to the ground.

  7. A Real-Life Basis for Reports in Business and Technical Writing.

    ERIC Educational Resources Information Center

    Stephenson, William

    1987-01-01

    For students who have difficulty finding material for writing formal business and technical reports, suggests keeping a file folder of clippings about new products and services taken from a leading newspaper.(NH)

  8. Gray-level transformations for interactive image enhancement. M.S. Thesis. Final Technical Report

    NASA Technical Reports Server (NTRS)

    Fittes, B. A.

    1975-01-01

    A gray-level transformation method suitable for interactive image enhancement was presented. It is shown that the well-known histogram equalization approach is a special case of this method. A technique for improving the uniformity of a histogram is also developed. Experimental results which illustrate the capabilities of both algorithms are described. Two proposals for implementing gray-level transformations in a real-time interactive image enhancement system are also presented.

  9. THE NASOLABIAL FLAP: THE MOST VERSATILE METHOD IN FACIAL RECONSTRUCTION.

    PubMed

    Bayer, J; Schwarzmannová, K; Dušková, M; Novotná, K; Kníže, J; Sukop, A

    2018-01-01

    The nasolabial flap was described 170 years ago and still remains one of the most frequently used methods in facial reconstruction. This technically easy and maximally effective procedure has become a real workhorse and an integral instrument for every plastic surgeon. Over time multiple modifications of this technique have been described. In this article, authors present an overview of nasolabial flap modalities and discuss advantages and disadvantages of these techniques.

  10. Sensei: A Multi-Modal Framework for Assessing Stress Resiliency

    DTIC Science & Technology

    2013-04-01

    interest for the second subject is the upturn in the GSR response before the start of the Stroop test, possibly indicating some anticipatory stress ...Framework for Assessing Stress Resiliency (March 1-31, 2013) From: Ajay Divakaran, Technical Leader Jeffrey Lubin, Senior Research Scientist Joe...Period 15 (March 2013): Task 3.1: Capture Behavioral Stress Markers in Real-Time in Lab Environment with graded exposure to ICT’s scenarios MAC 1-6

  11. Sensei: A Multi-Modal Framework for Assessing Stress Resiliency

    DTIC Science & Technology

    2013-05-01

    Modal Framework for Assessing Stress Resiliency (May 1-31, 2013) From: Ajay Divakaran, Technical Leader Jeffrey Lubin, Senior Research Scientist...17 (May 2013): Task 3.1: Capture Behavioral Stress Markers in Real-Time in Lab Environment with graded exposure to ICT’s scenarios MAC 1-6...Modal Framework for Assessing Stress Resiliency 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  12. Report of the Working Group on Large-Scale Computing in Aeronautics.

    DTIC Science & Technology

    1984-06-01

    incompressible approximations that are presently made in the lifting line or lifting surface representations of rotor blades. Finally, viscous effects in the forms... Effects of Rotor Model Degradation in the Accuracy of Rotocraft Real-Time Simulation, NASA TN D-8378;1977. 20. Gullen, R. K., Cattell, C. S., and Overton...assistance to member nations for the purpose of increasing their scientific and technical potential; - Recommending effective ways for the member nations

  13. The DTIC Review. Volume 5, Number 2. Real-Time Communications

    DTIC Science & Technology

    2000-12-01

    appreciate your comments. Kurt N. Molholm Administrator THIS PAGE INTENTIONALLY LEFT BLANK The DTIC Review Defense Technical Information Center TABLE OF...assisted by Captain Dino Perone, CW2 Kurt Prokarym, CW2 Earl Johnson, SSG Case, MSG Nancy MacDonald, SGM Jessie Husband, and many other junior non...Navy IT-21 Audit Policy 07 Jul 2000 28 PAGES 01 Sep 1999 61 PAGES PERSONAL AUTHORS: Gevelber, Michael; PERSONAL AUTHORS: Kremer , H. S. Wroblewski

  14. Real-Time CMA Equalization of SOQPSK for Aeronautical Telemetry

    DTIC Science & Technology

    2014-06-01

    1 2 4 6 Channel Length 9 20 19 4 No. of Non-zero taps 3 8 9 4 EXPERIMENTAL SETUP Implementation of the CMA for PAQ For this...through the U.S. Army Program Exectuve Offcie for Simulation, Training and Instrumentation (PEO STRI) under contract W900KK_13-C-0026 ( PAQ ...telemetry ( PAQ ),” Brigham Young University, Technical Report, 2014, submitted to the Spectrum Efficient Technologies (SET) Office of the Science

  15. Parallel Task Management Library for MARTe

    NASA Astrophysics Data System (ADS)

    Valcarcel, Daniel F.; Alves, Diogo; Neto, Andre; Reux, Cedric; Carvalho, Bernardo B.; Felton, Robert; Lomas, Peter J.; Sousa, Jorge; Zabeo, Luca

    2014-06-01

    The Multithreaded Application Real-Time executor (MARTe) is a real-time framework with increasing popularity and support in the thermonuclear fusion community. It allows modular code to run in a multi-threaded environment leveraging on the current multi-core processor (CPU) technology. One application that relies on the MARTe framework is the Joint European Torus (JET) tokamak WAll Load Limiter System (WALLS). It calculates and monitors the temperature on metal tiles and plasma facing components (PFCs) that can melt or flake if their temperature gets too high when exposed to power loads. One of the main time consuming tasks in WALLS is the calculation of thermal diffusion models in real-time. These models tend to be described by very large state-space models thus making them perfect candidates for parallelisation. MARTe's traditional approach for task parallelisation is to split the problem into several Real-Time Threads, each responsible for a self-contained sequential execution of an input-to-output chain. This is usually possible, but it might not always be practical for algorithmic or technical reasons. Also, it might not be easily scalable with an increase in the number of available CPU cores. The WorkLibrary introduces a “GPU-like approach” of splitting work among the available cores of modern CPUs that is (i) straightforward to use in an application, (ii) scalable with the availability of cores and all of this (iii) without rewriting or recompiling the source code. The first part of this article explains the motivation behind the library, its architecture and implementation. The second part presents a real application for WALLS, a parallel version of a large state-space model describing the 2D thermal diffusion on a JET tile.

  16. Modeling Cyber Conflicts Using an Extended Petri Net Formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakrzewska, Anita N; Ferragut, Erik M

    2011-01-01

    When threatened by automated attacks, critical systems that require human-controlled responses have difficulty making optimal responses and adapting protections in real- time and may therefore be overwhelmed. Consequently, experts have called for the development of automatic real-time reaction capabilities. However, a technical gap exists in the modeling and analysis of cyber conflicts to automatically understand the repercussions of responses. There is a need for modeling cyber assets that accounts for concurrent behavior, incomplete information, and payoff functions. Furthermore, we address this need by extending the Petri net formalism to allow real-time cyber conflicts to be modeled in a way thatmore » is expressive and concise. This formalism includes transitions controlled by players as well as firing rates attached to transitions. This allows us to model both player actions and factors that are beyond the control of players in real-time. We show that our formalism is able to represent situational aware- ness, concurrent actions, incomplete information and objective functions. These factors make it well-suited to modeling cyber conflicts in a way that allows for useful analysis. MITRE has compiled the Common Attack Pattern Enumera- tion and Classification (CAPEC), an extensive list of cyber attacks at various levels of abstraction. CAPEC includes factors such as attack prerequisites, possible countermeasures, and attack goals. These elements are vital to understanding cyber attacks and to generating the corresponding real-time responses. We demonstrate that the formalism can be used to extract precise models of cyber attacks from CAPEC. Several case studies show that our Petri net formalism is more expressive than other models, such as attack graphs, for modeling cyber conflicts and that it is amenable to exploring cyber strategies.« less

  17. INSA Scientific Activities in the Space Astronomy Area

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, Ricardo; Sánchez Portal, Miguel

    Support to astronomy operations is an important and long-lived activity within INSA. Probably the best known (and traditional) INSA activities are those related with real-time spacecraft operations: ground station maintenance and operation (ground station engineers and operators); spacecraft and payload real-time operation (spacecraft and instruments controllers); computing infrastructure maintenance (operators, analysts), and general site services. In this paper, we’ll show a different perspective, probably not so well-known, presenting some INSA recent activities at the European Space Astronomy Centre (ESAC) and NASA Madrid Deep Space Communication Complex (MDSCC) directly related to scientific operations. Basic lines of activity involved include: operations support for science operations; system and software support for real time systems; technical administration and IT support; R&D activities, radioastronomy (at MDSCC and ESAC), and scientific research projects. This paper is structured as follows: first, INSA activities in two ESA cornerstone astrophysics missions, XMM-Newton and Herschel, will be outlined. Then, our activities related to scientific infrastructure services, represented by the Virtual Observatory (VO) framework and the Science Archives development facilities, are briefly shown. Radio astronomy activities will be described afterwards, and, finally, a few research topics in which INSA scientists are involved will also be described.

  18. From Ship-To-Shore In Real Time: Data Transmission, Distribution, Management, Processing, And Archiving Using Telepresence Technologies And The Inner Space Center

    NASA Astrophysics Data System (ADS)

    Coleman, D. F.

    2012-12-01

    Most research vessels are equipped with satellite Internet services with bandwidths capable of being upgraded to support telepresence technologies and live shore-based participation. This capability can be used for real-time data transmission to shore, where it can be distributed, managed, processed, and archived. The University of Rhode Island Inner Space Center utilizes telepresence technologies and a growing network of command centers on Internet2 to participate live with a variety of research vessels and their ocean observing and sampling systems. High-bandwidth video streaming, voice-over-IP telecommunications, and real-time data feeds and file transfers enable users on shore to take part in the oceanographic expeditions as if they were present on the ship, working in the lab. Telepresence-enabled systematic ocean exploration and similar programs represent a significant and growing paradigm shift that can change the future of seagoing ocean observations using research vessels. The required platform is the ship itself, and users of the technology rely on the ship-based technical teams, but remote and distributed shore-based science users, students, educators, and the general public can now take part by being aboard virtually.

  19. Induction and imaging of photothrombotic stroke in conscious and freely moving rats

    NASA Astrophysics Data System (ADS)

    Lu, Hongyang; Li, Yao; Yuan, Lu; Li, Hangdao; Lu, Xiaodan; Tong, Shanbao

    2014-09-01

    In experimental stroke research, anesthesia is common and serves as a major reason for translational failure. Real-time cerebral blood flow (CBF) monitoring during stroke onset can provide important information for the prediction of brain injury; however, this is difficult to achieve in clinical practice due to various technical problems. We created a photothrombotic focal ischemic stroke model utilizing our self-developed miniature headstage in conscious and freely moving rats. In this model, a high spatiotemporal resolution imager using laser speckle contrast imaging technology was integrated to acquire real-time two-dimensional CBF information during thrombosis. The feasibility, stability, and reliability of the system were tested in terms of CBF, behavior, and T2-weighted magnetic resonance imaging (MRI) findings. After completion of occlusion, the CBF in the targeted cortex of the stroke group was reduced to 16±9% of the baseline value. The mean infarct volume measured by MRI 24 h postmodeling was 77±11 mm3 and correlated well with CBF (R2=0.74). This rodent model of focal cerebral ischemia and real-time blood flow imaging opens the possibility of performing various fundamental and translational studies on stroke without the influence of anesthetics.

  20. Technical description of RODS: a real-time public health surveillance system.

    PubMed

    Tsui, Fu-Chiang; Espino, Jeremy U; Dato, Virginia M; Gesteland, Per H; Hutman, Judith; Wagner, Michael M

    2003-01-01

    This report describes the design and implementation of the Real-time Outbreak and Disease Surveillance (RODS) system, a computer-based public health surveillance system for early detection of disease outbreaks. Hospitals send RODS data from clinical encounters over virtual private networks and leased lines using the Health Level 7 (HL7) message protocol. The data are sent in real time. RODS automatically classifies the registration chief complaint from the visit into one of seven syndrome categories using Bayesian classifiers. It stores the data in a relational database, aggregates the data for analysis using data warehousing techniques, applies univariate and multivariate statistical detection algorithms to the data, and alerts users of when the algorithms identify anomalous patterns in the syndrome counts. RODS also has a Web-based user interface that supports temporal and spatial analyses. RODS processes sales of over-the-counter health care products in a similar manner but receives such data in batch mode on a daily basis. RODS was used during the 2002 Winter Olympics and currently operates in two states-Pennsylvania and Utah. It has been and continues to be a resource for implementing, evaluating, and applying new methods of public health surveillance.

  1. The astronaut and the banana peel: An EVA retriever scenario

    NASA Technical Reports Server (NTRS)

    Shapiro, Daniel G.

    1989-01-01

    To prepare for the problem of accidents in Space Station activities, the Extravehicular Activity Retriever (EVAR) robot is being constructed, whose purpose is to retrieve astronauts and tools that float free of the Space Station. Advanced Decision Systems is at the beginning of a project to develop research software capable of guiding EVAR through the retrieval process. This involves addressing problems in machine vision, dexterous manipulation, real time construction of programs via speech input, and reactive execution of plans despite the mishaps and unexpected conditions that arise in uncontrolled domains. The problem analysis phase of this work is presented. An EVAR scenario is used to elucidate major domain and technical problems. An overview of the technical approach to prototyping an EVAR system is also presented.

  2. For the Good of What Profession? (Communication Management).

    ERIC Educational Resources Information Center

    Caernarven-Smith, Patricia

    1993-01-01

    Discusses the lack of information about cost accounting in technical publications. Argues that nobody is publishing real numbers because the real numbers are hard work, competitively advantageous, and sometimes embarrassing. (SR)

  3. Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation

    PubMed Central

    Tu, Haohua; Boppart, Stephen A.

    2015-01-01

    Clinical translation of coherent anti-Stokes Raman scattering microscopy is of great interest because of the advantages of noninvasive label-free imaging, high sensitivity, and chemical specificity. For this to happen, we have identified and review the technical barriers that must be overcome. Prior investigations have developed advanced techniques (features), each of which can be used to effectively overcome one particular technical barrier. However, the implementation of one or a small number of these advanced features in previous attempts for clinical translation has often introduced more tradeoffs than benefits. In this review, we outline a strategy that would integrate multiple advanced features to overcome all the technical barriers simultaneously, effectively reduce tradeoffs, and synergistically optimize CARS microscopy for clinical translation. The operation of the envisioned system incorporates coherent Raman micro-spectroscopy for identifying vibrational biomolecular markers of disease and single-frequency (or hyperspectral) Raman imaging of these specific biomarkers for real-time in vivo diagnostics and monitoring. An optimal scheme of clinical CARS micro-spectroscopy for thin ex vivo tissues. PMID:23674234

  4. U.S. Army weapon systems human-computer interface style guide. Version 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, L.W.; O`Mara, P.A.; Shepard, A.P.

    1997-12-31

    A stated goal of the US Army has been the standardization of the human computer interfaces (HCIs) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of HCI design guidance documents. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4),more » in conjunction with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA), now termed the Joint Technical Architecture-Army (JTA-A). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide, which resulted in the US Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide Version 1. Based on feedback from the user community, DISC4 further tasked PNNL to revise Version 1 and publish Version 2. The intent was to update some of the research and incorporate some enhancements. This document provides that revision. The purpose of this document is to provide HCI design guidance for the RT/NRT Army system domain across the weapon systems subdomains of ground, aviation, missile, and soldier systems. Each subdomain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their subdomains.« less

  5. Novel multiregion hybridization assay for the identification of the most prevalent genetic forms of the human immunodeficiency virus type 1 circulating in Portugal.

    PubMed

    Freitas, Ferdinando B; Esteves, Aida; Piedade, João; Parreira, Ricardo

    2013-02-01

    The most efficient method for HIV-1 genetic characterization involves full-genome sequencing, but the associated costs, technical features, and low throughput preclude it from being routinely used for the analysis of large numbers of viral strains. Multiregion hybridization assays (MHA) represent an alternative for a consistent genetic analysis of large numbers of viral strains. Classically, MHA rely on the amplification by real-time PCR of several regions scattered along the HIV-1 genome, and on their characterization with clade-specific TaqMan probes (also known as hydrolysis probes). In this context, the aim of our study was the development of a technical variant of an MHA (vMHA(B/G/02)) for genotyping the most prevalent genetic forms of HIV-1 circulating in Portugal. Different sets of primers were designed for universal and clade-specific amplifications of several sections of the viral genome: gag, pol(Pr), pol(RT), vpu, env(gp120), and env(gp41). vMHA(B/G/02) was implemented using a real-time PCR-based approach, with detection dependent on the use of SYBR Green I. As an alternative, a technically less demanding strategy based on conventional PCR and agarose gel analysis of the reaction products was also developed. This method performed with overall good sensitivity and specificity (>91%) when a convenience sample of 45 plasma-derived HIV-1 strains was analyzed. Apart from the detection of subtype B, G, CRF02_AG, and CRF14_BG viruses, several unique B/G recombinant were also detected. Curiously, recombinant viruses including CRF02_AG sequences were not detected in the group of samples analyzed.

  6. Development of an Internal Real-Time Wireless Diagnostic Tool for a Proton Exchange Membrane Fuel Cell

    PubMed Central

    Lee, Chi-Yuan; Chen, Chia-Hung; Tsai, Chao-Hsuan; Wang, Yu-Syuan

    2018-01-01

    To prolong the operating time of unmanned aerial vehicles which use proton exchange membrane fuel cells (PEMFC), the performance of PEMFC is the key. However, a long-term operation can make the Pt particles of the catalyst layer and the pollutants in the feedstock gas bond together (e.g., CO), so that the catalyst loses reaction activity. The performance decay and aging of PEMFC will be influenced by operating conditions, temperature, flow and CO concentration. Therefore, this study proposes the development of an internal real-time wireless diagnostic tool for PEMFC, and uses micro-electro-mechanical systems (MEMS) technology to develop a wireless and thin (<50 μm) flexible integrated (temperature, flow and CO) microsensor. The technical advantages are (1) compactness and three wireless measurement functions; (2) elastic measurement position and accurate embedding; (3) high accuracy and sensitivity and quick response; (4) real-time wireless monitoring of dynamic performance of PEMFC; (5) customized design and development. The flexible integrated microsensor is embedded in the PEMFC, three important physical quantities in the PEMFC, which are the temperature, flow and CO, can be measured simultaneously and instantly, so as to obtain the authentic and complete reaction in the PEMFC to enhance the performance of PEMFC and to prolong the service life. PMID:29342832

  7. Development of an Internal Real-Time Wireless Diagnostic Tool for a Proton Exchange Membrane Fuel Cell.

    PubMed

    Lee, Chi-Yuan; Chen, Chia-Hung; Tsai, Chao-Hsuan; Wang, Yu-Syuan

    2018-01-13

    To prolong the operating time of unmanned aerial vehicles which use proton exchange membrane fuel cells (PEMFC), the performance of PEMFC is the key. However, a long-term operation can make the Pt particles of the catalyst layer and the pollutants in the feedstock gas bond together (e.g., CO), so that the catalyst loses reaction activity. The performance decay and aging of PEMFC will be influenced by operating conditions, temperature, flow and CO concentration. Therefore, this study proposes the development of an internal real-time wireless diagnostic tool for PEMFC, and uses micro-electro-mechanical systems (MEMS) technology to develop a wireless and thin (<50 μm) flexible integrated (temperature, flow and CO) microsensor. The technical advantages are (1) compactness and three wireless measurement functions; (2) elastic measurement position and accurate embedding; (3) high accuracy and sensitivity and quick response; (4) real-time wireless monitoring of dynamic performance of PEMFC; (5) customized design and development. The flexible integrated microsensor is embedded in the PEMFC, three important physical quantities in the PEMFC, which are the temperature, flow and CO, can be measured simultaneously and instantly, so as to obtain the authentic and complete reaction in the PEMFC to enhance the performance of PEMFC and to prolong the service life.

  8. Uniform Data Management and Access to Near Real-Time Seismic Data (Invited)

    NASA Astrophysics Data System (ADS)

    Casey, R.; Ahern, T. K.; Benson, R. B.; Karstens, R.; Stromme, S.; Trabant, C. M.; Weertman, B. R.

    2010-12-01

    The IRIS Data Management Center has its ears to the ground, receiving relayed seismic telemetry from all parts of the globe with delay times as little as a few seconds from sensor to data center. This immediacy of always-on geophysical information has spawned a demand for ready access to persistent data streams, quality assurance metrics, and automatic production of data products based on specific triggers. For the last ten years, IRIS DMC has developed an effective near real-time data pipeline that serves the needs of seismic networks needing a central data management system as well as the scientific community that need the ability to monitor and respond to events that occurred only moments before. A number of accessible applications have been developed that provide useful data both through the web and through freely available software. Metrics and products of the raw data are cataloged and managed as a chain of events that occur in near-real time. The technical challenges faced with such a system are general to the data management community. Delayed transmission of packetized data, out of order data transmissions, verification of complete data transmission, and data flow concurrency have all been areas of focus in order to provide the best possible level of service to scientists and educators.

  9. Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography

    PubMed Central

    Lee, Changho; Kim, Kyungun; Han, Seunghoon; Kim, Sehui; Lee, Jun Hoon; Kim, Hong kyun; Kim, Chulhong; Jung, Woonggyu; Kim, Jeehyun

    2014-01-01

    Abstract. An intraoperative surgical microscope is an essential tool in a neuro- or ophthalmological surgical environment. Yet, it has an inherent limitation to classify subsurface information because it only provides the surface images. To compensate for and assist in this problem, combining the surgical microscope with optical coherence tomography (OCT) has been adapted. We developed a real-time virtual intraoperative surgical OCT (VISOCT) system by adapting a spectral-domain OCT scanner with a commercial surgical microscope. Thanks to our custom-made beam splitting and image display subsystems, the OCT images and microscopic images are simultaneously visualized through an ocular lens or the eyepiece of the microscope. This improvement helps surgeons to focus on the operation without distraction to view OCT images on another separate display. Moreover, displaying the OCT live images on the eyepiece helps surgeon’s depth perception during the surgeries. Finally, we successfully processed stimulated penetrating keratoplasty in live rabbits. We believe that these technical achievements are crucial to enhance the usability of the VISOCT system in a real surgical operating condition. PMID:24604471

  10. A Paper-Based Device for Performing Loop-Mediated Isothermal Amplification with Real-Time Simultaneous Detection of Multiple DNA Targets.

    PubMed

    Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon

    2017-01-01

    Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 10 2 -10 5 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing.

  11. A Paper-Based Device for Performing Loop-Mediated Isothermal Amplification with Real-Time Simultaneous Detection of Multiple DNA Targets

    PubMed Central

    Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon

    2017-01-01

    Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 102-105 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing. PMID:28740546

  12. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factormore » and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less

  13. Compressed normalized block difference for object tracking

    NASA Astrophysics Data System (ADS)

    Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge

    2018-04-01

    Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.

  14. Real-time multimedia communications in medical emergency - the CONCERTO project solution.

    PubMed

    Martini, Maria G; Iacobelli, Lorenzo; Bergeron, Cyril; Hewage, Chaminda T; Panza, Gianmarco; Piri, Esa; Vehkapera, Janne; Amon, Peter; Mazzotti, Matteo; Savino, Ketty; Bokor, Laszlo

    2015-01-01

    The management of medical emergency, in particular cardiac emergency, requests prompt intervention and the possibility to communicate in real time from the emergency area / ambulance to the hospital as much diagnostic information as possible about the patient. This would enable a prompt emergency diagnosis and operation and the possibility to prepare the appropriate actions in the suitable hospital department. To address this scenario, the CONCERTO European project proposed a wireless communication system based on a novel cross-layer architecture, including the integration of building blocks for medical media content fusion, delivery and access. This paper describes the proposed system architecture, outlining the developed components and mechanisms, and the evaluation of the proposed system, carried out in a hospital with the support of medical staff. The technical results and the feedback received highlight the impact of the CONCERTO approach in the healthcare domain, in particular in enabling a prompt and reliable diagnosis in challenging medical emergency scenarios.

  15. Real-time development of data acquisition and analysis software for hands-on physiology education in neuroscience: G-PRIME.

    PubMed

    Lott, Gus K; Johnson, Bruce R; Bonow, Robert H; Land, Bruce R; Hoy, Ronald R

    2009-01-01

    We report on the real-time creation of an application for hands-on neurophysiology in an advanced undergraduate teaching laboratory. Enabled by the rapid software development tools included in the Matlab technical computing environment (The Mathworks, Natick, MA), a team, consisting of a neurophysiology educator and a biophysicist trained as an electrical engineer, interfaced to a course of approximately 15 students from engineering and biology backgrounds. The result is the powerful freeware data acquisition and analysis environment, "g-PRIME." The software was developed from week to week in response to curriculum demands, and student feedback. The program evolved from a simple software oscilloscope, enabling RC circuit analysis, to a suite of tools supporting analysis of neuronal excitability and synaptic transmission analysis in invertebrate model systems. The program has subsequently expanded in application to university courses, research, and high school projects in the US and abroad as free courseware.

  16. Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write

    NASA Astrophysics Data System (ADS)

    Zheng, Jianyi; Zhang, Kai; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Liu, Yifang; Liu, Juan; Zheng, Gaofeng

    2018-01-01

    By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce continuous uniform nanofibers controllably.

  17. Augmented reality in neurosurgery: a systematic review.

    PubMed

    Meola, Antonio; Cutolo, Fabrizio; Carbone, Marina; Cagnazzo, Federico; Ferrari, Mauro; Ferrari, Vincenzo

    2017-10-01

    Neuronavigation has become an essential neurosurgical tool in pursuing minimal invasiveness and maximal safety, even though it has several technical limitations. Augmented reality (AR) neuronavigation is a significant advance, providing a real-time updated 3D virtual model of anatomical details, overlaid on the real surgical field. Currently, only a few AR systems have been tested in a clinical setting. The aim is to review such devices. We performed a PubMed search of reports restricted to human studies of in vivo applications of AR in any neurosurgical procedure using the search terms "Augmented reality" and "Neurosurgery." Eligibility assessment was performed independently by two reviewers in an unblinded standardized manner. The systems were qualitatively evaluated on the basis of the following: neurosurgical subspecialty of application, pathology of treated lesions and lesion locations, real data source, virtual data source, tracking modality, registration technique, visualization processing, display type, and perception location. Eighteen studies were included during the period 1996 to September 30, 2015. The AR systems were grouped by the real data source: microscope (8), hand- or head-held cameras (4), direct patient view (2), endoscope (1), and X-ray fluoroscopy (1) head-mounted display (1). A total of 195 lesions were treated: 75 (38.46 %) were neoplastic, 77 (39.48 %) neurovascular, and 1 (0.51 %) hydrocephalus, and 42 (21.53 %) were undetermined. Current literature confirms that AR is a reliable and versatile tool when performing minimally invasive approaches in a wide range of neurosurgical diseases, although prospective randomized studies are not yet available and technical improvements are needed.

  18. Manipulating motor performance and memory through real-time fMRI neurofeedback.

    PubMed

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-05-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Manipulating motor performance and memory through real-time fMRI neurofeedback

    PubMed Central

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-01-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. PMID:25796342

  20. Noise suppression methods for robust speech processing

    NASA Astrophysics Data System (ADS)

    Boll, S. F.; Ravindra, H.; Randall, G.; Armantrout, R.; Power, R.

    1980-05-01

    Robust speech processing in practical operating environments requires effective environmental and processor noise suppression. This report describes the technical findings and accomplishments during this reporting period for the research program funded to develop real time, compressed speech analysis synthesis algorithms whose performance in invariant under signal contamination. Fulfillment of this requirement is necessary to insure reliable secure compressed speech transmission within realistic military command and control environments. Overall contributions resulting from this research program include the understanding of how environmental noise degrades narrow band, coded speech, development of appropriate real time noise suppression algorithms, and development of speech parameter identification methods that consider signal contamination as a fundamental element in the estimation process. This report describes the current research and results in the areas of noise suppression using the dual input adaptive noise cancellation using the short time Fourier transform algorithms, articulation rate change techniques, and a description of an experiment which demonstrated that the spectral subtraction noise suppression algorithm can improve the intelligibility of 2400 bps, LPC 10 coded, helicopter speech by 10.6 point.

  1. Not just trust: factors influencing learners' attempts to perform technical skills on real patients.

    PubMed

    Bannister, Susan L; Dolson, Mark S; Lingard, Lorelei; Keegan, David A

    2018-06-01

    As part of their training, physicians are required to learn how to perform technical skills on patients. The previous literature reveals that this learning is complex and that many opportunities to perform these skills are not converted into attempts to do so by learners. This study sought to explore and understand this phenomenon better. A multi-phased qualitative study including ethnographic observations, interviews and focus groups was conducted to explore the factors that influence technical skill learning. In a tertiary paediatric emergency department, staff physician preceptors, residents, nurses and respiratory therapists were observed in the delivery and teaching of technical skills over a 3-month period. A constant comparison methodology was used to analyse the data and to develop a constructivist grounded theory. We conducted 419 hours of observation, 18 interviews and four focus groups. We observed 287 instances of technical skills, of which 27.5% were attempted by residents. Thematic analysis identified 14 factors, grouped into three categories, which influenced whether residents attempted technical skills on real patients. Learner factors included resident initiative, perceived need for skill acquisition and competing priorities. Teacher factors consisted of competing priorities, interest in teaching, perceived need for residents to acquire skills, attributions about learners, assessments of competency, and trust. Environmental factors were competition from other learners, judgement that the patient was appropriate, buy-in from team members, consent from patient or caregivers, and physical environment constraints. Our findings suggest that neither the presence of a learner in a clinical environment nor the trust of the supervisor is sufficient to ensure the learner will attempt a technical skill. We characterise this phenomenon as representing a pool of opportunities to conduct technical skills on live patients that shrinks to a much smaller pool of technical skill attempts. Learners, teachers and educators can use this knowledge to maximise the number of attempts learners make to perform technical skills on real patients. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  2. A Proficiency Based Stepwise Endovascular Curricular Training (PROSPECT) Program Enhances Operative Performance in Real Life: A Randomised Controlled Trial.

    PubMed

    Maertens, H; Aggarwal, R; Moreels, N; Vermassen, F; Van Herzeele, I

    2017-09-01

    Healthcare evolution requires optimisation of surgical training to provide safe patient care. Operating room performance after completion of proficiency based training in vascular surgery has not been investigated. A randomised controlled trial evaluated the impact of a Proficiency based Stepwise Endovascular Curricular Training program (PROSPECT) on the acquisition of endovascular skills and the transferability of these skills to real life interventions. All subjects performed two endovascular interventions treating patients with symptomatic iliac and/or superficial femoral artery stenosis under supervision. Primary outcomes were technical performances (Global Rating Scale [GRS]; Examiner Checklist), operative metrics, and patient outcomes, adjusted for case difficulty and trainee experience. Secondary outcomes included knowledge and technical performance after 6 weeks and 3 months. Thirty-two general surgical trainees were randomised into three groups. Besides traditional training, the first group (n = 11) received e-learning and simulation training (PROSPECT), the second group (n = 10) only had access to e-learning, while controls (n = 11) did not receive supplementary training. Twenty-nine trainees (3 dropouts) performed 58 procedures. Trainees who completed PROSPECT showed superior technical performance (GRS 39.36 ± 2.05; Checklist 63.51 ± 3.18) in real life with significantly fewer supervisor takeovers compared with trainees receiving e-learning alone (GRS 28.42 ± 2.15; p = .001; Checklist 53.63 ± 3.34; p = .027) or traditional education (GRS 23.09 ± 2.18; p = .001; Checklist 38.72 ± 3.38; p = .001). Supervisors felt more confident in allowing PROSPECT trained physicians to perform basic (p = .006) and complex (p = .003) procedures. No differences were detected in procedural parameters (such as fluoroscopy time, DAP, procedure time, etc.) or complications. Proficiency levels were maintained up to 3 months. A structured, stepwise, proficiency based endovascular curriculum including e-learning and simulation based training should be integrated early into training programs to enhance trainee performance. Copyright © 2017. Published by Elsevier Ltd.

  3. Laboratory-Scale Simulation and Real-Time Tracking of a Microbial Contamination Event and Subsequent Shock-Chlorination in Drinking Water

    PubMed Central

    Besmer, Michael D.; Sigrist, Jürg A.; Props, Ruben; Buysschaert, Benjamin; Mao, Guannan; Boon, Nico; Hammes, Frederik

    2017-01-01

    Rapid contamination of drinking water in distribution and storage systems can occur due to pressure drop, backflow, cross-connections, accidents, and bio-terrorism. Small volumes of a concentrated contaminant (e.g., wastewater) can contaminate large volumes of water in a very short time with potentially severe negative health impacts. The technical limitations of conventional, cultivation-based microbial detection methods neither allow for timely detection of such contaminations, nor for the real-time monitoring of subsequent emergency remediation measures (e.g., shock-chlorination). Here we applied a newly developed continuous, ultra high-frequency flow cytometry approach to track a rapid pollution event and subsequent disinfection of drinking water in an 80-min laboratory scale simulation. We quantified total (TCC) and intact (ICC) cell concentrations as well as flow cytometric fingerprints in parallel in real-time with two different staining methods. The ingress of wastewater was detectable almost immediately (i.e., after 0.6% volume change), significantly changing TCC, ICC, and the flow cytometric fingerprint. Shock chlorination was rapid and detected in real time, causing membrane damage in the vast majority of bacteria (i.e., drop of ICC from more than 380 cells μl-1 to less than 30 cells μl-1 within 4 min). Both of these effects as well as the final wash-in of fresh tap water followed calculated predictions well. Detailed and highly quantitative tracking of microbial dynamics at very short time scales and for different characteristics (e.g., concentration, membrane integrity) is feasible. This opens up multiple possibilities for targeted investigation of a myriad of bacterial short-term dynamics (e.g., disinfection, growth, detachment, operational changes) both in laboratory-scale research and full-scale system investigations in practice. PMID:29085343

  4. Teleducation : Linking Continents Across Time and Space Through Live, Real-Time Interactive Classes

    NASA Astrophysics Data System (ADS)

    Macko, S. A.; Szuba, T.; Swap, R.; Annegarn, H.; Marjanovic, B.; Vieira, F.; Brito, R.

    2005-12-01

    International education is a natural extension of global economies, global environmental concerns, and global science. While faculty and student exchanges between geographic areas permit for educational experiences and cultural exchanges for the privileged few, distance learning offers opportunities for educational exchanges under any circumstance where time, expense, or location otherwise inhibit offering or taking a particular course of study. However, there are severe pedagogical limitations to traditional Web-based courses that suffer from a lack of personalized, spontaneous exchange between instructor and student. The technology to establish a real time, interactive teleducation program exists, but to our knowledge is relatively untested in a science classroom situation, especially internationally over great distances. In a project to evaluate this type of linkage, we offered a real-time, interactive class at three separate universities, which communicated instantaneously across an ocean at a distance of greater than 8,000 miles and seven time zones. The course, 'Seminar on the Ecology of African Savannas', consisted of a series of 11 lectures originating in either Mozambique (University of Eduardo Mondlane), South Africa (University of the Witwatersrand) or the United States (University of Virginia). We combined ISDN, internet and satellite linkages to facilitate the lectures and real time discussions between instructors and approximately 200 university students in the three countries. Although numerous technical, logistical, and pedagogical issues - both expected and unexpected - arose throughout the pilot year, the project can be viewed as overwhelmingly successful and certainly serves as proof-of-concept for future initiatives, both internationally and locally. This review of our experience will help to prepare other students, faculty, and institutions interested in establishing or developing international education initiatives

  5. ASSIP Study of Real-Time Safety-Critical Embedded Software-Intensive System Engineering Practices

    DTIC Science & Technology

    2008-02-01

    and assessment 2. product engineering processes 3. tooling processes 6 | CMU/SEI-2008-SR-001 Slide 1 Process Standards IEC/ ISO 12207 Software...and technical effort to align with 12207 IEC/ ISO 15026 System & Software Integrity Levels Generic Safety SAE ARP 4754 Certification Considerations...Process Frameworks in revision – ISO 9001, ISO 9004 – ISO 15288/ ISO 12207 harmonization – RTCA DO-178B, MOD Standard UK 00-56/3, … • Methods & Tools

  6. Quarterly Performance/Technical Report of the National Marrow Donor Program

    DTIC Science & Technology

    2006-05-01

    HapLogicTM was implemented for all search reports. This provides a real-time DNA - based match that utilizes genotype list data in the up- front match...CCN meeting held at the ASBMT/CIBMTR Tandem conference, the National Library of Medicine (NLM) demonstrated a draft of their web based version of the...making improvements to the web based interface. O Government Signature Date A . Contingency Preparedness (Hypothesis 1) Grant Award N00014-05-1-0859

  7. Assimilating Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Observations and the Relative Value of Other Observation Types

    DTIC Science & Technology

    2014-08-01

    Using real-time weather data from an unmanned aircraft system to support the advanced research version of the weather research and forecast model... system that is used to transmit some MDCRS observations, the Aircraft Communications Addressing and Reporting System (ACARS). A new network of aircraft ...Technical Analysis and Applications Center, and AirDat LLC developed a modified TAMDAR sensor referred to as TAMDAR- Unmanned Aerial System (TAMDAR-U) for

  8. List of U.S. Army Research Institute Research and Technical Publications for Public Release/Unlimited Distribution, Fiscal Year 2008

    DTIC Science & Technology

    2009-11-01

    times were shorter, collisions were fewer, and more targets were photographed. Effects of video game experience and spatial ability were also...Control Spatial ability, video game , user-interface, remote control, robot TR 1230 The Perception and Estimation of Egocentric Distance in Real and...development by RDECOM-STTC, and ARI is using the AW-VTT to research challenges in the use of distributed, game -based simulations for training

  9. Robust technology and system for management of sucker rod pumping units in oil wells

    NASA Astrophysics Data System (ADS)

    Aliev, T. A.; Rzayev, A. H.; Guluyev, G. A.; Alizada, T. A.; Rzayeva, N. E.

    2018-01-01

    We propose a technology for calculating the robust, normalized correlation functions of the signal from the force sensor on the rod string attached to the hanger of the sucker rod pumping unit. The robust normalized correlation functions are used to form sets of informative attribute combinations, each of which corresponds to a technical condition of the sucker rod pumping unit. We demonstrate how these sets can be used to solve identification and management problems in the oil production process in real time using inexpensive controllers. The results obtained from using the system on real objects are also presented in this paper. It was determined that the energy saved and prolonged overhaul period substantially increased the cost-effectiveness.

  10. Videoexoscopic real-time intraoperative navigation for spinal neurosurgery: a novel co-adaptation of two existing technology platforms, technical note.

    PubMed

    Huang, Meng; Barber, Sean Michael; Steele, William James; Boghani, Zain; Desai, Viren Rajendrakumar; Britz, Gavin Wayne; West, George Alexander; Trask, Todd Wilson; Holman, Paul Joseph

    2018-06-01

    Image-guided approaches to spinal instrumentation and interbody fusion have been widely popularized in the last decade [1-5]. Navigated pedicle screws are significantly less likely to breach [2, 3, 5, 6]. Navigation otherwise remains a point reference tool because the projection is off-axis to the surgeon's inline loupe or microscope view. The Synaptive robotic brightmatter drive videoexoscope monitor system represents a new paradigm for off-axis high-definition (HD) surgical visualization. It has many advantages over the traditional microscope and loupes, which have already been demonstrated in a cadaveric study [7]. An auxiliary, but powerful capability of this system is projection of a second, modifiable image in a split-screen configuration. We hypothesized that integration of both Medtronic and Synaptive platforms could permit the visualization of reconstructed navigation and surgical field images simultaneously. By utilizing navigated instruments, this configuration has the ability to support live image-guided surgery or real-time navigation (RTN). Medtronic O-arm/Stealth S7 navigation, MetRx, NavLock, and SureTrak spinal systems were implemented on a prone cadaveric specimen with a stream output to the Synaptive Display. Surgical visualization was provided using a Storz Image S1 platform and camera mounted to the Synaptive robotic brightmatter drive. We were able to successfully technically co-adapt both platforms. A minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) and an open pedicle subtraction osteotomy (PSO) were performed using a navigated high-speed drill under RTN. Disc Shaver and Trials under RTN were implemented on the MIS TLIF. The synergy of Synaptive HD videoexoscope robotic drive and Medtronic Stealth platforms allow for live image-guided surgery or real-time navigation (RTN). Off-axis projection also allows upright neutral cervical spine operative ergonomics for the surgeons and improved surgical team visualization and education compared to traditional means. This technique has the potential to augment existing minimally invasive and open approaches, but will require long-term outcome measurements for efficacy.

  11. The "neuro-mapping locator" software. A real-time intraoperative objective paraesthesia mapping tool to evaluate paraesthesia coverage of the painful zone in patients undergoing spinal cord stimulation lead implantation.

    PubMed

    Guetarni, F; Rigoard, P

    2015-03-01

    Conventional spinal cord stimulation (SCS) generates paraesthesia, as the efficacy of this technique is based on the relationship between the paraesthesia provided by SCS on the painful zone and an analgesic effect on the stimulated zone. Although this basic postulate is based on clinical evidence, it is clear that this relationship has never been formally demonstrated by scientific studies. There is a need for objective evaluation tools ("transducers") to transpose electrical signals to clinical effects and to guide therapeutic choices. We have developed a software at Poitiers University hospital allowing real-time objective mapping of the paraesthesia generated by SCS lead placement and programming during the implantation procedure itself, on a touch screen interface. The purpose of this article is to describe this intraoperative mapping software, in terms of its concept and technical aspects. The Neuro-Mapping Locator (NML) software is dedicated to patients with failed back surgery syndrome, candidates for SCS lead implantation, to actively participate in the implantation procedure. Real-time geographical localization of the paraesthesia generated by percutaneous or multicolumn surgical SCS lead implanted under awake anaesthesia allows intraoperative lead programming and possibly lead positioning to be modified with the patient's cooperation. Software updates should enable us to refine objectives related to the use of this tool and minimize observational biases. The ultimate goals of NML software should not be limited to optimize one specific device implantation in a patient but also allow to compare instantaneously various stimulation strategies, by characterizing new technical parameters as "coverage efficacy" and "device specificity" on selected subgroups of patients. Another longer-term objective would be to organize these predictive factors into computer science ontologies, which could constitute robust and helpful data for device selection and programming of tomorrow's neurostimulators. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. The Imperial Paediatric Emergency Training Toolkit (IPETT) for use in paediatric emergency training: development and evaluation of feasibility and validity.

    PubMed

    Lambden, Simon; DeMunter, Claudine; Dowson, Anne; Cooper, Mehrengise; Gautama, Sanjay; Sevdalis, Nick

    2013-06-01

    To develop and test the feasibility, reliability, and validity of a practical toolkit for the assessment and feedback of skills required to manage paediatric emergencies in critical care settings. The Imperial Paediatric Emergency Training Toolkit (IPETT) was developed based on current evidence-base and expert input. IPETT assesses both technical and non-technical skills. The technical component covers skills in the areas of clinical assessment, airway and breathing, cardiovascular, and drugs. The non-technical component is based on the validated NOTECHS tool and covers communication and interaction, cooperation and team skills, leadership and managerial skills, and decision-making. The reliability (internal consistency), content validity (inter-correlations between different skills) and concurrent validity (correlations between global technical and non-technical scores) of IPETT were prospectively evaluated in 45 simulated paediatric crises carried out in a PICU with anaesthetic and paediatric trainees (N=52). Non-parametric analyses were carried out. Significance was set at P<0.05. Cronbach alpha reliability coefficients were overall acceptable for the technical (alpha range=0.638-0.810) and good for the non-technical (alpha range=0.701-0.899) component of IPETT. The median inter-skill correlation was rho=0.564 and rho=0.549 for the technical and non-technical components, respectively. These indicate good content validity, as the skills were inter-related but not redundant. We also demonstrate a correlation between the global technical and non-technical scores (rho=0.471) - all Ps<0.05 during the assessments. IPETT offers a psychometrically viable and feasible to use tool in the context of paediatric emergencies training. This study shows that assessment of technical and non-technical skills in combination may offer a more clinically relevant model for training in paediatric emergencies. Further validation should aim to demonstrate skill retention over time and skill transfer from simulation-based training to real emergencies. Copyright © 2013. Published by Elsevier Ireland Ltd.

  13. Exciting story of the high-end television projection systems and the novel compact EIDOPHOR AE-12

    NASA Astrophysics Data System (ADS)

    Schulz-Hennig, Joerg F.

    1998-04-01

    With the new light valve technologies and availability of international broad-band communication channels high-end large screen TV projection is a highly growing contribution to the multi-media world of today. The exciting story already started 58 years ago with the invention of the EIDOPHOR diffractive oil light modulator. The long way to turn electronic cinema into a reality triggered novel applications, e.g. teleconferencing and real time surgery transmissions at universities. Several technical approaches of spatial light modulation were tried, and finally several different solutions are feasible to provide video projectors, meeting the requirements of the different display applications of today and tomorrow. The technical history is reviewed and the limitations and feasibilities of new technologies are presented in respect to existing and new applications.

  14. High Fidelity, “Faster than Real-Time” Simulator for Predicting Power System Dynamic Behavior - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flueck, Alex

    The “High Fidelity, Faster than Real­Time Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of large­scale power system dynamics simulation, including (1) a validated faster than real­ time simulation of both stable and unstable transient dynamics in a large­scale positive sequence transmission grid model, (2) a three­phase unbalanced simulation platform formore » modeling new grid devices, such as independently controlled single­phase static var compensators (SVCs), (3) the world’s first high fidelity three­phase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a first­of­its­ kind implementation of a single­phase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the long­term, the simulator will form the backbone of the newly conceived hybrid real­time protection and control architecture that will coordinate local controls, wide­area measurements, wide­area controls and advanced real­time prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the faster­than­real­time simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three­ phase unbalanced simulator’s ability to model three­phase and single­ phase networks and devices.« less

  15. An accuracy assessment of realtime GNSS time series toward semi- real time seafloor geodetic observation

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Ohta, Y.; Demachi, T.; Kido, M.; Fujimoto, H.; Azuma, R.; Hino, R.

    2013-12-01

    Large interplate earthquake repeatedly occurred in Japan Trench. Recently, the detail crustal deformation revealed by the nation-wide inland GPS network called as GEONET by GSI. However, the maximum displacement region for interplate earthquake is mainly located offshore region. GPS/Acoustic seafloor geodetic observation (hereafter GPS/A) is quite important and useful for understanding of shallower part of the interplate coupling between subducting and overriding plates. We typically conduct GPS/A in specific ocean area based on repeated campaign style using research vessel or buoy. Therefore, we cannot monitor the temporal variation of seafloor crustal deformation in real time. The one of technical issue on real time observation is kinematic GPS analysis because kinematic GPS analysis based on reference and rover data. If the precise kinematic GPS analysis will be possible in the offshore region, it should be promising method for real time GPS/A with USV (Unmanned Surface Vehicle) and a moored buoy. We assessed stability, precision and accuracy of StarFireTM global satellites based augmentation system. We primarily tested for StarFire in the static condition. In order to assess coordinate precision and accuracy, we compared 1Hz StarFire time series and post-processed precise point positioning (PPP) 1Hz time series by GIPSY-OASIS II processing software Ver. 6.1.2 with three difference product types (ultra-rapid, rapid, and final orbits). We also used difference interval clock information (30 and 300 seconds) for the post-processed PPP processing. The standard deviation of real time StarFire time series is less than 30 mm (horizontal components) and 60 mm (vertical component) based on 1 month continuous processing. We also assessed noise spectrum of the estimated time series by StarFire and post-processed GIPSY PPP results. We found that the noise spectrum of StarFire time series is similar pattern with GIPSY-OASIS II processing result based on JPL rapid orbit products with 300 seconds interval clock information. And we report stability, precision and accuracy of StarFire in the moving conditon.

  16. Location-Based Augmented Reality for Mobile Learning: Algorithm, System, and Implementation

    ERIC Educational Resources Information Center

    Tan, Qing; Chang, William; Kinshuk

    2015-01-01

    AR technology can be considered as mainly consisting of two aspects: identification of real-world object and display of computer-generated digital contents related the identified real-world object. The technical challenge of mobile AR is to identify the real-world object that mobile device's camera aim at. In this paper, we will present a…

  17. A Real-Life Case Study of Audit Interactions--Resolving Messy, Complex Problems

    ERIC Educational Resources Information Center

    Beattie, Vivien; Fearnley, Stella; Hines, Tony

    2012-01-01

    Real-life accounting and auditing problems are often complex and messy, requiring the synthesis of technical knowledge in addition to the application of generic skills. To help students acquire the necessary skills to deal with these problems effectively, educators have called for the use of case-based methods. Cases based on real situations (such…

  18. Forensic Disaster Analysis in Near-real Time

    NASA Astrophysics Data System (ADS)

    Kunz, Michael; Zschau, Jochen; Wenzel, Friedemann; Khazai, Bijan; Kunz-Plapp, Tina; Trieselmann, Werner

    2014-05-01

    The impacts of extreme hydro-meteorological and geophysical events are controlled by various factors including severity of the event (intensity, duration, spatial extent), amplification with other phenomena (multihazard or cascading effects), interdependencies of technical systems and infrastructure, preparedness and resilience of the society. The Center for Disaster Management and Risk Reduction Technology (CEDIM) has adopted the comprehensive understanding of disasters and develops methodologies of near real-time FDA as a complementing component of the FORIN program of IRDR. The new research strategy 'Near Real-Time Forensic Disaster Analysis (FDA)' aims at scrutinizing disasters closely with a multi-disciplinary approach in order to assess the various aspects of disasters and to identify mechanisms most relevant for an extreme event to become a disaster (e.g., causal loss analysis). Recent technology developments - which have opened unprecedented opportunities for real-time hazard, vulnerability and loss assessment - are used for analyzing disasters and their impacts in combination with databases of historical events. The former covers modern empirical and analytical methods available in engineering and remote sensing for rapid impact assessments, rapid information extraction from crowd sourcing as well as rapid assessments of socio-economic impacts and economic losses. The event-driven science-based assessments of CEDIM are compiled based on interdisciplinary expertise and include the critical evaluation, assessment, validation, and quantification of an event. An important component of CEDIM's FDA is the near real-time approach which is expected to significantly speed up our understanding of natural disasters and be used to provide timely, relevant and valuable information to various user groups within their respective contexts. Currently, CEDIM has developed models and methodologies to assess different types of hazard. These approaches were applied to several disasters including, for example, Super Typhoon Haiyan/Yolanda (Nov. 2013), Central European Floods (June 2013), Hurricane Sandy (Oct. 2012), US Droughts (Summer 2012), or Typhoon Saola in Taiwan and Philippines (July 2012).

  19. Design of an Integrated Division-Level Battle Simulation for Research, Development, and Training. Volume 2. Detailed Design Notes

    DTIC Science & Technology

    1979-08-01

    frag orders for tactical considerations. Frag orders issued by simulated modules will be " edited " by the same procedure as that used with populated...record and distributed as required. Queries transmitted from any staff module will be reviewed and edited at event time for technical accuracy. If an...of this kind will have to be carefully edited and interpreted by the control- ler(s) and/or computer before the chanqe is instituted in the real world

  20. Infrared Damage Detection System (IDDS) for Real-Time, Small-Scale Damage Monitoring

    DTIC Science & Technology

    2007-01-01

    MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) January 2007 Technical Paper 5a. CONTRACT NUMBER FA8650-04-C-5200 5b. GRANT NUMBER 4 ...PROJECT NUMBER 4347 5e. TASK NUMBER 27 6 . AUTHOR(S) George A. Hartman 5f. WORK UNIT NUMBER 03 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS... titanium alloys, titanium -aluminide intermetallics, and nickel-base superalloys. Various geometries have also been used; however, we will focus on the

  1. Electric scooter pilot project

    NASA Astrophysics Data System (ADS)

    Slanina, Zdenek; Dedek, Jan; Golembiovsky, Matej

    2016-09-01

    This article describes the issue of electric scooter development for educational and demonstration purposes on the Technical University of Ostrava. Electric scooter is equipped with a brushless motor with permanent magnets and engine controller, measuring and monitoring system for speed regulation, energy flow control and both online and off-line data analysis, visualization system for real-time diagnostics and battery management with balancing modules system. Implemented device brings a wide area for the following scientific research. This article also includes some initial test results and electric vehicles experiences.

  2. Underbody Blast Models of TBI Caused by Hyper-Acceleration and Secondary Head Impact

    DTIC Science & Technology

    2015-02-01

    or behavioral indices of brain injury . 2.0 Technical Requirements: 2 Fig. 1. Diffusion tensor imaging of water diffusion in the internal capsule...demonstrates relative differences between blast (left) and sham (right) and also the similarities between the two animals in each group. vWF Bcl - 2 Fo ld...C ha ng e -8 -6 -4 - 2 0 2 4 6 8 10 12 ** ** Figure 6. Quantitative real-time polymerase chain reaction (qPCR) validation of vWF and Bcl - 2

  3. Current and emerging laser sensors for greenhouse gas sensing and leak detection

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.

    2014-05-01

    To reduce atmospheric accumulation of the greenhouse gases methane and carbon dioxide, networks of continuously operating sensors that monitor and map their sources are desirable. In this paper, we discuss advances in laser-based open-path leak detectors, as well as technical and economic challenges inhibiting widespread sensor deployment for "ubiquitous monitoring". We describe permanently-installed, wireless, solar-powered sensors that overcome previous installation and maintenance difficulties while providing autonomous real-time leak reporting without false alarms.

  4. Adding Realism to Technical Drafting Programs

    ERIC Educational Resources Information Center

    Weaver, Gerald L.

    1976-01-01

    Suggestions for improved, relevant technical drafting programs are presented: (1) making realistic assignments, (2) viewing real projects, (3) duplicating industrial projects, (4) practicing lettering, (5) conducting research, (6) engaging in teamwork, (7) adapting to change, (8) learning to meet deadlines, and (9) stressing the importance of…

  5. Teaching, Connecting & Empowering Today's Learners

    ERIC Educational Resources Information Center

    Jones, Virginia R.

    2013-01-01

    Since career and technical education (CTE) is based historically on promoting technical, hands-on, real-world applications in numerous vocations, CTE educators are uniquely poised to offer more use of instructional technology in their classrooms. Many CTE educators have remarkable connections with industry partnerships, internships and learning…

  6. [A technical modification of the use of Dwyer's equipment].

    PubMed

    Carlioz, H; Damsin, J P

    1991-01-01

    Dwyer's technique for correction and anterior fusion of the spine was improved by using lockers at the level of each screw. So, like with the Zielke's technic this procedure allowed a global progressive and controllable correction and a real derotation of the spine.

  7. ScreenMasker: An Open-source Gaze-contingent Screen Masking Environment.

    PubMed

    Orlov, Pavel A; Bednarik, Roman

    2016-09-01

    The moving-window paradigm, based on gazecontingent technic, traditionally used in a studies of the visual perceptual span. There is a strong demand for new environments that could be employed by non-technical researchers. We have developed an easy-to-use tool with a graphical user interface (GUI) allowing both execution and control of visual gaze-contingency studies. This work describes ScreenMasker, an environment that allows create gaze-contingent textured displays used together with stimuli presentation software. ScreenMasker has an architecture that meets the requirements of low-latency real-time eye-movement experiments. It also provides a variety of settings and functions. Effective rendering times and performance are ensured by means of GPU processing under CUDA technology. Performance tests show ScreenMasker's latency to be 67-74 ms on a typical office computer, and high-end 144-Hz screen latencies of about 25-28 ms. ScreenMasker is an open-source system distributed under the GNU Lesser General Public License and is available at https://github.com/PaulOrlov/ScreenMasker .

  8. Real-time biofeedback to target risk of anterior cruciate ligament injury: a technical report for injury prevention and rehabilitation.

    PubMed

    Ford, Kevin R; DiCesare, Christopher A; Myer, Gregory D; Hewett, Timothy E

    2015-05-20

    Biofeedback training enables an athlete to alter biomechanical and physiological function by receiving biomechanical and physiological data concurrent with or immediately after a task. To compare the effects of 2 different modes of real-time biofeedback focused on reducing risk factors related to anterior cruciate ligament injury. Randomized crossover study design. Biomechanics laboratory and sports medicine center. Female high school soccer players (age 14.8 ± 1.0 y, height 162.6 ± 6.8 cm, mass 55.9 ± 7.0 kg; n = 4). A battery of kinetic- or kinematic-based real-time biofeedback during repetitive double-leg squats. Baseline and posttraining drop vertical jumps were collected to determine if either feedback method improved high injury risk landing mechanics. Maximum knee abduction moment and angle during the landing was significantly decreased after kinetic-focused biofeedback (P = .04). The reduced knee abduction moment during the drop vertical jumps after kinematic-focused biofeedback was not different (P = .2). Maximum knee abduction angle was significantly decreased after kinetic biofeedback (P < .01) but only showed a trend toward reduction after kinematic biofeedback (P = .08). The innovative biofeedback employed in the current study reduced knee abduction load and posture from baseline to posttraining during a drop vertical jump.

  9. Minimally invasive neurosurgery within a 0.5 tesla intraoperative magnetic resonance scanner using an off-line neuro-navigation system.

    PubMed

    Mursch, K; Gotthardt, T; Kröger, R; Bublat, M; Behnke-Mursch, J

    2005-08-01

    We evaluated an advanced concept for patient-based navigation during minimally invasive neurosurgical procedures. An infrared-based, off-line neuro-navigation system (LOCALITE, Bonn, Germany) was applied during operations within a 0.5 T intraoperative MRI scanner (iMRI) (Signa SF, GE Medical Systems, Milwaukee, WI, USA) in addition to the conventional real-time system. The three-dimensional (3D) data set was acquired intraoperatively and up-dated when brain-shift was suspected. Twenty-three patients with subcortical lesions were operated upon with the aim to minimise the operative trauma. Small craniotomies (median diameter 30 mm, mean diameter 27 mm) could be placed exactly. In all cases, the primary goal of the operation (total resection or biopsy) was achieved in a straightforward procedure without permanent morbidity. The navigation system could be easily used without technical problems. In contrast to the real-time navigation mode of the MR system, the higher quality as well as the real-time display of the MR images reconstructed from the 3D reference data provided sufficient visual-manual coordination. The system combines the advantages of conventional neuro-navigation with the ability to adapt intraoperatively to the continuously changing anatomy. Thus, small and/or deep lesions can be operated upon in straightforward minimally invasive operations.

  10. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    PubMed

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  11. Updated methods for assessing the impacts of nearby gas drilling and production on neighborhood air quality and human health.

    PubMed

    Olaguer, Eduardo P; Erickson, Matthew; Wijesinghe, Asanga; Neish, Brad; Williams, Jeff; Colvin, John

    2016-02-01

    An explosive growth in natural gas production within the last decade has fueled concern over the public health impacts of air pollutant emissions from oil and gas sites in the Barnett and Eagle Ford shale regions of Texas. Commonly acknowledged sources of uncertainty are the lack of sustained monitoring of ambient concentrations of pollutants associated with gas mining, poor quantification of their emissions, and inability to correlate health symptoms with specific emission events. These uncertainties are best addressed not by conventional monitoring and modeling technology, but by increasingly available advanced techniques for real-time mobile monitoring, microscale modeling and source attribution, and real-time broadcasting of air quality and human health data over the World Wide Web. The combination of contemporary scientific and social media approaches can be used to develop a strategy to detect and quantify emission events from oil and gas facilities, alert nearby residents of these events, and collect associated human health data, all in real time or near-real time. The various technical elements of this strategy are demonstrated based on the results of past, current, and planned future monitoring studies in the Barnett and Eagle Ford shale regions. Resources should not be invested in expanding the conventional air quality monitoring network in the vicinity of oil and gas exploration and production sites. Rather, more contemporary monitoring and data analysis techniques should take the place of older methods to better protect the health of nearby residents and maintain the integrity of the surrounding environment.

  12. A novel real time imaging platform to quantify macrophage phagocytosis.

    PubMed

    Kapellos, Theodore S; Taylor, Lewis; Lee, Heyne; Cowley, Sally A; James, William S; Iqbal, Asif J; Greaves, David R

    2016-09-15

    Phagocytosis of pathogens, apoptotic cells and debris is a key feature of macrophage function in host defense and tissue homeostasis. Quantification of macrophage phagocytosis in vitro has traditionally been technically challenging. Here we report the optimization and validation of the IncuCyte ZOOM® real time imaging platform for macrophage phagocytosis based on pHrodo® pathogen bioparticles, which only fluoresce when localized in the acidic environment of the phagolysosome. Image analysis and fluorescence quantification were performed with the automated IncuCyte™ Basic Software. Titration of the bioparticle number showed that the system is more sensitive than a spectrofluorometer, as it can detect phagocytosis when using 20× less E. coli bioparticles. We exemplified the power of this real time imaging platform by studying phagocytosis of murine alveolar, bone marrow and peritoneal macrophages. We further demonstrate the ability of this platform to study modulation of the phagocytic process, as pharmacological inhibitors of phagocytosis suppressed bioparticle uptake in a concentration-dependent manner, whereas opsonins augmented phagocytosis. We also investigated the effects of macrophage polarization on E. coli phagocytosis. Bone marrow-derived macrophage (BMDM) priming with M2 stimuli, such as IL-4 and IL-10 resulted in higher engulfment of bioparticles in comparison with M1 polarization. Moreover, we demonstrated that tolerization of BMDMs with lipopolysaccharide (LPS) results in impaired E. coli bioparticle phagocytosis. This novel real time assay will enable researchers to quantify macrophage phagocytosis with a higher degree of accuracy and sensitivity and will allow investigation of limited populations of primary phagocytes in vitro. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Comparison of nested competitive RT-PCR and real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21) positive acute myelogenous leukemia.

    PubMed

    Wattjes, M P; Krauter, J; Nagel, S; Heidenreich, O; Ganser, A; Heil, G

    2000-02-01

    The chromosomal translocation t(8;21)(q22;q22) is one of the most frequent karyotypic aberrations in acute myeloid leukemia (AML) and results in a chimeric fusion transcript AML1/MTG8. Since AML1/MTG8 fusion transcripts remain detectable by RT-PCR in t(8;21) AML patients in long-term hematological remission, quantitative assessment of AML1/MTG8 transcripts is necessary for the monitoring of minimal residual disease (MRD) in these patients. Competitive RT-PCR and recently real-time RT-PCR are increasingly used for detection and quantification of leukemia specific fusion transcripts. For the direct comparison of both methods we cloned a 42 bp DNA fragment into the original AML1/MTG8 sequence. The resulting molecule was used as an internal competitor for our novel competitive nested RT-PCR for AML1/MTG8 and as an external standard for the generation of AML1/MTG8 standard curves in a real-time PCR assay. Using this standard molecule for both PCR techniques, we compared their sensitivity, linearity and reproducibility. Both methods were comparable with regard to all parameters tested irrespective of analyzing serial dilutions of plasmids, cell lines or samples from t(8;21) positive AML patients at different stages of the disease. Therefore, both techniques can be recommended for the monitoring of MRD in these particular AML patients. However, the automatization of the real-time PCR technique offers some technical advantages.

  14. Real-time ultrasound-guided spinal anesthesia using the SonixGPS® needle tracking system: a case report.

    PubMed

    Wong, Simon W; Niazi, Ahtsham U; Chin, Ki J; Chan, Vincent W

    2013-01-01

    The SonixGPS® is an electromagnetic needle tracking system for ultrasound-guided needle intervention. Both current and predicted needle tip position are displayed on the ultrasound screen in real-time, facilitating needle-beam alignment and guidance to the target. This case report illustrates the use of the SonixGPS system for successful performance of real-time ultrasound-guided spinal anesthesia in a patient with difficult spinal anatomy. A 67-yr-old male was admitted to our hospital to undergo revision of total right hip arthroplasty. His four previous arthroplasties for hip revision were performed under general anesthesia because he had undergone L3-L5 instrumentation for spinal stenosis. The L4-L5 interspace was viewed with the patient in the left lateral decubitus position. A 19G 80-mm proprietary needle (Ultrasonix Medical Corp, Richmond, BC, Canada) was inserted and directed through the paraspinal muscles to the ligamentum flavum in plane to the ultrasound beam. A 120-mm 25G Whitacre spinal needle was then inserted through the introducer needle in a conventional fashion. Successful dural puncture was achieved on the second attempt, as indicated by a flow of clear cerebrospinal fluid. The patient tolerated the procedure well, and the spinal anesthetic was adequate for the duration of the surgery. The SonixGPS is a novel technology that can reduce the technical difficulty of real-time ultrasound-guided neuraxial blockade. It may also have applications in other advanced ultrasound-guided regional anesthesia techniques where needle-beam alignment is critical.

  15. Technical Qualifications for Treating Photovoltaic Assets as Real Property by Real Estate Investment Trusts (REITs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, D.; Mendelsohn, M.; Coughlin, J.

    2012-06-01

    It has been proposed that Real Estate Investment Trusts (REITs) have the potential to lower the cost and increase the adoption of photovoltaic systems (PV) by offering a more attractive source of capital. The purpose of this paper is to explain the fundamental physical characteristics of PV and compare them to the characteristics of 'real' property, to help determine whether REITs can own PV systems.

  16. The Development of an Open Hardware and Software System Onboard Unmanned Aerial Vehicles to Monitor Concentrated Solar Power Plants

    PubMed Central

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Pérez Porras, Fernando; Meroño-Larriva, José Emilio; García-Ferrer, Alfonso

    2017-01-01

    Concentrated solar power (CSP) plants are increasingly gaining interest as a source of renewable energy. These plants face several technical problems and the inspection of components such as absorber tubes in parabolic trough concentrators (PTC), which are widely deployed, is necessary to guarantee plant efficiency. This article presents a system for real-time industrial inspection of CSP plants using low-cost, open-source components in conjunction with a thermographic sensor and an unmanned aerial vehicle (UAV). The system, available in open-source hardware and software, is designed to be employed independently of the type of device used for inspection (laptop, smartphone, tablet or smartglasses) and its operating system. Several UAV flight missions were programmed as follows: flight altitudes at 20, 40, 60, 80, 100 and 120 m above ground level; and three cruising speeds: 5, 7 and 10 m/s. These settings were chosen and analyzed in order to optimize inspection time. The results indicate that it is possible to perform inspections by an UAV in real time at CSP plants as a means of detecting anomalous absorber tubes and improving the effectiveness of methodologies currently being utilized. Moreover, aside from thermographic sensors, this contribution can be applied to other sensors and can be used in a broad range of applications where real-time georeferenced data visualization is necessary. PMID:28594353

  17. The Development of an Open Hardware and Software System Onboard Unmanned Aerial Vehicles to Monitor Concentrated Solar Power Plants.

    PubMed

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Pérez Porras, Fernando; Meroño-Larriva, José Emilio; García-Ferrer, Alfonso

    2017-06-08

    Concentrated solar power (CSP) plants are increasingly gaining interest as a source of renewable energy. These plants face several technical problems and the inspection of components such as absorber tubes in parabolic trough concentrators (PTC), which are widely deployed, is necessary to guarantee plant efficiency. This article presents a system for real-time industrial inspection of CSP plants using low-cost, open-source components in conjunction with a thermographic sensor and an unmanned aerial vehicle (UAV). The system, available in open-source hardware and software, is designed to be employed independently of the type of device used for inspection (laptop, smartphone, tablet or smartglasses) and its operating system. Several UAV flight missions were programmed as follows: flight altitudes at 20, 40, 60, 80, 100 and 120 m above ground level; and three cruising speeds: 5, 7 and 10 m/s. These settings were chosen and analyzed in order to optimize inspection time. The results indicate that it is possible to perform inspections by an UAV in real time at CSP plants as a means of detecting anomalous absorber tubes and improving the effectiveness of methodologies currently being utilized. Moreover, aside from thermographic sensors, this contribution can be applied to other sensors and can be used in a broad range of applications where real-time georeferenced data visualization is necessary.

  18. Russian eruption warning systems for aviation

    USGS Publications Warehouse

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.

    2009-01-01

    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  19. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George L. Scott III

    2005-01-01

    Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests,more » there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and Phase 3 project work included the development of a real-time reservoir stimulation procedure, which was successfully field-demonstrated and is presently patented in the U.S. and select foreign countries, including Venezuela, Brazil and Canada. Said patents are co-owned by RTZ and the National Energy Technology Lab (NETL). In 2002, Realtimezone and the NETL licensed said patents to Halliburton Energy Services (HES). Additional licensing agreements (LA) are anticipated with other service industry companies in 2005. Final Phase 3 work has led to commercial applications of the real-time reservoir stimulation procedure. Four successfully downhole-mixed well tests were conducted with commercially expected production results. The most recent, fourth field test was a downhole-mixed stimulated well completed in June, 2004, which currently produces 11 BOPD with 90 barrels of water per day. Conducted Phase 2 and Phase 3 field-test work to date has resulted in the fine-tuning of a real-time enhanced stimulation system that will significantly increase future petroleum well recoveries in the United States and foreign petroleum fields, both onshore and offshore, and in vertical and horizontal wells.« less

  20. When do drilling alliances add value? The alliance value model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brett, J.F.; Craig, V.B.; Wadsworth, D.B.

    1996-12-31

    A recent GRI report details three previously unstudied aspects of alliances: specific measurable factors that improve alliance success, how a successful alliance should be structured, and when an alliance makes economic sense. The most innovative tool to emerge from the report, the Alliance Value Model, addresses the third aspect. The theory behind the Alliance Value Model is that the long-term viability of any drilling relationship hinges on its ability to create real value and achieve stability. Based upon the report`s findings, the most effective way to form such an alliance is through a detailed description and integration of the technicalmore » processes involved. This new type of process-driven alliance is characterized by a value chain which links together a common set of technical processes, mutually defined bottomline goals, and shared benefits. Building a process-driven alliance requires time and people and therefore has an associated cost. The real value generated by an alliance must exceed this start-up cost. The Alliance Value Model computes the net present value (NPV) of the cash flows for four different operating arrangements: (1) Business As Usual (conventional competitive bidding process), (2) Process-Driven Alliance (linking technical processes to accelerate production and reduce expenses), (3) Incentivized Process-Driven Alliance (linked technical processes with performance incentives to promote stability), and (4) No Drill Case (primarily used to gauge the market value of services). These arrangements test different degrees of process integration between an operator and its suppliers. They can also help determine if the alliance can add enough value to exceed startup costs and if the relationship will be stable. Each partner can test the impact of the relational structure on its own profitability. When an alliance is warranted, all participants can benefit from real value generated in a stable relationship.« less

  1. Obstacles encountered in the development of the low vision enhancement system.

    PubMed

    Massof, R W; Rickman, D L

    1992-01-01

    The Johns Hopkins Wilmer Eye Institute and the NASA Stennis Space Center are collaborating on the development of a new high technology low vision aid called the Low Vision Enhancement System (LVES). The LVES consists of a binocular head-mounted video display system, video cameras mounted on the head-mounted display, and real-time video image processing in a system package that is battery powered and portable. Through a phased development approach, several generations of the LVES can be made available to the patient in a timely fashion. This paper describes the LVES project with major emphasis on technical problems encountered or anticipated during the development process.

  2. Scientific millenarianism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, A.M.

    Today, for the first time, scientific concerns are seriously being addressed that span future times--hundreds, even thousands, or more years in the future. One is witnessing what the author calls scientific millenarianism. Are such concerns for the distant future exercises in futility, or are they real issues that, to the everlasting gratitude of future generations, this generation has identified, warned about and even suggested how to cope with in the distant future? Can the four potential catastrophes--bolide impact, CO{sub 2} warming, radioactive wastes and thermonuclear war--be avoided by technical fixes, institutional responses, religion, or by doing nothing? These are themore » questions addressed in this paper.« less

  3. Vaccination against pandemic influenza A/H1N1v in England: a real-time economic evaluation.

    PubMed

    Baguelin, Marc; Hoek, Albert Jan Van; Jit, Mark; Flasche, Stefan; White, Peter J; Edmunds, W John

    2010-03-11

    Decisions on how to mitigate an evolving pandemic are technically challenging. We present a real-time assessment of the effectiveness and cost-effectiveness of alternative influenza A/H1N1v vaccination strategies. A transmission dynamic model was fitted to the estimated number of cases in real-time, and used to generate plausible autumn scenarios under different vaccination options. The proportion of these cases by age and risk group leading to primary care consultations, National Pandemic Flu Service consultations, emergency attendances, hospitalisations, intensive care and death was then estimated using existing data from the pandemic. The real-time model suggests that the epidemic will peak in early November, with the peak height being similar in magnitude to the summer wave. Vaccination of the high-risk groups is estimated to prevent about 45 deaths (80% credibility interval 26-67), and save around 2900 QALYs (80% credibility interval 1600-4500). Such a programme is very likely to be cost-effective if the cost of vaccine purchase itself is treated as a sunk cost. Extending vaccination to low-risk individuals is expected to result in more modest gains in deaths and QALYs averted. Extending vaccination to school-age children would be the most cost-effective extension. The early availability of vaccines is crucial in determining the impact of such extensions. There have been a considerable number of cases of H1N1v in England, and so the benefits of vaccination to mitigate the ongoing autumn wave are limited. However, certain groups appear to be at significantly higher risk of complications and deaths, and so it appears both effective and cost-effective to vaccinate them. The United Kingdom was the first country to have a major epidemic in Europe. In countries where the epidemic is not so far advanced vaccination of children may be cost-effective. Similar, detailed, real-time modelling and economic studies could help to clarify the situation.

  4. Properties of some statistics for AR-ARCH model with application to technical analysis

    NASA Astrophysics Data System (ADS)

    Huang, Xudong; Liu, Wei

    2009-03-01

    In this paper, we investigate some popular technical analysis indexes for AR-ARCH model as real stock market. Under the given conditions, we show that the corresponding statistics are asymptotically stationary and the law of large numbers hold for frequencies of the stock prices falling out normal scope of these technical analysis indexes under AR-ARCH, and give the rate of convergence in the case of nonstationary initial values, which give a mathematical rationale for these methods of technical analysis in supervising the security trends.

  5. Effects of Company Visits on Dutch Primary School Children's Attitudes toward Technical Professions

    ERIC Educational Resources Information Center

    Post, Tim; Walma van der Molen, Juliette H.

    2014-01-01

    Technology-oriented company visits could potentially provide children with a stimulating "real-world" setting to develop more broad and positive images of and attitudes toward technology and technical professions. The present study was the first to explore whether children's images of and attitudes toward technology, technical…

  6. US Army Weapon Systems Human-Computer Interface (WSHCI) style guide, Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, L.W.; O`Mara, P.A.; Shepard, A.P.

    1996-09-30

    A stated goal of the U.S. Army has been the standardization of the human computer interfaces (HCIS) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of style guides. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4), in conjunctionmore » with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide. This document, the U.S. Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide, represents the first version of that style guide. The purpose of this document is to provide HCI design guidance for RT/NRT Army systems across the weapon systems domains of ground, aviation, missile, and soldier systems. Each domain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their domains.« less

  7. Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields

    NASA Astrophysics Data System (ADS)

    Smirnov, I. N.; Speranskiy, A. A.

    2015-11-01

    It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.

  8. Perfluoro(Methylcyclohexane) Tracer Tagging Test and Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigman, M.E.

    On February 14 and 15, 2000, a demonstration of current perfluorocarbon tagging technology and the future potential of these methods was held at Oak Ridge National Laboratory (ORNL). The demonstration consisted of a brief technical discussion followed by a laboratory demonstration. The laboratory demonstrations included the detection of letters, parcels, briefcases and lockers containing perfluorocarbon-tagged papers. Discrimination between tagged and non-tagged items and between three perfluorocarbon tags was demonstrated along with the detection of perfluorocarbon in a background of non-fluorinated volatile organic solvent. All demonstrations involved real-time detection using a direct sampling ion trap mass spectrometer. The technical results obtainedmore » at ORNL during and in preparation for the demonstration are presented in Appendix 1 to assist Tracer Detection Technology Corp. in further evaluating their position on development and marketing of perfluorocarbon tracer technology.« less

  9. The Power of Real-World Application

    ERIC Educational Resources Information Center

    Stam, Brad

    2011-01-01

    Linked learning transforms students' high school experience by linking a college preparatory course sequence with demanding technical education, and linking real-world experiences with classroom learning to help students gain an advantage in high school, postsecondary education, and careers. With linked learning, students follow industry-themed…

  10. Tile-Image Merging and Delivering for Virtual Camera Services on Tiled-Display for Real-Time Remote Collaboration

    NASA Astrophysics Data System (ADS)

    Choe, Giseok; Nang, Jongho

    The tiled-display system has been used as a Computer Supported Cooperative Work (CSCW) environment, in which multiple local (and/or remote) participants cooperate using some shared applications whose outputs are displayed on a large-scale and high-resolution tiled-display, which is controlled by a cluster of PC's, one PC per display. In order to make the collaboration effective, each remote participant should be aware of all CSCW activities on the titled display system in real-time. This paper presents a capturing and delivering mechanism of all activities on titled-display system to remote participants in real-time. In the proposed mechanism, the screen images of all PC's are periodically captured and delivered to the Merging Server that maintains separate buffers to store the captured images from the PCs. The mechanism selects one tile image from each buffer, merges the images to make a screen shot of the whole tiled-display, clips a Region of Interest (ROI), compresses and streams it to remote participants in real-time. A technical challenge in the proposed mechanism is how to select a set of tile images, one from each buffer, for merging so that the tile images displayed at the same time on the tiled-display can be properly merged together. This paper presents three selection algorithms; a sequential selection algorithm, a capturing time based algorithm, and a capturing time and visual consistency based algorithm. It also proposes a mechanism of providing several virtual cameras on tiled-display system to remote participants by concurrently clipping several different ROI's from the same merged tiled-display images, and delivering them after compressing with video encoders requested by the remote participants. By interactively changing and resizing his/her own ROI, a remote participant can check the activities on the tiled-display effectively. Experiments on a 3 × 2 tiled-display system show that the proposed merging algorithm can build a tiled-display image stream synchronously, and the ROI-based clipping and delivering mechanism can provide individual views on the tiled-display system to multiple remote participants in real-time.

  11. Motion-adapted catheter navigation with real-time instantiation and improved visualisation

    PubMed Central

    Kwok, Ka-Wai; Wang, Lichao; Riga, Celia; Bicknell, Colin; Cheshire, Nicholas; Yang, Guang-Zhong

    2014-01-01

    The improvements to catheter manipulation by the use of robot-assisted catheter navigation for endovascular procedures include increased precision, stability of motion and operator comfort. However, navigation through the vasculature under fluoroscopic guidance is still challenging, mostly due to physiological motion and when tortuous vessels are involved. In this paper, we propose a motion-adaptive catheter navigation scheme based on shape modelling to compensate for these dynamic effects, permitting predictive and dynamic navigations. This allows for timed manipulations synchronised with the vascular motion. The technical contribution of the paper includes the following two aspects. Firstly, a dynamic shape modelling and real-time instantiation scheme based on sparse data obtained intra-operatively is proposed for improved visualisation of the 3D vasculature during endovascular intervention. Secondly, a reconstructed frontal view from the catheter tip using the derived dynamic model is used as an interventional aid to user guidance. To demonstrate the practical value of the proposed framework, a simulated aortic branch cannulation procedure is used with detailed user validation to demonstrate the improvement in navigation quality and efficiency. PMID:24744817

  12. The Canarian Seismic Monitoring Network: design, development and first result

    NASA Astrophysics Data System (ADS)

    D'Auria, Luca; Barrancos, José; Padilla, Germán D.; García-Hernández, Rubén; Pérez, Aaron; Pérez, Nemesio M.

    2017-04-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk. In June 2016 Instituto Volcanologico de Canarias started the deployment of a seismological volcano monitoring network consisting of 15 broadband seismic stations. The network began its full operativity in November 2016. The aim of the network are both volcano monitoring and scientific research. Currently data are continuously recorded and processed in real-time. Seismograms, hypocentral parameters, statistical informations about the seismicity and other data are published on a web page. We show the technical characteristics of the network and an estimate of its detection threshold and earthquake location performances. Furthermore we present other near-real time procedures on the data: analysis of the ambient noise for determining the shallow velocity model and temporal velocity variations, detection of earthquake multiplets through massive data mining of the seismograms and automatic relocation of events through double-difference location.

  13. Bridges Dynamic Parameters Identification Based On Experimental and Numerical Method Comparison in Regard with Traffic Seismicity

    NASA Astrophysics Data System (ADS)

    Krkošková, Katarína; Papán, Daniel; Papánová, Zuzana

    2017-10-01

    The technical seismicity negatively affects the environment, buildings and structures. Technical seismicity means seismic shakes caused by force impulse, random process and unnatural origin. The vibration influence on buildings is evaluated in the Eurocode 8 in Slovak Republic, however, the Slovak Technical Standard STN 73 0036 includes solution of the technical seismicity. This standard also classes bridges into the group of structures that are significant in light of the technical seismicity - the group “U”. Using the case studies analysis by FEM simulation and comparison is necessary because of brief norm evaluation of this issue. In this article, determinate dynamic parameters by experimental measuring and numerical method on two real bridges are compared. First bridge, (D201 - 00) is Scaffold Bridge on the road I/11 leading to the city of Čadca and is situated in the city of Žilina. It is eleven - span concrete road bridge. The railway is the obstacle, which this bridge spans. Second bridge (M5973 Brodno) is situated in the part of Žilina City on the road of I/11. It is concrete three - span road bridge built as box girder. The computing part includes 3D computational models of the bridges. First bridge (D201 - 00) was modelled in the software of IDA Nexis as the slab - wall model. The model outputs are natural frequencies and natural vibration modes. Second bridge (M5973 Brodno) was modelled in the software of VisualFEA. The technical seismicity corresponds with the force impulse, which was put into this model. The model outputs are vibration displacements, velocities and accelerations. The aim of the experiments was measuring of the vibration acceleration time record of bridges, and there was need to systematic placement of accelerometers. The vibration acceleration time record is important during the under - bridge train crossing, about the first bridge (D201 - 00) and the vibration acceleration time domain is important during deducing the force impulse under the bridge, about second bridge (M5973 Brodno). The analysis was done in the software of Sigview. About the first bridge (D201 - 00), the analysis output were values of power spectral density adherent to the frequencies values. These frequencies were compared with the natural frequencies values from the computational model whereby the technical seismicity influence on bridge natural frequencies was found out. About the second bridge (M5973 Brodno), the Sigview display of recorded vibration velocity time history was compared with the final vibration velocity time history from the computational model, whereby the results were incidental.

  14. Image-guided radiation therapy in lymphoma management

    PubMed Central

    Eng, Tony

    2015-01-01

    Image-guided radiation therapy (IGRT) is a process of incorporating imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), Positron emission tomography (PET), and ultrasound (US) during radiation therapy (RT) to improve treatment accuracy. It allows real-time or near real-time visualization of anatomical information to ensure that the target is in its position as planned. In addition, changes in tumor volume and location due to organ motion during treatment can be also compensated. IGRT has been gaining popularity and acceptance rapidly in RT over the past 10 years, and many published data have been reported on prostate, bladder, head and neck, and gastrointestinal cancers. However, the role of IGRT in lymphoma management is not well defined as there are only very limited published data currently available. The scope of this paper is to review the current use of IGRT in the management of lymphoma. The technical and clinical aspects of IGRT, lymphoma imaging studies, the current role of IGRT in lymphoma management and future directions will be discussed. PMID:26484299

  15. RTEMS CENTRE- Support and Maintenance CENTRE to RTEMS Operating System

    NASA Astrophysics Data System (ADS)

    Silva, H.; Constantino, A.; Coutunho, M.; Freitas, D.; Faustino, S.; Mota, M.; Colaço, P.; Zulianello, M.

    2008-08-01

    RTEMS stands for Real-Time Operating System for Multiprocessor Systems. It is a full featured Real Time Operating System that supports a variety of open APIs and interface standards. It provides a high performance environment for embedded applications, including a fixed-priority preemptive/non-preemptive scheduler, a comprehensive set of multitasking operations and a large range of supported architectures. Support and maintenance CENTRE to RTEMS operating system (RTEMS CENTRE) is a joint initiative of ESA-Portugal Task force, aiming to build a strong technical competence in the space flight (on- board) software, to offer support, maintenance and improvements to RTEMS. This paper provides a high level description of the current and future activities of the RTEMS CENTRE. It presents a brief description of the RTEMS operating system, a description of the tools developed and distributed to the community [1] and the improvements to be made to the operating system, including facilitation for the qualification of RTEMS (4.8.0) [2] for the space missions.

  16. Enabling Real-time Water Decision Support Services Using Model as a Service

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Minsker, B. S.; Lee, J. S.; Salas, F. R.; Maidment, D. R.; David, C. H.

    2014-12-01

    Through application of computational methods and an integrated information system, data and river modeling services can help researchers and decision makers more rapidly understand river conditions under alternative scenarios. To enable this capability, workflows (i.e., analysis and model steps) are created and published as Web services delivered through an internet browser, including model inputs, a published workflow service, and visualized outputs. The RAPID model, which is a river routing model developed at University of Texas Austin for parallel computation of river discharge, has been implemented as a workflow and published as a Web application. This allows non-technical users to remotely execute the model and visualize results as a service through a simple Web interface. The model service and Web application has been prototyped in the San Antonio and Guadalupe River Basin in Texas, with input from university and agency partners. In the future, optimization model workflows will be developed to link with the RAPID model workflow to provide real-time water allocation decision support services.

  17. In situ label-free quantification of human pluripotent stem cells with electrochemical potential.

    PubMed

    Yea, Cheol-Heon; Jeong, Ho-Chang; Moon, Sung-Hwan; Lee, Mi-Ok; Kim, Kyeong-Jun; Choi, Jeong-Woo; Cha, Hyuk-Jin

    2016-01-01

    Conventional methods for quantification of undifferentiated pluripotent stem cells such as fluorescence-activated cell sorting and real-time PCR analysis have technical limitations in terms of their sensitivity and recyclability. Herein, we designed a real-time in situ label-free monitoring system on the basis of a specific electrochemical signature of human pluripotent stem cells in vitro. The intensity of the signal of hPSCs highly corresponded to the cell number and remained consistent in a mixed population with differentiated cells. The electrical charge used for monitoring did not markedly affect the proliferation rate or molecular characteristics of differentiated human aortic smooth muscle cells. After YM155 treatment to ablate undifferentiated hPSCs, their specific signal was significantly reduced. This suggests that detection of the specific electrochemical signature of hPSCs would be a valid approach to monitor potential contamination of undifferentiated hPSCs, which can assess the risk of teratoma formation efficiently and economically. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Real-time moving horizon estimation for a vibrating active cantilever

    NASA Astrophysics Data System (ADS)

    Abdollahpouri, Mohammad; Takács, Gergely; Rohaľ-Ilkiv, Boris

    2017-03-01

    Vibrating structures may be subject to changes throughout their operating lifetime due to a range of environmental and technical factors. These variations can be considered as parameter changes in the dynamic model of the structure, while their online estimates can be utilized in adaptive control strategies, or in structural health monitoring. This paper implements the moving horizon estimation (MHE) algorithm on a low-cost embedded computing device that is jointly observing the dynamic states and parameter variations of an active cantilever beam in real time. The practical behavior of this algorithm has been investigated in various experimental scenarios. It has been found, that for the given field of application, moving horizon estimation converges faster than the extended Kalman filter; moreover, it handles atypical measurement noise, sensor errors or other extreme changes, reliably. Despite its improved performance, the experiments demonstrate that the disadvantage of solving the nonlinear optimization problem in MHE is that it naturally leads to an increase in computational effort.

  19. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    PubMed

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  20. Parallel ptychographic reconstruction

    DOE PAGES

    Nashed, Youssef S. G.; Vine, David J.; Peterka, Tom; ...

    2014-12-19

    Ptychography is an imaging method whereby a coherent beam is scanned across an object, and an image is obtained by iterative phasing of the set of diffraction patterns. It is able to be used to image extended objects at a resolution limited by scattering strength of the object and detector geometry, rather than at an optics-imposed limit. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes, yet at the same time there is also a need to deliver reconstructed images immediately so that one can evaluate the next steps tomore » take in an experiment. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs) and then employs novel techniques to merge sub-datasets into a single complex phase and amplitude image. Results are shown on a simulated specimen and a real dataset from an X-ray experiment conducted at a synchrotron light source.« less

  1. Design and Smartphone-Based Implementation of a Chaotic Video Communication Scheme via WAN Remote Transmission

    NASA Astrophysics Data System (ADS)

    Lin, Zhuosheng; Yu, Simin; Li, Chengqing; Lü, Jinhu; Wang, Qianxue

    This paper proposes a chaotic secure video remote communication scheme that can perform on real WAN networks, and implements it on a smartphone hardware platform. First, a joint encryption and compression scheme is designed by embedding a chaotic encryption scheme into the MJPG-Streamer source codes. Then, multiuser smartphone communications between the sender and the receiver are implemented via WAN remote transmission. Finally, the transmitted video data are received with the given IP address and port in an Android smartphone. It should be noted that, this is the first time that chaotic video encryption schemes are implemented on such a hardware platform. The experimental results demonstrate that the technical challenges on hardware implementation of secure video communication are successfully solved, reaching a balance amongst sufficient security level, real-time processing of massive video data, and utilization of available resources in the hardware environment. The proposed scheme can serve as a good application example of chaotic secure communications for smartphone and other mobile facilities in the future.

  2. Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.

    PubMed

    Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A

    2009-04-01

    Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.

  3. A 3D virtual reality simulator for training of minimally invasive surgery.

    PubMed

    Mi, Shao-Hua; Hou, Zeng-Gunag; Yang, Fan; Xie, Xiao-Liang; Bian, Gui-Bin

    2014-01-01

    For the last decade, remarkable progress has been made in the field of cardiovascular disease treatment. However, these complex medical procedures require a combination of rich experience and technical skills. In this paper, a 3D virtual reality simulator for core skills training in minimally invasive surgery is presented. The system can generate realistic 3D vascular models segmented from patient datasets, including a beating heart, and provide a real-time computation of force and force feedback module for surgical simulation. Instruments, such as a catheter or guide wire, are represented by a multi-body mass-spring model. In addition, a realistic user interface with multiple windows and real-time 3D views are developed. Moreover, the simulator is also provided with a human-machine interaction module that gives doctors the sense of touch during the surgery training, enables them to control the motion of a virtual catheter/guide wire inside a complex vascular model. Experimental results show that the simulator is suitable for minimally invasive surgery training.

  4. Space Environments and Spacecraft Effects Organization Concept

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope of the TWGs and their relationship to the functional areas, and discuss an organizational structure for this space environments and spacecraft effects organization.

  5. An Overview of the Space Environments and Spacecraft Effects Organization Concept

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope and purpose of the space environments and spacecraft effects organization and describe the TWG's and their relationship to the functional areas.

  6. Live texturing of augmented reality characters from colored drawings.

    PubMed

    Magnenat, Stéphane; Ngo, Dat Tien; Zünd, Fabio; Ryffel, Mattia; Noris, Gioacchino; Rothlin, Gerhard; Marra, Alessia; Nitti, Maurizio; Fua, Pascal; Gross, Markus; Sumner, Robert W

    2015-11-01

    Coloring books capture the imagination of children and provide them with one of their earliest opportunities for creative expression. However, given the proliferation and popularity of digital devices, real-world activities like coloring can seem unexciting, and children become less engaged in them. Augmented reality holds unique potential to impact this situation by providing a bridge between real-world activities and digital enhancements. In this paper, we present an augmented reality coloring book App in which children color characters in a printed coloring book and inspect their work using a mobile device. The drawing is detected and tracked, and the video stream is augmented with an animated 3-D version of the character that is textured according to the child's coloring. This is possible thanks to several novel technical contributions. We present a texturing process that applies the captured texture from a 2-D colored drawing to both the visible and occluded regions of a 3-D character in real time. We develop a deformable surface tracking method designed for colored drawings that uses a new outlier rejection algorithm for real-time tracking and surface deformation recovery. We present a content creation pipeline to efficiently create the 2-D and 3-D content. And, finally, we validate our work with two user studies that examine the quality of our texturing algorithm and the overall App experience.

  7. Strategy and gaps for modeling, simulation, and control of hybrid systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabiti, Cristian; Garcia, Humberto E.; Hovsapian, Rob

    2015-04-01

    The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers,more » and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled, dynamic energy systems requires multiple simulation tools, potentially developed in several programming languages and resolved on separate time scales. Whereas further investigation and development of hybrid concepts will provide a more complete understanding of the joint computational and physical modeling needs, this report highlights areas in which co-simulation capabilities are warranted. The current development status, quality assurance, availability and maintainability of simulation tools that are currently available for hybrid systems modeling is presented. Existing gaps in the modeling and simulation toolsets and development needs are subsequently discussed. This effort will feed into a broader Roadmap activity for designing, developing, and demonstrating hybrid energy systems.« less

  8. Architecture of a high-performance surgical guidance system based on C-arm cone-beam CT: software platform for technical integration and clinical translation

    NASA Astrophysics Data System (ADS)

    Uneri, Ali; Schafer, Sebastian; Mirota, Daniel; Nithiananthan, Sajendra; Otake, Yoshito; Reaungamornrat, Sureerat; Yoo, Jongheun; Stayman, J. Webster; Reh, Douglas; Gallia, Gary L.; Khanna, A. Jay; Hager, Gregory; Taylor, Russell H.; Kleinszig, Gerhard; Siewerdsen, Jeffrey H.

    2011-03-01

    Intraoperative imaging modalities are becoming more prevalent in recent years, and the need for integration of these modalities with surgical guidance is rising, creating new possibilities as well as challenges. In the context of such emerging technologies and new clinical applications, a software architecture for cone-beam CT (CBCT) guided surgery has been developed with emphasis on binding open-source surgical navigation libraries and integrating intraoperative CBCT with novel, application-specific registration and guidance technologies. The architecture design is focused on accelerating translation of task-specific technical development in a wide range of applications, including orthopaedic, head-and-neck, and thoracic surgeries. The surgical guidance system is interfaced with a prototype mobile C-arm for high-quality CBCT and through a modular software architecture, integration of different tools and devices consistent with surgical workflow in each of these applications is realized. Specific modules are developed according to the surgical task, such as: 3D-3D rigid or deformable registration of preoperative images, surgical planning data, and up-to-date CBCT images; 3D-2D registration of planning and image data in real-time fluoroscopy and/or digitally reconstructed radiographs (DRRs); compatibility with infrared, electromagnetic, and video-based trackers used individually or in hybrid arrangements; augmented overlay of image and planning data in endoscopic or in-room video; real-time "virtual fluoroscopy" computed from GPU-accelerated DRRs; and multi-modality image display. The platform aims to minimize offline data processing by exposing quantitative tools that analyze and communicate factors of geometric precision. The system was translated to preclinical phantom and cadaver studies for assessment of fiducial (FRE) and target registration error (TRE) showing sub-mm accuracy in targeting and video overlay within intraoperative CBCT. The work culminates in the development of a CBCT guidance system (reported here for the first time) that leverages the technical developments in Carm CBCT and associated technologies for realizing a high-performance system for translation to clinical studies.

  9. Using Television Technology to Teach Technical Writing.

    ERIC Educational Resources Information Center

    Wallisch, Bill

    Technical writing teachers at the U.S. Air Force Academy enhance student motivation by bringing real Air Force writing situations into the classroom through short videotapes which allow students to see how scientists and engineers cope with report writing in their daily work. Also, a special English honors course, which is part of the "Blue…

  10. The intellectual information system for management of geological and technical arrangements during oil field exploitation

    NASA Astrophysics Data System (ADS)

    Markov, N. G.; E Vasilyeva, E.; Evsyutkin, I. V.

    2017-01-01

    The intellectual information system for management of geological and technical arrangements during oil fields exploitation is developed. Service-oriented architecture of its software is a distinctive feature of the system. The results of the cluster analysis of real field data received by means of this system are shown.

  11. Globalization, Critical Post-Colonialism and Career and Technical Education in Africa: Challenges and Possibilities

    ERIC Educational Resources Information Center

    Goura, Tairou

    2012-01-01

    In Sub-Saharan Africa (SSA), technical and vocational education and training (TVET) is central to political discourses and educational concerns as a means for economic development, poverty alleviation, youth employment, and social mobility. Yet, there is an intriguing contradiction between this consideration and the real attention dedicated to…

  12. Enhancing Privacy Education with a Technical Emphasis in IT Curriculum

    ERIC Educational Resources Information Center

    Peltsverger, Svetlana; Zheng, Guangzhi

    2016-01-01

    The paper describes the development of four learning modules that focus on technical details of how a person's privacy might be compromised in real-world scenarios. The paper shows how students benefited from the addition of hands-on learning experiences of privacy and data protection to the existing information technology courses. These learning…

  13. Privacy Protection through pseudonymisation in eHealth.

    PubMed

    De Meyer, F; De Moor, G; Reed-Fourquet, L

    2008-01-01

    The ISO TC215 WG4 pseudonymisation task group has produced in 2008 a first version of a technical specification for the application of pseudonymisation in Healthcare Informatics 0. This paper investigates the principles set out in the technical specification as well as its implications in eHealth. The technical specification starts out with a conceptual model and evolves from a theoretical model to a real life model by adding assumptions on the observability of personal data.

  14. Real-time magnetic resonance-guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualization in man: initial results from a consecutive patient series.

    PubMed

    Hilbert, Sebastian; Sommer, Philipp; Gutberlet, Matthias; Gaspar, Thomas; Foldyna, Borek; Piorkowski, Christopher; Weiss, Steffen; Lloyd, Thomas; Schnackenburg, Bernhard; Krueger, Sascha; Fleiter, Christian; Paetsch, Ingo; Jahnke, Cosima; Hindricks, Gerhard; Grothoff, Matthias

    2016-04-01

    Recently cardiac magnetic resonance (CMR) imaging has been found feasible for the visualization of the underlying substrate for cardiac arrhythmias as well as for the visualization of cardiac catheters for diagnostic and ablation procedures. Real-time CMR-guided cavotricuspid isthmus ablation was performed in a series of six patients using a combination of active catheter tracking and catheter visualization using real-time MR imaging. Cardiac magnetic resonance utilizing a 1.5 T system was performed in patients under deep propofol sedation. A three-dimensional-whole-heart sequence with navigator technique and a fast automated segmentation algorithm was used for online segmentation of all cardiac chambers, which were thereafter displayed on a dedicated image guidance platform. In three out of six patients complete isthmus block could be achieved in the MR scanner, two of these patients did not need any additional fluoroscopy. In the first patient technical issues called for a completion of the procedure in a conventional laboratory, in another two patients the isthmus was partially blocked by magnetic resonance imaging (MRI)-guided ablation. The mean procedural time for the MR procedure was 109 ± 58 min. The intubation of the CS was performed within a mean time of 2.75 ± 2.21 min. Total fluoroscopy time for completion of the isthmus block ranged from 0 to 7.5 min. The combination of active catheter tracking and passive real-time visualization in CMR-guided electrophysiologic (EP) studies using advanced interventional hardware and software was safe and enabled efficient navigation, mapping, and ablation. These cases demonstrate significant progress in the development of MR-guided EP procedures. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  15. Robotic-assisted real-time MRI-guided TAVR: from system deployment to in vivo experiment in swine model.

    PubMed

    Chan, Joshua L; Mazilu, Dumitru; Miller, Justin G; Hunt, Timothy; Horvath, Keith A; Li, Ming

    2016-10-01

    Real-time magnetic resonance imaging (rtMRI) guidance provides significant advantages during transcatheter aortic valve replacement (TAVR) as it provides superior real-time visualization and accurate device delivery tracking. However, performing a TAVR within an MRI scanner remains difficult due to a constrained procedural environment. To address these concerns, a magnetic resonance (MR)-compatible robotic system to assist in TAVR deployments was developed. This study evaluates the technical design and interface considerations of an MR-compatible robotic-assisted TAVR system with the purpose of demonstrating that such a system can be developed and executed safely and precisely in a preclinical model. An MR-compatible robotic surgical assistant system was built for TAVR deployment. This system integrates a 5-degrees of freedom (DoF) robotic arm with a 3-DoF robotic valve delivery module. A user interface system was designed for procedural planning and real-time intraoperative manipulation of the robot. The robotic device was constructed of plastic materials, pneumatic actuators, and fiber-optical encoders. The mechanical profile and MR compatibility of the robotic system were evaluated. The system-level error based on a phantom model was 1.14 ± 0.33 mm. A self-expanding prosthesis was successfully deployed in eight Yorkshire swine under rtMRI guidance. Post-deployment imaging and necropsy confirmed placement of the stent within 3 mm of the aortic valve annulus. These phantom and in vivo studies demonstrate the feasibility and advantages of robotic-assisted TAVR under rtMRI guidance. This robotic system increases the precision of valve deployments, diminishes environmental constraints, and improves the overall success of TAVR.

  16. Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models

    NASA Astrophysics Data System (ADS)

    Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.

    2017-12-01

    While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API interface to our Enhanced Magnetic Model (EMM).

  17. Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes -- Appendix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben

    This document is a set of appendices presenting technical discussion and references as a companion to the 'Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes' publication.

  18. Skin-interfaced systems for sweat collection and analytics

    PubMed Central

    Choi, Jungil; Ghaffari, Roozbeh; Baker, Lindsay B.; Rogers, John A.

    2018-01-01

    Recent interdisciplinary advances in materials, mechanics, and microsystem designs for biocompatible electronics, soft microfluidics, and electrochemical biosensors establish the foundations for emerging classes of thin, skin-interfaced platforms capable of capturing, storing, and performing quantitative, spatiotemporal measurements of sweat chemistry, instantaneous local sweat rate, and total sweat loss. This review summarizes scientific and technical progress in this area and highlights the implications in real time and ambulatory modes of deployment during physical activities across a broad range of contexts in clinical health, physiology research, fitness/wellness, and athletic performance. PMID:29487915

  19. Simulation for transthoracic echocardiography of aortic valve

    PubMed Central

    Nanda, Navin C.; Kapur, K. K.; Kapoor, Poonam Malhotra

    2016-01-01

    Simulation allows interactive transthoracic echocardiography (TTE) learning using a virtual three-dimensional model of the heart and may aid in the acquisition of the cognitive and technical skills needed to perform TTE. The ability to link probe manipulation, cardiac anatomy, and echocardiographic images using a simulator has been shown to be an effective model for training anesthesiology residents in transesophageal echocardiography. A proposed alternative to real-time reality patient-based learning is simulation-based training that allows anesthesiologists to learn complex concepts and procedures, especially for specific structures such as aortic valve. PMID:27397455

  20. Instrumentation for Aerosol and Gas Speciation

    NASA Technical Reports Server (NTRS)

    Coggiola, Michael J.

    1998-01-01

    Using support from NASA Grant No. NAG 2-963, SRI International successfully completed the project, entitled, 'Instrumentation for Aerosol and Gas Speciation.' This effort (SRI Project 7383) covered the design, fabrication, testing, and deployment of a real-time aerosol speciation instrument in NASA's DC-8 aircraft during the Spring 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission. This final technical report describes the pertinent details of the instrument design, its abilities, its deployment during SUCCESS and the data acquired from the mission, and the post-mission calibration, data reduction, and analysis.

  1. Application and API for Real-time Visualization of Ground-motions and Tsunami

    NASA Astrophysics Data System (ADS)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Kubo, T.; Nakamura, H.; Azuma, H.; Fujiwara, H.

    2015-12-01

    Due to the recent progress of seismograph and communication environment, real-time and continuous ground-motion observation becomes technically and economically feasible. K-NET and KiK-net, which are nationwide strong motion networks operated by NIED, cover all Japan by about 1750 stations in total. More than half of the stations transmit the ground-motion indexes and/or waveform data in every second. Traditionally, strong-motion data were recorded by event-triggering based instruments with non-continues telephone line which is connected only after an earthquake. Though the data from such networks mainly contribute to preparations for future earthquakes, huge amount of real-time data from dense network are expected to directly contribute to the mitigation of ongoing earthquake disasters through, e.g., automatic shutdown plants and helping decision-making for initial response. By generating the distribution map of these indexes and uploading them to the website, we implemented the real-time ground motion monitoring system, Kyoshin (strong-motion in Japanese) monitor. This web service (www.kyoshin.bosai.go.jp) started in 2008 and anyone can grasp the current ground motions of Japan. Though this service provides only ground-motion map in GIF format, to take full advantage of real-time strong-motion data to mitigate the ongoing disasters, digital data are important. We have developed a WebAPI to provide real-time data and related information such as ground motions (5 km-mesh) and arrival times estimated from EEW (earthquake early warning). All response data from this WebAPI are in JSON format and are easy to parse. We also developed Kyoshin monitor application for smartphone, 'Kmoni view' using the API. In this application, ground motions estimated from EEW are overlapped on the map with the observed one-second-interval indexes. The application can playback previous earthquakes for demonstration or disaster drill. In mobile environment, data traffic and battery are limited and it is not practical to regularly visualize all the data. The application has automatic starting (pop-up) function triggered by EEW. Similar WebAPI and application for tsunami are being prepared using the pressure data recorded by dense offshore observation network (S-net), which is under construction along the Japan Trench.

  2. Exploring sustainability transitions in households: insights from real-life experiments

    NASA Astrophysics Data System (ADS)

    Baedeker, Carolin; Buhl, Johannes; Greiff, Kathrin; Hasselkuß, Marco; Liedtke, Christa; Lukas, Melanie

    2016-04-01

    Societal transformation towards sustainable consumption and production, especially in urban areas, is a key challenge. The design and implementation of sustainable product service systems (PSS) might be the initial point, in which private households play a major role. The Sustainable LivingLab research infrastructure was developed as an experimental setting for investigating consumption and production patterns in private households, especially to explore socio-technical innovations which are helpful to guide sustainability transitions. The suggested presentation describes results of several real-life experiments conducted in German households, e.g. the project SusLabNRW (North-Rhine Westphalia as part of the European SusLabNWE-Project), the EnerTransRuhr project as well as the PATHWAYS project that explore patterns of action, time use, social practices and the related resource use in private households. The presentation gives an overview of the employed methods and analysed data (qualitative interviews, social network analysis, survey on household activities and inventories and a sustainability assessment (resource profiles - MIPS household analysis). Households' resource consumption was calculated in all fields of activity to analyse social practices' impact. The presentation illustrates how aggregated data can inform scenario analysis and concludes with an outlook onto transition pathways at household level and socio-technical innovations in the fields of housing, nutrition and mobility.

  3. Priority in Process Algebras

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  4. Computing the total atmospheric refraction for real-time optical imaging sensor simulation

    NASA Astrophysics Data System (ADS)

    Olson, Richard F.

    2015-05-01

    Fast and accurate computation of light path deviation due to atmospheric refraction is an important requirement for real-time simulation of optical imaging sensor systems. A large body of existing literature covers various methods for application of Snell's Law to the light path ray tracing problem. This paper provides a discussion of the adaptation to real time simulation of atmospheric refraction ray tracing techniques used in mid-1980's LOWTRAN releases. The refraction ray trace algorithm published in a LOWTRAN-6 technical report by Kneizys (et. al.) has been coded in MATLAB for development, and in C-language for simulation use. To this published algorithm we have added tuning parameters for variable path segment lengths, and extensions for Earth grazing and exoatmospheric "near Earth" ray paths. Model atmosphere properties used to exercise the refraction algorithm were obtained from tables published in another LOWTRAN-6 related report. The LOWTRAN-6 based refraction model is applicable to atmospheric propagation at wavelengths in the IR and visible bands of the electromagnetic spectrum. It has been used during the past two years by engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) in support of several advanced imaging sensor simulations. Recently, a faster (but sufficiently accurate) method using Gauss-Chebyshev Quadrature integration for evaluating the refraction integral was adopted.

  5. Breaking Out of the Lab

    PubMed Central

    Maier, Jürgen; Hampe, J. Felix; Jahn, Nico

    2016-01-01

    Real-time response (RTR) measurement is an important technique for analyzing human processing of electronic media stimuli. Although it has been demonstrated that RTR data are reliable and internally valid, some argue that they lack external validity. The reason for this is that RTR measurement is restricted to a laboratory environment due to its technical requirements. This paper introduces a smartphone app that 1) captures real-time responses using the dial technique and 2) provides a solution for one of the most important problems in RTR measurement, the (automatic) synchronization of RTR data. In addition, it explores the reliability and validity of mobile RTR measurement by comparing the real-time reactions of two samples of young and well-educated voters to the 2013 German televised debate. Whereas the first sample participated in a classical laboratory study, the second sample was equipped with our mobile RTR system and watched the debate at home. Results indicate that the mobile RTR system yields similar results to the lab-based RTR measurement, providing evidence that laboratory studies using RTR are externally valid. In particular, the argument that the artificial reception situation creates artificial results has to be questioned. In addition, we conclude that RTR measurement outside the lab is possible. Hence, mobile RTR opens the door for large-scale studies to better understand the processing and impact of electronic media content. PMID:27274577

  6. Quantitative real-time RT-PCR assay for research studies on enterovirus infections in the central nervous system.

    PubMed

    Volle, Romain; Nourrisson, Céline; Mirand, Audrey; Regagnon, Christel; Chambon, Martine; Henquell, Cécile; Bailly, Jean-Luc; Peigue-Lafeuille, Hélène; Archimbaud, Christine

    2012-10-01

    Human enteroviruses are the most frequent cause of aseptic meningitis and are involved in other neurological infections. Qualitative detection of enterovirus genomes in cerebrospinal fluid is a prerequisite in diagnosing neurological diseases. The pathogenesis of these infections is not well understood and research in this domain would benefit from the availability of a quantitative technique to determine viral load in clinical specimens. This study describes the development of a real-time RT-qPCR assay using hydrolysis TaqMan probe and a competitive RNA internal control. The assay has high specificity and can be used for a large sample of distinct enterovirus strains and serotypes. The reproducible limit of detection was estimated at 1875 copies/ml of quantitative standards composed of RNA transcripts obtained from a cloned echovirus 30 genome. Technical performance was unaffected by the introduction of a competitive RNA internal control before RNA extraction. The mean enterovirus RNA concentration in an evaluation series of 15 archived cerebrospinal fluid specimens was determined at 4.78 log(10)copies/ml for the overall sample. The sensitivity and reproducibility of the real time RT-qPCR assay used in combination with the internal control to monitor the overall specimen process make it a valuable tool with applied research into enterovirus infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    PubMed

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Solar technical assistance provided to Forest City military communities in Hawaii for incorporation of 20-30 MW of solar energy generation to power family housing for US Navy personnel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominick, Jeff; Merrigan, Tim; Boudra, Will

    2010-06-01

    In May 2007, Forest City Military Communities won a US Department of Energy Solar America Showcase Award. As part of this award, executives and staff from Forest City Military Communities worked side-by-side with a DOE technical assistance team to overcome technical obstacles encountered by this large-scale real estate developer and manager. This paper describes the solar technical assistance that was provided and the key solar experiences acquired by Forest City Military Communities over an 18 month period.

  9. Performance of point-of-care Xpert HIV-1 plasma viral load assay at a tertiary HIV care centre in Southern India.

    PubMed

    Swathirajan, Chinnambedu Ravichandran; Vignesh, Ramachandran; Boobalan, Jayaseelan; Solomon, Sunil Suhas; Saravanan, Shanmugam; Balakrishnan, Pachamuthu

    2017-10-01

    Sustainable suppression of HIV replication forms the basis of anti-retroviral therapy (ART) medication. Thus, reliable quantification of HIV viral load has become an essential factor to monitor the effectiveness of the ART. Longer turnaround-time (TAT), batch testing and technical skills are major drawbacks of standard real-time PCR assays. The performance of the point-of-care Xpert HIV-1 viral load assay was evaluated against the Abbott RealTime PCR m2000rt system. A total of 96 plasma specimens ranging from 2.5 log10 copies ml -1 to 4.99 log10 copies ml -1 and proficiency testing panel specimens were used. Precision and accuracy were checked using the Pearson correlation co-efficient test and Bland-Altman analysis. Compared to the Abbott RealTime PCR, the Xpert HIV-1 viral load assay showed a good correlation (Pearson r=0.81; P<0.0001) with a mean difference of 0.27 log10 copies ml -1 (95 % CI, -0.41 to 0.96 log10 copies ml -1 ; sd, 0.35 log10 copies ml -1 ). Reliable and ease of testing individual specimens could make the Xpert HIV-1 viral load assay an efficient alternative method for ART monitoring in clinical management of HIV disease in resource-limited settings. The rapid test results (less than 2 h) could help in making an immediate clinical decision, which further strengthens patient care.

  10. Experience sampling methodology in mental health research: new insights and technical developments.

    PubMed

    Myin-Germeys, Inez; Kasanova, Zuzana; Vaessen, Thomas; Vachon, Hugo; Kirtley, Olivia; Viechtbauer, Wolfgang; Reininghaus, Ulrich

    2018-06-01

    In the mental health field, there is a growing awareness that the study of psychiatric symptoms in the context of everyday life, using experience sampling methodology (ESM), may provide a powerful and necessary addition to more conventional research approaches. ESM, a structured self-report diary technique, allows the investigation of experiences within, and in interaction with, the real-world context. This paper provides an overview of how zooming in on the micro-level of experience and behaviour using ESM adds new insights and additional perspectives to standard approaches. More specifically, it discusses how ESM: a) contributes to a deeper understanding of psychopathological phenomena, b) allows to capture variability over time, c) aids in identifying internal and situational determinants of variability in symptomatology, and d) enables a thorough investigation of the interaction between the person and his/her environment and of real-life social interactions. Next to improving assessment of psychopathology and its underlying mechanisms, ESM contributes to advancing and changing clinical practice by allowing a more fine-grained evaluation of treatment effects as well as by providing the opportunity for extending treatment beyond the clinical setting into real life with the development of ecological momentary interventions. Furthermore, this paper provides an overview of the technical details of setting up an ESM study in terms of design, questionnaire development and statistical approaches. Overall, although a number of considerations and challenges remain, ESM offers one of the best opportunities for personalized medicine in psychiatry, from both a research and a clinical perspective. © 2018 World Psychiatric Association.

  11. Real options analysis for land use management: Methods, application, and implications for policy.

    PubMed

    Regan, Courtney M; Bryan, Brett A; Connor, Jeffery D; Meyer, Wayne S; Ostendorf, Bertram; Zhu, Zili; Bao, Chenming

    2015-09-15

    Discounted cash flow analysis, including net present value is an established way to value land use and management investments which accounts for the time-value of money. However, it provides a static view and assumes passive commitment to an investment strategy when real world land use and management investment decisions are characterised by uncertainty, irreversibility, change, and adaptation. Real options analysis has been proposed as a better valuation method under uncertainty and where the opportunity exists to delay investment decisions, pending more information. We briefly review the use of discounted cash flow methods in land use and management and discuss their benefits and limitations. We then provide an overview of real options analysis, describe the main analytical methods, and summarize its application to land use investment decisions. Real options analysis is largely underutilized in evaluating land use decisions, despite uncertainty in policy and economic drivers, the irreversibility and sunk costs involved. New simulation methods offer the potential for overcoming current technical challenges to implementation as demonstrated with a real options simulation model used to evaluate an agricultural land use decision in South Australia. We conclude that considering option values in future policy design will provide a more realistic assessment of landholder investment decision making and provide insights for improved policy performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evaluating business value of IT towards optimisation of the application portfolio

    NASA Astrophysics Data System (ADS)

    Sun, Lily; Liu, Kecheng; Indrayani Jambari, Dian; Michell, Vaughan

    2016-05-01

    Information technology has become heavily embedded in business operations. As business needs change over time, IT applications are expected to continue providing required support. Whether the existing IT applications are still fit for the business purpose they were intended or new IT applications should be introduced is a strategic decision for business, IT and business-aligned IT. In this article, we present a method that aims to analyse business functions and IT roles and to evaluate business-aligned IT from both social and technical perspectives. The method introduces a set of techniques that systematically supports the evaluation of the existing IT applications in relation to their technical capabilities for maximising business value. Furthermore, we discuss the evaluation process and results that are illustrated and validated through a real-life case study of a UK borough council and followed by discussion on implications for researchers and practitioners.

  13. Recent evolutions of the GEOSCOPE broadband seismic observatory

    NASA Astrophysics Data System (ADS)

    Vallee, M.; Leroy, N.; Bonaime, S.; Zigone, D.; Stutzmann, E.; Thore, J. Y.; Pardo, C.; Bernard, A.; Pesqueira, F.; Maggi, A.; Vincent, D.

    2016-12-01

    The GEOSCOPE observatory provides 34 years of continuous broadband data to the scientific community. The 31 operational GEOSCOPE stations are installed in 17 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers (Q330HR). Seismometers are installed with warpless base plates, which decrease long period noise on horizontal components by up to 15dB. All stations send data in real time to the GEOSCOPE data center and are automatically transmitted to other data centers (IRIS-DMC and RESIF) and tsunami warning centers. In 2016, a new station has been installed in Wallis and Futuna (FUTU, South-Western Pacific Ocean), and final work is done to reinstall WUS station in Western China. Data of the stations are technically validated by IPGP (25 stations) or EOST (6 stations) in order to check their continuity and integrity. A scientific data validation is also performed by analyzing seismic noise level of the continuous data and by comparing real and synthetic earthquake waveforms (body waves). After these validations, data are archived by the GEOSCOPE data center in Paris. They are made available to the international scientific community through different interfaces (see details on http://geoscope.ipgp.fr ). An important technical work is now done to homogenize the data formats of the whole GEOSCOPE database, in order to make easier the data duplication at the IRIS-DMC and RESIF data centers. The GEOSCOPE broadband seismic observatory also provides near-real time information on the World large seismicity (above magnitude 5.5-6) through the automated application of the SCARDEC method. By using global data from the FDSN - in particular from GEOSCOPE and IRIS/USGS stations -, earthquake source parameters (depth, moment magnitude, focal mechanism, source time function) are determined about 45 minutes after the occurrence of the event. A specific webpage is then generated for each earthquake, which also includes information for a non-seismologist audience (past seismicity, foreshocks and afterschocks, 3D representations of the fault motion…). Examples for recent earthquakes can be seen in http://geoscope.ipgp.fr/index.php/en/data/earthquake-data/latest-earthquakes

  14. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-03-01

    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.

  15. A novel approach to optimize workflow in grid-based teleradiology applications.

    PubMed

    Yılmaz, Ayhan Ozan; Baykal, Nazife

    2016-01-01

    This study proposes an infrastructure with a reporting workflow optimization algorithm (RWOA) in order to interconnect facilities, reporting units and radiologists on a single access interface, to increase the efficiency of the reporting process by decreasing the medical report turnaround time and to increase the quality of medical reports by determining the optimum match between the inspection and radiologist in terms of subspecialty, workload and response time. Workflow centric network architecture with an enhanced caching, querying and retrieving mechanism is implemented by seamlessly integrating Grid Agent and Grid Manager to conventional digital radiology systems. The inspection and radiologist attributes are modelled using a hierarchical ontology structure. Attribute preferences rated by radiologists and technical experts are formed into reciprocal matrixes and weights for entities are calculated utilizing Analytic Hierarchy Process (AHP). The assignment alternatives are processed by relation-based semantic matching (RBSM) and Integer Linear Programming (ILP). The results are evaluated based on both real case applications and simulated process data in terms of subspecialty, response time and workload success rates. Results obtained using simulated data are compared with the outcomes obtained by applying Round Robin, Shortest Queue and Random distribution policies. The proposed algorithm is also applied to a real case teleradiology application process data where medical reporting workflow was performed based on manual assignments by the chief radiologist for 6225 inspections. RBSM gives the highest subspecialty success rate and integrating ILP with RBSM ratings as RWOA provides a better response time and workload distribution success rate. RWOA based image delivery also prevents bandwidth, storage or hardware related stuck and latencies. When compared with a real case teleradiology application where inspection assignments were performed manually, the proposed solution was found to increase the experience success rate by 13.25%, workload success rate by 63.76% and response time success rate by 120%. The total response time in the real case application data was improved by 22.39%. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. The Student-Centered Classroom Made Real: Transforming Student Presentations in an Advanced Course on Technical German

    ERIC Educational Resources Information Center

    Rarick, Damon O.

    2010-01-01

    This article describes how the author has successfully combined polling with more traditional instructional strategies to enhance student presentation skills in an advanced course teaching technical German. By helping students select and prepare topics, anticipate questions and engage the audience, instructors can eliminate some of the root causes…

  17. Contextualize Technical Writing Assessment to Better Prepare Students for Workplace Writing: Student-Centered Assessment Instruments

    ERIC Educational Resources Information Center

    Yu, Han

    2008-01-01

    To teach students how to write for the workplace and other professional contexts, technical writing teachers often assign writing tasks that reflect real-life communication contexts, a teaching approach that is grounded in the field's contextualized understanding of genre. This article argues to fully embrace contextualized literacy and better…

  18. Robotic Low Ligation of the Inferior Mesenteric Artery for Rectal Cancer Using the Firefly Technique.

    PubMed

    Bae, Sung Uk; Min, Byung Soh; Kim, Nam Kyu

    2015-07-01

    By integrating intraoperative near infrared fluorescence imaging into a robotic system, surgeons can identify the vascular anatomy in real-time with the technical advantages of robotics that is useful for meticulous lymphovascular dissection. Herein, we report our initial experience of robotic low ligation of the inferior mesenteric artery (IMA) with real-time identification of the vascular system for rectal cancer using the Firefly technique. The study group included 11 patients who underwent a robotic total mesorectal excision with preservation of the left colic artery for rectal cancer using the Firefly technique between July 2013 and December 2013. The procedures included five low anterior resections and six ultra-low anterior resections with loop ileostomy. The median total operation time was 327 min (226-490). The low ligation time was 10 min (6-20), and the time interval between indocyanine green injection and division of the sigmoid artery was 5 min (2-8). The estimated blood loss was 200 mL (100-500). The median time to soft diet was 4 days (4-5), and the median length of stay was 7 days (5-9). Three patients developed postoperative complications; one patients developed anal stricture, one developed ileus, and one developed non-complicated intraabdominal fluid collection. The median total number of lymph nodes harvested was 17 (9-29). Robotic low ligation of the IMA with real-time identification of the vascular system for rectal cancer using the Firefly technique is safe and feasible. This technique can allow for precise lymph node dissection along the IMA and facilitate the identification of the left colic branch of the IMA.

  19. Initial experience of using high field strength intraoperative MRI for neurosurgical procedures.

    PubMed

    Raheja, Amol; Tandon, Vivek; Suri, Ashish; Sarat Chandra, P; Kale, Shashank S; Garg, Ajay; Pandey, Ravindra M; Kalaivani, Mani; Mahapatra, Ashok K; Sharma, Bhawani S

    2015-08-01

    We report our initial experience to optimize neurosurgical procedures using high field strength intraoperative magnetic resonance imaging (IOMRI) in 300 consecutive patients as high field strength IOMRI rapidly becomes the standard of care for neurosurgical procedures. Three sequential groups (groups A, B, C; n=100 each) were compared with respect to time management, complications and technical difficulties to assess improvement in these parameters with experience. We observed a reduction in the number of technical difficulties (p<0.001), time to induction (p<0.001) and total anesthesia time (p=0.007) in sequential groups. IOMRI was performed for neuronavigation guidance (n=252) and intraoperative validation of extent of resection (EOR; n=67). Performing IOMRI increased the EOR over and beyond the primary surgical attempt in 20.5% (29/141) and 18% (11/61) of patients undergoing glioma and pituitary surgery, respectively. Overall, EOR improved in 59.7% of patients undergoing IOMRI (40/67). Intraoperative tractography and real time navigation using re-uploaded IOMRI images (accounting for brain shift) helps in intraoperative planning to reduce complications. IOMRI is an asset to neurosurgeons, helping to augment the EOR, especially in glioma and pituitary surgery, with no significant increase in morbidity to the patient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. [The Engineering and Technical Services Directorate at the Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senior at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time s o h a r e applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community. In the 7000 Directorate I work directly in the 7611 organization. This organization is known as the Aviation Environments Technical Branch. My mentor is Vincent Satterwhite who is also the Branch Chief of the Aviation Environments Technical Branch. In this branch, I serve as the Assistant program manager of the Engineering Technology Program. The Engineering Technology Program (ETP) is one of three components of the High School L.E.R.C.I.P. This is an Agency-sponsored, eight-week research-based apprenticeship program designed to attract traditionally underrepresented high school students that demonstrate an aptitude for and interest in mathematics, science, engineering, and technology.

  1. An Online, Interactive Renewable Energy Laboratory

    ERIC Educational Resources Information Center

    O'Leary, D. A.; Shattuck, J.; Kubby, J.

    2012-01-01

    An undergraduate introductory science, technology, engineering, and math (STEM) class can be a jarring disappointment to new students expecting to work with cutting-edge, real-world technology. Their cell phones are often more technically advanced and real-world than the tools used in a class lab. Not surprisingly, many complain that the STEM labs…

  2. Detection of Toxoplasma gondii and Epstein-Barr virus in HIV patients with clinical symptoms of suspected central nervous system infection using duplex real-time polymerase chain reaction

    NASA Astrophysics Data System (ADS)

    Rahmawati, E.; Ibrahim, F.; Imran, D.; Sudarmono, P.

    2017-08-01

    Focal brain lesion is a neurological complication in HIV, which is marked as a space occupying lesion (SOL) and needs rapid and effective treatment. This lesion is mainly caused by encephalitis toxoplasma and primary central nervous system lymphoma related to the Epstein-Barr virus (EBV) infection, which is difficult to distinguish using CT scan or magnetic resonance imaging (MRI). The gold standard of diagnosing focal brain lesion has been brain biopsy, but this examination is an invasive procedure that causes complications. The objective of this study is to obtain the rapid laboratory diagnosis of Toxoplasma gondii (T. gondii) and EBV infection. In this experimental study, blood and cerebrospinal fluid were obtained from HIV patients who were admitted to the Neurology Department of Cipto Mangunkusumo Hospital. The samples were examined using duplex real-time polymerase chain reaction (PCR) to detect T. gondii and EBV. The first step was the optimization of duplex real-time PCR, including the annealing temperature, primer and probe concentration, elution volume, and template volume. Minimal DNA detection was used to measure minimal T. gondii and EBV. Cross reactions were determined for technical specificity using the bacteria and viruses Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa, Mycobacterium tuberculosis H37Rv, Candida spp, cytomegalovirus, herpes zoster virus, and varicella zoster virus. Duplex real-time PCR was applied optimally to patients. In the optimization of duplex real-time PCR, the annealing temperature of T. gondii and EBV were 58 °C, the concentration of primer forward and reverse for T. gondii and EBV were 0.2 μM, the concentration of probe for T. gondii and EBV were 0.4μM and 0.2 μM, respectively. Minimal DNA detection of T. gondii and EBV were 5.68 copy/ml and 1.31 copy/ml, respectively. There was no cross reaction between another bacteria and virus that were used as the primer and probe for T. gondii and EBV. The blood duplex real-time PCR was positive for T. gondii (16%), EBV (40%), and both (16%). The cerebrospinal fluid samples were positive for T. gondii (20%), EBV (28%), and both (4%).

  3. Towards an Earthquake and Tsunami Early Warning in the Caribbean

    NASA Astrophysics Data System (ADS)

    Huerfano Moreno, V. A.; Vanacore, E. A.

    2017-12-01

    The Caribbean region (CR) has a documented history of large damaging earthquakes and tsunamis that have affected coastal areas, including the events of Jamaica in 1692, Virgin Islands in 1867, Puerto Rico in 1918, the Dominican Republic in 1946 and Haiti in 2010. There is clear evidence that tsunamis have been triggered by large earthquakes that deformed the ocean floor around the Caribbean Plate boundary. The CR is monitored jointly by national/regional/local seismic, geodetic and sea level networks. All monitoring institutions are participating in the UNESCO ICG/Caribe EWS, the purpose of this initiative is to minimize loss of life and destruction of property, and to mitigate against catastrophic economic impacts via promoting local research, real time (RT) earthquake, geodetic and sea level data sharing and improving warning capabilities and enhancing education and outreach strategies. Currently more than, 100 broad-band seismic, 65 sea levels and 50 GPS high rate stations are available in real or near real-time. These real-time streams are used by Local/Regional or Worldwide detection and warning institutions to provide earthquake source parameters in a timely manner. Currently, any Caribbean event detected to have a magnitude greater than 4.5 is evaluated, and sea level is measured, by the TWC for tsumanigenic potential. The regional cooperation is motivated both by research interests as well as geodetic, seismic and tsunami hazard monitoring and warning. It will allow the imaging of the tectonic structure of the Caribbean region to a high resolution which will consequently permit further understanding of the seismic source properties for moderate and large events and the application of this knowledge to procedures of civil protection. To reach its goals, the virtual network has been designed following the highest technical standards: BB sensors, 24 bits A/D converters with 140 dB dynamic range, real-time telemetry. Here we will discuss the state of the PR component of this virtual network as well as current advances in the imaging of the PR tectonic structure. The goal of this presentation is to describe the Puerto Rico Seismic Network (PRSN) system, including the real time earthquake and tsunami monitoring as well as the specific protocols used to broadcast earthquake/tsunami messages locally.

  4. Towards a Cloud Based Smart Traffic Management Framework

    NASA Astrophysics Data System (ADS)

    Rahimi, M. M.; Hakimpour, F.

    2017-09-01

    Traffic big data has brought many opportunities for traffic management applications. However several challenges like heterogeneity, storage, management, processing and analysis of traffic big data may hinder their efficient and real-time applications. All these challenges call for well-adapted distributed framework for smart traffic management that can efficiently handle big traffic data integration, indexing, query processing, mining and analysis. In this paper, we present a novel, distributed, scalable and efficient framework for traffic management applications. The proposed cloud computing based framework can answer technical challenges for efficient and real-time storage, management, process and analyse of traffic big data. For evaluation of the framework, we have used OpenStreetMap (OSM) real trajectories and road network on a distributed environment. Our evaluation results indicate that speed of data importing to this framework exceeds 8000 records per second when the size of datasets is near to 5 million. We also evaluate performance of data retrieval in our proposed framework. The data retrieval speed exceeds 15000 records per second when the size of datasets is near to 5 million. We have also evaluated scalability and performance of our proposed framework using parallelisation of a critical pre-analysis in transportation applications. The results show that proposed framework achieves considerable performance and efficiency in traffic management applications.

  5. Considerations for the design and technical setup of a human whole-body exposure chamber.

    PubMed

    Monsé, Christian; Sucker, Kirsten; van Thriel, Christoph; Broding, Horst Christoph; Jettkant, Birger; Berresheim, Hans; Wiethege, Thorsten; Käfferlein, Heiko; Merget, Rolf; Bünger, Jürgen; Brüning, Thomas

    2012-01-01

    Exposures to air contaminants, such as chemical vapors and particulate matter, pose important health hazards at workplaces. Short-term experimental exposures to chemical vapors and particles in humans are a promising attempt to investigate acute effects of such hazards. However, a significant challenge in this field is the determination of effects of co-exposures to more than one chemical or mixtures of chemical vapors and/or particles. To overcome such a challenge, studies have to be conducted under standardized exposure characterization and real time measurements, if possible. A new exposure laboratory (ExpoLab) was installed at IPA, combining sophisticated engineering designs with new analytical techniques, to fulfill these requirements. Low-dose as well as high-dose exposure scenarios are achieved by means of a calibration-gas-generator. Exposure monitoring can be carried out with a high performance real time mass spectrometer and other suitable analyzers (e.g. gas chromatograph). Numerous automated security facilities guarantee the physical integrity of the volunteers, and the waste atmosphere is removed using either charcoal filtration or catalytic post-combustion. Measurements of sulfur hexafluoride, carbon dioxide, aniline and carbon black are presented to demonstrate the performance of the exposure unit with respect to the temporal and spatial stability of generated atmospheres. The variations of generated contents in the atmospheres at steady state are slightly higher than the measurement precision of the analyzers (the typical standard deviation of generated atmospheres is < 2%). The technical components of ExpoLab and its monitoring systems ensure high quality standards in validity and reliability of generating and measuring exposure atmospheres.

  6. Novel microfluidic system for online monitoring of biofilm dynamics by electrical impedance spectroscopy and amperometry

    NASA Astrophysics Data System (ADS)

    Bruchmann, Julia; Sachsenheimer, Kai; Schwartz, Thomas; Rapp, Bastian E.

    2016-03-01

    Biofilm formation is ubiquitous in nature where microorganisms attach to surfaces and form highly adapted and protected communities. In technical and industrial systems like drinking water supply, food production or shipping industry biofilms are a major cause of product contamination, biofouling, and biocorrosion. Therefore, understanding of biofilm formation and means of preventing biofilm formation is important to develop novel biofilm treatment strategies. A system allowing directly online detection and monitoring biofilm formation is necessary. However, until today, there are little to none technical systems featuring a non-destructive real-time characterization of biofilm formation in a highthroughput manner. This paper presents such a microfluidic system based on electrical impedance spectroscopy (EIS) and amperomertic current measurement. The sensor consists of four modules, each housing 24 independent electrodes within 12 microfluidic channels. Attached biomass on the electrodes is monitored as increased inhibition in charge transfer by EIS and a change in metabolic activity is measured as change in produced electric current by amperometry. This modular sensor system is highly adaptable and suitable for a broad range of microbiological applications. Among others, biofilm formation processes can be characterized online, biofilm manipulation like inactivation or destabilization can be monitored in real-time and gene expression can be analyzed in parallel. The use of different electrode designs allows effective biofilm studies during all biofilm phases. The whole system was recently extended by an integrated pneumatic microfluidic pump which enables easy handling procedures. Further developments of this pumping module will allow a fully- automated computer-controlled valving and pumping.

  7. Green FLASH: energy efficient real-time control for AO

    NASA Astrophysics Data System (ADS)

    Gratadour, D.; Dipper, N.; Biasi, R.; Deneux, H.; Bernard, J.; Brule, J.; Dembet, R.; Doucet, N.; Ferreira, F.; Gendron, E.; Laine, M.; Perret, D.; Rousset, G.; Sevin, A.; Bitenc, U.; Geng, D.; Younger, E.; Andrighettoni, M.; Angerer, G.; Patauner, C.; Pescoller, D.; Porta, F.; Dufourcq, G.; Flaischer, A.; Leclere, J.-B.; Nai, A.; Palazzari, P.; Pretet, D.; Rouaud, C.

    2016-07-01

    The main goal of Green Flash is to design and build a prototype for a Real-Time Controller (RTC) targeting the European Extremely Large Telescope (E-ELT) Adaptive Optics (AO) instrumentation. The E-ELT is a 39m diameter telescope to see first light in the early 2020s. To build this critical component of the telescope operations, the astronomical community is facing technical challenges, emerging from the combination of high data transfer bandwidth, low latency and high throughput requirements, similar to the identified critical barriers on the road to Exascale. With Green Flash, we will propose technical solutions, assess these enabling technologies through prototyping and assemble a full scale demonstrator to be validated with a simulator and tested on sky. With this R&D program we aim at feeding the E-ELT AO systems preliminary design studies, led by the selected first-light instruments consortia, with technological validations supporting the designs of their RTC modules. Our strategy is based on a strong interaction between academic and industrial partners. Components specifications and system requirements are derived from the AO application. Industrial partners lead the development of enabling technologies aiming at innovative tailored solutions with potential wide application range. The academic partners provide the missing links in the ecosystem, targeting their application with mainstream solutions. This increases both the value and market opportunities of the developed products. A prototype harboring all the features is used to assess the performance. It also provides the proof of concept for a resilient modular solution to equip a large scale European scientific facility, while containing the development cost by providing opportunities for return on investment.

  8. Using Real-time Event Tracking Sensitivity Analysis to Overcome Sensor Measurement Uncertainties of Geo-Information Management in Drilling Disasters

    NASA Astrophysics Data System (ADS)

    Tavakoli, S.; Poslad, S.; Fruhwirth, R.; Winter, M.

    2012-04-01

    This paper introduces an application of a novel EventTracker platform for instantaneous Sensitivity Analysis (SA) of large scale real-time geo-information. Earth disaster management systems demand high quality information to aid a quick and timely response to their evolving environments. The idea behind the proposed EventTracker platform is the assumption that modern information management systems are able to capture data in real-time and have the technological flexibility to adjust their services to work with specific sources of data/information. However, to assure this adaptation in real time, the online data should be collected, interpreted, and translated into corrective actions in a concise and timely manner. This can hardly be handled by existing sensitivity analysis methods because they rely on historical data and lazy processing algorithms. In event-driven systems, the effect of system inputs on its state is of value, as events could cause this state to change. This 'event triggering' situation underpins the logic of the proposed approach. Event tracking sensitivity analysis method describes the system variables and states as a collection of events. The higher the occurrence of an input variable during the trigger of event, the greater its potential impact will be on the final analysis of the system state. Experiments were designed to compare the proposed event tracking sensitivity analysis with existing Entropy-based sensitivity analysis methods. The results have shown a 10% improvement in a computational efficiency with no compromise for accuracy. It has also shown that the computational time to perform the sensitivity analysis is 0.5% of the time required compared to using the Entropy-based method. The proposed method has been applied to real world data in the context of preventing emerging crises at drilling rigs. One of the major purposes of such rigs is to drill boreholes to explore oil or gas reservoirs with the final scope of recovering the content of such reservoirs; both in onshore regions as well as in offshore regions. Drilling a well is always guided by technical, economic and security constraints to prevent crew, equipment and environment from injury, damage and pollution. Although risk assessment and local practice provides a high degree of security, uncertainty is given by the behaviour of the formation which may cause crucial situations at the rig. To overcome such uncertainties real-time sensor measurements form a base to predict and thus prevent such crises, the proposed method supports the identification of the data necessary for that.

  9. Patient-specific simulation in carotid artery stenting.

    PubMed

    Willaert, Willem; Aggarwal, Rajesh; Bicknell, Colin; Hamady, Mo; Darzi, Ara; Vermassen, Frank; Cheshire, Nicholas

    2010-12-01

    Patient-specific virtual reality (VR) simulation is a technologic advancement that allows planning and practice of the carotid artery stenting (CAS) procedure before it is performed on the patient. The initial findings are reported, using this novel VR technique as a tool to optimize technical and nontechnical aspects of this complex endovascular procedure. In the angiography suite, the same interventional team performed the VR rehearsal and the actual CAS on the patient. All proceedings were recorded to allow for video analysis of team, technical, and nontechnical skills. Analysis of both procedures showed identical use of endovascular tools, similar access strategy, and a high degree of similarity between the angiography images. The total procedure time (24.04 vs 60.44 minutes), fluoroscopy time (11.19 vs 21.04 minutes), and cannulation of the common carotid artery (1.35 vs 9.34) took considerably longer in reality. An extensive questionnaire revealed that all team members found that the rehearsal increased the subjective sense of teamwork (4/5), communication (4/5), and patient safety (4/5). A VR procedure rehearsal is a practical and feasible preparatory tool for CAS and shows a high correlation with the real procedure. It has the potential to enhance the technical, nontechnical, and team performance. Further research is needed to evaluate if this technology can lead to improved outcomes for patients. Copyright © 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  10. Acousto-optic time- and space-integrating spotlight-mode SAR processor

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.

    1993-09-01

    The technical approach and recent experimental results for the acousto-optic time- and space- integrating real-time SAR image formation processor program are reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results include a demonstration of the processor's ability to perform high-resolution spotlight-mode SAR imaging by simultaneously compensating for range migration and range/azimuth coupling in the analog optical domain, thereby avoiding a highly power-consuming digital interpolation or reformatting operation usually required in all-electronic approaches.

  11. Recent evolutions of the GEOSCOPE broadband seismic observatory

    NASA Astrophysics Data System (ADS)

    Vallée, Martin; Zigone, Dimitri; Bonaimé, Sébastien; Thoré, Jean-Yves; Pesqueira, Frédéric; Pardo, Constanza; Bernard, Armelle; Stutzmann, Eléonore; Maggi, Alessia; Douet, Vincent; Sayadi, Jihane; Lévêque, Jean-Jacques

    2017-04-01

    The GEOSCOPE observatory provides 35 years of continuous broadband data to the scientific community. The 32 operational GEOSCOPE stations are installed in 17 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers (Q330HR). Seismometers are installed with warpless base plates, which decrease long period noise on horizontal components by up to 15dB. All stations send data in real time to the GEOSCOPE data center and are automatically transmitted to other data centers (IRIS-DMC and RESIF) and tsunami warning centers. In 2016, a new station has been installed in Wallis and Futuna (FUTU, South-Western Pacific Ocean), and WUS station has been reinstalled in Western China. Data of the stations are technically validated by IPGP (25 stations) or EOST (6 stations) in order to check their continuity and integrity. A scientific data validation is also performed by analyzing seismic noise level of the continuous data and by comparing real and synthetic earthquake waveforms (body waves). After these validations, data are archived by the GEOSCOPE data center in Paris. They are made available to the international scientific community through different interfaces (see details on http://geoscope.ipgp.fr). An important technical work is done to homogenize the data formats of the whole GEOSCOPE database, in order to make easier the data duplication at the IRIS-DMC and RESIF data centers. The GEOSCOPE broadband seismic observatory also provides near-real time information on the World large seismicity (above magnitude 5.5-6) through the automated application of the SCARDEC method. By using global data from the FDSN - in particular from GEOSCOPE and IRIS/USGS stations -, earthquake source parameters (depth, moment magnitude, focal mechanism, source time function) are determined about 45 minutes after the occurrence of the event. A specific webpage is then generated for each earthquake, which also includes information for a non-seismologist audience (past seismicity, foreshocks and afterschocks, 3D representations of the fault motion…). Examples for recent earthquakes can be seen in http://geoscope.ipgp.fr/index.php/en/data/earthquake-data/latest-earthquakes. This procedure has also been applied to past earthquakes since 1992, resulting in a database of more than 3000 source time functions (http://scardec.projects.sismo.ipgp.fr/).

  12. Construction and development of IGP DMC of China National Seismological Network

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Zheng, J.; Lin, P.; Yao, Z.; Liang, J.

    2011-12-01

    In 2003, CEA (China Earthquake Administration) commenced the construction of China Digital Seismological Observation Network. By the end of 2007, a new-generation digital seismological observation system had been established, which consists of 1 National Seismic Network, 32 regional seismic networks, 2 small-aperture seismic arrays, 6 volcano monitoring networks and 19 mobile seismic networks, as well as CENC (China Earthquake Network Center) DMC (Data Management Centre) and IGP (Institute of Geophysics) DMC. Since then, the seismological observation system of China has completely entered a digital time. For operational, data backup and data security considerations, the DMC at the Institute of Geophysics (IGP), CEA was established at the end of 2007. IGP DMC now receives and archives waveform data from more than 1000 permanent seismic stations around China in real-time. After the great Wenchuan and Yushu earthquakes, the real-time waveform data from 56 and 8 portable seismic stations deployed in the aftershock area are added to IGP DMC. The technical system of IGP DMC is designed to conduct data management, processing and service through the network of CEA. We developed and integrated a hardware system with high-performance servers, large-capacity disc arrays, tape library and other facilities, as well as software packages for real-time waveform data receiving, storage, quality control, processing and service. Considering the demands from researchers for large quantities of seismic event waveform data, IGP DMC adopts an innovative "user order" method to extract event waveform data. Users can specify seismic stations, epicenter distance and record length. In a short period of 3 years, IGP DMC has supplied about 350 Terabytes waveform data to over 200 researches of more than 40 academic institutions. According to incomplete statistics, over 40 papers have been published in professional journals, in which 30 papers were indexed by SCI. Now, IGP DMC has become an important platform of promoting seismological researches in China. In the future, IGP DMC will continue to improve its technical system with powerful ability of waveform data processing, management and service, and to provide better and more data service to the research community. We expect IGP DMC to become an exchange and collaboration platform for geo-scientific researchers around the world.

  13. Using Dynamic Geometry and Computer Algebra Systems in Problem Based Courses for Future Engineers

    ERIC Educational Resources Information Center

    Tomiczková, Svetlana; Lávicka, Miroslav

    2015-01-01

    It is a modern trend today when formulating the curriculum of a geometric course at the technical universities to start from a real-life problem originated in technical praxis and subsequently to define which geometric theories and which skills are necessary for its solving. Nowadays, interactive and dynamic geometry software plays a more and more…

  14. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    NASA Technical Reports Server (NTRS)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  15. Breaking new ground for remote sensing in support of disaster relief efforts: Detecting and pinpointing earthquake damage in near real-time (El Salvador, January 2001)

    NASA Astrophysics Data System (ADS)

    Nezry, Edmond; Romeijn, Paul P.; Sarti, Francesco; Inglada, Jordi; Zagolski, Francis; Yakam-Simen, Francis

    2002-01-01

    On January 13th 2001, a very strong earthquake struck El-Salvador, causing almost 1000 deaths and huge destruction, leaving more than one million people homeless. As support to the rescue teams, a project was initiated to provide up-to date maps and to identify damages to housing and infrastructures, covering the whole country. Based on the analysis of SPOT Panchromatic satellite imagery, updated maps were delivered to the rescue teams within 72 hours after the earthquake. In addition, during the 10 days following the earthquake, high resolution mapping of the damages was carried out in cooperation and coordination with rescue teams and relief organizations. Some areas of particular interest were even processed and damage maps delivered through the Internet, three hours after the request. For the first time in the history of spaceborne Earth observation, identification and evaluation of the damages were delivered on-site, in real-time (during the interventions), to local authorities, rescue teams and humanitarian organizations. In this operation, operating 24 hours a day and technical ability were the keys for success and contributed to saving lives.

  16. An intelligent robot for helping astronauts

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Grimm, K. A.; Pendleton, T. W.

    1994-01-01

    This paper describes the development status of a prototype supervised intelligent robot for space application for purposes of (1) helping the crew of a spacecraft such as the Space Station with various tasks, such as holding objects and retrieving/replacing tools and other objects from/into storage, and (2) for purposes of retrieving detached objects, such as equipment or crew, that have become separated from their spacecraft. In addition to this set of tasks in this low-Earth-orbiting spacecraft environment, it is argued that certain aspects of the technology can be viewed as generic in approach, thereby offering insight into intelligent robots for other tasks and environments. Candidate software architectures and their key technical issues which enable real work in real environments to be accomplished safely and robustly are addressed. Results of computer simulations of grasping floating objects are presented. Also described are characterization results on the usable reduced gravity environment in an aircraft flying parabola (to simulate weightlessness) and results on hardware performance there. These results show it is feasible to use that environment for evaluative testing of dexterous grasping based on real-time vision of freely rotating and translating objects.

  17. Generalized Gaussian wave packet dynamics: Integrable and chaotic systems.

    PubMed

    Pal, Harinder; Vyas, Manan; Tomsovic, Steven

    2016-01-01

    The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport. The connections between those methods and GGWPD are developed in a way that enables a far more practical implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories. This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of ℏ that comes with using the saddle-point trajectories.

  18. Every factor helps: Rapid Ptychographic Reconstruction

    NASA Astrophysics Data System (ADS)

    Nashed, Youssef

    2015-03-01

    Recent advances in microscopy, specifically higher spatial resolution and data acquisition rates, require faster and more robust phase retrieval reconstruction methods. Ptychography is a phase retrieval technique for reconstructing the complex transmission function of a specimen from a sequence of diffraction patterns in visible light, X-ray, and electron microscopes. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes. Waiting to postprocess datasets offline results in missed opportunities. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs). A final specimen reconstruction is then achieved by different techniques to merge sub-dataset results into a single complex phase and amplitude image. Results are shown on a simulated specimen and real datasets from X-ray experiments conducted at a synchrotron light source.

  19. Real-time detection of metal ions using conjugated polymer composite papers.

    PubMed

    Lee, Ji Eun; Shim, Hyeon Woo; Kwon, Oh Seok; Huh, Yang-Il; Yoon, Hyeonseok

    2014-09-21

    Cellulose, a natural polymeric material, has widespread technical applications because of its inherent structural rigidity and high surface area. As a conjugated polymer, polypyrrole shows practical potential for a diverse and promising range of future technologies. Here, we demonstrate a strategy for the real-time detection and removal of metal ions with polypyrrole/cellulose (PPCL) composite papers in solution. Simply, the conjugated polymer papers had different chemical/physical properties by applying different potentials to them, which resulted in differentiable response patterns and adsorption efficiencies for individual metal ions. First, large-area PPCL papers with a diameter of 5 cm were readily obtained via vapor deposition polymerization. The papers exhibited both mechanical flexibility and robustness, in which polypyrrole retained its redox property perfectly. The ability of the PPCL papers to recognize metal ions was examined in static and flow cells, in which real-time current change was monitored at five different applied potentials (+1, +0.5, 0, -0.5, and -1 V vs. Ag/AgCl). Distinguishable signals in the PPCL paper responses were observed for individual metal ions through principal component analysis. Particularly, the PPCL papers yielded unique signatures for three metal ions, Hg(ii), Ag(i), and Cr(iii), even in a real sample, groundwater. The sorption of metal ions by PPCL papers was examined in the flow system. The PPCL papers had a greatly superior adsorption efficiency for Hg(ii) compared to that of the other metal ions. With the strong demand for the development of inexpensive, flexible, light-weight, and environmentally friendly devices, the fascinating characteristics of these PPCL papers are likely to provide good opportunities for low-cost paper-based flexible or wearable devices.

  20. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  1. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  2. Technical note: Efficient online source identification algorithm for integration within a contamination event management system

    NASA Astrophysics Data System (ADS)

    Deuerlein, Jochen; Meyer-Harries, Lea; Guth, Nicolai

    2017-07-01

    Drinking water distribution networks are part of critical infrastructures and are exposed to a number of different risks. One of them is the risk of unintended or deliberate contamination of the drinking water within the pipe network. Over the past decade research has focused on the development of new sensors that are able to detect malicious substances in the network and early warning systems for contamination. In addition to the optimal placement of sensors, the automatic identification of the source of a contamination is an important component of an early warning and event management system for security enhancement of water supply networks. Many publications deal with the algorithmic development; however, only little information exists about the integration within a comprehensive real-time event detection and management system. In the following the analytical solution and the software implementation of a real-time source identification module and its integration within a web-based event management system are described. The development was part of the SAFEWATER project, which was funded under FP 7 of the European Commission.

  3. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin A; Prabakar, Kumaraguru; Nagarajan, Adarsh

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. Themore » integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less

  4. A Ratiometric Two-Photon Fluorescent Probe for Tracking the Lysosomal ATP Level: Direct in cellulo Observation of Lysosomal Membrane Fusion Processes.

    PubMed

    Jun, Yong Woong; Wang, Taejun; Hwang, Sekyu; Kim, Dokyoung; Ma, Donghee; Kim, Ki Hean; Kim, Sungjee; Jung, Junyang; Ahn, Kyo Han

    2018-06-05

    Vesicles exchange its contents through membrane fusion processes-kiss-and-run and full-collapse fusion. Indirect observation of these fusion processes using artificial vesicles enhanced our understanding on the molecular mechanisms involved. Direct observation of the fusion processes in a real biological system, however, remains a challenge owing to many technical obstacles. We disclose a ratiometric two-photon probe offering real-time tracking of lysosomal ATP with quantitative information for the first time. By applying the probe to two-photon live-cell imaging technique, lysosomal membrane fusion process in cells has been directly observed along with the concentration of its content-lysosomal ATP. Results show that the kiss-and-run process between lysosomes proceeds through repeating transient interactions with gradual content mixing, whereas the full-fusion process occurs at once. Furthermore, it is confirmed that both the fusion processes proceed with conservation of the content. Such a small-molecule probe exerts minimal disturbance and hence has potential for studying various biological processes associated with lysosomal ATP. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury.

    PubMed

    Wenger, Nikolaus; Moraud, Eduardo Martin; Raspopovic, Stanisa; Bonizzato, Marco; DiGiovanna, Jack; Musienko, Pavel; Morari, Manfred; Micera, Silvestro; Courtine, Grégoire

    2014-09-24

    Neuromodulation of spinal sensorimotor circuits improves motor control in animal models and humans with spinal cord injury. With common neuromodulation devices, electrical stimulation parameters are tuned manually and remain constant during movement. We developed a mechanistic framework to optimize neuromodulation in real time to achieve high-fidelity control of leg kinematics during locomotion in rats. We first uncovered relationships between neuromodulation parameters and recruitment of distinct sensorimotor circuits, resulting in predictive adjustments of leg kinematics. Second, we established a technological platform with embedded control policies that integrated robust movement feedback and feed-forward control loops in real time. These developments allowed us to conceive a neuroprosthetic system that controlled a broad range of foot trajectories during continuous locomotion in paralyzed rats. Animals with complete spinal cord injury performed more than 1000 successive steps without failure, and were able to climb staircases of various heights and lengths with precision and fluidity. Beyond therapeutic potential, these findings provide a conceptual and technical framework to personalize neuromodulation treatments for other neurological disorders. Copyright © 2014, American Association for the Advancement of Science.

  6. Single Upconversion Nanoparticle-Bacterium Cotrapping for Single-Bacterium Labeling and Analysis.

    PubMed

    Xin, Hongbao; Li, Yuchao; Xu, Dekang; Zhang, Yueli; Chen, Chia-Hung; Li, Baojun

    2017-04-01

    Detecting and analyzing pathogenic bacteria in an effective and reliable manner is crucial for the diagnosis of acute bacterial infection and initial antibiotic therapy. However, the precise labeling and analysis of bacteria at the single-bacterium level are a technical challenge but very important to reveal important details about the heterogeneity of cells and responds to environment. This study demonstrates an optical strategy for single-bacterium labeling and analysis by the cotrapping of single upconversion nanoparticles (UCNPs) and bacteria together. A single UCNP with an average size of ≈120 nm is first optically trapped. Both ends of a single bacterium are then trapped and labeled with single UCNPs emitting green light. The labeled bacterium can be flexibly moved to designated locations for further analysis. Signals from bacteria of different sizes are detected in real time for single-bacterium analysis. This cotrapping method provides a new approach for single-pathogenic-bacterium labeling, detection, and real-time analysis at the single-particle and single-bacterium level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An experimental microcomputer controlled system for synchronized pulsating anti-gravity suit.

    PubMed

    Moore, T W; Foley, J; Reddy, B R; Kepics, F; Jaron, D

    1987-07-01

    An experimental system to deliver synchronized external pressure pulsations to the lower body is described in this technical note. The system is designed using a microcomputer with a real time interface and an electro-pneumatic subsystem capable of delivering pressure pulses to a modified anti-G suit at a fast rate. It is versatile, containing many options for synchronizing, phasing and sequencing of the pressure pulsations and controlling the pressure level in the suit bladders. Details of its software and hardware are described along with the results of initial testing in a Dynamic Flight Simulator on human volunteers.

  8. Modeling the stylized facts in finance through simple nonlinear adaptive systems

    PubMed Central

    Hommes, Cars H.

    2002-01-01

    Recent work on adaptive systems for modeling financial markets is discussed. Financial markets are viewed as evolutionary systems between different, competing trading strategies. Agents are boundedly rational in the sense that they tend to follow strategies that have performed well, according to realized profits or accumulated wealth, in the recent past. Simple technical trading rules may survive evolutionary competition in a heterogeneous world where prices and beliefs co-evolve over time. Evolutionary models can explain important stylized facts, such as fat tails, clustered volatility, and long memory, of real financial series. PMID:12011401

  9. Advances in Spatial Data Infrastructure, Acquisition, Analysis, Archiving and Dissemination

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuran K.; Rochon, Gilbert L.; Duerr, Ruth; Rank, Robert; Nativi, Stefano; Stocker, Erich Franz

    2010-01-01

    The authors review recent contributions to the state-of-thescience and benign proliferation of satellite remote sensing, spatial data infrastructure, near-real-time data acquisition, analysis on high performance computing platforms, sapient archiving, multi-modal dissemination and utilization for a wide array of scientific applications. The authors also address advances in Geoinformatics and its growing ubiquity, as evidenced by its inclusion as a focus area within the American Geophysical Union (AGU), European Geosciences Union (EGU), as well as by the evolution of the IEEE Geoscience and Remote Sensing Society's (GRSS) Data Archiving and Distribution Technical Committee (DAD TC).

  10. Influence of the contact roughness upon railway monobloc wheel acoustic behaviour on virtual prototyping approach

    NASA Astrophysics Data System (ADS)

    Todorov, George; Kamberov, Konstantin; Kralov, Ivan; Ignatov, Ignat

    2017-12-01

    In this study the virtual prototyping is used for evaluation the influence of the contact roughness upon the acoustic behaviour evaluation of railway monobloc wheel. The proposed procedure covers requirements of the European Standard EN 13979-1 "Wheels and bogies - Monobloc wheels". The main advantage of the acoustic assessment based on the virtual engineering technics - absence of the expensive and time consuming physical tests, is sown. The real industrial-project example is presented and comparison of the numerical and experimental results is used for acoustic behaviour assessment and approval of railway monobloc wheel design.

  11. MILITARY RESEARCH: Researchers Target Flaws in Ballistic Missile Defense Plan.

    PubMed

    Malakoff, D; Cho, A

    2000-06-16

    More than three dozen scientists journeyed to Washington, D.C., this week to warn lawmakers that a proposed $60 billion U.S. missile defense system, designed to knock incoming warheads out of the sky, is technically flawed because it can't pick out real warheads from decoys. Pentagon officials heatedly deny a new report by one scientist that contractors have rigged trials to hide the problem, although they admit that some tests were simplified to save time. In the wake of these events, a leading Democrat is urging President Bill Clinton to delay a pending decision on building the system.

  12. Lunar architecture and urbanism

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    1992-09-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  13. The laboratory diagnosis of bacterial vaginosis

    PubMed Central

    Money, Deborah

    2005-01-01

    Bacterial vaginosis (BV) is an extremely common health problem for women. In addition to the troublesome symptoms often associated with a disruption in the balance of vaginal flora, BV is associated with adverse gynecological and pregnancy outcomes. Although not technically a sexually transmitted infection, BV is a sexually associated condition. Diagnostic tests include real-time clinical/microbiological diagnosis, and the current gold standard, the standardized evaluation of morphotypes on Gram stain analysis. The inappropriate use of vaginal culture can be misleading. Future developments into molecular-based diagnostics will be important to further understand this complex endogenous flora disruption. PMID:18159532

  14. Biological cell controllable patch-clamp microchip

    NASA Astrophysics Data System (ADS)

    Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long

    2010-12-01

    A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.

  15. HF propagation factors affecting the design and operation of real time, channel evaluation, adaptive systems

    NASA Astrophysics Data System (ADS)

    Aarons, J.; Grossi, M. D.

    1982-08-01

    To develop and operate an adaptive system, propagation factors of the ionospheric medium must be given to the designer. The operation of the system must change as a function of multipath spread, Doppler spread, path losses, channel correlation functions, etc. In addition, NATO mid-latitude HF transmission and transauroral paths require varying system operation, which must fully utilize automatic path diversity across transauroral paths. Current research and literature are reviewed to estimate the extent of the available technical information. Additional investigations to allow designers to orient new systems on realistic models of these parameters are suggested.

  16. Application of M-JPEG compression hardware to dynamic stimulus production.

    PubMed

    Mulligan, J B

    1997-01-01

    Inexpensive circuit boards have appeared on the market which transform a normal micro-computer's disk drive into a video disk capable of playing extended video sequences in real time. This technology enables the performance of experiments which were previously impossible, or at least prohibitively expensive. The new technology achieves this capability using special-purpose hardware to compress and decompress individual video frames, enabling a video stream to be transferred over relatively low-bandwidth disk interfaces. This paper will describe the use of such devices for visual psychophysics and present the technical issues that must be considered when evaluating individual products.

  17. Lunar architecture and urbanism

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  18. Introduction of structural health and safety monitoring warning systems for Shenzhen-Hong Kong Western Corridor Shenzhen Bay Bridge

    NASA Astrophysics Data System (ADS)

    Li, N.; Zhang, X. Y.; Zhou, X. T.; Leng, J.; Liang, Z.; Zheng, C.; Sun, X. F.

    2008-03-01

    Though the brief introduction of the completed structural health and safety monitoring warning systems for Shenzhen-Hongkong western corridor Shenzhen bay highway bridge (SZBHMS), the self-developed system frame, hardware and software scheme of this practical research project are systematically discussed in this paper. The data acquisition and transmission hardware and the basic software based on the NI (National Instruments) Company virtual instruments technology were selected in this system, which adopted GPS time service receiver technology and so on. The objectives are to establish the structural safety monitoring and status evaluation system to monitor the structural responses and working conditions in real time and to analyze the structural working statue using information obtained from the measured data. It will be also provided the scientific decision-making bases for the bridge management and maintenance. Potential technical approaches to the structural safety warning systems, status identification and evaluation method are presented. The result indicated that the performance of the system has achieved the desired objectives, ensure the longterm high reliability, real time concurrence and advanced technology of SZBHMS. The innovate achievement which is the first time to implement in domestic, provide the reference for long-span bridge structural health and safety monitoring warning systems design.

  19. Reusable Client-Side JavaScript Modules for Immersive Web-Based Real-Time Collaborative Neuroimage Visualization.

    PubMed

    Bernal-Rusiel, Jorge L; Rannou, Nicolas; Gollub, Randy L; Pieper, Steve; Murphy, Shawn; Robertson, Richard; Grant, Patricia E; Pienaar, Rudolph

    2017-01-01

    In this paper we present a web-based software solution to the problem of implementing real-time collaborative neuroimage visualization. In both clinical and research settings, simple and powerful access to imaging technologies across multiple devices is becoming increasingly useful. Prior technical solutions have used a server-side rendering and push-to-client model wherein only the server has the full image dataset. We propose a rich client solution in which each client has all the data and uses the Google Drive Realtime API for state synchronization. We have developed a small set of reusable client-side object-oriented JavaScript modules that make use of the XTK toolkit, a popular open-source JavaScript library also developed by our team, for the in-browser rendering and visualization of brain image volumes. Efficient realtime communication among the remote instances is achieved by using just a small JSON object, comprising a representation of the XTK image renderers' state, as the Google Drive Realtime collaborative data model. The developed open-source JavaScript modules have already been instantiated in a web-app called MedView , a distributed collaborative neuroimage visualization application that is delivered to the users over the web without requiring the installation of any extra software or browser plugin. This responsive application allows multiple physically distant physicians or researchers to cooperate in real time to reach a diagnosis or scientific conclusion. It also serves as a proof of concept for the capabilities of the presented technological solution.

  20. Pre-Clinical Evaluation of a Real-Time PCR Assay on a Portable Instrument as a Possible Field Diagnostic Tool: Experiences from the Testing of Clinical Samples for African and Classical Swine Fever Viruses.

    PubMed

    Liu, L; Luo, Y; Accensi, F; Ganges, L; Rodríguez, F; Shan, H; Ståhl, K; Qiu, H-J; Belák, S

    2017-10-01

    African swine fever (ASF) and classical swine fever (CSF) are two highly infectious transboundary animal diseases (TADs) that are serious threats to the pig industry worldwide, including in China, the world's largest pork producer. In this study, a duplex real-time PCR assay was developed for the rapid detection and differentiation of African swine fever virus (ASFV) and classical swine fever virus (CSFV). The assay was performed on a portable, battery-powered PCR thermocycler with a low sample throughput (termed as 'T-COR4 assay'). The feasibility and reliability of the T-COR4 assay as a possible field method was investigated by testing clinical samples collected in China. When evaluated with reference materials or samples from experimental infections, the assay performed in a reliable manner, producing results comparable to those obtained from stationary PCR platforms. Of 59 clinical samples, 41 had results identical to a two-step CSFV real-time PCR assay. No ASFV was detected in these samples. The T-COR4 assay was technically easy to perform and produced results within 3 h, including sample preparation. In combination with a simple sample preparation method, the T-COR4 assay provides a new tool for the field diagnosis and differentiation of ASF and CSF, which could be of particular value in remote areas. © 2016 Blackwell Verlag GmbH.

  1. Transrectal real-time elastography of the prostate: Normal patterns

    PubMed Central

    Goddi, A.; Sacchi, A.; Magistretti, G.; Almolla, J.

    2011-01-01

    Introduction Given the growing importance in clinical practice of transrectal real-time sonoelastography of the prostate, it is important to define normal patterns correlated to volume growth and reconsider the technical problems. Materials and methods We selected a sample of 100 men aged 30 to 87 with prostate volumes ranging from 20 to 100 cc. Strain images were obtained using an end-fire convex probe. The elasticity patterns of the various anatomical zones of the prostate were compared with the volume. Results The peripheral zone showed intermediate elasticity in 100% of cases regardless of the volume. We found some rare small areas of more limited elasticity in 23% of cases, among patients over 40. The posterior side of the central zone exhibited intermediate elasticity, and relative inelasticity was observed on the lateral side and at the base in 79% of cases. The entire central zone appeared compliant in 15% of cases and inelastic in 6%. The transition zone findings were stratified according to gland volume. When the volume was less than 45 cc, the transition zone was elastic in 67% of cases, inhomogeneously inelastic in 22%, and uniformly inelastic in 11%. In glands larger than 45 cc, the appearance was mainly elastic in 31% of cases, inhomogeneously inelastic in 57%, and uniformly inelastic in 12%. Conclusions Real-time elastography can distinguish the elastic properties of the prostate and define the normal patterns associated with increases in gland volume. PMID:23396618

  2. Quantum information processing with a travelling wave of light

    NASA Astrophysics Data System (ADS)

    Serikawa, Takahiro; Shiozawa, Yu; Ogawa, Hisashi; Takanashi, Naoto; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira

    2018-02-01

    We exploit quantum information processing on a traveling wave of light, expecting emancipation from thermal noise, easy coupling to fiber communication, and potentially high operation speed. Although optical memories are technically challenging, we have an alternative approach to apply multi-step operations on traveling light, that is, continuous-variable one-way computation. So far our achievement includes generation of a one-million-mode entangled chain in time-domain, mode engineering of nonlinear resource states, and real-time nonlinear feedforward. Although they are implemented with free space optics, we are also investigating photonic integration and performed quantum teleportation with a passive liner waveguide chip as a demonstration of entangling, measurement, and feedforward. We also suggest a loop-based architecture as another model of continuous-variable computing.

  3. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2017-03-14

    Here, we present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Lastly, we also address technical issues that arise when applying this technique to data from a large LArTPCmore » at or near ground level.« less

  4. Multimodal Microchannel and Nanowell-Based Microfluidic Platforms for Bioimaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Tao; Smallwood, Chuck R.; Zhu, Ying

    2017-03-30

    Modern live-cell imaging approaches permit real-time visualization of biological processes. However, limitations for unicellular organism trapping, culturing and long-term imaging can preclude complete understanding of how such microorganisms respond to perturbations in their local environment or linking single-cell variability to whole population dynamics. We have developed microfluidic platforms to overcome prior technical bottlenecks to allow both chemostat and compartmentalized cellular growth conditions using the same device. Additionally, a nanowell-based platform enables a high throughput approach to scale up compartmentalized imaging optimized within the microfluidic device. These channel and nanowell platforms are complementary, and both provide fine control over the localmore » environment as well as the ability to add/replace media components at any experimental time point.« less

  5. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study.

    PubMed

    Tsekos, Nikolaos V; Khanicheh, Azadeh; Christoforou, Eftychios; Mavroidis, Constantinos

    2007-01-01

    The continuous technological progress of magnetic resonance imaging (MRI), as well as its widespread clinical use as a highly sensitive tool in diagnostics and advanced brain research, has brought a high demand for the development of magnetic resonance (MR)-compatible robotic/mechatronic systems. Revolutionary robots guided by real-time three-dimensional (3-D)-MRI allow reliable and precise minimally invasive interventions with relatively short recovery times. Dedicated robotic interfaces used in conjunction with fMRI allow neuroscientists to investigate the brain mechanisms of manipulation and motor learning, as well as to improve rehabilitation therapies. This paper gives an overview of the motivation, advantages, technical challenges, and existing prototypes for MR-compatible robotic/mechatronic devices.

  6. Meeting report: SMART timing--principles of single molecule techniques course at the University of Michigan 2014.

    PubMed

    Bartke, Rebecca M; Cameron, Elizabeth L; Cristie-David, Ajitha S; Custer, Thomas C; Denies, Maxwell S; Daher, May; Dhakal, Soma; Ghosh, Soumi; Heinicke, Laurie A; Hoff, J Damon; Hou, Qian; Kahlscheuer, Matthew L; Karslake, Joshua; Krieger, Adam G; Li, Jieming; Li, Xiang; Lund, Paul E; Vo, Nguyen N; Park, Jun; Pitchiaya, Sethuramasundaram; Rai, Victoria; Smith, David J; Suddala, Krishna C; Wang, Jiarui; Widom, Julia R; Walter, Nils G

    2015-05-01

    Four days after the announcement of the 2014 Nobel Prize in Chemistry for "the development of super-resolved fluorescence microscopy" based on single molecule detection, the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan hosted a "Principles of Single Molecule Techniques 2014" course. Through a combination of plenary lectures and an Open House at the SMART Center, the course took a snapshot of a technology with an especially broad and rapidly expanding range of applications in the biomedical and materials sciences. Highlighting the continued rapid emergence of technical and scientific advances, the course underscored just how brightly the future of the single molecule field shines. © 2014 Wiley Periodicals, Inc.

  7. A ground moving target emergency tracking method for catastrophe rescue

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Li, D.; Li, G.

    2014-11-01

    In recent years, great disasters happen now and then. Disaster management test the emergency operation ability of the government and society all over the world. Immediately after the occurrence of a great disaster (e.g., earthquake), a massive nationwide rescue and relief operation need to be kicked off instantly. In order to improve the organizations efficiency of the emergency rescue, the organizers need to take charge of the information of the rescuer teams, including the real time location, the equipment with the team, the technical skills of the rescuers, and so on. One of the key factors for the success of emergency operations is the real time location of the rescuers dynamically. Real time tracking methods are used to track the professional rescuer teams now. But volunteers' participation play more and more important roles in great disasters. However, real time tracking of the volunteers will cause many problems, e.g., privacy leakage, expensive data consumption, etc. These problems may reduce the enthusiasm of volunteers' participation for catastrophe rescue. In fact, the great disaster is just small probability event, it is not necessary to track the volunteers (even rescuer teams) every time every day. In order to solve this problem, a ground moving target emergency tracking method for catastrophe rescue is presented in this paper. In this method, the handheld devices using GPS technology to provide the location of the users, e.g., smart phone, is used as the positioning equipment; an emergency tracking information database including the ID of the ground moving target (including the rescuer teams and volunteers), the communication number of the handheld devices with the moving target, and the usually living region, etc., is built in advance by registration; when catastrophe happens, the ground moving targets that living close to the disaster area will be filtered by the usually living region; then the activation short message will be sent to the selected ground moving target through the communication number of the handheld devices. The handheld devices receive and identify the activation short message, and send the current location information to the server. Therefore, the emergency tracking mode is triggered. The real time location of the filtered target can be shown on the organizer's screen, and the organizer can assign the rescue tasks to the rescuer teams and volunteers based on their real time location. The ground moving target emergency tracking prototype system is implemented using Oracle 11g, Visual Studio 2010 C#, Android, SMS Modem, and Google Maps API.

  8. Acceptability and Feasibility of Real-Time Antiretroviral Therapy Adherence Interventions in Rural Uganda: Mixed-Method Pilot Randomized Controlled Trial

    PubMed Central

    Atukunda, Esther C; Tumuhimbise, Wilson; Pisarski, Emily E; Tam, Melanie; Wyatt, Monique A; Ware, Norma C; Haberer, Jessica E

    2018-01-01

    Background Wireless electronic adherence monitors can detect antiretroviral therapy (ART) adherence lapses and trigger interventions in real time, thus potentially avoiding unnecessary HIV viremia. Evidence about the acceptability and feasibility of these monitors and associated interventions, however, is limited. Objective The aim of this study was to assess the acceptability and feasibility of real-time adherence monitoring linked to text messaging (short message service, SMS) reminders and notifications to support adherence among individuals living with HIV who are taking ART in rural southwestern Uganda. Methods Individuals living with HIV who were initiating ART were enrolled in a pilot randomized controlled trial and followed up for 9 months. Participants received a real-time adherence monitor and were randomized to one of the following study arms: (1) scheduled SMS, (2) SMS triggered by missed or delayed doses, or (3) no SMS. SMS notifications were also sent to 45 patient-identified social supporters for sustained adherence lapses in the scheduled SMS and triggered SMS arms. Study participants and social supporters participated in qualitative semistructured in-depth interviews on acceptability and feasibility of this technology. An inductive, content analytic approach, framed by the unified theory of acceptance and use of technology model, was used to analyze qualitative data. Quantitative feasibility data, including device functionality and SMS tracking data, were recorded based upon device metrics collected electronically and summarized descriptively. Results A total of 63 participants participated in the study. Participants reported that real-time monitoring intervention linked to SMS reminders and notifications are generally acceptable; the predominant feedback was perceived utility—the intervention was beneficial in motivating and reminding patients to take medication, as well as enabling provision of social support. The intervention was found to be technically feasible, as data were obtained from most participants as expected most of the time. Potential challenges included the impact of the technology on confidentiality, shared phone ownership, usability skills, and availability of electricity. Conclusions Real-time adherence monitoring integrated with SMS reminders and social support notifications is a generally acceptable (based primarily on perceived utility) and feasible intervention in a resource-limited country. Future efforts should focus on optimized device design, user training to overcome the challenges we encountered, cost effectiveness studies, as well as studying the monitoring aspect of the device without accompanying interventions. Trial Registration ClinicalTrials.gov NCT01957865; https://clinicaltrials.gov/ct2/show/NCT01957865 (Archived by WebCite at http://www.webcitation.org/6zFiDlXDa) PMID:29773527

  9. Portal vein territory identification using indocyanine green fluorescence imaging: Technical details and short-term outcomes.

    PubMed

    Kobayashi, Yuta; Kawaguchi, Yoshikuni; Kobayashi, Kosuke; Mori, Kazuhiro; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro

    2017-12-01

    Portal vein (PV) territory identification during liver resection may be performed using indocyanine green (ICG) fluorescence imaging technique. However, the technical details of the fluorescence staining technique have not been fully elucidated. This study was performed to demonstrate the technical details of PV territory identification using fluorescence imaging and evaluates the short-term outcomes. From 2011 to 2015, 105 underwent liver resection at the University of Tokyo Hospital with one of the following fluorescence staining techniques by transhepatic PV injection or intravenous injection of ICG: single staining (n = 36), multiple staining (n = 31), counterstaining (n = 22), negative staining (n = 13), or paradoxical negative staining (n = 3). The PV territory was identified as a region with fluorescence or a defect of fluorescence using one of the five staining techniques. ICG was administered by transhepatic PV injection in all but the negative staining technique, which employed intravenous injection. No adverse events associated with the ICG administration occurred. The mortality, postoperative total morbidity, and the major complication (Clavien-Dindo grade ≥III) rates were 0.0%, 14.3%, and 7.6%. We have demonstrated the technical details of five types of fluorescence staining techniques. These techniques are safe to perform and facilitate clear visualization of the PV territory in real time, enhancing the efficacy of anatomical removal of such territories. © 2017 Wiley Periodicals, Inc.

  10. Robotic partial nephrectomy with intracorporeal renal hypothermia using ice slush.

    PubMed

    Kaouk, Jihad H; Samarasekera, Dinesh; Krishnan, Jayram; Autorino, Riccardo; Acka, Oktay; Brando, Luis Felipe; Laydner, Humberto; Zargar, Homayoun

    2014-09-01

    To outline our technique for intracorporeal cooling with ice slush during robotic partial nephrectomy (RPN), with real-time parenchymal temperature monitoring. Eleven consecutive patients with enhancing solid renal masses suitable for treatment with RPN between September 2013 and January 2014 were included in the analysis. Institutional review board approval and informed consent were obtained. Preoperative patient characteristics, intraoperative surgical parameters including patient body temperature and ipsilateral kidney temperature with real-time monitoring, and short-term functional outcomes were analyzed. Median age was 55 years (range, 39-75 years) and American Society of Anesthesiologists score was 3 (range, 2-4). Median tumor size was 4 cm (range, 2.3-7.1) and RENAL nephrometry score was 9 (range, 5-11). One patient had a solitary kidney. During cooling, the lowest median renal parenchymal temperature was 17.05°C (range, 11°C-26°C) and cold ischemia time was 27.17 minutes (range, 18-49 minutes). Median time to latest postoperative estimated glomerular filtration rate was 12 days (range, 2-30 days). Median glomerular filtration rate preservation was 81% (range, 47.9%-126%). There was one positive margin. There were no postoperative complications, and no patients experienced a prolonged ileus. The limitations of this study include a small number of patients and short-term follow-up. RPN with renal hypothermia using intracorporeal ice slush is technically feasible. Our simplified method of introducing the ice slush was free of complications and highly reproducible. The use of a needle temperature probe allowed us to monitor in real time cooling of the renal parenchyma. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Assessing team performance in the operating room: development and use of a "black-box" recorder and other tools for the intraoperative environment.

    PubMed

    Guerlain, Stephanie; Adams, Reid B; Turrentine, F Beth; Shin, Thomas; Guo, Hui; Collins, Stephen R; Calland, J Forrest

    2005-01-01

    The objective of this research was to develop a digital system to archive the complete operative environment along with the assessment tools for analysis of this data, allowing prospective studies of operative performance, intraoperative errors, team performance, and communication. Ability to study this environment will yield new insights, allowing design of systems to avoid preventable errors that contribute to perioperative complications. A multitrack, synchronized, digital audio-visual recording system (RATE tool) was developed to monitor intraoperative performance, including software to synchronize data and allow assignment of independent observational scores. Cases were scored for technical performance, participants' situational awareness (knowledge of critical information), and their comfort and satisfaction with the conduct of the procedure. Laparoscopic cholecystectomy (n = 10) was studied. Technical performance of the RATE tool was excellent. The RATE tool allowed real time, multitrack data collection of all aspects of the operative environment, while permitting digital recording of the objective assessment data in a time synchronized and annotated fashion during the procedure. The mean technical performance score was 73% +/- 28% of maximum (perfect) performance. Situational awareness varied widely among team members, with the attending surgeon typically the only team member having comprehensive knowledge of critical case information. The RATE tool allows prospective analysis of performance measures such as technical judgments, team performance, and communication patterns, offers the opportunity to conduct prospective intraoperative studies of human performance, and allows for postoperative discussion, review, and teaching. This study also suggests that gaps in situational awareness might be an underappreciated source of operative adverse events. Future uses of this system will aid teaching, failure or adverse event analysis, and intervention research.

  12. Practicality of intraoperative teamwork assessments.

    PubMed

    Phitayakorn, Roy; Minehart, Rebecca; Pian-Smith, May C M; Hemingway, Maureen W; Milosh-Zinkus, Tanya; Oriol-Morway, Danika; Petrusa, Emil

    2014-07-01

    High-quality teamwork among operating room (OR) professionals is a key to efficient and safe practice. Quantification of teamwork facilitates feedback, assessment, and improvement. Several valid and reliable instruments are available for assessing separate OR disciplines and teams. We sought to determine the most feasible approach for routine documentation of teamwork in in-situ OR simulations. We compared rater agreement, hypothetical training costs, and feasibility ratings from five clinicians and two nonclinicians with instruments for assessment of separate OR groups and teams. Five teams of anesthesia or surgery residents and OR nurses (RN) or surgical technicians were videotaped in simulations of an epigastric hernia repair where the patient develops malignant hyperthermia. Two anesthesiologists, one OR clinical RN specialist, one educational psychologist, one simulation specialist, and one general surgeon discussed and then independently completed Anesthesiologists' Non-Technical Skills, Non-Technical Skills for Surgeons, Scrub Practitioners' List of Intraoperative Non-Technical Skills, and Observational Teamwork Assessment for Surgery forms to rate nontechnical performance of anesthesiologists, surgeons, nurses, technicians, and the whole team. Intraclass correlations of agreement ranged from 0.17-0.85. Clinicians' agreements were not different from nonclinicians'. Published rater training was 4 h for Anesthesiologists' Non-Technical Skills and Scrub Practitioners' List of Intraoperative Non-Technical Skills, 2.5 h for Non-Technical Skills for Surgeons, and 15.5 h for Observational Teamwork Assessment for Surgery. Estimated costs to train one rater to use all instruments ranged from $442 for a simulation specialist to $6006 for a general surgeon. Additional training is needed to achieve higher levels of agreement; however, costs may be prohibitive. The most cost-effective model for real-time OR teamwork assessment may be to use a simulation technician combined with one clinical rater to allow complete documentation of all participants. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. HKHC Community Dashboard: design, development, and function of a Web-based performance monitoring system.

    PubMed

    Bors, Philip A; Kemner, Allison; Fulton, John; Stachecki, Jessica; Brennan, Laura K

    2015-01-01

    As part of Robert Wood Johnson Foundation's Healthy Kids, Healthy Communities (HKHC) national grant program, a technical assistance team designed the HKHC Community Dashboard, an online progress documentation and networking system. The Dashboard was central to HKHC's multimethod program evaluation and became a communication interface for grantees and technical assistance providers. The Dashboard was designed through an iterative process of identifying needs and priorities; designing the user experience, technical development, and usability testing; and applying visual design. The system was created with an open-source content management system and support for building an online community of users. The site developer trained technical assistance providers at the national program office and evaluators, who subsequently trained all 49 grantees. Evaluators provided support for Dashboard users and populated the site with the bulk of its uploaded tools and resource documents. The system tracked progress through an interactive work plan template, regular documentation by local staff and partners, and data coding and analysis by the evaluation team. Other features included the ability to broadcast information to Dashboard users via e-mail, event calendars, discussion forums, private messaging, a resource clearinghouse, a technical assistance diary, and real-time progress reports. The average number of Dashboard posts was 694 per grantee during the grant period. Technical assistance providers and grantees uploaded a total of 1304 resource documents. The Dashboard functions with the highest grantee satisfaction were its interfaces for sharing and progress documentation. A majority of Dashboard users (69%) indicated a preference for continued access to the Dashboard's uploaded resource documents. The Dashboard was a useful and innovative tool for participatory evaluation of a large national grant program. While progress documentation added some burden to local project staff, the system proved to be a useful resource-sharing technology.

  14. Neural Networks for Flight Control

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  15. Tactical and operational response to major incidents: feasibility and reliability of skills assessment using novel virtual environments.

    PubMed

    Cohen, Daniel; Sevdalis, Nick; Patel, Vishal; Taylor, Michael; Lee, Henry; Vokes, Mick; Heys, Mick; Taylor, David; Batrick, Nicola; Darzi, Ara

    2013-07-01

    To determine feasibility and reliability of skills assessment in a multi-agency, triple-site major incident response exercise carried out in a virtual world environment. Skills assessment was carried out across three scenarios. The pre-hospital scenario required paramedics to triage and treat casualties at the site of an explosion. Technical skills assessment forms were developed using training syllabus competencies and national guidelines identified by pre-hospital response experts. Non-technical skills were assessed using a seven-point scale previously developed for use by pre-hospital paramedics. The two in-hospital scenarios, focusing on a trauma team leader and a silver/clinical major incident co-ordinator, utilised the validated Trauma-NOTECHS scale to assess five domains of performance. Technical competencies were assessed using an ATLS-style competency scale for the trauma scenario. For the silver scenario, the assessment document was developed using competencies described from a similar role description in a real-life hospital major incident plan. The technical and non-technical performance of all participants was assessed live by two experts in each of the three scenarios and inter-assessor reliability was computed. Participants also self-assessed their performance using identical proformas immediately after the scenarios were completed. Self and expert assessments were correlated (assessment cross-validation). Twenty-three participants underwent all scenarios and assessments. Performance assessments were feasible for both experts as well as the participants. Non-technical performance was generally scored higher than technical performance. Very good inter-rater reliability was obtained between expert raters across all scenarios and both technical and non-technical aspects of performance (reliability range 0.59-0.90, Ps<0.01). Significant positive correlations were found between self and expert assessment in technical skills across all three scenarios (correlation range 0.52-0.84, Ps<0.05), although no such correlations were observed in non-technical skills. This study establishes feasibility and reliability of virtual environment technical and non-technical skills assessment in major incident scenarios for the first time. The development for further scenarios and validated assessment scales will enable major incident planners to utilise virtual technologies for improved major incident preparation and training. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Teaching Early Mathematics with PLATO[R] Software: An Overview of the New PLATO Elementary Mathematics Curricula and How To Use Them. Technical Paper.

    ERIC Educational Resources Information Center

    Quinn, Bill; Foshay, Rob; Morris, Barbara

    The "PLATO[R] Math Expeditions" and "PLATO[R] Projects for the Real World" curricula are designed to implement effective, research-based instructional practices. "Math Expeditions" is designed to give elementary grade users the mathematics skills and practice needed to solve real-life problems. Across the eight…

  17. Curriculum-Based Measurement of Mathematics Competence: From Computation to Concepts and Applications to Real-Life Problem Solving

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Fuchs, Douglas; Courey, Susan J.

    2005-01-01

    In this article, the authors explain how curriculum-based measurement (CBM) differs from other forms of classroom-based assessment. The development of CBM is traced from computation to concepts and applications to real-life problem solving, with examples of the assessments and illustrations of research to document technical features and utility…

  18. Preoperative planning and real-time assisted navigation by three-dimensional individual digital model in partial nephrectomy with three-dimensional laparoscopic system.

    PubMed

    Wang, Dongwen; Zhang, Bin; Yuan, Xiaobin; Zhang, Xuhui; Liu, Chen

    2015-09-01

    To evaluate the feasibility and effectiveness of preoperative planning and real-time assisted surgical navigation for three-dimensional laparoscopic partial nephrectomy under the guidance of three-dimensional individual digital model (3D-IDM) created using three-dimensional medical image reconstructing and guiding system (3D-MIRGS). Between May 2012 and February 2014, 44 patients with cT1 renal tumors underwent retroperitoneal laparoscopic partial nephrectomy (LPN) using a three-dimensional laparoscopic system. The 3D-IDMs were created using the 3D-MIRGS in 21 patients (3D-MIRGS group) between February 2013 and February 2014. After preoperative planning, operations were real-time assisted using composite 3D-IDMs, which were fused with two-dimensional retrolaparoscopic images. The remaining 23 patients underwent surgery without 3D-MIRGS between May 2012 and February 2013; 14 of these patients were selected as a control group. Preoperative aspects and dimensions used for an anatomical score, "radius; exophytic/endophytic; nearness; anterior/posterior; location" nephrometry score, tumor size, operative time (OT), segmental renal artery clamping (SRAC) time, estimated blood loss (EBL), postoperative hospitalization, the preoperative serum creatinine level and ipsilateral glomerular filtration rate (GFR), as well as postoperative 6-month data were compared between groups. All the SRAC procedures were technically successful, and each targeted tumor was excised completely; final pathological margin results were negative. The OT was shorter (159.0 vs. 193.2 min; p < 0.001), and EBL (148.1 vs. 176.1 mL; p < 0.001) was reduced in the 3D-MIRGS group compared with controls. No statistically significant differences in SRAC time or postoperative hospitalization were found between the groups. Neither group showed any statistically significant increases in serum creatinine level or decreases in ipsilateral GFR postoperatively. Preoperative planning and real-time assisted surgical navigation using the 3D-IDM reconstructed from 3D-MIRGS and combined with the 3D laparoscopic system can facilitate LPN and result in precise SRAC and accurate excision of tumor that is both effective and safe.

  19. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    NASA Astrophysics Data System (ADS)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude greater than 3.5 beneath the Aburra Valley, and the neotectonic evidence are limited, so it is expected that this network helps to characterize the seismic hazards.

  20. Insights for conducting real-time focus groups online using a web conferencing service.

    PubMed

    Kite, James; Phongsavan, Philayrath

    2017-01-01

    Background Online focus groups have been increasing in use over the last 2 decades, including in biomedical and health-related research. However, most of this research has made use of text-based services such as email, discussion boards, and chat rooms, which do not replicate the experience of face-to-face focus groups. Web conferencing services have the potential to more closely match the face-to-face focus group experience, including important visual and aural cues. This paper provides critical reflections on using a web conferencing service to conduct online focus groups. Methods As part of a broader study, we conducted both online and face-to-face focus groups with participants. The online groups were conducted in real-time using the web conferencing service, Blackboard Collaborate TM . We used reflective practice to assess how the conduct and content of the groups were similar and how they differed across the two platforms. Results We found that further research using such services is warranted, particularly when working with hard-to-reach or geographically dispersed populations. The level of discussion and the quality of the data obtained was similar to that found in face-to-face groups. However, some issues remain, particularly in relation to managing technical issues experienced by participants and ensuring adequate recording quality to facilitate transcription and analysis. Conclusions Our experience with using web conferencing for online focus groups suggests that they have the potential to offer a realistic and comparable alternative to face-to-face focus groups, especially for geographically dispersed populations such as rural and remote health practitioners. Further testing of these services is warranted but researchers should carefully consider the service they use to minimise the impact of technical difficulties.

  1. Telemedicine in pediatric cardiac critical care.

    PubMed

    Munoz, Ricardo A; Burbano, Nelson H; Motoa, María V; Santiago, Gabriel; Klevemann, Matthew; Casilli, Jeanne

    2012-03-01

    To describe our international telemedicine experience in pediatric cardiac critical care. This is a case series of pediatric patients teleassisted from the Cardiac Intensive Care Unit (CICU) at Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA, to the CICU at Hospital Valle del Lili, Cali, Valle, Colombia, between March and December 2010. An attending intensivist from the CICU in Pittsburgh reviewed cases, monitored real-time vital signs, and gave formal medical advice as requested by the attending physician in Cali. The network connection is a Cisco (San Jose, CA)-based Secure Sockets Layer virtual private network via the Internet that allows access to the web-based interface of the Dräger(®) (Lübeck, Germany) physiological monitor system. The videoconferencing equipment consists of a standard component on a custom-made mobile cart that uses an APC(®) (West Kingston, RI) uninterruptible power supply for portable power and 3Com(®) (Hewlett-Packard, Palo Alto, CA) for wireless connectivity. A post-intervention survey regarding satisfaction with the telemedicine service was conducted. Seventy-one recommendations were given regarding 53 patients. Median age and weight were 10 months and 7.1 kg, respectively. Ventricular septal defect, transposition of the great vessels, and single ventricle accounted for most cases. The most frequent recommendations were related to surgical conduct, management of arrhythmias, and performance of cardiac catheterization studies. No technical difficulties were experienced during the monitoring of the patients. Satisfaction rates were equally high for technical and medical aspects of telemedicine service. Telemedicine is a feasible option for pediatric intensivists seeking experienced assistance in the management of complex cardiac patients. Real-time remote assistance may improve the medical care of pediatric cardiac patients treated in developing countries.

  2. Risk reduction in road and rail LPG transportation by passive fire protection.

    PubMed

    Paltrinieri, Nicola; Landucci, Gabriele; Molag, Menso; Bonvicini, Sarah; Spadoni, Gigliola; Cozzani, Valerio

    2009-08-15

    The potential reduction of risk in LPG (Liquefied Petroleum Gas) road transport due to the adoption of passive fire protections was investigated. Experimental data available for small scale vessels fully engulfed by a fire were extended to real scale road and rail tankers through a finite elements model. The results of mathematical simulations of real scale fire engulfment scenarios that may follow accidents involving LPG tankers proved the effectiveness of the thermal protections in preventing the "fired" BLEVE (Boiling Liquid Expanding Vapour Explosion) scenario. The presence of a thermal coating greatly increases the "time to failure", providing a time lapse that in the European experience may be considered sufficient to allow the start of effective mitigation actions by fire brigades. The results obtained were used to calculate the expected reduction of individual and societal risk due to LPG transportation in real case scenarios. The analysis confirmed that the introduction of passive fire protections turns out in a significant reduction of risk, up to an order of magnitude in the case of individual risk and of about 50% if the expectation value is considered. Thus, the adoption of passive fire protections, not compulsory in European regulations, may be an effective technical measure for risk reduction, and may contribute to achieve the control of "major accidents hazards" cited by the European legislation.

  3. Non-technical skills assessment in surgery.

    PubMed

    Sharma, Bharat; Mishra, Amit; Aggarwal, Rajesh; Grantcharov, Teodor P

    2011-09-01

    Adverse events in surgery have highlighted the importance of non-technical skills, such as communication, decision-making, teamwork, situational awareness and leadership, to effective organizational performance. These skills carry particular importance to surgical oncology, as members of a multidisciplinary team must work cohesively to formulate effective patient care plans. Several non-technical skills evaluation tools have been developed for use in surgery, without adequate comparison and consensus on which should be standard for training. Eleven articles describing the use of three non-technical evaluation tools related to surgery: NOTSS (Non Technical Skills for Surgeons), NOTECHS (Non Technical Skills) and OTAS (Observational Teamwork Assessment for Surgery) were analyzed with respect to scale formulation, validity, reliability and feasibility. Furthermore, their use in training thus far and the future of non-technical rating scales in surgical curricula was discussed. Future work should focus on incorporating these assessment tools into training and into a real operating room setting to provide formative evaluations for surgical residents. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Development of Reliable and Validated Tools to Evaluate Technical Resuscitation Skills in a Pediatric Simulation Setting: Resuscitation and Emergency Simulation Checklist for Assessment in Pediatrics.

    PubMed

    Faudeux, Camille; Tran, Antoine; Dupont, Audrey; Desmontils, Jonathan; Montaudié, Isabelle; Bréaud, Jean; Braun, Marc; Fournier, Jean-Paul; Bérard, Etienne; Berlengi, Noémie; Schweitzer, Cyril; Haas, Hervé; Caci, Hervé; Gatin, Amélie; Giovannini-Chami, Lisa

    2017-09-01

    To develop a reliable and validated tool to evaluate technical resuscitation skills in a pediatric simulation setting. Four Resuscitation and Emergency Simulation Checklist for Assessment in Pediatrics (RESCAPE) evaluation tools were created, following international guidelines: intraosseous needle insertion, bag mask ventilation, endotracheal intubation, and cardiac massage. We applied a modified Delphi methodology evaluation to binary rating items. Reliability was assessed comparing the ratings of 2 observers (1 in real time and 1 after a video-recorded review). The tools were assessed for content, construct, and criterion validity, and for sensitivity to change. Inter-rater reliability, evaluated with Cohen kappa coefficients, was perfect or near-perfect (>0.8) for 92.5% of items and each Cronbach alpha coefficient was ≥0.91. Principal component analyses showed that all 4 tools were unidimensional. Significant increases in median scores with increasing levels of medical expertise were demonstrated for RESCAPE-intraosseous needle insertion (P = .0002), RESCAPE-bag mask ventilation (P = .0002), RESCAPE-endotracheal intubation (P = .0001), and RESCAPE-cardiac massage (P = .0037). Significantly increased median scores over time were also demonstrated during a simulation-based educational program. RESCAPE tools are reliable and validated tools for the evaluation of technical resuscitation skills in pediatric settings during simulation-based educational programs. They might also be used for medical practice performance evaluations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    PubMed Central

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  6. A framework for understanding and generating integrated solutions for residential peak energy demand.

    PubMed

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times.

  7. Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization

    PubMed Central

    Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin

    2012-01-01

    Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a single assay and to perform the assay on simple and robust instrumentation is a prerequisite for the development of novel molecular point of care tests. PMID:22539973

  8. Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology

    PubMed Central

    Zao, John K.; Gan, Tchin-Tze; You, Chun-Kai; Chung, Cheng-En; Wang, Yu-Te; Rodríguez Méndez, Sergio José; Mullen, Tim; Yu, Chieh; Kothe, Christian; Hsiao, Ching-Teng; Chu, San-Liang; Shieh, Ce-Kuen; Jung, Tzyy-Ping

    2014-01-01

    EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system. PMID:24917804

  9. Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology.

    PubMed

    Zao, John K; Gan, Tchin-Tze; You, Chun-Kai; Chung, Cheng-En; Wang, Yu-Te; Rodríguez Méndez, Sergio José; Mullen, Tim; Yu, Chieh; Kothe, Christian; Hsiao, Ching-Teng; Chu, San-Liang; Shieh, Ce-Kuen; Jung, Tzyy-Ping

    2014-01-01

    EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system.

  10. Transportation of Organs by Air: Safety, Quality, and Sustainability Criteria.

    PubMed

    Mantecchini, L; Paganelli, F; Morabito, V; Ricci, A; Peritore, D; Trapani, S; Montemurro, A; Rizzo, A; Del Sordo, E; Gaeta, A; Rizzato, L; Nanni Costa, A

    2016-03-01

    The outcomes of organ transplantation activities are greatly affected by the ability to haul organs and medical teams quickly and safely. Organ allocation and usage criteria have greatly improved over time, whereas the same result has not been achieved so far from the transport point of view. Safety and the highest level of service and efficiency must be reached to grant transplant recipients the healthiest outcome. The Italian National Transplant Centre (CNT), in partnership with the regions and the University of Bologna, has promoted a thorough analysis of all stages of organ transportation logistics chains to produce homogeneous and shared guidelines throughout the national territory, capable of ensuring safety, reliability, and sustainability at the highest levels. The mapping of all 44 transplant centers and the pertaining airport network has been implemented. An analysis of technical requirements among organ shipping agents at both national and international level has been promoted. A national campaign of real-time monitoring of organ transport activities at all stages of the supply chain has been implemented. Parameters investigated have been hospital and region of both origin and destination, number and type of organs involved, transport type (with or without medical team), stations of arrival and departure, and shipping agents, as well as actual times of activities involved. National guidelines have been issued to select organ storage units and shipping agents on the basis of evaluation of efficiency, reliability, and equipment with reference to organ type and ischemia time. Guidelines provide EU-level standards on technical equipment of aircrafts, professional requirements of shipping agencies and cabin crew, and requirements on service provision, including pricing criteria. The introduction in the Italian legislation of guidelines issuing minimum requirements on topics such as the medical team, packaging, labeling, safety and integrity, identification, real-time monitoring of temperature, and traceability of the organ during the logistics chain is deemed a valid response to the necessity of improving safety, reliability, and sustainability of organ transplantation activities in Italy. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Non-invasive Renal Denervation: Update on External Ultrasound Approaches.

    PubMed

    Schmieder, Roland E; Ott, Christian; Bramlage, Peter

    2016-06-01

    In the last decade, intravenous renal denervation (RDN) has emerged as an alternative to pharmacological treatment in patients with resistant hypertension, but currently involves an invasive and technically challenging procedure. The Surround Sound™ system utilises externally delivered ultrasound to achieve RDN using a completely non-invasive, automated real-time tracking system coupled with a therapeutic delivery module thereby addressing these limitations. A brief history, technical overview and summary of preclinical and clinical studies of the KonaMedical Surround Sound™ system are presented. A literature search using the terms "renal denervation", "resistant hypertension" and "external ultrasound" was performed using PubMed, and references retrieved were selected based on relevancy and year of publication (date range 1991-2015). The Surround Sound™ system appears to be a promising approach to RDN which eliminates several of the factors currently limiting the intravenous approach. So far, it has demonstrated efficacy for reducing blood pressure in resistant hypertension patients with minimal adverse effects. Several double-blind, sham-controlled clinical trials are currently underway to confirm the validity of these findings.

  12. Assessment and certification of neonatal incubator sensors through an inferential neural network.

    PubMed

    de Araújo, José Medeiros; de Menezes, José Maria Pires; Moura de Albuquerque, Alberto Alexandre; da Mota Almeida, Otacílio; Ugulino de Araújo, Fábio Meneghetti

    2013-11-15

    Measurement and diagnostic systems based on electronic sensors have been increasingly essential in the standardization of hospital equipment. The technical standard IEC (International Electrotechnical Commission) 60601-2-19 establishes requirements for neonatal incubators and specifies the calibration procedure and validation tests for such devices using sensors systems. This paper proposes a new procedure based on an inferential neural network to evaluate and calibrate a neonatal incubator. The proposal presents significant advantages over the standard calibration process, i.e., the number of sensors is drastically reduced, and it runs with the incubator under operation. Since the sensors used in the new calibration process are already installed in the commercial incubator, no additional hardware is necessary; and the calibration necessity can be diagnosed in real time without the presence of technical professionals in the neonatal intensive care unit (NICU). Experimental tests involving the aforementioned calibration system are carried out in a commercial incubator in order to validate the proposal.

  13. Assessment and Certification of Neonatal Incubator Sensors through an Inferential Neural Network

    PubMed Central

    de Araújo Júnior, José Medeiros; de Menezes Júnior, José Maria Pires; de Albuquerque, Alberto Alexandre Moura; Almeida, Otacílio da Mota; de Araújo, Fábio Meneghetti Ugulino

    2013-01-01

    Measurement and diagnostic systems based on electronic sensors have been increasingly essential in the standardization of hospital equipment. The technical standard IEC (International Electrotechnical Commission) 60601-2-19 establishes requirements for neonatal incubators and specifies the calibration procedure and validation tests for such devices using sensors systems. This paper proposes a new procedure based on an inferential neural network to evaluate and calibrate a neonatal incubator. The proposal presents significant advantages over the standard calibration process, i.e., the number of sensors is drastically reduced, and it runs with the incubator under operation. Since the sensors used in the new calibration process are already installed in the commercial incubator, no additional hardware is necessary; and the calibration necessity can be diagnosed in real time without the presence of technical professionals in the neonatal intensive care unit (NICU). Experimental tests involving the aforementioned calibration system are carried out in a commercial incubator in order to validate the proposal. PMID:24248278

  14. Reverse transcription-polymerase chain reaction molecular testing of cytology specimens: Pre-analytic and analytic factors.

    PubMed

    Bridge, Julia A

    2017-01-01

    The introduction of molecular testing into cytopathology laboratory practice has expanded the types of samples considered feasible for identifying genetic alterations that play an essential role in cancer diagnosis and treatment. Reverse transcription-polymerase chain reaction (RT-PCR), a sensitive and specific technical approach for amplifying a defined segment of RNA after it has been reverse-transcribed into its DNA complement, is commonly used in clinical practice for the identification of recurrent or tumor-specific fusion gene events. Real-time RT-PCR (quantitative RT-PCR), a technical variation, also permits the quantitation of products generated during each cycle of the polymerase chain reaction process. This review addresses qualitative and quantitative pre-analytic and analytic considerations of RT-PCR as they relate to various cytologic specimens. An understanding of these aspects of genetic testing is central to attaining optimal results in the face of the challenges that cytology specimens may present. Cancer Cytopathol 2017;125:11-19. © 2016 American Cancer Society. © 2016 American Cancer Society.

  15. Outstanding challenges in the seismological study of volcanic processes: Results from recent U.S. and European community-wide discussion workshops

    NASA Astrophysics Data System (ADS)

    Roman, D. C.; Rodgers, M.; Mather, T. A.; Power, J. A.; Pyle, D. M.

    2014-12-01

    Observations of volcanically induced seismicity are essential for eruption forecasting and for real-time and near-real-time warnings of hazardous volcanic activity. Studies of volcanic seismicity and of seismic wave propagation also provide critical understanding of subsurface magmatic systems and the physical processes associated with magma genesis, transport, and eruption. However, desipite significant advances in recent years, our ability to successfully forecast volcanic eruptions and fully understand subsurface volcanic processes is limited by our current understanding of the source processes of volcano-seismic events, the effects on seismic wave propagation within volcanic structures, limited data, and even the non-standardized terminology used to describe seismic waveforms. Progress in volcano seismology is further hampered by inconsistent data formats and standards, lack of state-of-the-art hardware and professional technical staff, as well as a lack of widely adopted analysis techniques and software. Addressing these challenges will not only advance scientific understanding of volcanoes, but also will lead to more accurate forecasts and warnings of hazardous volcanic eruptions that would ultimately save lives and property world-wide. Two recent workshops held in Anchorage, Alaska, and Oxford, UK, represent important steps towards developing a relationship among members of the academic community and government agencies, focused around a shared, long-term vision for volcano seismology. Recommendations arising from the two workshops fall into six categories: 1) Ongoing and enhanced community-wide discussions, 2) data and code curation and dissemination, 3) code development, 4) development of resources for more comprehensive data mining, 5) enhanced strategic seismic data collection, and 6) enhanced integration of multiple datasets (including seismicity) to understand all states of volcano activity through space and time. As presented sequentially above, these steps can be regarded as a road map for galvanizing and strengthening the volcano seismological community to drive new scientific and technical progress over the next 5-10 years.

  16. Space Environments and Spacecraft Effects Concept: Transitioning Research to Operations and Applications

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Burns, H. D.; Clinton, R. G.; Schumacher, D.; Spann, J. F.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous organizations specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline organizations, a concept is presented focusing on the development of a space environment and spacecraft effects organization. This includes space climate, space weather, natural and induced space environments, and effects on spacecraft materials and systems. This space environment and spacecraft effects organization would be comprised of Technical Working Groups (TWG) focusing on, for example: a) Charged Particles (CP), b) Space Environmental Effects (SEE), and c) Interplanetary and Extraterrestrial Environments (IEE). These technical working groups will generate products and provide knowledge supporting four functional areas: design environments, environment effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather observations to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA and other federal agencies to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lesson learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and spacecraft effects organization are suitable for use in anomaly investigations. This paper will describe the organizational structure for this space environments and spacecraft effects organization, and outline the scope of conceptual TWG's and their relationship to the functional areas.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sara Farrar, Stacey Rothgeb, Ben Polly, Lieko Earle, Tim Merrigan

    This document is a set of appendices presenting technical discussion and references as a companion to the 'Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes' publication.

  18. Sociotechnical Human Factors Involved in Remote Online Usability Testing of Two eHealth Interventions.

    PubMed

    Wozney, Lori M; Baxter, Pamela; Fast, Hilary; Cleghorn, Laura; Hundert, Amos S; Newton, Amanda S

    2016-02-03

    Research in the fields of human performance technology and human computer interaction are challenging the traditional macro focus of usability testing arguing for methods that help test moderators assess "use in context" (ie, cognitive skills, usability understood over time) and in authentic "real world" settings. Human factors in these complex test scenarios may impact on the quality of usability results being derived yet there is a lack of research detailing moderator experiences in these test environments. Most comparative research has focused on the impact of the physical environment on results, and rarely on how the sociotechnical elements of the test environment affect moderator and test user performance. Improving our understanding of moderator roles and experiences with conducting "real world" usability testing can lead to improved techniques and strategies To understand moderator experiences of using Web-conferencing software to conduct remote usability testing of 2 eHealth interventions. An exploratory case study approach was used to study 4 moderators' experiences using Blackboard Collaborate for remote testing sessions of 2 different eHealth interventions. Data collection involved audio-recording iterative cycles of test sessions, collecting summary notes taken by moderators, and conducting 2 90-minute focus groups via teleconference. A direct content analysis with an inductive coding approach was used to explore personal accounts, assess the credibility of data interpretation, and generate consensus on the thematic structure of the results. Following the convergence of data from the various sources, 3 major themes were identified: (1) moderators experienced and adapted to unpredictable changes in cognitive load during testing; (2) moderators experienced challenges in creating and sustaining social presence and untangling dialogue; and (3) moderators experienced diverse technical demands, but were able to collaboratively troubleshoot with test users. Results highlight important human-computer interactions and human factor qualities that impact usability testing processes. Moderators need an advanced skill and knowledge set to address the social interaction aspects of Web-based usability testing and technical aspects of conferencing software during test sessions. Findings from moderator-focused studies can inform the design of remote testing platforms and real-time usability evaluation processes that place less cognitive burden on moderators and test users.

  19. The use of a checklist improves anaesthesiologists' technical and non-technical performance for simulated malignant hyperthermia management.

    PubMed

    Hardy, Jean-Baptiste; Gouin, Antoine; Damm, Cédric; Compère, Vincent; Veber, Benoît; Dureuil, Bertrand

    2018-02-01

    Anaesthesiologists may occasionally manage life-threatening operating room (OR) emergencies. Managing OR emergencies implies real-time analysis of often complicated situations, prompt medical knowledge retrieval, coordinated teamwork and effective decision making in stressful settings. Checklists are recommended to improve performance and reduce the risk of medical errors. This study aimed to assess the usefulness of the French Society of Anaesthesia and Intensive Care's (SFAR) "Malignant Hyperthermia" (MH) checklist on a simulated episode of MH crisis and management thereof by registered anesthesiologists. Twenty-four anaesthesiologists were allocated to 2 groups (checklist and control). Their technical performance in adherence with the SFAR guidelines was assessed by a 30-point score and their non-technical performance was assessed by the Anaesthetists' Non-Technical Skills (ANTS) score. Every task completion was assessed independently. Data are shown as median (first-third quartiles). Anaesthesiologists in the checklist group had higher technical performance scores (24/30 (21.5-25) vs 18/30 (15.5-19.5), P=0.002) and ANTS scores (56.5/60 (47.5-58) vs 48.5/60 (41-50.5), P=0.024). They administered the complete initial dose of dantrolene (2mg/kg) more quickly (15.7 minutes [13.9-18.3] vs 22.4 minutes [18.6-25]) than the control group (P=0.017). However, anaesthesiologists deemed the usability of the checklist to be perfectible. Registered anaesthesiologists' use of the MH checklist during a simulation session widely improved their adherence to guidelines and non-technical skills. This study strongly suggests the benefit of checklist tools for emergency management. Notwithstanding, better awareness and training for anaesthesiologists could further improve the use of this tool. Copyright © 2017 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  20. Design of area array CCD image acquisition and display system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  1. Reconfigurable PCI Express cards for low-latency data transport in HEP experiments

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Pontisso, L.; Simula, F.; Vicini, P.

    2017-01-01

    State-of-the-art technology supports the High Energy Physics community in addressing the problem of managing an overwhelming amount of experimental data. From the point of view of communication between the detectors' readout system and computing nodes, the critical issues are the following: latency, moving data in a deterministic and low amount of time; bandwidth, guaranteeing the maximum capability of the link and communication protocol adopted; endpoint consolidation, tight aggregation of channels on a single board. This contribution describes the status and performances of the NaNet project, whose goal is the design of a family of FPGA-based PCIe network interface cards. The efforts of the team are focused on implementing a low-latency, real-time data transport mechanism between the board network multi-channel system and CPU and GPU accelerators memories on the host. Several opportunities concerning technical solutions and scientific applications have been explored: NaNet-1 with a single GbE I/O interface, and NaNet-10, offering four 10GbE ports, for activities related to the GPU-based real-time trigger of NA62 experiment at CERN; NaNet ^3 , with four 2.5Gbit optical channels, developed for the KM3NeT-ITALIA underwater neutrino telescope.

  2. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    PubMed

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-09-08

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v. © 2016 The Authors.

  3. Real-time bicycle detection at signalized intersections using thermal imaging technology

    NASA Astrophysics Data System (ADS)

    Collaert, Robin

    2013-02-01

    More and more governments and authorities around the world are promoting the use of bicycles in cities, as this is healthy for the bicyclist and improves the quality of life in general. Safety and efficiency of bicyclists has become a major focus. To achieve this, there is a need for a smarter approach towards the control of signalized intersections. Various traditional detection technologies, such as video, microwave radar and electromagnetic loops, can be used to detect vehicles at signalized intersections, but none of these can consistently separate bikes from other traffic, day and night and in various weather conditions. As bikes should get a higher priority and also require longer green time to safely cross the signalized intersection, traffic managers are looking for alternative detection systems that can make the distinction between bicycles and other vehicles near the stop bar. In this paper, the drawbacks of a video-based approach are presented, next to the benefits of a thermal-video-based approach for vehicle presence detection with separation of bicycles. Also, the specific technical challenges are highlighted in developing a system that combines thermal image capturing, image processing and output triggering to the traffic light controller in near real-time and in a single housing.

  4. Long-term primary culture of neurons taken from chick embryo brain: A model to study neural cell biology, synaptogenesis and its dynamic properties.

    PubMed

    Kumar, Awanish; Mallick, Birendra Nath

    2016-04-01

    Studying neuronal growth, development and synaptogenesis are among the hot research topics. However, it is faced with various challenges and technical limitations that include but not limited to donor's species and health, threat to life, age of embryo, glial contamination, real-time tracking, and follow-up. We have successfully standardized a method for long-term primary culture of neurons collected from post-fertilized 9 day incubated chicken embryo brain overcoming the limitations mentioned above. Fertilized eggs were incubated in the laboratory and neurons from the embryonic brain were collected and low-density culture, apparently without glial contamination, was studied at least for 35 days in vitro (DIV). Neurons were characterized by double immunostaining using stringent neuronal and glial markers. Neuronal differentiation, cytomorphology, neurite and axon formation, development and maturation, spine formation and synaptogenesis were tracked in real-time in a stage and time dependent manner. The neurons were transfected with Synaptophysin-RFP to label synaptic vesicles, which were followed in real-time under live-cell imaging. Every step was carried out under controlled laboratory conditions. Eggs are easily available, easy to handle, neurons from desired day of incubation could be conveniently studied for long period in apparently glia-free condition. In addition to common factors affecting primary culture, selection of culture media and cover glass coating are other key factors affecting neuronal cultures. We describe an inexpensive, simpler pure primary neuronal culture method for studying neuronal cell-biology, synaptogenesis, vesicular dynamics and it has potential to grow 3D-multilayered brain in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High frequency based detection of TIDs in the Net-TIDE project: challenges and opportunities for long HF paths

    NASA Astrophysics Data System (ADS)

    Verhulst, Tobias

    2016-07-01

    Travelling Ionospheric Disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. TIDs carry along information about their sources of excitations which may be either natural (energy input from the auroral region, earthquakes/tsunamis, hurricanes, solar terminator, and others) or artificial (ionospheric modification experiments, nuclear explosions, and other powerful blasts like industrial accidents). TIDs contribute to the energy and momentum exchange between different regions of the ionosphere, especially during geomagnetic storms. Their tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although a number of methods have been proposed to measure TID characteristics, none is able to operate in real time for monitoring purposes. In the framework of a new NATO Science for Peace and Security multi-year project (2014--2017) we are exploiting for the first time the European network of high precision ionospheric DPS4D sounders and the related software to directly identify TIDs over Europe and specify in real-time the gravity wave parameters based on measuring the variations of the angles-of-arrival and Doppler frequencies of ionospherically reflected HF radio signals. The project will run until 2017 and is expected to result in a pilot network of DPS4D ionospheric sounders in Europe, enhanced with a system to process the TID observations for real-time diagnostics and issue warnings for TIDs and the potential disturbance over the area. Based on these warnings the end-users can put in action specific mitigation techniques to protect their systems. The technical challenges of operating long distance ionospheric HF radio links for the detection of TIDs will be discussed.

  6. Real-time monitoring for detection of retained surgical sponges and team motion in the surgical operation room using radio-frequency-identification (RFID) technology: a preclinical evaluation.

    PubMed

    Kranzfelder, Michael; Zywitza, Dorit; Jell, Thomas; Schneider, Armin; Gillen, Sonja; Friess, Helmut; Feussner, Hubertus

    2012-06-15

    Technical progress in the surgical operating room (OR) increases constantly, facilitating the development of intelligent OR systems functioning as "safety backup" in the background of surgery. Precondition is comprehensive data retrieval to identify imminent risky situations and inaugurate adequate security mechanisms. Radio-frequency-identification (RFID) technology may have the potential to meet these demands. We set up a pilot study investigating feasibility and appliance reliability of a stationary RFID system for real-time surgical sponge monitoring (passive tagged sponges, position monitoring: mayo-stand/abdominal situs/waste bucket) and OR team tracking (active transponders, position monitoring: right/left side of OR table). In vitro: 20/20 sponges (100%) were detected on the mayo-stand and within the OR-phantom, however, real-time detection accuracy declined to 7/20 (33%) when the tags were moved simultaneously. All retained sponges were detected correctly. In vivo (animal): 7-10/10 sterilized sponges (70%-100%) were detected correctly within the abdominal cavity. OR-team: detection accuracy within the OR (surveillance antenna) and on both sides of the OR table (sector antenna) was 100%. Mean detection time for position change (left to right side and contrariwise) was 30-60 s. No transponder failure was noted. This is the first combined RFID system that has been developed for stationary use in the surgical OR. Preclinical evaluation revealed a reliable sponge tracking and correct detection of retained textiles (passive RFID) but also demonstrated feasibility of comprehensive data acquisition of team motion (active RFID). However, detection accuracy needs to be further improved before implementation into the surgical OR. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Prototyping a Sensor Enabled 3d Citymodel on Geospatial Managed Objects

    NASA Astrophysics Data System (ADS)

    Kjems, E.; Kolář, J.

    2013-09-01

    One of the major development efforts within the GI Science domain are pointing at sensor based information and the usage of real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes rather than constituting the foundation of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole new setup for data fusion within an urban environment and provide time critical information preserving our limited resources in the most sustainable way. Using 3D models with consistent object definitions give us the possibility to avoid troublesome abstractions of reality, and design even complex urban systems fusing information from various sources of data. These systems are difficult to design with the traditional software development approach based on major software packages and traditional data exchange. The data stream is varying from urban domain to urban domain and from system to system why it is almost impossible to design a complete system taking care of all thinkable instances now and in the future within one constraint software design complex. On several occasions we have been advocating for a new end advanced formulation of real world features using the concept of Geospatial Managed Objects (GMO). This paper presents the outcome of the InfraWorld project, a 4 million Euro project financed primarily by the Norwegian Research Council where the concept of GMO's have been applied in various situations on various running platforms of an urban system. The paper will be focusing on user experiences and interfaces rather then core technical and developmental issues. The project was primarily focusing on prototyping rather than realistic implementations although the results concerning applicability are quite clear.

  8. Wireless communication links for brain-machine interface applications

    NASA Astrophysics Data System (ADS)

    Larson, L.

    2016-05-01

    Recent technological developments have given neuroscientists direct access to neural signals in real time, with the accompanying ability to decode the resulting information and control various prosthetic devices and gain insight into deeper aspects of cognition. These developments - along with deep brain stimulation for Parkinson's disease and the possible use of electro-stimulation for other maladies - leads to the conclusion that the widespread use electronic brain interface technology is a long term possibility. This talk will summarize the various technical challenges and approaches that have been developed to wirelessly communicate with the brain, including technology constraints, dc power limits, compression and data rate issues.

  9. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Gulf Research and Development Company is implementing a DOE-sponsored Underground Coal Gasification project in Steeply Dipping Coal Beds (UCG/SDB) in order to assess the economic and technical viability of UCG in SDB. In the Fall 1980 drilling program, 2 vertical and 2 slant process wells; 3 hydrologic and 1 exploratory well and 4 HFEM wells were completed. The Spring, 1981 program will consist of drilling the remaining instrumentation wells necessary to track the progress of the underground reactor in real time. These will consist of: 6 additional High Frequency Electromagnetic wells (HFEM) and 3 extensometer wells (X). These wells willmore » be installed vertically with an expected deviation of two degrees or less.« less

  11. An assessment on the use of stationary vehicles to support cooperative positioning systems

    NASA Astrophysics Data System (ADS)

    Ordóñez-Hurtado, Rodrigo H.; Crisostomi, Emanuele; Shorten, Robert N.

    2018-03-01

    In this paper, we evaluate the ability of stationary vehicles (e.g. parked or temporary stopped cars) as tools to enhance the capabilities of existing cooperative positioning algorithms in vehicular networks. First, some real-world facts are provided to support the feasibility of our ideas. Then, we examine the idea in greater details in terms of the technical requirements and methodological analysis, and provide a comprehensive experimental evaluation using dedicated simulations. The routing of a drone through an urban scenario is presented as a non-traditional application case, where the benefits of the proposed approach are reflected in a better utilisation of the flight time.

  12. Big Data Analytics in Chemical Engineering.

    PubMed

    Chiang, Leo; Lu, Bo; Castillo, Ivan

    2017-06-07

    Big data analytics is the journey to turn data into insights for more informed business and operational decisions. As the chemical engineering community is collecting more data (volume) from different sources (variety), this journey becomes more challenging in terms of using the right data and the right tools (analytics) to make the right decisions in real time (velocity). This article highlights recent big data advancements in five industries, including chemicals, energy, semiconductors, pharmaceuticals, and food, and then discusses technical, platform, and culture challenges. To reach the next milestone in multiplying successes to the enterprise level, government, academia, and industry need to collaboratively focus on workforce development and innovation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    Here, we present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Lastly, we also address technical issues that arise when applying this technique to data from a large LArTPCmore » at or near ground level.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at ormore » near ground level.« less

  15. Verification, Validation, and Accreditation Challenges of Distributed Simulation for Space Exploration Technology

    NASA Technical Reports Server (NTRS)

    Thomas, Danny; Hartway, Bobby; Hale, Joe

    2006-01-01

    Throughout its rich history, NASA has invested heavily in sophisticated simulation capabilities. These capabilities reside in NASA facilities across the country - and with partners around the world. NASA s Exploration Systems Mission Directorate (ESMD) has the opportunity to leverage these considerable investments to resolve technical questions relating to its missions. The distributed nature of the assets, both in terms of geography and organization, present challenges to their combined and coordinated use, but precedents of geographically distributed real-time simulations exist. This paper will show how technological advances in simulation can be employed to address the issues associated with netting NASA simulation assets.

  16. A study of a space communication system for the control and monitoring of the electric distribution system. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Vaisnys, A.

    1980-01-01

    It is technically feasible to design a satellite communication system to serve the United States electric utility industry's needs relative to load management, real-time operations management, remote meter reading, and to determine the costs of various elements of the system. A definition of distribution control and monitoring functions is given. Associated communications traffic is quantified. A baseline conceptual design in terms of operating capability and equipment is described, important factors to be considered in designing a system are examined, and preliminary cost data are provided. Factors associated with implementation are discussed and conclusions and recommendations are listed.

  17. Adaptive spread spectrum receiver using acoustic surface wave technology

    NASA Astrophysics Data System (ADS)

    Das, P.; Milstein, L. B.

    1984-05-01

    This technical report summarizes the results of the research we have been engaged in regarding the use of surface acoustic wave devices in direct sequence spread spectrum receivers. The heart of this research has been the use of the device as a real-time Fourier transformer. A system of this type is sometimes referred to as a compressive receiver, and our use of the system has been primarily as a means to implement a narrowband interference rejection filter. In addition, we have studied many other topics such as rapid acquisition, Hilbert transform generation, etc. and these topics are all overviewed in this report.

  18. Comparison of a GPS needle-tracking system, multiplanar imaging and 2D imaging for real-time ultrasound-guided epidural anaesthesia: A randomized, comparative, observer-blinded study on phantoms.

    PubMed

    Menacé, Cécilia; Choquet, Olivier; Abbal, Bertrand; Bringuier, Sophie; Capdevila, Xavier

    2017-04-01

    The real-time ultrasound-guided paramedian sagittal oblique approach for neuraxial blockade is technically demanding. Innovative technologies have been developed to improve nerve identification and the accuracy of needle placement. The aim of this study was to evaluate three types of ultrasound scans during ultrasound-guided epidural lumbar punctures in a spine phantom. Eleven sets of 20 ultrasound-guided epidural punctures were performed with 2D, GPS, and multiplanar ultrasound machines (660 punctures) on a spine phantom using an in-plane approach. For all punctures, execution time, number of attempts, bone contacts, and needle redirections were noted by an independent physician. Operator comfort and visibility of the needle (tip and shaft) were measured using a numerical scale. The use of GPS significantly decreased the number of punctures, needle repositionings, and bone contacts. Comfort of the physician was also significantly improved with the GPS system compared with the 2D and multiplanar systems. With the multiplanar system, the procedure was not facilitated and execution time was longer compared with 2D imaging after Bonferroni correction but interaction between the type of ultrasound system and mean execution time was not significant in a linear mixed model. There were no significant differences regarding needle tip and shaft visibility between the systems. Multiplanar and GPS needle-tracking systems do not reduce execution time compared with 2D imaging using a real-time ultrasound-guided paramedian sagittal oblique approach in spine phantoms. The GPS needle-tracking system can improve performance in terms of operator comfort, the number of attempts, needle redirections and bone contacts. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  19. Reusable Client-Side JavaScript Modules for Immersive Web-Based Real-Time Collaborative Neuroimage Visualization

    PubMed Central

    Bernal-Rusiel, Jorge L.; Rannou, Nicolas; Gollub, Randy L.; Pieper, Steve; Murphy, Shawn; Robertson, Richard; Grant, Patricia E.; Pienaar, Rudolph

    2017-01-01

    In this paper we present a web-based software solution to the problem of implementing real-time collaborative neuroimage visualization. In both clinical and research settings, simple and powerful access to imaging technologies across multiple devices is becoming increasingly useful. Prior technical solutions have used a server-side rendering and push-to-client model wherein only the server has the full image dataset. We propose a rich client solution in which each client has all the data and uses the Google Drive Realtime API for state synchronization. We have developed a small set of reusable client-side object-oriented JavaScript modules that make use of the XTK toolkit, a popular open-source JavaScript library also developed by our team, for the in-browser rendering and visualization of brain image volumes. Efficient realtime communication among the remote instances is achieved by using just a small JSON object, comprising a representation of the XTK image renderers' state, as the Google Drive Realtime collaborative data model. The developed open-source JavaScript modules have already been instantiated in a web-app called MedView, a distributed collaborative neuroimage visualization application that is delivered to the users over the web without requiring the installation of any extra software or browser plugin. This responsive application allows multiple physically distant physicians or researchers to cooperate in real time to reach a diagnosis or scientific conclusion. It also serves as a proof of concept for the capabilities of the presented technological solution. PMID:28507515

  20. Application of the Modular Approach to an In-House Validation Study of Real-Time PCR Methods for the Detection and Serogroup Determination of Verocytotoxigenic Escherichia coli ▿ †

    PubMed Central

    Kagkli, Dafni-Maria; Weber, Thomas P.; Van den Bulcke, Marc; Folloni, Silvia; Tozzoli, Rosangela; Morabito, Stefano; Ermolli, Monica; Gribaldo, Laura; Van den Eede, Guy

    2011-01-01

    European Commission regulation 2073/2005 on the microbiological criteria for food requires that Escherichia coli is monitored as an indicator of hygienic conditions. Since verocytotoxigenic E. coli (VTEC) strains often cause food-borne infections by the consumption of raw food, the Biological Hazards (BIOHAZ) panel of the European Food Safety Authority (EFSA) recommended their monitoring in food as well. In particular, VTEC strains belonging to serogroups such as O26, O103, O111, O145, and O157 are known causative agents of several human outbreaks. Eight real-time PCR methods for the detection of E. coli toxin genes and their variants (stx1, stx2), the intimin gene (eae), and five serogroup-specific genes have been proposed by the European Reference Laboratory for VTEC (EURL-VTEC) as a technical specification to the European Normalization Committee (CEN TC275/WG6). Here we applied a “modular approach” to the in-house validation of these PCR methods. The modular approach subdivides an analytical process into separate parts called “modules,” which are independently validated based on method performance criteria for a limited set of critical parameters. For the VTEC real-time PCR module, the following parameters are being assessed: specificity, dynamic range, PCR efficiency, and limit of detection (LOD). This study describes the modular approach for the validation of PCR methods to be used in food microbiology, using single-target plasmids as positive controls and showing their applicability with food matrices. PMID:21856838

  1. Gene expression analysis of immunostained endothelial cells isolated from formaldehyde-fixated paraffin embedded tumors using laser capture microdissection--a technical report.

    PubMed

    Kaneko, Tomoatsu; Okiji, Takashi; Kaneko, Reika; Suda, Hideaki; Nör, Jacques E

    2009-12-01

    Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections that can then be used for gene expression analysis. In conventional LCM, frozen tissues stained with hematoxylin are normally used to the molecular analysis. Recent studies suggested that it is possible to carry out gene expression analysis of formaldehyde-fixated paraffin embedded (FFPE) tissues that were stained with hematoxylin. However, it is still unclear if quantitative gene expression analyses can be performed from LCM cells from FFPE tissues that were subjected to immunostaining to enhance identification of target cells. In this proof-of-principle study, we analyzed by reverse transcription-PCR (RT-PCR) and real time PCR the expression of genes in factor VIII immunostained human endothelial cells that were dissected from FFPE tissues by LCM. We observed that immunostaining should be performed at 4 degrees C to preserve the mRNA from the cells. The expression of Bcl-2 in the endothelial cells was evaluated by RT-PCR and by real time PCR. Glyceraldehyde-3-phosphate dehydrogenase and 18S were used as house keeping genes for RT-PCR and real time PCR, respectively. This report unveils a method for quantitative gene expression analysis in cells that were identified by immunostaining and retrieved by LCM from FFPE tissues. This method is ideally suited for the analysis of relatively rare cell types within a tissue, and should improve on our ability to perform differential diagnosis of pathologies as compared to conventional LCM.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rottmann, J; Berbeco, R; Keall, P

    Purpose: To maximize normal tissue sparing for treatments requiring motion encompassing margins. Motion mitigation techniques including DMLC or couch tracking can freeze tumor motion within the treatment aperture potentially allowing for smaller treatment margins and thus better sparing of normal tissue. To enable for a safe application of this concept in the clinic we propose adapting margins dynamically in real-time during radiotherapy delivery based on personalized tumor localization confidence. To demonstrate technical feasibility we present a phantom study. Methods: We utilize a realistic anthropomorphic dynamic thorax phantom with a lung tumor model embedded close to the spine. The tumor, amore » 3D-printout of a patient's GTV, is moved 15mm peak-to-peak by diaphragm compression and monitored by continuous EPID imaging in real-time. Two treatment apertures are created for each beam, one representing ITV -based and the other GTV-based margin expansion. A soft tissue localization (STiL) algorithm utilizing the continuous EPID images is employed to freeze tumor motion within the treatment aperture by means of DMLC tracking. Depending on a tracking confidence measure (TCM), the treatment aperture is adjusted between the ITV and the GTV leaf. Results: We successfully demonstrate real-time personalized margin adjustment in a phantom study. We measured a system latency of about 250 ms which we compensated by utilizing a respiratory motion prediction algorithm (ridge regression). With prediction in place we observe tracking accuracies better than 1mm. For TCM=0 (as during startup) an ITV-based treatment aperture is chosen, for TCM=1 a GTV-based aperture and for 0« less

  3. A neuromorphic network for generic multivariate data classification

    PubMed Central

    Schmuker, Michael; Pfeil, Thomas; Nawrot, Martin Paul

    2014-01-01

    Computational neuroscience has uncovered a number of computational principles used by nervous systems. At the same time, neuromorphic hardware has matured to a state where fast silicon implementations of complex neural networks have become feasible. En route to future technical applications of neuromorphic computing the current challenge lies in the identification and implementation of functional brain algorithms. Taking inspiration from the olfactory system of insects, we constructed a spiking neural network for the classification of multivariate data, a common problem in signal and data analysis. In this model, real-valued multivariate data are converted into spike trains using “virtual receptors” (VRs). Their output is processed by lateral inhibition and drives a winner-take-all circuit that supports supervised learning. VRs are conveniently implemented in software, whereas the lateral inhibition and classification stages run on accelerated neuromorphic hardware. When trained and tested on real-world datasets, we find that the classification performance is on par with a naïve Bayes classifier. An analysis of the network dynamics shows that stable decisions in output neuron populations are reached within less than 100 ms of biological time, matching the time-to-decision reported for the insect nervous system. Through leveraging a population code, the network tolerates the variability of neuronal transfer functions and trial-to-trial variation that is inevitably present on the hardware system. Our work provides a proof of principle for the successful implementation of a functional spiking neural network on a configurable neuromorphic hardware system that can readily be applied to real-world computing problems. PMID:24469794

  4. Real-time synthetic vision cockpit display for general aviation

    NASA Astrophysics Data System (ADS)

    Hansen, Andrew J.; Smith, W. Garth; Rybacki, Richard M.

    1999-07-01

    Low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering synthetic vision of a pilot's out-the-window view during all phases of flight. When coupled to a GPS navigation payload the virtual image can be fully correlated to the physical world. In particular, differential GPS services such as the Wide Area Augmentation System WAAS will provide all aviation users with highly accurate 3D navigation. As well, short baseline GPS attitude systems are becoming a viable and inexpensive solution. A glass cockpit display rendering geographically specific imagery draped terrain in real-time can be coupled with high accuracy (7m 95% positioning, sub degree pointing), high integrity (99.99999% position error bound) differential GPS navigation/attitude solutions to provide both situational awareness and 3D guidance to (auto) pilots throughout en route, terminal area, and precision approach phases of flight. This paper describes the technical issues addressed when coupling GPS and glass cockpit displays including the navigation/display interface, real-time 60 Hz rendering of terrain with multiple levels of detail under demand paging, and construction of verified terrain databases draped with geographically specific satellite imagery. Further, on-board recordings of the navigation solution and the cockpit display provide a replay facility for post-flight simulation based on live landings as well as synchronized multiple display channels with different views from the same flight. PC-based solutions which integrate GPS navigation and attitude determination with 3D visualization provide the aviation community, and general aviation in particular, with low cost high performance guidance and situational awareness in all phases of flight.

  5. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  6. LHCb detector and trigger performance in Run II

    NASA Astrophysics Data System (ADS)

    Francesca, Dordei

    2017-12-01

    The LHCb detector is a forward spectrometer at the LHC, designed to perform high precision studies of b- and c- hadrons. In Run II of the LHC, a new scheme for the software trigger at LHCb allows splitting the triggering of events into two stages, giving room to perform the alignment and calibration in real time. In the novel detector alignment and calibration strategy for Run II, data collected at the start of the fill are processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. This allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The larger timing budget, available in the trigger, allows to perform the same track reconstruction online and offline. This enables LHCb to achieve the best reconstruction performance already in the trigger, and allows physics analyses to be performed directly on the data produced by the trigger reconstruction. The novel real-time processing strategy at LHCb is discussed from both the technical and operational point of view. The overall performance of the LHCb detector on the data of Run II is presented as well.

  7. Nuclear Forensics International Technical Working Group (ITWG): a collaboration of scientists, law enforcement officials, and regulators working to combat nuclear terrorism and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.

    Founded in 1996 upon the initiative of the “Group of 8” governments (G8), the Nuclear Forensics International Technical Working Group (ITWG) is an ad hoc organization of official Nuclear Forensics practitioners (scientists, law enforcement, and regulators) that can be called upon to provide technical assistance to the global community in the event of a seizure of nuclear or radiological materials. The ITWG is supported by and is affiliated with nearly 40 countries and international partner organizations including the International Atomic Energy Agency (IAEA), EURATOM, INTERPOL, EUROPOL, and the United Nations Interregional Crime and Justice Research Institute (UNICRI) (Figure 1). Besidesmore » providing a network of nuclear forensics laboratories that are able to assist the global community during a nuclear smuggling event, the ITWG is also committed to the advancement of the science of nuclear forensic analysis, largely through participation in periodic table top and Collaborative Materials Exercises (CMXs). Exercise scenarios use “real world” samples with realistic forensics investigation time constraints and reporting requirements. These exercises are designed to promote best practices in the field and test, evaluate, and improve new technical capabilities, methods and techniques in order to advance the science of nuclear forensics. Past efforts to advance nuclear forensic science have also included scenarios that asked laboratories to adapt conventional forensics methods (e.g. DNA, fingerprints, tool marks, and document comparisons) for collecting and preserving evidence comingled with radioactive materials.« less

  8. Evaluation of Google Glass Technical Limitations on Their Integration in Medical Systems.

    PubMed

    Martinez-Millana, Antonio; Bayo-Monton, Jose-Luis; Lizondo, Aroa; Fernandez-Llatas, Carlos; Traver, Vicente

    2016-12-15

    Google Glass is a wearable sensor presented to facilitate access to information and assist while performing complex tasks. Despite the withdrawal of Google in supporting the product, today there are multiple applications and much research analyzing the potential impact of this technology in different fields of medicine. Google Glass satisfies the need of managing and having rapid access to real-time information in different health care scenarios. Among the most common applications are access to electronic medical records, display monitorizations, decision support and remote consultation in specialties ranging from ophthalmology to surgery and teaching. The device enables a user-friendly hands-free interaction with remote health information systems and broadcasting medical interventions and consultations from a first-person point of view. However, scientific evidence highlights important technical limitations in its use and integration, such as failure in connectivity, poor reception of images and automatic restart of the device. This article presents a technical study on the aforementioned limitations (specifically on the latency, reliability and performance) on two standard communication schemes in order to categorize and identify the sources of the problems. Results have allowed us to obtain a basis to define requirements for medical applications to prevent network, computational and processing failures associated with the use of Google Glass.

  9. Evaluation of Google Glass Technical Limitations on Their Integration in Medical Systems

    PubMed Central

    Martinez-Millana, Antonio; Bayo-Monton, Jose-Luis; Lizondo, Aroa; Fernandez-Llatas, Carlos; Traver, Vicente

    2016-01-01

    Google Glass is a wearable sensor presented to facilitate access to information and assist while performing complex tasks. Despite the withdrawal of Google in supporting the product, today there are multiple applications and much research analyzing the potential impact of this technology in different fields of medicine. Google Glass satisfies the need of managing and having rapid access to real-time information in different health care scenarios. Among the most common applications are access to electronic medical records, display monitorizations, decision support and remote consultation in specialties ranging from ophthalmology to surgery and teaching. The device enables a user-friendly hands-free interaction with remote health information systems and broadcasting medical interventions and consultations from a first-person point of view. However, scientific evidence highlights important technical limitations in its use and integration, such as failure in connectivity, poor reception of images and automatic restart of the device. This article presents a technical study on the aforementioned limitations (specifically on the latency, reliability and performance) on two standard communication schemes in order to categorize and identify the sources of the problems. Results have allowed us to obtain a basis to define requirements for medical applications to prevent network, computational and processing failures associated with the use of Google Glass. PMID:27983691

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, F.M. Jr.; Best, D.A.; Clarke, R.T.

    The need for even more efficient reservoir characterization and management has forced a change in the way Mobil Oil provides technical support to its production operations. We`ve learned that to be successful, a good understanding of the reservoir is essential. This includes an understanding of the technical and business significance of reservoir heterogeneities at different stages of field development. A multi-disciplinary understanding of the business of integrated reservoir characterization is essential and to facilitate this understanding, Mobil has developed a highly successful {open_quotes}Reservoir Characterization Field Seminar{close_quotes}. Through specific team based case studies that incorporate outcrop examples and data the programmore » provides participants the opportunity to explore historic and alternative approaches to reservoir description, characterization and management. We explore appropriate levels and timing of data gathering, technology applications, risk assessment and management practices at different stages of field development. The case studies presented throughout the course are a unique element of the program which combine real life and hypothetical problem sets that explore how different technical disciplines interact, the approaches to a problem solving they use, the assumptions and uncertainties contained in their contributions and the impact those conclusions may have on other disciplines involved in the overall reservoir management process. The team building aspect of the course was an added bonus.« less

  11. Laser Ranging to the Moon: How Evolving Technology Enables New Science

    NASA Astrophysics Data System (ADS)

    Faller, James

    2010-03-01

    Technological advances have long been the enabler of scientific progress. The invention of the laser is a prime example of this symbiotic relationship between technical progress and scientific advances. The laser, which today is omnipresent in each of our lives, made its first appearance during the time that I was a graduate student in Professor Dicke's group at Princeton. A major change occurring during that time period was that technology was transforming the study of gravitational physics from just a theoretical subject into also an experimental subject where one could hope to measure things using by-then-available laboratory technologies and techniques. During this same time, the idea for the lunar laser ranging experiment was born. The history and accomplishments of this experiment--a still ongoing experiment which is one of the real scientific triumphs of NASA's Apollo program--will be given.

  12. Future of photorefractive based holographic 3D display

    NASA Astrophysics Data System (ADS)

    Blanche, P.-A.; Bablumian, A.; Voorakaranam, R.; Christenson, C.; Lemieux, D.; Thomas, J.; Norwood, R. A.; Yamamoto, M.; Peyghambarian, N.

    2010-02-01

    The very first demonstration of our refreshable holographic display based on photorefractive polymer was published in Nature early 20081. Based on the unique properties of a new organic photorefractive material and the holographic stereography technique, this display addressed a gap between large static holograms printed in permanent media (photopolymers) and small real time holographic systems like the MIT holovideo. Applications range from medical imaging to refreshable maps and advertisement. Here we are presenting several technical solutions for improving the performance parameters of the initial display from an optical point of view. Full color holograms can be generated thanks to angular multiplexing, the recording time can be reduced from minutes to seconds with a pulsed laser, and full parallax hologram can be recorded in a reasonable time thanks to parallel writing. We also discuss the future of such a display and the possibility of video rate.

  13. Expert communication link management: overview and progress

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Kirk A.

    1998-08-01

    Consider the downsizing of our forces, the increasing complexity of our tactical platforms, and the ever widening array of communication options and the conclusion is inevitable. The need for automated support to reduce communication-related workload is critical to continued task force effectiveness. In a previous era, communication management expertise resided solely in the form of human experts. These experts flew with the pilots, providing the most effective means of communication in real time; they have since been removed from a great number of platforms due to force downsizing and real estate value in the cockpit. This burden has typically been shifted to the pilot, providing another set of tasks in an environment which is already far too taxing. An Expert Communication Link Manger (ECLM) is required -- a trusted, reliable assistant which can determine optimal link, channel, and waveform data for the communication requirements at hand and translate those requirements transparently into communication device control. Technologies are at hand which make ECLM possible; the mixture of these elements in the correct proportions can provide a capable, deployable, and cost effective ECLM in the near term. This paper describes specific applied ECLM research work in progress funded by the USAF under a four year effort. Operational objectives, technical objectives, a reference design, and technical excursions within the broad ECLM scope will be discussed in detail. Results of prototypes built to date in the area of communication inference from speech understanding, dynamic adaptive routing, and packet switching networks in the tactical environment will be presented.

  14. [Detection of Plasmodium falciparum by using magnetic nanoparticles separation-based quantitative real-time PCR assay].

    PubMed

    Wang, Fei; Tian, Yin; Yang, Jing; Sun, Fu-Jun; Sun, Ning; Liu, Bi-Yong; Tian, Rui; Ge, Guang-Lu; Zou, Ming-qiang; Deng, Cong-liang; Liu, Yi

    2014-10-01

    To establish a magnetic nanoparticles separation-based quantitative real-time PCR (RT-PCR) assay for fast and accurate detection of Plasmodium falciparum and providing a technical support for improving the control and prevention of imported malaria. According to the conserved sequences of the P. falciparum genome 18SrRNA, the species-specific primers and probe were designed and synthetized. The RT-PCR was established by constructing the plasmid standard, fitting the standard curve and using magnetic nanoparticles separation. The sensitivity and specificity of the assay were evaluated. The relationship between the threshold cycle (Ct) and logarithm of initial templates copies was linear over a range of 2.5 x 10(1) to 2.5 x 10(8) copies/μl (R2 = 0.999). Among 13 subjects of entry frontier, a P. falciparum carrier with low load was detected by using the assay and none was detected with the conventional examinations (microscopic examinations and rapid tests). This assay shows a high sensitivity in detection of P. falciparum, with rapid and accurate characteristics, and is especially useful in diagnosis of P. falciparum infectors with low parasitaemia at entry-exit frontier ports.

  15. Real-Time Observation of Human LINE-1 Retrotransposon Activity in Bacteria

    NASA Astrophysics Data System (ADS)

    Kaur, Davneet; Kuhlman, Thomas; Kuhlman Team; Nigel Goldenfeld Collaboration

    Transposable elements (TEs) are fundamental building blocks of all genomes. Retrotransposable elements (RTEs) are one of the two primary classes of TEs that are ubiquitous in eukaryotes. They propagate through a copy-and-paste mechanism utilizing reverse-transcribed mRNA intermediates. This leads to disruption and dispersal of coding and control elements throughout the genome, and consequently TEs are thought to be a major driving force behind diversification. However, RTEs are absent in most prokaryotes including E. coli. and the reason for this remains an open question. Despite their prevalence, there still remain many unanswered questions about how `hot' or active L1 RTEs (L1Hs) function. In particular, their rates of activity and their effects upon their host are currently poorly understood and only roughly estimated within the limitations of available technology. To address these unanswered questions, we have constructed and released an L1H element in E. coli to quantify its rates of activity and physiological effects on its host. To overcome the technical limitations, we've designed fluorescent visualization and quantification techniques that make real time high resolution observations of retrotransposition events as they occur in living cells.

  16. A cavity ring-down spectroscopy sensor for real-time Hall thruster erosion measurements.

    PubMed

    Lee, B C; Huang, W; Tao, L; Yamamoto, N; Gallimore, A D; Yalin, A P

    2014-05-01

    A continuous-wave cavity ring-down spectroscopy sensor for real-time measurements of sputtered boron from Hall thrusters has been developed. The sensor uses a continuous-wave frequency-quadrupled diode laser at 250 nm to probe ground state atomic boron sputtered from the boron nitride insulating channel. Validation results from a controlled setup using an ion beam and target showed good agreement with a simple finite-element model. Application of the sensor for measurements of two Hall thrusters, the H6 and SPT-70, is described. The H6 was tested at power levels ranging from 1.5 to 10 kW. Peak boron densities of 10 ± 2 × 10(14) m(-3) were measured in the thruster plume, and the estimated eroded channel volume agreed within a factor of 2 of profilometry. The SPT-70 was tested at 600 and 660 W, yielding peak boron densities of 7.2 ± 1.1 × 10(14) m(-3), and the estimated erosion rate agreed within ~20% of profilometry. Technical challenges associated with operating a high-finesse cavity in the presence of energetic plasma are also discussed.

  17. Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip.

    PubMed

    Tellez-Gabriel, Marta; Charrier, Céline; Brounais-Le Royer, Bénédicte; Mullard, Mathilde; Brown, Hannah K; Verrecchia, Franck; Heymann, Dominique

    2017-03-01

    Gap junctions are transmembrane structures that directly connect the cytoplasm of adjacent cells, making intercellular communications possible. It has been shown that the behaviour of several tumours - such as bone tumours - is related to gap junction intercellular communications (GJIC). Several methodologies are available for studying GJIC, based on measuring different parameters that are useful for multiple applications, such as the study of carcinogenesis for example. These methods nevertheless have several limitations. The present manuscript describes the setting up of a dielectrophoresis (DEP)-based lab-on-a-chip platform for the real-time study of Gap Junctional Intercellular Communication between osteosarcoma cells and the main cells accessible to their microenvironment. We conclude that using the DEParray technology for the GJIC assessment has several advantages comparing to current techniques. This methodology is less harmful for cells integrity; cells can be recovered after interaction to make further molecular analysis; it is possible to study GJIC in real time; we can promote cell interactions using up to five different populations. The setting up of this new methodology overcomes several difficulties to perform experiments for solving questions about GJIC process that we are not able to do with current technics. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. "SeismoSAT" project results in connecting seismic data centres via satellite

    NASA Astrophysics Data System (ADS)

    Pesaresi, Damiano; Lenhardt, Wolfgang; Rauch, Markus; Živčić, Mladen; Steiner, Rudolf; Bertoni, Michele; Delazer, Heimo

    2016-04-01

    Since 2002 the OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) in Udine (Italy), the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Vienna (Austria), and the Agencija Republike Slovenije za Okolje (ARSO) in Ljubljana (Slovenia) are collecting, analysing, archiving and exchanging seismic data in real time. Up to now the data exchange between the seismic data centres relied on internet: this however was not an ideal condition for civil protection purposes, since internet reliability is poor. For this reason, in 2012 the Protezione Civile della Provincia Autonoma di Bolzano in Bolzano (Italy) joined OGS, ZAMG and ARSO in the Interreg IV Italia-Austria project "SeismoSAT" (Progetto SeismoSAT, 2014) aimed in connecting the seismic data centres in real time via satellite. As already presented in the past, the general technical schema of the project has been outlined, data bandwidths and monthly volumes required have been quantified, the common satellite provider has been selected and the hardware has been purchased and installed. Right before the end of its financial period, the SeismoSAT project proved to be successful guaranteeing data connection stability between the involved data centres during an internet outage.

  19. Looking Down Through the Clouds – Optical Attenuation through Real-Time Clouds

    NASA Astrophysics Data System (ADS)

    Burley, J.; Lazarewicz, A.; Dean, D.; Heath, N.

    Detecting and identifying nuclear explosions in the atmosphere and on the surface of the Earth is critical for the Air Force Technical Applications Center (AFTAC) treaty monitoring mission. Optical signals, from surface or atmospheric nuclear explosions detected by satellite sensors, are attenuated by the atmosphere and clouds. Clouds present a particularly complex challenge as they cover up to seventy percent of the earth's surface. Moreover, their highly variable and diverse nature requires physics-based modeling. Determining the attenuation for each optical ray-path is uniquely dependent on the source geolocation, the specific optical transmission characteristics along that ray path, and sensor detection capabilities. This research details a collaborative AFTAC and AFIT effort to fuse worldwide weather data, from a variety of sources, to provide near-real-time profiles of atmospheric and cloud conditions and the resulting radiative transfer analysis for virtually any wavelength(s) of interest from source to satellite. AFIT has developed a means to model global clouds using the U.S. Air Force’s World Wide Merged Cloud Analysis (WWMCA) cloud data in a new toolset that enables radiance calculations through clouds from UV to RF wavelengths.

  20. Implementation of a near-real time cross-border web-mapping platform on airborne particulate matter (PM) concentration with open-source software

    NASA Astrophysics Data System (ADS)

    Knörchen, Achim; Ketzler, Gunnar; Schneider, Christoph

    2015-01-01

    Although Europe has been growing together for the past decades, cross-border information platforms on environmental issues are still scarce. With regard to the establishment of a web-mapping tool on airborne particulate matter (PM) concentration for the Euregio Meuse-Rhine located in the border region of Belgium, Germany and the Netherlands, this article describes the research on methodical and technical backgrounds implementing such a platform. An open-source solution was selected for presenting the data in a Web GIS (OpenLayers/GeoExt; both JavaScript-based), applying other free tools for data handling (Python), data management (PostgreSQL), geo-statistical modelling (Octave), geoprocessing (GRASS GIS/GDAL) and web mapping (MapServer). The multilingual, made-to-order online platform provides access to near-real time data on PM concentration as well as additional background information. In an open data section, commented configuration files for the Web GIS client are being made available for download. Furthermore, all geodata generated by the project is being published under public domain and can be retrieved in various formats or integrated into Desktop GIS as Web Map Services (WMS).

  1. Computationally efficient modeling of proprioceptive signals in the upper limb for prostheses: a simulation study

    PubMed Central

    Williams, Ian; Constandinou, Timothy G.

    2014-01-01

    Accurate models of proprioceptive neural patterns could 1 day play an important role in the creation of an intuitive proprioceptive neural prosthesis for amputees. This paper looks at combining efficient implementations of biomechanical and proprioceptor models in order to generate signals that mimic human muscular proprioceptive patterns for future experimental work in prosthesis feedback. A neuro-musculoskeletal model of the upper limb with 7 degrees of freedom and 17 muscles is presented and generates real time estimates of muscle spindle and Golgi Tendon Organ neural firing patterns. Unlike previous neuro-musculoskeletal models, muscle activation and excitation levels are unknowns in this application and an inverse dynamics tool (static optimization) is integrated to estimate these variables. A proprioceptive prosthesis will need to be portable and this is incompatible with the computationally demanding nature of standard biomechanical and proprioceptor modeling. This paper uses and proposes a number of approximations and optimizations to make real time operation on portable hardware feasible. Finally technical obstacles to mimicking natural feedback for an intuitive proprioceptive prosthesis, as well as issues and limitations with existing models, are identified and discussed. PMID:25009463

  2. Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy.

    PubMed

    Mei, Ting; Lu, Xuewen; Sun, Ning; Li, Xiaomei; Chen, Jitao; Liang, Min; Zhou, Xinke; Fang, Zhiyuan

    2018-06-05

    The level of circulating tumor cell (CTCs) is a reliable marker for tumor burden and malignant progression. Quantification of CTCs remains technically challenging due to the rarity of these cells in peripheral blood. In the present study, we established a real-time quantitative PCR (Q-PCR) based method for sensitive detection of CTCs without DNA extraction. Blood sample was first turned to erythrocyte lyses and then incubated with two antibodies, tag-DNA modified CK-19 antibody and magnetic beads conjugated EpCAM antibody. Tumor cells were further enriched by magnetic separation. Tag-DNA that immobilized on tumor cells through CK-19 antibodies were also retrieved, which was further quantified by Q-PCR. This assay was able to detect single tumor cell in a 5 mL blood sample. The detection rate of clinical tumor blood sample was 92.3%. Furthermore, CTC count in patient was correlated with tumor stage and tumor status. The signal amplification was based on tag DNA rather than tumor gene, which was independent of nucleic acid extraction. With high sensitivity and convenience, this method can be a good alternative for the determination of cancer progress. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Virtual reality training for improving the skills needed for performing surgery of the ear, nose or throat.

    PubMed

    Piromchai, Patorn; Avery, Alex; Laopaiboon, Malinee; Kennedy, Gregor; O'Leary, Stephen

    2015-09-09

    Virtual reality simulation uses computer-generated imagery to present a simulated training environment for learners. This review seeks to examine whether there is evidence to support the introduction of virtual reality surgical simulation into ear, nose and throat surgical training programmes. 1. To assess whether surgeons undertaking virtual reality simulation-based training achieve surgical ('patient') outcomes that are at least as good as, or better than, those achieved through conventional training methods.2. To assess whether there is evidence from either the operating theatre, or from controlled (simulation centre-based) environments, that virtual reality-based surgical training leads to surgical skills that are comparable to, or better than, those achieved through conventional training. The Cochrane Ear, Nose and Throat Disorders Group (CENTDG) Trials Search Co-ordinator searched the CENTDG Trials Register; Central Register of Controlled Trials (CENTRAL 2015, Issue 6); PubMed; EMBASE; ERIC; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 July 2015. We included all randomised controlled trials and controlled trials comparing virtual reality training and any other method of training in ear, nose or throat surgery. We used the standard methodological procedures expected by The Cochrane Collaboration. We evaluated both technical and non-technical aspects of skill competency. We included nine studies involving 210 participants. Out of these, four studies (involving 61 residents) assessed technical skills in the operating theatre (primary outcomes). Five studies (comprising 149 residents and medical students) assessed technical skills in controlled environments (secondary outcomes). The majority of the trials were at high risk of bias. We assessed the GRADE quality of evidence for most outcomes across studies as 'low'. Operating theatre environment (primary outcomes) In the operating theatre, there were no studies that examined two of three primary outcomes: real world patient outcomes and acquisition of non-technical skills. The third primary outcome (technical skills in the operating theatre) was evaluated in two studies comparing virtual reality endoscopic sinus surgery training with conventional training. In one study, psychomotor skill (which relates to operative technique or the physical co-ordination associated with instrument handling) was assessed on a 10-point scale. A second study evaluated the procedural outcome of time-on-task. The virtual reality group performance was significantly better, with a better psychomotor score (mean difference (MD) 1.66, 95% CI 0.52 to 2.81; 10-point scale) and a shorter time taken to complete the operation (MD -5.50 minutes, 95% CI -9.97 to -1.03). Controlled training environments (secondary outcomes) In a controlled environment five studies evaluated the technical skills of surgical trainees (one study) and medical students (three studies). One study was excluded from the analysis. Surgical trainees: One study (80 participants) evaluated the technical performance of surgical trainees during temporal bone surgery, where the outcome was the quality of the final dissection. There was no difference in the end-product scores between virtual reality and cadaveric temporal bone training. Medical students: Two other studies (40 participants) evaluated technical skills achieved by medical students in the temporal bone laboratory. Learners' knowledge of the flow of the operative procedure (procedural score) was better after virtual reality than conventional training (SMD 1.11, 95% CI 0.44 to 1.79). There was also a significant difference in end-product score between the virtual reality and conventional training groups (SMD 2.60, 95% CI 1.71 to 3.49). One study (17 participants) revealed that medical students acquired anatomical knowledge (on a scale of 0 to 10) better during virtual reality than during conventional training (MD 4.3, 95% CI 2.05 to 6.55). No studies in a controlled training environment assessed non-technical skills. There is limited evidence to support the inclusion of virtual reality surgical simulation into surgical training programmes, on the basis that it can allow trainees to develop technical skills that are at least as good as those achieved through conventional training. Further investigations are required to determine whether virtual reality training is associated with better real world outcomes for patients and the development of non-technical skills. Virtual reality simulation may be considered as an additional learning tool for medical students.

  4. How can sludge dewatering devices be assessed? Development of a new DSS and its application to real case studies.

    PubMed

    Bertanza, Giorgio; Papa, Matteo; Canato, Matteo; Collivignarelli, Maria Cristina; Pedrazzani, Roberta

    2014-05-01

    A key issue in biological Waste Water Treatment Plants (WWTPs) operation is represented by the sludge management. Mechanical dewatering is a crucial stage for sludge volume reduction; though, being a costly operation, its optimization is required. We developed an original experimental methodology to evaluate the technical (dewatering efficiency) and financial (total treatment costs) performance of dewatering devices, which might be used as a DSS (Decision Support System) for WWTP managers. This tool was then applied to two real case studies for comparing, respectively, three industrial size centrifuges, and two different operation modes of the same machine (fixed installation vs. outsourcing service). In both the cases, the best option was identified, based jointly on economic and (site-specific) technical evaluations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorton, Ian

    As the sun slowly sets of this first decade of the new millenium, it seems appropriate to update the sojourn of the real programmers as they adapt to their ever changing technical and business environment. Real Programmers were perfectly characterized and differentiated from their quiche-eating, Pascal programming brethren in Ed Post’s seminal “Real Programmers Don’t Use Pascal” (Datamation, 1983). My follow-up ("Real programmers do use Delphi," Software, IEEE , vol.12, no.6, pp.8, 10, 12-, Nov 1995) charted their evolution from FORTRAN-only programmers to embracing a wider range of mainstream languages and tools that still afforded ample opportunity for creativity, game-playing,more » irregular work hours, and importantly, long-term job security.« less

  6. Use of digital technologies for nasal prosthesis manufacturing.

    PubMed

    Palousek, David; Rosicky, Jiri; Koutny, Daniel

    2014-04-01

    Digital technology is becoming more accessible for common use in medical applications; however, their expansion in prosthetic and orthotic laboratories is not large because of the persistent image of difficult applicability to real patients. This article aims to offer real example in the area of human facial prostheses. This article describes the utilization of optical digitization, computational modelling, rapid prototyping, mould fabrication and manufacturing of a nasal silicone prosthesis. This technical note defines the key points of the methodology and aspires to contribute to the introduction of a certified manufacturing procedure. The results show that the used technologies reduce the manufacturing time, reflect patient's requirements and allow the manufacture of high-quality prostheses for missing facial asymmetric parts. The methodology provides a good position for further development issues and is usable for clinical practice. Clinical relevance Utilization of digital technologies in facial prosthesis manufacturing process can be a good contribution for higher patient comfort and higher production efficiency but with higher initial investment and demands for experience with software tools.

  7. Adapting the design of Anesthesia Information Management Systems to innovations depicted in Industrial Property documents.

    PubMed

    Spyropoulos, B; Tzavaras, A; Zogogianni, D; Botsivaly, M

    2013-01-01

    The purpose of this paper is to present the design and the current development status of an Anesthesia Information Management System (AIMS). For this system, the physical and technical advances, depicted in relevant, recently published Industrial Property documents, have been taken into account. Additional innovative sensors create further data-load to be managed. Novel wireless data-transmission modes demand eventually compliance to further proper standards, so that interoperability between AIMS and the existing Hospital Information Systems is being sustained. We attempted to define, the state-of-the-art concerning the functions, the design-prerequisites and the relevant standards and of an "emerging" AIMS that is combining hardware innovation, real-time data acquisition, processing and displaying and lastly enabling the necessary interoperability with the other components of the existing Hospital Information Systems. Finally, we report based on this approach, about the design and implementation status, of our "real-world" system under development and discuss the multifarious obstacles encountered during this still on-going project.

  8. Simulation Of Assembly Processes With Technical Of Virtual Reality

    NASA Astrophysics Data System (ADS)

    García García, Manuel; Arenas Reina, José Manuel; Lite, Alberto Sánchez; Sebastián Pérez, Miguel Ángel

    2009-11-01

    Virtual reality techniques use at industrial processes provides a real approach to product life cycle. For components manual assembly, the use of virtual surroundings facilitates a simultaneous engineering in which variables such as human factors and productivity take a real act. On the other hand, in the actual phase of industrial competition it is required a rapid adjustment to client needs and to market situation. In this work it is analyzed the assembly of the front components of a vehicle using virtual reality tools and following up a product-process design methodology which includes every life service stage. This study is based on workstations design, taking into account productive and human factors from the ergonomic point of view implementing a postural study of every assembly operation, leaving the rest of stages for a later study. Design is optimized applying this methodology together with the use of virtual reality tools. It is also achieved a 15% reduction on time assembly and of 90% reduction in muscle—skeletal diseases at every assembly operation.

  9. Real scale experimental study for performance evaluation of unidirectional air diffuser perforated panels

    NASA Astrophysics Data System (ADS)

    Tăcutu, Laurenţiu; Nastase, Ilinca; Iordache, Vlad; Catalina, Tiberiu; Croitoru, Cristiana Verona

    2018-02-01

    Nowadays, there is an increasing emphasis on indoor air quality due to technological evolution and the fact that people spend most of the time in enclosed spaces. Also, energy efficiency is another related factor that gains more and more attention. Improving air distribution in an enclosure can lead to achieve these goals. This improvement can be done by adjustingthe air terminals position, theredimensions or the air diffuser perforations. The paper presents the study of 8 types of panels with different perforations shapes. The systems were characterized by flow, pressure loss and noise. Usualand special geometries were chosen, all having the same flowsurface. The perforated panels were mounted in a unidirectional air flow (UAF)diffuser, also called a laminar air flow (LAF)diffuser, that is placed in a real scale operating room (OR) in our laboratory.The purpose of this study is to determine whether changing the shape in the perforated panels can improve the technical parameters of the diffuser.

  10. Synthetic biology and the technicity of biofuels.

    PubMed

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Use of RTIGS data streams for validating the performance of the IGS Ultra-Rapid products

    NASA Astrophysics Data System (ADS)

    Thaler, Gottfried; Weber, Robert

    2010-05-01

    The IGS (International GNSS Service) Real-Time Working Group (RTIGS) disseminates for several years raw observation data of a globally distributed steady growing station network in real-time via the internet. This observation data can be used for validating the performance of the IGS predicted orbits and clocks (Ultra-Rapid (IGU)). Therefore, based on pre-processed ITRF- station coordinates, clock corrections w.r.t GPS-Time for GPS-satellites and site-receivers as well as satellite orbits are calculated in quasi real-time and compared to the IGU solutions. The Institute for "Geodesy and Geophysics" of the Technical University of Vienna develops based on the software RTIGS Multicast Receive (RTIGSMR) provided by National Resources Canada (NRCan) the software RTIGU-Control. Using Code-smoothed observations RTIGU-Control calculates in a first step by means of a linear KALMAN-Filter and based on the orbit information of the IGUs real-time clock corrections and clock drifts w.r.t GPS-Time for the GPS-satellites and stations. The second extended KALMAN-Filter (kinematic approach) uses again the Code-smoothed observations corrected for the clock corrections of step 1 to calculate the positions and velocities of the satellites. The calculation interval is set to 30 seconds. The results and comparisons to IGU-products are displayed online but also stored as clock-RINEX- and SP3-files on the ftp-server of the institute, e.g. for validation of the performance of the IGU predicted products. A comparison to the more precise but delayed issued IGS Rapid products (IGR) allows also to validate the performance of RTIGU-Control. To carry out these comparisons the MatLab routine RTIGU-Analyse was established. This routine is for example able to import and process standard clock-RINEX-files of several sources and delivers a variety of comparisons both in graphical or numerical form. Results will become part of this presentation. Another way to analyse the quality and consistency of the RTIGU-Control products is to use them for positioning in post-processing mode. Preliminary results are already available and will also be presented. Further investigations will deal with upgrading RTIGU-Control to become independent of the IGU products. This means to initialize the KALMAN-Filter process using the orbits (and also clocks) from IGU but to use for all further calculation steps the own established orbits. This procedure results in totally independent satellite orbit and clock corrections which could be used for example instead of the broadcast ephemerides in a large number of real-time PPP applications.

  12. EPA Technical Support Centers (TSC): FY14 Lessons ...

    EPA Pesticide Factsheets

    EPA’s Technical Support Centers (TSC) included in ORD’s Safe and Healthy Communities (SHC) Research Action Plan fill the need for supplying subject-matter experts to continually assess state-of-the-art research and practices and channel this information to users in both direct applications (i.e., site-specific technical support) and general applications (i.e., technical transfer activities such as technical guidance documents, conferences, or workshops) . The TSCs are charged with providing solutions by: 1) linking EPA research to Agency decision-makers; 2) applying best practices to real world field applications; and 3) channeling feedback from field application to research communities. The TSP goal is to provide Regional Remedial Project Managers (RPMs), Corrective Action Staff, and On-Scene Coordinators (OSCs) with a diverse set of readily-accessible resources for technical assistance. This research summary provides six case studies – two from each of the three TSCs (Ground Water Technical Support Center, Engineering Technical Support Center, and Site Characterization Technical Support Center) – to exemplify and summarize the variety of TSC approaches that contribute to fulfilling the TSP mission. EPA’s Technical Support Centers (TSC) included in ORD’s Safe and Healthy Communities (SHC) Research Action Plan fill the need for supplying subject-matter experts to continually assess state-of-the-art research and practices and channel this informati

  13. Progress and challenges in the development of physically-based numerical models for prediction of flow and contaminant dispersion in the urban environment

    NASA Astrophysics Data System (ADS)

    Lien, F. S.; Yee, E.; Ji, H.; Keats, A.; Hsieh, K. J.

    2006-06-01

    The release of chemical, biological, radiological, or nuclear (CBRN) agents by terrorists or rogue states in a North American city (densely populated urban centre) and the subsequent exposure, deposition and contamination are emerging threats in an uncertain world. The modeling of the transport, dispersion, deposition and fate of a CBRN agent released in an urban environment is an extremely complex problem that encompasses potentially multiple space and time scales. The availability of high-fidelity, time-dependent models for the prediction of a CBRN agent's movement and fate in a complex urban environment can provide the strongest technical and scientific foundation for support of Canada's more broadly based effort at advancing counter-terrorism planning and operational capabilities.The objective of this paper is to report the progress of developing and validating an integrated, state-of-the-art, high-fidelity multi-scale, multi-physics modeling system for the accurate and efficient prediction of urban flow and dispersion of CBRN (and other toxic) materials discharged into these flows. Development of this proposed multi-scale modeling system will provide the real-time modeling and simulation tool required to predict injuries, casualties and contamination and to make relevant decisions (based on the strongest technical and scientific foundations) in order to minimize the consequences of a CBRN incident in a populated centre.

  14. Availability Control for Means of Transport in Decisive Semi-Markov Models of Exploitation Process

    NASA Astrophysics Data System (ADS)

    Migawa, Klaudiusz

    2012-12-01

    The issues presented in this research paper refer to problems connected with the control process for exploitation implemented in the complex systems of exploitation for technical objects. The article presents the description of the method concerning the control availability for technical objects (means of transport) on the basis of the mathematical model of the exploitation process with the implementation of the decisive processes by semi-Markov. The presented method means focused on the preparing the decisive for the exploitation process for technical objects (semi-Markov model) and after that specifying the best control strategy (optimal strategy) from among possible decisive variants in accordance with the approved criterion (criteria) of the activity evaluation of the system of exploitation for technical objects. In the presented method specifying the optimal strategy for control availability in the technical objects means a choice of a sequence of control decisions made in individual states of modelled exploitation process for which the function being a criterion of evaluation reaches the extreme value. In order to choose the optimal control strategy the implementation of the genetic algorithm was chosen. The opinions were presented on the example of the exploitation process of the means of transport implemented in the real system of the bus municipal transport. The model of the exploitation process for the means of transports was prepared on the basis of the results implemented in the real transport system. The mathematical model of the exploitation process was built taking into consideration the fact that the model of the process constitutes the homogenous semi-Markov process.

  15. Technical Aspects of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: CHEST Guideline and Expert Panel Report.

    PubMed

    Wahidi, Momen M; Herth, Felix; Yasufuku, Kazuhiro; Shepherd, Ray Wesley; Yarmus, Lonny; Chawla, Mohit; Lamb, Carla; Casey, Kenneth R; Patel, Sheena; Silvestri, Gerard A; Feller-Kopman, David J

    2016-03-01

    Endobronchial ultrasound (EBUS) was introduced in the last decade, enabling real-time guidance of transbronchial needle aspiration (TBNA) of mediastinal and hilar structures and parabronchial lung masses. The many publications produced about EBUS-TBNA have led to a better understanding of the performance characteristics of this procedure. The goal of this document was to examine the current literature on the technical aspects of EBUS-TBNA as they relate to patient, technology, and proceduralist factors to provide evidence-based and expert guidance to clinicians. Rigorous methodology has been applied to provide a trustworthy evidence-based guideline and expert panel report. A group of approved panelists developed key clinical questions by using the PICO (population, intervention, comparator, and outcome) format that addressed specific topics on the technical aspects of EBUS-TBNA. MEDLINE (via PubMed) and the Cochrane Library were systematically searched for relevant literature, which was supplemented by manual searches. References were screened for inclusion, and well-recognized document evaluation tools were used to assess the quality of included studies, to extract meaningful data, and to grade the level of evidence to support each recommendation or suggestion. Our systematic review and critical analysis of the literature on 15 PICO questions related to the technical aspects of EBUS-TBNA resulted in 12 statements: 7 evidence-based graded recommendations and 5 ungraded consensus-based statements. Three questions did not have sufficient evidence to generate a statement. Evidence on the technical aspects of EBUS-TBNA varies in strength but is satisfactory in certain areas to guide clinicians on the best conditions to perform EBUS-guided tissue sampling. Additional research is needed to enhance our knowledge regarding the optimal performance of this effective procedure. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  16. An Estimation of Profitability of Investment Projects in The Oil and Gas Industry Using Real Options Theory / Ocena Opłacalności Projektów Inwestycyjnych W Przemyśle Naftowym Z Wykorzystaniem Teorii Opcji Realnych

    NASA Astrophysics Data System (ADS)

    Kosowski, Piotr; Stopa, Jerzy

    2012-11-01

    Paper discusses issues relating to the valuation of investment efficiency in the oil and gas industry using a real options theory. The example of investment pricing using real options was depicted and it was confronted with the analysis executed with the use of traditional methods. Indicators commonly used to evaluate profitability of investment projects, based on a discounted cash flow method, have a few significant drawbacks, the most meaningful of which is staticity which means that any changes resulting from a decision process during the time of investment cannot be taken into consideration. In accordance with a methodology that is currently used, investment projects are analysed in a way that all the key decisions are made at the beginning and are irreversible. This approach assumes, that all the cash flows are specified and does not let the fact that during the time of investment there may appear new information, which could change its original form. What is also not analysed is the possibility of readjustment, due to staff managment's decisions, to the current market conditions, by expanding, speeding up/slowing down, abandoning or changing an outline of the undertaking. In result, traditional methods of investment projects valuation may lead to taking wrong decisions, e.g. giving up an owned exploitation licence or untimely liquidation of boreholes, which seem to be unprofitable. Due to all the above-mentioned there appears the necessity of finding some other methods which would let one make real and adequate estimations about investments in a petroleum industry especially when it comes to unconventional resources extraction. One of the methods which has been recently getting more and more approval in a world petroleum economics, is a real options pricing method. A real option is a right (but not an obligation) to make a decision connected with an investment in a specified time or time interval. According to the method a static model of pricing using DCF is no longer used; an investment project is divided into a series of steps and after each one there is a range of possible investment decisions, technical and organizational issues and all the others called `real options'. This lets one take many different varieties of modyfiying a strategy while pricing the project. This also makes it possible to react to the changing inner and outer situation and introducing new information while accomplishing the investment project. Owing to those, the decision process is a continuous operation, what is an actual vision of a real investment project management in the petroleum industry.

  17. The Montreal Protocol treaty and its illuminating history of science-policy decision-making

    NASA Astrophysics Data System (ADS)

    Grady, C.

    2017-12-01

    The Montreal Protocol on Substances that Deplete the Ozone Layer, hailed as one of the most effective environmental treaties of all time, has a thirty year history of science-policy decision-making. The partnership between Parties to the Montreal Protocol and its technical assessment panels serve as a basis for understanding successes and evaluating stumbles of global environmental decision-making. Real-world environmental treaty negotiations can be highly time-sensitive, politically motivated, and resource constrained thus scientists and policymakers alike are often unable to confront the uncertainties associated with the multitude of choices. The science-policy relationship built within the framework of the Montreal Protocol has helped constrain uncertainty and inform policy decisions but has also highlighted the limitations of the use of scientific understanding in political decision-making. This talk will describe the evolution of the scientist-policymaker relationship over the history of the Montreal Protocol. Examples will illustrate how the Montreal Protocol's technical panels inform decisions of the country governments and will characterize different approaches pursued by different countries with a particular focus on the recently adopted Kigali Amendment. In addition, this talk will take a deeper dive with an analysis of the historic technical panel assessments on estimating financial resources necessary to enable compliance to the Montreal Protocol compared to the political financial decisions made through the Protocol's Multilateral Fund replenishment negotiation process. Finally, this talk will describe the useful lessons and challenges from these interactions and how they may be applicable in other environmental management frameworks across multiple scales under changing climatic conditions.

  18. Consulting in an Insurance Company: What We as Academics Can Learn.

    ERIC Educational Resources Information Center

    Timmons, Theresa Cullen

    1988-01-01

    Describes a technical writing teacher's experience consulting at a large insurance company. Suggests that consulting provides teachers valuable insight into the real-life writing concerns of writers in service occupations. (ARH)

  19. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    PubMed

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.

  20. Apparently low reproducibility of true differential expression discoveries in microarray studies.

    PubMed

    Zhang, Min; Yao, Chen; Guo, Zheng; Zou, Jinfeng; Zhang, Lin; Xiao, Hui; Wang, Dong; Yang, Da; Gong, Xue; Zhu, Jing; Li, Yanhui; Li, Xia

    2008-09-15

    Differentially expressed gene (DEG) lists detected from different microarray studies for a same disease are often highly inconsistent. Even in technical replicate tests using identical samples, DEG detection still shows very low reproducibility. It is often believed that current small microarray studies will largely introduce false discoveries. Based on a statistical model, we show that even in technical replicate tests using identical samples, it is highly likely that the selected DEG lists will be very inconsistent in the presence of small measurement variations. Therefore, the apparently low reproducibility of DEG detection from current technical replicate tests does not indicate low quality of microarray technology. We also demonstrate that heterogeneous biological variations existing in real cancer data will further reduce the overall reproducibility of DEG detection. Nevertheless, in small subsamples from both simulated and real data, the actual false discovery rate (FDR) for each DEG list tends to be low, suggesting that each separately determined list may comprise mostly true DEGs. Rather than simply counting the overlaps of the discovery lists from different studies for a complex disease, novel metrics are needed for evaluating the reproducibility of discoveries characterized with correlated molecular changes. Supplementaty information: Supplementary data are available at Bioinformatics online.

Top