Science.gov

Sample records for real time three-dimensional

  1. Real time three dimensional sensing system

    DOEpatents

    Gordon, Steven J.

    1996-01-01

    The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.

  2. Real time three dimensional sensing system

    DOEpatents

    Gordon, S.J.

    1996-12-31

    The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.

  3. The application of holography as a real-time three-dimensional motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    A historical introduction to holography is presented, as well as a basic description of sideband holography for stationary objects. A brief theoretical development of both time-dependent and time-independent holography is also provided, along with an analytical and intuitive discussion of a unique holographic arrangement which allows the resolution of front surface detail from an object moving at high speeds. As an application of such a system, a real-time three-dimensional motion picture camera system is discussed and the results of a recent demonstration of the world's first true three-dimensional motion picture are given.

  4. Real-time three dimensional sonographic features of an early third trimester fetus with achondrogenesis.

    PubMed

    Wataganara, Tuangsit; Sutanthavibool, Anuwat; Limwongse, Chanin

    2006-10-01

    Generalized shortening of fetal long bones detected from prenatal sonographic examination usually raise a tentative diagnosis of skeletal dysplasia. Information obtained from grey-scale scan is frequently not sufficient to provide a definite diagnosis, and the images are not readily comprehensible for the parents-to-be. Lately, three-dimensional sonography has become increasing available in obstetric practice. The authors report here a rare case of fetal achondrogenesis, which is a lethal form of skeletal dysplasia, in a 30-week-old fetus using real-time three-dimensional ultrasound. The prenatal findings of fetal achondrogenesis from this technique were thoroughly described, along with postnatal radiography and autopsy results. Sonographic features from this imaging technique allow for an accurate diagnosis and better understanding of the parents. This facilitates the genetic counseling process, as well as the parental options for further care.

  5. Real time three-dimensional electrical impedance tomography applied in multiphase flow imaging

    NASA Astrophysics Data System (ADS)

    Heikkinen, L. M.; Kourunen, J.; Savolainen, T.; Vauhkonen, P. J.; Kaipio, J. P.; Vauhkonen, M.

    2006-08-01

    In many industrial applications the aim is to obtain information on three-dimensional (3D) material distribution within the process vessels. With standard two-dimensional (2D) techniques only vague cross-sectional information can be obtained. It could be possible to carry out several 2D reconstructions on different layers and in this way to obtain 3D information. However, in this approach errors are induced since no real 3D information is utilized in the image reconstruction. In this paper we describe an approach to measure, reconstruct and visualize three-dimensional electrical impedance tomography images in real time. The reconstruction is based on a difference imaging scheme. An efficient current injection and voltage measurement protocol is used in order to increase the sensitivity and reduce the data collection time. The proposed approach can produce and visualize up to 15 3D EIT images per second when 80 measurement electrodes are used. Imaging results from a stirred vessel and a flow loop will be shown. The reconstructions show, for example, that 3D air/liquid distribution in the stirred vessel can reliably be visualized in real time and material flow can be monitored in a 3D section of the flow loop. Reconstructions can be visualized and analysed in many different ways in order to produce essential information on the behaviour of the processes.

  6. Real-time, interactive animation of deformable two- and three-dimensional objects

    DOEpatents

    Desbrun, Mathieu; Schroeder, Peter; Meyer, Mark; Barr, Alan H.

    2003-06-03

    A method of updating in real-time the locations and velocities of mass points of a two- or three-dimensional object represented by a mass-spring system. A modified implicit Euler integration scheme is employed to determine the updated locations and velocities. In an optional post-integration step, the updated locations are corrected to preserve angular momentum. A processor readable medium and a network server each tangibly embodying the method are also provided. A system comprising a processor in combination with the medium, and a system comprising the server in combination with a client for accessing the server over a computer network, are also provided.

  7. Real-time three-dimensional fingerprint acquisition via a new photometric stereo means

    NASA Astrophysics Data System (ADS)

    Xie, Wuyuan; Song, Zhan; Chung, Ronald

    2013-10-01

    A real-time means for three-dimensional (3-D) fingerprint acquisition is presented. The system is configured with only one camera and some white light-emitting diode lamps. The reconstruction is performed based on the principle of photometric stereo. In the algorithm, a two-layer Hanrahan-Krueger model is proposed to represent the finger surface reflectance property instead of the traditional Lambert model. By the proposed lighting direction calibration and the nonuniform lighting correction methods, surface normal at each image point can be accurately estimated by solving a nonlinear optimization problem. Finally, a linear normal transformation is implemented for the enhancement of 3-D models. The experiments are implemented with real finger and palm prints, and the results are also compared with traditional means to show its feasibility and improvement in the reconstruction accuracy.

  8. Real-time planar segmentation of depth images: from three-dimensional edges to segmented planes

    NASA Astrophysics Data System (ADS)

    Javan Hemmat, Hani; Bondarev, Egor; de With, Peter H. N.

    2015-09-01

    Real-time execution of processing algorithms for handling depth images in a three-dimensional (3-D) data framework is a major challenge. More specifically, considering depth images as point clouds and performing planar segmentation requires heavy computation, because available planar segmentation algorithms are mostly based on surface normals and/or curvatures, and, consequently, do not provide real-time performance. Aiming at the reconstruction of indoor environments, the spaces mainly consist of planar surfaces, so that a possible 3-D application would strongly benefit from a real-time algorithm. We introduce a real-time planar segmentation method for depth images avoiding any surface normal calculation. First, we detect 3-D edges in a depth image and generate line segments between the identified edges. Second, we fuse all the points on each pair of intersecting line segments into a plane candidate. Third and finally, we implement a validation phase to select planes from the candidates. Furthermore, various enhancements are applied to improve the segmentation quality. The GPU implementation of the proposed algorithm segments depth images into planes at the rate of 58 fps. Our pipeline-interleaving technique increases this rate up to 100 fps. With this throughput rate improvement, the application benefit of our algorithm may be further exploited in terms of quality and enhancing the localization.

  9. Three-dimensional dose evaluation system using real-time wind field information for nuclear accidents in Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Lu, Chung-Hsin; Chang, Shu-Jun; Yang, Yung-Muh; Chang, Bor-Jing; Teng, Jen-Hsin

    2006-09-01

    In Taiwan, the three operating nuclear power plants are all built along the coast over complex terrain. Dose estimates after a nuclear accident with releases of radioactive materials, therefore, cannot be accurately calculated using simple dispersion models. We developed a three-dimensional dose evaluation system, which incorporates real-time prognostic wind field information with three-dimensional numerical models to predict dose results. The proposed system consists of three models: a three-dimensional mesoscale atmospheric model (HOTMAC), a three-dimensional transport and diffusion model (RAPTAD), and a dose calculation model (DOSE). The whole-body dose and thyroid dose as well as dose rates can be rapidly estimated and displayed on the three-dimensional terrain model constructed by satellite images. The developed three-dimensional dose evaluation system could accurately forecast the dose results and has been used in the annual nuclear emergency response exercise to provide suggestions for protective measures.

  10. Real-time three-dimensional digital image correlation for biomedical applications

    NASA Astrophysics Data System (ADS)

    Wu, Rong; Wu, Hua; Arola, Dwayne; Zhang, Dongsheng

    2016-10-01

    Digital image correlation (DIC) has been successfully applied for evaluating the mechanical behavior of biological tissues. A three-dimensional (3-D) DIC system has been developed and applied to examining the motion of bones in the human foot. To achieve accurate, real-time displacement measurements, an algorithm including matching between sequential images and image pairs has been developed. The system was used to monitor the movement of markers which were attached to a precisely motorized stage. The accuracy of the proposed technique for in-plane and out-of-plane measurements was found to be -0.25% and 1.17%, respectively. Two biomedical applications were presented. In the experiment involving the foot arch, a human cadaver lower leg and foot specimen were subjected to vertical compressive loads up to 700 N at a rate of 10 N/s and the 3-D motions of bones in the foot were monitored in real time. In the experiment involving distal tibio fibular syndesmosis, a human cadaver lower leg and foot specimen were subjected to a monotonic rotational torque up to 5 Nm at a speed of 5 deg per min and the relative displacements of the tibia and fibula were monitored in real time. Results showed that the system could reach a frequency of up to 16 Hz with 6 points measured simultaneously. This technique sheds new lights on measuring 3-D motion of bones in biomechanical studies.

  11. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    NASA Technical Reports Server (NTRS)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  12. Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries

    NASA Astrophysics Data System (ADS)

    Kang, Jin U.; Huang, Yong; Zhang, Kang; Ibrahim, Zuhaib; Cha, Jaepyeong; Lee, W. P. Andrew; Brandacher, Gerald; Gehlbach, Peter L.

    2012-08-01

    The authors describe the development of an ultrafast three-dimensional (3D) optical coherence tomography (OCT) imaging system that provides real-time intraoperative video images of the surgical site to assist surgeons during microsurgical procedures. This system is based on a full-range complex conjugate free Fourier-domain OCT (FD-OCT). The system was built in a CPU-GPU heterogeneous computing architecture capable of video OCT image processing. The system displays at a maximum speed of 10 volume/s for an image volume size of 160×80×1024 (X×Y×Z) pixels. We have used this system to visualize and guide two prototypical microsurgical maneuvers: microvascular anastomosis of the rat femoral artery and ultramicrovascular isolation of the retinal arterioles of the bovine retina. Our preliminary experiments using 3D-OCT-guided microvascular anastomosis showed optimal visualization of the rat femoral artery (diameter<0.8 mm), instruments, and suture material. Real-time intraoperative guidance helped facilitate precise suture placement due to optimized views of the vessel wall during anastomosis. Using the bovine retina as a model system, we have performed "ultra microvascular" feasibility studies by guiding handheld surgical micro-instruments to isolate retinal arterioles (diameter˜0.1 mm). Isolation of the microvessels was confirmed by successfully passing a suture beneath the vessel in the 3D imaging environment.

  13. GPU Based Real-time Instrument Tracking with Three Dimensional Ultrasound

    PubMed Central

    Novotny, Paul M.; Stoll, Jeff A.; Vasilyev, Nikolay V.; Del Nido, Pedro J.; Dupont, Pierre E.; Howe, Robert D.

    2009-01-01

    Real-time three-dimensional ultrasound enables new intra-cardiac surgical procedures, but the distorted appearance of instruments in ultrasound poses a challenge to surgeons. This paper presents a detection technique that identifies the position of the instrument within the ultrasound volume. The algorithm uses a form of the generalized Radon transform to search for long straight objects in the ultrasound image, a feature characteristic of instruments and not found in cardiac tissue. When combined with passive markers placed on the instrument shaft, the full position and orientation of the instrument is found in 3D space. This detection technique is amenable to rapid execution on the current generation of personal computer graphics processor units (GPU). Our GPU implementation detected a surgical instrument in 31 ms, sufficient for real-time tracking at the 25 volumes per second rate of the ultrasound machine. A water tank experiment found instrument orientation errors of 1.1 degrees and tip position errors of less than 1.8 mm. Finally, an in vivo study demonstrated successful instrument tracking inside a beating porcine heart. PMID:17681483

  14. Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries

    PubMed Central

    Huang, Yong; Zhang, Kang; Ibrahim, Zuhaib; Cha, Jaepyeong; Lee, W. P. Andrew; Brandacher, Gerald; Gehlbach, Peter L.

    2012-01-01

    Abstract. The authors describe the development of an ultrafast three-dimensional (3D) optical coherence tomography (OCT) imaging system that provides real-time intraoperative video images of the surgical site to assist surgeons during microsurgical procedures. This system is based on a full-range complex conjugate free Fourier-domain OCT (FD-OCT). The system was built in a CPU-GPU heterogeneous computing architecture capable of video OCT image processing. The system displays at a maximum speed of 10  volume/s for an image volume size of 160×80×1024 (X×Y×Z) pixels. We have used this system to visualize and guide two prototypical microsurgical maneuvers: microvascular anastomosis of the rat femoral artery and ultramicrovascular isolation of the retinal arterioles of the bovine retina. Our preliminary experiments using 3D-OCT-guided microvascular anastomosis showed optimal visualization of the rat femoral artery (diameter<0.8  mm), instruments, and suture material. Real-time intraoperative guidance helped facilitate precise suture placement due to optimized views of the vessel wall during anastomosis. Using the bovine retina as a model system, we have performed “ultra microvascular” feasibility studies by guiding handheld surgical micro-instruments to isolate retinal arterioles (diameter∼0.1  mm). Isolation of the microvessels was confirmed by successfully passing a suture beneath the vessel in the 3D imaging environment. PMID:23224164

  15. Toward real-time three-dimensional mapping of surficial aquifers using a hybrid modeling approach

    NASA Astrophysics Data System (ADS)

    Friedel, Michael J.; Esfahani, Akbar; Iwashita, Fabio

    2016-02-01

    A hybrid modeling approach is proposed for near real-time three-dimensional (3D) mapping of surficial aquifers. First, airborne frequency-domain electromagnetic (FDEM) measurements are numerically inverted to obtain subsurface resistivities. Second, a machine-learning (ML) algorithm is trained using the FDEM measurements and inverted resistivity profiles, and borehole geophysical and hydrogeologic data. Third, the trained ML algorithm is used together with independent FDEM measurements to map the spatial distribution of the aquifer system. Efficacy of the hybrid approach is demonstrated for mapping a heterogeneous surficial aquifer and confining unit in northwestern Nebraska, USA. For this case, independent performance testing reveals that aquifer mapping is unbiased with a strong correlation (0.94) among numerically inverted and ML-estimated binary (clay-silt or sand-gravel) layer resistivities (5-20 ohm-m or 21-5,000 ohm-m), and an intermediate correlation (0.74) for heterogeneous (clay, silt, sand, gravel) layer resistivities (5-5,000 ohm-m). Reduced correlation for the heterogeneous model is attributed to over-estimating the under-sampled high-resistivity gravels (about 0.5 % of the training data), and when removed the correlation increases (0.87). Independent analysis of the numerically inverted and ML-estimated resistivities finds that the hybrid procedure preserves both univariate and spatial statistics for each layer. Following training, the algorithms can map 3D surficial aquifers as fast as leveled FDEM measurements are presented to the ML network.

  16. Real-time monitoring of cisplatin cytotoxicity on three-dimensional spheroid tumor cells

    PubMed Central

    Baek, NamHuk; Seo, Ok Won; Lee, Jaehwa; Hulme, John; An, Seong Soo A

    2016-01-01

    Three-dimensional (3D) cell cultivation is a powerful technique for monitoring and understanding diverse cellular mechanisms in developmental cancer and neuronal biology, tissue engineering, and drug development. 3D systems could relate better to in vivo models than two-dimensional (2D) cultures. Several factors, such as cell type, survival rate, proliferation rate, and gene and protein expression patterns, determine whether a particular cell line can be adapted to a 3D system. The 3D system may overcome some of the limitations of 2D cultures in terms of cell–cell communication and cell networks, which are essential for understanding differentiation, structural organization, shape, and extended connections with other cells or organs. Here, the effect of the anticancer drug cisplatin, also known as cis-diamminedichloroplatinum (II) or CDDP, on adenosine triphosphate (ATP) generation was investigated using 3D spheroid-forming cells and real-time monitoring for 7 days. First, 12 cell lines were screened for their ability to form 3D spheroids: prostate (DU145), testis (F9), embryonic fibroblast (NIH-3T3), muscle (C2C12), embryonic kidney (293T), neuroblastoma (SH-SY5Y), adenocarcinomic alveolar basal epithelial cell (A549), cervical cancer (HeLa), HeLa contaminant (HEp2), pituitary epithelial-like cell (GH3), embryonic cell (PA317), and osteosarcoma (U-2OS) cells. Of these, eight cell lines were selected: NIH-3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U-2OS; and five underwent real-time monitoring of CDDP cytotoxicity: HeLa, A549, 293T, SH-SY5Y, and U-2OS. ATP generation was blocked 1 day after addition of 50 μM CDDP, but cytotoxicity in HeLa, A549, SH-SY5Y, and U-2OS cells could be visualized only 4 days after treatment. In 293T cells, CDDP failed to kill entirely the culture and ATP generation was only partially blocked after 1 day. This suggests potential CDDP resistance of 293T cells or metabolic clearance of the drug. Real-time monitoring and ATP

  17. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    SciTech Connect

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  18. Quasi-real time inversion method of three-dimensional epicenter coordinate, trigger time, and magnitude based on CORS

    NASA Astrophysics Data System (ADS)

    Xiao, Dongsheng; Chang, Ming; Su, Yong; Hu, Qijun; Yu, Bing

    2016-09-01

    This study explores the quasi-real time inversion principle and precision estimation of three-dimensional coordinates of the epicenter, trigger time and magnitude of earthquakes with the aim to improve traditional methods, which are flawed due to missing information or distortion in the seismograph records. The epicenter, trigger time and magnitude from the Lushan earthquake are inverted and analyzed based on high-frequency GNSS data. The inversion results achieved a high precision, which are consistent with the data published by the China Earthquake Administration. Moreover, it has been proven that the inversion method has good theoretical value and excellent application prospects.

  19. Measurement of the aortic annulus size by real-time three-dimensional transesophageal echocardiography.

    PubMed

    Jánosi, Rolf Alexander; Kahlert, Philipp; Plicht, Björn; Wendt, Daniel; Eggebrecht, Holger; Erbel, Raimund; Buck, Thomas

    2011-04-01

    We sought to determine the level of agreement and the reproducibility of two-dimensional (2D) transthoracic (2D-TTE), 2D transesophageal (2D-TEE) and real-time three-dimensional (3D) transesophageal echocardiography (RT3D-TEE) for measurement of aortic annulus size in patients referred for transcatheter aortic valve implantation (TAVI). Accurate preoperative assessment of the dimensions of the aortic annulus is critical for patient selection and successful implantation in those undergoing TAVI for severe aortic stenosis (AS). Annulus size was measured using 2D-TTE, 2D-TEE and RT3D-TEE in 105 patients with severe AS referred for TAVI. Agreement between echocardiographic methods and interobserver variability was assessed using the Bland-Altman method and regression analysis, respectively. The mean aortic annuli were 21,7 ± 3 mm measured with 2D-TTE, 22,6 ± 2,8 mm with 2D-TEE and 22,3 ± 2,9 mm with RT3D-TEE. The results showed a small but significant mean difference and a strong correlation between the three measurement techniques (2D-TTE vs. 2D-TEE mean difference 0,84 ± 1,85 mm, r = 0,8, p < 0,0001; 2D-TEE vs. 3D-TEE 0,27 ± 1,14 mm, r = 0,91, p < 0,02; 2D-TTE vs. 3D-TEE 0,58 ± 2,21 mm, r = 0,72, p = 0,02); however, differences between measurements amounted up to 6,1 mm. Interobserver variability for 2D-TTE and 2D-TEE was substantially higher compared with RT3D-TEE. We found significant differences in the dimensions of the aortic annulus measured by 2D-TTE, 2D-TEE and RT3D-TEE. Thus, in patients referred for TAVI, the echocardiographic method used may have an impact on TAVI strategy.

  20. Three-dimensional real-time ultrasonic imaging using ellipsoidal backprojection

    NASA Astrophysics Data System (ADS)

    Anderson, Forrest L.

    1991-07-01

    Interest in 3D medical imaging continues to increase. However, in ultrasound, real-time imaging is an indispensable strength; and real-time 3D ultrasonic imaging is not practical when conventional steered, focused beam techniques are used. This is because the speed of sound severely limits the size of the volume that can be imaged in real time. For real-time 3D imaging, approaches like simultaneous multiple beams or holography have been considered but never commercially implemented for, in part, the following reasons: A new 3D ultrasound technology should provide the convenience of a hand-held scan head, should yield real-time 3D images, and should provide 2D images with quality equal to, or greater than, presently available 2D ultrasound images. Convenient size and a reasonable price are also requirements. In this paper, a 3D ultrasonic imaging method with the potential to meet the above criteria is described. It may also provide even higher quality 2D ultrasound images than are presently available. The new method relates more closely to computed tomography than to focused steered beams. It, however, uses projections and back-projections over 3D ellipsoids rather than straight lines; and it does this in a simple straight forward manner. Implementation in software of filtered ellipsoidal back-projection is described, resolution and side lobes are discussed, and examples of the 3D point image (re. point spread function) are given.

  1. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  2. Multi-particle three-dimensional coordinate estimation in real-time optical manipulation

    NASA Astrophysics Data System (ADS)

    Dam, J. S.; Perch-Nielsen, I.; Palima, D.; Gluckstad, J.

    2009-11-01

    We have previously shown how stereoscopic images can be obtained in our three-dimensional optical micromanipulation system [J. S. Dam et al, Opt. Express 16, 7244 (2008)]. Here, we present an extension and application of this principle to automatically gather the three-dimensional coordinates for all trapped particles with high tracking range and high reliability without requiring user calibration. Through deconvolving of the red, green, and blue colour planes to correct for bleeding between colour planes, we show that we can extend the system to also utilize green illumination, in addition to the blue and red. Applying the green colour as on-axis illumination yields redundant information for enhanced error correction, which is used to verify the gathered data, resulting in reliable coordinates as well as producing visually attractive images.

  3. Determination of left ventricular volume, ejection fraction, and myocardial mass by real-time three-dimensional echocardiography

    NASA Technical Reports Server (NTRS)

    Qin, J. X.; Shiota, T.; Thomas, J. D.

    2000-01-01

    Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.

  4. Management of three-dimensional intrafraction motion through real-time DMLC tracking.

    PubMed

    Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul

    2008-05-01

    Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion.

  5. Real-time optical gating for three-dimensional beating heart imaging

    NASA Astrophysics Data System (ADS)

    Taylor, Jonathan M.; Saunter, Christopher D.; Love, Gordon D.; Girkin, John M.; Henderson, Deborah J.; Chaudhry, Bill

    2011-11-01

    We demonstrate real-time microscope image gating to an arbitrary position in the cycle of the beating heart of a zebrafish embryo. We show how this can be used for high-precision prospective gating of fluorescence image slices of the moving heart. We also present initial results demonstrating the application of this technique to 3-D structural imaging of the beating embryonic heart.

  6. Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature

    NASA Astrophysics Data System (ADS)

    Fronheiser, Matthew P.; Ermilov, Sergey A.; Brecht, Hans-Peter; Conjusteau, Andre; Su, Richard; Mehta, Ketan; Oraevsky, Alexander A.

    2010-03-01

    We present our findings from a real-time laser optoacoustic imaging system (LOIS). The system utilizes a Q-switched Nd:YAG laser; a standard 128-channel ultrasonic linear array probe; custom electronics and custom software to collect, process, and display optoacoustic (OA) images at 10 Hz. We propose that this system be used during preoperative mapping of forearm vessels for hemodialysis treatment. To demonstrate the real-time imaging capabilities of the system, we show OA images of forearm vessels in a volunteer and compare our results to ultrasound images of the same region. Our OA images show blood vessels in high contrast. Manipulations with the probe enable us to locate and track arteries and veins of a forearm in real time. We also demonstrate the ability to combine a series of OA image slices into a volume for spatial representation of the vascular network. Finally, we use frame-by-frame analysis of the recorded OA video to measure dynamic changes of the crossection of the ulnar artery.

  7. Elasticity-based three dimensional ultrasound real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Matinfar, Mohammad; Ahmad, Omar; Rivaz, Hassan; Choti, Michael; Taylor, Russell H.

    2009-02-01

    Volumetric ultrasound imaging has not gained wide recognition, despite the availability of real-time 3D ultrasound scanners and the anticipated potential of 3D ultrasound imaging in diagnostic and interventional radiology. Their use, however, has been hindered by the lack of real-time visualization methods that are capable of producing high quality 3D rendering of the target/surface of interest. Volume rendering is a known visualization method, which can display clear surfaces out of the acquired volumetric data, and has an increasing number of applications utilizing CT and MRI data. The key element of any volume rendering pipeline is the ability to classify the target/surface of interest by setting an appropriate opacity function. Practical and successful real-time 3D ultrasound volume rendering can be achieved in Obstetrics and Angio applications where setting these opacity functions can be done rapidly, and reliably. Unfortunately, 3D ultrasound volume rendering of soft tissues is a challenging task due to the presence of significant amount of noise and speckle. Recently, several research groups have shown the feasibility of producing 3D elasticity volume from two consecutive 3D ultrasound scans. This report describes a novel volume rendering pipeline utilizing elasticity information. The basic idea is to compute B-mode voxel opacity from the rapidly calculated strain values, which can also be mixed with conventional gradient based opacity function. We have implemented the volume renderer using GPU unit, which gives an update rate of 40 volume/sec.

  8. Real-time three-dimensional imaging of cell division by differential interference contrast microscopy.

    PubMed

    Tsunoda, M; Isailovic, D; Yeung, E S

    2008-11-01

    Differential interference contrast (DIC) microscopy can provide information about subcellular components and organelles inside living cells. Applicability to date, however, has been limited to 2D imaging. Unfortunately, understanding of cellular dynamics is difficult to extract from these single optical sections. We demonstrate here that 3D differential interference contrast microscopy has sub-diffraction limit resolution both laterally and vertically, and can be used for following Madin Darby canine kidney cell division process in real time. This is made possible by optimization of the microscope optics and by incorporating computer-controlled vertical scanning of the microscope stage.

  9. Signal losses with real-time three-dimensional power Doppler imaging.

    PubMed

    Garcia, Damien; Fenech, Marianne; Qin, Zhao; Soulez, Gilles; Cloutier, Guy

    2007-10-01

    Power Doppler imaging (PDI) has been shown to be influenced by the wall filter when assessing arterial stenoses. Real-time 3-D Doppler imaging may likely become a widespread practice in the near future, but how the wall filter could affect PDI during the cardiac cycle has not been investigated. The objective of the study was to demonstrate that the wall filter may produce unexpected major signal losses in real-time 3-D PDI. To test our hypothesis, we first validated binary images obtained from analytical simulations with in vitro PDI acquisitions performed in a tube under pulsatile flow conditions. We then simulated PDI images in the presence of a severe stenosis, considering physiological conditions by finite element modeling. Power Doppler imaging simulations revealed important signal losses within the lumen area at different instants of the flow cycle, and there was a very good concordance between measured and predicted PDI binary images in the tube. Our results show that the wall filter may induce severe PDI signal losses that could negatively influence the assessment of vascular stenosis. Clinicians should therefore be aware of this cause of signal loss to properly interpret power Doppler angiographic images.

  10. GPU-assisted real-time three dimensional shape measurement by speckle-embedded fringe

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Chen, Qian; Zuo, Chao

    2015-07-01

    This paper presents a novel two-frame method of fringe projection for real-time, accurate and unambiguous threedimensional shape measurement. One of the used frames is a speckle pattern and the other one is a composite image which is fused by that speckle image and sinusoidal fringes. The sinusoidal component is used to retrieve the wrapped phase map. The frame of the speckle is employed to remove the phase ambiguity for the reconstruction of the absolute depth. Compared with traditional multi-frequency phase-shifting methods, the proposed scheme is of much lower sensitivity to movements as the result of the reduced number of used patterns. Moreover, its measuring precision is very close to that of the phase-shifting method, which indicates the method is of high accuracy. To process data in real time, a CUDA-enabled Graphics Processing Unit (GPU) is introduced to accelerate the computations of phase and depth. With our system, measurements can be performed at 21 frames per second with a resolution of 307K points per frame.

  11. Assessment of left ventricular function in chronic alcoholics by real-time three-dimensional echocardiography

    PubMed Central

    Wang, Yuanzheng; Shan, Guoxin; Shen, Jiaqi; Zhou, Qiao; Tan, Bijun; Liu, Yue; Luo, Runlan; Zhao, Shifen; Bi, Wenjun; Yao, Fangyi; Li, Guangsen

    2017-01-01

    Abstract Chronic alcohol consumption may lead to progressive cardiac dysfunction. The aim of this study was to evaluate the feasibility of using real-time 3-dimensional echocardiography (3DE) on assessing left ventricular (LV) function in chronic alcoholics. We classified 92 male alcoholics into mild, moderate, and severe groups; 30 age-matched controls were also recruited. LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV ejection fraction (LVEF), LV mass (LVM), LV mass index (LVMI), and systolic dyssynchrony index (SDI) were measured by 3DE and 2-dimensional echocardiography (2DE). Compared to the control group, LV volume and mass were higher in the moderate and severe alcoholic groups (P < 0.05). The severe alcoholic (symptomatic) group demonstrated decreased LVEF and increased SDI (detected by 3DE) (P < 0.05). Real-time 3DE can detect the increases of LV volumes and mass in asymptomatic alcoholics, and the changes of LVEF and systolic synchrony index in symptomatic alcoholics. PMID:28151910

  12. Real-time three dimensional echo-guided closure of atrial septal defect: an experimental model.

    PubMed

    Orihashi, Kazumasa; Sueda, Taijiro; Okada, Kenji; Imai, Katsuhiko; Ban, Koji; Hamamoto, Masaki

    2005-10-01

    Real-time 3D echo may open the way to off-pump closure of an atrial septal defect with a robotic surgery technique without remnant of closure device. We report the preliminary results of 3D echo-guided closure of defect in an experimental model. A sheet with an oval defect immersed in water was visualized with 3D echo as well as surgical instruments. The defect was closed under echo guidance. Visualization of objects and instruments, and feasibility and problems of this technique were examined. The defect was visualized like an endoscopic view. Changing the view point without moving the transducer was a unique advantage. Visualization of instruments was acceptable with the lowest gain level. Acoustic shadow was helpful for comprehending the spatial relationship among the objects. Position of needle entry could be confirmed by the movement of the sheet. As the defect was sutured, fold convergence appeared on the sheet. Difficulties were encountered in passing the needle between instruments because of echo dropout. The string was poorly visualized. 3D echo-guided suturing was feasible with adequate image quality. However, an improvement of the surface of instruments and a wider scanning area is necessary for achieving surgical procedures with more safety and reliability.

  13. Real-time telemedicine using shared three-dimensional workspaces over ATM

    NASA Astrophysics Data System (ADS)

    Cahoon, Peter; Forsey, David R.; Hutchison, Susan

    1999-03-01

    During the past five years a high speed ATM network has been developed at UBC that provides a campus testbed, a local testbed to the hospitals, and a National testbed between here and the BADLAB in Ottawa. This testbed has been developed to combine a commercial shared audio/video/whiteboard environment coupled with a shared interactive 3-dimensional solid model. This solid model ranges from a skull reconstructed from a CT scan with muscles and an overlying skin, to a model of the ventricle system of the human brain. Typical interactions among surgeon, radiologist and modeler consist of having image slices of the original scan shared by all and the ability to adjust the surface of the model to conform to each individuals perception of what the final object should look like. The purpose of this interaction can range from forensic reconstruction from partial remains to pre-maxillofacial surgery. A joint project with the forensic unit of the R.C.M.P. in Ottawa using the BADLAB is now in the stages of testing this methodology on a real case beginning with a CT scan of partial remains. A second study underway with the department of Maxiofacial reconstruction at Dalhousie University in Halifax Nova Scotia and concerns a subject who is about to undergo orthognathic surgery, in particular a mandibular advancement. This subject has been MRI scanned, a solid model constructed of the mandible and the virtual surgery constructed on the model. This model and the procedure have been discussed and modified by the modeler and the maxillofacial specialist using these shared workspaces. The procedure will be repeated after the actual surgery to verify the modeled procedure. The advantage of this technique is that none of the specialists need be in the same room, or city. Given the scarcity of time and specialists this methodology shows great promise. In November of this last year a shared live demonstration of this facial modeler was done between Vancouver and Dalhousie University in

  14. Fast interactive real-time volume rendering of real-time three-dimensional echocardiography: an implementation for low-end computers

    NASA Technical Reports Server (NTRS)

    Saracino, G.; Greenberg, N. L.; Shiota, T.; Corsi, C.; Lamberti, C.; Thomas, J. D.

    2002-01-01

    Real-time three-dimensional echocardiography (RT3DE) is an innovative cardiac imaging modality. However, partly due to lack of user-friendly software, RT3DE has not been widely accepted as a clinical tool. The object of this study was to develop and implement a fast and interactive volume renderer of RT3DE datasets designed for a clinical environment where speed and simplicity are not secondary to accuracy. Thirty-six patients (20 regurgitation, 8 normal, 8 cardiomyopathy) were imaged using RT3DE. Using our newly developed software, all 3D data sets were rendered in real-time throughout the cardiac cycle and assessment of cardiac function and pathology was performed for each case. The real-time interactive volume visualization system is user friendly and instantly provides consistent and reliable 3D images without expensive workstations or dedicated hardware. We believe that this novel tool can be used clinically for dynamic visualization of cardiac anatomy.

  15. Shaping volumetric light distribution through turbid media using real-time three-dimensional opto-acoustic feedback.

    PubMed

    Deán-Ben, X Luís; Estrada, Héctor; Razansky, Daniel

    2015-02-15

    Focusing light through turbid media represents a highly fascinating challenge in modern biophotonics. The unique capability of opto-acoustics for high-resolution imaging of light absorption contrast in deep tissues can provide a natural and efficient feedback to control light delivery in a scattering medium. While the basic feasibility of using opto-acoustic readings as a feedback mechanism for wavefront shaping has been recently reported, the suggested approaches may require long acquisition times, making them challenging to be translated into realistic tissue environments. In an attempt to significantly accelerate dynamic wavefront shaping capabilities, we present here a feedback-based approach using real-time three-dimensional opto-acoustic imaging assisted with genetic-algorithm-based optimization. The new technique offers robust performance in the presence of noisy measurements and can simultaneously control the scattered wave field in an entire volumetric region.

  16. Real-Time, Noninvasive Recording And Three-Dimensional Display Of The Functional Movements Of An Arbitrary Mandible Point

    NASA Astrophysics Data System (ADS)

    Mesqui, F.; Kaeser, F.; Fischer, P.

    1986-07-01

    The monitoring of the motion of an arbitrary mandibular point is essential in dentistry in order to extract from typical motion patterns relevant parameters indicating normal or abnormal masticatory function. After first experiences of nonrestrictive jaw motion quantification with the help of a Selspot I we designed a new real-time optoelectronic system. The recording system includes three cameras. Each camera contains a cylindrical lens and a linear optosensor (CCD). Two extra-oral lightweight target frames (2g) containing each three light emitting diodes are fixed on the patients's teeth. The system fires each LED cyclically and computes their three-dimensional coordinates in a reconstruction unit. From these coordinates another processing unit computes the three-dimensional coordinates of an arbitrary jaw point in a head fixed coordinate system. The computed trajectories are drawn on-line with the help of a dedicated 3D viewing hardware on a CRT where they can be directly rotated and zoomed to follow intricate motion details. The system is easy to handle, low-cost, stand-alone, has an excellent linearity and a resolution better than 0.1 mm.

  17. Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system

    PubMed Central

    Kuo, Wei-Cheng; Kim, Jongsik; Shemonski, Nathan D.; Chaney, Eric J.; Spillman, Darold R.; Boppart, Stephen A.

    2012-01-01

    Advances in optical imaging modalities, such as optical coherence tomography (OCT), enable us to observe tissue microstructure at high resolution and in real time. Currently, core-needle biopsies are guided by external imaging modalities such as ultrasound imaging and x-ray computed tomography (CT) for breast and lung masses, respectively. These image-guided procedures are frequently limited by spatial resolution when using ultrasound imaging, or by temporal resolution (rapid real-time feedback capabilities) when using x-ray CT. One feasible approach is to perform OCT within small gauge needles to optically image tissue microstructure. However, to date, no system or core-needle device has been developed that incorporates both three-dimensional OCT imaging and tissue biopsy within the same needle for true OCT-guided core-needle biopsy. We have developed and demonstrate an integrated core-needle biopsy system that utilizes catheter-based 3-D OCT for real-time image-guidance for target tissue localization, imaging of tissue immediately prior to physical biopsy, and subsequent OCT imaging of the biopsied specimen for immediate assessment at the point-of-care. OCT images of biopsied ex vivo tumor specimens acquired during core-needle placement are correlated with corresponding histology, and computational visualization of arbitrary planes within the 3-D OCT volumes enables feedback on specimen tissue type and biopsy quality. These results demonstrate the potential for using real-time 3-D OCT for needle biopsy guidance by imaging within the needle and tissue during biopsy procedures. PMID:22741064

  18. Real-time volume rendering of four-dimensional images based on three-dimensional texture mapping.

    PubMed

    Hwang, J; Kim, J S; Kim, J S; Kim, I Y; Kim, S I

    2001-06-01

    A four-dimensional (4-D) image consists of three-dimensional (3-D) volume data that varies with time. It is used to express a deforming or moving object in virtual surgery or 4-D ultrasound. It is difficult to obtain 4-D images by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering process and the pre-processing stage necessary whenever the volume data are changed. Even when 3-D texture mapping is used, repeated volume loading is time-consuming in 4-D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real-time rendering based on 3-D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one that was already loaded in memory. If the brick passes the test, it is defined as 3-D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Using continuous deforming, 50 volumes are rendered in interactive time with SGI ONYX. Realtime volume rendering based on 3-D texture mapping is currently available for personal computers.

  19. Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos.

    PubMed

    Stegmaier, Johannes; Amat, Fernando; Lemon, William C; McDole, Katie; Wan, Yinan; Teodoro, George; Mikut, Ralf; Keller, Philipp J

    2016-01-25

    We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55-330 times faster and 2-5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS.

  20. Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography

    PubMed Central

    Ibrahim, Zuhaib; Tong, Dedi; Zhu, Shan; Mao, Qi; Pang, John; Andrew Lee, Wei Ping; Brandacher, Gerald; Kang, Jin U.

    2013-01-01

    Abstract. Vascular and microvascular anastomoses are critical components of reconstructive microsurgery, vascular surgery, and transplant surgery. Intraoperative surgical guidance using a surgical imaging modality that provides an in-depth view and three-dimensional (3-D) imaging can potentially improve outcome following both conventional and innovative anastomosis techniques. Objective postoperative imaging of the anastomosed vessel can potentially improve the salvage rate when combined with other clinical assessment tools, such as capillary refill, temperature, blanching, and skin turgor. Compared to other contemporary postoperative monitoring modalities—computed tomography angiograms, magnetic resonance (MR) angiograms, and ultrasound Doppler—optical coherence tomography (OCT) is a noninvasive high-resolution (micron-level), high-speed, 3-D imaging modality that has been adopted widely in biomedical and clinical applications. For the first time, to the best of our knowledge, the feasibility of real-time 3-D phase-resolved Doppler OCT (PRDOCT) as an assisted intra- and postoperative imaging modality for microvascular anastomosis of rodent femoral vessels is demonstrated, which will provide new insights and a potential breakthrough to microvascular and supermicrovascular surgery. PMID:23856833

  1. Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock

    PubMed Central

    Yamajuku, Daisuke; Inagaki, Takahiko; Haruma, Tomonori; Okubo, Shingo; Kataoka, Yutaro; Kobayashi, Satoru; Ikegami, Keisuke; Laurent, Thomas; Kojima, Tomoko; Noutomi, Keiji; Hashimoto, Seiichi; Oda, Hiroaki

    2012-01-01

    Resetting the peripheral clock and understanding the integration between the circadian rhythm and metabolic pathways are fundamental questions. To test whether insulin acts as a synchronizer for the hepatic clock by cell-autonomous mechanisms, the phase-resetting capabilities of insulin were investigated in cultured hepatic cells. We provide evidence that three-dimensional (3D) cell culture conditions that preserve the differentiated state of primary hepatocytes sustained the robustness of the molecular clock, while this robustness rapidly dampened under classical monolayer cell culture conditions. Herein, we established a 3D cell culture system coupled with a real-time luciferase reporter, and demonstrated that insulin directly regulates the phase entrainment of hepatocyte circadian oscillators. We found that insulin-deficient diabetic rats had a pronounced phase advance in their hepatic clock. Subsequently, a single administration of insulin induced phase-dependent bi-directional phase shifts in diabetic rat livers. Our results clearly demonstrate that insulin is a liver clock synchronizer. PMID:22666542

  2. The advantages of live/real time three-dimensional transesophageal echocardiography in the assessment of tricuspid valve infective endocarditis.

    PubMed

    Sungur, Aylin; Hsiung, Ming C; Meggo Quiroz, Luis D; Oz, Tuğba Kemaloğlu; Haj Asaad, Ayman; Joshi, Deepak; Dönmez, Cevdet; Güvenç, Tolga S; Nanda, Navin C

    2014-11-01

    Currently, tricuspid valve infective endocarditis (TVIE) is encountered in daily clinical practice more frequently due to the increasing prevalence of illicit intravenous drug use and the implantation of intracardiac devices. In this study, we compared findings from intra-operative live/real time three-dimensional transesophageal echocardiograms (3DTEE) and two-dimensional transesophageal echocardiograms (2DTEE) of 10 patients who underwent surgery for native tricuspid valve (TV) endocarditis. Unlike 2DTEE, 3DTEE allowed en face visualization of the 3 TV leaflets from both, atrial and ventricular aspects, in 9 of the 10 cases. In the remaining patient, in whom 3DTEE could not identify all 3 leaflets en face, the TV was found essentially destroyed at surgery. Using 3DTEE, the number of vegetations was accurately reported when compared with the surgical record. Furthermore, the orientation of each vegetation was the same as noted in the surgical findings. 2DTEE missed the identification of vegetations in 5 patients. The attachment site of vegetations to the TV were also not characterized by 2DTEE in 5 patients. In all 10 cases, 3DTEE characterized the vegetations more accurately with larger dimensions, including those in the azimuthal axis, and volumes. In addition, a perivalvular abscess that lead to surgical intervention was identified by 3DTEE, however, missed by 2DTEE. In conclusion, 3DTEE allows en face visualization of the TV apparatus permitting accurate description of the number and dimensions of vegetations identified by our surgical standard, which ultimately informs patients' prognosis and dictates the timing and planning for surgical intervention. Its use should be in conjunction with 2DTEE when evaluating TVIE.

  3. Accuracy of a Real-Time, Computerized, Binocular, Three-Dimensional Trajectory-Tracking Device for Recording Functional Mandibular Movements

    PubMed Central

    Zhao, Tian; Yang, Huifang; Sui, Huaxin; Salvi, Satyajeet Sudhir; Wang, Yong; Sun, Yuchun

    2016-01-01

    Objective Developments in digital technology have permitted researchers to study mandibular movements. Here, the accuracy of a real-time, computerized, binocular, three-dimensional (3D) trajectory-tracking device for recording functional mandibular movements was evaluated. Methods An occlusal splint without the occlusal region was created based on a plaster cast of the lower dentition. The splint was rigidly connected with a target on its labial side and seated on the cast. The cast was then rigidly attached to the stage of a high-precision triaxial electronic translator, which was used to move the target-cast-stage complex. Half-circular movements (5.00-mm radius) in three planes (XOY, XOZ, YOZ) and linear movements along the x-axis were performed at 5.00 mm/s. All trajectory points were recorded with the binocular 3D trajectory-tracking device and fitted to arcs or lines, respectively, with the Imageware software. To analyze the accuracy of the trajectory-tracking device, the mean distances between the trajectory points and the fitted arcs or lines were measured, and the mean differences between the lengths of the fitted arcs’ radii and a set value (5.00 mm) were then calculated. A one-way analysis of variance was used to evaluate the spatial consistency of the recording accuracy in three different planes. Results The mean distances between the trajectory points and fitted arcs or lines were 0.076 ± 0.033 mm or 0.089 ± 0.014 mm. The mean difference between the lengths of the fitted arcs’ radii and the set value (5.00 mm) was 0.025 ± 0.071 mm. A one-way ANOVA showed that the recording errors in three different planes were not statistically significant. Conclusion These results suggest that the device can record certain movements at 5.00 mm/s, which is similar to the speed of functional mandibular movements. In addition, the recordings had an error of <0.1 mm and good spatial consistency. Thus, the device meets some of the requirements necessary for

  4. A study of the application of singular perturbation theory. [development of a real time algorithm for optimal three dimensional aircraft maneuvers

    NASA Technical Reports Server (NTRS)

    Mehra, R. K.; Washburn, R. B.; Sajan, S.; Carroll, J. V.

    1979-01-01

    A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions.

  5. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study

    PubMed Central

    Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi

    2013-01-01

    To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710

  6. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study.

    PubMed

    Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi

    2013-06-01

    To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye.

  7. Assessment of visual quality and spatial accuracy of fast anisotropic diffusion and scan conversion algorithms for real-time three-dimensional spherical ultrasound

    NASA Astrophysics Data System (ADS)

    Duan, Qi; Angelini, Elsa D.; Laine, Andrew

    2004-04-01

    Three-dimensional ultrasound machines based on matrix phased-array transducers are gaining predominance for real-time dynamic screening in cardiac and obstetric practice. These transducers array acquire three-dimensional data in spherical coordinates along lines tiled in azimuth and elevation angles at incremental depth. This study aims at evaluating fast filtering and scan conversion algorithms applied in the spherical domain prior to visualization into Cartesian coordinates for visual quality and spatial measurement accuracy. Fast 3d scan conversion algorithms were implemented and with different order interpolation kernels. Downsizing and smoothing of sampling artifacts were integrated in the scan conversion process. In addition, a denoising scheme for spherical coordinate data with 3d anisotropic diffusion was implemented and applied prior to scan conversion to improve image quality. Reconstruction results under different parameter settings, such as different interpolation kernels, scaling factor, smoothing options, and denoising, are reported. Image quality was evaluated on several data sets via visual inspections and measurements of cylinder objects dimensions. Error measurements of the cylinder's radius, reported in this paper, show that the proposed fast scan conversion algorithm can correctly reconstruct three-dimensional ultrasound in Cartesian coordinates under tuned parameter settings. Denoising via three-dimensional anisotropic diffusion was able to greatly improve the quality of resampled data without affecting the accuracy of spatial information after the modification of the introduction of a variable gradient threshold parameter.

  8. Initial clinical experience of real-time three-dimensional echocardiography in patients with ischemic and idiopathic dilated cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Shiota, T.; McCarthy, P. M.; White, R. D.; Qin, J. X.; Greenberg, N. L.; Flamm, S. D.; Wong, J.; Thomas, J. D.

    1999-01-01

    The geometry of the left ventricle in patients with cardiomyopathy is often sub-optimal for 2-dimensional ultrasound when assessing left ventricular (LV) function and localized abnormalities such as a ventricular aneurysm. The aim of this study was to report the initial experience of real-time 3-D echocardiography for evaluating patients with cardiomyopathy. A total of 34 patients were evaluated with the real-time 3D method in the operating room (n = 15) and in the echocardiographic laboratory (n = 19). Thirteen of 28 patients with cardiomyopathy and 6 other subjects with normal LV function were evaluated by both real-time 3-D echocardiography and magnetic resonance imaging (MRI) for obtaining LV volumes and ejection fractions for comparison. There were close relations and agreements for LV volumes (r = 0.98, p <0.0001, mean difference = -15 +/- 81 ml) and ejection fractions (r = 0.97, p <0.0001, mean difference = 0.001 +/- 0.04) between the real-time 3D method and MRI when 3 cardiomyopathy cases with marked LV dilatation (LV end-diastolic volume >450 ml by MRI) were excluded. In these 3 patients, 3D echocardiography significantly underestimated the LV volumes due to difficulties with imaging the entire LV in a 60 degrees x 60 degrees pyramidal volume. The new real-time 3D echocardiography is feasible in patients with cardiomyopathy and may provide a faster and lower cost alternative to MRI for evaluating cardiac function in patients.

  9. Real-time flatness inspection of rolled products based on optical laser triangulation and three-dimensional surface reconstruction

    NASA Astrophysics Data System (ADS)

    Molleda, Julio; Usamentiaga, Rubén; García, Daniel F.; Bulnes, Francisco G.

    2010-07-01

    Flatness is a major geometrical feature of rolled products specified by both production and quality needs. Real-time inspection of flatness is the basis of automatic flatness control. Industrial facilities where rolled products are manufactured have adverse environments that affect artificial vision systems. We present a low-cost flatness inspection system based on optical triangulation by means of a laser stripe emitter and a CMOS matrix camera, designed to be part of an online flatness control system. An accurate and robust method to extract a laser stripe in adverse conditions over rough surfaces is proposed and designed to be applied in real time. Laser extraction relies on a local and a global search. The global search is based on an adjustment of curve segments based on a split-and-merge technique. A real-time recording method of the input data of the flatness inspection system is proposed. It stores information about manufacturing conditions for an offline tuning of the laser stripe extraction method using real data. Flatness measurements carried out over steel strips are evaluated quantitatively and qualitatively. Moreover, the real-time performance of the proposed system is analyzed.

  10. Real Imagery as a Three Dimensional Display

    DTIC Science & Technology

    1991-12-01

    under two categories--stereoscopic and autostereoscopic displays. The difference between these two displays is that autostereoscopic displays do not...require the use of special viewing glasses whereas stereoscopic displays do. In order to place a minimum incumbrance on the viewer, the autostereoscopic ...fooled into believing that the scene is three dimensional. This is accomplished even though the second view that normally comes with an autostereoscopic

  11. Real time three-dimensional space video rate sensors for millimeter waves imaging based very inexpensive plasma LED lamps

    NASA Astrophysics Data System (ADS)

    Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S.; Rozban, Daniel; Abramovich, Amir

    2014-10-01

    In recent years, much effort has been invested to develop inexpensive but sensitive Millimeter Wave (MMW) detectors that can be used in focal plane arrays (FPAs), in order to implement real time MMW imaging. Real time MMW imaging systems are required for many varied applications in many fields as homeland security, medicine, communications, military products and space technology. It is mainly because this radiation has high penetration and good navigability through dust storm, fog, heavy rain, dielectric materials, biological tissue, and diverse materials. Moreover, the atmospheric attenuation in this range of the spectrum is relatively low and the scattering is also low compared to NIR and VIS. The lack of inexpensive room temperature imaging systems makes it difficult to provide a suitable MMW system for many of the above applications. In last few years we advanced in research and development of sensors using very inexpensive (30-50 cents) Glow Discharge Detector (GDD) plasma indicator lamps as MMW detectors. This paper presents three kinds of GDD sensor based lamp Focal Plane Arrays (FPA). Those three kinds of cameras are different in the number of detectors, scanning operation, and detection method. The 1st and 2nd generations are 8 × 8 pixel array and an 18 × 2 mono-rail scanner array respectively, both of them for direct detection and limited to fixed imaging. The last designed sensor is a multiplexing frame rate of 16x16 GDD FPA. It permits real time video rate imaging of 30 frames/ sec and comprehensive 3D MMW imaging. The principle of detection in this sensor is a frequency modulated continuous wave (FMCW) system while each of the 16 GDD pixel lines is sampled simultaneously. Direct detection is also possible and can be done with a friendly user interface. This FPA sensor is built over 256 commercial GDD lamps with 3 mm diameter International Light, Inc., Peabody, MA model 527 Ne indicator lamps as pixel detectors. All three sensors are fully supported

  12. First results with real-time selenium-based full-field digital mammography three-dimensional imaging system

    NASA Astrophysics Data System (ADS)

    Lehtimaki, Mari; Pamilo, Martti; Raulisto, Leena; Kalke, Martti

    2004-05-01

    Our goal in this paper is to evaluate the capability of real-time selenium-technology-based full-field digital mammography (FFDM) system in breast tomosynthesis. The objective of this study is to find out the present status of amorphous selenium technology in the sense of advanced applications in clinical use. We were using tuned aperture computed tomography (TACT+) 3-dimensional (3D) technology for reconstruction. Under evaluation were amorphous selenium signal-to-noise-ratio, flat panel image artefacts and acquisition time to perform full-field digital mammography 3D examination. To be able to validate the system we used a special breast phantom. We found out that 3D imaging technology provides diagnostic value and benefits over 2-dimensional (2D) imaging. 3D TACT advantages are to define if mammography finding is caused by a real abnormal lesion or by superposition of normal parenchymal structures, to be able to diagnose and analyze the findings properly, to detect changes in breast tissue which would otherwise be missed, to verify the possible multifocality of the breast cancers, to verify the correct target for biopsies and to reduce number of biopsies performed. Slice visualization and 3D volume model provide greater diagnostic information compared to 2D projection screening and diagnostic imaging.

  13. Three dimensional optical modeling of amorphous silicon thin film solar cells using the finite-difference time-domain method including real randomly surface topographies

    NASA Astrophysics Data System (ADS)

    Lacombe, Jürgen; Sergeev, Oleg; Chakanga, Kambulakwao; von Maydell, Karsten; Agert, Carsten

    2011-07-01

    In this paper, modeling of light propagation in silicon thin film solar cells without using any fitting parameter is presented. The aim is to create a realistic view of the light trapping effects and of the resulting optical generation rate in the absorbing semiconductor layers. The focus is on real three dimensional systems. Our software Sentaurus tcad, developed by Synopsys, has the ability to import real topography measurements and to model the light propagation using the finite-difference time-domain method. To verify the simulation, we compared the measured and simulated angular distribution functions of a glass/SnO2:F transparent conducting oxide system for different wavelengths. The optical generation rate of charge carriers in amorphous silicon thin film solar cells including rough interfaces is calculated. The distribution of the optical generation rate is correlated with the shape of the interface, and the external quantum efficiencies are calculated and compared to experimental data.

  14. Three-dimensional reach trajectories as a probe of real-time decision-making between multiple competing targets

    PubMed Central

    Gallivan, Jason P.; Chapman, Craig S.

    2014-01-01

    Though several features of cognitive processing can be inferred from the discrete measurement [e.g., reaction time (RT), accuracy, etc.] of participants' conscious reports (e.g., verbal or key-press responses), it is becoming increasingly clear that a much richer understanding of these features can be captured from continuous measures of rapid, largely non-conscious behaviors like hand or eye movements. Here, using new experimental data, we describe in detail both the approach and analyses implemented in some of our previous studies that have used rapid reaching movements under cases of target uncertainty in order to probe the features, constraints and dynamics of stimulus-related processing in the brain. This work, as well as that of others, shows that when individuals are simultaneously presented with multiple potential targets—only one of which will be cued after reach onset—they produce initial reach trajectories that are spatially biased in accordance with the probabilistic distribution of targets. Such “spatial averaging” effects are consistent with observations from neurophysiological studies showing that neuronal populations in sensorimotor brain structures represent multiple target choices in parallel and they compete for selection. These effects also confirm and help extend computational models aimed at understanding the underlying mechanisms that support action-target selection. We suggest that the use of this simple, yet powerful behavioral paradigm for providing a “real-time” visualization of ongoing cognitive processes occurring at the neural level offers great promise for studying processes related to a wide range of psychological phenomena, such as decision-making and the representation of objects. PMID:25100941

  15. Real-time three-dimensional echocardiographic study of left ventricular function after infarct exclusion surgery for ischemic cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Qin, J. X.; Shiota, T.; McCarthy, P. M.; Firstenberg, M. S.; Greenberg, N. L.; Tsujino, H.; Bauer, F.; Travaglini, A.; Hoercher, K. J.; Buda, T.; Smedira, N. G.; Thomas, J. D.

    2000-01-01

    BACKGROUND: Infarct exclusion (IE) surgery, a technique of left ventricular (LV) reconstruction for dyskinetic or akinetic LV segments in patients with ischemic cardiomyopathy, requires accurate volume quantification to determine the impact of surgery due to complicated geometric changes. METHODS AND RESULTS: Thirty patients who underwent IE (mean age 61+/-8 years, 73% men) had epicardial real-time 3-dimensional echocardiographic (RT3DE) studies performed before and after IE. RT3DE follow-up was performed transthoracically 42+/-67 days after surgery in 22 patients. Repeated measures ANOVA was used to compare the values before and after IE surgery and at follow-up. Significant decreases in LV end-diastolic (EDVI) and end-systolic (ESVI) volume indices were apparent immediately after IE and in follow-up (EDVI 99+/-40, 67+/-26, and 71+/-31 mL/m(2), respectively; ESVI 72+/-37, 40+/-21, and 42+/-22 mL/m(2), respectively; P:<0.05). LV ejection fraction increased significantly and remained higher (0.29+/-0.11, 0.43+/-0.13, and 0.42+/-0.09, respectively, P:<0.05). Forward stroke volume in 16 patients with preoperative mitral regurgitation significantly improved after IE and in follow-up (22+/-12, 53+/-24, and 58+/-21 mL, respectively, P:<0.005). New York Heart Association functional class at an average 285+/-144 days of clinical follow-up significantly improved from 3.0+/-0.8 to 1.8+/-0.8 (P:<0.0001). Smaller end-diastolic and end-systolic volumes measured with RT3DE immediately after IE were closely related to improvement in New York Heart Association functional class at clinical follow-up (Spearman's rho=0.58 and 0.60, respectively). CONCLUSIONS: RT3DE can be used to quantitatively assess changes in LV volume and function after complicated LV reconstruction. Decreased LV volume and increased ejection fraction imply a reduction in LV wall stress after IE surgery and are predictive of symptomatic improvement.

  16. Roles of real-time three-dimensional transesophageal echocardiography in peri-operation of transcatheter left atrial appendage closure

    PubMed Central

    Zhou, Qing; Song, Hongning; Zhang, Lan; Deng, Qing; Chen, Jinling; Hu, Bo; Wang, Yijia; Guo, Ruiqiang

    2017-01-01

    Abstract Left atrial appendage (LAA) closure is a new treatment option for the prevention of stroke in patients with nonvalvular atrial fibrillation (AF). Conventional 2-dimensional transesophageal echocardiography (2D TEE) has some limitations in the imaging assessment of LAA closure. Real-time 3-dimensional transesophageal echocardiography (RT-3D TEE) allows for detailed morphologic assessment of the LAA. In this study, we aim to determine the clinical values of RT-3D TEE in the periprocedure of LAA closure. Thirty-eight persistent or paroxysmal AF patients with indications for LAA closure were enrolled in this study. RT-3D TEE full volume data of the LAA were recorded before operation to evaluate the anatomic feature, the landing zone dimension, and the depth of the LAA. On this basis, selection of LAA closure device was carried out. During the procedure, RT-3D TEE was applied to guide the interatrial septal puncture, device operation, and evaluate the occlusion effects. The patients were follow-up 1 month and 3 months postclosure. Twenty-eight (73.7%) patients with AF received placement of LAA occlusion device under RT-3D TEE. Eleven cases with single-lobe LAAs were identified using RT-3D TEE, among which 4 showed limited depth. Seventeen cases showed bilobed or multilobed LAA. Seven cases received LAA closure using Lefort and 21 using LAmbre based on the 3D TEE and radiography. The landing zone dimension of the LAA measured by RT-3D TEE Flexi Slice mode was better correlated with the device size used for occlusion (r = 0.90) than 2D TEE (r = 0.88). The interatial septal puncture, the exchange of the sheath, as well as the release of the device were executed under the guidance of RT-3D TEE during the procedure. The average number of closure devices utilized for optimal plugging was (1.11 ± 0.31). There were no clinically unacceptable residual shunts, pericardial effusion, or tamponade right after occlusion. All the patients had the device well

  17. New digital measurement methods for left ventricular volume using real-time three-dimensional echocardiography: comparison with electromagnetic flow method and magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Qin, J. J.; Jones, M.; Shiota, T.; Greenberg, N. L.; Firstenberg, M. S.; Tsujino, H.; Zetts, A. D.; Sun, J. P.; Cardon, L. A.; Odabashian, J. A.; Flamm, S. D.; White, R. D.; Panza, J. A.; Thomas, J. D.

    2000-01-01

    AIM: The aim of this study was to investigate the feasibility and accuracy of using symmetrically rotated apical long axis planes for the determination of left ventricular (LV) volumes with real-time three-dimensional echocardiography (3DE). METHODS AND RESULTS: Real-time 3DE was performed in six sheep during 24 haemodynamic conditions with electromagnetic flow measurements (EM), and in 29 patients with magnetic resonance imaging measurements (MRI). LV volumes were calculated by Simpson's rule with five 3DE methods (i.e. apical biplane, four-plane, six-plane, nine-plane (in which the angle between each long axis plane was 90 degrees, 45 degrees, 30 degrees or 20 degrees, respectively) and standard short axis views (SAX)). Real-time 3DE correlated well with EM for LV stroke volumes in animals (r=0.68-0.95) and with MRI for absolute volumes in patients (r-values=0.93-0.98). However, agreement between MRI and apical nine-plane, six-plane, and SAX methods in patients was better than those with apical four-plane and bi-plane methods (mean difference = -15, -18, -13, vs. -31 and -48 ml for end-diastolic volume, respectively, P<0.05). CONCLUSION: Apically rotated measurement methods of real-time 3DE correlated well with reference standards for calculating LV volumes. Balancing accuracy and required time for these LV volume measurements, the apical six-plane method is recommended for clinical use.

  18. Pixel multiplexing technique for real-time three-dimensional-imaging laser detection and ranging system using four linear-mode avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Xu, Fan; Wang, Yuanqing; Li, Fenfang

    2016-03-01

    The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aims to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ˜15 cm and range accuracy is ˜4 cm root-mean-square error at a distance of ˜40 m.

  19. Real-Time Three-Dimensional Echocardiography: Characterization of Cardiac Anatomy and Function—Current Clinical Applications and Literature Review Update

    PubMed Central

    Velasco, Omar; Beckett, Morgan Q.; James, Aaron W.; Loehr, Megan N.; Lewis, Taylor G.; Hassan, Tahmin; Janardhanan, Rajesh

    2017-01-01

    Abstract Our review of real-time three-dimensional echocardiography (RT3DE) discusses the diagnostic utility of RT3DE and provides a comparison with two-dimensional echocardiography (2DE) in clinical cardiology. A Pubmed literature search on RT3DE was performed using the following key words: transthoracic, two-dimensional, three-dimensional, real-time, and left ventricular (LV) function. Articles included perspective clinical studies and meta-analyses in the English language, and focused on the role of RT3DE in human subjects. Application of RT3DE includes analysis of the pericardium, right ventricular (RV) and LV cavities, wall motion, valvular disease, great vessels, congenital anomalies, and traumatic injury, such as myocardial contusion. RT3DE, through a transthoracic echocardiography (TTE), allows for increasingly accurate volume and valve motion assessment, estimated LV ejection fraction, and volume measurements. Chamber motion and LV mass approximation have been more accurately evaluated by RT3DE by improved inclusion of the third dimension and quantification of volumetric movement. Moreover, RT3DE was shown to have no statistical significance when comparing the ejection fractions of RT3DE to cardiac magnetic resonance (CMR). Analysis of RT3DE data sets of the LV endocardial exterior allows for the volume to be directly quantified for specific phases of the cardiac cycle, ranging from end systole to end diastole, eliminating error from wall motion abnormalities and asymmetrical left ventricles. RT3DE through TTE measures cardiac function with superior diagnostic accuracy in predicting LV mass, systolic function, along with LV and RV volume when compared with 2DE with comparable results to CMR. PMID:28303211

  20. Impact of left ventricular outflow tract area on systolic outflow velocity in hypertrophic cardiomyopathy: a real-time three-dimensional echocardiographic study

    NASA Technical Reports Server (NTRS)

    Qin, Jian Xin; Shiota, Takahiro; Lever, Harry M.; Rubin, David N.; Bauer, Fabrice; Kim, Yong Jin; Sitges, Marta; Greenberg, Neil L.; Drinko, Jeanne K.; Martin, Maureen; Agler, Deborah A.; Thomas, James D.

    2002-01-01

    OBJECTIVES: The aim of this study was to use real-time three-dimensional echocardiography (3DE) to investigate the quantitative relation between minimal left ventricular (LV) outflow tract area (A(LVOT)) and maximal LV outflow tract (LVOT) velocity in patients with hypertrophic obstructive cardiomyopathy (HCM). BACKGROUND: In patients with HCM, LVOT velocity should change inversely with minimal A(LVOT) unless LVOT obstruction reduces the pumping capacity of the ventricle. METHODS: A total of 25 patients with HCM with systolic anterior motion (SAM) of the mitral valve leaflets underwent real-time 3DE. The smallest A(LVOT) during systole was measured using anatomically oriented two-dimensional "C-planes" within the pyramidal 3DE volume. Maximal velocity across LVOT was evaluated by two-dimensional Doppler echocardiography (2DE). For comparison with 3DE A(LVOT), the SAM-septal distance was determined by 2DE. RESULTS: Real-time 3DE provided unique information about the dynamic SAM-septal relation during systole, with A(LVOT) ranging from 0.6 to 5.2 cm(2) (mean: 2.2 +/- 1.4 cm(2)). Maximal velocity (v) correlated inversely with A(LVOT) (v = 496 A(LVOT)(-0.80), r = -0.95, p < 0.001), but the exponent (-0.80) was significantly different from -1.0 (95% confidence interval: -0.67 to -0.92), indicating a significant impact of small A(LVOT) on the peak LVOT flow rate. By comparison, the best correlation between velocity and 2DE SAM-septal distance was significantly (p < 0.01) poorer at -0.83, indicating the superiority of 3DE for assessing A(LVOT). CONCLUSIONS: Three-dimensional echocardiography-measured A(LVOT) provides an assessment of HCM geometry that is superior to 2DE methods. These data indicate that the peak LVOT flow rate appears to be significantly decreased by reduced A(LVOT). Real-time 3DE is a potentially valuable clinical tool for assessing patients with HCM.

  1. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    NASA Technical Reports Server (NTRS)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; Panza, J. A.; Thomas, J. D.

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  2. Nanoelectronic three-dimensional (3D) nanotip sensing array for real-time, sensitive, label-free sequence specific detection of nucleic acids.

    PubMed

    Esfandyarpour, Rahim; Yang, Lu; Koochak, Zahra; Harris, James S; Davis, Ronald W

    2016-02-01

    The improvements in our ability to sequence and genotype DNA have opened up numerous avenues in the understanding of human biology and medicine with various applications, especially in medical diagnostics. But the realization of a label free, real time, high-throughput and low cost biosensing platforms to detect molecular interactions with a high level of sensitivity has been yet stunted due to two factors: one, slow binding kinetics caused by the lack of probe molecules on the sensors and two, limited mass transport due to the planar structure (two-dimensional) of the current biosensors. Here we present a novel three-dimensional (3D), highly sensitive, real-time, inexpensive and label-free nanotip array as a rapid and direct platform to sequence-specific DNA screening. Our nanotip sensors are designed to have a nano sized thin film as their sensing area (~ 20 nm), sandwiched between two sensing electrodes. The tip is then conjugated to a DNA oligonucleotide complementary to the sequence of interest, which is electrochemically detected in real-time via impedance changes upon the formation of a double-stranded helix at the sensor interface. This 3D configuration is specifically designed to improve the biomolecular hit rate and the detection speed. We demonstrate that our nanotip array effectively detects oligonucleotides in a sequence-specific and highly sensitive manner, yielding concentration-dependent impedance change measurements with a target concentration as low as 10 pM and discrimination against even a single mismatch. Notably, our nanotip sensors achieve this accurate, sensitive detection without relying on signal indicators or enhancing molecules like fluorophores. It can also easily be scaled for highly multiplxed detection with up to 5000 sensors/square centimeter, and integrated into microfluidic devices. The versatile, rapid, and sensitive performance of the nanotip array makes it an excellent candidate for point-of-care diagnostics, and high

  3. Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space.

    PubMed

    Nakayama, Yu

    2016-04-08

    Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.

  4. Real-time synchronized rendering of multi-view video for 8Kx4K three-dimensional display with spliced four liquid crystal panels

    NASA Astrophysics Data System (ADS)

    Cui, Huilong; Sang, Xinzhu; Xing, Shujun; Ning, Jiwei; Yan, Binbin; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    A high speed synchronized rendering of multi-view video for 8K×4K multi-LCD-spliced three-dimensional (3D) display system based on CUDA is demonstrated. Because the conventional image processing calculation method is no longer applicable to this 3D display system, the CUDA technology is used for 3D image processing to address the problem of low efficiency.The 8K×4K screen is composed of four LCD screens, and accurate segmentation of the scene is carried out to ensure the correct display of 3D contents and a set of controlling and the host software are optimally implemented to make all of the connected processors render 3D videos simultaneously. The system which is based on the master-slave synchronization communication mode and DIBR-CUDA accelerated algorithm is used to realize the high resolution, high frame rate, large size, and wide view angle video rendering for the real-time 3D display. Experimental result shows a stable frame-rate at 30 frame-per-second and the friendly interactive interface can be achieved.

  5. Segmentation of real-time three-dimensional ultrasound for quantification of ventricular function: a clinical study on right and left ventricles.

    PubMed

    Angelini, Elsa D; Homma, Shunichi; Pearson, Gregory; Holmes, Jeffrey W; Laine, Andrew F

    2005-09-01

    Among screening modalities, echocardiography is the fastest, least expensive and least invasive method for imaging the heart. A new generation of three-dimensional (3-D) ultrasound (US) technology has been developed with real-time 3-D (RT3-D) matrix phased-array transducers. These transducers allow interactive 3-D visualization of cardiac anatomy and fast ventricular volume estimation without tomographic interpolation as required with earlier 3-D US acquisition systems. However, real-time acquisition speed is performed at the cost of decreasing spatial resolution, leading to echocardiographic data with poor definition of anatomical structures and high levels of speckle noise. The poor quality of the US signal has limited the acceptance of RT3-D US technology in clinical practice, despite the wealth of information acquired by this system, far greater than with any other existing echocardiography screening modality. We present, in this work, a clinical study for segmentation of right and left ventricular volumes using RT3-D US. A preprocessing of the volumetric data sets was performed using spatiotemporal brushlet denoising, as presented in previous articles Two deformable-model segmentation methods were implemented in 2-D using a parametric formulation and in 3-D using an implicit formulation with a level set implementation for extraction of endocardial surfaces on denoised RT3-D US data. A complete and rigorous validation of the segmentation methods was carried out for quantification of left and right ventricular volumes and ejection fraction, including comparison of measurements with cardiac magnetic resonance imaging as the reference. Results for volume and ejection fraction measurements report good performance of quantification of cardiac function on RT3-D data compared with magnetic resonance imaging with better performance of semiautomatic segmentation methods than with manual tracing on the US data.

  6. Validation of real-time three-dimensional echocardiography for quantifying left ventricular volumes in the presence of a left ventricular aneurysm: in vitro and in vivo studies

    NASA Technical Reports Server (NTRS)

    Qin, J. X.; Jones, M.; Shiota, T.; Greenberg, N. L.; Tsujino, H.; Firstenberg, M. S.; Gupta, P. C.; Zetts, A. D.; Xu, Y.; Ping Sun, J.; Cardon, L. A.; Odabashian, J. A.; Flamm, S. D.; White, R. D.; Panza, J. A.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: To validate the accuracy of real-time three-dimensional echocardiography (RT3DE) for quantifying aneurysmal left ventricular (LV) volumes. BACKGROUND: Conventional two-dimensional echocardiography (2DE) has limitations when applied for quantification of LV volumes in patients with LV aneurysms. METHODS: Seven aneurysmal balloons, 15 sheep (5 with chronic LV aneurysms and 10 without LV aneurysms) during 60 different hemodynamic conditions and 29 patients (13 with chronic LV aneurysms and 16 with normal LV) underwent RT3DE and 2DE. Electromagnetic flow meters and magnetic resonance imaging (MRI) served as reference standards in the animals and in the patients, respectively. Rotated apical six-plane method with multiplanar Simpson's rule and apical biplane Simpson's rule were used to determine LV volumes by RT3DE and 2DE, respectively. RESULTS: Both RT3DE and 2DE correlated well with actual volumes for aneurysmal balloons. However, a significantly smaller mean difference (MD) was found between RT3DE and actual volumes (-7 ml for RT3DE vs. 22 ml for 2DE, p = 0.0002). Excellent correlation and agreement between RT3DE and electromagnetic flow meters for LV stroke volumes for animals with aneurysms were observed, while 2DE showed lesser correlation and agreement (r = 0.97, MD = -1.0 ml vs. r = 0.76, MD = 4.4 ml). In patients with LV aneurysms, better correlation and agreement between RT3DE and MRI for LV volumes were obtained (r = 0.99, MD = -28 ml) than between 2DE and MRI (r = 0.91, MD = -49 ml). CONCLUSIONS: For geometrically asymmetric LVs associated with ventricular aneurysms, RT3DE can accurately quantify LV volumes.

  7. Analysis of real-time three dimensional transesophageal echocardiography in the assessment of left atrial appendage function in patients with atrial fibrillation

    PubMed Central

    Gan, Lin; Yu, Lan; Xie, Manying; Feng, Wei; Yin, Jiabao

    2016-01-01

    The aim of the study was to examine changes in left atrial appendage volume (LAA-V) in patients with non-valvular atrial fibrillation (AF) using real-time three-dimensional transesophageal echocardiography (RT3D-TEE) and evaluate the prediction value on the high risk of thrombosis of LAA. Using RT3D-TEE we measured: i) LAA peak empty velocity (LAA-PEV), ii) LAA-V including LAA end-diastolic volume (LAA-EDV) and end-systolic volume (LAA-ESV). We also calculated LAA ejection fraction (LAA-EF). RT3D-TEE was applied in 20 control cases and 74 patients with non-valvular AF. According to the presence of thrombosis, 74 patients were divided into the no thrombosis group (NTH group, n=52) and thrombosis group (TH group, n=22). Our results showed that there were significant differences in LAA-V and LAA-EF values in different groups (P<0.05). LAA-EDV moderately correlated with LAA-PEV (r=−0.531, P<0.001) while LAA-ESV demonstrated a strong correlation with LAA-PEV (r=−0.741, P<0.001). LAA-EF also showed a strong correlation with LAA-PEV (r=0.693, P<0.001). Through receiver operating characteristic (ROC) curves, the cut-off values of LAA-EDV and LAA-ESV in thrombosis of LAA were 18.45 and 9.69 ml, respectively. RT3D-TEE effectively evaluated the LAA-V, LAA-PEV and LAA-EF parameters, and proved to be valuable in the process of evaluation of thrombosis of LAA. PMID:27882157

  8. Level of agreement between three-dimensional volumetric ultrasound and real-time conventional ultrasound in the assessment of synovitis, tenosynovitis and erosions in rheumatoid arthritis patients.

    PubMed

    Acebes, Carlos; McKay, Neil; Ciechomska, Anna; Alcorn, Nicola; Harvie, John P; Robson, Barbara; Groenendijk, Nico; McDonald, Moira; Wilson, Alison; Garrido, Jesus

    2017-02-01

    The aim of the study was to assess agreement between three-dimensional volumetric ultrasound (3D US) performed by inexperienced staff and real-time conventional ultrasound (2D US) performed by experienced rheumatologists in detecting and scoring rheumatoid arthritis (RA) lesions. Thirty-one RA patients underwent examination of seven joints by 2D and 3D US for synovitis and tenosynovitis in B and PD modes and erosions in B mode. A global score for synovitis and global counts for synovitis, tenosynovitis and erosions were also calculated for every patient. Agreement between 2D and 3D US was analysed for counts and scores at the patient level with the intraclass correlation coefficient (ICC) and for counts at the joint level with Cohen's kappa coefficient. B-mode synovitis was detected at a median of five joints in each patient, frequently in wrists and hand joints but less frequently in foot joints. PD-mode synovitis, tenosynovitis and erosions were detected less frequently. All ICCs for agreement between 2D and 3D US findings were significant. All kappa coefficients were significant for B- and PD-mode synovitis and for erosions (except PIP3), while those for tenosynovitis were only significant for MCP2 (B and PD modes) and PIP2 (B mode). Although the 3D US volumes were acquired by inexperienced operators, agreement between 2D and 3D US was acceptable in detecting and scoring synovitis. A higher level of agreement was attained for patient-level global scores and counts than for individual joints.

  9. Dynamic characteristic mechanism of atrial septal defect using real-time three-dimensional echocardiography and evaluation of right ventricular functions.

    PubMed

    Sharen, Gao-Wa; Zhang, Jun; Qin, Chuan; Lv, Qing

    2017-02-01

    The dynamic characteristics of the area of the atrial septal defect (ASD) were evaluated using the technique of real-time three-dimensional echocardiography (RT 3DE), the potential factors responsible for the dynamic characteristics of the area of ASD were observed, and the overall and local volume and functions of the patients with ASD were measured. RT 3DE was performed on the 27 normal controls and 28 patients with ASD. Based on the three-dimensional data workstations, the area of ASD was measured at P wave vertex, R wave vertex, T wave starting point, and T wave terminal point and in the T-P section. The right atrial volume in the same time phase of the cardiac cycle and the motion displacement distance of the tricuspid annulus in the corresponding period were measured. The measured value of the area of ASD was analyzed. The changes in the right atrial volume and the motion displacement distance of the tricuspid annulus in the normal control group and the ASD group were compared. The right ventricular ejection fractions in the normal control group and the ASD group were compared using the RT 3DE long-axis eight-plane (LA 8-plane) method. Real-time three-dimensional volume imaging was performed in the normal control group and ASD group (n=30). The right ventricular inflow tract, outflow tract, cardiac apex muscular trabecula dilatation, end-systolic volume, overall dilatation, end-systolic volume, and appropriate local and overall ejection fractions in both two groups were measured with the four-dimensional right ventricular quantitative analysis method (4D RVQ) and compared. The overall right ventricular volume and the ejection fraction measured by the LA 8-plane method and 4D RVQ were subjected to a related analysis. Dynamic changes occurred to the area of ASD in the cardiac cycle. The rules for dynamic changes in the area of ASD and the rules for changes in the right atrial volume in the cardiac cycle were consistent. The maximum value of the changes in the

  10. Real gas flow fields about three dimensional configurations

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Lombard, C. K.; Davy, W. C.

    1983-01-01

    Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.

  11. MULTISHOCKED,THREE-DIMENSIONAL SUPERSONIC FLOWFIELDS WITH REAL GAS EFFECTS

    NASA Technical Reports Server (NTRS)

    Kutler, P.

    1994-01-01

    This program determines the supersonic flowfield surrounding three-dimensional wing-body configurations of a delta wing. It was designed to provide the numerical computation of three dimensional inviscid, flowfields of either perfect or real gases about supersonic or hypersonic airplanes. The governing equations in conservation law form are solved by a finite difference method using a second order noncentered algorithm between the body and the outermost shock wave, which is treated as a sharp discontinuity. Secondary shocks which form between these boundaries are captured automatically. The flowfield between the body and outermost shock is treated in a shock capturing fashion and therefore allows for the correct formation of secondary internal shocks . The program operates in batch mode, is in CDC update format, has been implemented on the CDC 7600, and requires more than 140K (octal) word locations.

  12. Three dimensional time reversal optical tomography

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Alrubaiee, M.; Xu, M.; Gayen, S. K.

    2011-03-01

    Time reversal optical tomography (TROT) approach is used to detect and locate absorptive targets embedded in a highly scattering turbid medium to assess its potential in breast cancer detection. TROT experimental arrangement uses multi-source probing and multi-detector signal acquisition and Multiple-Signal-Classification (MUSIC) algorithm for target location retrieval. Light transport from multiple sources through the intervening medium with embedded targets to the detectors is represented by a response matrix constructed using experimental data. A TR matrix is formed by multiplying the response matrix by its transpose. The eigenvectors with leading non-zero eigenvalues of the TR matrix correspond to embedded objects. The approach was used to: (a) obtain the location and spatial resolution of an absorptive target as a function of its axial position between the source and detector planes; and (b) study variation in spatial resolution of two targets at the same axial position but different lateral positions. The target(s) were glass sphere(s) of diameter ~9 mm filled with ink (absorber) embedded in a 60 mm-thick slab of Intralipid-20% suspension in water with an absorption coefficient μa ~ 0.003 mm-1 and a transport mean free path lt ~ 1 mm at 790 nm, which emulate the average values of those parameters for human breast tissue. The spatial resolution and accuracy of target location depended on axial position, and target contrast relative to the background. Both the targets could be resolved and located even when they were only 4-mm apart. The TROT approach is fast, accurate, and has the potential to be useful in breast cancer detection and localization.

  13. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: Validation experimental animal study and initial clinical experience

    NASA Technical Reports Server (NTRS)

    Sitges, Marta; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Tsujino, Hiroyuki; Bauer, Fabrice; Kim, Yong Jin; Agler, Deborah A.; Cardon, Lisa A.; Zetts, Arthur D.; Panza, Julio A.; Thomas, James D.

    2003-01-01

    BACKGROUND: Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS: In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS: In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P <.001, delta = -0.91 +/- 2.65 mL). In patients, real-time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P <.001, delta = -4.8 +/- 7.6 mL). CONCLUSIONS: real-time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.

  14. Time of Closest Approach in Three-Dimensional Airspace

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Narkawicz, Anthony J.

    2010-01-01

    In air traffic management, the aircraft separation requirement is defined by a minimum horizontal distance and a minimum vertical distance that the aircraft have to maintain. Since this requirement defines a cylinder around each aircraft rather than a sphere, the three-dimensional Euclidean distance does not provide an appropriate basis for the definition of time of closest approach. For instance, conflicting aircraft are not necessarily in loss of separation at the time of closest three-dimensional Euclidean distance. This paper proposes a definition of time of closest approach that characterizes conflicts in a three-dimensional airspace. The proposed time is defined as the time that minimizes a distance metric called cylindrical norm. An algorithm that computes the time of closest approach between two aircraft is provided and the formal verification of its main properties is reported.

  15. Back-to-back optical coherence tomography-ultrasound probe for co-registered three-dimensional intravascular imaging with real-time display

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Ma, Teng; Jing, Joseph; Zhang, Jun; Patel, Pranav M.; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2014-03-01

    We have developed a novel integrated optical coherence tomography (OCT)-intravascular ultrasound (IVUS) probe, with a 1.5 mm-long rigid-part and 0.9 mm outer diameter, for real-time intracoronary imaging of atherosclerotic plaques and guiding interventional procedures. By placing the OCT ball lens and IVUS 45MHz single element transducer back-to-back at the same axial position, this probe can provide automatically co-registered, co-axial OCT-IVUS imaging. To demonstrate its capability, 3D OCT-IVUS imaging of a pig's coronary artery in real-time displayed in polar coordinates, as well as images of two major types of advanced plaques in human cadaver coronary segments, was obtained using this probe and our upgraded system. Histology validation is also presented.

  16. Importance of mitral valve repair associated with left ventricular reconstruction for patients with ischemic cardiomyopathy: a real-time three-dimensional echocardiographic study

    NASA Technical Reports Server (NTRS)

    Qin, Jian Xin; Shiota, Takahiro; McCarthy, Patrick M.; Asher, Craig R.; Hail, Melanie; Agler, Deborah A.; Popovic, Zoran B.; Greenberg, Neil L.; Smedira, Nicholas G.; Starling, Randall C.; Young, James B.; Thomas, James D.

    2003-01-01

    BACKGROUND: Left ventricular (LV) reconstruction surgery leads to early improvement in LV function in ischemic cardiomyopathy (ICM) patients. This study was designed to evaluate the impact of mitral valve (MV) repair associated with LV reconstruction on LV function 1-year after surgery in ICM patients assessed by real-time 3-dimensional echocardiography (3DE). METHODS AND RESULTS: Sixty ICM patients who underwent the combination surgery (LV reconstruction in 60, MV repair in 30, and revascularization in 52 patients) were studied. Real-time 3DE was performed and LV volumes were obtained at baseline, discharge, 6-month and >or=12-month follow-up. Reduction in end-diastolic volumes (EDV) by 29% and in end-systolic volumes by 38% were demonstrated immediately after surgery and remained at subsequent follow-up (P<0.0001). The LV ejection fraction significantly increased by about 10% at discharge and was maintained >or=12-month (P<0.0001). Although the LV volumes were significantly larger in patients with MV repair before surgery (EDV, 235+/-87 mL versus 193+/-67 mL, P<0.05), they were similar to LV volumes of the patients without MV repair at subsequent follow-ups. However, the EDV increased from 139+/-24 mL to 227+/-79 mL (P<0.01) in 7 patients with recurrent mitral regurgitation (MR). Improvement in New York Heart Association functional class occurred in 81% patients during late follow-up. CONCLUSIONS: Real-time 3DE demonstrates that LV reconstruction provides significant reduction in LV volumes and improvement in LV function which is sustained throughout the 1-year follow-up with 84% cardiac event free survival. If successful, MV repair may prevent LV redilation, while recurrent MR is associated with increased LV volumes.

  17. Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy

    PubMed Central

    Daldrop, Peter; Joo, Sihwa; Otto, Oliver; Keyser, Ulrich F.; Seidel, Ralf

    2014-01-01

    Optical and magnetic tweezers are widely employed to probe the mechanics and activity of individual biomolecular complexes. They rely on micrometer-sized particles to detect molecular conformational changes from the particle position. Real-time particle tracking with Ångström accuracy has so far been only achieved using laser detection through photodiodes. Here we demonstrate that camera-based imaging can provide a similar performance for all three dimensions. Particle imaging at kHz rates is combined with real-time data processing being accelerated by a graphics processing unit. For particles that are fixed in the sample cell we can detect 3 Å sized steps that are introduced by cell translations at rates of 10 Hz, while for DNA-tethered particles 5 Å steps at 1 Hz can be resolved. Moreover, 20 particles can be tracked in parallel with comparable accuracy. Our approach provides a simple and robust way for high-resolution tweezers experiments using multiple particles at a time. PMID:25565216

  18. Personal-computer-based system for real-time reconstruction of the three-dimensional ionosphere using data from diverse sources

    NASA Astrophysics Data System (ADS)

    Fridman, Sergey V.; Nickisch, L. J.; Hausman, Mark

    2009-06-01

    We present new capabilities of our system for monitoring the ionosphere over a fixed geographical area with dimensions of the order of several thousand kilometers. The system employs a nonlinear representation for electron density that ensures a nonnegative solution. The multidimensional nonlinear inverse problem is efficiently solved using a combination of the Newton-Kontorovich method and Tikhonov's regularization technique for ill-posed problems. The system is able to utilize a variety of types of ionospheric data, which are as follows: networks of ground- and space-based (satellite mounted) dual-frequency GPS receivers provide time series of oblique absolute total electron content (TEC) and/or relative TEC data (directly calculated from the raw dual-frequency group delays and phase delays, respectively), TEC data from ground- or space-based receivers operating with dual-frequency beacons mounted on low-Earth orbit (LEO) satellites, vertical TEC data from orbiting radio altimeters (such as Jason satellite), in situ electron density data from plasma probes on LEO satellites (such as Challenging Minisatellite Payload for Geophysical Research and Application), and electron density profiles from sounders. The resulting solution for the distribution of electron density is guaranteed to be smooth in space and time and to agree with all input data within errors of measurement. Real time performance is attained on a single personal computer with 5 min data refreshment period. Operation of the system is tested on real data with various data types simultaneously present. A new form of the stabilizing functional is developed to ensure reasonable assimilation of the in situ electron density data.

  19. Single-beat real-time three-dimensional echocardiographic automated contour detection for quantification of left ventricular volumes and systolic function.

    PubMed

    Ren, Ben; Vletter, Wim B; McGhie, Jackie; Soliman, Osama I I; Geleijnse, Marcel L

    2014-02-01

    To assess the feasibility and accuracy in measuring left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) with Siemens single-beat real-time 3D transthoracic echocardiography. The LV volumes and EF were measured in 3D datasets acquired by six imaging modes (time-1-harmonic (T1H), time-1-fundamental, time-2-harmonic, time-2-fundamental, space-1-harmonic (S1H), and space-1-fundamental) in 41 patients using the automated contouring algorithm and compared with manually corrected 3DE QLAB measurements. The main determinates of the temporal and spatial resolutions of 3D datasets acquired were the fundamental and harmonic modes. Consequently, the S1H mode had the lowest volume rate and highest spatial resolution. Compared with the 3DE QLAB analysis, the S1H mode resulted in the best LV volumes and EF estimates in all patients (0 ± 10 % for EF, -7 ± 44 ml for EDV, -7 ± 39 ml for ESV) and in the 10 patients with correct LV contour tracking according to a visual assessment from the multiplanar reconstruction views in all six modes (0 ± 9 % for EF, -3 ± 23 ml for EDV, -2 ± 14 ml for ESV). The T1H mode was the best alternative. Overall 28 patients (68 %) could be analysed automatically and satisfyingly with the S1H and T1H modes: 0 ± 8 % (EF), 0 ± 27 ml (EDV) and -1 ± 16 ml (ESV). The accuracy of the Siemens automated RT-3D algorithm in measuring LV volumes and EF is significantly influenced by the different imaging modes. The S1H mode may be the preferred 3D acquisition mode, supplemented by the T1H mode in enlarged LVs that do not fit in the S1H acquisition sector.

  20. Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Allsop, Thomas; Bhamber, Ranjeet; Lloyd, Glynn; Miller, Martin R.; Dixon, Andrew; Webb, David; Ania Castañón, Juan Diego; Bennion, Ian

    2012-11-01

    An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p<0.01.

  1. Time-Domain Simulation of Three Dimensional Quantum Wires

    PubMed Central

    Mossman, Sean; Kuzyk, Mark G.

    2016-01-01

    A method is presented to calculate the eigenenergies and eigenfunctions of quantum wires. This is a true three-dimensional method based on a direct implementation of the time-dependent Schrödinger equation. It makes no approximations to the Schrödinger equation other than the finite-difference approximation of the space and time derivatives. The accuracy of our method is tested by comparing it to analytical results in a cylindrical wire. PMID:27124603

  2. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study

    NASA Technical Reports Server (NTRS)

    Kwan, Jun; Shiota, Takahiro; Agler, Deborah A.; Popovic, Zoran B.; Qin, Jian Xin; Gillinov, Marc A.; Stewart, William J.; Cosgrove, Delos M.; McCarthy, Patrick M.; Thomas, James D.

    2003-01-01

    BACKGROUND: This study was conducted to elucidate the geometric differences of the mitral apparatus in patients with significant mitral regurgitation caused by ischemic cardiomyopathy (ICM-MR) and by idiopathic dilated cardiomyopathy (DCM-MR) by use of real-time 3D echocardiography (RT3DE). METHODS AND RESULTS: Twenty-six patients with ICM-MR caused by posterior infarction, 18 patients with DCM-MR, and 8 control subjects were studied. With the 3D software, commissure-commissure plane and 3 perpendicular anteroposterior (AP) planes were generated for imaging the medial, central, and lateral sides of the mitral valve (MV) during mid systole. In 3 AP planes, the angles between the annular plane and each leaflet (anterior, Aalpha; posterior, Palpha) were measured. In ICM-MR, Aalpha measured in the medial and central planes was significantly larger than that in the lateral plane (39+/-5 degrees, 34+/-6 degrees, and 27+/-5 degrees, respectively; P<0.01), whereas Palpha showed no significant difference in any of the 3 AP planes (61+/-7 degrees, 57+/-7 degrees, and 56+/-7 degrees, P>0.05). In DCM-MR, both Aalpha (38+/-8 degrees, 37+/-9 degrees, and 36+/-7 degrees, P>0.05) and Palpha (59+/-6 degrees, 58+/-5 degrees, and 57+/-6 degrees, P>0.05) revealed no significant differences in the 3 planes. CONCLUSIONS: The pattern of MV deformation from the medial to the lateral side was asymmetrical in ICM-MR, whereas it was symmetrical in DCM-MR. RT3DE is a helpful tool for differentiating the geometry of the mitral apparatus between these 2 different types of functional mitral regurgitation.

  3. Real-time two-dimensional and three-dimensional echocardiographic imaging of the thoracic spinal cord: a possible new window into the central neuraxis.

    PubMed

    Feinglass, Neil G; Clendenen, Steven R; Shine, Timothy S J; Martin, Archer K; Greengrass, Roy A

    2015-02-01

    Transesophageal echocardiography of the spine has been difficult to perform, and high-quality images have been difficult to obtain with earlier available technology. New capabilities in hardware and software reconstruction may allow more reliable clinical data to be obtained. We describe an initial successful attempt to image the adult spinal canal, its contents, and in situ instrumentation. This report is a retrospective review of two patients in whom transesophageal echocardiography (TEE) was used to image the thoracic spine. The thoracic spine was identified and imaged with real-time 2-D and 3-D technology with location of the thoracic aorta and slight insertion and withdrawal of the TEE probe until the intervertebral discs alignment was optimized. Images of the spinal cord anatomy and its vascular supply, as well as indwelling epidural catheters were easily identified. 2-D and 3-D imaging was performed and images were recorded in digital imaging and communications in medicine format. 3-D reconstruction of images was possible with instantaneous 3-D imaging from multiple 2-D electrocardiogram-gated image acquisitions using the Phillips TEE IE-33 imaging platform. The central neuraxial cavity, including the spinal cord and the spinal nerve roots, was easily visualized, and motion of the cord was seen in a phasic pattern (with respiratory variation); cerebrospinal fluid surrounding the spinal cord was documented. The epidural space and local anesthetic drug administration through the epidural catheter were visualized, with the epidural catheter seen lying adjacent to the epidural tissue as a bright hyperechoic line. Pulsed-wave Doppler determined a biphasic pattern of blood flow in the anterior spinal artery through pulse mapping of the anatomic area. New, advanced imaging hardware and software generate clinically useful imaging of the thoracic spine in 2-D and 3-D using TEE. We believe this technology holds promise for future diagnostic and therapeutic

  4. Three-Dimensional Rotation, Twist and Torsion Analyses Using Real-Time 3D Speckle Tracking Imaging: Feasibility, Reproducibility, and Normal Ranges in Pediatric Population

    PubMed Central

    Han, Wei; Gao, Jun; He, Lin; Yang, Yali; Yin, Ping; Xie, Mingxing; Ge, Shuping

    2016-01-01

    Background and Objective The specific aim of this study was to evaluate the feasibility, reproducibility and maturational changes of LV rotation, twist and torsion variables by real-time 3D speckle-tracking echocardiography (RT3DSTE) in children. Methods A prospective study was conducted in 347 consecutive healthy subjects (181 males/156 females, mean age 7.12 ± 5.3 years, and range from birth to 18-years) using RT 3D echocardiography (3DE). The LV rotation, twist and torsion measurements were made off-line using TomTec software. Manual landmark selection and endocardial border editing were performed in 3 planes (apical “2”-, “4”-, and “3”- chamber views) and semi-automated tracking yielded LV rotation, twist and torsion measurements. LV rotation, twist and torsion analysis by RT 3DSTE were feasible in 307 out of 347 subjects (88.5%). Results There was no correlation between rotation or twist and age, height, weight, BSA or heart rate, respectively. However, there was statistically significant, but very modest correlation between LV torsion and age (R2 = 0.036, P< 0.001). The normal ranges were defined for rotation and twist in this cohort, and for torsion for each age group. The intra-observer and inter-observer variabilities for apical and basal rotation, twist and torsion ranged from 7.3% ± 3.8% to 12.3% ± 8.8% and from 8.8% ± 4.6% to 15.7% ± 10.1%, respectively. Conclusions We conclude that analysis of LV rotation, twist and torsion by this new RT3D STE is feasible and reproducible in pediatric population. There is no maturational change in rotation and twist, but torsion decreases with age in this cohort. Further refinement is warranted to validate the utility of this new methodology in more sensitive and quantitative evaluation of congenital and acquired heart diseases in children. PMID:27427968

  5. Single-pixel three-dimensional imaging with time-based depth resolution

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Jie; Edgar, Matthew P.; Gibson, Graham M.; Sun, Baoqing; Radwell, Neal; Lamb, Robert; Padgett, Miles J.

    2016-07-01

    Time-of-flight three-dimensional imaging is an important tool for applications such as object recognition and remote sensing. Conventional time-of-flight three-dimensional imaging systems frequently use a raster scanned laser to measure the range of each pixel in the scene sequentially. Here we show a modified time-of-flight three-dimensional imaging system, which can use compressed sensing techniques to reduce acquisition times, whilst distributing the optical illumination over the full field of view. Our system is based on a single-pixel camera using short-pulsed structured illumination and a high-speed photodiode, and is capable of reconstructing 128 × 128-pixel resolution three-dimensional scenes to an accuracy of ~3 mm at a range of ~5 m. Furthermore, by using a compressive sampling strategy, we demonstrate continuous real-time three-dimensional video with a frame-rate up to 12 Hz. The simplicity of the system hardware could enable low-cost three-dimensional imaging devices for precision ranging at wavelengths beyond the visible spectrum.

  6. Three-dimensional time dependent computation of turbulent flow

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Reynolds, W. C.; Ferziger, J. H.

    1975-01-01

    The three-dimensional, primitive equations of motion are solved numerically for the case of isotropic box turbulence and the distortion of homogeneous turbulence by irrotational plane strain at large Reynolds numbers. A Gaussian filter is applied to governing equations to define the large scale field. This gives rise to additional second order computed scale stresses (Leonard stresses). The residual stresses are simulated through an eddy viscosity. Uniform grids are used, with a fourth order differencing scheme in space and a second order Adams-Bashforth predictor for explicit time stepping. The results are compared to the experiments and statistical information extracted from the computer generated data.

  7. Real-time two- and three-dimensional imaging of monocyte motility and navigation on planar surfaces and in collagen matrices: roles of Rho

    PubMed Central

    Bzymek, Robert; Horsthemke, Markus; Isfort, Katrin; Mohr, Simon; Tjaden, Kerstin; Müller-Tidow, Carsten; Thomann, Marlies; Schwerdtle, Tanja; Bähler, Martin; Schwab, Albrecht; Hanley, Peter J.

    2016-01-01

    We recently found that macrophages from RhoA/RhoB double knockout mice had increased motility of the cell body, but severely impaired retraction of the tail and membrane extensions, whereas RhoA- or RhoB-deficient cells exhibited mild phenotypes. Here we extended this work and investigated the roles of Rho signaling in primary human blood monocytes migrating in chemotactic gradients and in various settings. Monocyte velocity, but not chemotactic navigation, was modestly dependent on Rho-ROCK-myosin II signaling on a 2D substrate or in a loose collagen type I matrix. Viewed by time-lapse epi-fluorescence microscopy, monocytes appeared to flutter rather than crawl, such that the 3D surface topology of individual cells was difficult to predict. Spinning disk confocal microscopy and 3D reconstruction revealed that cells move on planar surfaces and in a loose collagen matrix using prominent, curved planar protrusions, which are rapidly remodeled and reoriented, as well as resorbed. In a dense collagen type I matrix, there is insufficient space for this mode and cells adopt a highly Rho-dependent, lobular mode of motility. Thus, in addition to its role in tail retraction on 2D surfaces, Rho is critical for movement in confined spaces, but is largely redundant for motility and chemotaxis in loose matrices. PMID:27122054

  8. Deployment of a three-dimensional array of Micro-Pocket Fission Detector triads (MPFD3) for real-time, in-core neutron flux measurements in the Kansas State University TRIGA Mark-II Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Ohmes, Martin Francis

    A Micro-Pocket Fission Detector (MPFD) is a miniaturized type of fission chamber developed for use inside a nuclear reactor. Their unique design allows them to be located between or even inside fuel pins while being built from materials which give them an operational lifetime comparable to or exceeding the life of the fuel. While other types of neutron detectors have been made for use inside a nuclear reactor, the MPFD is the first neutron detector which can survive sustained use inside a nuclear reactor while providing a real-time measurement of the neutron flux. This dissertation covers the deployment of MPFDs as a large three-dimensional array inside the Kansas State University TRIGA Mark-II Nuclear Reactor for real-time neutron flux measurements. This entails advancements in the design, construction, and packaging of the Micro-Pocket Fission Detector Triads with incorporated Thermocouple, or MPFD3-T. Specialized electronics and software also had to be designed and built in order to make a functional system capable of collecting real-time data from up to 60 MPFD3-Ts, or 180 individual MPFDs and 60 thermocouples. Design of the electronics required the development of detailed simulations and analysis for determining the theoretical response of the detectors and determination of their size. The results of this research shows that MPFDs can operate for extended times inside a nuclear reactor and can be utilized toward the use as distributed neutron detector arrays for advanced reactor control systems and power mapping. These functions are critical for continued gains in efficiency of nuclear power reactors while also improving safety through relatively inexpensive redundancy.

  9. [Outlier Detection of Time Series Three-Dimensional Fluorescence Spectroscopy].

    PubMed

    Yu, Shao-hui; Zhang, Yu-jun; Zhao, Nan-jing

    2015-06-01

    The qualitative and quantitative analysis are often interfered by the outliers in time series three-dimensional fluorescence spectroscopy. In this work, an efficient outlier detection method is proposed by taking advantage of the characteristics in time dimension and the spectral dimension. Firstly, the wavelength points that are mostly the outliers are extracted by the variance in time dimension. Secondly, by the analysis of the existence styles of outliers and similarity score of any two samples, the cumulative similarity is introduced in spectral dimension. At last, fluorescence intensity at each wavelength of all samples is modified by the correction matrix in time dimension and the outlier detection is completed according the to cumulative similarity scores. The application of the correction matrix in time dimension not only improves the validity of the method but also reduces the computation by the choice of characteristics region in correction matrix. Numerical experiments show that the outliers can still be detected by the 50 percent of all points in spectral dimension.

  10. New techniques in television to provide research in three-dimensional real-time or near real-time imagery and reduced cost systems for teleconferencing and educational uses, part 1

    NASA Technical Reports Server (NTRS)

    Pao, Y. H.; Claspy, P.; Allen, J. E.; Merat, F.

    1979-01-01

    The results are presented of a continuing research and development program the objective of which is to develop a reduced bandwidth television system and a technique for television transmission of holograms. The result of the former is a variable frame rate television system, the operation of which was demonstrated for both black-and-white and color signals. This system employs a novel combination of the inexpensive mass storage capacity of a magnetic disc with the reliability of a digital system for time expansion and compression. Also reported are the results of a theoretical analysis and preliminary feasibility experiment of an innovative system for television transmission of holograms using relatively conventional TV equipment along with a phase modulated reference wave for production of the original interference pattern.

  11. Three-dimensional time reversal communications in elastic media

    DOE PAGES

    Anderson, Brian E.; Ulrich, Timothy J.; Le Bas, Pierre-Yves; ...

    2016-02-23

    Our letter presents a series of vibrational communication experiments, using time reversal, conducted on a set of cast iron pipes. Time reversal has been used to provide robust, private, and clean communications in many underwater acoustic applications. Also, the use of time reversal to communicate along sections of pipes and through a wall is demonstrated here in order to overcome the complications of dispersion and multiple scattering. These demonstrations utilize a single source transducer and a single sensor, a triaxial accelerometer, enabling multiple channels of simultaneous communication streams to a single location.

  12. Method for producing three-dimensional real image using radiographic perspective views of an object

    DOEpatents

    Ellingson, William A.; Read, Alvin A.

    1976-02-24

    A sequence of separate radiographs are made by indexing a radiation source along a known path relative to the object under study. Thus, each radiograph contains information from a different perspective. A holographically-recorded image is then made from each radiographic perspective by exact re-tracing of the rays through each radiographic perspective such that the re-tracing duplicates the geometry under which it was originally prepared. The holographically-stored images are simultaneously illuminated with the conjugate of the reference beam used in the original recordings. The result is the generation of a three-dimensional real image of the object such that a light-sensitive device can be moved to view the real image along any desired surface with the optical information in all other surfaces greatly suppressed.

  13. Model calculations for three-dimensional heat conduction in a real tooth

    NASA Astrophysics Data System (ADS)

    Foth, Hans-Jochen; Luke, Manfred

    2003-06-01

    To generate the three-dimensional grid net for a real tooth, an extracted tooth was grinded in steps of some millimetres from the top to the root. After each grinding step the displayed cross section was documented by photography showing clearly all transition lines between enamel, dentin and the pulp. The photographic reprints were used to determine the x-y-z-coordinates of selected points to represent the transition lines. In a fairly large-scale procedure these points were combined to a three dimensional net. FEM calculations were carried out to solve the heat equation numerically for the boundary condition that an IR laser pulse hits the surface for laser ablation. Since all the information of the various types of tissue is included in this model, the results give a huge variety of information. For example: the outer shell of enamel could be displayed exclusively to show its inner surface and which temperature distribution as well as mechanical stress got build up there.

  14. Communication patterns and satisfaction levels in three-dimensional versus real-life intimate relationships.

    PubMed

    Gilbert, Richard L; Murphy, Nora A; Ávalos, M Clementina

    2011-10-01

    The present study compared communication patterns and satisfaction levels between three-dimensional (3D) and real-life intimate relationships using a sample of 71 participants who were concurrently involved in an intimate relationship within Second Life and a separate real-life romantic relationship. Participants indicated that the quality of their communication was significantly better in their Second-Life relationship and that they experienced higher levels of satisfaction with their virtual partners. The more positive or idealized view of the 3D relationships may have been due to higher levels of focused interaction and reduced stressors in the virtual world and the greater length, and associated problems, in participant's real-life relationships. In addition, the presence of a concurrent relationship within Second Life could have negatively affected participant's judgments of their real-life relationships. These data offer the first detailed assessment of communication patterns and satisfaction levels in intimate relationships across the real and 3D virtual realms as the number of users and romantic partners in immersive virtual environments continue to grow.

  15. Numerical computation of multishocked, three-dimensional supersonic flow fields with real gas effects.

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Reinhardt, W. A.; Warming, R. F.

    1972-01-01

    A computational procedure is presented which is capable of determining the supersonic flow field surrounding three-dimensional wing-body configurations such as a delta-wing space shuttle. The governing equations in conservation-law form are solved by a finite difference method using a second-order noncentered algorithm between the body and the outermost shock wave, which is treated as a sharp discontinuity. Secondary shocks which form between these boundaries are captured automatically, and the intersection of these shocks with the bow shock posed no difficulty. Resulting flow fields about typical blunt nose shuttle-like configurations at angle of attack are presented. The differences between perfect and real gas effects for high Mach number flows are shown.

  16. Real-Time Three-Dimensional Echocardiography as a Novel Approach to Quantify Left Ventricular Dyssynchrony: A Comparison Study with Phase Analysis of Gated Myocardial Perfusion Single Photon Emission Computed Tomography

    PubMed Central

    Marsan, Nina Ajmone; Henneman, Maureen M.; Chen, Ji; Ypenburg, Claudia; Dibbets, Petra; Ghio, Stefano; Bleeker, Gabe B.; Stokkel, Marcel P.; van der Wall, Ernst E.; Tavazzi, Luigi; Garcia, Ernest V.; Bax, Jeroen J.

    2010-01-01

    Background Different imaging modalities have been explored for assessment of left ventricular (LV) dyssynchrony. Gated myocardial perfusion single photon emission computed tomography (GMPS) with phase analysis is a reliable technique to quantify LV dyssynchrony and predict response to cardiac resynchronization therapy. Objective Real-time 3-dimensional echocardiography (RT3DE) is a novel imaging technique that provides a LV systolic dyssynchrony index, based on regional volumetric changes as a function of time and calculated as the SD of time to minimum systolic volume of 16 standard myocardial segments expressed in percentage of cardiac cycle. The aim of this study was to compare LV dyssynchrony evaluated with GMPS with LV dyssynchrony assessed with RT3DE. Methods The study population consisted of 40 patients with heart failure who underwent both GMPS and RT3DE. Results Good correlations between LV dyssynchrony assessed with RT3DE and GMPS were demonstrated (r = 0.76 for histogram bandwidth, r = 0.80 for phase SD, P < .0001). Patients with substantial LV dyssynchrony on GMPS (defined as ≥135 degrees for histogram bandwidth and ≥43 degrees for phase SD) had significantly higher LV systolic dyssynchrony index than patients without substantial LV dyssynchrony. Conclusions The good correlations between LV dyssynchrony assessed with GMPS and with RT3DE provide further support for the use of RT3DE for reliable assessment of LV dyssynchrony. PMID:18222645

  17. Comparisons between real and complex Gauss wavelet transform methods of three-dimensional shape reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Dan, Youquan; Wang, Qingyuan

    2015-10-01

    The continuous wavelet transform (CWT) introduces an expandable spatial and frequency window which can overcome the inferiority of localization characteristic in Fourier transform and windowed Fourier transform. The CWT method is widely applied in the non-stationary signal analysis field including optical 3D shape reconstruction with remarkable performance. In optical 3D surface measurement, the performance of CWT for optical fringe pattern phase reconstruction usually depends on the choice of wavelet function. A large kind of wavelet functions of CWT, such as Mexican Hat wavelet, Morlet wavelet, DOG wavelet, Gabor wavelet and so on, can be generated from Gauss wavelet function. However, so far, application of the Gauss wavelet transform (GWT) method (i.e. CWT with Gauss wavelet function) in optical profilometry is few reported. In this paper, the method using GWT for optical fringe pattern phase reconstruction is presented first and the comparisons between real and complex GWT methods are discussed in detail. The examples of numerical simulations are also given and analyzed. The results show that both the real GWT method along with a Hilbert transform and the complex GWT method can realize three-dimensional surface reconstruction; and the performance of reconstruction generally depends on the frequency domain appearance of Gauss wavelet functions. For the case of optical fringe pattern of large phase variation with position, the performance of real GWT is better than that of complex one due to complex Gauss series wavelets existing frequency sidelobes. Finally, the experiments are carried out and the experimental results agree well with our theoretical analysis.

  18. Energy management of three-dimensional minimum-time intercept. [for aircraft flight optimization

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Cliff, E. M.; Visser, H. G.

    1985-01-01

    A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission. The proposed scheme has roots in two well known techniques: singular perturbations and neighboring-optimal guidance. Use of singular-perturbation ideas is made in terms of the assumed trajectory-family structure. A heading/energy family of prestored point-mass-model state-Euler solutions is used as the baseline in this scheme. The next step is to generate a near-optimal guidance law that will transfer the aircraft to the vicinity of this reference family. The control commands fed to the autopilot (bank angle and load factor) consist of the reference controls plus correction terms which are linear combinations of the altitude and path-angle deviations from reference values, weighted by a set of precalculated gains. In this respect the proposed scheme resembles neighboring-optimal guidance. However, in contrast to the neighboring-optimal guidance scheme, the reference control and state variables as well as the feedback gains are stored as functions of energy and heading in the present approach. Some numerical results comparing open-loop optimal and approximate feedback solutions are presented.

  19. Parallel Computation and Visualization of Three-dimensional, Time-dependent, Thermal Convective Flows

    NASA Technical Reports Server (NTRS)

    Wang, P.; Li, P.

    1998-01-01

    A high-resolution numerical study on parallel systems is reported on three-dimensional, time-dependent, thermal convective flows. A parallel implentation on the finite volume method with a multigrid scheme is discussed, and a parallel visualization systemm is developed on distributed systems for visualizing the flow.

  20. Acetazolamide challenge for three-dimensional time-of-flight MR angiography of the brain

    SciTech Connect

    Mandai, Kenji; Sueyoshi, Kenji; Fukunaga, Ryuzo; Nukada, Masaru; Ohtani, Fumio; Araki, Yutaka; Tsukaguchi, Isao; Abe, Hiroshi )

    1994-04-01

    We compared three-dimensional time-of-flight MR angiograms obtained before and after acetazolamide administration to evaluate whether use of this drug could improve visualization of small peripheral intracranial arteries and atherosclerotic stenosis. For evaluation of small peripheral arteries, 10 patients with clinical diagnosis of ischemic cerebrovascular disease and 10 healthy volunteers were investigated, and for evaluation of stenosis, another 6 patients were investigated. Vascular images were obtained by three-dimensional time-of-flight MR angiography. After a baseline scan, 17 mg/kg acetazolamide was injected intravenously and the second scan was performed 20 minutes later. Several small peripheral arteries that had not been seen on the baseline images were visible on the acetazolamide images without any augmentation of the background signals. Stenotic lesions in the main trunks of the major cerebral arteries were detected more clearly on acetazolamide images. Acetazolamide improves visualization of small peripheral intracranial arteries and sensitivity in detecting atherosclerotic stenosis in the main trunk of major cerebral artery by three-dimensional time-of-flight MR angiography without changing MR apparatus and software. 15 refs., 5 figs., 2 tabs.

  1. Time-reversal invariant SU(2 ) Hofstadter problem in three-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Li, Yi

    2015-05-01

    We formulate the three-dimensional SU(2 ) Landau level problem in cubic lattices with time-reversal invariance. By taking a Landau-type SU(2 ) gauge, the system can be reduced into one dimension, as characterized by the SU(2 ) generalization of the usual Harper equations with a periodic spin-dependent gauge potential. The surface spectra indicate the spatial separation of helical states with opposite eigenvalues of a lattice helicity operator. The band topology is investigated from both the analysis of the boundary helical Fermi surfaces and the calculation of the Z2 index based on the bulk wave functions. The transition between a three-dimensional weak topological insulator to a strong one is studied as varying the anisotropy of hopping parameters.

  2. Three-dimensional time-dependent wave-packet calculations of OBrO absorption spectra

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Sun, Zhigang; Cong, Shu-Lin; Lou, Nanquan

    2005-08-01

    The absorption spectra of the C(A22)←X(B12) transition of the OBrO molecule are calculated using three-dimensional time-dependent wave-packet method in Radau coordinates for a total angular momentum J =0. The wave packet is propagated using the split operator technique associated with fast Fourier transform. Employing the basis functions obtained by one-dimensional Fourier grid Hamiltonian method, the initial wave packet is calculated directly on the three-dimensional Fourier grid. The numerical model is characterized by simplicity and efficiency. The ab initio potential surfaces for the C(A22) and X(B12) states are used in the calculation. The calculated absorption spectra of the C(A22)←X(B12) transition of OBrO molecule agree well with the experimental results.

  3. A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2001-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.

  4. A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2002-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.

  5. Three-dimensional vision for real-time produce grading

    NASA Astrophysics Data System (ADS)

    Bailey, Donald G.; Mercer, Ken; Plaw, Colin; Ball, Ralph; Barraclough, Harvey

    2002-02-01

    Produce is often sold by weight, so one of the roles of the grading system is to allocate each item to a particular chute for packing into fixed weight bundles. Accurate, high- speed weight measurement is difficult and expensive, so machine vision is used to estimate the weight of each item. Previous estimations relied on a single diameter measurement, which resulted in large errors. To ensure that the minimum weight was provided, each bundle was on average 30% overweight. By improving the accuracy of the estimation, and combining this with an improved chute allocation strategy, significant savings can be made. The weight estimation in the system under development is based on the projected area of each item. The error in weight estimation was further improved by measuring the projected area from two perpendicular views. With the produce being sorted at a rate of 12 to 15 items per second, there are significant challenges in obtaining and processing the simultaneous perpendicular views of each item. The two views are captured of the item through the use of mirrors, and a third direct view is also obtained for quality grading purposes.

  6. Three-dimensional localization of fluorescent targets in turbid media using time reversal optical tomography

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Gayen, S. K.

    2012-12-01

    An optical tomography approach for locating fluorescent targets embedded inside a turbid medium is introduced. It uses multi-source probing and multi-detector signal acquisition to collect diffuse fluorescence signal, and time reversal matrix formalism with subspace based signal processing for image reconstruction. It could provide three-dimensional position co-ordinates of two small fluorescent targets embedded in Intralipid-20% suspension of thickness ˜60 times the transport mean free path with an accuracy of ˜1 mm. Fast reconstruction and high spatial resolution make the approach potentially suited for detecting and locating contrast-enhanced breast tumor at early stages of growth.

  7. Nonlinear teleseismic tomography at Long Valley caldera, using three-dimensional minimum travel time ray tracing

    SciTech Connect

    Weiland, C.M.; Steck, L.K.; Dawson, P.B.

    1995-10-10

    The authors explore the impact of three-dimensional minimum travel time ray tracing on nonlinear teleseismic inversion. This problem has particular significance when trying to image strongly contrasting low-velocity bodies, such as magma chambers, because strongly refracted/and/or diffracted rays may precede the direct P wave arrival traditionally used in straight-ray seismic tomography. They use a simplex-based ray tracer to compute the three-dimensional, minimum travel time ray paths and employ an interative technique to cope with nonlinearity. Results from synthetic data show that their algorithm results in better model reconstructions compared with traditional straight-ray inversions. The authors reexamine the teleseismic data collected at Long Valley caldera by the U.S. Geological Survey. The most prominent feature of their result is a 25-30% low-velocity zone centered at 11.5 km depth beneath the northwestern quandrant of the caldera. Beneath this at a depth of 24.5 km is a more diffuse 15% low-velocity zone. In general, the low velocities tend to deepen to the south and east. The authors interpret the shallow feature to be the residual Long Valley caldera magma chamber, while the deeper feature may represent basaltic magmas ponded in the midcrust. The deeper position of the prominent low-velocity region in comparison to earlier tomographic images is a result of using three-dimensional rays rather than straight rays in the ray tracing. The magnitude of the low-velocity anomaly is a factor of {approximately}3 times larger than earlier models from linear arrival time inversions and is consistent with models based on observations of ray bending at sites within the caldera. These results imply the presence of anywhere from 7 to 100% partial melt beneath the caldera. 40 refs., 1 fig., 1 tab.

  8. Time-of-flight compressed-sensing ultrafast photography for encrypted three-dimensional dynamic imaging

    NASA Astrophysics Data System (ADS)

    Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V.

    2016-02-01

    We applied compressed ultrafast photography (CUP), a computational imaging technique, to acquire three-dimensional (3D) images. The approach unites image encryption, compression, and acquisition in a single measurement, thereby allowing efficient and secure data transmission. By leveraging the time-of-flight (ToF) information of pulsed light reflected by the object, we can reconstruct a volumetric image (150 mm×150 mm×1050 mm, x × y × z) from a single camera snapshot. Furthermore, we demonstrated high-speed 3D videography of a moving object at 75 frames per second using the ToF-CUP camera.

  9. Mode-resolved travel-time statistics for elastic rays in three-dimensional billiards.

    PubMed

    Ortega, A; Stringlo, K; Gorin, T

    2012-03-01

    We consider the ray limit of propagating ultrasound waves in three-dimensional bodies made from a homogeneous, isotropic, elastic material. Using a Monte Carlo approach, we simulate the propagation and proliferation of elastic rays using realistic angle-dependent reflection coefficients, taking into account mode conversion and ray splitting. For a few simple geometries, we analyze the long-time equilibrium distribution, focusing on the energy ratio between compressional and shear waves. Finally, we study the travel time statistics, i.e., the distribution of the amount of time a given trajectory spends as a compressional wave, as compared to the total travel time. These results are intimately related to recent elastodynamics experiments on Coda-wave interferometry by Lobkis and Weaver [Phys. Rev. E 78, 066212 (2008)].

  10. Differential time domain method improves performance of pulsed laser ranging and three-dimensional imaging.

    PubMed

    Cao, Jie; Hao, Qun; Cheng, Yang; Peng, Yuxin; Zhang, Kaiyu; Mu, Jiaxing; Wang, Peng

    2016-01-10

    A ranging method based on the differential time domain method (DTDM) is proposed in order to improve ranging accuracy and the range of active measurement based on peak discriminator (PD). We develop mathematical models and deduce that zero-crossing sensitivity is an important factor, which affects the ranging error of DTDM. Additionally, zero-crossing sensitivity is determined by delayed time. We carried out relative experiments and obtained the smallest ranging error when delayed time is receiving pulse width. We also compare ranging, three-dimensional (3D) point clouds and depth images based on two methods under same testing conditions. The results show that DTDM is beneficial in improving performance of pulse laser ranging and 3D imaging.

  11. High mass resolution isochronous time-of-flight spectrograph for three-dimensional space plasma measurements

    NASA Technical Reports Server (NTRS)

    Moebius, E.; Bochsler, P.; Ghielmetti, A. G.; Hamilton, D. C.

    1990-01-01

    By combining a toroidal electrostatic analyzer with a novel cylindrically symmetric isochronous time-of-flight mass spectrometer, an instrument was developed that simultaneously determines the three-dimensional distribution function of ions and differentiates species. The ion mass is determined to high resolution (M/Delta-M greater than 50) from the time of flight within a harmonic field configuration defined by hyperboloid equipotential surfaces. A second conventional time-of-flight channel makes use of particles leaving the thin entrance foil as neutrals. An additional solid state detector in which the neutrals are stopped allows the total energy and thereby the ionic charge of the incident ions to be determined as well. Information from the neutral and the ion channels can be combined to determine the total mass of an incident molecular ion and the mass of one atomic fragment.

  12. Time domain computation of nonlinear diffraction loads upon three dimensional floating bodies

    SciTech Connect

    Ferrant, P.

    1995-12-31

    The diffraction of nonlinear regular waves of permanent form by three dimensional bodies is simulated numerically. The computation is based on a boundary integral equation method, with a mixed Euler-Lagrange approach for the time-stepping. The method is an extension of a previously developed linear time domain computational model for free surface flows (Ferrant 1993b). The behavior of the nonlinear model has first been tested on radiation and diffraction problems for submerged bodies, with satisfactory results (Ferrant 1994). In the present paper, the author reports on the extension of this model to the diffraction of nonlinear waves upon surface piercing bodies. Some numerical results obtained in the case of a bottom-mounted vertical cylinder in water of finite depth are presented and discussed.

  13. The distribution of “time of flight” in three dimensional stationary chaotic advection

    SciTech Connect

    Raynal, Florence; Carrière, Philippe

    2015-04-15

    The distributions of “time of flight” (time spent by a single fluid particle between two crossings of the Poincaré section) are investigated for five different three dimensional stationary chaotic mixers. Above all, we study the large tails of those distributions and show that mainly two types of behaviors are encountered. In the case of slipping walls, as expected, we obtain an exponential decay, which, however, does not scale with the Lyapunov exponent. Using a simple model, we suggest that this decay is related to the negative eigenvalues of the fixed points of the flow. When no-slip walls are considered, as predicted by the model, the behavior is radically different, with a very large tail following a power law with an exponent close to −3.

  14. Three-Dimensional Echocardiography: Current Status and Real-Life Applications

    PubMed Central

    Wu, Victor Chien-Chia; Takeuchi, Masaaki

    2017-01-01

    The use of cardiac ultrasound is fundamental to the understanding of normal heart function and crucial to pathophysiological diagnosis. The growing availability of 3D echocardiography (3DE) over the last decade has allowed its applications to expand from establishing reference values for chamber size and elucidating ventricular mechanics, to assessing valvular disease severity and playing pivotal roles in interventional procedures. Several important advantages of 3DE include eliminating geometric assumptions, quantifying complex geometric shape volumes, viewing structures from any perspective, assessing lesion in simultaneous multiplanes or multislice mode, all of which are not possible with traditional 2D echocardiography (2DE). Real-time 3DE has been shown to be simple, accurate, reproducible, and versatile, and generally has superior outcome prognosis compared to the 2DE. PMID:28344414

  15. Wavelet compression of three-dimensional time-lapse biological image data.

    PubMed

    Stefansson, H Narfi; Eliceiri, Kevin W; Thomas, Charles F; Ron, Amos; DeVore, Ron; Sharpley, Robert; White, John G

    2005-02-01

    The use of multifocal-plane, time-lapse recordings of living specimens has allowed investigators to visualize dynamic events both within ensembles of cells and individual cells. Recordings of such four-dimensional (4D) data from digital optical sectioning microscopy produce very large data sets. We describe a wavelet-based data compression algorithm that capitalizes on the inherent redunancies within multidimensional data to achieve higher compression levels than can be obtained from single images. The algorithm will permit remote users to roam through large 4D data sets using communication channels of modest bandwidth at high speed. This will allow animation to be used as a powerful aid to visualizing dynamic changes in three-dimensional structures.

  16. Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography

    PubMed Central

    Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V.

    2015-01-01

    Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium. PMID:26503834

  17. A three-dimensional, time-dependent model of Mobile Bay

    NASA Technical Reports Server (NTRS)

    Pitts, F. H.; Farmer, R. C.

    1976-01-01

    A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.

  18. Three-dimensional time-resolved optical mammography of the uncompressed breast

    SciTech Connect

    Enfield, Louise C.; Gibson, Adam P.; Everdell, Nicholas L.; Delpy, David T.; Schweiger, Martin; Arridge, Simon R.; Richardson, Caroline; Keshtgar, Mohammad; Douek, Michael; Hebden, Jeremy C

    2007-06-10

    Optical tomography is being developed as a means of detecting and specifying disease in the adult female breast. We present a series of clinical three-dimensional optical images obtained with a 32-channel time-resolvedsystem and a liquid-coupled interface. Patients place their breasts in a hemispherical cup to whichsources and detectors are coupled, and the remaining space is filled with a highly scattering fluid. Acohort of 38 patients has been scanned, with a variety of benign and malignant lesions. Images show that hypervascularization associated with tumors provides very high contrast due to increased absorption by hemoglobin. Only half of the fibroadenomas scanned could be observed, but of those that could bedetected, all but one revealed an apparent increase in blood volume and a decrease in scatter and oxygen saturation.

  19. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging

    NASA Astrophysics Data System (ADS)

    Velten, Andreas; Willwacher, Thomas; Gupta, Otkrist; Veeraraghavan, Ashok; Bawendi, Moungi G.; Raskar, Ramesh

    2012-03-01

    The recovery of objects obscured by scattering is an important goal in imaging and has been approached by exploiting, for example, coherence properties, ballistic photons or penetrating wavelengths. Common methods use scattered light transmitted through an occluding material, although these fail if the occluder is opaque. Light is scattered not only by transmission through objects, but also by multiple reflection from diffuse surfaces in a scene. This reflected light contains information about the scene that becomes mixed by the diffuse reflections before reaching the image sensor. This mixing is difficult to decode using traditional cameras. Here we report the combination of a time-of-flight technique and computational reconstruction algorithms to untangle image information mixed by diffuse reflection. We demonstrate a three-dimensional range camera able to look around a corner using diffusely reflected light that achieves sub-millimetre depth precision and centimetre lateral precision over 40 cm×40 cm×40 cm of hidden space.

  20. Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography

    NASA Astrophysics Data System (ADS)

    Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V.

    2015-10-01

    Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium.

  1. Investigation and evaluation of a computer program to minimize three-dimensional flight time tracks

    NASA Technical Reports Server (NTRS)

    Parke, F. I.

    1981-01-01

    The program for the DC 8-D3 flight planning was slightly modified for the three dimensional flight planning for DC 10 aircrafts. Several test runs of the modified program over the North Atlantic and North America were made for verifying the program. While geopotential height and temperature were used in a previous program as meteorological data, the modified program uses wind direction and speed and temperature received from the National Weather Service. A scanning program was written to collect required weather information from the raw data received in a packed decimal format. Two sets of weather data, the 12-hour forecast and 24-hour forecast based on 0000 GMT, are used for dynamic processes in testruns. In order to save computing time only the weather data of the North Atlantic and North America is previously stored in a PCF file and then scanned one by one.

  2. Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method

    NASA Technical Reports Server (NTRS)

    Chang, Chau-lyan

    2007-01-01

    The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.

  3. Shape complexity of whole-field three-dimensional space-time fluid interfaces in turbulence

    NASA Astrophysics Data System (ADS)

    Catrakis, Haris J.; Aguirre, Roberto C.; Ruiz-Plancarte, Jesus; Thayne, Robert D.

    2002-11-01

    A shape-complexity measure, Omega]d)([lambda, is proposed to quantify the behavior of turbulence-generated fluid interfaces in d dimensions as a function of scale lambda in terms of a generalized area-volume ratio. This shape complexity provides a dimensionless measure of the interfacial contributions at scales larger than or equal to lambda. This is useful, for example, to quantify the interfacial area in three dimensions or the contour length in two dimensions, facilitating a comparison of three-dimensional interfaces to two-dimensional interfacial transects. Application to mixed-fluid interfaces derived from three-dimensional approx10003 space-time measurements above the mixing transition in turbulent jets, at Reynolds number Reapprox20 000 and Schmidt number Scapprox2000, shows that both Omega]3)([lambda and Omega]2)([lambda increase continuously with decreasing scale and have scaling exponents alpha(sub Omega3) and alpha(sub Omega2) which depend on scale. It is argued that this scale dependence corresponds to the cumulative interfacial dynamics and structure. At intermediate scales, the shape-complexity exponent of the space-time interfaces is found to be larger in three dimensions compared to two dimensions, i.e., alpha(sub Omega]3))([lambda]>[alpha(sub Omega]2))([lambda, consistent with previous comparisons between two-dimensional and one-dimensional interfacial transects. This behavior is attributable to the relative contributions of large-scale folding and small-scale wrinkling to the interfacial shape complexity, and may be expected to be Reynolds-number and Schmidt-number dependent. The shape complexity Omega]d)([lambda provides a way to compare quantitatively the behavior of interfaces across the range of scales and in different dimensions, in a given flow or in different flows.

  4. Analysis and numerical simulation of a real cell merger using a three-dimensional cloud resolving model

    NASA Astrophysics Data System (ADS)

    Karacostas, T.; Spiridonov, V.; Bampzelis, D.; Pytharoulis, I.; Tegoulias, I.; Tymbanidis, K.

    2016-03-01

    A three-dimensional cloud resolving model is used to study a real cell merger case that occurred on 10 August, 2008 over north-central Greece, causing heavy rainfall, hailfall and high-frequency lightning. Firstly, the storm is observed, analyzed and recorded using a C-band weather radar. Secondly, three distinct simulations are performed using a cloud resolving model. An unseeded simulation, in order to test the ability of the model to reproduce the structural and evolutionary properties of the storm and two seeded simulations in which seeding occurred before and after cell merging. Reflectivity fields are analyzed, horizontally and vertically, at different simulation times. The 3-D numerical simulations suggest that the merger process occurred by two or three isolated single-cells and formed during their SW-NE motion. The merging process apparently alters dynamical and microphysical properties through low and middle level forcing; increases cloud diameters and cloud depths, producing more graupel and ice particles and increases radar reflectivity values. Processed radar images depict a similar view of the storm structure, evolution and interactions of such merging processes. The model calculated maximum radar reflectivity values coincide with the recorded ones. Results indicate that seeding the cloud before its merging produces more positive effects on hail suppression than seeding after merging. These findings are quite important, in order to document the value of the cloud resolving model and its capability to simulate and reproduce the realistic storm processes and to provide a better understanding of the cloud dynamical and microphysical features related to different seeding approaches.

  5. Developmental critical windows and sensitive periods as three-dimensional constructs in time and space.

    PubMed

    Burggren, Warren W; Mueller, Casey A

    2015-01-01

    A critical window (sensitive period) represents a period during development when an organism's phenotype is responsive to intrinsic or extrinsic (environmental) factors. Such windows represent a form of developmental phenotypic plasticity and result from the interaction between genotype and environment. Critical windows have typically been defined as comprising discrete periods in development with a distinct starting time and end time, as identified by experiments following an on and an off protocol. Yet in reality, periods of responsiveness during development are likely more ambiguous that depicted. Our goal is to extend the concept of the developmental critical window by introducing a three-dimensional construct in which time during development, dose of the stressor applied, and the resultant phenotypic modification can be utilized to more realistically define a critical window. Using the example of survival of the brine shrimp (Artemia franciscana) during exposure to different salinity levels during development, we illustrate that it is not just stressor dose or exposure time but the interaction of these two factors that results in the measured phenotypic change, which itself may vary within a critical window. We additionally discuss a systems approach to critical windows, in which the components of a developing system--whether they be molecular, physiological, or morphological--may show differing responses with respect to time and dose. Thus, the plasticity of each component may contribute to a broader overall system response.

  6. A three-dimensional robust nonlinear terminal guidance law with ISS finite-time convergence

    NASA Astrophysics Data System (ADS)

    Li, Guilin; Ji, Haibo

    2016-05-01

    This paper presents a novel three-dimensional nonlinear terminal guidance law with finite-time convergence for intercepting manoeuvring targets. Different from the usual method of decoupling the missile-target relative motion into two-dimensional planes, this law is designed via using the coupled dynamics. The guidance law is derived based on the theory of finite-time input-to-state stability (ISS), which needs no assumption of the linearisation and the estimation of target accelerations. Under this law, the line-of-sight angular rates can be stabilised to a small domain of convergence around zero in finite time. The convergence rate and convergence domain can be adjusted by changing the guidance parameters. First, a sufficient condition on finite-time ISS of the guidance system is given, and is subsequently used to design the guidance law. Finally, simulation results are provided to show that the proposed guidance law possesses fast convergence rate and strong robustness to target manoeuvres.

  7. Gender Differences in Object Location Memory in a Real Three-Dimensional Environment

    ERIC Educational Resources Information Center

    Iachini, Tina; Sergi, Ida; Ruggiero, Gennaro; Gnisci, Augusto

    2005-01-01

    In this preliminary study we investigate gender differences in object location memory. Our purpose is to extend the results about object location memory obtained in laboratory settings to a real 3-D environment and to further distinguish the specific components involved in this kind of memory by considering the strategies adopted to perform the…

  8. Holocinematographic velocimeter for measuring time-dependent, three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Beeler, George B.; Weinstein, Leonard M.

    1987-01-01

    Two simulatneous, orthogonal-axis holographic movies are made of tracer particles in a low-speed water tunnel to determine the time-dependent, three-dimensional velocity field. This instrument is called a Holocinematographic Velocimeter (HCV). The holographic movies are reduced to the velocity field with an automatic data reduction system. This permits the reduction of large numbers of holograms (time steps) in a reasonable amount of time. The current version of the HCV, built for proof-of-concept tests, uses low-frame rate holographic cameras and a prototype of a new type of water tunnel. This water tunnel is a unique low-disturbance facility which has minimal wall effects on the flow. This paper presents the first flow field examined by the HCV, the two-dimensional von Karman vortex street downstream of an unswept circular cylinder. Key factors in the HCV are flow speed, spatial and temporal resolution required, measurement volume, film transport speed, and laser pulse length. The interactions between these factors are discussed.

  9. Finite-time vortex singularity and Kolmogorov spectrum in a symmetric three-dimensional spiral model

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Ng, C. S.; Wang, Xiaogang

    1995-11-01

    A recent analytical model of three-dimensional Euler flows [Phys. Rev. Lett. 69, 2196 (1992)] which exhibits a finite-time vortex singularity is developed further. The initial state is symmetric and contains a velocity null (stagnation point) which is collinear with two vorticity nulls. Under some assumptions, it is shown by asymptotic analysis of the Euler equation that the vorticity blows up at the stagnation point as inverse time in a locally self-similar manner. The spatial structure of the inviscid flow in the vicinity of the singularity involves disparate small scales. The effect of a small but finite viscosity is shown to arrest the formation of the singularity. The presence of spiral structure in the initial conditions leads naturally to the model developed by Lundgren [Phys. Fluids 25, 2193 (1982)] in which the gradual tightening of spirals by differential rotation provides a mechanism for transfer of energy to small spatial scales. It is shown by asymptotic analysis of the Navier-Stokes equation, that a time-average over the lifetime of the spiral vortex in the present model yields the Kolmogorov spectrum.

  10. A multi-block infrastructure for three-dimensional time-dependent numerical relativity

    NASA Astrophysics Data System (ADS)

    Schnetter, Erik; Diener, Peter; Dorband, Ernst Nils; Tiglio, Manuel

    2006-08-01

    We describe a generic infrastructure for time evolution simulations in numerical relativity using multiple grid patches. After a motivation of this approach, we discuss the relative advantages of global and patch-local tensor bases. We describe both our multi-patch infrastructure and our time evolution scheme, and comment on adaptive time integrators and parallelization. We also describe various patch system topologies that provide spherical outer and/or multiple inner boundaries. We employ penalty inter-patch boundary conditions, and we demonstrate the stability and accuracy of our three-dimensional implementation. We solve both a scalar wave equation on a stationary rotating black hole background and the full Einstein equations. For the scalar wave equation, we compare the effects of global and patch-local tensor bases, different finite differencing operators and the effect of artificial dissipation onto stability and accuracy. We show that multi-patch systems can directly compete with the so-called fixed mesh refinement approach; however, one can also combine both. For the Einstein equations, we show that using multiple grid patches with penalty boundary conditions leads to a robustly stable system. We also show long-term stable and accurate evolutions of a one-dimensional nonlinear gauge wave. Finally, we evolve weak gravitational waves in three dimensions and extract accurate waveforms, taking advantage of the spherical shape of our grid lines.

  11. Holocinematographic velocimeter for measuring time-dependent, three-dimensional flows

    NASA Astrophysics Data System (ADS)

    Beeler, George B.; Weinstein, Leonard M.

    1987-06-01

    Two simulatneous, orthogonal-axis holographic movies are made of tracer particles in a low-speed water tunnel to determine the time-dependent, three-dimensional velocity field. This instrument is called a Holocinematographic Velocimeter (HCV). The holographic movies are reduced to the velocity field with an automatic data reduction system. This permits the reduction of large numbers of holograms (time steps) in a reasonable amount of time. The current version of the HCV, built for proof-of-concept tests, uses low-frame rate holographic cameras and a prototype of a new type of water tunnel. This water tunnel is a unique low-disturbance facility which has minimal wall effects on the flow. This paper presents the first flow field examined by the HCV, the two-dimensional von Karman vortex street downstream of an unswept circular cylinder. Key factors in the HCV are flow speed, spatial and temporal resolution required, measurement volume, film transport speed, and laser pulse length. The interactions between these factors are discussed.

  12. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  13. Three-dimensional crustal structure for the Mendocino Triple Junction region from local earthquake travel times

    SciTech Connect

    Verdonck, D.; Zandt, G.

    1994-12-10

    The large-scale, three-dimensional geometry of the Mendocino Triple Junction at Cape Mendocino, California, was investigated by inverting nearly 19,000 P wave arrival times from over 1400 local earthquakes to estimate the three-dimensional velocity structure and hypocentral parameters. A velocity grid 175 km (N-S) by 125 km (E-W) centered near Garberville, California, was constructed with 25 km horizontal and 5 km vertical node spacing. The model was well resolved near Cape Mendocino, where the earthquakes and stations are concentrated. At about 40.6{degrees}N latitude a high-velocity gradient between 6.5 and 7.5 km/s dips gently to the south and east from about 15 km depth near the coast. Relocated hypocenters concentrate below this high gradient which the authors interpret as the oceanic crust of the subducted Gorda Plate. Therefore the depth to the top of the Gorda Plate near Cape Mendocino is interpreted to be {approximately} 15 km. The Gorda Plate appears intact and dipping {approximately}8{degrees} eastward due to subduction and flexing downward 6{degrees}-12{degrees} to the south. Both hypocenters and velocity structure suggest that the southern edge of the plate intersects the coastline at 40.3{degrees}N latitude and maintains a linear trend 15{degrees} south of east to at least 123{degrees}W longitude. The top of a large low-velocity region at 20-30 km depth extends about 50 km N-S and 75 km E-W (roughly between Garberville and Covelo) and is located above and south of the southern edge of the Gorda Plate. The authors interpret this low velocity area to be locally thickened crust (8-10 km) due to either local compressional forces associated with north-south compression caused by the northward impingement of the rigid Pacific Plate or by underthrusting of the base of the accretionary subduction complex at the southern terminous of the Cascadia Subduction Zone. 66 refs., 11 figs., 3 tabs.

  14. Simulations of time-dependent three-dimensional vortices with application to Neptune's Great Dark Spot

    NASA Astrophysics Data System (ADS)

    Lebeau, Raymond Paul, Jr.

    We use the EPIC atmospheric: model, a primitive-equation, isentropic-coordinate GCM, to simulate time-dependent vortices under conditions similar to those found on Neptune. The vortices have roughly elliptical cross- sections and exhibit motions that resemble the behavior of Neptune's Great Dark Spot (GDS), including equatorward drift, nutating oscillations in aspect ratio and orientation angle, and quasi-periodic tail formation. The simulated vortices also exhibit complex, three- dimensional motions that may explain the occasional appearance of the GDS as two overlapping ellipses. We find that the meridional drift of the vortices is strongly correlated with the meridional gradient of the environmental potential vorticity, β*. This result complements related studies of hurricane motions. The correlation suggests that the drift rate of GDS-type vortices on Neptune, which can be monitored over the long term by the Hubble Space Telescope (HST), is diagnostic of the vorticity gradient on the planet. The best fit to the Voyager GDS drift rate in our simulations corresponds to β*/approx2×10-12/ m-1s- 1. This is about 1/3 of the value given by the zonal- wind profile of Sromovsky et al. (1993), determined by fitting a polynomial in latitude to the cloud-tracking data. We calculate new fit to the same data using Legendre polynomials (spherical harmonics), which yields a significantly lower value for β*, more in line with our vortex-drift results. We show that vortex shape oscillations occur both in cases of zero background potential-vorticity gradient, corresponding to the conditions in analytical Kida-type models of oscillating vortices, and in cases of non-zero background gradient, corresponding to conditions that have not yet been investigated analytically. While the shape oscillations are qualitatively Kida-like, in detail they are distinctly different, suggesting that existing theory may not be sufficient to describe non-uniform, three- dimensional vortices. We

  15. Three-dimensional, time-dependent simulation of a regenerative amplifier free-electron laser

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; Nguyen, D. C.; Sprangle, P. A.; van der Slot, P. J. M.

    2013-01-01

    Free-electron lasers have been designed to operate over virtually the entire electromagnetic spectrum from microwaves through x rays and in a variety of configurations including amplifiers and oscillators. Oscillators typically operate in the low-gain regime where the full spectral width is (Δω/ω)≈1/Nw and the efficiency η≈1/(2.4Nw). Further, since a low-gain oscillator saturates when the gain compensates for losses in the resonator G=L/(1-L), this implies that the losses must be relatively small and the cavity Q must be relatively large. This imposes problems for high power oscillators because the high Q can result in mirror loading above the damage threshold, and in short-wavelength oscillators because sufficiently low loss resonators may not be possible at x-ray wavelengths. In contrast, regenerative amplifier FELs (RAFELs) employ high-gain wigglers that reach exponential gain and can operate with high loss (i.e., low Q) resonators. As such, RAFELs may be able to function at either high power levels or short wavelengths. In this paper, we describe a three-dimensional, time-dependent simulation of a RAFEL operating at a 2.2-μm wavelength, and show that its behavior differs substantially from that of low-gain oscillators, and is closer to that of self-amplified spontaneous radiation FELs in regard to spectral linewidth and extraction efficiency.

  16. Intracranial aneurysms: Diagnostics accuracy of three-dimensional, fourier transform, time-of-flight MR angiography

    SciTech Connect

    Korogi, Yukunori; Takahashi, Mutsumasa; Mabuchi, Nobuhisa; Miki, Hitoshi; Fujiwara, Satoru; Horikawa, Yoshiharu; Nakagawa, Toshio; O`Uchi, Toshihiro; Watabe, Tsuneya; Shiga, Hayao

    1994-10-01

    To assess the accuracy of three-dimensional, Fourier transform, time-of-flight magnetic resonance (MR) angiography in the identification of intracranial aneurysms. MR angiograms of 126 patients (59 male and 67 female patients, aged 12-77 years) with various intracranial vascular lesions were evaluated. Seventy-eight aneurysms, including 60 less than 5 mm in diameter, in 61 patients were depicted at conventional angiography. Eight projection images, as well as one axial collapsed MR angiogram obtained with a maximum-intensity projection algorithm, were used for evaluation. Sensitivity for the five observers ranged from 58% to 68% (mean, 63%). Higher sensitivity was achieved for anterior communicating and middle cerebral artery aneurysms, while that for internal carotid artery aneurysms was poor. Sensitivities for small and medium aneurysms ranged from 50% to 60% (mean, 56%) and from 77% to 94% (mean, 85%), respectively. MR angiography can depict intracranial aneurysms 5 mm or larger with good accuracy but is less useful for the identification of smaller aneurysms. 12 refs., 5 figs., 5 tabs.

  17. Short T2 contrast with three-dimensional ultrashort echo time imaging

    PubMed Central

    Du, Jiang; Bydder, Mark; Takahashi, Atsushi M.; Carl, Michael; Chung, Christine B.; Bydder, Graeme M.

    2014-01-01

    There is increasing interest in imaging short T2 species which show little or no signal with conventional magnetic resonance (MR) pulse sequences. In this paper, we describe the use of three-dimensional ultrashort echo time (3D UTE) sequences with TEs down to 8 μs for imaging of these species. Image contrast was generated with acquisitions using dual echo 3D UTE with echo subtraction, dual echo 3D UTE with rescaled subtraction, long T2 saturation 3D UTE, long T2 saturation dual echo 3D UTE with echo subtraction, single adiabatic inversion recovery 3D UTE, single adiabatic inversion recovery dual echo 3D UTE with echo subtraction and dual adiabatic inversion recovery 3D UTE. The feasibility of using these approaches was demonstrated in in vitro and in vivo imaging of calcified cartilage, aponeuroses, menisci, tendons, ligaments and cortical bone with a 3-T clinical MR scanner. Signal-to-noise ratios and contrast-to-noise ratios were used to compare the techniques. PMID:21440400

  18. Field Line Resonances in Quiet and Disturbed Time Three-dimensional Magnetospheres

    SciTech Connect

    C.Z. Cheng; S. Zaharia

    2002-05-30

    Numerical solutions for field line resonances (FLR) in the magnetosphere are presented for three-dimensional equilibrium magnetic fields represented by two Euler potentials as B = -j Y -a, where j is the poloidal flux and a is a toroidal angle-like variable. The linearized ideal-MHD equations for FLR harmonics of shear Alfvin waves and slow magnetosonic modes are solved for plasmas with the pressure assumed to be isotropic and constant along a field line. The coupling between the shear Alfvin waves and the slow magnetosonic waves is via the combined effects of geodesic magnetic field curvature and plasma pressure. Numerical solutions of the FLR equations are obtained for a quiet time magnetosphere as well as a disturbed time magnetosphere with a thin current sheet in the near-Earth region. The FLR frequency spectra in the equatorial plane as well as in the auroral latitude are presented. The field line length, magnetic field intensity, plasma beta, geodesic curvature and pressure gradient in the poloidal flux surface are important in determining the FLR frequencies. In general, the computed shear Alfvin FLR frequency based on the full MHD model is larger than that based on the commonly adopted cold plasma model in the beq > 1 region. For the quiet time magnetosphere, the shear Alfvin resonance frequency decreases monotonically with the equatorial field line distance, which reasonably explains the harmonically structured continuous spectrum of the azimuthal magnetic field oscillations as a function of L shell in the L is less than or equal to 9RE region. However, the FLR frequency spectrum for the disturbed time magnetosphere with a near-Earth thin current sheet is substantially different from that for the quiet time magnetosphere for R > 6RE, mainly due to shorter field line length due to magnetic field compression by solar wind, reduced magnetic field intensity in the high-beta current sheet region, azimuthal pressure gradient, and geodesic magnetic field

  19. Extracting Surface Activation Time from the Optically Recorded Action Potential in Three-Dimensional Myocardium

    PubMed Central

    Walton, Richard D.; Smith, Rebecca M.; Mitrea, Bogdan G.; White, Edward; Bernus, Olivier; Pertsov, Arkady M.

    2012-01-01

    Optical mapping has become an indispensible tool for studying cardiac electrical activity. However, due to the three-dimensional nature of the optical signal, the optical upstroke is significantly longer than the electrical upstroke. This raises the issue of how to accurately determine the activation time on the epicardial surface. The purpose of this study was to establish a link between the optical upstroke and exact surface activation time using computer simulations, with subsequent validation by a combination of microelectrode recordings and optical mapping experiments. To simulate wave propagation and associated optical signals, we used a hybrid electro-optical model. We found that the time of the surface electrical activation (tE) within the accuracy of our simulations coincided with the maximal slope of the optical upstroke (tF∗) for a broad range of optical attenuation lengths. This was not the case when the activation time was determined at 50% amplitude (tF50) of the optical upstroke. The validation experiments were conducted in isolated Langendorff-perfused rat hearts and coronary-perfused pig left ventricles stained with either di-4-ANEPPS or the near-infrared dye di-4-ANBDQBS. We found that tF∗ was a more accurate measure of tE than was tF50 in all experimental settings tested (P = 0.0002). Using tF∗ instead of tF50 produced the most significant improvement in measurements of the conduction anisotropy and the transmural conduction time in pig ventricles. PMID:22225795

  20. Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters

    NASA Astrophysics Data System (ADS)

    Bischi, G. I.; Tramontana, F.

    2010-10-01

    We consider a three-dimensional discrete dynamical system that describes an application to economics of a generalization of the Lotka-Volterra prey-predator model. The dynamic model proposed is used to describe the interactions among industrial clusters (or districts), following a suggestion given by [23]. After studying some local and global properties and bifurcations in bidimensional Lotka-Volterra maps, by numerical explorations we show how some of them can be extended to their three-dimensional counterparts, even if their analytic and geometric characterization becomes much more difficult and challenging. We also show a global bifurcation of the three-dimensional system that has no two-dimensional analogue. Besides the particular economic application considered, the study of the discrete version of Lotka-Volterra dynamical systems turns out to be a quite rich and interesting topic by itself, i.e. from a purely mathematical point of view.

  1. A California statewide three-dimensional seismic velocity model from both absolute and differential times

    USGS Publications Warehouse

    Lin, G.; Thurber, C.H.; Zhang, H.; Hauksson, E.; Shearer, P.M.; Waldhauser, F.; Brocher, T.M.; Hardebeck, J.

    2010-01-01

    We obtain a seismic velocity model of the California crust and uppermost mantle using a regional-scale double-difference tomography algorithm. We begin by using absolute arrival-time picks to solve for a coarse three-dimensional (3D) P velocity (VP) model with a uniform 30 km horizontal node spacing, which we then use as the starting model for a finer-scale inversion using double-difference tomography applied to absolute and differential pick times. For computational reasons, we split the state into 5 subregions with a grid spacing of 10 to 20 km and assemble our final statewide VP model by stitching together these local models. We also solve for a statewide S-wave model using S picks from both the Southern California Seismic Network and USArray, assuming a starting model based on the VP results and a VP=VS ratio of 1.732. Our new model has improved areal coverage compared with previous models, extending 570 km in the SW-NE directionand 1320 km in the NW-SE direction. It also extends to greater depth due to the inclusion of substantial data at large epicentral distances. Our VP model generally agrees with previous separate regional models for northern and southern California, but we also observe some new features, such as high-velocity anomalies at shallow depths in the Klamath Mountains and Mount Shasta area, somewhat slow velocities in the northern Coast Ranges, and slow anomalies beneath the Sierra Nevada at midcrustal and greater depths. This model can be applied to a variety of regional-scale studies in California, such as developing a unified statewide earthquake location catalog and performing regional waveform modeling.

  2. Simulations of Time-Dependent Three-Dimensional Vortices with Application to Neptune's Great Dark SPOT

    NASA Astrophysics Data System (ADS)

    Lebeau, R. P.; Dowling, T. E.

    1997-07-01

    We use the EPIC atmospheric model, a primitive-equation, isentropic-coordinate GCM, to simulate time-dependent vortices under conditions similar to those found on Neptune. The vortices have roughly elliptical cross-sections and exhibit motions that resemble the behavior of Neptune's Great Dark Spot (GDS), including equatorward drift, nutating oscillations in aspect ratio and orientation angle, and quasi-periodic tail formation. The simulated vortices also exhibit complex, three-dimensional motions that may explain the occasional appearance of the GDS as two overlapping ellipses. We find that the meridional drift of the vortices is strongly correlated with the meridional gradient of the environmental potential vorticity, beta (*) . The correlation suggests that the drift rate of GDS-type vortices on Neptune, which can be monitored over the long term by the Hubble Space Telescope, is diagnostic of the vorticity gradient on the planet. The best fit to the Voyager GDS drift rate in our simulations corresponds to beta (*) ~ 2 x 10(-12) m(-1) s(-1) . This is about 1/3 of the value given by the zonal-wind profile of Sromovsky et\\ al. (1993), determined by fitting a polynomial in latitude to the cloud-tracking data. We calculate a new fit to the same data using Legendre polynomials (spherical harmonics), which yields a significantly lower value for beta (*) in the mid-latitudes. We show that vortex shape oscillations occur both in cases of zero background potential-vorticity gradient, corresponding to the conditions in analytical Kida-type models of oscillating vortices, and in cases of non-zero background gradient, corresponding to conditions that have not yet been investigated analytically. While the shape oscillations are qualitatively Kida-like, in detail they are distinctly different. We also use the EPIC model to examine the demise of GDS-type vortices that drift too close to the equator.

  3. Three dimensional spatial memory and learning in real and virtual environments.

    PubMed

    Oman, Charles M; Shebilske, Wayne L; Richards, Jason T; Tubre, Travis C; Beall, Andrew C; Natapoff, Alan

    2002-01-01

    Human orientation and spatial cognition partly depends on our ability to remember sets of visual landmarks and imagine their relationship to us from a different viewpoint. We normally make large body rotations only about a single axis which is aligned with gravity. However, astronauts who try to recognize environments rotated in 3 dimensions report that their terrestrial ability to imagine the relative orientation of remembered landmarks does not easily generalize. The ability of human subjects to learn to mentally rotate a simple array of six objects around them was studied in 1-G laboratory experiments. Subjects were tested in a cubic chamber (n = 73) and a equivalent virtual environment (n = 24), analogous to the interior of a space station node module. A picture of an object was presented at the center of each wall. Subjects had to memorize the spatial relationships among the six objects and learn to predict the direction to a specific object if their body were in a specified 3D orientation. Percent correct learning curves and response times were measured. Most subjects achieved high accuracy from a given viewpoint within 20 trials, regardless of roll orientation, and learned a second view direction with equal or greater ease. Performance of the subject group that used a head mounted display/head tracker was qualitatively similar to that of the second group tested in a physical node simulator. Body position with respect to gravity had a significant but minor effect on performance of each group, suggesting that results may also apply to weightless situations. A correlation was found between task performance measures and conventional paper-and-pencil tests of field independence and 2&3 dimensional figure rotation ability.

  4. Investigation of storm time magnetotail and ion injection using three-dimensional global hybrid simulation

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wang, X. Y.; Lu, S.; Perez, J. D.; Lu, Q.

    2014-09-01

    Dynamics of the near-Earth magnetotail associated with substorms during a period of extended southward interplanetary magnetic field is studied using a three-dimensional (3-D) global hybrid simulation model that includes both the dayside and nightside magnetosphere, for the first time, with physics from the ion kinetic to the global Alfvénic convection scales. It is found that the dayside reconnection leads to the penetration of the dawn-dusk electric field through the magnetopause and thus a thinning of the plasma sheet, followed by the magnetotail reconnection with 3-D, multiple flux ropes. Ion kinetic physics is found to play important roles in the magnetotail dynamics, which leads to the following results: (1) Hall electric fields in the thin current layer cause a systematic dawnward ion drift motion and thus a dawn-dusk asymmetry of the plasma sheet with a higher (lower) density on the dawnside (duskside). Correspondingly, more reconnection occurs on the duskside. Bidirectional fast ions are generated due to acceleration in reconnection, and more high-speed earthward flow injections are found on the duskside than the dawnside. Such finding of the dawn-dusk asymmetry is consistent with recent satellite observations. (2) The injected ions undergo the magnetic gradient and curvature drift in the dipole-like field, forming a ring current. (3) Ion particle distributions reveal multiple populations/beams at various distances in the tail. (4) Dipolarization of the tail magnetic field takes place due to the pileup of the injected magnetic fluxes and thermal pressure of injected ions, where the fast earthward flow is stopped. Oscillation of the dipolarization front is developed at the fast-flow braking, predominantly on the dawnside. (5) Kinetic compressional wave turbulence is present around the dipolarization front. The cross-tail currents break into small-scale structures with k⟂ρi˜1, where k⟂ is the perpendicular wave number. A sharp dip of magnetic field

  5. Time-accurate anisotropic mesh adaptation for three-dimensional time-dependent problems with body-fitted moving geometries

    NASA Astrophysics Data System (ADS)

    Barral, N.; Olivier, G.; Alauzet, F.

    2017-02-01

    Anisotropic metric-based mesh adaptation has proved its efficiency to reduce the CPU time of steady and unsteady simulations while improving their accuracy. However, its extension to time-dependent problems with body-fitted moving geometries is far from straightforward. This paper establishes a well-founded framework for multiscale mesh adaptation of unsteady problems with moving boundaries. This framework is based on a novel space-time analysis of the interpolation error, within the continuous mesh theory. An optimal metric field, called ALE metric field, is derived, which takes into account the movement of the mesh during the adaptation. Based on this analysis, the global fixed-point adaptation algorithm for time-dependent simulations is extended to moving boundary problems, within the range of body-fitted moving meshes and ALE simulations. Finally, three dimensional adaptive simulations with moving boundaries are presented to validate the proposed approach.

  6. Pulmonary Embolism Detection with Three-dimensional Ultrashort Echo Time MR Imaging: Experimental Study in Canines

    PubMed Central

    Bannas, Peter; Bell, Laura C.; Johnson, Kevin M.; Schiebler, Mark L.; François, Christopher J.; Motosugi, Utaroh; Consigny, Daniel; Reeder, Scott B.

    2016-01-01

    Purpose To demonstrate the feasibility of free-breathing three-dimensional (3D) radial ultrashort echo time (UTE) magnetic resonance (MR) imaging in the simultaneous detection of pulmonary embolism (PE) and high-quality evaluation of lung parenchyma. Materials and Methods The institutional animal care committee approved this study. A total of 12 beagles underwent MR imaging and computed tomography (CT) before and after induction of PE with autologous clots. Breath-hold 3D MR angiography and free-breathing 3D radial UTE (1.0-mm isotropic spatial resolution; echo time, 0.08 msec) were performed at 3 T. Two blinded radiologists independently marked and graded all PEs on a four-point scale (1 = low confidence, 4 = absolutely certain) on MR angiographic and UTE images. Image quality of pulmonary arteries and lung parenchyma was scored on a four-point-scale (1 = poor, 4 = excellent). Locations and ratings of emboli were compared with reference standard CT images by using an alternative free-response receiver operating characteristic curve (AFROC) method. Areas under the curve and image quality ratings were compared by using the F test and the Wilcoxon signed-rank test. Results A total of 48 emboli were detected with CT. Both readers showed higher sensitivity for PE detection with UTE (83% and 79%) than with MR angiography (75% and 71%). The AFROC area under the curve was higher for UTE than for MR angiography (0.95 vs 0.89), with a significant difference in area under the curve of 0.06 (95% confidence interval: 0.01, 0.11; P = .018). UTE image quality exceeded that of MR angiography for subsegmental arteries (3.5 ± 0.7 vs 2.9 ± 0.5, P = .002) and lung parenchyma (3.8 ± 0.5 vs 2.2 ± 0.2, P < .001). The apparent signal-to-noise ratio in pulmonary arteries and lung parenchyma was significantly higher for UTE than for MR angiography (41.0 ± 5.2 vs 24.5 ± 6.2 [P < .001] and 10.2 ± 1.8 vs 3.5 ± 0.8 [P < .001], respectively). The apparent contrast-to-noise ratio between

  7. Time-of-arrival mapping at three-dimensional time-resolved contrast-enhanced MR angiography.

    PubMed

    Riederer, Stephen J; Haider, Clifton R; Borisch, Eric A

    2009-11-01

    This study was HIPAA compliant and institutional review board approved, and informed consent was obtained from all volunteers. The authors describe a method for generating a time-of-arrival (TOA) map of intravenously administered contrast material, as observed in a time series of three-dimensional (3D) contrast material-enhanced magnetic resonance (MR) angiograms. The method may enable visualization and interpretation, on one 3D image, of the temporal enhancement patterns that occur in the vasculature. Colorization of TOA values may further aid interpretation. The quality of the results depends not only on the adequacy of the frame rate, spatial resolution, and signal-to-noise ratio of the MR image acquisition method but also on the accuracy and clarity with which the leading edge of the contrast material bolus is depicted. The criteria for optimizing these parameters are described. The TOA mapping technique is demonstrated by using vascular studies of the hands, brain, and lower leg regions.

  8. Three-dimensional analysis of time varying tuft behavior by its successive geometric shape modelling

    NASA Astrophysics Data System (ADS)

    Doi, Junta; Miyake, Tetsuo

    A tuft in the air flow was observed by three CCD video cameras which were installed in the directions nearly perpendicular to each other. In this procedure, a tufted woolen yarn of the diameter of about 1 mm and of the length of 35 mm was attached on the top of a thin post pin. The principle of this shape modeling is based on the intersection of multiple viewing cones. This intersected zone results in a polyhedron when the digital image is used. It becomes a good approximation of the original shape when it is convex. This polyhedron is described with spatially fixed coordinates, so that not only its spatial shape, but also the position, direction, deformation, or fluttering at the every moment can be estimated. From this modeling, the effect of rigidity due to adhesives near the fixed end and a few millimeters of three-dimensional displacement at the free end are observed. This method is capable to serve for measurement and analysis of a single tuft characteristics, depending on its material, kind of fluid, or flow range, and has the possibility of quantitative analysis of three-dimensional unsteady flow visualization.

  9. Image system for three dimensional, 360 DEGREE, time sequence surface mapping of moving objects

    DOEpatents

    Lu, Shin-Yee

    1998-01-01

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360.degree. all around coverage of theobject-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120.degree. apart from one another.

  10. Image system for three dimensional, 360{degree}, time sequence surface mapping of moving objects

    DOEpatents

    Lu, S.Y.

    1998-12-22

    A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest. Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360{degree} all around coverage of the object-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120{degree} apart from one another. 20 figs.

  11. On the onset of three-dimensionality and time-dependence in the Goertler vortex problem

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Mackerrell, Sharon

    1987-01-01

    The instability of large amplitude Goertler vortices in a growing boundary layer is discussed in the fully nonlinear regime. It is shown that a three-dimensional breakdown to a flow with wavy vortex boundaries similar to that which occurs in the Taylor vortex problem takes place. However, the instability is confined to the thin shear layers which have been shown to trap the region of vortex activity. The disturbance eigenfunctions decay exponentially away from the center of these layers so that the upper and lower shear layers can support independent modes of instability. The structure of the instability, in particular its location and speed of downstream propagation, is found to be entirely consistent with recent experimental results. Furthermore, it is shown that the upper and lower layers support wavy vortex instabilities with quite different frequencies. This result is again consistent with the available experimental observations.

  12. A note concerning the onset of three dimensionality and time dependence in Goertler vortices

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Seddougui, Sharon O.

    1989-01-01

    Recently Hall and Seddougui (1989) considered the secondary instability of large amplitude Goertler vortices in a growing boundary layer evolving into a three-dimensional flow with wavy vortex boundaries. They obtained a pair of coupled, linear ordinary differential equations for this instability which constituted an eigenproblem for the wavelength and frequency of this wavy mode. Investigations into the nonlinear version of this problem by Seddougui and Bassom have revealed several omissions in the numerical work of Hall and Seddougui. These issues are addressed in this note. In particular, it is found that many neutrally stable modes are possible. The properties of such modes are derived in a high wavenumber limit and it is shown that the combination of the results of Hall and Seddougui and the modifications made here lead to conclusions which are consistent with the available experimental observations.

  13. Three-dimensional, time-dependent, MHD model of a solar flare-generated interplanetary shock wave

    NASA Technical Reports Server (NTRS)

    Dryer, M.; Wu, S. T.; Han, S. M.

    1986-01-01

    A three-dimensional time-dependent MHD model of the propagation of an interplanetary shock wave into an ambient three-dimensional heliospheric solar wind is initialized with a peak velocity of 1000 km/s at the center of a right circular cone of 18 deg included angle at 18 solar radii. Differences from a previous 2-1/2 simulation (Wu et al., 1983; Gislason et al., 1984; Dryer et al., 1984) include diminuation of the solar peak velocity and concentration of the peak density at each radius. The IMF magnitude starts with high-latitude peaks, and helical-like IMF rotation is noted due to a large-amplitude nonlinear Alfven wave in the shocked plasma.

  14. Three-dimensional time-dependent computer modeling of the electrothermal atomizers for analytical spectrometry

    NASA Astrophysics Data System (ADS)

    Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.

    2016-02-01

    A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.

  15. Alternating-direction implicit numerical solution of the time-dependent, three-dimensional, single fluid, resistive magnetohydrodynamic equations

    SciTech Connect

    Finan, C.H. III

    1980-12-01

    Resistive magnetohydrodynamics (MHD) is described by a set of eight coupled, nonlinear, three-dimensional, time-dependent, partial differential equations. A computer code, IMP (Implicit MHD Program), has been developed to solve these equations numerically by the method of finite differences on an Eulerian mesh. In this model, the equations are expressed in orthogonal curvilinear coordinates, making the code applicable to a variety of coordinate systems. The Douglas-Gunn algorithm for Alternating-Direction Implicit (ADI) temporal advancement is used to avoid the limitations in timestep size imposed by explicit methods. The equations are solved simultaneously to avoid syncronization errors.

  16. Electromagnetic description of three-dimensional time-reversal invariant ponderable topological insulators

    NASA Astrophysics Data System (ADS)

    Martín-Ruiz, A.; Cambiaso, M.; Urrutia, L. F.

    2016-10-01

    A general technique to analyze the classical interaction between ideal topological insulators, and electromagnetic sources and fields, has been previously elaborated. Nevertheless it is not immediately applicable in the laboratory as it fails to describe real ponderable media. In this work we provide a description of real topologically insulating materials taking into account their dielectric and magnetic properties. For inhomogeneous permittivity and permeability, the problem of finding the Green's function must be solved in an ad hoc manner. Nevertheless, the physically feasible cases of piecewise constant ɛ , μ and θ make the problem tractable, where θ encodes the topological magnetoelectric polarizability properties of the medium. To this end we employ the Green's function method to find the fields resulting from the interaction between these materials and electromagnetic sources. Furthermore we exploit the fact that in the cases here studied, the full Green's function can be successfully found if the Green's function of the corresponding ponderable media with θ =0 is known. Our results satisfactorily reproduce previously existing ones and also generalize some others. The method here elaborated can be exploited to determine the electromagnetic fields for more general configurations aiming to measure the interaction between real 3D topological insulators and electromagnetic fields.

  17. Long-Time Numerical Integration of the Three-Dimensional Wave Equation in the Vicinity of a Moving Source

    NASA Technical Reports Server (NTRS)

    Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.

    1999-01-01

    We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.

  18. Asymptotic Relation for the Transition Density of the Three-Dimensional Markov Random Flight on Small Time Intervals

    NASA Astrophysics Data System (ADS)

    Kolesnik, Alexander D.

    2017-01-01

    We consider the Markov random flight \\varvec{X}(t), t>0, in the three-dimensional Euclidean space R3 with constant finite speed c>0 and the uniform choice of the initial and each new direction at random time instants that form a homogeneous Poisson flow of rate λ >0. Series representations for the conditional characteristic functions of \\varvec{X}(t) corresponding to two and three changes of direction, are obtained. Based on these results, an asymptotic formula, as t→ 0, for the unconditional characteristic function of \\varvec{X}(t) is derived. By inverting it, we obtain an asymptotic relation for the transition density of the process. We show that the error in this formula has the order o(t^3) and, therefore, it gives a good approximation on small time intervals whose lengths depend on λ . An asymptotic formula, as t→ 0, for the probability of being in a three-dimensional ball of radius r

  19. An Investigation of Time Lag Maps Using Three-dimensional Simulations of Highly Stratified Heating

    NASA Astrophysics Data System (ADS)

    Winebarger, Amy R.; Lionello, Roberto; Downs, Cooper; Mikić, Zoran; Linker, Jon; Mok, Yung

    2016-11-01

    The location and frequency of coronal energy release provide a significant constraint on the coronal heating mechanism. The evolution of the intensity observed in coronal structures found from time lag analysis of Atmospheric Imaging Assembly (AIA) data has been used to argue that heating must occur sporadically. Recently, we have demonstrated that quasi-steady, highly stratified (footpoint) heating can produce results qualitatively consistent with the evolution of observed coronal structures. The goals of this paper are to demonstrate that time lag analysis of 3D simulations of footpoint heating are qualitatively consistent with time lag analysis of observations and to use the 3D simulations to further understand whether time lag analysis is a useful tool in defining the evolution of coronal structures. We find the time lag maps generated from simulated data are consistent with the observed time lag maps. We next investigate several example points. In some cases, the calculated time lag reflects the evolution of a unique loop along the line of sight, though there may be additional evolving structures along the line of sight. We confirm that using the multi-peak AIA channels can produce time lags that are difficult to interpret. We suggest using a different high temperature channel, such as an X-ray channel. Finally, we find that multiple evolving structures along the line of sight can produce time lags that do not represent the physical properties of any structure along the line of sight, although the cross-correlation coefficient of the lightcurves is high. Considering the projected geometry of the loops may reduce some of the line-of-sight confusion.

  20. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    NASA Astrophysics Data System (ADS)

    Hai-Qiong, Xie; Zhong, Zeng; Liang-Qi, Zhang

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. Project supported by the National Natural Science Foundation of China (Grant No. 11572062), the Fundamental Research Funds for the Central Universities, China (Grant No. CDJZR13248801), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13043), and Key Laboratory of Functional Crystals and Laser Technology, TIPC, Chinese Academy of Sciences.

  1. Realization of quantum gates based on three-dimensional harmonic oscillator in a time-varying electromagnetic field

    NASA Astrophysics Data System (ADS)

    Gautam, Kumar; Chauhan, Garv; Rawat, Tarun Kumar; Parthasarathy, Harish; Sharma, Navneet

    2015-09-01

    This paper presents the design of a given quantum unitary gate by perturbing a three-dimensional (3-D) quantum harmonic oscillator with a time-varying but spatially constant electromagnetic field. The idea is based on expressing the radiation- perturbed Hamiltonian as the sum of the unperturbed Hamiltonian and O( e) and perturbations and then solving the Schrödinger equation to obtain the evolution operator at time T up to , and this is a linear-quadratic function of the perturbing electromagnetic field values over the time interval [0, T]. Setting the variational derivative of the error energy with respect to the electromagnetic field values with an average electromagnetic field energy constraint leads to the optimal electromagnetic field solution, a linear integral equation. The reliability of such a gate design procedure in the presence of heat bath coupling is analysed, and finally, an example illustrating how atoms and molecules can be approximated using oscillators is presented.

  2. Three dimensional time-gated tracking of non-blinking quantum dots in live cells

    SciTech Connect

    DeVore, Matthew S.; Werner, James H.; Goodwin, Peter M.; Keller, Aaron M.; Hollingsworth, Jennifer A.; Wilson, Bridget S.; Cleyrat, Cedric; Lidke, Diane S.; Ghosh, Yagnaseni; Stewart, Michael H.; Stich, Dominik G.; Phipps, Mary E.

    2015-03-12

    Single particle tracking has provided a wealth of information about biophysical processes such as motor protein transport and diffusion in cell membranes. However, motion out of the plane of the microscope or blinking of the fluorescent probe used as a label generally limits observation times to several seconds. Here, we overcome these limitations by using novel non-blinking quantum dots as probes and employing a custom 3D tracking microscope to actively follow motion in three dimensions (3D) in live cells. As a result, signal-to-noise is improved in the cellular milieu through the use of pulsed excitation and time-gated detection.

  3. Exact solutions to three-dimensional time-dependent Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Chand, Fakir; Mishra, S. C.

    2007-06-01

    With a view to obtain exact analytic solutions to the time-dependent Schrödinger equation for a few potentials of physical interest in three dimensions, transformation-group method is used. Interestingly, the integrals of motion in the new coordinates turn out to be the desired invariants of the systems.

  4. Three Dimensional Structure and Time Evolution of a Transition Region Explosive Event Observed in He II

    NASA Astrophysics Data System (ADS)

    Fox, J. L.; Kankelborg, C. C.; Thomas, R. J.; Longcope, D.

    2007-12-01

    Transition Region Explosive Events (TREEs) have been observed with slit spectrographs since at least 1975, most commonly in lines of C IV (1548A,1550A) and Si IV (1393A, 1402A). We report what we believe to be the first observation of a TREE in He II 304A. With the MOSES sounding rocket, a novel type of imaging spectrograph, we are able to see the spatial and spectral structure of the event. It consists of a bright core expelling two jets, oppositely directed but not collinear, which curve away from the axis of the core. The jets have both line-of-sight and sky-plane motion. The core is a region of high non-thermal doppler broadening, characteristic of TREEs. It is possible to resolve the core broadening into red and blue line-of-sight components. MOSES captured approximately 150 sec of time evolution before the rocket flight ended. We see the beginning (core activation) and middle (jet ejection), but not the end. It is clear from our data-set that TREEs in He II 304A are much less common than observed in other wavelengths.

  5. Embryonic lineage analysis using three-dimensional, time-lapse in-vivo fluorescent microscopy

    NASA Astrophysics Data System (ADS)

    Minden, Jonathan; Kam, Zvi; Agard, David A.; Sedat, John W.; Alberts, Bruce

    1990-08-01

    Drosophila melanogaster has become one of the most extensively studied organisms because of its amenability to genetic analysis. Unfortunately, the biochemistry and cell biology ofDrosophila has lagged behind. To this end we have been microinjecting fluorescently labelled proteins into the living embryo and observing the behavior of these proteins to determine their role in the cell cycle and development. Imaging of these fluorescent probes is an extremely important element to this form of analysis. We have taken advantage of the sensitivity and well behaved characteristics of the charge coupled device (CCD) camera in conjunction with digital image enhancement schemes to produce highly accurate images of these fluorescent probes in vivo. One of our major goals is to produce a detailed map of cell fate so that we can understand how fate is determined and maintained. In order produce such a detailed map, protocols for following the movements and mitotic behavior of a large number of cells in three dimensions over relatively long periods of time were developed. We will present our results using fluorescently labelled histone proteins as a marker for nuclear location1. In addition, we will also present our initial results using a photoactivatable analog of fluorescein to mark single cells so that their long range fate can be unambiguously determined.

  6. Three-dimensional, time-dependent simulation of free-electron lasers with planar, helical, and elliptical undulators

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; van der Slot, P. J. M.; Grimminck, D. L. A. G.; Setija, I. D.; Falgari, P.

    2017-02-01

    Free-electron lasers (FELs) have been built ranging in wavelength from long-wavelength oscillators using partial wave guiding through ultraviolet through hard x-ray that are either seeded or start from noise. In addition, FELs that produce different polarizations of the output radiation ranging from linear through elliptic to circular polarization are currently under study. In this paper, we develop a three-dimensional, time-dependent formulation that is capable of modeling this large variety of FEL configurations including different polarizations. We employ a modal expansion for the optical field, i.e., a Gaussian expansion with variable polarization for free-space propagation. This formulation uses the full Newton–Lorentz force equations to track the particles through the optical and magnetostatic fields. As a result, arbitrary three-dimensional representations for different undulator configurations are implemented, including planar, helical, and elliptical undulators. In particular, we present an analytic model of an APPLE-II undulator to treat arbitrary elliptical polarizations, which is used to treat general elliptical polarizations. To model oscillator configurations, and allow propagation of the optical field outside the undulator and interact with optical elements, we link the FEL simulation with the optical propagation code OPC. We present simulations using the APPLE-II undulator model to produce elliptically polarized output radiation, and present a detailed comparison with recent experiments using a tapered undulator configuration at the Linac Coherent Light Source. Validation of the nonlinear formation is also shown by comparison with experimental results obtained in the Sorgente Pulsata Auto-amplificata di Radiazione Coerente SASE FEL experiment at ENEA Frascati, a seeded tapered amplifier experiment at Brookhaven National Laboratory, and the 10 kW upgrade oscillator experiment at the Thomas Jefferson National Accelerator Facility.

  7. Ebstein's anomaly assessed by real-time 3-D echocardiography.

    PubMed

    Acar, Philippe; Abadir, Sylvia; Roux, Daniel; Taktak, Assaad; Dulac, Yves; Glock, Yves; Fournial, Gerard

    2006-08-01

    The outcome of patients with Ebstein's malformation depends mainly on the severity of the tricuspid valve malformation. Accurate description of the tricuspid anatomy by two-dimensional echocardiography remains difficult. We applied real-time three-dimensional echocardiography to 3 patients with Ebstein's anomaly. Preoperative and postoperative descriptions of the tricuspid valve were obtained from views taken inside the right ventricle. Surface of the leaflets as well as the commissures were obtained by three-dimensional echocardiography. Real time three-dimensional echocardiography is a promising tool, providing new views that will help to evaluate the ability and efficiency of surgical valve repair in patient with Ebstein's malformation.

  8. High mass resolution isochronous time-of-flight spectrograph for three-dimensional space plasma measurements (abstract)

    SciTech Connect

    Moebius, E. ); Bochsler, P. ); Ghielmetti, A.G. ); Hamilton, D.C. )

    1990-10-01

    By combining a toroidal electrostatic analyzer with a novel cylindrically symmetric isochronous time-of-flight mass spectrometer, we have developed an instrument that simultaneously determines the three-dimensional distribution function of ions and differentiates species. The ion mass is determined to high resolution ({ital M}/{Delta}{ital M}{gt}50) from the time of flight within a harmonic field configuration defined by hyperboloid equipotential surfaces. A second conventional time-of-flight channel makes use of particles leaving the thin entrance foil as neutrals. An additional solid state detector in which the neutrals are stopped allows the total energy and thereby the ionic charge of the incident ions to be determined as well. Information from the neutral and the ion channels can be combined to determine the total mass of an incident molecular ion and the mass of one atomic fragment. This also removes the ambiguity between molecular ions and isotopic species of the same mass. A laboratory prototype has been used to demonstrate the feasibility of the principle of operation.

  9. Two- and three-dimensional accuracy of dental impression materials: effects of storage time and moisture contamination.

    PubMed

    Chandran, Deepa T; Jagger, Daryll C; Jagger, Robert G; Barbour, Michele E

    2010-01-01

    Dental impression materials are used to create an inverse replica of the dental hard and soft tissues, and are used in processes such as the fabrication of crowns and bridges. The accuracy and dimensional stability of impression materials are of paramount importance to the accuracy of fit of the resultant prosthesis. Conventional methods for assessing the dimensional stability of impression materials are two-dimensional (2D), and assess shrinkage or expansion between selected fixed points on the impression. In this study, dimensional changes in four impression materials were assessed using an established 2D and an experimental three-dimensional (3D) technique. The former involved measurement of the distance between reference points on the impression; the latter a contact scanning method for producing a computer map of the impression surface showing localised expansion, contraction and warpage. Dimensional changes were assessed as a function of storage times and moisture contamination comparable to that found in clinical situations. It was evident that dimensional changes observed using the 3D technique were not always apparent using the 2D technique, and that the former offers certain advantages in terms of assessing dimensional accuracy and predictability of impression methods. There are, however, drawbacks associated with 3D techniques such as the more time-consuming nature of the data acquisition and difficulty in statistically analysing the data.

  10. Three-dimensional laser microvision.

    PubMed

    Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

    2001-04-10

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum.

  11. Three-Dimensional Laser Microvision

    NASA Astrophysics Data System (ADS)

    Shimotahira, Hiroshi; Iizuka, Keigo; Chu, Sun-Chun; Wah, Christopher; Costen, Furnie; Yoshikuni, Yuzo

    2001-04-01

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 m; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 m.

  12. Three-Dimensional Elemental Imaging of Nantan Meteorite via Femtosecond Laser Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    He, Miaohong; Meng, Yifan; Yan, Shanshan; Hang, Wei; Zhou, Wenge; Huang, Benli

    2017-01-03

    Femtosecond laser ionization time-of-flight mass spectrometry (fs-LI-TOFMS) is introduced for the three-dimensional elemental analysis of a Nantan meteorite. Spatially resolved multielemental imaging of major and minor compositions in a meteorite are presented with a lateral resolution of 50 μm and a depth resolution of 7 μm. Distinct 3D distributions of siderophile, lithophile, and chalcophile elements are revealed. Co and Ni are highly siderophile (Iron-loving), mainly enriched in the metal phase. Cr, Cu, V, and Mn are enriched in the sulfide for their chalcophile (S-loving) tendency. S, P, and C aggregate together in the analytical volume. Silicate inclusion, containing lithophile elements of Al, Ca, Mg, K, and so on, is embedded within the metal phase for the immiscibility between silicate inclusion and the melted metal phase. These 3D distributions of elements aid the exploration of the formation and evolution of the meteorite. They also reveal the feasibility of fs-LI-TOFMS as a versatile tool for 3D imaging.

  13. PORTHOS - A computer code for solving general three-dimensional, time-dependent two-fluid equations

    SciTech Connect

    Chan, R.K.C.; Masiello, P.J.; Srikantiah, G.S.

    1987-01-01

    PORTHOS is a computer code for calculating three-dimensional steady-state or time dependent two-phase flow in porous or non-porous media. It was developed with the initial goal of simulating two-phase flows in steam generators of PWR nuclear power plants. However, the modular code design and the generality of approach allow application to a wide variety of problems in single phase or two-phase flow. The present method employs a finite difference technique to solve the complete set of two-fluid equations, i.e., the ''six-equation'' model which includes tow mass conservation equations, two momentum equations, two energy equations, as well as constitutive equations to effect closure of the system. The use of volume porosity and surface permeability allows the treatment of complex geometry. This paper describes the mathematical basis, the numerical solution procedure employed, and the results of comparisons with two sources of experimental data: the 8MW FRIGG loop experiment and the Electricite de France (EdF) Bugey 4 steam generator test. Calculations of the FRIGG experiment by PORTHOS, in terms of void fraction distribution, are in good agreement with measurements. Verification against the EdF data is also quite satisfactory.

  14. Effect of short-term exposure to stereoscopic three-dimensional flight displays on real-world depth perception

    NASA Technical Reports Server (NTRS)

    Busquets, Anthony M.; Parrish, Russell V.; Williams, Steven P.

    1991-01-01

    High-fidelity color pictorial displays that incorporate depth cues in the display elements are currently available. Depth cuing applied to advanced head-down flight display concepts potentially enhances the pilot's situational awareness and improves task performance. Depth cues provided by stereopsis exhibit constraints that must be fully understood so depth cuing enhancements can be adequately realized and exploited. A fundamental issue (the goal of this investigation) is whether the use of head-down stereoscopic displays in flight applications degrade the real-world depth perception of pilots using such displays. Stereoacuity tests are used in this study as the measure of interest. Eight pilots flew repeated simulated landing approaches using both nonstereo and stereo 3-D head-down pathway-in-the-sky displays. At this decision height of each approach (where the pilot changes to an out-the-window view to obtain real-world visual references) the pilots changed to a stereoacuity test that used real objects. Statistical analysis of stereoacuity measures (data for a control condition of no exposure to any electronic flight display compared with data for changes from nonstereo and from stereo displays) reveals no significant differences for any of the conditions. Therefore, changing from short-term exposure to a head-down stereo display has no more effect on real-world relative depth perception than does changing from a nonstereo display. However, depth perception effects based on sized and distance judgements and on long-term exposure remain issues to be investigated.

  15. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    SciTech Connect

    Finn, John M.

    2015-03-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.

  16. High-Fidelity Real Gas Model for RF Excited Plasma Flow Control - A Three Dimensional Analysis With Air Chemistry

    DTIC Science & Technology

    2008-05-31

    code for mitigating inert gas flow separation using rf-driven dielectric barrier discharge. In this effort we: (l) develop multi-dimensional first...such detailed plasma kinetics based effort has not been reported before. During the development of this project we have worked in close collaboration... develop multi-dimensional first principles based N2/GŖair chemistry models for the non-equilibrium real gas discharge, and (2) implement it in a finite

  17. Three dimensional strained semiconductors

    DOEpatents

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  18. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    NASA Astrophysics Data System (ADS)

    Finn, John M.

    2015-03-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a "special divergence-free" (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012

  19. Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of Pb-210

    NASA Technical Reports Server (NTRS)

    Balkanski, Yves J.; Jacob, Daniel J.; Gardner, Geraldine M.; Graustein, William C.; Turekian, Karl K.

    1993-01-01

    A global three-dimensional model is used to investigate the transport and tropospheric residence time of Pb-210, an aerosol tracer produced in the atmosphere by radioactive decay of Rn-222 emitted from soils. The model uses meteorological input with 4 deg x 5 deg horizontal resolution and 4-hour temporal resolution from the Goddard Institute for Space Studies general circulation model (GCM). It computes aerosol scavenging by convective precipitation as part of the wet convective mass transport operator in order to capture the coupling between vertical transport and rainout. Scavenging in convective precipitation accounts for 74% of the global Pb-210 sink in the model; scavenging in large-scale precipitation accounts for 12%, and scavenging in dry deposition accounts for 14%. The model captures 63% of the variance of yearly mean Pb-210 concentrations measured at 85 sites around the world with negligible mean bias, lending support to the computation of aerosol scavenging. There are, however, a number of regional and seasonal discrepancies that reflect in part anomalies in GCM precipitation. Computed residence times with respect to deposition for Pb-210 aerosol in the tropospheric column are about 5 days at southern midlatitudes and 10-15 days in the tropics; values at northern midlatitudes vary from about 5 days in winter to 10 days in summer. The residence time of Pb-210 produced in the lowest 0.5 km of atmosphere is on average four times shorter than that of Pb-210 produced in the upper atmosphere. Both model and observations indicate a weaker decrease of Pb-210 concentrations between the continental mixed layer and the free troposphere than is observed for total aerosol concentrations; an explanation is that Rn-222 is transported to high altitudes in wet convective updrafts, while aerosols and soluble precursors of aerosols are scavenged by precipitation in the updrafts. Thus Pb-210 is not simply a tracer of aerosols produced in the continental boundary layer, but

  20. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    DOE PAGES

    Finn, John M.

    2015-03-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. Wemore » also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.« less

  1. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    SciTech Connect

    Finn, John M.

    2015-03-15

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012

  2. Three-dimensional accurate detection of lung emphysema in rats using ultra-short and zero echo time MRI.

    PubMed

    Bianchi, Andrea; Tibiletti, Marta; Kjørstad, Åsmund; Birk, Gerald; Schad, Lothar R; Stierstorfer, Birgit; Rasche, Volker; Stiller, Detlef

    2015-11-01

    Emphysema is a life-threatening pathology that causes irreversible destruction of alveolar walls. In vivo imaging techniques play a fundamental role in the early non-invasive pre-clinical and clinical detection and longitudinal follow-up of this pathology. In the present study, we aimed to evaluate the feasibility of using high resolution radial three-dimensional (3D) zero echo time (ZTE) and 3D ultra-short echo time (UTE) MRI to accurately detect lung pathomorphological changes in a rodent model of emphysema.Porcine pancreas elastase (PPE) was intratracheally administered to the rats to produce the emphysematous changes. 3D ZTE MRI, low and high definition 3D UTE MRI and micro-computed tomography images were acquired 4 weeks after the PPE challenge. Signal-to-noise ratios (SNRs) were measured in PPE-treated and control rats. T2* values were computed from low definition 3D UTE MRI. Histomorphometric measurements were made after euthanizing the animals. Both ZTE and UTE MR images showed a significant decrease in the SNR measured in PPE-treated lungs compared with controls, due to the pathomorphological changes taking place in the challenged lungs. A significant decrease in T2* values in PPE-challenged animals compared with controls was measured using UTE MRI. Histomorphometric measurements showed a significant increase in the mean linear intercept in PPE-treated lungs. UTE yielded significantly higher SNR compared with ZTE (14% and 30% higher in PPE-treated and non-PPE-treated lungs, respectively).This study showed that optimized 3D radial UTE and ZTE MRI can provide lung images of excellent quality, with high isotropic spatial resolution (400 µm) and SNR in parenchymal tissue (>25) and negligible motion artifacts in freely breathing animals. These techniques were shown to be useful non-invasive instruments to accurately and reliably detect the pathomorphological alterations taking place in emphysematous lungs, without incurring the risks of cumulative radiation

  3. Quantifying cortical bone water in vivo by three-dimensional ultra-short echo-time MRI

    PubMed Central

    Rad, Hamidreza Saligheh; Lam, Shing Chun Benny; Magland, Jeremy F.; Ong, Henry; Li, Cheng; Song, Hee Kwon; Love, James; Wehrli, Felix W.

    2013-01-01

    Bone contains a significant fraction of water that is not detectable with ordinary Cartesian imaging sequences. The advent of ultra-short echo-time (UTE) methods has allowed the recovery of this submillisecond T2*water. In this work, we have developed a new three-dimensional hybrid-radial ultra-short echo-time (3D HRUTE) imaging technique based on slab selection by means of half-sinc pulses, variable-TE slice encoding and algorithms for quantification. The protocol consists of collecting two datasets differing in TR, from which T1 is extracted, which is needed for quantification. Unlike T2*, which has been found to vary within a narrow range and does not require individual correction, T1 is critically subject dependent (range, 100–350 ms). No soft-tissue suppression was used to preserve the signal-to-noise ratio of the short-T2 bone water protons or to minimize the loss of relatively mobile water in large pores. Critical for quantification is correction for spatial variations in reception field and selection of the endosteal boundary for inclusion of pixels in the bone water calculation, because of the ruffled boundary stemming from trabecularization of the endosteal surface. The reproducibility, evaluated in 10 subjects covering the age range 30–80 years, yielded an average coefficient of variation of 4.2% and an intraclass correlation coefficient of 0.95, suggesting that a treatment effect on the order of 5% could be detected in as few as 10 subjects. Lastly, experiments in specimens by means of graded deuterium exchange showed that approximately 90% of the detected signal arises from water protons, whose relaxation rates (1/T1 and 1/T2*) scale linearly with the isotopic volume fraction of light water after stepwise exchange with heavy water. The data thus show conclusively that the method quantifies water even though, in vivo, no distinction can be made between various fractions, such as collagen-bound vs pore-resident water. PMID:21274960

  4. Three-dimensional magnetic resonance imaging overlay to assist with percutaneous transhepatic access at the time of cardiac catheterization

    PubMed Central

    Whiteside, Wendy; Christensen, Jason; Zampi, Jeffrey D

    2015-01-01

    Multimodality image overlay is increasingly used for complex interventional procedures in the cardiac catheterization lab. We report a case in which three-dimensional magnetic resonance imaging (3D MRI) overlay onto live fluoroscopic imaging was utilized to safely obtain transhepatic access in a 12-year-old patient with prune belly syndrome, complex and distorted abdominal anatomy, and a vascular mass within the liver. PMID:26085770

  5. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  6. Time-lapse three-dimensional inversion of complex conductivity data using an active time constrained (ATC) approach

    USGS Publications Warehouse

    Karaoulis, M.; Revil, A.; Werkema, D.D.; Minsley, B.J.; Woodruff, W.F.; Kemna, A.

    2011-01-01

    Induced polarization (more precisely the magnitude and phase of impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and contaminants in the shallow subsurface. We propose a new time-lapse 3-D modelling and inversion algorithm to image the evolution of complex conductivity over time. We discretize the subsurface using hexahedron cells. Each cell is assigned a complex resistivity or conductivity value. Using the finite-element approach, we model the in-phase and out-of-phase (quadrature) electrical potentials on the 3-D grid, which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet boundary conditions are used at the boundary of the domain. The calculation of the Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion is to determine the change in the complex resistivity of each cell of the spatial grid as a function of time. Each model along the time axis is called a 'reference space model'. This approach can be simplified into an inverse problem looking for the optimum of several reference space models using the approximation that the material properties vary linearly in time between two subsequent reference models. Regularizations in both space domain and time domain reduce inversion artefacts and improve the stability of the inversion problem. In addition, the use of the time-lapse equations allows the simultaneous inversion of data obtained at different times in just one inversion step (4-D inversion). The advantages of this new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the simulation of a salt tracer test in a heterogeneous random material described by an anisotropic semi-variogram. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.

  7. Three-dimensional viscoelastic time-domain finite-difference seismic modelling using the staggered Adams-Bashforth time integrator

    NASA Astrophysics Data System (ADS)

    Bohlen, Thomas; Wittkamp, Florian

    2016-03-01

    We analyse the performance of a higher order accurate staggered viscoelastic time-domain finite-difference method, in which the staggered Adams-Bashforth (ABS) third-order and fourth-order accurate time integrators are used for temporal discretization. ABS is a multistep method that uses previously calculated wavefields to increase the order of accuracy in time. The analysis shows that the numerical dispersion is much lower than that of the widely used second-order leapfrog method. Numerical dissipation is introduced by the ABS method which is significantly smaller for fourth-order than third-order accuracy. In 1-D and 3-D simulation experiments, we verify the convincing improvements of simulation accuracy of the fourth-order ABS method. In a realistic elastic 3-D scenario, the computing time reduces by a factor of approximately 2.4, whereas the memory requirements increase by approximately a factor of 2.2. The ABS method thus provides an alternative strategy to increase the simulation accuracy in time by investing computer memory instead of computing time.

  8. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    SciTech Connect

    Johnson, Timothy C.; Slater, Lee; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-08-22

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides (1) superior spatial coverage in two or three dimensions, (2) potentially high-resolution information in time, and (3) information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever increasing size and complexity of long-term, three-dimensional time-series conductivity datasets. Here, we use three-dimensional (3D) surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater/surface-water interaction along a stretch of the Columbia River adjacent to the Hanford 300 Area, Hanford WA, USA. We reduce the resulting 3D conductivity time series using both correlation and time-frequency analysis to isolate a paleochannel causing enhanced groundwater/river-water interaction. Correlation analysis on the time-lapse imaging results concisely represents enhanced ground water/surface-water interaction within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) Transform provides additional information by 1) identifying the stage periodicities driving ground water/river-water interaction due to upstream dam operations, 2) identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  9. Three-dimensional ultrashort echo time cones T1ρ (3D UTE-cones-T1ρ ) imaging.

    PubMed

    Ma, Ya-Jun; Carl, Michael; Shao, Hongda; Tadros, Anthony S; Chang, Eric Y; Du, Jiang

    2017-03-20

    We report a novel three-dimensional (3D) ultrashort echo time (UTE) sequence employing Cones trajectory and T1ρ preparation (UTE-Cones-T1ρ ) for quantitative T1ρ assessment of short T2 tissues in the musculoskeletal system. A basic 3D UTE-Cones sequence was combined with a spin-locking preparation pulse for T1ρ contrast. A relatively short TR was used to decrease the scan time, which required T1 measurement and compensation using 3D UTE-Cones data acquisitions with variable TRs. Another strategy to reduce the total scan time was to acquire multiple Cones spokes (Nsp ) after each T1ρ preparation and fat saturation. Four spin-locking times (TSL = 0-20 ms) were acquired over 12 min, plus another 7 min for T1 measurement. The 3D UTE-Cones-T1ρ sequence was compared with a two-dimensional (2D) spiral-T1ρ sequence for the imaging of a spherical CuSO4 phantom and ex vivo meniscus and tendon specimens, as well as the knee and ankle joints of healthy volunteers, using a clinical 3-T scanner. The CuSO4 phantom showed a T1ρ value of 76.5 ± 1.6 ms with the 2D spiral-T1ρ sequence, as well as 85.7 ± 3.6 and 89.2 ± 1.4 ms for the 3D UTE-Cones-T1ρ sequences with Nsp of 1 and 5, respectively. The 3D UTE-Cones-T1ρ sequence provided shorter T1ρ values for the bovine meniscus sample relative to the 2D spiral-T1ρ sequence (10-12 ms versus 16 ms, respectively). The cadaveric human Achilles tendon sample could only be imaged with the 3D UTE-Cones-T1ρ sequence (T1ρ  = 4.0 ± 0.9 ms), with the 2D spiral-T1ρ sequence demonstrating near-zero signal intensity. Human studies yielded T1ρ values of 36.1 ± 2.9, 18.3 ± 3.9 and 3.1 ± 0.4 ms for articular cartilage, meniscus and the Achilles tendon, respectively. The 3D UTE-Cones-T1ρ sequence allows volumetric T1ρ measurement of short T2 tissues in vivo.

  10. The time-dependent inverse source problem for the acoustic and electromagnetic equations in the one- and three-dimensional cases

    NASA Astrophysics Data System (ADS)

    Moses, Harry E.

    1984-06-01

    The object of the time-dependent inverse source problem of electromagnetic theory and acoustics is to find time-dependent sources and currents, which are turned on at a given time and then off to give rise to prescribed radiation fields. In an early paper for the three-dimensional electromagnetic case, the present writer showed that the sources and currents are not unique and gave conditions which make them so. The ideas of that paper are reformulated for the three-dimensional electromagnetic case and extended to the acoustical three-dimensional case and the one-dimensional electromagnetic and acoustic cases. The one-dimensional cases show very explicitly the nature of the ambiguity of the choice of sources and currents. This ambiguity is closely related to one which occurs in inverse scattering theory. The ambiguity in inverse scattering theory arises when one wishes to obtain the off-shell elements of the T matrix from some of the on-shell elements (i.e., from the corresponding elements of the scattering operator). In inverse scattering theory prescribing of the representation in which the potential is to be diagonal removes the ambiguity. For the inverse source problem a partial prescription of the time dependence of the sources and currents removes the ambiguity. The inverse source problem is then solved explicitly for this prescribed time dependence. The direct source problems for the one- and three-dimensional acoustic and electromagnetic cases are also given to provide a contrast with the inverse source problem and for use in later papers. Moreover, the present author's earlier work on the eigenfunctions of the curl operator is reviewed and used to simplify drastically the three-dimensional direct and inverse source problems for electromagnetic theory by splitting off the radiation field and its currents from the longitudinal field and its sources and currents. Finally, for a prescribed time dependence, the inverse source problem is solved explicitly in

  11. Initial three-dimensional finite-difference time-domain phenomenology study of the transient response of a large vertically coupled photonic racetrack.

    PubMed

    Greene, Jethro H; Taflove, Allen

    2003-10-01

    We report the initial three-dimensional finite-difference time-domain modeling of a vertically coupled photonic racetrack. The modeling reveals details of the full suite of space-time behavior of electromagnetic-wave phenomena involved in guiding, coupling, multimoding, dispersion, and radiation. This behavior is not easily obtainable by analytical or full-vector frequency-domain methods, measurements of terminal properties, or near-field scanning optical microscopy.

  12. An Inexpensive Real-Time Interactive Three-Dimensional Flight Simulation System.

    DTIC Science & Technology

    1987-08-03

    200.0 * (-41.01); ’item=genobjo; makeobj(*item); /* draw right side of tank CCW/ parnAyIOIIOJ = -10.0; parray [O1tlI = 6.0; parray [0j21 = -5.0; parray ...11I01 = -15.0; parraylll[1I = 4.0; paaray[11121 = -5.0; parray21oI = -15.0; parray12I111 = 2.0; parrayI2II2I = -5.0; parraylIlol0 = -10.0; parray [311lI...0.0; parray1SJ 121 = -5.0; parray4IOI = 10.0; parray14111J = 0.0; parray14Il2I = -5.0; parray [SIIOI = 15.0; pazray[SI1lI = 2.0; parray [5J 121 = -5.0

  13. An Inexpensive Real-Time Interactive Three Dimensional Flight Simulation System.

    DTIC Science & Technology

    1987-06-01

    item; long points = 4, bigpoint3 8; float parray [8jl3l; float tx,ly,lz, long cmin =MIN TGTCOLOR, cmax =MAXTGT COLOR, ci; Ix = 400.0 41.01...parrayl011ll = 6. 0; parray [0lI21 = -5.0; parray [1110j = -15.0; parrayJ11111 = 4.0; parray 111I21 = -5.0; parrayl2l101 = -15.0; parrayI2IJlj = 2.0; parray [2...21 -5.0; Parray1SJ[0J = -10.0; parray [3111 = 0.0; parray [31121 = -5.0; ParraY [41[01 = 10.0; parrayI4I1lI = 0.0; parrayI4II2I = -5.0; p array f51 101

  14. High speed three-dimensional laser scanner with real time processing

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph P. (Inventor); Schuet, Stefan R. (Inventor)

    2008-01-01

    A laser scanner computes a range from a laser line to an imaging sensor. The laser line illuminates a detail within an area covered by the imaging sensor, the area having a first dimension and a second dimension. The detail has a dimension perpendicular to the area. A traverse moves a laser emitter coupled to the imaging sensor, at a height above the area. The laser emitter is positioned at an offset along the scan direction with respect to the imaging sensor, and is oriented at a depression angle with respect to the area. The laser emitter projects the laser line along the second dimension of the area at a position where a image frame is acquired. The imaging sensor is sensitive to laser reflections from the detail produced by the laser line. The imaging sensor images the laser reflections from the detail to generate the image frame. A computer having a pipeline structure is connected to the imaging sensor for reception of the image frame, and for computing the range to the detail using height, depression angle and/or offset. The computer displays the range to the area and detail thereon covered by the image frame.

  15. Quantification of Right and Left Ventricular Function With Real-Time Three-Dimensional Ultrasound

    DTIC Science & Technology

    2007-11-02

    But it is very delicate to increase the maximum number of iterations in every case since the septum wall that separates the two cavities very often...as the medial axis as developed by Pizer and Stetten [12]. V. CONCLUSION Quantification of RV and LV volumes with 2D ultrasound transducers is...the American Society of Echocardiography, vol. 14, pp. 275-284, 2001. [12] G. D. Stetten and S. M. Pizer, “ Medial -node models to identify and

  16. Improvement of depth resolution and detection efficiency by control of secondary-electrons in single-event three-dimensional time-of-flight Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Abo, Satoshi; Hamada, Yasuhisa; Seidl, Albert; Wakaya, Fujio; Takai, Mikio

    2015-04-01

    An improvement of a depth resolution and a detection efficiency in single-event three-dimensional time-of-flight (TOF) Rutherford backscattering spectrometry (RBS) is discussed on both simulation and experiment by control of secondary electron trajectories using sample bias voltage. The secondary electron, used for a start signal in single-event TOF-RBS, flies more directly to a secondary electron detector with the positive sample bias voltage of several tens of volt than that without sample bias voltage in the simulation. The simulated collection efficiency of the secondary electrons also increases with the positive sample bias voltage of several tens of volt. These simulation results indicate the possibility of a smaller depth resolution and a shorter measurement time in single-event TOF-RBS with positive sample bias voltage. The measurement time for the Pt-stripe sample using single-event three-dimensional TOF-RBS with the sample bias voltage of +100 V is 65% shorter than that without sample bias voltage, resulting in a less sample damage by a probe beam. The depth resolution for the Pt stripes under the 50-nm-thick SiO2 cover-layer with the sample bias voltage of +100 V is 4 nm smaller than that without sample bias voltage. Positive sample bias voltage improves the depth resolution and the detection efficiency in single-event three-dimensional TOF-RBS without an influence on the beam focusing.

  17. Real-time analysis keratometer

    NASA Technical Reports Server (NTRS)

    Adachi, Iwao P. (Inventor); Adachi, Yoshifumi (Inventor); Frazer, Robert E. (Inventor)

    1987-01-01

    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis.

  18. Real Time Network Assessment

    DTIC Science & Technology

    2013-07-12

    Demonstrate a simple system Conduct a feasibility assessment of data storage, maintenance, and integration requirements Test a web-based data feed...Real Time Network Assessment Prototype We demonstrated the feasibility of linking near real time network analytics to mashups and web- based...combining similar concepts into single node) Stemmers Thesauri application Network position Statistical common patterns Pronoun identification

  19. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    USGS Publications Warehouse

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  20. A new time-domain approach for the electromagnetic induction problem in a three-dimensional heterogeneous earth

    NASA Astrophysics Data System (ADS)

    Hamano, Yozo

    2002-09-01

    peaks, where the first peak (observed at 0.001-0.01 hr after the application of the external field) corresponds to the surface-layer induced phase and the second peak (1-50 hr after the onset) reflects the deeper structure. The difference of the response functions between the models with the conductivity jump at 400 km and 700 km depths becomes apparent after about 1000 s elapsed. The differences can be used to estimate the electrical conductivity structure around the transition layer. Considering that all the induced components except g10 are generated by the surface heterogeneous layer, the surface layer should be included even for calculating the long period response functions for periods much longer than the characteristic time of the surface layer. For the model in which the transition layer is heterogeneous, the signal starts at about 1000 s after the onset and lasts more than about 100 hr. Fourier transform of the time-domain response functions gives the response function in the frequency domain, which can be compared with the previous solutions. Real and imaginary parts of the spatial distribution of the induced magnetic field in frequency domain were calculated from the present results, and compared with those calculated by the staggered-grid finite difference method. This comparison indicates that the surface induced phases are equally detected in the both approaches even for periods as long as 10 days.

  1. EPIC Simulations of Time-Dependent, Three-Dimensional Vortices with Application to Neptune's Great Dark SPOT

    NASA Astrophysics Data System (ADS)

    LeBeau, R. P.; Dowling, T. E.

    1998-04-01

    We use the EPIC general circulation model, described in the companion paper by Dowlinget al.(1998.Icarus132, 221-238), to simulate large vortices under conditions similar to those found on Neptune. The vortices are anticyclones with roughly elliptical cross sections and exhibit motions that resemble the behavior of Neptune's Great Dark Spot (GDS), including equatorward drift, oscillations in aspect ratio and orientation angle, and tail formation. The vortices also exhibit three-dimensional motions that may explain the occasional appearance of the GDS as two overlapping ellipses. We find that the meridional drift of the vortices is correlated with the meridional gradient of the background absolute vorticity, β*. This result complements studies of hurricane drift. The correlation suggests that the drift rate of GDS-type vortices on Neptune, which can be monitored over the long term by the Hubble Space Telescope (HST), is diagnostic of the vorticity gradient on the planet. The best fit to the Voyager GDS drift rate in our simulations corresponds to β* ≈ 2 × 10-12m-1s-1. This is about{1}/{3}of the value given by the zonal-wind profile determined by fitting an even polynomial in latitude to the cloud-tracking data (Sromovskyet al.1993). Refitting the data with spherical harmonics (Legendre polynomials) yields a value for β* that is about{1}/{2}of the Sromovskyet al.value, and more in line with our vortex-drift results. We show that vortex shape oscillations occur both in the case β* = 0, corresponding to the analytical model of Kida (1981), and for β* > 0. Interpreting the shape oscillations is more complicated than interpreting meridional drift because shape oscillations are sensitive to the distribution of vorticity in the vortex as well as in the environment. Rossby-wave dispersion strongly affects the model vortices that drift too close to the equator. The vortices disrupt before reaching the equator, dispersing into waves that propagate in both the southern

  2. Three-dimensional metamaterials

    SciTech Connect

    Burckel, David Bruce

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  3. Three dimensional quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Ferretti, G.; Rajeev, S. G.; Yang, Z.

    1992-02-01

    The subject of this talk is the study of the low energy behavior of three (2+1) dimensional Quantum Chromodynamics. We show the existence of a phase where parity is unbroken and the flavor group U(2n) is broken into a subgroup U(n)×U(n). We derive the low energy effective action for the theory and show that it has solitonic excitations with Fermi statistic, to be identified with the three dimensional ``baryon''. Finally, we study the current algebra for this effective action and we find a co-homologically nontrivial generalization of Kac-Moody algebras to three dimension.

  4. Three Dimensional Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  5. Three Dimensional (3D) Printing: A Straightforward, User-Friendly Protocol to Convert Virtual Chemical Models to Real-Life Objects

    ERIC Educational Resources Information Center

    Rossi, Sergio; Benaglia, Maurizio; Brenna, Davide; Porta, Riccardo; Orlandi, Manuel

    2015-01-01

    A simple procedure to convert protein data bank files (.pdb) into a stereolithography file (.stl) using VMD software (Virtual Molecular Dynamic) is reported. This tutorial allows generating, with a very simple protocol, three-dimensional customized structures that can be printed by a low-cost 3D-printer, and used for teaching chemical education…

  6. Data Visualization in Physics II: VRML and Java for three-dimensional imaging and fully three-dimensional movies

    NASA Astrophysics Data System (ADS)

    Fenton, Flavio H.; Evans, Steven J.; Hastings, Harold M.; Cherry, Elizabeth M.

    2006-03-01

    Presentation and analysis of large three-dimensional data sets is in general hard to do using only two-dimensional figures and plots. In this talk, we will demonstrate techniques for illustrating static and dynamic three-dimensional objects and data using Virtual Reality Modeling Language (VRML) as well as Java. The advantage of these two languages is that they are platform-independent, which allows for easy sharing of data and visualizations. In addition, manipulation of data is relatively easy as rotation, translation and zooming can be done in real- time for static objects as well as for data and objects that vary and deform in time. Examples of fully three-dimensional movies will be shown, including dendritic growth and propagation of electrical waves in cardiac tissue. In addition, we will show how to include VRML and Java viewers in PowerPoint for easy presentation of results in classes and seminars.

  7. Dark and bright solitons for a three-dimensional Gross-Pitaevskii equation with distributed time-dependent coefficients in the Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Zhen, Hui-Ling; Wu, Xiao-Yu; Shan, Wen-Rui

    2017-02-01

    Under investigation in this paper is a three-dimensional Gross-Pitaevskii equation with the distributed time-dependent coefficients, which describes the phenomena associated with the three-dimensional Bose-Einstein condensation. Under the constraint α(t) = 2 β(t) , we obtain the bilinear forms, dark and bright N-soliton solutions via the Hirota method and symbolic computation, where t is the scaled time, α(t) and β(t) are the coefficients for the strength of the quadratic potential and diffraction, respectively. Specially, compared with the bright soliton solutions previously reported, we eliminate one constraint and obtain more soliton parameters. We give the existence constraints of the dark and bright N solitons, respectively. Choosing the diffraction and gain/loss coefficients, we observe the growth, decay, periodic oscillation, periodic collapse and revival of the dark and bright solitons. Relationships between the BEC time-dependent coefficients and soliton properties are studied. With the help of the asymptotic and graphic analysis, elastic interactions of the dark and bright two solitons are exhibited.

  8. Three-dimensional, two-species magnetohydrodynamic studies of the early time behaviors of the Combined Release and Radiation Effects Satellite G2 barium release

    SciTech Connect

    Xie, Lianghai Li, Lei; Wang, Jingdong; Zhang, Yiteng

    2014-04-15

    We present a three-dimensional, two-species (Ba{sup +} and H{sup +}) MHD model to study the early time behaviors of a barium release at about 1 R{sub E} like Combined Release and Radiation Effects Satellite G2, with emphasis placed on the three-dimensional evolution of the barium cloud and its effects on the ambient plasma environment. We find that the perturbations caused by the cloud are the combined results of the initial injection, the radial expansion, and the diamagnetic effect and propagate as fast MHD waves in the magnetosphere. In return, the transverse expansion and the cross-B motion of barium ions are constrained by the magnetic force, which lead to a field-aligned striation of ions and the decoupling of these ions from the neutrals. Our simulation shows the formation and collapse of the diamagnetic cavity in the barium cloud. The estimated time scale for the cavity evolution might be much shorter if photoionization time scale and field aligned expansion of barium ions are considered. In addition, our two species MHD simulation also finds the snowplow effect resulting from the momentum coupling between barium ions and background H{sup +}, which creates density hole and bumps in the background H{sup +} when barium ions expanding along the magnetic field lines.

  9. Three dimensional interactive display

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2005-01-01

    A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.

  10. Three-dimensional inversion of regional P and S arrival times in the East Aleutians and sources of subduction zone gravity highs

    SciTech Connect

    Abers, G.A.

    1994-03-10

    Free-air gravity highs over forearcs represent a large fraction of the power in the Earth`s anomalous field, yet their origin remains uncertain. Seismic velocities, as indicators of density, are estimated here as a means to compare the relative importance of upper plate sources for the gravity high with sources in the downgoing plate. P and S arrival times for local earthquakes, recorded by a seismic network in the eastern Aleutians, are inverted for three-dimensional velocity structure between the volcanic arc and the downgoing plate. A three-dimensional ray tracing scheme is used to invert the 7974 P and 6764 S arrivals for seismic velocities and hypocenters of 635 events. One-dimensional inversions show that station P residuals are systematically 0.25 - 0.5 s positive at stations 0-30 km north of the Aleutian volcanic arc, indicating slow material, while residuals at stations 10-30 km south of the arc are 0.1-0.25 s negative. Both features are explained in three-dimensional inversions by velocity variations at depths less than 25-35 km. Tests using a one-dimensional or a two-dimensional slab starting model show that below 100 km depth, velocities are poorly determined and trade off almost completely with hypocenters for earthquakes at these depths. The locations of forearc velocity highs, in the crust of the upper plate, correspond to the location of the gravity high between the trench and volcanic arc. Free-air anomalies, calculated from the three-dimensional velocity inversion result, match observed gravity for a linear density-velocity relationship between 0.1 and 0.3 (Mg m{sup {minus}3})/(km s{sup {minus}1}), when a 50-km-thick slab is included with a density of 0.055{+-}0.005 Mg m{sup {minus}3}. Values outside these ranges do not match the observed gravity. The slab alone contributes one third to one half of the total 75-150 mGal amplitude of the gravity high but predicts a high that is much broader than is observed.

  11. Deriving Sensitivity Kernels of Coda-Wave Travel Times to Velocity Changes Based on the Three-Dimensional Single Isotropic Scattering Model

    NASA Astrophysics Data System (ADS)

    Nakahara, Hisashi; Emoto, Kentaro

    2017-01-01

    Recently, coda-wave interferometry has been used to monitor temporal changes in subsurface structures. Seismic velocity changes have been detected by coda-wave interferometry in association with large earthquakes and volcanic eruptions. To constrain the spatial extent of the velocity changes, spatial homogeneity is often assumed. However, it is important to locate the region of the velocity changes correctly to understand physical mechanisms causing them. In this paper, we are concerned with the sensitivity kernels relating travel times of coda waves to velocity changes. In previous studies, sensitivity kernels have been formulated for two-dimensional single scattering and multiple scattering, three-dimensional multiple scattering, and diffusion. In this paper, we formulate and derive analytical expressions of the sensitivity kernels for three-dimensional single-scattering case. These sensitivity kernels show two peaks at both source and receiver locations, which is similar to the previous studies using different scattering models. The two peaks are more pronounced for later lapse time. We validate our formulation by comparing it with finite-difference simulations of acoustic wave propagation. Our formulation enables us to evaluate the sensitivity kernels analytically, which is particularly useful for the analysis of body waves from deeper earthquakes.

  12. Real-time radiography

    SciTech Connect

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  13. Real time obscuration monitoring

    NASA Astrophysics Data System (ADS)

    Agricola, Koos

    2016-09-01

    Recently a real time particle deposition monitoring system is developed. After discussions with optical system engineers a new feature has been added. This enables the real time monitoring of obscuration of exposed optical components by counting the deposited particles and sizing the obscuration area of each particle. This way the Particle Obscuration Rate (POR) can be determined. The POR can be used to determine the risk of product contamination during exposure. The particle size distribution gives information on the type of potential particle sources. The deposition moments will indicate when these sources were present.

  14. Three-Dimensional Complex Variables

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1988-01-01

    Report presents new theory of analytic functions of three-dimensional complex variables. While three-dimensional system subject to more limitations and more difficult to use than the two-dimensional system, useful in analysis of three-dimensional fluid flows, electrostatic potentials, and other phenomena involving harmonic functions.

  15. Improving three-dimensional target reconstruction in the multiple scattering regime using the decomposition of the time-reversal operator

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Chaumet, Patrick C.; Sentenac, Anne; Belkebir, Kamal

    2016-12-01

    The singular vectors of the time reversal operator (décomposition de l'opérateur de retournement temporel, time reversal operator decomposition (DORT) processing) are often used for localizing small echogeneous targets in a cluttered environment. In this work, we show that they can also improve the imaging of relatively large and contrasted targets in a homogeneous environment. It is observed that non-linear inversion schemes, minimizing iteratively the discrepancy between experimental data and simulated field scattered by target estimates, are more efficient when the illuminations correspond to the DORT singular vectors. In addition, DORT preprocessing permits a drastic diminution of the data load and computer burden. This study is conducted with experimental microwave data of targets with size comparable or greater than the wavelength.

  16. Three-dimensional display technologies.

    PubMed

    Geng, Jason

    2013-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain's power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies.

  17. Three-dimensional time and frequency-domain theory of femtosecond x-ray pulse generation through Thomson Scattering

    SciTech Connect

    Brown, W J; Hartemann, F V

    2004-01-27

    The generation of high intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. Thomson backscattering of a high intensity laser pulse with a bright relativistic electron bunch is a promising method for producing such high brightness x-ray pulses in the 10-100 keV range within a compact facility. While a variety of methods for producing sub-picosecond x-ray bursts by Thomson scattering exist, including compression of the electron bunch to sub-picosecond bunch lengths and/or colliding a sub-picosecond laser pulse in a side-on geometry to minimize the interaction time, a promising alternative approach to achieving this goal while maintaining ultra-high brightness is the production of a time correlated (or chirped) x-ray pulse in conjunction with pulse slicing or compression. We present the results of a complete analysis of this process using a recently developed 3-D time and frequency-domain code for analyzing the spatial, temporal, and spectral properties an x-ray beam produced by relativistic Thomson scattering. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, laser focus, and the transverse and longitudinal phase space of the electron beam were examined. Simulations of chirped x-ray pulse production using both a chirped electron beam and a chirped laser pulse are presented. Required electron beam and laser parameters are summarized by investigating the effects of beam emittance, energy spread, and laser bandwidth on the scattered x-ray spectrum. It is shown that sufficient temporal correlation in the scattered x-ray spectrum

  18. Real-time cosmology

    NASA Astrophysics Data System (ADS)

    Quercellini, Claudia; Amendola, Luca; Balbi, Amedeo; Cabella, Paolo; Quartin, Miguel

    2012-12-01

    In recent years, improved astrometric and spectroscopic techniques have opened the possibility of measuring the temporal change of radial and transverse position of sources in the sky over relatively short time intervals. This has made at least conceivable to establish a novel research domain, which we dub “real-time cosmology”. We review for the first time most of the work already done in this field, analysing the theoretical framework as well as some foreseeable observational strategies and their capability to constrain models. We first focus on real-time measurements of the overall redshift drift and angular separation shift in distant sources, which allows the observer to trace the background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper accelerations in clustered systems, and therefore their gravitational potential. The last two sections are devoted to the future change of the cosmic microwave background on “short” time scales, as well as to the temporal shift of the temperature anisotropy power spectrum and maps. We conclude revisiting in this context the usefulness of upcoming experiments (like CODEX and Gaia) for real-time observations.

  19. Three-dimensional kinematics of the scapula and trunk, and associated scapular muscle timing in individuals with stroke.

    PubMed

    De Baets, Liesbet; Van Deun, Sara; Monari, Davide; Jaspers, Ellen

    2016-08-01

    Poor scapulothoracic control is a risk for developing shoulder pathology, but has received little attention so far in individuals with stroke (IwS). Trunk and scapular kinematics and surface muscle activity were measured in 15 healthy controls and 18 IwS during a low and high forward flexion (FF). Group-differences in trunk and scapular kinematics were assessed during low and high FF using a t-test (independent samples). Differences in muscle onset and offset time relative to movement start (both FF tasks) were determined using a mixed model taking into account the different groups and muscles. Recruitment patterns per group and task were described based on significant differences between muscles. In IwS, earlier lower trapezius and late infraspinatus offset were found during low FF, as well as a later onset and earlier offset of serratus anterior. For low FF, significantly more trunk axial rotation was found in IwS during both elevation and lowering. During high FF, IwS showed significantly less scapular posterior tilt during elevation and more scapular lateral rotation during lowering. IwS demonstrated adaptive muscle timing with earlier initiation and late inactivation of lower trapezius and infraspinatus, possibly to compensate for a late activation and early deactivation of the serratus anterior and to establish as such the correct pattern of scapulothoracic movement.

  20. Time-multiplexed three-dimensional displays based on directional backlights with fast-switching liquid-crystal displays.

    PubMed

    Chien, Ko-Wei; Shieh, Han-Ping D

    2006-05-01

    An autostereoscopic display using a directional backlight with a fast-switching liquid-crystal (LC) display was designed and fabricated to obtain a better perception of 3D images by enhanced resolution and brightness. A grooved light guide in combination with an asymmetric focusing foil was utilized to redirect the emitting cones of light to the left and right eyes, respectively. By designing the groove structures of the focusing foil with rotation from -1.5 degrees to 1.5 degrees in the gradient and having the pitch ratio of the grooved light guide to the focusing foil of less than 3, the boundary angle then shifts from normal viewing and the moiré phenomenon can be suppressed. Cross talk of less than 6% and a LC response time of faster than 7.1 ms further improve the stereoscopic image perception. Additionally, 2D-3D compatibility is provided.

  1. On numerical model of time-dependent processes in three-dimensional porous heat-releasing objects

    NASA Astrophysics Data System (ADS)

    Lutsenko, Nickolay A.

    2016-10-01

    The gas flows in the gravity field through porous objects with heat-releasing sources are investigated when the self-regulation of the flow rate of the gas passing through the porous object takes place. Such objects can appear after various natural or man-made disasters (like the exploded unit of the Chernobyl NPP). The mathematical model and the original numerical method, based on a combination of explicit and implicit finite difference schemes, are developed for investigating the time-dependent processes in 3D porous energy-releasing objects. The advantage of the numerical model is its ability to describe unsteady processes under both natural convection and forced filtration. The gas cooling of 3D porous objects with different distribution of heat sources is studied using computational experiment.

  2. Time-dependent three-dimensional (latitude, longitude, altitude) response of the ionosphere to the 2009 SSW event

    NASA Astrophysics Data System (ADS)

    Azeem, S. I.; Crowley, G.; Reynolds, A.

    2013-12-01

    Recent studies have shown variations in the low and mid latitude ionosphere that are linked to Sudden Stratospheric Warming events. These studies suggest that during SSW events the equatorial electric fields vary in a quasi-deterministic way, producing vertical plasma drifts that deviate from climatological values more than expected. Although previous studies have provided important information on the ionospheric response to SSW events, they have been fairly localized. Therefore, broader observational capabilities and data are required that can unambiguously reveal the instantaneous global response of the ionosphere to SSW events. In this paper, we present four-dimensional (latitude, longitude, height and time) results of the Ionospheric Data Assimilation Four-Dimensional (IDA4D) algorithm to describe a global view of the ionospheric response to the 2009 SSW event. We use the IDA4D to assimilate ionosondes, ground-based GPS TEC, DORIS, CHAMP and GRACE occultation measurements for several days in January 2009 during the SSW event. IDA4D results show that at the peak of the 2009 SSW event, TEC values in the low latitudes were elevated in the morning hours while they were suppressed in the evening sector. The effects of enhanced dynamo forcing during the January 2009 SSW were also captured by the IDA4D showing an increased separation of the Appleton Anomaly peaks. The IDA4D results will be discussed in the context of horizontal, vertical and temporal evolution of ionospheric disturbances associated with the 2009 SSW event. The evolution of longitudinal, local time, and height (where applicable) variations of various plasma parameters (such as Ne, TEC, NmF2, hmF2, foF2) through the full 2009 SSW cycle (including genesis, onset, and recovery) will be presented.

  3. Parallel Monte Carlo transport modeling in the context of a time-dependent, three-dimensional multi-physics code

    SciTech Connect

    Procassini, R.J.

    1997-12-31

    The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution of particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.

  4. Enhancing Biological Analyses with Three Dimensional Field Asymmetric Ion Mobility, Low Field Drift Time Ion Mobility and Mass Spectrometry (µFAIMS/IMS-MS) Separations

    SciTech Connect

    Zhang, Xing; Ibrahim, Yehia M.; Chen, Tsung-Chi; Kyle, Jennifer E.; Norheim, Randolph V.; Monroe, Matthew E.; Smith, Richard D.; Baker, Erin Shammel

    2015-06-30

    We report the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (µFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The µFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional information of detected features from the measured FAIMS compensation fields and IMS drift times, while also obtaining accurate ion masses. These separations thereby increase the overall separation power, resulting increased information content, and provide more complete characterization of more complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressures in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by e.g. improving isomeric separations and allowing detection of species obscured by “chemical noise” and other interfering peaks.

  5. AAOGlimpse: Three-dimensional Data Viewer

    NASA Astrophysics Data System (ADS)

    Shortridge, Keith

    2011-10-01

    AAOGlimpse is an experimental display program that uses OpenGL to display FITS data (and even JPEG images) as 3D surfaces that can be rotated and viewed from different angles, all in real-time. It is WCS-compliant and designed to handle three-dimensional data. Each plane in a data cube is surfaced in the same way, and the program allows the user to travel through a cube by 'peeling off' successive planes, or to look into a cube by suppressing the display of data below a given cutoff value. It can blink images and can superimpose images and contour maps from different sources using their world coordinate data. A limited socket interface allows communication with other programs.

  6. A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

    NASA Astrophysics Data System (ADS)

    Tavelli, Maurizio; Dumbser, Michael

    2016-08-01

    In this paper we propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. As is typical for space-time DG schemes, the discrete solution is represented in terms of space-time basis functions. This allows to achieve very high order of accuracy also in time, which is not easy to obtain for the incompressible Navier-Stokes equations. Similarly to staggered finite difference schemes, in our approach the discrete pressure is defined on the primary tetrahedral grid, while the discrete velocity is defined on a face-based staggered dual grid. While staggered meshes are state of the art in classical finite difference schemes for the incompressible Navier-Stokes equations, their use in high order DG schemes is still quite rare. A very simple and efficient Picard iteration is used in order to derive a space-time pressure correction algorithm that achieves also high order of accuracy in time and that avoids the direct solution of global nonlinear systems. Formal substitution of the discrete momentum equation on the dual grid into the discrete continuity equation on the primary grid yields a very sparse five-point block system for the scalar pressure, which is conveniently solved with a matrix-free GMRES algorithm. From numerical experiments we find that the linear system seems to be reasonably well conditioned, since all simulations shown in this paper could be run without the use of any preconditioner, even up to very high polynomial degrees. For a piecewise constant polynomial approximation in time and if pressure boundary conditions are specified at least in one point, the resulting system is, in addition, symmetric and positive definite. This allows us to use even faster iterative solvers, like the conjugate gradient method. The flexibility and accuracy of high order space-time DG methods on curved

  7. Three-dimensional vortex methods

    SciTech Connect

    Greengard, C.A.

    1984-08-01

    Three-dimensional vortex methods for the computation of incompressible fluid flow are presented from a unified point of view. Reformulations of the filament method and of the method of Beale and Majda show them to be very similar algorithms; in both of them, the vorticity is evaluated by a discretization of the spatial derivative of the flow map. The fact that the filament method, the one which is most often used in practice, can be formulated as a version of the Beale and Majda algorithm in a curved coordinate system is used to give a convergence theorem for the filament method. The method of Anderson is also discussed, in which vorticity is evaluated by the exact differentiation of the approximate velocity field. It is shown that, in the inviscid version of this algorithm, each approximate vector of vorticity remains tangent to a material curve moving with the computed flow, with magnitude proportional to the stretching of this vortex line. This remains true even when time discretization is taken into account. It is explained that the expanding core vortex method converges to a system of equations different from the Navier-Stokes equations. Computations with the filament method of the inviscid interaction of two vortex rings are reported, both with single filaments in each ring and with a fully three-dimensional discretization of vorticity. The dependence on parameters is discussed, and convergence of the computed solutions is observed. 36 references, 4 figures.

  8. Three dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent

  9. Pulmonary adenocarcinomas presenting as ground-glass opacities on multidetector CT: three-dimensional computer-assisted analysis of growth pattern and doubling time

    PubMed Central

    Borghesi, Andrea; Farina, Davide; Michelini, Silvia; Ferrari, Matteo; Benetti, Diego; Fisogni, Simona; Tironi, Andrea; Maroldi, Roberto

    2016-01-01

    PURPOSE We aimed to evaluate the growth pattern and doubling time (DT) of pulmonary adenocarcinomas exhibiting ground-glass opacities (GGOs) on multidetector computed tomography (CT). METHODS The growth pattern and DT of 22 pulmonary adenocarcinomas exhibiting GGOs were retrospectively analyzed using three-dimensional semiautomatic software. Analysis of each lesion was based on calculations of volume and mass changes and their respective DTs throughout CT follow-up. Three-dimensional segmentation was performed by a single radiologist on each CT scan. The same observer and another radiologist independently repeated the segmentation at the baseline and the last CT scan to determine the variability of the measurements. The relationships among DTs, histopathology, and initial CT features of the lesions were also analyzed. RESULTS Pulmonary adenocarcinomas presenting as GGOs exhibited different growth patterns: some lesions grew rapidly and some grew slowly, whereas others alternated between periods of growth, stability, or shrinkage. A significant increase in volume and mass that exceeded the coefficient of repeatability of interobserver variability was observed in 72.7% and 84.2% of GGOs, respectively. The volume-DTs and mass-DTs were heterogeneous throughout the follow-up CT scan (range, −4293 to 21928 and −3113 to 17020 days, respectively), and their intra- and interobserver variabilities were moderately high. The volume-DTs and mass-DTs were not correlated with the initial CT features of GGOs; however, they were significantly shorter in invasive adenocarcinomas (P = 0.002 and P = 0.001, respectively). CONCLUSION Pulmonary adenocarcinomas exhibiting GGOs show heterogeneous growth patterns with a trend toward a progressive increase in size. DTs may be useful for predicting tumor aggressiveness. PMID:27682741

  10. Three-dimensional inversion of regional P and S arrival times in the East Aleutians and sources of subduction zone gravity highs

    NASA Astrophysics Data System (ADS)

    Abers, Geoffrey A.

    1994-03-01

    Free-air gravity highs over forearcs represent a large fraction of the power in the Earth's anomalous field, yet their origin remains uncertain. Seismic velocities, as indicators of density, are estimated here as a means to compare the relative importance of upper plate sources for the gravity high with sources in the downgoing plate. P and S arrival times for local earthquakes, recorded by a seismic network in the eastern Aleutians, are inverted for three-dimensional velocity structure between the volcanic arc and the downgoing plate. A three-dimensional ray tracing scheme is used to invert the 7974 P and 6764 S arrivals for seismic velocities and hypocenters of 635 events. One-dimensional inversions show that station P residuals are systematically 0.25-0.5 s positive at stations 0-30 km north of the Aleutian volcanic arc, indicating slow material, while residuals at stations 10-30 km south of the arc are 0.1-0.25 s negative. Both features are explained in three-dimensional inversions by velocity variations at depths less than 25-35 km. Tests using a one-dimensional or a two-dimensional slab starting model show that below 100 km depth, velocities are poorly determined and trade off almost completely with hypocenters for earthquakes at these depths. The locations of forearc velocity highs, in the crust of the upper plate, correspond to the location of the gravity high between the trench and volcanic arc. Free-air anomalies, calculated from the three-dimensional velocity inversion result, match observed gravity for a linear density-velocity relationship between 0.1 and 0.3 (Mg m-3)/(km s-1), when a 50-km-thick slab is included with a density of 0.055±0.005 Mg m-3. Values outside these ranges do not match the observed gravity. The slab alone contributes one third to one half of the total 75-150 mGal amplitude of the gravity high but predicts a high that is much broader than is observed. The inclusion of upper-plate velocity anomalies predicts the correct width of

  11. Three-Dimensional Visualization of Particle Tracks.

    ERIC Educational Resources Information Center

    Julian, Glenn M.

    1993-01-01

    Suggests ways to bring home to the introductory physics student some of the excitement of recent discoveries in particle physics. Describes particle detectors and encourages the use of the Standard Model along with real images of particle tracks to determine three-dimensional views of tracks. (MVL)

  12. Three-Dimensional Solar Wind Structures Obtained with MHD Simulation Model Using Observation-Based Time-Varying Inner Boundary Map

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Tokumaru, M.; Fujiki, K.; Kojima, M.

    2011-10-01

    We report our recent efforts to reproduce numerically three-dimensional time-dependent structures of the solar wind in the heliosphere responding to the time-varying boundary data on the inner boundary sphere at the heliocentric distance of 50 radii. The computation region is extended up to 10050 solar radii (approximately 47AU). A boundary model we recently developed is used to include the time-varying observation-based data map in the inner heliosphere including the radial component of the magnetic field. One merit of using the time-varying boundary conditions in the MHD simulation is that we will be able to determine better the MHD variables of the solar wind at the time and position of interest, especially in the distant regions from the Sun. The boundary data used here were derived from the IPS (interplanetary scintillation) at Nagoya University of Japan that can yield the solar wind speed at both high and low heliographic latitudes, and the solar-surface magnetic field data, such as those by SOHO/MDI and WSO. In this article, we will show the comparisons of our simulation results with the in-situ measurements made by space probes, such as the nearby-Earth measurement dataset (OMNIweb data), Ulysses, and Voyager 1 and 2 (COHOweb database), in 1991.

  13. Self-intermediate scattering function of strongly interacting three-dimensional lattice gases: time- and wave-vector-dependent tracer diffusion coefficient.

    PubMed

    Skarpalezos, Loukas; Argyrakis, Panos; Vikhrenko, Vyacheslav S

    2014-05-01

    We investigate the self-intermediate scattering function (SISF) in a three-dimensional (3D) cubic lattice fluid (interacting lattice gas) with attractive nearest-neighbor interparticle interactions at a temperature slightly above the critical one by means of Monte Carlo simulations. A special representation of SISF as an exponent of the mean tracer diffusion coefficient multiplied by the geometrical factor and time is considered to highlight memory effects that are included in time and wave-vector dependence of the diffusion coefficient. An analytical expression for the diffusion coefficient is suggested to reproduce the simulation data. It is shown that the particles' mean-square displacement is equal to the time integral of the diffusion coefficient. We make a comparison with the previously considered 2D system on a square lattice. The main difference with the two-dimensional case is that the time dependence of particular characteristics of the tracer diffusion coefficient in the 3D case cannot be described by exponentially decreasing functions, but requires using stretched exponentials with rather small values of exponents, of the order of 0.2. The hydrodynamic values of the tracer diffusion coefficient (in the limit of large times and small wave vectors) defined through SIFS simulation results agree well with the results of its direct determination by the mean-square displacement of the particles in the entire range of concentrations and temperatures.

  14. On a class of unsteady three-dimensional Navier Stokes solutions relevant to rotating disc flows: Threshold amplitudes and finite time singularities

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Balakumar, P.

    1990-01-01

    A class of exact steady and unsteady solutions of the Navier Stokes equations in cylindrical polar coordinates is given. The flows correspond to the motion induced by an infinite disc rotating with constant angular velocity about the z-axis in a fluid occupying a semi-infinite region which, at large distances from the disc, has velocity field proportional to (x,-y,O) with respect to a Cartesian coordinate system. It is shown that when the rate of rotation is large, Karman's exact solution for a disc rotating in an otherwise motionless fluid is recovered. In the limit of zero rotation rate a particular form of Howarth's exact solution for three-dimensional stagnation point flow is obtained. The unsteady form of the partial differential system describing this class of flow may be generalized to time-periodic equilibrium flows. In addition the unsteady equations are shown to describe a strongly nonlinear instability of Karman's rotating disc flow. It is shown that sufficiently large perturbations lead to a finite time breakdown of that flow whilst smaller disturbances decay to zero. If the stagnation point flow at infinity is sufficiently strong, the steady basic states become linearly unstable. In fact there is then a continuous spectrum of unstable eigenvalues of the stability equations but, if the initial value problem is considered, it is found that, at large values of time, the continuous spectrum leads to a velocity field growing exponentially in time with an amplitude decaying algebraically in time.

  15. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  16. Three-dimensional echocardiographic technology.

    PubMed

    Salgo, Ivan S

    2007-05-01

    This article addresses the current state of the art of technology in three-dimensional echocardiography as it applies to transducer design, beam forming, display, and quantification. Because three-dimensional echocardiography encompasses many technical and clinical areas, this article reviews its strengths and limitations and concludes with an analysis of what to use when.

  17. Comparison of wave propagation studies in plasmas using three-dimensional finite-difference time-domain and ray-tracing methods

    SciTech Connect

    Chaudhury, Bhaskar; Chaturvedi, Shashank

    2006-12-15

    Power-flow trajectories of electromagnetic waves through a spatially nonuniform plasma have been computed using direct solutions of Maxwell's equations using the three-dimensional finite-difference time-domain (FDTD) method. This method yields accurate information on refraction as well as absorption effects. The method can be used to compute power-flow trajectories for plasmas with arbitrarily varying density profiles, including effects due to arbitrarily shaped conducting or dielectric surfaces bounding the plasma. Furthermore, since FDTD is computationally expensive, especially for parametric studies, it is desirable to use ray tracing to estimate refraction effects. A quantitative comparison is performed between two different methods of obtaining exact and approximate solutions of Maxwell's equations in order to assess their relative utility in different situations. In the present work, we limit ourselves to a cold, collisional, unmagnetized plasma, where the response to electromagnetic waves is fully specified by a dispersion relation based on magnetoionic theory. It is shown that ray tracing in such plasmas yields accurate results only when two conditions are satisfied. Firstly, the density scale length should be long as compared to the free-space wavelength of the incident wave. Secondly, the conduction current should be small as compared to the displacement current in the medium. The second condition is one which has been identified for the first time.

  18. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux

    SciTech Connect

    Nogrette, F.; Chang, R.; Bouton, Q.; Westbrook, C. I.; Clément, D.; Heurteau, D.; Sellem, R.

    2015-11-15

    We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 10{sup 6} s{sup −1} and three-dimensional reconstruction of the coordinates up to 3.2 × 10{sup 6} particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) μm at a flux of 3 × 10{sup 5} particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.

  19. Large aperture at low cost three-dimensional time-of-flight range sensor using scanning micromirrors and synchronous detector switching.

    PubMed

    Bogatscher, Siegwart; Streck, Andreas; Fox, Maik; Meinzer, Sebastian; Heussner, Nico; Stork, Wilhelm

    2014-03-10

    In this article the problem of achieving fast scanning of a time-of-flight range sensor with a large optical receiver aperture at low system cost is targeted. The presented approach to solve this problem consists of a micromirror-based transmitter unit and a receiver unit consisting of a large aperture lens system with a small field of view and a detector array. A concept, which is called synchronous detector switching, is applied to the detector array. Thereby electronic steering of the small receiver field of view is possible. The overall approach is compared to alternative approaches, and the underlying concept of synchronous detector switching is demonstrated experimentally in an implementation of a three-dimensional time-of-flight range sensor. It is theoretically shown that the presented concept is potentially cheaper than the alternative approaches for applications with a field of view of less than 60×60°. After a discussion of the strengths and limitations of the approach, its effect on broader scientific issues is outlined.

  20. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux.

    PubMed

    Nogrette, F; Heurteau, D; Chang, R; Bouton, Q; Westbrook, C I; Sellem, R; Clément, D

    2015-11-01

    We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 10(6) s(-1) and three-dimensional reconstruction of the coordinates up to 3.2 × 10(6) particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) μm at a flux of 3 × 10(5) particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.

  1. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  2. Space weather and the safety of ground infrastructures. Numerical simulation and prediction of electromagnetic effects induced by real magnetospheric substorms in the Earth's models with real three-dimensional distribution of electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kuvshinov, Alexey; Filippov, Sergey; Kalegaev, Vladimir; Sidorova, Larisa; Mukhametdinova, Ludmila; Pankratov, Oleg; Alexeev, Dmitry

    Strong eruptions at Sun’s surface produce large release of matter (plasma), which, with a speed of 800-1000 km/s (the solar wind), flows into interplanetary space. If the Earth appears to be on the way of the solar wind the interaction of the wind with the Earth's magnetosphere and the ionosphere leads to abnormal disturbance of fluctuating geomagnetic field. In the middle latitudes, the disturbances (geomagnetic storms) last a few days and have amplitudes up to 400 nT. At high latitudes, these perturbations (magnetospheric substorms) last a few hours and have amplitudes up to 3000 nT. According to Faraday’s law of induction, the fluctuating magnetic field in turn generates a electric field. The electric field for intense substorms can reach hundreds of volts/km in the polar region and generate very high, the so-called geomagnetic induced currents in the ground-based systems, such as power grids and pipelines. These currents are one of the most dangerous factors affecting the operation of the above systems. Thus extremely topical task in the field of "space weather" is the quantification and prediction of spatio-temporal distribution of the electric field during substorm activity. Despite the abundance of works carried out in this direction, the problem is still far from a satisfactory solution. In the field of modeling, researchers are still working with highly simplified models of both the source and the conducting Earth. As for prediction the situation is even worse. In this presentation we discuss a general formalism which allows for simulating the electric fields induced by real magnetospheric substorms in the spherical model of the Earth with real three-dimensional distribution of conductivity. We show the first results of such simulations. We also discuss a concept to predict substorm spatio-temporal pattern of the electric field.

  3. Off-equilibrium scaling behaviors driven by time-dependent external fields in three-dimensional O(N) vector models.

    PubMed

    Pelissetto, Andrea; Vicari, Ettore

    2016-03-01

    We consider the dynamical off-equilibrium behavior of the three-dimensional O(N) vector model in the presence of a slowly varying time-dependent spatially uniform magnetic field H(t)=h(t)e, where e is an N-dimensional constant unit vector, h(t)=t/t(s), and t(s) is a time scale, at fixed temperature T≤T(c), where T(c) corresponds to the continuous order-disorder transition. The dynamic evolutions start from equilibrium configurations at h(i)<0, correspondingly t(i)<0, and end at time t(f)>0 with h(t(f))>0, or vice versa. We show that the magnetization displays an off-equilibrium scaling behavior close to the transition line H(t)=0. It arises from the interplay among the time t, the time scale t(s), and the finite size L. The scaling behavior can be parametrized in terms of the scaling variables t(s)(κ)/L and t/t(s)(κ(t)), where κ>0 and κ(t)>0 are appropriate universal exponents, which differ at the critical point and for Ttime dependence of the external field. We define a scaling function for the hysteresis loop area of the magnetization that can be used to quantify how far the system is from equilibrium.

  4. Time-lapse ultrashort pulse microscopy of infection in three-dimensional versus two-dimensional culture environments reveals enhanced extra-chromosomal virus replication compartment formation

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly C.; Sing, Garwin; Armas, Juan Carlos González; Campbell, Colin J.; Ghazal, Peter; Yeh, Alvin T.

    2013-03-01

    The mechanisms that enable viruses to harness cellular machinery for their own survival are primarily studied in cell lines cultured in two-dimensional (2-D) environments. However, there are increasing reports of biological differences between cells cultured in 2-D versus three-dimensional (3-D) environments. Here we report differences in host-virus interactions based on differences in culture environment. Using ultrashort pulse microscopy (UPM), a form of two-photon microscopy that utilizes sub-10-fs pulses to efficiently excite fluorophores, we have shown that de novo development of extra-chromosomal virus replication compartments (VRCs) upon murine cytomegalovirus (mCMV) infection is markedly enhanced when host cells are cultured in 3-D collagen gels versus 2-D monolayers. In addition, time-lapse imaging revealed that mCMV-induced VRCs have the capacity to grow by coalescence. This work supports the future potential of 3-D culture as a useful bridge between traditional monolayer cultures and animal models to study host-virus interactions in a more physiologically relevant environment for the development of effective anti-viral therapeutics. These advances will require broader adoption of modalities, such as UPM, to image deep within scattering tissues.

  5. Monitoring the response to neoadjuvant hormone therapy for locally advanced breast cancer using three-dimensional time-resolved optical mammography

    NASA Astrophysics Data System (ADS)

    Enfield, Louise; Cantanhede, Gabriel; Douek, Michael; Ramalingam, Vernie; Purushotham, Arnie; Hebden, Jem; Gibson, Adam

    2013-05-01

    Optical mammography is a functional imaging technique that uses near-infrared light to produce three-dimensional breast images of tissue oxygen saturation and hemoglobin concentration. It has been used to monitor the response to neoadjuvant chemotherapy in breast cancer patients. We present the first results on monitoring tumor response to hormone therapy using optical mammography. We present three case studies from postmenopausal women treated with neoadjuvant hormone therapy for locally advanced breast cancer. The women were scanned before starting treatment, once during treatment, and then before surgery. Changes in physiological and optical properties within the tumor and in the rest of the breast were evaluated. At the time of surgery, two patients partially responded to treatment and one did not respond. The patients that partially responded on ultrasound revealed a corresponding recovery to normal in the hemoglobin concentration images, whereas the nonresponder indicated an increase in hemoglobin concentration in the tumor compared to her pretreatment images. These case studies suggest that optical imaging of the breast during neoadjuvant hormone treatment can provide potentially valuable information, and that physiological changes within the tumor can be seen in response to treatment.

  6. Higher-Order Modes of Modulation Instability in Bose-Einstein Condensates with a Time-Dependent Three-Dimensional Parabolic Potential

    NASA Astrophysics Data System (ADS)

    Zong, Feng-De; Yan, Yu-Sheng; Shen, Sen-Ting

    2014-10-01

    By the similarity reduction and Darboux transformation, we derive higher-order modes of three-dimensional Bose-Einstein condensate modulation instability in the nonautonomous Gross-Pitaevskii equation and manipulate them by regulating the time-dependent potential and gain. Firstly, by the similarity reduction, the (3+1)-dimensional nonautonomous Gross-Pitaevskii equation reduces to a (1+1)-dimensional standard nonlinear Schrödinger equation with constant coefficients. Then, considering the Akhmediev breather solution as the first-order modulation instability solution of the higher-order modes of Bose-Einstein condensate modulation instability, we achieve the Nth-order (N = 2, 3, 4, and 5) modulation instability solutions by the Darboux transformation. Finally, we verify the stable higher-order modes of Bose-Einstein condensate modulation instability and manipulate them by direct numerical simulation. The obtained results may raise the possibility of related experiments and potential applications in Bose-Einstein condensates and other related fields.

  7. Three-Dimensional Time-of-Flight Magnetic Resonance Angiography Detection of Duplication of the Vertebral Artery in a Large Chinese Population.

    PubMed

    Li, Shuhua; Li, Yunyun; Bai, Min; Zhang, Chuanchen

    2016-10-17

    BACKGROUND The aim of this study was to investigate duplication of the vertebral artery (VA) using three-dimensional time-of-flight (3D TOF) magnetic resonance angiography (MRA) in a large study population to further our understanding of vascular variations. MATERIAL AND METHODS A retrospective analysis of 3D TOF-MRA data in 12 826 cases was performed. The occurrence rate of VA duplication was calculated and accompanied vascular anomalies were recoded. RESULTS Twenty-one VA duplication patients were found, with an occurrence rate of 0.164%; 12 of them had left VA duplication with 2 branches initially arising from the aortic arch and left subclavian artery; 9 of them were right VA duplication with the branches originating from the right subclavian artery. In the 21 cases, 11 had other vascular abnormalities. CONCLUSIONS VA duplication is very rare and often associated with other vascular abnormalities. 3D TOF-MRA can accurately display the duplication variation. Better understanding of the variation is instrumental for disease diagnosis, interventional therapy, and surgical operation.

  8. Three-Dimensional Time-of-Flight Magnetic Resonance Angiography Detection of Duplication of the Vertebral Artery in a Large Chinese Population

    PubMed Central

    Li, Shuhua; Li, Yunyun; Bai, Min; Zhang, Chuanchen

    2016-01-01

    Background The aim of this study was to investigate duplication of the vertebral artery (VA) using three-dimensional time-of-flight (3D TOF) magnetic resonance angiography (MRA) in a large study population to further our understanding of vascular variations. Material/Methods A retrospective analysis of 3D TOF-MRA data in 12 826 cases was performed. The occurrence rate of VA duplication was calculated and accompanied vascular anomalies were recoded. Results Twenty-one VA duplication patients were found, with an occurrence rate of 0.164%; 12 of them had left VA duplication with 2 branches initially arising from the aortic arch and left subclavian artery; 9 of them were right VA duplication with the branches originating from the right subclavian artery. In the 21 cases, 11 had other vascular abnormalities. Conclusions VA duplication is very rare and often associated with other vascular abnormalities. 3D TOF-MRA can accurately display the duplication variation. Better understanding of the variation is instrumental for disease diagnosis, interventional therapy, and surgical operation. PMID:27749814

  9. Real time markerless motion tracking using linked kinematic chains

    DOEpatents

    Luck, Jason P.; Small, Daniel E.

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  10. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects.

  11. A comparison of inner ear imaging features at different time points of sudden sensorineural hearing loss with three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging.

    PubMed

    Zhu, Honglei; Ou, Yongkang; Fu, Jia; Zhang, Ya; Xiong, Hao; Xu, Yaodong

    2015-10-01

    It has been reported that about half of patients with sudden sensorineural hearing loss (SSNHL) show high signals in the affected inner ear on three-dimensional, fluid-attenuated inversion recovery magnetic resonance imaging (3D-FLAIR MRI). These signals may reflect minor hemorrhage or an increased concentration of protein in the inner ear, which has passed through blood vessels with increased permeability. Our objective was to compare the positive ratio of the high signal in affected inner ears at different time points to determine the suitable imaging time point for 3D-FLAIR MRI in SSNHL. 3D-FLAIR MRI images were taken at three times, precontrast and approximately 10 min and 4 h after intravenous injection of a single dose of gadodiamide (Gd) (0.1 mmol/kg), in 46 patients with SNHL. We compared the positive findings of the high signals in the inner ear of patients with SNHL as well as the signal intensity ratio (SIR) between the affected cochleae and unaffected cochleae at three time points. The positive ratios of the high signals in the affected inner ear at the time points of precontrast and 10 min and 4 h after the intravenous Gd injection were 26.1, 32.6, and 41.3%, respectively. The high signal intensity ratios of affected inner ears at the three time points were 1.28, 1.31, and 1.48, respectively. The difference between the positive ratios precontrast and at 10 min after the intravenous Gd injection was statistically significant (P = 0.006); the differences between the positive ratios at 4 h after the intravenous Gd injection and precontrast and between the ratios at 4 h and 10 min after the intravenous Gd injection were not statistically significant. The time effects of the median value of SIR were not significant (P = 0.064). We do not recommend 4 h after intravenous Gd injection as a time point to image the inner ear in SNHL. We believe that imaging precontrast and at 10 min after the intravenous Gd injection are suitable time points.

  12. Simultaneous, Joint Inversion of Seismic Body Wave Travel Times and Satellite Gravity Data for Three-Dimensional Tomographic Imaging of Western Colombia

    NASA Astrophysics Data System (ADS)

    Dionicio, V.; Rowe, C. A.; Maceira, M.; Zhang, H.; Londoño, J.

    2009-12-01

    We report on the three-dimensional seismic structure of western Colombia determined through the use of a new, simultaneous, joint inversion tomography algorithm. Using data recorded by the national Seismological Network of Colombia (RSNC), we have selected 3,609 earthquakes recorded at 33 sensors distributed throughout the country, with additional data from stations in neighboring countries. 20,338 P-wave arrivals and 17,041 S-wave arrivals are used to invert for structure within a region extending approximately 72.5 to 77.5 degrees West and 2 to 7.5 degrees North. Our algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program, with a fast LSQR solver operating on the gridded values jointly. The inversion uses gravity anomalies obtained during the GRACE2 satellite mission, and solves using these values with the seismic travel-times through application of an empirical relationship first proposed by Harkrider, mapping densities to Vp and Vs within earth materials. In previous work, Maceira and Ammon demonstrated that incorporation of gravity data predicts shear wave velocities more accurately than the inversion of surface waves alone, particularly in regions where the crust exhibits abrupt and significant lateral variations in lithology, such as the Tarim Basin. The significant complexity of crustal structure in Colombia, due to its active tectonic environment, makes it a good candidate for the application with gravity and body waves. We present the results of this joint inversion and compare it to results obtained using travel times alone

  13. Beating the wavelength limit: three-dimensional imaging of buried subwavelength fractures in sculpture and construction materials by terahertz time-domain reflection spectroscopy.

    PubMed

    Schwerdtfeger, M; Castro-Camus, E; Krügener, K; Viöl, W; Koch, M

    2013-01-20

    We use reflection terahertz spectroscopy to locate and produce three-dimensional images of air gaps between stones that resemble fractures, even of subwavelength thicknesses. This technique is found to be promising tool for sculpture and building damage evaluation as well as structural quality control in other dielectric materials.

  14. Steerable real-time sonographically guided needle biopsy.

    PubMed

    Buonocore, E; Skipper, G J

    1981-02-01

    A method for dynamic real-time ultrasonic guidance for percutaneous needle biopsy has been successful in obtaining cytologic and histologic specimens from abdominal masses. The system depends on a real-time ultrasonic transducer that has been rigidly attached to a laterally placed steerable needle holder. Using simple trigonometric functions, a chart has been derived that gives the exact angulation and needle length to produce quick, reliable, guided needle placements. Examples of successful renal, hepatobiliary, and retroperitoneal biopsies are presented. Advantages of this technique include speed, accuracy, low cost, three-dimensional format, and the omission of contrast media and radiation.

  15. Three-dimensional rf structure calculations

    SciTech Connect

    Cooper, R.K.; Browman, M.J.; Weiland, T.

    1988-01-01

    The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs.

  16. Three-dimensional RF structure calculations

    NASA Astrophysics Data System (ADS)

    Cooper, R. K.; Browman, M. J.; Weiland, T.

    1989-04-01

    The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described.

  17. Application of a real-space three-dimensional image reconstruction method in the structural analysis of noncrystalline biological macromolecules enveloped by water in coherent x-ray diffraction microscopy.

    PubMed

    Kodama, Wataru; Nakasako, Masayoshi

    2011-08-01

    Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.

  18. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  19. Three dimensional characterization and archiving system

    SciTech Connect

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1996-04-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate.

  20. Three-dimensional landing zone ladar

    NASA Astrophysics Data System (ADS)

    Savage, James; Goodrich, Shawn; Burns, H. N.

    2016-05-01

    Three-Dimensional Landing Zone (3D-LZ) refers to a series of Air Force Research Laboratory (AFRL) programs to develop high-resolution, imaging ladar to address helicopter approach and landing in degraded visual environments with emphasis on brownout; cable warning and obstacle avoidance; and controlled flight into terrain. Initial efforts adapted ladar systems built for munition seekers, and success led to a the 3D-LZ Joint Capability Technology Demonstration (JCTD) , a 27-month program to develop and demonstrate a ladar subsystem that could be housed with the AN/AAQ-29 FLIR turret flown on US Air Force Combat Search and Rescue (CSAR) HH-60G Pave Hawk helicopters. Following the JCTD flight demonstration, further development focused on reducing size, weight, and power while continuing to refine the real-time geo-referencing, dust rejection, obstacle and cable avoidance, and Helicopter Terrain Awareness and Warning (HTAWS) capability demonstrated under the JCTD. This paper summarizes significant ladar technology development milestones to date, individual LADAR technologies within 3D-LZ, and results of the flight testing.

  1. FRET Imaging in Three-dimensional Hydrogels

    PubMed Central

    Taboas, Juan M.

    2016-01-01

    Imaging of Förster resonance energy transfer (FRET) is a powerful tool for examining cell biology in real-time. Studies utilizing FRET commonly employ two-dimensional (2D) culture, which does not mimic the three-dimensional (3D) cellular microenvironment. A method to perform quenched emission FRET imaging using conventional widefield epifluorescence microscopy of cells within a 3D hydrogel environment is presented. Here an analysis method for ratiometric FRET probes that yields linear ratios over the probe activation range is described. Measurement of intracellular cyclic adenosine monophosphate (cAMP) levels is demonstrated in chondrocytes under forskolin stimulation using a probe for EPAC1 activation (ICUE1) and the ability to detect differences in cAMP signaling dependent on hydrogel material type, herein a photocrosslinking hydrogel (PC-gel, polyethylene glycol dimethacrylate) and a thermoresponsive hydrogel (TR-gel). Compared with 2D FRET methods, this method requires little additional work. Laboratories already utilizing FRET imaging in 2D can easily adopt this method to perform cellular studies in a 3D microenvironment. It can further be applied to high throughput drug screening in engineered 3D microtissues. Additionally, it is compatible with other forms of FRET imaging, such as anisotropy measurement and fluorescence lifetime imaging (FLIM), and with advanced microscopy platforms using confocal, pulsed, or modulated illumination. PMID:27500354

  2. Three-dimensional visualization for large models

    NASA Astrophysics Data System (ADS)

    Roth, Michael W.

    2001-09-01

    High-resolution (0.3-1 m) digital-elevation data is widely available from commercial sources. Whereas the production of two-dimensional (2D) mapping products from such data is standard practice, the visualization of such three-dimensional (3D) data has been problematic. The basis for this problem is the same as that for the large-model problem in computer graphics-- large amounts of geometry are difficult for current rendering algorithms and hardware. This paper describes a cost-effective solution to this problem that has two parts. First is the employment of the latest in cost-effective 3D chips and video boards that have recently emerged. The second part is the employment of quad-tree data structures for efficient data storage and retrieval during rendering. The result is the capability for real-time display of large (over tens of millions of samples) digital elevation models on modest PC-based systems. This paper shows several demonstrations of this approach using airborne lidar data. The implication of this work is a paradigm shift for geo-spatial information systems--3D data can now be as easy to use as 2D data.

  3. Three dimensional characterization and archiving system

    SciTech Connect

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-12-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations.

  4. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data for Three-Dimensional Seismic Velocity Structure Around SAFOD

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.; Maceira, M.; Roux, P.

    2013-12-01

    The crust around the San Andreas Fault Observatory at depth (SAFOD) has been the subject of many geophysical studies aimed at characterizing in detail the fault zone structure and elucidating the lithologies and physical properties of the surrounding rocks. Seismic methods in particular have revealed the complex two-dimensional (2D) and three-dimensional (3D) structure of the crustal volume around SAFOD and the strong velocity reduction in the fault damage zone. In this study we conduct a joint inversion using body-wave arrival times and surface-wave dispersion data to image the P-and S-wave velocity structure of the upper crust surrounding SAFOD. The two data types have complementary strengths - the body-wave data have good resolution at depth, albeit only where there are crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution and are not dependent on the earthquake source distribution because they are derived from ambient noise. The body-wave data are from local earthquakes and explosions, comprising the dataset analyzed by Zhang et al. (2009). The surface-wave data are for Love waves from ambient noise correlations, and are from Roux et al. (2011). The joint inversion code is based on the regional-scale version of the double-difference (DD) tomography algorithm tomoDD. The surface-wave inversion code that is integrated into the joint inversion algorithm is from Maceira and Ammon (2009). The propagator matrix solver in the algorithm DISPER80 (Saito, 1988) is used for the forward calculation of dispersion curves from layered velocity models. We examined how the structural models vary as we vary the relative weighting of the fit to the two data sets and in comparison to the previous separate inversion results. The joint inversion with the 'optimal' weighting shows more clearly the U-shaped local structure from the Buzzard Canyon Fault on the west side of SAF to the Gold Hill Fault on the east side.

  5. Real-Time Engineering Simulation of Lunar Excavation

    SciTech Connect

    Bruce Damer, George Tompkins, Sheldon Freid, Dave Rasmussen, Peter Newman, Brad Blair

    2007-06-12

    DigitalSpace Corporation has been building an open source real-time three-dimensional (3-D) collaborative design engineering and training platform called Digital Spaces (DSS) in support of the Exploration Vision of the National Aeronautics and Space Administration (NASA). Real-time 3-D simulation has reached a level of maturity where it is capable of supporting engineering design and operations using off-the-shelf game chipsets and open source physics and rendering technologies. This paper will illustrate a state-of-the-art real-time engineering simulation utilizing DSS in support of NASA lunar excavation studies. During the project DigitalSpace building driveable 3-D models of lunar excavators and South Polar terrain, and added a soil mechanics physics model as well as a random failure generator to the repertoire of standard mobility platform physics in prior use for real-time engineering and operational analysis at NASA.

  6. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  7. Three dimensional colorimetric assay assemblies

    SciTech Connect

    Charych, D.; Reichart, A.

    2000-06-27

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  8. Three dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichart, Anke

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  9. Creating Three-Dimensional Scenes

    ERIC Educational Resources Information Center

    Krumpe, Norm

    2005-01-01

    Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

  10. Three-Dimensional Lissajous Figures.

    ERIC Educational Resources Information Center

    D'Mura, John M.

    1989-01-01

    Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

  11. Usefulness of two- and three-dimensional transesophageal echocardiography in the assessment of proximal left coronary system compression by a paraprosthetic aortic valve abscess.

    PubMed

    Ahmad, Amier; McElwee, Samuel K; Jiang, Amy Z; Barssoum, Kirolos N; Elkaryoni, Ahmed E; Arisha, Mohammed J; Srialluri, Swetha; Seghatol, Frank; Nanda, Navin C

    2017-02-01

    Paraprosthetic aortic valve abscess represents a rare, but lethal complication of infective endocarditis. We report a case of proximal left coronary system compression by a paraprosthetic aortic valve abscess whose detection was augmented using live/real time three-dimensional transesophageal echocardiography. Our case illustrates the usefulness of combined two- and three-dimensional transesophageal echocardiography in detecting this finding.

  12. Random access three-dimensional two-photon microscopy.

    PubMed

    Rózsa, Balázs; Katona, Gergely; Vizi, E Sylvester; Várallyay, Zoltán; Sághy, Attila; Valenta, Lásló; Maák, Pál; Fekete, Júlia; Bányász, Akos; Szipocs, Róbert

    2007-04-01

    We propose a two-photon microscope scheme capable of real-time, three-dimensional investigation of the electric activity pattern of neural networks or signal summation rules of individual neurons in a 0.6 mm x 0.6 mm x 0.2 mm volume of the sample. The points of measurement are chosen according to a conventional scanning two-photon image, and they are addressed by separately adjustable optical fibers. This allows scanning at kilohertz repetition rates of as many as 100 data points. Submicrometer spatial resolution is maintained during the measurement similarly to conventional two-photon microscopy.

  13. Real-time tracking of objects for space applications using a laser range scanner

    NASA Technical Reports Server (NTRS)

    Blais, F.; Couvillon, R. A.; Rioux, M.; Maclean, S. G.

    1994-01-01

    Real-time tracking of multiple targets and three dimensional object features was demonstrated using a laser range scanner. The prototype was immune to ambient illumination and sun interference. Tracking error feedback was simultaneously obtained from individual targets, global predicted target position, and the human operator. A more complete study of calibration parameters and temperature variations on the scanner is needed to determine the exact performance of the sensor. Lissajous patterns used in three-dimensional real-time tracking prove helpful given their high resolution. The photogrammetry-based Advanced Space Vision System (ASVS) is discussed in combination with the laser range scanner.

  14. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement.

    PubMed

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2014-12-01

    The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump.

  15. Three-dimensional perspective visualization

    NASA Technical Reports Server (NTRS)

    Hussey, Kevin

    1991-01-01

    It was demonstrated that image processing computer graphic techniques can provide an effective means of physiographic analysis of remotely sensed regions through the use of three-dimensional perspective rendering. THe methods used to simulate and animate three-dimensional surfaces from two-dimensional imagery and digital elevation models are explained. A brief historic look at JPL's efforts in this field and several examples of animations, illustrating the evolution of these techniques from 1985, are shown. JPL's current research in this area is discussed along with examples of technology transfer and potential commercial application. The software is part of the VICAR (Video Image Communication and Retrieval) image processing system which was developed at the Multimission Image Processing Laboratory of JPL.

  16. Real Time Baseball Database

    NASA Astrophysics Data System (ADS)

    Fukue, Yasuhiro

    The author describes the system outline, features and operations of "Nikkan Sports Realtime Basaball Database" which was developed and operated by Nikkan Sports Shimbun, K. K. The system enables to input numerical data of professional baseball games as they proceed simultaneously, and execute data updating at realtime, just-in-time. Other than serving as supporting tool for prepareing newspapers it is also available for broadcasting media, general users through NTT dial Q2 and others.

  17. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  18. Three-dimensional positional changes of teeth adjacent to posterior edentulous spaces in relation to age at time of tooth loss and elapsed time.

    PubMed

    Petridis, Haralampos P; Tsiggos, Nikolaos; Michail, Achilleas; Kafantaris, Sotirios N; Hatzikyriakos, Andreas; Kafantaris, Nikolaos M

    2010-06-01

    The purpose of this study was to study the stability of teeth adjacent to posterior edentulous spaces and correlate it with patient age and time lapse since tooth loss. Dental casts, panoramic radiographs, and questionnaires of patients treated in a University setting were employed. Teeth adjacent and opposing posterior edentulous spaces were examined for the following parameters: Supraeruption, rotation, space closure, and axial inclination. One hundred twenty three patients with 229 edentulous spaces were analyzed. Statistical analysis showed that the effects of "jaw", "gender", and "age group at the time of tooth loss" were not significant for any of the variables tested. The effect of time lapse since tooth loss was significant regarding the "amount of distal tooth inclination" (P<0.001), the "amount of distal tooth rotation" (P=0.004), and "space closure" (P=0.038). Post-hoc analysis of the "amount of distal tooth inclination" revealed a marked increase in inclination 5 years after tooth loss. Within the limitations of this study, it was concluded that in the group of patients studied, minor positional changes in teeth opposing or adjacent to posterior edentulous spaces had occurred. The greatest changes in position were recorded for mandibular teeth distal to edentulous spaces.

  19. Three-dimensional vision sensors for autonomous robots

    NASA Astrophysics Data System (ADS)

    Uchiyama, Takashi; Okabayashi, Keizyu; Wakitani, Jun

    1993-09-01

    A three dimensional measurement system, which is important for developing autonomous robots is described. Industrial robots used in today's plants are of the preprogrammed teaching playback type. It is necessary to develop autonomous robots which can work based on sensor information for intelligent manufacturing systems. Moreover, practical use of robots which work in unstructured environments such as outdoors and in space is expected. To realize this, a function to measure objects and the environment three-dimensionally is a key technology. Additional important requirements for robotic sensors are real-time processing and compactness. We have developed smart 3-D vision sensors for the purpose of realizing autonomous robots. These are two kinds of sensors with different functions corresponding to the application. One is a slitted light range finder ( SLRF ) to measure stationary objects. The other is a real-time tracking vision ( RTTV ) which can measure moving objects at high speed. SLRF uses multiple slitted lights which are generated by a semiconductor laser through an interference filter and a cylindrical lens. Furthermore, we developed a liquid crystal shutter with multiple electrodes. We devised a technique to make coded slitted light by putting this shutter in front of the light source. As a result, using the principle of triangulation, objects can be measured in three dimensions. In addition, high-speed image input was enabled by projecting multiple slitted light at the same time. We have confirmed the effectiveness of the SLRF applied to a hand-eye system using a robot.

  20. Real-time vision systems

    SciTech Connect

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  1. Three-dimensional simulation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  2. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2006-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  3. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2007-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  4. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Muratore, John F.

    1991-01-01

    Lessons learned from operational real time expert systems are examined. The basic system architecture is discussed. An expert system is any software that performs tasks to a standard that would normally require a human expert. An expert system implies knowledge contained in data rather than code. And an expert system implies the use of heuristics as well as algorithms. The 15 top lessons learned by the operation of a real time data system are presented.

  5. Analysis of three-dimensional transonic compressors

    NASA Technical Reports Server (NTRS)

    Bourgeade, A.

    1984-01-01

    A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.

  6. Using three-dimensional spacetime diagrams in special relativity

    NASA Astrophysics Data System (ADS)

    Dray, Tevian

    2013-08-01

    We provide three examples of the use of geometric reasoning with three-dimensional spacetime diagrams, rather than algebraic manipulations using three-dimensional Lorentz transformations, to analyze problems in special relativity. The examples are the "rising manhole" paradox, the "moving spotlight" problem, and Einstein's light-clock derivation of time dilation.

  7. Quasicrystalline three-dimensional foams

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Graner, F.; Mosseri, R.; Sadoc, J.-F.

    2017-03-01

    We present a numerical study of quasiperiodic foams, in which the bubbles are generated as duals of quasiperiodic Frank–Kasper phases. These foams are investigated as potential candidates to the celebrated Kelvin problem for the partition of three-dimensional space with equal volume bubbles and minimal surface area. Interestingly, one of the computed structures falls close to (but still slightly above) the best known Weaire–Phelan periodic candidate. In addition we find a correlation between the normalized bubble surface area and the root mean squared deviation of the number of faces, giving an additional clue to understanding the main geometrical ingredients driving the Kelvin problem.

  8. Three-dimensional map construction.

    PubMed

    Jenks, G F; Brown, D A

    1966-11-18

    Three-dimensional maps are useful tools which have been neglected for some time. They shouldbe more commonly used, and familiarity with the techniques discussed in this article should dispel any qualms anyone might ve about needing artistic talent to nstruct them. The saving in time esulting from the use of an anamorphoser provides a further incentive. The anamorphoser transformations discussed above were all prepared by using straight slits, oriented at right angles to each other and placed so that all planes of the elements were parallel to each other. It is possible to vary these conditions in an infinite number of ways and thereby produce nonparallel tranceformations. Some of these variations are illustrated in Fig. 10. All the illustrations in Fig. 10 are transformations of the planimetric weather map shown in Fig. 8A. The variations used for the maps of Fig. 10 are as follows. (A) All planes parallel, with a curved rear slit; (B) all planes parallel, with curved slits front and rear; ( C) all planes parallel, with S-shaped rear slit; (D) all planes parallel, with an undulating rear slit; (E) all planes parallel, with curved front and undulating rear slit; (F) plane of the original rotated on the horizontal axis-both slits curved; (G) plane of the original rotated on thevertical axis- both slits curved; (H) plane of the original rotated on the horizontal axis -both slits straight. These are only a few of the many transformations which can be made with an anamorphoser, butthey do point toward some interesting possibilities. For example, it appears that maps based onone projection might be altered to satisfy the coordinates of a completely different projection. Note, for example, the change of parallels from concave to convex curves (Figs. 8A and 10A) and the change from converging meridians to diverging meridians (Figs. 8A and l0G). Similarly, the grids of maps B, F, and H of Fig. 10 approximate projections which are quite different from the original. Other

  9. Lossless compression for three-dimensional images

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoli; Pearlman, William A.

    2004-01-01

    We investigate and compare the performance of several three-dimensional (3D) embedded wavelet algorithms on lossless 3D image compression. The algorithms are Asymmetric Tree Three-Dimensional Set Partitioning In Hierarchical Trees (AT-3DSPIHT), Three-Dimensional Set Partitioned Embedded bloCK (3D-SPECK), Three-Dimensional Context-Based Embedded Zerotrees of Wavelet coefficients (3D-CB-EZW), and JPEG2000 Part II for multi-component images. Two kinds of images are investigated in our study -- 8-bit CT and MR medical images and 16-bit AVIRIS hyperspectral images. First, the performances by using different size of coding units are compared. It shows that increasing the size of coding unit improves the performance somewhat. Second, the performances by using different integer wavelet transforms are compared for AT-3DSPIHT, 3D-SPECK and 3D-CB-EZW. None of the considered filters always performs the best for all data sets and algorithms. At last, we compare the different lossless compression algorithms by applying integer wavelet transform on the entire image volumes. For 8-bit medical image volumes, AT-3DSPIHT performs the best almost all the time, achieving average of 12% decreases in file size compared with JPEG2000 multi-component, the second performer. For 16-bit hyperspectral images, AT-3DSPIHT always performs the best, yielding average 5.8% and 8.9% decreases in file size compared with 3D-SPECK and JPEG2000 multi-component, respectively. Two 2D compression algorithms, JPEG2000 and UNIX zip, are also included for reference, and all 3D algorithms perform much better than 2D algorithms.

  10. Dependable Real-Time Systems

    DTIC Science & Technology

    1991-09-30

    and F. Wang, "On thle Competitiveness of On-Line Real-Time Task Sc~eduling," to appear. Proc. Icai - Time Systemns Symposium, Dec 1991. 6. Biyabaiii, S...Stankovic, and K. Ramrnamritham, "System Support for lRal-’Vi111C Al: A Spring Project Perspective," Workshop on Real-Time .A1, ICAI ., August 198!). 29...Informatics, Computer S,,iety ,f India , t,, aptpear. 41 . Shilh, C. and J. A. Stankovic, "Distributed Deadlock Detection in Ada IRuntinv En vi- ronments," TRI

  11. High-Order Weno Simulations of Three-Dimensional Reshocked Richtmyer-Meshkov Instability to Late Times: Dynamics, Dependence on Initial Conditions, and Comparisons to Experimental Data

    SciTech Connect

    Schilling, O; Latini, M

    2010-01-12

    The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513 x 257{sup 2} three-dimensional ninth-order weighted essentially nonoscillatory shock-capturing simulations. A two-mode initial perturbation with superposed random noise is used to model the Mach 1.5 air/SF{sub 6} Vetter-Sturtevant shock tube experiment. The mass fraction and enstrophy isosurfaces, and density cross-sections are utilized to show the detailed flow structure before, during, and after reshock. It is shown that the mixing layer growth agrees well with the experimentally measured growth rate before and after reshock. The post-reshock growth rate is also in good agreement with the prediction of the Mikaelian model. A parametric study of the sensitivity of the layer growth to the choice of amplitudes of the short and long wavelength initial interfacial perturbation is also presented. Finally, the amplification effects of reshock are quantified using the evolution of the turbulent kinetic energy and turbulent enstrophy spectra, as well as the evolution of the baroclinic enstrophy production, buoyancy production, and shear production terms in the enstrophy and turbulent kinetic transport equations.

  12. On Using Taylor's Hypothesis for Three-Dimensional Mixing Layers

    NASA Technical Reports Server (NTRS)

    LeBoeuf, Richard L.; Mehta, Rabindra D.

    1995-01-01

    In the present study, errors in using Taylor's hypothesis to transform measurements obtained in a temporal (or phase) frame onto a spatial one were evaluated. For the first time, phase-averaged ('real') spanwise and streamwise vorticity data measured on a three-dimensional grid were compared directly to those obtained using Taylor's hypothesis. The results show that even the qualitative features of the spanwise and streamwise vorticity distributions given by the two techniques can be very different. This is particularly true in the region of the spanwise roller pairing. The phase-averaged spanwise and streamwise peak vorticity levels given by Taylor's hypothesis are typically lower (by up to 40%) compared to the real measurements.

  13. On using Taylor's hypothesis for three-dimensional mixing layers

    NASA Astrophysics Data System (ADS)

    LeBoeuf, Richard L.; Mehta, Rabindra D.

    1995-06-01

    In the present study, errors in using Taylor's hypothesis to transform measurements obtained in a temporal (or phase) frame onto a spatial one were evaluated. For the first time, phase-averaged (``real'') spanwise and streamwise vorticity data measured on a three-dimensional grid were compared directly to those obtained using Taylor's hypothesis. The results show that even the qualitative features of the spanwise and streamwise vorticity distributions given by the two techniques can be very different. This is particularly true in the region of the spanwise roller pairing. The phase-averaged spanwise and streamwise peak vorticity levels given by Taylor's hypothesis are typically lower (by up to 40%) compared to the real measurements.

  14. HEVC real-time decoding

    NASA Astrophysics Data System (ADS)

    Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas

    2013-09-01

    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.

  15. Three-dimensional coil inductor

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    2002-01-01

    A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

  16. Three-dimensional aromatic networks.

    PubMed

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  17. Three-dimensional vortex methods

    NASA Astrophysics Data System (ADS)

    Greengard, C. A.

    1984-08-01

    Reformulations of the filament method and of the method of Beale and Majda show them to be very similar algorithms. The method of Anderson in which vorticity is evaluated by the exact differentiation of the approximate velocity field is discussed. It is shown that, in the inviscid version of this algorithm, each approximate vector of vorticity remains tangent to a material curve moving with the computed flow, with magnitude proportional to the stretching of this vortex line. It is explained that the expanding core vortex method converges to a system of equations different from the Navier-Stokes equations. Computations with the filament method of the inviscid interaction of two vortex rings are reported, both with single filaments in each ring and with a fully three-dimensional discretization of vorticity. The dependence on parameters is discussed, and convergence of the computed solutions is observed.

  18. Amplitude interpretation and visualization of three-dimensional reflection data

    SciTech Connect

    Enachescu, M.E. )

    1994-07-01

    Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements not obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.

  19. A fusion algorithm for building three-dimensional maps

    NASA Astrophysics Data System (ADS)

    Vokhmintsev, A.; Makovetskii, A.; Kober, V.; Sochenkov, I.; Kuznetsov, V.

    2015-09-01

    Recently various algorithms for building of three-dimensional maps of indoor environments have been proposed. In this work we use a Kinect camera that captures RGB images along with depth information for building three-dimensional dense maps of indoor environments. Commonly mapping systems consist of three components; that is, first, spatial alignment of consecutive data frames; second, detection of loop-closures, and finally, globally consistent alignment of the data sequence. It is known that three-dimensional point clouds are well suited for frame-to-frame alignment and for three-dimensional dense reconstruction without the use of valuable visual RGB information. A new fusion algorithm combining visual features and depth information for loop-closure detection followed by pose optimization to build global consistent maps is proposed. The performance of the proposed system in real indoor environments is presented and discussed.

  20. Three dimensional force balance of asymmetric droplets

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Lim, Su Jin; Cho, Kun; Weon, Byung Mook

    2016-11-01

    An equilibrium contact angle of a droplet is determined by a horizontal force balance among vapor, liquid, and solid, which is known as Young's law. Conventional wetting law is valid only for axis-symmetric droplets, whereas real droplets are often asymmetric. Here we show that three-dimensional geometry must be considered for a force balance for asymmetric droplets. By visualizing asymmetric droplets placed on a free-standing membrane in air with X-ray microscopy, we are able to identify that force balances in one side and in other side control pinning behaviors during evaporation of droplets. We find that X-ray microscopy is powerful for realizing the three-dimensional force balance, which would be essential in interpretation and manipulation of wetting, spreading, and drying dynamics for asymmetric droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  1. Real Time Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  2. Real Time Data Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Silberberg, George G.

    1983-03-01

    By the early 1970s, classical photo-optical range instrumentation technology (as a means of gathering weapons' system performance data) had become a costly and inefficient process. Film costs were increasing due to soaring silver prices. Time required to process, read, and produce optical data was becoming unacceptable as a means of supporting weapon system development programs. NWC investigated the feasibility of utilizing Closed Circuit Television (CCTV) technology as an alternative solution for providing optical data. In 1978 a program entitled Metric Video (measurements from video images) was formulated at the Naval Weapons Center, China Lake, California. The purpose of this program was to provide timely data, to reduce the number of operating personnel, and to lower data acquisition costs. Some of the task elements for this program included a near real-time vector miss-distance system, a weapons scoring system, a velocity measuring system, a time-space position system, and a system to replace film cameras for gathering real-time engineering sequential data. These task elements and the development of special hardware and techniques to achieve real-time data will be discussed briefly in this paper.

  3. Three-dimensional simulations of burning thermals

    NASA Astrophysics Data System (ADS)

    Aspden, Andy; Bell, John; Woosley, Stan

    2010-11-01

    Flame ignition in type Ia supernovae (SNe Ia) leads to isolated bubbles of burning buoyant fluid. As a bubble rises due to gravity, it becomes deformed by shear instabilities and transitions to a turbulent buoyant vortex ring. Morton, Taylor and Turner (1956) introduced the entrainment assumption, which can be applied to inert thermals. In this study, we use the entrainment assumption, suitably modified to account for burning, to predict the late-time asymptotic behaviour of these turbulent buoyant vortex rings in SNe Ia. The theory is validated against three- dimensional simulations with adaptive mesh refinement at effective resolutions up to 4096^3.

  4. Three-dimensional relativistic electromagnetic subcycle solitons.

    PubMed

    Esirkepov, Timur; Nishihara, Katsunobu; Bulanov, Sergei V; Pegoraro, Francesco

    2002-12-30

    Three-dimensional (3D) relativistic electromagnetic subcycle solitons were observed in 3D particle-in-cell simulations of an intense short-laser-pulse propagation in an underdense plasma. Their structure resembles that of an oscillating electric dipole with a poloidal electric field and a toroidal magnetic field that oscillate in phase with the electron density with frequency below the Langmuir frequency. On the ion time scale, the soliton undergoes a Coulomb explosion of its core, resulting in ion acceleration, and then evolves into a slowly expanding quasineutral cavity.

  5. Real-time stereo generation for surgical vision during minimal invasive robotic surgery

    NASA Astrophysics Data System (ADS)

    Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod

    2016-03-01

    This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.

  6. Real-time high dynamic range laser scanning microscopy

    PubMed Central

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-01-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979

  7. Real-time high dynamic range laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  8. Real-time structured light profilometry: a review

    NASA Astrophysics Data System (ADS)

    Van der Jeught, Sam; Dirckx, Joris J. J.

    2016-12-01

    The acquisition of high-resolution, real-time three-dimensional surface data of dynamically moving objects has large applicability in many fields. When additional restrictions such as non-invasiveness and non-contact measurement are imposed on the employed profilometry technique, the list of possible candidates is reduced mainly to the broad range of structured light profilometry methods. In this manuscript, the current state-of-the-art in structured light profilometry systems is described, as well as the main advancements in hardware technology and coding strategy that have led to their successful development. A chronological overview of optical profilometry systems that have been reported to perform real-time acquisition, digital signal processing and display of full-field 3D surface maps is presented. The respective operating principles, strengths and weaknesses of these setups are reviewed and the main limitations and future challenges in high-speed optical profilometry are discussed.

  9. The current status of three-dimensional ultrasonography in gynaecology

    PubMed Central

    2016-01-01

    Ultrasonography (US) is the most recent cross-sectional imaging modality to acquire three-dimensional (3D) capabilities. The reconstruction of volumetric US data for multiplanar display took a significantly longer time to develop in comparison with computed tomography and magnetic resonance imaging. The current equipment for 3D-US is capable of producing high-resolution images in three different planes, including real-time surface-rendered images. The use of 3D-US in gynaecology was accelerated through the development of the endovaginal volume transducer, which allows the automated acquisition of volumetric US data. Although initially considered an adjunct to two-dimensional US, 3D-US is now the imaging modality of choice for the assessment of Müllerian duct anomalies and the location of intrauterine devices. PMID:26537304

  10. The current status of three-dimensional ultrasonography in gynaecology.

    PubMed

    Ong, Chiou Li

    2016-01-01

    Ultrasonography (US) is the most recent cross-sectional imaging modality to acquire three-dimensional (3D) capabilities. The reconstruction of volumetric US data for multiplanar display took a significantly longer time to develop in comparison with computed tomography and magnetic resonance imaging. The current equipment for 3D-US is capable of producing high-resolution images in three different planes, including real-time surface-rendered images. The use of 3D-US in gynaecology was accelerated through the development of the endovaginal volume transducer, which allows the automated acquisition of volumetric US data. Although initially considered an adjunct to two-dimensional US, 3D-US is now the imaging modality of choice for the assessment of Müllerian duct anomalies and the location of intrauterine devices.

  11. Three dimensional magnetic abacus memory

    PubMed Central

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A.; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-01-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered ‘quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory. PMID:25146338

  12. Three-dimensional colloidal lithography.

    PubMed

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A; Chang, Chih-Hao

    2017-03-24

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle-light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd's mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  13. Three-dimensional colloidal lithography

    NASA Astrophysics Data System (ADS)

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A.; Chang, Chih-Hao

    2017-03-01

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle–light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd’s mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  14. Construction of Three Dimensional Solutions for the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Yefet, A.; Turkel, E.

    1998-01-01

    We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.

  15. In vivo images of the epidural space with two- and three-dimensional optical coherence tomography in a porcine model

    PubMed Central

    Tsou, Mei-Yung

    2017-01-01

    Background No reports exist concerning in vivo optical coherence tomography visualization of the epidural space and the blood patch process in the epidural space. In this study, we produced real-time two-dimensional and reconstructed three-dimensional images of the epidural space by using optical coherence tomography in a porcine model. We also aimed to produce three-dimensional optical coherence tomography images of the dura puncture and blood patch process. Methods Two-dimensional and three-dimensional optical coherence tomography images were obtained using a swept source optical coherence tomography (SSOCT) system. Four laboratory pigs were intubated and ventilated after the induction of general anesthesia. An 18-gauge Tuohy needle was used as a tunnel for the optical coherence tomography probe to the epidural space. Two-dimensional and three-dimensional reconstruction optical coherence tomography images of the epidural space were acquired in four stages. Results In stage 1, real-time two-dimensional and reconstructed three-dimensional optical coherence tomography of the lumbar and thoracic epidural space were successfully acquired. In stage 2, the epidural catheter in the epidural space was successfully traced in the 3D optical coherence tomography images. In stage 3, water injection and lumbar puncture were successfully monitored in all study animals. In stage 4, 10 mL of fresh blood was injected into the epidural space and two-dimensional and three-dimensional optical coherence tomography images were successfully acquired. Conclusions These animal experiments suggest the potential capability of using an optical coherence tomography-based imaging needle in the directed two-dimensional and three-dimensional visualization of the epidural space. More investigations involving humans are required before optical coherence tomography can be recommended for routine use. However, three-dimensional optical coherence tomography may provide a novel, minimally invasive

  16. Interactive real time flow simulations

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, I.; Tiwari, S. N.

    1990-01-01

    An interactive real time flow simulation technique is developed for an unsteady channel flow. A finite-volume algorithm in conjunction with a Runge-Kutta time stepping scheme was developed for two-dimensional Euler equations. A global time step was used to accelerate convergence of steady-state calculations. A raster image generation routine was developed for high speed image transmission which allows the user to have direct interaction with the solution development. In addition to theory and results, the hardware and software requirements are discussed.

  17. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of degradation products after treatment of methylene blue aqueous solution with three-dimensionally integrated microsolution plasma

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Nomura, Ayano; Hayashi, Yui; Tanaka, Kenji; Goto, Motonobu

    2016-01-01

    Methylene blue can be degraded in three-dimensionally integrated microsolution plasma. The degradation products have been analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry to understand the degradation mechanisms. The results of MALDI TOF mass spectrometry have shown that sulfoxide is formed at the first stage of the oxidation. Then, partial oxidation proceeds on the methyl groups left on the sulfoxide. The sulfoxide is subsequently separated to two benzene derivatives. Finally, weak functional groups are removed from the benzene derivatives.

  18. Radiation damping in real time.

    PubMed

    Mendes, A C; Takakura, F I

    2001-11-01

    We study the nonequilibrium dynamics of a charge interacting with its own radiation, which originates the radiation damping. The real-time equation of motion for the charge and the associated Langevin equation is found in classical limit. The equation of motion for the charge allows one to obtain the frequency-dependent coefficient of friction. In the lowest order we find that although the coefficient of static friction vanishes, there is dynamical dissipation represented by a non-Markovian dissipative kernel.

  19. Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Burgreen, Gregory W.

    1995-01-01

    An aerodynamic shape optimization procedure based on discrete sensitivity analysis is extended to treat three-dimensional geometries. The function of sensitivity analysis is to directly couple computational fluid dynamics (CFD) with numerical optimization techniques, which facilitates the construction of efficient direct-design methods. The development of a practical three-dimensional design procedures entails many challenges, such as: (1) the demand for significant efficiency improvements over current design methods; (2) a general and flexible three-dimensional surface representation; and (3) the efficient solution of very large systems of linear algebraic equations. It is demonstrated that each of these challenges is overcome by: (1) employing fully implicit (Newton) methods for the CFD analyses; (2) adopting a Bezier-Bernstein polynomial parameterization of two- and three-dimensional surfaces; and (3) using preconditioned conjugate gradient-like linear system solvers. Whereas each of these extensions independently yields an improvement in computational efficiency, the combined effect of implementing all the extensions simultaneously results in a significant factor of 50 decrease in computational time and a factor of eight reduction in memory over the most efficient design strategies in current use. The new aerodynamic shape optimization procedure is demonstrated in the design of both two- and three-dimensional inviscid aerodynamic problems including a two-dimensional supersonic internal/external nozzle, two-dimensional transonic airfoils (resulting in supercritical shapes), three-dimensional transport wings, and three-dimensional supersonic delta wings. Each design application results in realistic and useful optimized shapes.

  20. Three-dimensional terahertz wave imaging.

    PubMed

    Zhang, X-C

    2004-02-15

    Pulsed terahertz (THz) wave sensing and imaging is a coherent measurement technology. Like radar, based on the phase and amplitude of the THz pulse at each frequency, THz waves provide temporal and spectroscopic information that allows us to develop various three-dimensional (3D) terahertz tomographic imaging modalities. The 3D THz tomographic imaging methods we investigated include THz time-of-flight tomography, THz computed tomography (CT) and THz binary lens tomography. THz time-of-flight uses the THz pulses as a probe beam to temporally mark the target, and then constructs a 3D image of the target using the THz waves scattered by the target. THz CT is based on geometrical optics and inspired from X-ray CT. THz binary lens tomography uses the frequency-dependent focal-length property of binary lenses to obtain tomographic images of an object. Three-dimensional THz imaging has potential in such applications as non-destructive inspection. The interaction between a coherent THz pulse and an object provides rich information about the object under study; therefore, 3D THz imaging can be used to inspect or characterize dielectric and semiconductor objects. For example, 3D THz imaging has been used to detect and identify the defects inside a Space Shuttle insulation tile.

  1. Real-time flutter analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  2. Three-dimensional laser-assisted processing of bioceramics

    NASA Astrophysics Data System (ADS)

    Comesaña, R.; Lusquiños, F.; del Val, J.; Malot, T.; Riveiro, A.; Quintero, F.; Boutinguiza, M.; Aubry, P.; Pou, J.

    The study of calcium phosphate bioceramics processing by rapid prototyping based on laser cladding was tackled in this work. This technique shows a great potential to provide a three-dimensional tailored implant adapted to the specific problem of each patient. Working window to produce stable geometrical features and repeatable microstructures was established by real time process monitoring and characterization of the processed material. The relationships between the processing parameters and the obtained properties are discussed, in addition to the biological behaviour of the produced parts. The obtained calcium phosphate phases (oxyapatite, tricalcium phosphate, tetracalcium phosphate and amorphous calcium phosphate) are found to favorably influence the degradability of the precursor hydroxyapatite in Tris-HCl buffer which is a good sign of the favorable behavior of this type of materials when implanted 'in vivo'.

  3. Assessment of left ventricular function by three-dimensional echocardiography

    PubMed Central

    Krenning, Boudewijn J; Voormolen, Marco M; Roelandt, Jos RTC

    2003-01-01

    Accurate determination of LV volume, ejection fraction and segmental wall motion abnormalities is important for clinical decision-making and follow-up assessment. Currently, echocardiography is the most common used method to obtain this information. Three-dimensional echocardiography has shown to be an accurate and reproducible method for LV quantitation, mainly by avoiding the use of geometric assumptions. In this review, we describe various methods to acquire a 3D-dataset for LV volume and wall motion analysis, including their advantages and limitations. We provide an overview of studies comparing LV volume and function measurement by various gated and real-time methods of acquisition compared to magnetic resonance imaging. New technical improvements, such as automated endocardial border detection and contrast enhancement, will make accurate on-line assessment with little operator interaction possible in the near future. PMID:14514356

  4. Ammonium nitrogen removal from wastewater with a three-dimensional electrochemical oxidation system.

    PubMed

    Ding, Jing; Zhao, Qing-Liang; Wei, Liang-Liang; Chen, Yang; Shu, Xin

    2013-01-01

    Ammonium-containing wastewater could cause the promotion of eutrophication and a hindrance to the disinfection of water supplies. In this study, the feasibility of removing low-concentration ammonium nitrogen from synthetic and real wastewater by electrochemical oxidation was investigated. Using laboratory-scale electrochemical systems, the effects of chloride concentration, current density, anode materials, cathode materials, electrode gap, initial ammonium concentration and three-dimensional particles on the removal of ammonium nitrogen and current efficiency (CE) were evaluated. Ammonium nitrogen removal was mainly dependent upon anode materials and current density. The performance of two- and three-dimensional electrochemical oxidation systems was comparatively discussed. Both particle electrodes could enhance ammonium nitrogen removal and increase CE. However, the mechanism of the process seemed to be different. Moreover, the interaction of zeolites adsorption and electrochemical oxidation on the anode in a three-dimensional system could favor the regeneration of zeolites. Surface morphology of the used Ru-Ir-Sn/Ti anode revealed its longer working life of electrocatalysis. The result of ammonium degradation for a real wastewater treatment plant effluent showed the degradation rates in a three-dimensional system increased by 1.4 times those in a two-dimensional system.

  5. Three-dimensional television: a broadcaster's perspective

    NASA Astrophysics Data System (ADS)

    Jolly, S. J. E.; Armstrong, M.; Salmon, R. A.

    2009-02-01

    The recent resurgence of interest in the stereoscopic cinema and the increasing availability to the consumer of stereoscopic televisions and computer displays are leading broadcasters to consider, once again, the feasibility of stereoscopic broadcasting. High Definition Television is now widely deployed, and the R&D departments of broadcasters and consumer electronics manufacturers are starting to plan future enhancements to the experience of television. Improving the perception of depth via stereoscopy is a strong candidate technology. In this paper we will consider the challenges associated with the production, transmission and display of different forms of "three-dimensional" television. We will explore options available to a broadcaster wishing to start a 3D service using the technologies available at the present time, and consider how they could be improved to enable many more television programmes to be recorded and transmitted in a 3D-compatible form, paying particular attention to scenarios such as live broadcasting, where the workflows developed for the stereoscopic cinema are inapplicable. We will also consider the opportunities available for broadcasters to reach audiences with "three-dimensional" content via other media in the near future: for example, distributing content via the existing stereoscopic cinema network, or over the Internet to owners of stereoscopic computer displays.

  6. RADIAL STELLAR PULSATION AND THREE-DIMENSIONAL CONVECTION. IV. FULL AMPLITUDE THREE-DIMENSIONAL SOLUTIONS

    SciTech Connect

    Geroux, Christopher M.; Deupree, Robert G.

    2015-02-10

    Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.

  7. Three-dimensional turbulent relative dispersion by the Gledzer-Ohkitani-Yamada shell model

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sagar; Jensen, Mogens H.; Madsen, Bo S.

    2010-01-01

    We study pair dispersion in a three-dimensional incompressible high Reynolds number turbulent flow generated by Fourier transforming the dynamics of the Gledzer-Ohkitani-Yamada (GOY) shell model into real space. We show that GOY shell model can successfully reproduce both the Batchelor and the Richardson-Obukhov regimes of turbulent relative dispersion. We also study how the crossover time scales with the initial separations of a particle pair and compare it to the prediction by Batchelor.

  8. Three dimensional identification card and applications

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Wang, Shaoqing; Li, Chao; Li, Hao; Liu, Zhao

    2016-10-01

    Three dimensional Identification Card, with its three-dimensional personal image displayed and stored for personal identification, is supposed be the advanced version of the present two-dimensional identification card in the future [1]. Three dimensional Identification Card means that there are three-dimensional optical techniques are used, the personal image on ID card is displayed to be three-dimensional, so we can see three dimensional personal face. The ID card also stores the three-dimensional face information in its inside electronics chip, which might be recorded by using two-channel cameras, and it can be displayed in computer as three-dimensional images for personal identification. Three-dimensional ID card might be one interesting direction to update the present two-dimensional card in the future. Three-dimension ID card might be widely used in airport custom, entrance of hotel, school, university, as passport for on-line banking, registration of on-line game, etc...

  9. Real-time pulmonary graphics.

    PubMed

    Mammel, Mark C; Donn, Steven M

    2015-06-01

    Real-time pulmonary graphics now enable clinicians to view lung mechanics and patient-ventilator interactions on a breath-to-breath basis. Displays of pressure, volume, and flow waveforms, pressure-volume and flow-volume loops, and trend screens enable clinicians to customize ventilator settings based on the underlying pathophysiology and responses of the individual patient. This article reviews the basic concepts of pulmonary graphics and demonstrates how they contribute to our understanding of respiratory physiology and the management of neonatal respiratory failure.

  10. Real-time streamflow conditions

    USGS Publications Warehouse

    Graczyk, David J.; Gebert, Warren A.

    1996-01-01

    Would you like to know streamflow conditions before you go fishing in Wisconsin or in more distant locations? Real-time streamflow data throughout Wisconsin and the United States are available on the Internet from the U.S. Geological Survey. You can see if the stream you are interested in fishing is high due to recent rain or low because of an extended dry spell. Flow conditions at more than 100 stream-gaging stations located throughout Wisconsin can be viewed by accessing the Wisconsin District Home Page at: http://wwwdwimdn.er.usgs.gov

  11. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  12. Time-Domain Method for Computing Forces and Moments Acting on Three Dimensional Surface-Piercing Ship Hulls with Forward Speed.

    DTIC Science & Technology

    1980-09-01

    coefficients for a fairly coarse representation of the hull and free surface. ii INTRODUCTION This report describes a computational method designed to...acceleration boundary condition. This deter- mines the time-derivative of the body-induced component of the flow, 4BD (as well as OBD through integration...earlier, Fkj(IMP) = -PffdSB Cj(X*, 0+) nk(X*) For later time steps the time-domain force t Fkj(t) = f Kkj()d, t > 0+ 27 II was computed using the method

  13. Two- and Three-dimensional Transthoracic Echocardiographic Assessment of Tricuspid Valve Prolapse with Mid-to-Late Systolic Tricuspid Regurgitation.

    PubMed

    Elsayed, Mahmoud; Thind, Munveer; Nanda, Navin C

    2015-06-01

    We present the two-dimensional echocardiographic findings of tricuspid valve prolapse with mid-to-late systolic tricuspid regurgitation and describe the incremental value provided by live/real time three-dimensional transthoracic echocardiography. We also discuss a potential pitfall when assessing the severity of regurgitation in this setting.

  14. Real time analysis under EDS

    NASA Astrophysics Data System (ADS)

    Schneberk, D.

    1985-07-01

    The analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL) is described. Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis.

  15. Real time analysis under EDS

    SciTech Connect

    Schneberk, D.

    1985-07-01

    This paper describes the analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL). Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis. Each of these components are described with an emphasis upon how each contributes to overall system capability. 3 figs.

  16. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  17. Sixty-four-slice CT angiography to determine the three dimensional relationships of vascular and soft tissue wounds in lower extremity war time injuries.

    PubMed

    Smith, Jennifer M; Fox, Charles J; Brazaitis, Michael P; Via, Kathy; Garcia, Roman; Feuerstein, Irwin M

    2010-01-01

    This article analyzes the use and benefits of the 64-slice CT scanner in determining the 3D relationships of vascular and soft tissue wounds in lower extremity war time injuries. A brief overview of CT scanning is given as well as the techniques used to produce the images needed for diagnosis. The series follows two similar cases of war time injury patients at the Walter Reed Army Medical Center. The first case is a 30-year-old active duty male, who presented with multiple trauma from a motor vehicle accident because of an improvised explosive device (IED) blast, sustaining substantial lower extremity injuries. The second case is a 34-year-old active duty male, who presented with multiple trauma blast injuries. Both cases were of interest because the vasculature was found to be very close to the surface of the wound, which put the arteries at risk for rupture and for iatrogenic injury during repeated debridements.

  18. An ensemble Kalman filter approach to identify the hydraulic conductivity spatial distribution from electrical resistivity tomography time-lapse monitoring of three-dimensional tracer test experiments

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Cassiani, G.; Deiana, R.; Perri, M. T.; Salandin, P.

    2012-04-01

    An approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) is applied to assess the spatial distribution of hydraulic conductivity K by assimilating time-lapse cross-hole electrical resistivity tomography (ERT) images generated for a synthetic tracer test in a heterogeneous aquifer. Assuming that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating both the hydrological state in terms of solute concentration and the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the aquifer heterogeneity at the local scale can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of the uncertainty inherently affecting ERT inversions in terms of tracer concentration and the choice of the prior statistics of K. The results show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework, the reconstruction of the hydraulic conductivity spatial distribution being satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside from the issues commonly affecting inverse models, the proposed approach is subject to the problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K prior geostatistical parameters.

  19. Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry

    SciTech Connect

    Hua, Xin; Marshall, Matthew J.; Xiong, Yijia; Ma, Xiang; Zhou, Yufan; Tucker, Abigail E.; Zhu, Zihua; Liu, Songqin; Yu, Xiao-Ying

    2015-05-01

    A vacuum compatible microfluidic reactor, SALVI (System for Analysis at the Liquid Vacuum Interface) was employed for in situ chemical imaging of live biofilms using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Depth profiling by sputtering materials in sequential layers resulted in live biofilm spatial chemical mapping. 2D images were reconstructed to report the first 3D images of hydrated biofilm elucidating spatial and chemical heterogeneity. 2D image principal component analysis (PCA) was conducted among biofilms at different locations in the microchannel. Our approach directly visualized spatial and chemical heterogeneity within the living biofilm by dynamic liquid ToF-SIMS.

  20. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina

    PubMed Central

    Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga

    2014-01-01

    Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247

  1. Receptivity of a laminar boundary layer to the interaction of a three-dimensional roughness element with time-harmonic free-stream disturbances

    NASA Technical Reports Server (NTRS)

    Tadjfar, M.; Bodonyi, R. J.

    1992-01-01

    Receptivity of a laminar boundary layer to the interaction of time-harmonic free-stream disturbances with a 3D roughness element is studied. The 3D nonlinear triple-deck equations are solved numerically to provide the basic steady-state motion. At high Reynolds numbers, the governing equations for the unsteady motion are the unsteady linearized 3D triple-deck equations. These equations can only be solved numerically. In the absence of any roughness element, the free-stream disturbances, to the first order, produce the classical Stokes flow, in the thin Stokes layer near the wall (on the order of our lower deck). However, with the introduction of a small 3D roughness element, the interaction between the hump and the Stokes flow introduces a spectrum of all spatial disturbances inside the boundary layer.

  2. State-of-the-Art Three-Dimensional Chemical Characterization of Solid Oxide Fuel Cell Using Focused Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry Tomography.

    PubMed

    Priebe, Agnieszka; Bleuet, Pierre; Goret, Gael; Laurencin, Jerome; Montinaro, Dario; Barnes, Jean-Paul

    2016-12-01

    In this paper the potential of time-of-flight secondary ion mass spectroscopy combined with focused ion beam technology to characterize the composition of a solid oxide fuel cell (SOFC) in three-dimension is demonstrated. The very high sensitivity of this method allows even very small amounts of elements/compounds to be detected and localized. Therefore, interlayer diffusion of elements between porous electrodes and presence of pollutants can be analyzed with a spatial resolution of the order of 100 nm. However, proper element recognition and mass interference still remain important issues. Here, we present a complete elemental analysis of the SOFC as well as techniques that help to validate the reliability of obtained results. A discussion on origins of probable artifacts is provided.

  3. Three-Dimensional Gear Crack Propagation Studies

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.

    1998-01-01

    Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.

  4. Three-dimensional hologram display system

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

    2009-01-01

    The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

  5. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  6. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  7. A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes

    NASA Technical Reports Server (NTRS)

    Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)

    2001-01-01

    In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.

  8. A 2A2<--X 2B1 absorption and Raman spectra of the OClO molecule: A three-dimensional time-dependent wave packet study

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Lou, Nanquan; Nyman, Gunnar

    2005-02-01

    Time-dependent wave packet calculations of the (A 2A2←X 2B1) absorption and Raman spectra of the OClO molecule are reported. The Fourier grid Hamiltonian method in three dimensions is employed. The X 2B1 ground state ab initio potential energy surface reported by Peterson [J. Chem. Phys. 109, 8864 (1998)] is used together with his corresponding A 2A2 state surface or the revised surface of the A 2A2 state by Xie and Guo [Chem. Phys. Lett. 307, 109 (1999)]. Radau coordinates are used to describe the vibrations of a nonrotating OClO molecule. The split-operator method combined with fast Fourier transform is applied to propagate the wave function. We find that the ab initio A 2A2 potential energy surface better reproduces the detailed structures of the absorption spectrum at long wavelength, while the revised surface of the A 2A2 state, consistent with the work of Xie and Guo, better reproduces the overall shape and the energies of the vibrational levels. Both surfaces of the A 2A2 state can reasonably reproduce the experimental Raman spectra but neither does so in detail for the numerical model employed in the present work.

  9. Three-Dimensional Image of Cleavage Bodies in Nuclei Is Configured Using Gas Cluster Ion Beam with Time-of-Flight Secondary Ion Mass Spectrometry

    PubMed Central

    Masaki, Noritaka; Ishizaki, Itsuko; Hayasaka, Takahiro; Fisher, Gregory L.; Sanada, Noriaki; Yokota, Hideo; Setou, Mitsutoshi

    2015-01-01

    Structural variations of DNA in nuclei are deeply related with development, aging, and diseases through transcriptional regulation. In order to bare cross sections of samples maintaining sub-micron structures, an Ar2500+-gas cluster ion beam (GCIB) sputter was recently engineered. By introducing GCIB sputter to time-of-flight secondary ion mass spectrometry (TOF-SIMS), we analyzed the 3D configuration and chemical composition of subnuclear structures of pyramidal cells in the CA2 region in mouse brain hippocampus. Depth profiles of chemicals were analyzed as 3D distributions by combining topographic analyses. Signals corresponding to anions such as CN− and PO3− were distributed characteristically in the shape of cell organelles. CN− signals overlapped DAPI fluorescence signals corresponding to nuclei. The clusters shown by PO3− and those of adenine ions were colocalized inside nuclei revealed by the 3D reconstruction. Taking into account their size and their number in each nucleus, those clusters could be in the cleavage bodies, which are a kind of intranuclear structure. PMID:25961407

  10. Automatic three-dimensional registration of intra-vascular optical coherence tomography images for the clinical evaluation of stent implantation over time

    NASA Astrophysics Data System (ADS)

    Ughi, Giovanni J.; Adriaenssens, Tom; Larsson, Matilda; Dubois, Christophe; Sinnaeve, Peter; Coosemans, Mark; Desmet, Walter; D'hooghe, Jan

    2012-01-01

    In the last decade a large number of new intracoronary devices (i.e. drug-eluting stents, DES) have been developed to reduce the risks related to bare metal stent (BMS) implantation. The use of this new generation of DES has been shown to substantially reduce, compared with BMS, the occurrence of restenosis and recurrent ischemia that would necessitate a second revascularization procedure. Nevertheless, safety issues on the use of DES persist and full understanding of mechanisms of adverse clinical events is still a matter of concern and debate. Intravascular Optical Coherence Tomography (IV-OCT) is an imaging technique able to visualize the microstructure of blood vessels with an axial resolution <20 μm. Due to its very high spatial resolution, it enables detailed in-vivo assessment of implanted devices and vessel wall. Currently, the aim of several major clinical trials is to observe and quantify the vessel response to DES implantation over time. However, image analysis is currently performed manually and corresponding images, belonging to different IV-OCT acquisitions, can only be matched through a very labor intensive and subjective procedure. The aim of this study is to develop and validate a new methodology for the automatic registration of IV-OCT datasets on an image level. Hereto, we propose a landmark based rigid registration method exploiting the metallic stent framework as a feature. Such a tool would provide a better understanding of the behavior of different intracoronary devices in-vivo, giving unique insights about vessel pathophysiology and performance of new generation of intracoronary devices and different drugs.

  11. Three-dimensional interactive graphics for displaying and modelling microscopic data.

    PubMed

    Basinski, M; Deatherage, J F

    1990-09-01

    EUCLID is a three-dimensional (3D) general purpose graphics display package for interactive manipulation of vector, surface and solid drawings on Evans and Sutherland PS300 series graphics processors. It is useful for displaying, comparing, measuring and modelling 3D microscopic images in real time. EUCLID can assemble groups of drawings into a composite drawing, while retaining the ability to operate upon the individual drawings within the composite drawing separately. EUCLID is capable of real time geometrical transformations (scaling, translation and rotation in two coordinate frames) and stereo and perspective viewing transformations. Because of its flexibility, EUCLID is especially useful for fitting models into 3D microscopic images.

  12. Real-time optical tweezing

    NASA Astrophysics Data System (ADS)

    Rahman, Shah Mohammed Tamzidur

    In this thesis a new approach called ‘space-time-wavelength mapping’ has been developed for real-time electronic control of optical tweezers. The proposed technique enables precise control of optical signals in space, time, and frequency through time-domain dispersion and diffractive optics, which in turn enables generation of controlled radiation forces acting on small particles. In this study we show that 150 fs ultrafast optical pulses can be dispersed in time and space to achieve a 20 μm x 2 μm focused elliptical beam. The force field at the focal plane of the beam is dependent on local intensity gradients along the plane. The spatial intensity profile can be electronically controlled by assigning local power levels to each wavelength using time-domain RF modulation of dispersed pulses, and sending each wavelength, and hence the assigned power level, to a specific location in space through diffractive optics. We show that by choosing the appropriate RF waveform, one is able to create force fields for cell stretching and compression as well as multiple force hot-spots (of >200 pN force per pulse) for attractive and repulsive forces. A detailed theoretical model and simulation results from a proposed experimental setup are presented. This approach is significantly more advantageous in terms of flexibility and control, compared to conventional optical tweezers that require mechanical steering or holographic optical tweezers that produce undesired ‘ghost traps’. In addition, it is shown how the technique can also be extended to create tunable 2D force field distributions using a virtually-imaged phased-array (VIPA).

  13. Real-time automatic registration in optical surgical navigation

    NASA Astrophysics Data System (ADS)

    Lin, Qinyong; Yang, Rongqian; Cai, Ken; Si, Xuan; Chen, Xiuwen; Wu, Xiaoming

    2016-05-01

    An image-guided surgical navigation system requires the improvement of the patient-to-image registration time to enhance the convenience of the registration procedure. A critical step in achieving this aim is performing a fully automatic patient-to-image registration. This study reports on a design of custom fiducial markers and the performance of a real-time automatic patient-to-image registration method using these markers on the basis of an optical tracking system for rigid anatomy. The custom fiducial markers are designed to be automatically localized in both patient and image spaces. An automatic localization method is performed by registering a point cloud sampled from the three dimensional (3D) pedestal model surface of a fiducial marker to each pedestal of fiducial markers searched in image space. A head phantom is constructed to estimate the performance of the real-time automatic registration method under four fiducial configurations. The head phantom experimental results demonstrate that the real-time automatic registration method is more convenient, rapid, and accurate than the manual method. The time required for each registration is approximately 0.1 s. The automatic localization method precisely localizes the fiducial markers in image space. The averaged target registration error for the four configurations is approximately 0.7 mm. The automatic registration performance is independent of the positions relative to the tracking system and the movement of the patient during the operation.

  14. Advanced Three-Dimensional Display System

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2005-01-01

    A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the

  15. Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility

    ERIC Educational Resources Information Center

    Szállassy, Noémi; Gánóczy, Anita; Kriska, György

    2009-01-01

    The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…

  16. Tip selection in three-dimensional dendrites

    NASA Astrophysics Data System (ADS)

    Foster, M. R.; Tanveer, S.

    2004-11-01

    Dendrites are well-known to have a fully three-dimensional structure, often with four equally-spaced fins emanating from the steady parabolic tip, the pattern for which has now a good theoretical foundation.(McFadden, Coriell & Sekerka, J. Crys. Growth) 208 (2000) The four fins are of course related to four-fold crystalline anisotropy of quite small magnitude. We follow Tanveer(Tanveer, S. Phys. Rev. A) 40 (1989) in carefully exploring the matching of the inner solution in the neighborhood of the singularity nearest the real line to the small-surface-energy regular perturbation expansion, in order to obtain the (selected) tip radius and the amplitude of the fin. We consider the case for which the anisotropy parameter, α, is much larger than a dimensionless capillary length to the 4/7 power. We confirm what was already found in a slightly different parameter range(Ben Amar & Brener, Phys. Rev. Lett.) 71 (1993)--that the inner equation is essentially that of the two-dimensional case, with azimuthally-dependent parameters. We compare our results with those of Ben Amar & Brener.

  17. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.

    1993-01-01

    Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.

  18. Clinical virology in real time.

    PubMed

    Niesters, Hubert G M

    2002-12-01

    The ability to detect nucleic acids has had and still has a major impact on diagnostics in clinical virology. Both quantitative and qualitative techniques, whether signal or target amplification based systems, are currently used routinely in most if not all virology laboratories. Technological improvements, from automated sample isolation to real time amplification technology, have given the ability to develop and introduce systems for most viruses of clinical interest, and to obtain clinical relevant information needed for optimal antiviral treatment options. Both polymerase chain reaction (PCR) and nucleic acid sequence-based amplification (NASBA) can currently be used together with real time detection to generate results in a short turn-around time and to determine whether variants relevant for antiviral resistance are present. These new technologies enable the introduction of an individual patient disease management concept. Within our clinical setting, we have introduced this e.g. for quantitative detection of Epstein-Barr Virus (EBV) in T-dell depleted allogeneic stem cell transplant patients. This enabled us to develop models for pre-emptive anti B-cell immunotherapy for EBV reactivation, thereby effectively reducing not the incidence of EBV-lymphoproliferative disease but the virus related mortality. Furthermore, additional clinically relevant viruses can now easily be detected simultaneously. It also becomes more feasible to introduce molecular testing for those viruses that can easily be detected using classical virological methods, like culture techniques or antigen detection. Prospective studies are needed to evaluate the clinical importance of the additional positive samples detected. It should however be made clear that a complete exchange of technologies is unlikely to occur, and that some complementary technologies should stay operational enabling the discovery of new viruses. The implementation of these molecular diagnostic technologies furthermore

  19. Real-time data standards for the planetarium

    NASA Astrophysics Data System (ADS)

    Abbott, B.

    2008-06-01

    The American Museum of Natural History and the Hayden Planetarium have built the most accurate, comprehensive, 3-D atlas of the cosmos called the Digital Universe (DU). The DU enables one to journey from the mountains on Earth to the farthest quasars. The DU enjoys many distribution channels, including pre-rendered space-shows and news bulletins, live planetarium programmes, and a free version available on the internet. Recently, we have partnered with three planetarium vendors to bring the DU to planetariums around the world. These partnerships necessitatethe adoption or creation of standards for three-dimensional data and associated metadata. Many standards exist in the current Virtual Observatory framework and additional standards are being proposed as part of the VAMP programme. We intend to identify additional standards necessary for 3-D, real-time rendering tools for fulldome and flat-screen environments.

  20. Three-dimensional velocity measurements using LDA

    NASA Astrophysics Data System (ADS)

    Buchhave, Preben

    The design requirements for and development of an LDA that measures the three components of the fluid velocity vector are described. The problems encountered in LDA measurements in highly turbulent flows, multivariate response, velocity bias, spatial resolution, temporal resolution, and dynamic range, are discussed. The use of the fringe and/or the reference beam methods to measure the three velocity components, and the use of color, frequency shift, and polarization to separate three velocity projections are examined. Consideration is given to the coordinate transformation, the presentation of three-dimensional LDA data, and the possibility of three-dimensional bias correction. Procedures for conducting three-dimensional LDA measurements are proposed.

  1. Holin triggering in real time.

    PubMed

    White, Rebecca; Chiba, Shinobu; Pang, Ting; Dewey, Jill S; Savva, Christos G; Holzenburg, Andreas; Pogliano, Kit; Young, Ry

    2011-01-11

    During λ infections, the holin S105 accumulates harmlessly in the membrane until, at an allele-specific time, suddenly triggering to form irregular holes of unprecedented size (>300 nm), releasing the endolysin from the cytoplasm, resulting in lysis within seconds. Here we used a functional S105-GFP chimera and real-time deconvolution fluorescence microscopy to show that the S105-GFP fusion accumulated in a uniformly distributed fashion, until suddenly, within 1 min, it formed aggregates, or rafts, at the time of lethal triggering. Moreover, the isogenic fusion to a nonlethal S105 mutant remained uniformly distributed, whereas a fusion to an early-lysing mutant showed early triggering and early raft formation. Protein accumulation rates of the WT, early, and nonlethal alleles were identical. Fluorescence recovery after photobleaching (FRAP) revealed that the nonlethal mutant and untriggered WT hybrids were highly mobile in the membrane, whereas the WT raft was essentially immobile. Finally, an antiholin allele, S105(ΔTMD1)-mcherryfp, in the product of which the S105 sequence deleted for the first transmembrane domain was fused to mCherryFP. This hybrid retained full antiholin activity, in that it blocked lethal hole formation by the S105-GFP fusion, accumulated uniformly throughout the host membrane and prevented the S105-GFP protein from forming rafts. These findings suggest that phage lysis occurs when the holin reaches a critical concentration and nucleates to form rafts, analogous to the initiation of purple membrane formation after the induction of bacteriorhodopsin in halobacteria. This model for holin function may be relevant for processes in mammalian cells, including the release of nonenveloped viruses and apoptosis.

  2. Real-Time Data Display

    NASA Technical Reports Server (NTRS)

    Pedings, Marc

    2007-01-01

    RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.

  3. Real-Time Nonlinear Optical Information Processing.

    DTIC Science & Technology

    1979-06-01

    operations aree presented. One approach realizes the halftone method of nonlinear optical processing in real time by replacing the conventional...photographic recording medium with a real-time image transducer. In the second approach halftoning is eliminated and the real-time device is used directly

  4. Mobile real time radiography system

    SciTech Connect

    Vigil, J.; Taggart, D.; Betts, S.

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  5. Three-dimensional planning in craniomaxillofacial surgery

    PubMed Central

    Rubio-Palau, Josep; Prieto-Gundin, Alejandra; Cazalla, Asteria Albert; Serrano, Miguel Bejarano; Fructuoso, Gemma Garcia; Ferrandis, Francisco Parri; Baró, Alejandro Rivera

    2016-01-01

    Introduction: Three-dimensional (3D) planning in oral and maxillofacial surgery has become a standard in the planification of a variety of conditions such as dental implants and orthognathic surgery. By using custom-made cutting and positioning guides, the virtual surgery is exported to the operating room, increasing precision and improving results. Materials and Methods: We present our experience in the treatment of craniofacial deformities with 3D planning. Software to plan the different procedures has been selected for each case, depending on the procedure (Nobel Clinician, Kodak 3DS, Simplant O&O, Dolphin 3D, Timeus, Mimics and 3-Matic). The treatment protocol is exposed step by step from virtual planning, design, and printing of the cutting and positioning guides to patients’ outcomes. Conclusions: 3D planning reduces the surgical time and allows predicting possible difficulties and complications. On the other hand, it increases preoperative planning time and needs a learning curve. The only drawback is the cost of the procedure. At present, the additional preoperative work can be justified because of surgical time reduction and more predictable results. In the future, the cost and time investment will be reduced. 3D planning is here to stay. It is already a fact in craniofacial surgery and the investment is completely justified by the risk reduction and precise results. PMID:28299272

  6. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  7. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  8. Three Dimensional Primary Hepatocyte Culture

    NASA Technical Reports Server (NTRS)

    Yoffe, Boris

    1998-01-01

    Our results demonstrated for the first time the feasibility of culturing PHH in microgravity bioreactors that exceeded the longest period obtained using other methods. Within the first week of culture, isolated hepatocytes started to form aggregates, which continuously increased in size (up to 1 cm) and macroscopically appeared as a multidimensional tissue-like assembly. To improve oxygenation and nutrition within the spheroids we performed experiments with the biodegradable nonwoven fiber-based polymers made from PolyGlycolic Acid (PGA). It has been shown that PGA scaffolds stimulate isolated cells to regenerate tissue with defined sizes and shapes and are currently being studied for various tissue-engineering applications. Our data demonstrated that culturing hepatocytes in the presence of PGA scaffolds resulted in more efficient cell assembly and formations of larger cell spheroids (up to 3 cm in length, see figure). The histology of cell aggregates cultured with PGA showed polymer fibers with attached hepatocytes. We initiated experiments to co-culture primary human hepatocytes with human microvascular endothelial cells in the bioreactor. The presence of endothelial cells in co-cultures were established by immunohistochemistry using anti-CD34 monoclonal Ab. Our preliminary data demonstrated that cultures of purified hepatocytes with human microvascular endothelial cells exhibited better growth and expressed higher levels of albumin MRNA for a longer period of time than cultures of ppfified, primary human hepatocytes cultured alone. We also evaluated microsomal deethylation activity of hepatocytes cultured in the presence of endothelial cells.In summary, we have established liver cell culture, which mimicked the structure and function of the parent tissue.

  9. Students Collecting Real time Data

    NASA Astrophysics Data System (ADS)

    Miller, P.

    2006-05-01

    Students Collecting Real-Time Data The Hawaiian Islands Humpback Whale National Marine Sanctuary has created opportunities for middle and high school students to become Student Researchers and to be involved in real-time marine data collection. It is important that we expose students to different fields of science and encourage them to enter scientific fields of study. The Humpback Whale Sanctuary has an education visitor center in Kihei, Maui. Located right on the beach, the site has become a living classroom facility. There is a traditional Hawaiian fishpond fronting the property. The fishpond wall is being restored, using traditional methods. The site has the incredible opportunity of incorporating Hawaiian cultural practices with scientific studies. The Sanctuary offers opportunities for students to get involved in monitoring and data collection studies. Invasive Seaweed Study: Students are collecting data on invasive seaweed for the University of Hawaii. They pull a large net through the shallow waters. Seaweed is sorted, identified and weighed. The invasive seaweeds are removed. The data is recorded and sent to UH. Remote controlled monitoring boats: The sanctuary has 6 boogie board sized remote controlled boats used to monitor reefs. Boats have a camera with lights on the underside. The boats have water quality monitoring devices and GPS units. The video from the underwater camera is transmitted via a wireless transmission. Students are able to monitor the fish, limu and invertebrate populations on the reef and collect water quality data via television monitors or computers. The boat can also pull a small plankton tow net. Data is being compiled into data bases. Artificial Reef Modules: The Sanctuary has a scientific permit from the state to build and deploy artificial reef modules. High school students are designing and building modules. These are deployed out in the Fishpond fronting the Sanctuary site and students are monitoring them on a weekly basis

  10. Large holographic displays for real-time applications

    NASA Astrophysics Data System (ADS)

    Schwerdtner, A.; Häussler, R.; Leister, N.

    2008-02-01

    Holography is generally accepted as the ultimate approach to display three-dimensional scenes or objects. Principally, the reconstruction of an object from a perfect hologram would appear indistinguishable from viewing the corresponding real-world object. Up to now two main obstacles have prevented large-screen Computer-Generated Holograms (CGH) from achieving a satisfactory laboratory prototype not to mention a marketable one. The reason is a small cell pitch CGH resulting in a huge number of hologram cells and a very high computational load for encoding the CGH. These seemingly inevitable technological hurdles for a long time have not been cleared limiting the use of holography to special applications, such as optical filtering, interference, beam forming, digital holography for capturing the 3-D shape of objects, and others. SeeReal Technologies has developed a new approach for real-time capable CGH using the socalled Tracked Viewing Windows technology to overcome these problems. The paper will show that today's state of the art reconfigurable Spatial Light Modulators (SLM), especially today's feasible LCD panels are suited for reconstructing large 3-D scenes which can be observed from large viewing angles. For this to achieve the original holographic concept of containing information from the entire scene in each part of the CGH has been abandoned. This substantially reduces the hologram resolution and thus the computational load by several orders of magnitude making thus real-time computation possible. A monochrome real-time prototype measuring 20 inches has been built and demonstrated at last year's SID conference and exhibition 2007 and at several other events.

  11. Three-dimensional super-resolution: theory, modeling, and field test results.

    PubMed

    Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Vincent E; Hines, Glenn; Pierrottet, Diego; Reisse, Robert

    2014-04-20

    Many flash lidar applications continue to demand higher three-dimensional image resolution beyond the current state-of-the-art technology of the detector arrays and their associated readout circuits. Even with the available number of focal plane pixels, the required number of photons for illuminating all the pixels may impose impractical requirements on the laser pulse energy or the receiver aperture size. Therefore, image resolution enhancement by means of a super-resolution algorithm in near real time presents a very attractive solution for a wide range of flash lidar applications. This paper describes a super-resolution technique and illustrates its performance and merits for generating three-dimensional image frames at a video rate.

  12. Non-orthogonal depth from focus for on-the-fly, three-dimensional inspection

    NASA Astrophysics Data System (ADS)

    Ribnick, Evan

    2012-08-01

    This paper describes a new technique that was developed for performing three-dimensional (3-D) reconstruction on-the-fly for inspection applications. It is based on the same principles as the traditional depth from focus approach but is able to estimate the three-dimensional structure of a surface as it is undergoing a continuous linear lateral translation, similar to the situation on many types of modern production lines. This has important applications in the area of automated inspection and quality control, since the ability to inspect materials in real-time as they are being manufactured in a continuous process is valuable in a broad range of circumstances. We assume that the relative motion of the surface is known, which is realistic in these types of environments. We demonstrate the technical feasibility of our approach, including its ability to acquire 3-D shape on several different types of structured surfaces.

  13. Three-Dimensional Super-Resolution: Theory, Modeling, and Field Tests Results

    NASA Technical Reports Server (NTRS)

    Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Vincent E.; Hines, Glenn; Pierrottet, Diego; Reisse, Robert

    2014-01-01

    Many flash lidar applications continue to demand higher three-dimensional image resolution beyond the current state-of-the-art technology of the detector arrays and their associated readout circuits. Even with the available number of focal plane pixels, the required number of photons for illuminating all the pixels may impose impractical requirements on the laser pulse energy or the receiver aperture size. Therefore, image resolution enhancement by means of a super-resolution algorithm in near real time presents a very attractive solution for a wide range of flash lidar applications. This paper describes a superresolution technique and illustrates its performance and merits for generating three-dimensional image frames at a video rate.

  14. Three-dimensional modeling of tsunami waves

    SciTech Connect

    Mader, C.L.

    1985-01-01

    Two- and three-dimensional, time-dependent, nonlinear, incompressible, viscous flow calculations of realistic models of tsunami wave formation and run up have been performed using the Los Alamos-developed SOLA-3D code. The results of the SOLA calculations are compared with shallow-water, long-wave calculations for the same problems using the SWAN code. Tsunami wave formation by a continental slope subsidence has been examined using the two numerical models. The SOLA waves were slower than the SWAN waves and the interaction with the shoreline was more complicated for the SOLA waves. In the SOLA calculation, the first wave was generated by the cavity being filled along the shoreline close to the source of motion. The second wave was generated by the cavity being filled from the deep water end. The two waves interacted along the shoreline resulting in the second wave being the largest wave with a velocity greater than the first wave. The second wave overtook the first wave at later times and greater distances from the source. In the SWAN calculation, the second wave was smaller than the first wave. 6 refs.

  15. An introduction to real-time graphical techniques for analyzing multivariate data

    NASA Astrophysics Data System (ADS)

    Friedman, Jerome H.; McDonald, John Alan; Stuetzle, Werner

    1987-08-01

    Orion I is a graphics system used to study applications of computer graphics - especially interactive motion graphics - in statistics. Orion I is the newest of a family of "Prim" systems, whose most striking common feature is the use of real-time motion graphics to display three dimensional scatterplots. Orion I differs from earlier Prim systems through the use of modern and relatively inexpensive raster graphics and microprocessor technology. It also delivers more computing power to its user; Orion I can perform more sophisticated real-time computations than were possible on previous such systems. We demonstrate some of Orion I's capabilities in our film: "Exploring data with Orion I".

  16. Three-dimensional models. [For orbital celestial mechanics

    SciTech Connect

    Hunter, C. )

    1990-06-01

    The Schwarzschild (1979) approach to the analysis of three-dimensional galactic models is reviewed. An analysis of triaxial Staeckel models is discussed which shows that such models have a wide variety of possible distribution functions. The uniqueness that Schwarzschild first encountered in his discrete formulation of the problem of finding a three-integral distribution function for a triaxial density is real and not an artifact of the finite cell approximation. 27 refs.

  17. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  18. Shape memory polymers: three-dimensional isotropic modeling

    NASA Astrophysics Data System (ADS)

    Balogun, Olaniyi; Mo, Changki

    2014-04-01

    This paper presents a comprehensive three-dimensional isotropic numerical simulation for a thermo-mechanical constitutive model of shape memory polymers (SMPs). In order to predict the thermo-mechanical behavior of SMPs, a one-dimensional rheological thermo-mechanical constitutive model is adopted, translated into a three-dimensional form and a time discrete form of the three-dimensional model is then presented. Numerical simulation of this model was developed using the UMAT subroutine capabilities of the finite element software ABAQUS. Evolution of the analysis was conducted by making use of the backward difference scheme, which was applied to all quantities within the model, including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermo-mechanical properties of the material which include shape fixity, shape recovery, and recovery stress. Finally, a prediction for the transverse and shear directions of the material is presented.

  19. Coupled particle dispersion by three-dimensional vortex structures

    SciTech Connect

    Troutt, T.R.; Chung, J.N.; Crowe, C.T.

    1996-12-31

    The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.

  20. Three-Dimensional Prints with Pinned Cylindrical Lens Arrays

    NASA Astrophysics Data System (ADS)

    Yasuda, Shin; Shimizu, Keishi

    2013-09-01

    An application of pinned cylindrical lens arrays (CLAs) reported in Opt. Rev. 19 (2012) 287 to three-dimensional prints is presented for the first time. This lens fabrication method features the easy control of the pitch and radius of curvature of the lens arrays by taking advantage of the pinning effect that the partition walls created on a polymeric substrate by scratching with a cutter blade prevent the ultraviolet curable polymer dispensed between the walls from spreading. It is demonstrated in this paper that a three-dimensional print was realized successfully with the pinned CLA fabricated with our method.

  1. Radiative Instabilities in Three-Dimensional Astrophysical Masers

    NASA Technical Reports Server (NTRS)

    Scappaticci, Gerardo A.; Watson, William D.

    1995-01-01

    Inherent instabilities in the radiative transfer for astrophysical masers have been recognized and calculated in the linear maser idealization in our previous investigations. The same instabilities are now shown to occur in the more realistic, three-dimensional geometries. Fluctuations in the emergent flux result and may be related to the observed fluctuations in the radiative flux from the 1665 MHz OH masers that have been reported to occur on timescales as short as 1000 s. The time-dependent differential equations of radiative transfer are solved numerically for three-dimensional astrophysical masers. Computations are performed for spherical and elongated (rectangular parallelepiped) geometries.

  2. Binary Colloidal Alloy Test-5: Three-Dimensional Melt

    NASA Technical Reports Server (NTRS)

    Yodh, Arjun G.

    2008-01-01

    Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.

  3. Three-dimensional simulations of fracture dissolution

    NASA Astrophysics Data System (ADS)

    Starchenko, Vitaliy; Marra, Cameron J.; Ladd, Anthony J. C.

    2016-09-01

    Numerical studies of fracture dissolution are frequently based on two-dimensional models, where the fracture geometry is represented by an aperture field h(x,y). However, it is known that such models can break down when the spatial variations in aperture are rapid or large in amplitude; for example, in a rough fracture or when instabilities in the dissolution front develop into pronounced channels (or wormholes). Here we report a finite-volume implementation of a three-dimensional reactive transport model using the OpenFOAM® toolkit. Extensions to the OpenFOAM source code have been developed which displace and then relax the mesh in response to variations in the surface concentration; up to 100-fold increases in fracture aperture are possible without remeshing. Our code has simulated field-scale fractures with physical dimensions of about 10 m. We report simulations of smooth fractures, with small, well-controlled perturbations in fracture aperture introduced at the inlet. This allows for systematic convergence studies and for detailed comparisons with results from a two-dimensional model. Initially, the fracture aperture develops similarly in both models, but as local inhomogeneities develop the results start to diverge. We investigate numerically the onset of instabilities in the dissolution of fractures with small random variations in the initial aperture field. Our results show that elliptical cross sections, which are characteristic of karstic conduits, can develop very rapidly, on time scales of 10-20 years in calcite rocks.

  4. A three-dimensional human walking model

    NASA Astrophysics Data System (ADS)

    Yang, Q. S.; Qin, J. W.; Law, S. S.

    2015-11-01

    A three-dimensional human bipedal walking model with compliant legs is presented in this paper. The legs are modeled with time-variant dampers, and the model is able to characterize the gait pattern of an individual using a minimal set of parameters. Feedback control, for both the forward and lateral movements, is implemented to regulate the walking performance of the pedestrian. The model provides an improvement over classic invert pendulum models. Numerical studies were undertaken to investigate the effects of leg stiffness and attack angle. Simulation results show that when walking at a given speed, increasing the leg stiffness with a constant attack angle results in a longer step length, a higher step frequency, a faster walking speed and an increase in both the peak vertical and lateral ground reaction forces. Increasing the attack angle with a constant leg stiffness results in a higher step frequency, a decrease in the step length, an increase in the total energy of the system and a decrease in both the peak vertical and lateral ground reaction forces.

  5. Three dimensional, multi-chip module

    SciTech Connect

    Bernhardt, A.F.; Petersen, R.W.

    1992-12-31

    The present invention relates to integrated circuit packaging technology, and particularly to three dimensional packages involving high density stacks of integrated circuits. A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow ``dummy chips`` are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned on the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

  6. Three-dimensional modelling of Venus photochemistry

    NASA Astrophysics Data System (ADS)

    Stolzenbach, Aurélien; Lefèvre, Franck; Lebonnois, Sébastien; Määttänen, Anni; Bekki, Slimane

    2014-05-01

    We have developed a new code of the Venus atmospheric chemistry based on our photochemical model already in use for Mars (e.g., Lefèvre et al., J. Geophys. Res., 2004). For Venus, the code also includes a parameterized treatment of cloud microphysics that computes the composition of sulphuric acid droplets and their number density based on a given droplet size distribution in altitude. We coupled this photochemical-microphysical package to the LMD general circulation model of Venus (Lebonnois et al., J. Geophys. Res., 2010) with a sedimentation module recently added. We will describe preliminary results obtained with this first three-dimensional model of the Venus photochemistry. The space and time distribution of key chemical species as well as the modelled clouds characteristics will be detailed and compared to observations performed from Venus Express and from the Earth (e.g. Knollenberg and Hunten, J. Geophys. Res., 1980 ; Wilquet et al., J. Geophys. Res., 2009 ; Sandor et al., Icarus, 2012).

  7. Three-Dimensional Modelling of Venus Photochemistry

    NASA Astrophysics Data System (ADS)

    Stolzenbach, A.; Lefèvre, F.; Lebonnois, S.; Maattanen, A. E.; Bekki, S.

    2015-12-01

    We have developed a new code of the Venus atmospheric chemistry based on our photochemical model already in use for Mars (e.g., Lefèvre et al., J. Geophys. Res., 2004). For Venus, the code also includes a parameterized treatment of cloud microphysics that computes the composition of sulphuric acid droplets and their number density based on a given droplet size distribution in altitude and latitude. We coupled this photochemical-microphysical package to the LMD general circulation model of Venus (Lebonnois et al., J. Geophys. Res., 2010) with a sedimentation module that takes into account the parametrized droplet size distribution. We will describe the results obtained with this first three-dimensional model of the Venus photochemistry. The space and time distribution of key chemical species as well as the modelled clouds characteristics will be detailed and compared to observations performed from Venus Express and from the Earth (e.g. Knollenberg and Hunten, J. Geophys. Res., 1980 ; Wilquet et al., J. Geophys. Res., 2009 ; Sandor et al., Icarus, 2012 ; Mahieux et al., PSS, 2014 ; Marcq et al., 2015, PSS).

  8. Three-dimensional cell to tissue development process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2008-01-01

    An improved three-dimensional cell to tissue development process using a specific time varying electromagnetic force, pulsed, square wave, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.

  9. Three-dimensional acousto-optic spectrum analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Metscher, Brian; Lesh, James R.

    1990-01-01

    A three-dimensional acoustooptic spectrum analyzer with subhertz resolution is demonstrated experimentally. The first and second dimensions are the two spatial dimensions of the output detector array, and the third dimension is time as sampled by the detector array frame rate. A superfine resolution of 0.12 Hz has been achieved.

  10. Three-dimensional AOTV flowfields in chemical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.; Mccandless, R. S.

    1986-01-01

    A technique for upwind differencing of the three-dimensional species continuity equations is presented which permits computation of steady flows in chemical equilibrium and nonequilibrium. The capabilities and shortcomings of the present approach for equilibrium and nonequilibrium flows is discussed. Modifications now being investigated to improve computational time are outlined.

  11. Quantum field between moving mirrors: A three dimensional example

    NASA Technical Reports Server (NTRS)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  12. Three-dimensional separation and reattachment

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1982-01-01

    The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.

  13. Topology of three-dimensional separated flows

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Peake, D. J.

    1981-01-01

    Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.

  14. Three-dimensional separation and reattachment

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1982-01-01

    The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be constrained as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.

  15. Vision in our three-dimensional world

    PubMed Central

    2016-01-01

    Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595

  16. Research in Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  17. Three-dimensional magnetic bubble memory system

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

  18. Three-dimensional displays and stereo vision.

    PubMed

    Westheimer, Gerald

    2011-08-07

    Procedures for three-dimensional image reconstruction that are based on the optical and neural apparatus of human stereoscopic vision have to be designed to work in conjunction with it. The principal methods of implementing stereo displays are described. Properties of the human visual system are outlined as they relate to depth discrimination capabilities and achieving optimal performance in stereo tasks. The concept of depth rendition is introduced to define the change in the parameters of three-dimensional configurations for cases in which the physical disposition of the stereo camera with respect to the viewed object differs from that of the observer's eyes.

  19. Fabrication of three dimensional microstructure fiber

    NASA Astrophysics Data System (ADS)

    Luo, Ying; Ma, Jie; Chen, Zhe; Lu, Huihui; Zhong, Yongchun

    2015-05-01

    A method of fabricating three dimensional (3D) microstructured fiber is presented. Polystyrene (PS) microspheres were coated around the surface of a micro-fiber through isothermal heating evaporation induced self-assembly method. Scanning electron microscopy (SEM) image shows that the colloidal crystal has continuous, uniform, and well-ordered face-centered cubic (FCC) structure, with [111] crystallographic direction normal to the surface of micro-fiber. This micro-fiber with three-dimensional photonic crystals structure is very useful in the applications of micro-fiber sensors or filters.

  20. Three-dimensional stochastic vortex flows

    NASA Astrophysics Data System (ADS)

    Esposito, R.; Pulvirenti, M.

    1989-08-01

    It is well known that the dynamics of point vortices approximate, under suitable limits, the two-dimensional Euler flow for an ideal fluid. To find particle models for three-dimensional flows is a more intricate problem. A stochastic version of the algorithm introduced by Beale amd Maida (1982) for simulating the behavior of a three-dimensional Euler flow is introduced here, and convergence to the Navier-Stokes (NS) flow in R exp 3 is shown. The result is based on a stochastic Lagrangian picture of the NS equations.

  1. Three-Dimensional Shallow Water Acoustics

    DTIC Science & Technology

    2016-03-30

    13-1-0026 entitled "Three- Dimensional Shallow Water Acoustics," Principal Investigator Dr. Ying-Tsong Lin. Sincerely, ;l1,J-Ju1𔃻 ~{hjM1...30/03/2016 01/01/2013-12/31/2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBERS Three-Dimensional Shallow Water Acoustics 5b, GRANT NUMBER N0001 4-13-1... Water Acoustics Dr. Ying-Tsong Lin Applied Ocean Physics and Engineering Department Woods Hole Oceanographic Institution, Woods Hole, MA 02543

  2. STUDY OF THE THREE-DIMENSIONAL CORONAL MAGNETIC FIELD OF ACTIVE REGION 11117 AROUND THE TIME OF A CONFINED FLARE USING A DATA-DRIVEN CESE-MHD MODEL

    SciTech Connect

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2012-11-10

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma {beta}. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by {approx}10{sup 30} erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  3. Study of the Three-dimensional Coronal Magnetic Field of Active Region 11117 around the Time of a Confined Flare Using a Data-Driven CESE-MHD Model

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.; Hu, Qiang

    2012-11-01

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma β. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by ~1030 erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  4. Combined Labelled and Label-free SERS Probes for Triplex Three-dimensional Cellular Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Bai, Xiangru; Su, Le; Du, Zhanwei; Shen, Aiguo; Materny, Arnulf; Hu, Jiming

    2016-01-01

    Cells are complex chemical systems, where the molecular composition at different cellular locations and specific intracellular chemical interactions determine the biological function. An in-situ nondestructive characterization of the complicated chemical processes (like e.g. apoptosis) is the goal of our study. Here, we present the results of simultaneous and three-dimensional imaging of double organelles (nucleus and membrane) in single HeLa cells by means of either labelled or label-free surface-enhanced Raman spectroscopy (SERS). This combination of imaging with and without labels is not possible when using fluorescence microscopy. The SERS technique is used for a stereoscopic description of the intrinsic chemical nature of nuclei and the precise localization of folate (FA) and luteinizing hormone-releasing hormone (LHRH) on the membrane under highly confocal conditions. We also report on the time-dependent changes of cell nuclei as well as membrane receptor proteins during apoptosis analyzed by statistical multivariate methods. The multiplex three-dimensional SERS imaging technique allows for both temporal (real time) and spatial (multiple organelles and molecules in three-dimensional space) live-cell imaging and therefore provides a new and attractive 2D/3D tracing method in biomedicine on subcellular level.

  5. Hand-held optoacoustic probe for three-dimensional imaging of human morphology and function

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Razansky, Daniel

    2014-03-01

    We report on a hand-held imaging probe for real-time optoacoustic visualization of deep tissues in three dimensions. The proposed solution incorporates a two-dimensional array of ultrasonic sensors densely distributed on a spherical surface, whereas illumination is performed coaxially through a cylindrical cavity in the array. Visualization of three-dimensional tomographic data at a frame rate of 10 images per second is enabled by parallel recording of 256 time-resolved signals for each individual laser pulse along with a highly efficient GPUbased real-time reconstruction. A liquid coupling medium (water), enclosed in a transparent membrane, is used to guarantee transmission of the optoacoustically generated waves to the ultrasonic detectors. Excitation at multiple wavelengths further allows imaging spectrally distinctive tissue chromophores such as oxygenated and deoxygenated haemoglobin. The performance is showcased by video-rate tracking of deep tissue vasculature and three-dimensional measurements of blood oxygenenation in a healthy human volunteer. The flexibility provided by the hand-held hardware design, combined with the real-time operation, makes the developed platform highly usable for both small animal research and clinical imaging in multiple indications, including cancer, inflammation, skin and cardiovascular diseases, diagnostics of lymphatic system and breast

  6. Three-dimensional ring current decay model

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.

    1995-01-01

    This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.

  7. Three-dimensional imaging technique using optical diffraction

    NASA Astrophysics Data System (ADS)

    Tan, Sheng; Hart, Douglas P.

    2002-02-01

    This paper presents a novel fast and simple technique to measure three-dimensional (3D) objects. An integrated 3D camera is built, which features a motorized off-axis rotating aperture. A regular spot pattern projection adds texture onto smooth 3D objects. When rotating, the off-axis aperture translates depth information into blurred image diameter. The displacement of each spot between two arbitrary aperture positions reveals depth. A pseudo- correlation algorithm based on optical diffraction is proposed to measure spot displacement fast and accurately. When subtracting two consecutive images of a roughly Gaussian-shaped displaced spot, the normalized subtraction intensity peak height is directly proportional to the spot displacement. The peak height to displacement calibration curve is specifically defined by optical parameters of the imaging system. Proper combination of off-axis aperture location and magnification ratio determines the size of the measurement range. Experiment observations show that the calibration curve is highly smooth and sensitive to the spot displacement at sub-pixel level. Real-time processing is possible with only order of image size arithmetic operations. The proposed technique holds potential for various industrial machine vision applications.

  8. Three-dimensional ultrasound imaging of the vasculature.

    PubMed

    Fenster, A; Lee, D; Sherebrin, S; Rankin, R; Downey, D

    1998-02-01

    With conventional ultrasonography, the diagnostician must view a series of two-dimensional images in order to form a mental impression of the three-dimensional anatomy, an efficient and time consuming practice prone to operator variability, which may cause variable or even incorrect diagnoses. Also, a conventional two-dimensional ultrasound image represents a thin slice of the patients anatomy at a single location and orientation, which is difficult to reproduce at a later time. These factors make conventional ultrasonography non-optimal for prospective or follow-up studies. Our efforts have focused on overcoming these deficiencies by developing three-dimensional ultrasound imaging techniques that are capable of acquiring B-mode, colour Doppler and power Doppler images of the vasculature, by using a conventional ultrasound system to acquire a series of two-dimensional images and then mathematically reconstructing them into a single three-dimensional image, which may then be viewed interactively on an inexpensive desktop computer. We report here on two approaches: (1) free-hand scanning, in which a magnetic positioning device is attached to the ultrasound transducer to record the position and orientation of each two-dimensional image needed for the three-dimensional image reconstruction; and (2) mechanical scanning, in which a motor-driven assembly is used to translate the transducer linearly across the neck, yielding a set of uniformly-spaced parallel two-dimensional images.

  9. Modern cosmology and the origin of our three dimensionality.

    PubMed

    Woodbury, M A; Woodbury, M F

    1998-01-01

    We are three dimensional egocentric beings existing within a specific space/time continuum and dimensionality which we assume wrongly is the same for all times and places throughout the entire universe. Physicists name Omnipoint the origin of the universe at Dimension zero, which exploded as a Big Bang of energy proceeding at enormous speed along one dimension which eventually curled up into matter: particles, atoms, molecules and Galaxies which exist in two dimensional space. Finally from matter spread throughout the cosmos evolved life generating eventually the DNA molecules which control the construction of brains complex enough to construct our three dimensional Body Representation from which is extrapolated what we perceive as a 3-D universe. The whole interconnected structures which conjure up our three dimensionality are as fragile as Humpty Dumpty, capable of breaking apart with terrifying effects for the individual patient during a psychotic panic, revealing our three dimensionality to be but "maya", an illusion, which we psychiatrists work at putting back together.

  10. Three-dimensional patterning methods and related devices

    DOEpatents

    Putnam, Morgan C.; Kelzenberg, Michael D.; Atwater, Harry A.; Boettcher, Shannon W.; Lewis, Nathan S.; Spurgeon, Joshua M.; Turner-Evans, Daniel B.; Warren, Emily L.

    2016-12-27

    Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.

  11. Three Dimensional Display Of Meteorological Scientific Data

    NASA Astrophysics Data System (ADS)

    Grotch, Stanley L.

    1988-01-01

    Even a cursory reading of any daily newspaper shows that we are in the midst of a dramatic revolution in computer graphics. Virtually every day some new piece of hardware or software is announced, adding to the tools available to the working scientist. Three dimensional graphics form a significant part of this revolution having become virtually commonplace in advertising and on television.

  12. Three-dimensional chiral photonic superlattices.

    PubMed

    Thiel, M; Fischer, H; von Freymann, G; Wegener, M

    2010-01-15

    We investigate three-dimensional photonic superlattices composed of polymeric helices in various spatial checkerboard-like arrangements. Depending on the relative phase shift and handedness of the chiral building blocks, different circular-dichroism resonances appear or are suppressed. Samples corresponding to four different configurations are fabricated by direct laser writing. The measured optical transmittance spectra are in good agreement with numerical calculations.

  13. Three-dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichert, Anke

    2001-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  14. Three dimensional reconnection in astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.

    1990-01-01

    Theoretical issues related to three-dimensional reconnection and its application to the space and astrophysical environment are reviewed. Consideration is given to the meaning of reconnection in three dimensions, the way in which periodic and nonperiodic magnetic topologies alter the physics of reconnections, and the effects of chaotic magnetic fields on the reconnection process.

  15. [Three Dimensional Display in Nuclear Medicine].

    PubMed

    Teraoka, Satomi; Souma, Tsutomu

    2015-01-01

    Imaging techniques to obtain a tomographic image in nuclear medicine such as PET and SPECT are widely used. It is necessary to interpreting all of the tomographic images obtained in order to accurately evaluate the individual lesion, whereas three dimensional display is often useful in order to overview and evaluate the feature of the entire lesion or disease such as the position, size and abnormal pattern. In Japan, the use of three dimensional image analysis workstation with an application of the co-registration and image fusion between the functional images such as PET or SPECT and anatomical images such as CT or MRI has been generalized. In addition, multimodality imaging system such as a PET/CT and SPECT/CT has been widespread. Therefore, it is expected to improve the diagnostic accuracy using three dimensionally image fusion to functional images with poor anatomical information. In this commentary, as an example of a three dimensional display that are commonly used in nuclear medicine examination in Japan, brain regions, cardiac region and bone and tumor region will be introduced separately.

  16. Growing Three-Dimensional Cocultures Of Cells

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Goodwin, Thomas J.

    1995-01-01

    Laboratory process provides environmental conditions favoring simultaneous growth of cocultures of mammalian cells of more than one type. Cultures become three-dimensional tissuelike assemblies serving as organoid models of differentiation of cells. Process used, for example, to study growth of human colon cancers, starting from mixtures of normal colonic fibroblasts and partially differentiated colon adenocarcinoma cells.

  17. Three-Dimensional Pointers for Stereoscopic Projection.

    ERIC Educational Resources Information Center

    Hayman, H. J. G.

    1984-01-01

    Because class size often limits student opportunity to handle individual models, teachers use stereoscopic projections to demonstrate structural features. Describes three-dimensional pointers for use with different projection systems so teachers can indicate a particular atom or bond to entire classes, avoiding the perspective problems inherent in…

  18. Three-Dimensional Printing Surgical Applications

    PubMed Central

    Griffin, Michelle F.; Butler, Peter E.

    2015-01-01

    Introduction: Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. Objective: To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Methods: Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Discussion: Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Conclusion: Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice. PMID:26301002

  19. Three-dimensional implicit lambda methods

    NASA Technical Reports Server (NTRS)

    Napolitano, M.; Dadone, A.

    1983-01-01

    This paper derives the three dimensional lambda-formulation equations for a general orthogonal curvilinear coordinate system and provides various block-explicit and block-implicit methods for solving them, numerically. Three model problems, characterized by subsonic, supersonic and transonic flow conditions, are used to assess the reliability and compare the efficiency of the proposed methods.

  20. Real time programming environment for Windows

    SciTech Connect

    LaBelle, D.R.

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  1. Three-dimensional Spontaneous Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey

    2017-01-01

    Magnetic reconnection is best known from observations of the Sun where it causes solar flares. Observations estimate the reconnection rate as a small, but non-negligible fraction of the Alfvén speed, so-called fast reconnection. Until recently, the prevailing pictures of reconnection were either of resistivity or plasma microscopic effects, which was contradictory to the observed rates. Alternative pictures were either of reconnection due to the stochasticity of magnetic field lines in turbulence or the tearing instability of the thin current sheet. In this paper we simulate long-term three-dimensional nonlinear evolution of a thin, planar current sheet subject to a fast oblique tearing instability using direct numerical simulations of resistive-viscous magnetohydrodynamics. The late-time evolution resembles generic turbulence with a ‑5/3 power spectrum and scale-dependent anisotropy, so we conclude that the tearing-driven reconnection becomes turbulent reconnection. The turbulence is local in scale, so microscopic diffusivity should not affect large-scale quantities. This is confirmed by convergence of the reconnection rate toward ∼ 0.015{v}{{A}} with increasing Lundquist number. In this spontaneous reconnection, with mean field and without driving, the dissipation rate per unit area also converges to ∼ 0.006ρ {v}{{A}}3, and the dimensionless constants 0.015 and 0.006 are governed only by self-driven nonlinear dynamics of the sheared magnetic field. Remarkably, this also means that a thin current sheet has a universal fluid resistance depending only on its length to width ratio and to {v}{{A}}/c.

  2. Three-dimensional shallow water system: A relaxation approach

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Mohammadian, Abdolmajid; Infante Sedano, Julio Ángel; Kurganov, Alexander

    2017-03-01

    We study a three-dimensional shallow water system, which is obtained from the three-dimensional Navier-Stokes equations after Reynolds averaging and under the simplifying hydrostatic pressure assumption. Since the three-dimensional shallow water system is generically not hyperbolic, it cannot be numerically solved using hyperbolic shock capturing schemes. At the same time, existing simple finite-difference and finite-volume methods may fail in simulations of unsteady flows with sharp gradients, such as dam-break and flood flows. To overcome this limitation, we propose a novel numerical method, which is based on a relaxation approach utilized to "hyperbolize" the three-dimensional shallow water system. The extended relaxation system is hyperbolic and we develop a second-order semi-discrete central-upwind scheme for it. The proposed numerical method can preserve "lake at rest" steady states and positivity of water depth over irregular bottom topography. The accuracy, stability and robustness of the developed numerical method is verified on five numerical experiments.

  3. Positioning control system of three-dimensional wafer stage of lithography

    NASA Astrophysics Data System (ADS)

    Tian, Peng; Yan, Wei; Yang, Fan; Li, Fanxing; Hu, Song

    2016-10-01

    Three-dimensional wafer stage is an important component of lithography. It is required to high positioning precision and efficiency. The closed-loop positioning control system, that consists of five-phase step motor and grating scale, implements rapid and precision positioning control of the three-dimensional wafer stage. The MCU STC15W4K32S4, which is possession of six independent PWM output channels and the pulse width, period is adjustable, is used to control the three axes. The stepper motor driver and grating scale are subdivided according to the precision of lithography, and grating scale data is transmitted to the computer for display in real time via USB communication. According to the lithography material, mask parameter, incident light intensity, it's able to calculate the speed of Z axis, and then get the value of PWM period based on the mathematical formula of speed and pulse period, finally realize high precision control. Experiments show that the positioning control system of three-dimensional wafer stage can meet the requirement of lithography, the closed-loop system is high stability and precision, strong practicability.

  4. Technical aspects of a demonstration tape for three-dimensional sound displays

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1990-01-01

    This document was developed to accompany an audio cassette that demonstrates work in three-dimensional auditory displays, developed at the Ames Research Center Aerospace Human Factors Division. It provides a text version of the audio material, and covers the theoretical and technical issues of spatial auditory displays in greater depth than on the cassette. The technical procedures used in the production of the audio demonstration are documented, including the methods for simulating rotorcraft radio communication, synthesizing auditory icons, and using the Convolvotron, a real-time spatialization device.

  5. Three dimensional graphene scaffold for cardiac tissue engineering and in-situ electrical recording.

    PubMed

    Ameri, S K; Singh, P K; D'Angelo, R; Stoppel, W; Black, L; Sonkusale, S R

    2016-08-01

    In this paper, we present a three-dimensional graphene foam made of few layers of CVD grown graphene as a scaffold for growing cardiac cells and recording their electrical activity. Our results show that graphene foam not only provides an excellent extra-cellular matrix (ECM) for the culture of such electrogenic cells but also enables recording of its extracellular electrical activity in-situ. Recording is possible due to graphene's excellent conductivity. In this paper, we present our results on the fabrication of the graphene scaffold and initial studies on the culture of cardiac cell lines such as HL-1 and recording of their real-time electrical activity.

  6. A mass term for three-dimensional gauge fields

    NASA Astrophysics Data System (ADS)

    Schonfeld, Jonathan F.

    1981-07-01

    We propose the interaction Lξ≡ {1}/{2}ξɛ μνλTrA μ[∂ νA λ- {2}/{3}igA νA λ] as a mass term for gauge fields in three-dimensional spacetime. The Aμ belong to a Lie algebra (represented here in terms of matrices), ɛ μνλ is the completely antisymmetric symbol, the coupling g has units [ mass] {1}/{2}, and the parameter ξ has units [mass]. Lξ, related to the instanton current of four dimensions, is gauge invariant up to a total divergence and a topological density. (There is a supersymmetric extension with the same property.) When technical complications can be ignored, Lξ provides gauge particles with mass without breaking local symmetry and without introducing auxiliary fields. Perturbative analysis of models involving Lξ (collectively called "ξ theories") is complicated by gauge-non-invariant infrared singularities in gauge-field propagators. Nevertheless, quantized abelian ξ-theories (collectively called "ξ QED") do define gauge-invariant and infrared-finite scattering in perturbation theory. The consistency of non-abelian ξ theories is not yet established. The physics of non-relativistic charges ξ QED is, in its gross features, the same as that of the Aharanov-Bohm effect - the static field of a point charge is a non-trivial pure gauge at large distances. (We argue that in spite of the long-range fields, propagation of charges at large times is free; so that in ξ QED there should be no unexpected subtleties in the axiomatic definition of scattering amplitudes.) Compatibility of gauge invariance and mass in three dimensions is related to the existence of massive spinning representations of the Poincaré algebra with only one polarization per momentum. The massive spin-one photon of ξ QED is such a particle. (There is in fact a massive unitary representation of the three-dimensional Poincaré algebra with only one polarization for spin equal to any real number, integral multiple of one-half or otherwise. It is possible that particles

  7. Real-Time Tomography Mooring

    DTIC Science & Technology

    1992-06-01

    ma i t ain an accu racy of 20 jisec. far bet-ter than the I iiise accuracy (at b~est ) of’ thle tomograph11ic signal arrival t~ime deterininuat oion...surface buoy. The main supply consists of four stacks of ninety alkaline D-cells providing 360 amrlp hours of power at 12V to the IBC and associated...electronics. The second supply provides 90 amllp hours at 12V to the back-up PTT. The third supply is a rechargeable battery made up of lead-acid

  8. The ALMA Real Time Control System

    NASA Astrophysics Data System (ADS)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  9. Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three-dimensional collagen gel

    PubMed Central

    ALVES, Luciana Bastos; MARIGUELA, Viviane Casagrande; GRISI, Márcio Fernando de Moraes; de SOUZA, Sérgio Luiz Scaombatti; NOVAES, Arthur Belém; TABA, Mário; de OLIVEIRA, Paulo Tambasco; PALIOTO, Daniela Bazan

    2015-01-01

    Objective : To investigate the influence of a three-dimensional cell culture model on the expression of osteoblastic phenotype in human periodontal ligament fibroblast (hPDLF) cultures. Material and Methods : hPDLF were seeded on bi-dimensional (2D) and three-dimensional (3D) collagen type I (experimental groups) and and on a plastic coverslip (control) for up to 14 days. Cell viability and alkaline phosphatase (ALP) activity were performed. Also, cell morphology and immunolabeling for alkaline phosphatase (ALP) and osteopontin (OPN) were assessed by epifluorescence and confocal microscopy. The expression of osteogenic markers, including alkaline phosphatase, osteopontin, osteocalcin (OC), collagen I (COL I) and runt-related transcription factor 2 (RUNX2), were analyzed using real-time polymerase chain reaction (RT-PCR). Mineralized bone-like nodule formation was visualized by microscopy and calcium content was assessed quantitatively by alizarin red assay. Results : Experimental cultures produced an increase in cell proliferation. Immunolabeling for OPN and ALP in hPDLF were increased and ALP activity was inhibited by three-dimensional conditions. OPN and RUNX2 gene expression was significantly higher on 3D culture when compared with control surface. Moreover, ALP and COL I gene expression were significantly higher in three-dimensional collagen than in 2D cultures at 7 days. However, at 14 days, 3D cultures exhibited ALP and COL I gene expression significantly lower than the control, and the COL I gene expression was also significantly lower in 3D than in 2D cultures. Significant calcium mineralization was detected and quantified by alizarin red assay, and calcified nodule formation was not affected by tridimensionality. Conclusion : This study suggests that the 3D cultures are able to support hPDLF proliferation and favor the differentiation and mineralized matrix formation, which may be a potential periodontal regenerative therapy. PMID:26018313

  10. Real-time monitoring of landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Baum, Rex L.; Kean, Jason W.; Schulz, William H.; Highland, Lynn M.

    2012-01-01

    Landslides cause fatalities and property damage throughout the Nation. To reduce the impact from hazardous landslides, the U.S. Geological Survey develops and uses real-time and near-real-time landslide monitoring systems. Monitoring can detect when hillslopes are primed for sliding and can provide early indications of rapid, catastrophic movement. Continuous information from up-to-the-minute or real-time monitoring provides prompt notification of landslide activity, advances our understanding of landslide behavior, and enables more effective engineering and planning efforts.

  11. Achieving real-time performance in FIESTA

    NASA Technical Reports Server (NTRS)

    Wilkinson, William; Happell, Nadine; Miksell, Steve; Quillin, Robert; Carlisle, Candace

    1988-01-01

    The Fault Isolation Expert System for TDRSS Applications (FIESTA) is targeted for operation in a real-time online environment. Initial stages of the prototype development concentrated on acquisition and representation of the knowledge necessary to isolate faults in the TDRSS Network. Recent efforts focused on achieving real-time performance including: a discussion of the meaning of FIESTA real-time requirements, determination of performance levels (benchmarking) and techniques for optimization. Optimization techniques presented include redesign of critical relations, filtering of redundant data and optimization of patterns used in rules. Results are summarized.

  12. Real-time medical applications and telecommunications.

    PubMed

    Stravs, M

    1999-01-01

    Telecommunications play an important role in telemedicine. Many forms of telecommunication services based on different telecommunication technologies are developed for various needs. The paper deals with complex real-time applications which demand high telecommunication requirements. At the beginning, medical applications are categorised and real-time applications qualified as multimedia applications. Requirements for multimedia elements are listed separately. Later on, short introduction of related telecommunication protocols is given. Real-time medical applications can show their ability in case of guaranteed quality of services delivered by telecommunication network as it is explained in the end.

  13. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  14. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  15. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  16. Three-dimensional imaging modalities in endodontics

    PubMed Central

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  17. Bootstrapping the Three Dimensional Supersymmetric Ising Model.

    PubMed

    Bobev, Nikolay; El-Showk, Sheer; Mazáč, Dalimil; Paulos, Miguel F

    2015-07-31

    We implement the conformal bootstrap program for three dimensional conformal field theories with N=2 supersymmetry and find universal constraints on the spectrum of operator dimensions in these theories. By studying the bounds on the dimension of the first scalar appearing in the operator product expansion of a chiral and an antichiral primary, we find a kink at the expected location of the critical three dimensional N=2 Wess-Zumino model, which can be thought of as a supersymmetric analog of the critical Ising model. Focusing on this kink, we determine, to high accuracy, the low-lying spectrum of operator dimensions of the theory, as well as the stress-tensor two-point function. We find that the latter is in an excellent agreement with an exact computation.

  18. Three-dimensional effects on airfoils

    NASA Technical Reports Server (NTRS)

    Chevallier, J. P.

    1983-01-01

    The effects of boundary layer flows along the walls of wind tunnels were studied to validate the transfer of two dimensional calculations to three dimensional transonic flowfield calculations. Results from trials in various wind tunnels were examind to determine the effects of the wall boundary flow on the control surfaces of an airfoil. Models sliding along a groove in the wall of a channel at sub- and transonic speeds were examined, with the finding that with either nonuniformities in the groove, or even if the channel walls are uniform, the lateral boundary layer can cause variations in the central flow region or alter the onset of shock at the transition point. Models for the effects in both turbulence and in the absence of turbulence are formulated, and it is noted that the characteristics of individual wind tunnels must be studied to quantify any existing three dimensional effects.

  19. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  20. Three-dimensional imaging modalities in endodontics.

    PubMed

    Mao, Teresa; Neelakantan, Prasanna

    2014-09-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  1. Three-dimensional metallic boron nitride.

    PubMed

    Zhang, Shunhong; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2013-12-04

    Boron nitride (BN) and carbon are chemical analogues of each other and share similar structures such as one-dimensional nanotubes, two-dimensional nanosheets characterized by sp(2) bonding, and three-dimensional diamond structures characterized by sp(3) bonding. However, unlike carbon which can be metallic in one, two, and three dimensions, BN is an insulator, irrespective of its structure and dimensionality. On the basis of state-of-the-art theoretical calculations, we propose a tetragonal phase of BN which is both dynamically stable and metallic. Analysis of its band structure, density of states, and electron localization function confirms the origin of the metallic behavior to be due to the delocalized B 2p electrons. The metallicity exhibited in the studied three-dimensional BN structures can lead to materials beyond conventional ceramics as well as to materials with potential for applications in electronic devices.

  2. Three dimensional contact/impact methodology

    SciTech Connect

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.

  3. Three Dimensional Particle Tracking in Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Megson, Peter

    2016-11-01

    Superfluid helium is a macroscopic quantum state which exhibits exotic physical properties, such as flow without friction and ballistic heat transport. Superfluid flow is irrotational except about line-like topological phase defects with quantized circulation, known as quatized vortices. The presence of these vortices and their dynamics is the dominating factor of turbulence in superfluid flows. One commonly studied regime of superfluid turbulence is thermal counterflow, where a local heat flux drives the formation and growth of a tangle of vortices. This talk will present experimental studies of counterflow turbulence performed using a multi-camera three-dimensional imaging apparatus with micron-sized ice tracer particles as well as fluorescent nanoparticles. In particular, we will discuss the measurement of three-dimensional velocties and their autocorrelations. Additionally, we are developing new techniques for optical studies of bulk superfluid helium, with particular focus on characterizing tracer particles and particle dispersal mechanisms. Funding from NSF DMR-1407472.

  4. Three-dimensional adjustment of trilateration data

    NASA Technical Reports Server (NTRS)

    Sung, L.-Y.; Jackson, D. D.

    1985-01-01

    The three-dimensional locations of the monuments in the USGS Hollister trilateration network were adjusted to fit line length observations observed in 1977, using a Bayesian approach, and incorporating prior elevation estimates as data in the adjustment procedure. No significant discrepancies in the measured line lengths were found, but significant elevation adjustments (up to 1.85 m) were needed to fit the length data.

  5. Three-Dimensional Printing in Orthopedic Surgery.

    PubMed

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions.

  6. Mineralized Three-Dimensional Bone Constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2013-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  7. Mineralized three-dimensional bone constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2011-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  8. Three-dimensional ballistocardiography in weightlessness

    NASA Technical Reports Server (NTRS)

    Scano, A.

    1981-01-01

    An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.

  9. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.

    2006-09-26

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may e transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  10. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA

    2001-10-02

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  11. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.; York, Jeremy

    2009-06-30

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  12. Three-Dimensional Dispaly Of Document Set

    DOEpatents

    Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.

    2003-06-24

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  13. Three Dimensional Inverse Synthetic Aperture Radar Imaging

    DTIC Science & Technology

    1995-12-01

    to upsample the projection data in order to get sufficient image quality. Working within these memory constraints, three-dimensional images were... metallic film on the windscreen in order to block reflections from the cockpit. Photographs and scale drawings of the model are shown in Figures 11 and...as well as spurious responses in the final image. Theoretically, sufficient resolution should have been available without upsampling the original data

  14. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  15. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1995-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  16. Three-dimensional motor schema based navigation

    NASA Technical Reports Server (NTRS)

    Arkin, Ronald C.

    1989-01-01

    Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.

  17. Three-Dimensional (3D) Distribution

    DTIC Science & Technology

    2009-03-11

    witnessed by ongoing efforts in both Afghanistan and Iraq , must turn distribution challenges into opportunities by mastering Three-Dimensional (3D...sustainment. 5 Joint Logistics Functions •Supply •Services •Maintenance •Transportation • Health Service Support •General Engineering Joint Personnel...Maintenance •Transportation • Health Service Support •Explosive Ordinance Disposal •Human Resource Support •Legal Support •Religious Support •Financial

  18. Three-dimensional magnetic field annihilation

    NASA Astrophysics Data System (ADS)

    Jardine, M.; Allen, H. R.; Grundy, R. E.

    1993-11-01

    We present a family of three-dimensional nonlinear solutions for magnetic field annihilation in a current sheet, including the effects of resistivity and viscosity. The different members of the family are characterized by the imposed vorticity of the flow that brings the field lines together. Since in a three- dimensional flow the vorticity can be increased by the stretching of vortex lines (an effect that is absent in two dimensions), we find some striking differences to our previous two-dimensional analysis. In both the two-dimensional and three-dimensional analyses, above a certain critical imposed vorticity omegacrit, the flow breaks up into cells with current sheet is completely altered. In the two-dimensional analysis, omegacrit is a steeply increasing function of the viscous Reynolds number R, whereas in the three-dimensional case, it quickly asymptotes to only omegacrit = 2v0/L where v0 and L are the characteristic velocity and length scale of the flow, respectively. The width of the current sheet, which depends on the speed at which field lines are carried into it, also responds differently to an increase in R. In two dimensions, the current sheet narrows for all vorticities, but three dimensions, it narrows when the imposed vorticity is negative and widens when it is positive. Also we find that the current density within the current sheet varies as the nature of the flow is changed, rather than being constant as in the the two-dimensional case. Finally, we find that there is a minimum value of the plasma beta betamin below which the plasma pressure is negative. For the nonsheared (neutral current sheet) case, betamin increases rapidly with the magnetic Reynolds number Rm such that this type of annihilation is only possible for a high-beta plasma. For a sheared magnetic field, however, betamin is much lower, making this type of annihilation more relevant to the sonar corona.

  19. Three-Dimensional Shallow Water Acoustics

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Three-Dimensional Shallow Water Acoustics Dr. Ying...model to predict acoustic fluctuations and derive sound pressure sensitivity kernels due to 3-D sound speed perturbation in the water column. The...numerical method to be utilized is a tangent linear solution to predict acoustic fluctuations due to 3-D sound speed perturbation in the water column. This

  20. Multiparallel Three-Dimensional Optical Microscopy

    NASA Technical Reports Server (NTRS)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  1. Three-dimensional printing of the retina

    PubMed Central

    Lorber, Barbara; Hsiao, Wen-Kai; Martin, Keith R.

    2016-01-01

    Purpose of review Biological three-dimensional printing has received a lot of media attention over recent years with advances made in printing cellular structures, including skin and heart tissue for transplantation. Although limitations exist in creating functioning organs with this method, the hope has been raised that creating a functional retina to cure blindness is within reach. The present review provides an update on the advances made toward this goal. Recent findings It has recently been shown that two types of retinal cells, retinal ganglion cells and glial cells, can be successfully printed using a piezoelectric inkjet printer. Importantly, the cells remained viable and did not change certain phenotypic features as a result of the printing process. In addition, recent advances in the creation of complex and viable three-dimensional cellular structures have been made. Summary Some first promising steps toward the creation of a functional retina have been taken. It now needs to be investigated whether recent findings can be extended to other cells of the retina, including those derived from human tissue, and if a complex and viable retinal structure can be created through three-dimensional printing. PMID:27045545

  2. Reconfigurable, braced, three-dimensional DNA nanostructures.

    PubMed

    Goodman, Russell P; Heilemann, Mike; Doose, Sören; Erben, Christoph M; Kapanidis, Achillefs N; Turberfield, Andrew J

    2008-02-01

    DNA nanotechnology makes use of the exquisite self-recognition of DNA in order to build on a molecular scale. Although static structures may find applications in structural biology and computer science, many applications in nanomedicine and nanorobotics require the additional capacity for controlled three-dimensional movement. DNA architectures can span three dimensions and DNA devices are capable of movement, but active control of well-defined three-dimensional structures has not been achieved. We demonstrate the operation of reconfigurable DNA tetrahedra whose shapes change precisely and reversibly in response to specific molecular signals. Shape changes are confirmed by gel electrophoresis and by bulk and single-molecule Förster resonance energy transfer measurements. DNA tetrahedra are natural building blocks for three-dimensional construction; they may be synthesized rapidly with high yield of a single stereoisomer, and their triangulated architecture conveys structural stability. The introduction of shape-changing structural modules opens new avenues for the manipulation of matter on the nanometre scale.

  3. Three-Dimensional Audio Client Library

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2005-01-01

    The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.

  4. Three-dimensional deformation of orthodontic brackets

    PubMed Central

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  5. Three-Dimensional Imaging. Chapter 10

    NASA Technical Reports Server (NTRS)

    Kelso, R. M.; Delo, C.

    1999-01-01

    This chapter is concerned with three-dimensional imaging of fluid flows. Although relatively young, this field of research has already yielded an enormous range of techniques. These vary widely in cost and complexity, with the cheapest light sheet systems being within the budgets of most laboratories, and the most expensive Magnetic Resonance Imaging systems available to a select few. Taking the view that the most likely systems to be developed are those using light sheets, the authors will relate their knowledge and experience of such systems. Other systems will be described briefly and references provided. Flows are inherently three-dimensional in structure; even those generated around nominally 2-D surface geometry. It is becoming increasingly apparent to scientists and engineers that the three-dimensionalities, both large and small scale, are important in terms of overall flow structure and species, momentum, and energy transport. Furthermore, we are accustomed to seeing the world in three dimensions, so it is natural that we should wish to view, measure and interpret flows in three-dimensions. Unfortunately, 3-D images do not lend themselves to convenient presentation on the printed page, and this task is one of the challenges facing us.

  6. Volumetric Three-Dimensional Display Systems

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.; Schwarz, Adam J.

    2000-03-01

    A comprehensive study of approaches to three-dimensional visualization by volumetric display systems This groundbreaking volume provides an unbiased and in-depth discussion on a broad range of volumetric three-dimensional display systems. It examines the history, development, design, and future of these displays, and considers their potential for application to key areas in which visualization plays a major role. Drawing substantially on material that was previously unpublished or available only in patent form, the authors establish the first comprehensive technical and mathematical formalization of the field, and examine a number of different volumetric architectures. System level design strategies are presented, from which proposals for the next generation of high-definition predictable volumetric systems are developed. To ensure that researchers will benefit from work already completed, they provide: * Descriptions of several recent volumetric display systems prepared from material supplied by the teams that created them * An abstract volumetric display system design paradigm * An historical summary of 90 years of development in volumetric display system technology * An assessment of the strengths and weaknesses of many of the systems proposed to date * A unified presentation of the underlying principles of volumetric display systems * A comprehensive bibliography Beautifully supplemented with 17 color plates that illustrate volumetric images and prototype displays, Volumetric Three-Dimensional Display Systems is an indispensable resource for professionals in imaging systems development, scientific visualization, medical imaging, computer graphics, aerospace, military planning, and CAD/CAE.

  7. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  8. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics innervated tissues

    PubMed Central

    Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.

    2016-01-01

    Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could impact broadly fundamental scientific and clinical studies, yet realization lacks effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and sub-millisecond time-resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues, and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multi-site stimulation and mapping to manipulate actively the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics. PMID:27347837

  9. FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Dandekar, Omkar S.; Shekhar, Raj

    2005-02-01

    Three-dimensional ultrasonic imaging, especially the emerging real-time version of it, is particularly valuable in medical applications such as echocardiography, obstetrics and surgical navigation. A known problem with ultrasound images is their high level of speckle noise. Anisotropic diffusion filtering has been shown to be effective in enhancing the visual quality of 3D ultrasound images and as preprocessing prior to advanced image processing. However, due to its arithmetic complexity and the sheer size of 3D ultrasound images, it is not possible to perform online, real-time anisotropic diffusion filtering using standard software implementations. We present an FPGA-based architecture that allows performing anisotropic diffusion filtering of 3D images at acquisition rates, thus enabling the use of this filtering technique in real-time applications, such as visualization, registration and volume rendering.

  10. Advanced Visualization of Experimental Data in Real Time Using LiveView3D

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2006-01-01

    LiveView3D is a software application that imports and displays a variety of wind tunnel derived data in an interactive virtual environment in real time. LiveView3D combines the use of streaming video fed into a three-dimensional virtual representation of the test configuration with networked communications to the test facility Data Acquisition System (DAS). This unified approach to real time data visualization provides a unique opportunity to comprehend very large sets of diverse forms of data in a real time situation, as well as in post-test analysis. This paper describes how LiveView3D has been implemented to visualize diverse forms of aerodynamic data gathered during wind tunnel experiments, most notably at the NASA Langley Research Center Unitary Plan Wind Tunnel (UPWT). Planned future developments of the LiveView3D system are also addressed.

  11. Improved process control through real-time measurement of mineral content

    SciTech Connect

    Turler, Daniel; Karaca, Murat; Davis, William B.; Giauque, Robert D.; Hopkins, Deborah

    2001-11-02

    In a highly collaborative research and development project with mining and university partners, sensors and data-analysis tools are being developed for rock-mass characterization and real-time measurement of mineral content. Determining mineralogy prior to mucking in an open-pit mine is important for routing the material to the appropriate processing stream. A possible alternative to lab assay of dust and cuttings obtained from drill holes is continuous on-line sampling and real-time x-ray fluorescence (XRF) spectroscopy. Results presented demonstrate that statistical analyses combined with XRF data can be employed to identify minerals and, possibly, different rock types. The objective is to create a detailed three-dimensional mineralogical map in real time that would improve downstream process efficiency.

  12. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation

    NASA Technical Reports Server (NTRS)

    Quinn, Robert D.; Gong, Leslie

    1990-01-01

    A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.

  13. Real-time scheduling using minimum search

    NASA Technical Reports Server (NTRS)

    Tadepalli, Prasad; Joshi, Varad

    1992-01-01

    In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it sppears that reasonably good schedules can be produced with a relatively shallow search.

  14. The LAA real-time benchmarks

    SciTech Connect

    Block, R.K.; Krischer, W.; Lone, S.

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  15. Real-Time Ada Problem Study

    DTIC Science & Technology

    1989-03-24

    define this set of problems. The authors were chosen because of their proven expertise in real-time development with Ada. They could enrich the results of...for Real-Time Embedded Systems". LabTek Corporation, the author , had proven expertise in embedded system design utilizing Motorola MC680XO- based...processors. The second report is entitledSoftware Enineering Problems Using Ada in Computers Integral to Weapons Systems. Its author , Sonicraft, had

  16. Recent developments in three-dimensional numerical estuarine models

    USGS Publications Warehouse

    Cheng, Ralph T.; Smith, Peter E.; Casulli, Vincenzo

    1993-01-01

    For a fixed cost, computing power increases 5 to 10 times every five years. The readily available computing resources have inspired new modal formulations and innovative model applications. Significant progress has been advanced in three-dimensional numerical estuarine modeling within the past three or four years. This paper attempts to review and summarize properties of new 3-D estuarine hydrodynamic models. The emphasis of the review is placed on the formulation, numerical methods. The emphasis of the review is placed on the formulation, numerical methods, spatial and temporal resolution, computational efficiency, and turbulence closure of new models. Recent research has provided guidelines for the proper use of 3-D models involving in the σ-transformation. Other models resort to a fixed level discretization in the vertical. The semi-implicit treatment in time-stepping models appears to have gained momentum. Future research in three-dimensional numerical modeling remains to be on computational efficiency and turbulent closure.

  17. In-Situ Three-Dimensional Shape Rendering from Strain Values Obtained Through Optical Fiber Sensors

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    A method and system for rendering the shape of a multi-core optical fiber or multi-fiber bundle in three-dimensional space in real time based on measured fiber strain data. Three optical fiber cores arc arranged in parallel at 120.degree. intervals about a central axis. A series of longitudinally co-located strain sensor triplets, typically fiber Bragg gratings, are positioned along the length of each fiber at known intervals. A tunable laser interrogates the sensors to detect strain on the fiber cores. Software determines the strain magnitude (.DELTA.L/L) for each fiber at a given triplet, but then applies beam theory to calculate curvature, beading angle and torsion of the fiber bundle, and from there it determines the shape of the fiber in s Cartesian coordinate system by solving a series of ordinary differential equations expanded from the Frenet-Serrat equations. This approach eliminates the need for computationally time-intensive curve-tilting and allows the three-dimensional shape of the optical fiber assembly to be displayed in real-time.

  18. A regional adaptive and assimilative three-dimensional ionospheric model

    NASA Astrophysics Data System (ADS)

    Sabbagh, Dario; Scotto, Carlo; Sgrigna, Vittorio

    2016-03-01

    A regional adaptive and assimilative three-dimensional (3D) ionospheric model is proposed. It is able to ingest real-time data from different ionosondes, providing the ionospheric bottomside plasma frequency fp over the Italian area. The model is constructed on the basis of empirical values for a set of ionospheric parameters Pi[base] over the considered region, some of which have an assigned variation ΔPi. The values for the ionospheric parameters actually observed at a given time at a given site will thus be Pi = Pi[base] + ΔPi. These Pi values are used as input for an electron density N(h) profiler. The latter is derived from the Advanced Ionospheric Profiler (AIP), which is software used by Autoscala as part of the process of automatic inversion of ionogram traces. The 3D model ingests ionosonde data by minimizing the root-mean-square deviation between the observed and modeled values of fp(h) profiles obtained from the associated N(h) values at the points where observations are available. The ΔPi values are obtained from this minimization procedure. The 3D model is tested using data collected at the ionospheric stations of Rome (41.8N, 12.5E) and Gibilmanna (37.9N, 14.0E), and then comparing the results against data from the ionospheric station of San Vito dei Normanni (40.6N, 18.0E). The software developed is able to produce maps of the critical frequencies foF2 and foF1, and of fp at a fixed altitude, with transverse and longitudinal cross-sections of the bottomside ionosphere in a color scale. fp(h) and associated simulated ordinary ionogram traces can easily be produced for any geographic location within the Italian region. fp values within the volume in question can also be provided.

  19. Three-dimensional terahertz computed tomography of human bones.

    PubMed

    Bessou, Maryelle; Chassagne, Bruno; Caumes, Jean-Pascal; Pradère, Christophe; Maire, Philippe; Tondusson, Marc; Abraham, Emmanuel

    2012-10-01

    Three-dimensional terahertz computed tomography has been used to investigate dried human bones such as a lumbar vertebra, a coxal bone, and a skull, with a direct comparison with standard radiography. In spite of lower spatial resolution compared with x-ray, terahertz imaging clearly discerns a compact bone from a spongy one, with strong terahertz absorption as shown by additional terahertz time-domain transmission spectroscopy.

  20. Advanced three-dimensional dynamic analysis by boundary element methods

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Ahma, S.

    1985-01-01

    Advanced formulations of boundary element method for periodic, transient transform domain and transient time domain solution of three-dimensional solids have been implemented using a family of isoparametric boundary elements. The necessary numerical integration techniques as well as the various solution algorithms are described. The developed analysis has been incorporated in a fully general purpose computer program BEST3D which can handle up to 10 subregions. A number of numerical examples are presented to demonstrate the accuracy of the dynamic analyses.

  1. Augmented reality three-dimensional display with light field fusion.

    PubMed

    Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chengyu

    2016-05-30

    A video see-through augmented reality three-dimensional display method is presented. The system that is used for dense viewpoint augmented reality presentation fuses the light fields of the real scene and the virtual model naturally. Inherently benefiting from the rich information of the light field, depth sense and occlusion can be handled under no priori depth information of the real scene. A series of processes are proposed to optimize the augmented reality performance. Experimental results show that the reconstructed fused 3D light field on the autostereoscopic display is well presented. The virtual model is naturally integrated into the real scene with a consistence between binocular parallax and monocular depth cues.

  2. Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function.

    PubMed

    Qin, Qin; Huang, Alan J; Hua, Jun; Desmond, John E; Stevens, Robert D; van Zijl, Peter C M

    2014-02-01

    Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment.

  3. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  4. Real-time 3D vibration measurements in microstructures

    NASA Astrophysics Data System (ADS)

    Kowarsch, Robert; Ochs, Wanja; Giesen, Moritz; Dräbenstedt, Alexander; Winter, Marcus; Rembe, Christian

    2012-04-01

    The real-time measurement of three-dimensional vibrations is currently a major interest of academic research and industrial device characterization. The most common and practical solution used so far consists of three single-point laser-Doppler vibrometers which measure vibrations of a scattering surface from three directions. The resulting three velocity vectors are transformed into a Cartesian coordinate system. This technique does also work for microstructures but has some drawbacks: (1) The surface needs to scatter light, (2) the three laser beams can generate optical crosstalk if at least two laser frequencies match within the demodulation bandwidth, and (3) the laser beams have to be separated on the surface under test to minimize optical crosstalk such that reliable measurements are possible. We present a novel optical approach, based on the direction-dependent Doppler effect, which overcomes all the drawbacks of the current technology. We have realized a demonstrator with a measurement spot of < 3.5 μm diameter that does not suffer from optical crosstalk because only one laser beam impinges the specimen surface while the light is collected from three different directions.

  5. Three-dimensional carbon nanotube based photovoltaics

    NASA Astrophysics Data System (ADS)

    Flicker, Jack

    2011-12-01

    Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values

  6. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  7. Volume-scanning three-dimensional display that uses an inclined image plane.

    PubMed

    Miyazaki, D; Matsushita, K

    2001-07-10

    A novel three-dimensional display based on a volume-scanning method that uses an inclined light-source array and a mirror scanner is proposed. With this technique it is possible to display three-dimensional images that satisfy all factors for human stereoscopic vision. Three-dimensional images of 8 x 8 x 8 pixels, 40 mm x 40 mm x 40 mm in size, with a frame rate of 12.7 Hz were obtained as real images through an experimental system that uses a galvanometer mirror and a LED array.

  8. Three-dimensional natural convection in a narrow spherical shell

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Egbers, Christoph

    The convective motions in a shallow fluid layer between two concentric spheres in the presence of a constant axial force field have been studied numerically. The aspect ratio of the fluid layer to inner radius is beta =0.08, the Prandtl number Pra =37.5. A three-dimensional time-dependent numerical code is used to solve the governing equations in primitive variables. Convection in the sphe rical shell has then a highly three-dimensional nature. Characteristic flow patterns with a large number of banana-type cells, oriented in north-south direction and aligned in the azimuthal direction, are formed on the northern hemisphere, which grow gradually into the equatorial region accompanied by the generation of new cells as the Rayleigh number is increased. Various characteristics of these flows as well as their transient evolution are investigated for Rayleigh numbers up to 20 000.

  9. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues

    NASA Astrophysics Data System (ADS)

    Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.

    2016-09-01

    Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.

  10. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues.

    PubMed

    Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M

    2016-09-01

    Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.

  11. Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cho, Nam Hyun; Park, Kibeom; Kim, Jae-Young; Jung, Yeongri; Kim, Jeehyun

    2015-05-01

    We investigated the use of optical coherence tomography (OCT) to measure several materials immersed in optical adhesives. The effects of variations in the concentration, physical characteristics, and thickness of the materials were studied, and these parameters were found to significantly affect the OCT measurement. The materials were selected for their distinct spectral properties in the infrared region. To ensure reliability, we acquired images using a scanning electron microscope after performing the semiconductor production process. We verified the feasibility of the application of OCT for defect inspection and product verification of touch-screen panels.

  12. Three-dimensional stereo by photometric ratios

    SciTech Connect

    Wolff, L.B.; Angelopoulou, E.

    1994-11-01

    We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy.

  13. Three-Dimensional Display Of Radiation Therapy Planning

    NASA Astrophysics Data System (ADS)

    Cook, L. T.; Lee, K. R.; Cytacki, E. P.; Dwyer, S. J.

    1987-06-01

    Three-dimensional (3-D) treatment planning has been widely recognized as the ultimate method for radiation therapy for several decades. Recently, interest in developing 3-D treatment planning has been stimulated by the advent of computed tomography (CT), magnetic resonance imaging, and advanced computer technology. A 3-D treatment planning system requires an interactive computer system which is capable of performing the following functions: Demonstration of the tumor volume and normal anatomy in three dimensions, Calculation of the tumor volume, Definition of the target volume, Measurement of the distance and angles from outer surface reference points (e.g., external meatus) to specific anatomic points of interest (e.g., center of tumor), Projection of the spatial relationship between the therapy beam and normal anatomy, and calculation and display of dose distribution in three-dimensions. We have used a commercially available computer display system with a host microcomputer (M68000) to satisfy the above display and interaction requirements except for the calculation of 3-D dose distributions. The system has been applied to several cases which used CT as the imaging modality. A scanning protocol was established which called for contiguous 5mm thick slices from 2 cm above to 2 cm below the skin markers for the designated treatment field. Each patient was scanned in the treatment position, possibly using a fixation device. The outer skin contours, the tumor and adjacent contours were manually traced using a digitizing pen. The surfaces of the skin, the tumor, and normal anatomic structures were reconstructed in the display computer which then allowed a variety of interactions with the data, including beam definition and the real time positioning of the beam. After beam positions were established, the dose distribution within the treatment volume was computed, reconstructed, and then displayed along with the anatomic structures.

  14. Markerless three-dimensional tracking of masticatory movement.

    PubMed

    Tanaka, Yuto; Yamada, Takafumi; Maeda, Yoshinobu; Ikebe, Kazunori

    2016-02-08

    Conventional methods for measuring mandibular movement are expensive and require headgear and a marker attached to the mandibular incisors. These make assessment of normal chewing difficult. The aim of the present study was to test the validity of a markerless three-dimensional system for tracking masticatory movement by comparing it with a conventional method using an incisal marker. The study investigated 100 chewing cycles in 10 participants. The jaw tracking system consisted of a camera capable of recording depth and red, green, and blue data simultaneously, a laptop computer, and data analysis software. Depth data for each participant's face, tracked in real time, produced a computed 3D mask. The most prominent point of the soft tissue under the lip was defined as the chin point. A dental clasp cemented to the labial surface of the mandibular incisors was defined as the incisal point. The movement of these two measuring points was simultaneously recorded during mastication of chewing gum for 20s. To conduct the same analysis on each cycle from the two measuring points, all cycles were normalized by dividing by the corresponding vertical displacement because of their size variation. The findings showed excellent intramethod correlation for normalized horizontal displacement at every level (>0.9; except for 2 out of 19 levels; 0.896 and 0.898), and a lack of proportional bias. These findings suggest a correlation between the chewing cycles from two measuring points, the incisor and the chin, further suggesting the feasibility of a markerless system for tracking masticatory movement.

  15. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  16. Three-dimensional flow about penguin wings

    NASA Astrophysics Data System (ADS)

    Noca, Flavio; Sudki, Bassem; Lauria, Michel

    2012-11-01

    Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.

  17. Three-dimensional ultrasonic colloidal crystals

    NASA Astrophysics Data System (ADS)

    Caleap, Mihai; Drinkwater, Bruce W.

    2016-05-01

    Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications.

  18. Electrode With Porous Three-Dimensional Support

    DOEpatents

    Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier

    1999-07-27

    Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m

  19. High resolution three-dimensional doping profiler

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    1999-01-01

    A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.

  20. Real-Time Gauge/Gravity Duality

    SciTech Connect

    Skenderis, Kostas; Rees, Balt C. van

    2008-08-22

    We present a general prescription for the holographic computation of real-time n-point functions in nontrivial states. In quantum field theory such real-time computations involve a choice of a time contour in the complex time plane. The holographic prescription amounts to 'filling in' this contour with bulk solutions: real segments of the contour are filled in with Lorentzian solutions while imaginary segments are filled in with Riemannian solutions and appropriate matching conditions are imposed at the corners of the contour. We illustrate the general discussion by computing the 2-point function of a scalar operator using this prescription and by showing that this leads to an unambiguous answer with the correct i{epsilon} insertions.