Science.gov

Sample records for real-time caustics rendering

  1. Caustics mapping: an image-space technique for real-time caustics.

    PubMed

    Shah, Musawir A; Konttinen, Jaakko; Pattanaik, Sumanta

    2007-01-01

    In this paper, we present a simple and practical technique for real-time rendering of caustics from reflective and refractive objects. Our algorithm, conceptually similar to shadow mapping, consists of two main parts: creation of a caustic map texture, and utilization of the map to render caustics onto nonshiny surfaces. Our approach avoids performing any expensive geometric tests, such as ray-object intersection, and involves no precomputation; both of which are common features in previous work. The algorithm is well suited for the standard rasterization pipeline and runs entirely on the graphics hardware.

  2. Realistic real-time outdoor rendering in augmented reality.

    PubMed

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  3. Realistic Real-Time Outdoor Rendering in Augmented Reality

    PubMed Central

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480

  4. High-fidelity real-time maritime scene rendering

    NASA Astrophysics Data System (ADS)

    Shyu, Hawjye; Taczak, Thomas M.; Cox, Kevin; Gover, Robert; Maraviglia, Carlos; Cahill, Colin

    2011-06-01

    The ability to simulate authentic engagements using real-world hardware is an increasingly important tool. For rendering maritime environments, scene generators must be capable of rendering radiometrically accurate scenes with correct temporal and spatial characteristics. When the simulation is used as input to real-world hardware or human observers, the scene generator must operate in real-time. This paper introduces a novel, real-time scene generation capability for rendering radiometrically accurate scenes of backgrounds and targets in maritime environments. The new model is an optimized and parallelized version of the US Navy CRUISE_Missiles rendering engine. It was designed to accept environmental descriptions and engagement geometry data from external sources, render a scene, transform the radiometric scene using the electro-optical response functions of a sensor under test, and output the resulting signal to real-world hardware. This paper reviews components of the scene rendering algorithm, and details the modifications required to run this code in real-time. A description of the simulation architecture and interfaces to external hardware and models is presented. Performance assessments of the frame rate and radiometric accuracy of the new code are summarized. This work was completed in FY10 under Office of Secretary of Defense (OSD) Central Test and Evaluation Investment Program (CTEIP) funding and will undergo a validation process in FY11.

  5. Irregular Morphing for Real-Time Rendering of Large Terrain

    NASA Astrophysics Data System (ADS)

    Kalem, Sid'Ali; Kourgli, Assia

    2016-06-01

    The following paper proposes an alternative approach to the real-time adaptive triangulation problem. A new region-based multi-resolution approach for terrain rendering is described which improves on-the-fly the distribution of the density of triangles inside the tile after selecting appropriate Level-Of-Detail by an adaptive sampling. This proposed approach organizes the heightmap into a QuadTree of tiles that are processed independently. This technique combines the benefits of both Triangular Irregular Network approach and region-based multi-resolution approach by improving the distribution of the density of triangles inside the tile. Our technique morphs the initial regular grid of the tile to deformed grid in order to minimize approximation error. The proposed technique strives to combine large tile size and real-time processing while guaranteeing an upper bound on the screen space error. Thus, this approach adapts terrain rendering process to local surface characteristics and enables on-the-fly handling of large amount of terrain data. Morphing is based-on the multi-resolution wavelet analysis. The use of the D2WT multi-resolution analysis of the terrain height-map speeds up processing and permits to satisfy an interactive terrain rendering. Tests and experiments demonstrate that Haar B-Spline wavelet, well known for its properties of localization and its compact support, is suitable for fast and accurate redistribution. Such technique could be exploited in client-server architecture for supporting interactive high-quality remote visualization of very large terrain.

  6. Elasticity-based three dimensional ultrasound real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Matinfar, Mohammad; Ahmad, Omar; Rivaz, Hassan; Choti, Michael; Taylor, Russell H.

    2009-02-01

    Volumetric ultrasound imaging has not gained wide recognition, despite the availability of real-time 3D ultrasound scanners and the anticipated potential of 3D ultrasound imaging in diagnostic and interventional radiology. Their use, however, has been hindered by the lack of real-time visualization methods that are capable of producing high quality 3D rendering of the target/surface of interest. Volume rendering is a known visualization method, which can display clear surfaces out of the acquired volumetric data, and has an increasing number of applications utilizing CT and MRI data. The key element of any volume rendering pipeline is the ability to classify the target/surface of interest by setting an appropriate opacity function. Practical and successful real-time 3D ultrasound volume rendering can be achieved in Obstetrics and Angio applications where setting these opacity functions can be done rapidly, and reliably. Unfortunately, 3D ultrasound volume rendering of soft tissues is a challenging task due to the presence of significant amount of noise and speckle. Recently, several research groups have shown the feasibility of producing 3D elasticity volume from two consecutive 3D ultrasound scans. This report describes a novel volume rendering pipeline utilizing elasticity information. The basic idea is to compute B-mode voxel opacity from the rapidly calculated strain values, which can also be mixed with conventional gradient based opacity function. We have implemented the volume renderer using GPU unit, which gives an update rate of 40 volume/sec.

  7. Real-time volume rendering of digital medical images on an iOS device

    NASA Astrophysics Data System (ADS)

    Noon, Christian; Holub, Joseph; Winer, Eliot

    2013-03-01

    Performing high quality 3D visualizations on mobile devices, while tantalizingly close in many areas, is still a quite difficult task. This is especially true for 3D volume rendering of digital medical images. Allowing this would empower medical personnel a powerful tool to diagnose and treat patients and train the next generation of physicians. This research focuses on performing real time volume rendering of digital medical images on iOS devices using custom developed GPU shaders for orthogonal texture slicing. An interactive volume renderer was designed and developed with several new features including dynamic modification of render resolutions, an incremental render loop, a shader-based clipping algorithm to support OpenGL ES 2.0, and an internal backface culling algorithm for properly sorting rendered geometry with alpha blending. The application was developed using several application programming interfaces (APIs) such as OpenSceneGraph (OSG) as the primary graphics renderer coupled with iOS Cocoa Touch for user interaction, and DCMTK for DICOM I/O. The developed application rendered volume datasets over 450 slices up to 50-60 frames per second, depending on the specific model of the iOS device. All rendering is done locally on the device so no Internet connection is required.

  8. Real-time volume rendering of 4D image using 3D texture mapping

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il

    2001-05-01

    Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.

  9. A proxy method for real-time 3-DOF haptic rendering of streaming point cloud data.

    PubMed

    Rydén, Fredrik; Chizeck, Howard Jay

    2013-01-01

    This paper presents a new haptic rendering method for streaming point cloud data. It provides haptic rendering of moving physical objects using data obtained from RGB-D cameras. Thus, real-time haptic interaction with moving objects can be achieved using noncontact sensors. This method extends "virtual coupling"-based proxy methods in a way that does not require preprocessing of points and allows for spatial point cloud discontinuities. The key ideas of the algorithm are iterative motion of the proxy with respect to the points, and the use of a variable proxy step size that results in better accuracy for short proxy movements and faster convergence for longer movements. This method provides highly accurate haptic interaction for geometries in which the proxy can physically fit. Another advantage is a significant reduction in the risk of "pop through" during haptic interaction with dynamic point clouds, even in the presence of noise. This haptic rendering method is computationally efficient; it can run in real time on available personal computers without the need for downsampling of point clouds from commercially available depth cameras.

  10. Real-time IR/EO scene generation utilizing an optimized scene rendering subsystem

    NASA Astrophysics Data System (ADS)

    Makar, Robert J.; Howe, Daniel B.

    2000-07-01

    This paper describes advances in the development IR/EO scene generation using the second generation Comptek Amherst Systems' Scene Rendering Subsystem (SRS). The SRS is a graphics rendering engine designed specifically to support real-time hardware-in-the-loop testing of IR/EO sensor systems. The SRS serves as an alternative to commercial rendering systems, such as the Silicon GraphicsR InfiniteReality, when IR/EO sensor fidelity requirements surpass the limits designed into COTS hardware that is optimized for visual rendering. The paper will discuss the need for such a system and will present examples of the kinds of sensor tests that can take advantage of the high radiometric fidelity provided by the SRS. Examples of situations where the high spatial fidelity of the InfiniteReality is more appropriate will also be presented. The paper will also review models and algorithms used in IR/EO scene rendering and show how the design of the SRS was driven by the requirements of these models and algorithms. This work has been done in support of the Infrared Sensor Stimulator system (IRSS) which will be used for installed system testing of avionics electronic combat systems. The IRSS will provide a high frame rate, real-time, reactive, hardware-in-the-loop test capability for the stimulation of current and future infrared and ultraviolet based sensor systems. The IRSS program is a joint development effort under the leadership of the Naval Air Warfare Center -- Aircraft Division, Air Combat Environment Test and Evaluation Facility (ACETEF) with close coordination and technical support from the Electronic Combat Integrated Test (ECIT) Program Office. The system will be used for testing of multiple sensor avionics systems to support the Development Test & Evaluation and Operational Test & Evaluation objectives of the U.S. Navy and Air Force.

  11. High-power graphic computers for visual simulation: a real-time--rendering revolution

    NASA Technical Reports Server (NTRS)

    Kaiser, M. K.

    1996-01-01

    Advances in high-end graphics computers in the past decade have made it possible to render visual scenes of incredible complexity and realism in real time. These new capabilities make it possible to manipulate and investigate the interactions of observers with their visual world in ways once only dreamed of. This paper reviews how these developments have affected two preexisting domains of behavioral research (flight simulation and motion perception) and have created a new domain (virtual environment research) which provides tools and challenges for the perceptual psychologist. Finally, the current limitations of these technologies are considered, with an eye toward how perceptual psychologist might shape future developments.

  12. Fast interactive real-time volume rendering of real-time three-dimensional echocardiography: an implementation for low-end computers

    NASA Technical Reports Server (NTRS)

    Saracino, G.; Greenberg, N. L.; Shiota, T.; Corsi, C.; Lamberti, C.; Thomas, J. D.

    2002-01-01

    Real-time three-dimensional echocardiography (RT3DE) is an innovative cardiac imaging modality. However, partly due to lack of user-friendly software, RT3DE has not been widely accepted as a clinical tool. The object of this study was to develop and implement a fast and interactive volume renderer of RT3DE datasets designed for a clinical environment where speed and simplicity are not secondary to accuracy. Thirty-six patients (20 regurgitation, 8 normal, 8 cardiomyopathy) were imaged using RT3DE. Using our newly developed software, all 3D data sets were rendered in real-time throughout the cardiac cycle and assessment of cardiac function and pathology was performed for each case. The real-time interactive volume visualization system is user friendly and instantly provides consistent and reliable 3D images without expensive workstations or dedicated hardware. We believe that this novel tool can be used clinically for dynamic visualization of cardiac anatomy.

  13. Real-time rendering of drug injection and interactive simulation of vessel deformation using GPU.

    PubMed

    Wu, Jichuan; Chui, Chee Kong; Binh, P Nguyen; Teo, Chee Leong

    2013-01-01

    Developing patient specific model for the simulation of chemotherapy drug injection is important in medical application. This paper proposed a two-phase fluidic method to simulate chemotherapy drug injection and an improved lumped element method to simulate deformation of vessel at real-time by using GPU for general computing. Firstly, a three-dimensional (3-D) model of hepatic vessels is reconstructed from clinical CT-images using multi-layer method. A 3-D thinning algorithm based on Valence Driven Spatial Median (VDSM) is applied to generate unit-width skeleton of the vessel tree. The two-phase flow simulation of drug injection is based on Hagen-Poiseuille model by introducing a friction factor using bubbly flow Reynolds number. The improved lumped element method achieves good simulation realism at high computational speed to simulate deformable object. Real-time rendering and interaction of vessel deformation, self collision, and surface tearing has been realized and demonstrated in a virtual experiment.

  14. Substituting depth for intensity and real-time phosphene rendering: visual navigation under low vision conditions.

    PubMed

    Lieby, Paulette; Barnes, Nick; McCarthy, Chris; Liu, Nianjun; Dennett, Hugh; Walker, Janine G; Botea, Viorica; Scott, Adele F

    2011-01-01

    Navigation and way finding including obstacle avoidance is difficult when visual perception is limited to low resolution, such as is currently available on a bionic eye. Depth visualisation may be a suitable alternative. Such an approach can be evaluated using simulated phosphenes with a wearable mobile virtual reality kit. In this paper, we present two novel approaches: (i) an implementation of depth visualisation; and, (ii) novel methods for rapid rendering of simulated phosphenes with an empirical comparison between them. Our new software-based method for simulated phosphene rendering shows large speed improvements, facilitating the display in real-time of a large number of phosphenes with size and brightness dependent on pixel intensity, and with customised output dynamic range. Further, we describe the protocol, navigation environment and system used for visual navigation experiments to evaluate the use of depth on low resolution simulations of a bionic eye perceptual experience. Results for these experiments show that a depth-based representation is effective for navigation, and shows significant advantages over intensity-based approaches when overhanging obstacles are present. The results of the experiments were reported in [1], [2].

  15. Real-time rendering method and performance evaluation of composable 3D lenses for interactive VR.

    PubMed

    Borst, Christoph W; Tiesel, Jan-Phillip; Best, Christopher M

    2010-01-01

    We present and evaluate a new approach for real-time rendering of composable 3D lenses for polygonal scenes. Such lenses, usually called "volumetric lenses," are an extension of 2D Magic Lenses to 3D volumes in which effects are applied to scene elements. Although the composition of 2D lenses is well known, 3D composition was long considered infeasible due to both geometric and semantic complexity. Nonetheless, for a scene with multiple interactive 3D lenses, the problem of intersecting lenses must be considered. Intersecting 3D lenses in meaningful ways supports new interfaces such as hierarchical 3D windows, 3D lenses for managing and composing visualization options, or interactive shader development by direct manipulation of lenses providing component effects. Our 3D volumetric lens approach differs from other approaches and is one of the first to address efficient composition of multiple lenses. It is well-suited to head-tracked VR environments because it requires no view-dependent generation of major data structures, allowing caching and reuse of full or partial results. A Composite Shader Factory module composes shader programs for rendering composite visual styles and geometry of intersection regions. Geometry is handled by Boolean combinations of region tests in fragment shaders, which allows both convex and nonconvex CSG volumes for lens shape. Efficiency is further addressed by a Region Analyzer module and by broad-phase culling. Finally, we consider the handling of order effects for composed 3D lenses.

  16. Real-time volume rendering visualization of dual-modality PET/CT images with interactive fuzzy thresholding segmentation.

    PubMed

    Kim, Jinman; Cai, Weidong; Eberl, Stefan; Feng, Dagan

    2007-03-01

    Three-dimensional (3-D) visualization has become an essential part for imaging applications, including image-guided surgery, radiotherapy planning, and computer-aided diagnosis. In the visualization of dual-modality positron emission tomography and computed tomography (PET/CT), 3-D volume rendering is often limited to rendering of a single image volume and by high computational demand. Furthermore, incorporation of segmentation in volume rendering is usually restricted to visualizing the presegmented volumes of interest. In this paper, we investigated the integration of interactive segmentation into real-time volume rendering of dual-modality PET/CT images. We present and validate a fuzzy thresholding segmentation technique based on fuzzy cluster analysis, which allows interactive and real-time optimization of the segmentation results. This technique is then incorporated into a real-time multi-volume rendering of PET/CT images. Our method allows a real-time fusion and interchangeability of segmentation volume with PET or CT volumes, as well as the usual fusion of PET/CT volumes. Volume manipulations such as window level adjustments and lookup table can be applied to individual volumes, which are then fused together in real time as adjustments are made. We demonstrate the benefit of our method in integrating segmentation with volume rendering in its application to PET/CT images. Responsive frame rates are achieved by utilizing a texture-based volume rendering algorithm and the rapid transfer capability of the high-memory bandwidth available in low-cost graphic hardware.

  17. A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model

    NASA Astrophysics Data System (ADS)

    Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge

    2016-12-01

    A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.

  18. Two-Dimensional Beam Tracing from Visibility Diagrams for Real-Time Acoustic Rendering

    NASA Astrophysics Data System (ADS)

    Antonacci (Eurasip Member), F.; Sarti (Eurasip Member), A.; Tubaro (Eurasip Member), S.

    2010-12-01

    We present an extension of the fast beam-tracing method presented in the work of Antonacci et al. (2008) for the simulation of acoustic propagation in reverberant environments that accounts for diffraction and diffusion. More specifically, we show how visibility maps are suitable for modeling propagation phenomena more complex than specular reflections. We also show how the beam-tree lookup for path tracing can be entirely performed on visibility maps as well. We then contextualize such method to the two different cases of channel (point-to-point) rendering using a headset, and the rendering of a wave field based on arrays of speakers. Finally, we provide some experimental results and comparisons with real data to show the effectiveness and the accuracy of the approach in simulating the soundfield in an environment.

  19. Real-time volume rendering of four-dimensional images based on three-dimensional texture mapping.

    PubMed

    Hwang, J; Kim, J S; Kim, J S; Kim, I Y; Kim, S I

    2001-06-01

    A four-dimensional (4-D) image consists of three-dimensional (3-D) volume data that varies with time. It is used to express a deforming or moving object in virtual surgery or 4-D ultrasound. It is difficult to obtain 4-D images by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering process and the pre-processing stage necessary whenever the volume data are changed. Even when 3-D texture mapping is used, repeated volume loading is time-consuming in 4-D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real-time rendering based on 3-D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one that was already loaded in memory. If the brick passes the test, it is defined as 3-D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Using continuous deforming, 50 volumes are rendered in interactive time with SGI ONYX. Realtime volume rendering based on 3-D texture mapping is currently available for personal computers.

  20. New impressive capabilities of SE-workbench for EO/IR real-time rendering of animated scenarios including flares

    NASA Astrophysics Data System (ADS)

    Le Goff, Alain; Cathala, Thierry; Latger, Jean

    2015-10-01

    To provide technical assessments of EO/IR flares and self-protection systems for aircraft, DGA Information superiority resorts to synthetic image generation to model the operational battlefield of an aircraft, as viewed by EO/IR threats. For this purpose, it completed the SE-Workbench suite from OKTAL-SE with functionalities to predict a realistic aircraft IR signature and is yet integrating the real-time EO/IR rendering engine of SE-Workbench called SE-FAST-IR. This engine is a set of physics-based software and libraries that allows preparing and visualizing a 3D scene for the EO/IR domain. It takes advantage of recent advances in GPU computing techniques. The recent past evolutions that have been performed concern mainly the realistic and physical rendering of reflections, the rendering of both radiative and thermal shadows, the use of procedural techniques for the managing and the rendering of very large terrains, the implementation of Image- Based Rendering for dynamic interpolation of plume static signatures and lastly for aircraft the dynamic interpolation of thermal states. The next step is the representation of the spectral, directional, spatial and temporal signature of flares by Lacroix Defense using OKTAL-SE technology. This representation is prepared from experimental data acquired during windblast tests and high speed track tests. It is based on particle system mechanisms to model the different components of a flare. The validation of a flare model will comprise a simulation of real trials and a comparison of simulation outputs to experimental results concerning the flare signature and above all the behavior of the stimulated threat.

  1. Real-time synchronized rendering of multi-view video for 8Kx4K three-dimensional display with spliced four liquid crystal panels

    NASA Astrophysics Data System (ADS)

    Cui, Huilong; Sang, Xinzhu; Xing, Shujun; Ning, Jiwei; Yan, Binbin; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    A high speed synchronized rendering of multi-view video for 8K×4K multi-LCD-spliced three-dimensional (3D) display system based on CUDA is demonstrated. Because the conventional image processing calculation method is no longer applicable to this 3D display system, the CUDA technology is used for 3D image processing to address the problem of low efficiency.The 8K×4K screen is composed of four LCD screens, and accurate segmentation of the scene is carried out to ensure the correct display of 3D contents and a set of controlling and the host software are optimally implemented to make all of the connected processors render 3D videos simultaneously. The system which is based on the master-slave synchronization communication mode and DIBR-CUDA accelerated algorithm is used to realize the high resolution, high frame rate, large size, and wide view angle video rendering for the real-time 3D display. Experimental result shows a stable frame-rate at 30 frame-per-second and the friendly interactive interface can be achieved.

  2. Real Time Network Assessment

    DTIC Science & Technology

    2013-07-12

    Demonstrate a simple system Conduct a feasibility assessment of data storage, maintenance, and integration requirements Test a web-based data feed...Real Time Network Assessment Prototype We demonstrated the feasibility of linking near real time network analytics to mashups and web- based...combining similar concepts into single node) Stemmers Thesauri application Network position Statistical common patterns Pronoun identification

  3. Real-time radiography

    SciTech Connect

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  4. Real time obscuration monitoring

    NASA Astrophysics Data System (ADS)

    Agricola, Koos

    2016-09-01

    Recently a real time particle deposition monitoring system is developed. After discussions with optical system engineers a new feature has been added. This enables the real time monitoring of obscuration of exposed optical components by counting the deposited particles and sizing the obscuration area of each particle. This way the Particle Obscuration Rate (POR) can be determined. The POR can be used to determine the risk of product contamination during exposure. The particle size distribution gives information on the type of potential particle sources. The deposition moments will indicate when these sources were present.

  5. Real-time cosmology

    NASA Astrophysics Data System (ADS)

    Quercellini, Claudia; Amendola, Luca; Balbi, Amedeo; Cabella, Paolo; Quartin, Miguel

    2012-12-01

    In recent years, improved astrometric and spectroscopic techniques have opened the possibility of measuring the temporal change of radial and transverse position of sources in the sky over relatively short time intervals. This has made at least conceivable to establish a novel research domain, which we dub “real-time cosmology”. We review for the first time most of the work already done in this field, analysing the theoretical framework as well as some foreseeable observational strategies and their capability to constrain models. We first focus on real-time measurements of the overall redshift drift and angular separation shift in distant sources, which allows the observer to trace the background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper accelerations in clustered systems, and therefore their gravitational potential. The last two sections are devoted to the future change of the cosmic microwave background on “short” time scales, as well as to the temporal shift of the temperature anisotropy power spectrum and maps. We conclude revisiting in this context the usefulness of upcoming experiments (like CODEX and Gaia) for real-time observations.

  6. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  7. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects.

  8. Time-Critical Volume Rendering

    NASA Technical Reports Server (NTRS)

    Kaufman, Arie

    1998-01-01

    For the past twelve months, we have conducted and completed a joint research entitled "Time- Critical Volume Rendering" with NASA Ames. As expected, High performance volume rendering algorithms have been developed by exploring some new faster rendering techniques, including object presence acceleration, parallel processing, and hierarchical level-of-detail representation. Using our new techniques, initial experiments have achieved real-time rendering rates of more than 10 frames per second of various 3D data sets with highest resolution. A couple of joint papers and technique reports as well as an interactive real-time demo have been compiled as the result of this project.

  9. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  10. Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT

    PubMed Central

    Viehland, Christian; Keller, Brenton; Carrasco-Zevallos, Oscar M.; Nankivil, Derek; Shen, Liangbo; Mangalesh, Shwetha; Viet, Du Tran; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.

    2016-01-01

    Current-generation software for rendering volumetric OCT data sets based on ray casting results in volume visualizations with indistinct tissue features and sub-optimal depth perception. Recent developments in hand-held and microscope-integrated intrasurgical OCT designed for real-time volumetric imaging motivate development of rendering algorithms which are both visually appealing and fast enough to support real time rendering, potentially from multiple viewpoints for stereoscopic visualization. We report on an enhanced, real time, integrated volumetric rendering pipeline which incorporates high performance volumetric median and Gaussian filtering, boundary and feature enhancement, depth encoding, and lighting into a ray casting volume rendering model. We demonstrate this improved model implemented on graphics processing unit (GPU) hardware for real-time volumetric rendering of OCT data during tissue phantom and live human surgical imaging. We show that this rendering produces enhanced 3D visualizations of pathology and intraoperative maneuvers compared to standard ray casting. PMID:27231623

  11. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2006-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  12. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2007-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  13. Real Time Data System (RTDS)

    NASA Technical Reports Server (NTRS)

    Muratore, John F.

    1991-01-01

    Lessons learned from operational real time expert systems are examined. The basic system architecture is discussed. An expert system is any software that performs tasks to a standard that would normally require a human expert. An expert system implies knowledge contained in data rather than code. And an expert system implies the use of heuristics as well as algorithms. The 15 top lessons learned by the operation of a real time data system are presented.

  14. Real-time vision systems

    SciTech Connect

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  15. Caustics for spherical waves

    NASA Astrophysics Data System (ADS)

    de Rham, Claudia; Motohashi, Hayato

    2017-03-01

    We study the development of caustics in shift-symmetric scalar field theories by focusing on simple waves with an S O (p )-symmetry in an arbitrary number of space dimensions. We show that the pure Galileon, the DBI-Galileon, and the extreme-relativistic Galileon naturally emerge as the unique set of caustic-free theories, highlighting a link between the caustic-free condition for simple S O (p )-waves and the existence of either a global Galilean symmetry or a global (extreme-)relativistic Galilean symmetry.

  16. HEVC real-time decoding

    NASA Astrophysics Data System (ADS)

    Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas

    2013-09-01

    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.

  17. Dependable Real-Time Systems

    DTIC Science & Technology

    1991-09-30

    and F. Wang, "On thle Competitiveness of On-Line Real-Time Task Sc~eduling," to appear. Proc. Icai - Time Systemns Symposium, Dec 1991. 6. Biyabaiii, S...Stankovic, and K. Ramrnamritham, "System Support for lRal-’Vi111C Al: A Spring Project Perspective," Workshop on Real-Time .A1, ICAI ., August 198!). 29...Informatics, Computer S,,iety ,f India , t,, aptpear. 41 . Shilh, C. and J. A. Stankovic, "Distributed Deadlock Detection in Ada IRuntinv En vi- ronments," TRI

  18. Real Time Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  19. Real-Time Engineering Simulation of Lunar Excavation

    SciTech Connect

    Bruce Damer, George Tompkins, Sheldon Freid, Dave Rasmussen, Peter Newman, Brad Blair

    2007-06-12

    DigitalSpace Corporation has been building an open source real-time three-dimensional (3-D) collaborative design engineering and training platform called Digital Spaces (DSS) in support of the Exploration Vision of the National Aeronautics and Space Administration (NASA). Real-time 3-D simulation has reached a level of maturity where it is capable of supporting engineering design and operations using off-the-shelf game chipsets and open source physics and rendering technologies. This paper will illustrate a state-of-the-art real-time engineering simulation utilizing DSS in support of NASA lunar excavation studies. During the project DigitalSpace building driveable 3-D models of lunar excavators and South Polar terrain, and added a soil mechanics physics model as well as a random failure generator to the repertoire of standard mobility platform physics in prior use for real-time engineering and operational analysis at NASA.

  20. Real-time animation of complex hairstyles.

    PubMed

    Volino, Pascal; Magnenat-Thalmann, Nadia

    2006-01-01

    True real-time animation of complex hairstyles on animated characters is the goal of this work, and the challenge is to build a mechanical model of the hairstyle which is sufficiently fast for real-time performance while preserving the particular behavior of the hair medium and maintaining sufficient versatility for simulating any kind of complex hairstyles. Rather than building a complex mechanical model directly related to the structure of the hair strands, we take advantage of a volume free-form deformation scheme. We detail the construction of an efficient lattice mechanical deformation model which represents the volume behavior of the hair strands. The lattice is deformed as a particle system using state-of-the-art numerical methods, and animates the hairs using quadratic B-Spline interpolation. The hairstyle reacts to the body skin through collisions with a metaball-based approximation. The model is highly scalable and allows hairstyles of any complexity to be simulated in any rendering context with the appropriate trade off between accuracy and computation speed, fitting the need of Level-of-Detail optimization schemes.

  1. Radiation damping in real time.

    PubMed

    Mendes, A C; Takakura, F I

    2001-11-01

    We study the nonequilibrium dynamics of a charge interacting with its own radiation, which originates the radiation damping. The real-time equation of motion for the charge and the associated Langevin equation is found in classical limit. The equation of motion for the charge allows one to obtain the frequency-dependent coefficient of friction. In the lowest order we find that although the coefficient of static friction vanishes, there is dynamical dissipation represented by a non-Markovian dissipative kernel.

  2. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  3. Real Time Data Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Silberberg, George G.

    1983-03-01

    By the early 1970s, classical photo-optical range instrumentation technology (as a means of gathering weapons' system performance data) had become a costly and inefficient process. Film costs were increasing due to soaring silver prices. Time required to process, read, and produce optical data was becoming unacceptable as a means of supporting weapon system development programs. NWC investigated the feasibility of utilizing Closed Circuit Television (CCTV) technology as an alternative solution for providing optical data. In 1978 a program entitled Metric Video (measurements from video images) was formulated at the Naval Weapons Center, China Lake, California. The purpose of this program was to provide timely data, to reduce the number of operating personnel, and to lower data acquisition costs. Some of the task elements for this program included a near real-time vector miss-distance system, a weapons scoring system, a velocity measuring system, a time-space position system, and a system to replace film cameras for gathering real-time engineering sequential data. These task elements and the development of special hardware and techniques to achieve real-time data will be discussed briefly in this paper.

  4. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  5. Real-time pulmonary graphics.

    PubMed

    Mammel, Mark C; Donn, Steven M

    2015-06-01

    Real-time pulmonary graphics now enable clinicians to view lung mechanics and patient-ventilator interactions on a breath-to-breath basis. Displays of pressure, volume, and flow waveforms, pressure-volume and flow-volume loops, and trend screens enable clinicians to customize ventilator settings based on the underlying pathophysiology and responses of the individual patient. This article reviews the basic concepts of pulmonary graphics and demonstrates how they contribute to our understanding of respiratory physiology and the management of neonatal respiratory failure.

  6. Real-time flutter analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  7. Real-time streamflow conditions

    USGS Publications Warehouse

    Graczyk, David J.; Gebert, Warren A.

    1996-01-01

    Would you like to know streamflow conditions before you go fishing in Wisconsin or in more distant locations? Real-time streamflow data throughout Wisconsin and the United States are available on the Internet from the U.S. Geological Survey. You can see if the stream you are interested in fishing is high due to recent rain or low because of an extended dry spell. Flow conditions at more than 100 stream-gaging stations located throughout Wisconsin can be viewed by accessing the Wisconsin District Home Page at: http://wwwdwimdn.er.usgs.gov

  8. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  9. Interactive real time flow simulations

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, I.; Tiwari, S. N.

    1990-01-01

    An interactive real time flow simulation technique is developed for an unsteady channel flow. A finite-volume algorithm in conjunction with a Runge-Kutta time stepping scheme was developed for two-dimensional Euler equations. A global time step was used to accelerate convergence of steady-state calculations. A raster image generation routine was developed for high speed image transmission which allows the user to have direct interaction with the solution development. In addition to theory and results, the hardware and software requirements are discussed.

  10. Real-time analysis keratometer

    NASA Technical Reports Server (NTRS)

    Adachi, Iwao P. (Inventor); Adachi, Yoshifumi (Inventor); Frazer, Robert E. (Inventor)

    1987-01-01

    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis.

  11. Real time analysis under EDS

    NASA Astrophysics Data System (ADS)

    Schneberk, D.

    1985-07-01

    The analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL) is described. Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis.

  12. Real time analysis under EDS

    SciTech Connect

    Schneberk, D.

    1985-07-01

    This paper describes the analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL). Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis. Each of these components are described with an emphasis upon how each contributes to overall system capability. 3 figs.

  13. Real-time feedback from iterative electronic structure calculations.

    PubMed

    Vaucher, Alain C; Haag, Moritz P; Reiher, Markus

    2016-04-05

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semiempirical methods as the data source and apply the surrogate-potential mediator to deliver reliable real-time feedback.

  14. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  15. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  16. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  17. Clinical virology in real time.

    PubMed

    Niesters, Hubert G M

    2002-12-01

    The ability to detect nucleic acids has had and still has a major impact on diagnostics in clinical virology. Both quantitative and qualitative techniques, whether signal or target amplification based systems, are currently used routinely in most if not all virology laboratories. Technological improvements, from automated sample isolation to real time amplification technology, have given the ability to develop and introduce systems for most viruses of clinical interest, and to obtain clinical relevant information needed for optimal antiviral treatment options. Both polymerase chain reaction (PCR) and nucleic acid sequence-based amplification (NASBA) can currently be used together with real time detection to generate results in a short turn-around time and to determine whether variants relevant for antiviral resistance are present. These new technologies enable the introduction of an individual patient disease management concept. Within our clinical setting, we have introduced this e.g. for quantitative detection of Epstein-Barr Virus (EBV) in T-dell depleted allogeneic stem cell transplant patients. This enabled us to develop models for pre-emptive anti B-cell immunotherapy for EBV reactivation, thereby effectively reducing not the incidence of EBV-lymphoproliferative disease but the virus related mortality. Furthermore, additional clinically relevant viruses can now easily be detected simultaneously. It also becomes more feasible to introduce molecular testing for those viruses that can easily be detected using classical virological methods, like culture techniques or antigen detection. Prospective studies are needed to evaluate the clinical importance of the additional positive samples detected. It should however be made clear that a complete exchange of technologies is unlikely to occur, and that some complementary technologies should stay operational enabling the discovery of new viruses. The implementation of these molecular diagnostic technologies furthermore

  18. Mobile real time radiography system

    SciTech Connect

    Vigil, J.; Taggart, D.; Betts, S.

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  19. Real-time simulation of thermal shadows with EMIT

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.

  20. Real-Time Nonlinear Optical Information Processing.

    DTIC Science & Technology

    1979-06-01

    operations aree presented. One approach realizes the halftone method of nonlinear optical processing in real time by replacing the conventional...photographic recording medium with a real-time image transducer. In the second approach halftoning is eliminated and the real-time device is used directly

  1. Students Collecting Real time Data

    NASA Astrophysics Data System (ADS)

    Miller, P.

    2006-05-01

    Students Collecting Real-Time Data The Hawaiian Islands Humpback Whale National Marine Sanctuary has created opportunities for middle and high school students to become Student Researchers and to be involved in real-time marine data collection. It is important that we expose students to different fields of science and encourage them to enter scientific fields of study. The Humpback Whale Sanctuary has an education visitor center in Kihei, Maui. Located right on the beach, the site has become a living classroom facility. There is a traditional Hawaiian fishpond fronting the property. The fishpond wall is being restored, using traditional methods. The site has the incredible opportunity of incorporating Hawaiian cultural practices with scientific studies. The Sanctuary offers opportunities for students to get involved in monitoring and data collection studies. Invasive Seaweed Study: Students are collecting data on invasive seaweed for the University of Hawaii. They pull a large net through the shallow waters. Seaweed is sorted, identified and weighed. The invasive seaweeds are removed. The data is recorded and sent to UH. Remote controlled monitoring boats: The sanctuary has 6 boogie board sized remote controlled boats used to monitor reefs. Boats have a camera with lights on the underside. The boats have water quality monitoring devices and GPS units. The video from the underwater camera is transmitted via a wireless transmission. Students are able to monitor the fish, limu and invertebrate populations on the reef and collect water quality data via television monitors or computers. The boat can also pull a small plankton tow net. Data is being compiled into data bases. Artificial Reef Modules: The Sanctuary has a scientific permit from the state to build and deploy artificial reef modules. High school students are designing and building modules. These are deployed out in the Fishpond fronting the Sanctuary site and students are monitoring them on a weekly basis

  2. Real-time optical tweezing

    NASA Astrophysics Data System (ADS)

    Rahman, Shah Mohammed Tamzidur

    In this thesis a new approach called ‘space-time-wavelength mapping’ has been developed for real-time electronic control of optical tweezers. The proposed technique enables precise control of optical signals in space, time, and frequency through time-domain dispersion and diffractive optics, which in turn enables generation of controlled radiation forces acting on small particles. In this study we show that 150 fs ultrafast optical pulses can be dispersed in time and space to achieve a 20 μm x 2 μm focused elliptical beam. The force field at the focal plane of the beam is dependent on local intensity gradients along the plane. The spatial intensity profile can be electronically controlled by assigning local power levels to each wavelength using time-domain RF modulation of dispersed pulses, and sending each wavelength, and hence the assigned power level, to a specific location in space through diffractive optics. We show that by choosing the appropriate RF waveform, one is able to create force fields for cell stretching and compression as well as multiple force hot-spots (of >200 pN force per pulse) for attractive and repulsive forces. A detailed theoretical model and simulation results from a proposed experimental setup are presented. This approach is significantly more advantageous in terms of flexibility and control, compared to conventional optical tweezers that require mechanical steering or holographic optical tweezers that produce undesired ‘ghost traps’. In addition, it is shown how the technique can also be extended to create tunable 2D force field distributions using a virtually-imaged phased-array (VIPA).

  3. Holin triggering in real time.

    PubMed

    White, Rebecca; Chiba, Shinobu; Pang, Ting; Dewey, Jill S; Savva, Christos G; Holzenburg, Andreas; Pogliano, Kit; Young, Ry

    2011-01-11

    During λ infections, the holin S105 accumulates harmlessly in the membrane until, at an allele-specific time, suddenly triggering to form irregular holes of unprecedented size (>300 nm), releasing the endolysin from the cytoplasm, resulting in lysis within seconds. Here we used a functional S105-GFP chimera and real-time deconvolution fluorescence microscopy to show that the S105-GFP fusion accumulated in a uniformly distributed fashion, until suddenly, within 1 min, it formed aggregates, or rafts, at the time of lethal triggering. Moreover, the isogenic fusion to a nonlethal S105 mutant remained uniformly distributed, whereas a fusion to an early-lysing mutant showed early triggering and early raft formation. Protein accumulation rates of the WT, early, and nonlethal alleles were identical. Fluorescence recovery after photobleaching (FRAP) revealed that the nonlethal mutant and untriggered WT hybrids were highly mobile in the membrane, whereas the WT raft was essentially immobile. Finally, an antiholin allele, S105(ΔTMD1)-mcherryfp, in the product of which the S105 sequence deleted for the first transmembrane domain was fused to mCherryFP. This hybrid retained full antiholin activity, in that it blocked lethal hole formation by the S105-GFP fusion, accumulated uniformly throughout the host membrane and prevented the S105-GFP protein from forming rafts. These findings suggest that phage lysis occurs when the holin reaches a critical concentration and nucleates to form rafts, analogous to the initiation of purple membrane formation after the induction of bacteriorhodopsin in halobacteria. This model for holin function may be relevant for processes in mammalian cells, including the release of nonenveloped viruses and apoptosis.

  4. Real-Time Data Display

    NASA Technical Reports Server (NTRS)

    Pedings, Marc

    2007-01-01

    RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.

  5. Quantum rendering

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.

    2003-08-01

    In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.

  6. Microlensing Event Caustic Crossing

    NASA Astrophysics Data System (ADS)

    MACHO/GMAN Collaboration

    1998-06-01

    The MACHO/GMAN Collaboration (cf. IAUC 6845) plus affiliate S.Rhie report that further observations of microlensing event MACHO-98-SMC-1 (R.A. = 0h45m35s.2, Decl. = -72o52'34" J2000) confirm the binary lens interpretation and yield a prediction for the time of the 2nd caustic crossing: June 19.2 +/- 1.5 UT. The confirming observations were obtained with the MSO 1.3m MACHO survey telescope and the CTIO 0.9-m telescope.

  7. Clinical experience with real-time ultrasound

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Wolfman, Neil T.; Covitz, Wesley

    1995-05-01

    After testing the extended multimedia interface (EMMI) product which is an asynchronous transmission mode (ATM) user to network interface (UNI) of AT&T at the Society for Computer Applications in Radiology conference in Winston-Salem, the Department of Radiology together with AT&T are implementing a tele-ultrasound system to combine real- time ultrasound with the static imaging features of more traditional digital ultrasound systems. Our current ultrasound system archives digital images to an optical disk system. Static images are sent using our digital radiology systems. This could be transferring images from one digital imaging and communications (DICOM)-compliant machine to another, or the current image transfer methodologies. The prototype of a live ultrasound system using the EMMI demonstrated the feasibility of doing live ultrasound. We now are developing the scenarios using a mix of the two methodologies. Utilizing EMMI technology, radiologists at the BGSM review at a workstation both static images and real-time scanning done by a technologist on patients at a remote site in order to render on-line primary diagnosis. Our goal is to test the feasibility of operating an ultrasound laboratory at a remote site utilizing a trained technologist without the necessity of having a full-time radiologist at that site. Initial plans are for a radiologist to review an initial set of static images on a patient taken by the technologist. If further scanning is required, the EMMI is used to transmit real-time imaging and audio using the audio input of a standard microphone system and the National Television Standards Committee (NTSC) output of the ultrasound equipment from the remote site to the radiologist in the department review station. The EMMI digitally encodes this data and places it in an ATM format. This ATM data stream goes to the GCNS2000 and then to the other EMMI where the ATM data stream is decoded into the live studies and voice communication which are then

  8. Moist caustic leaching of coal

    DOEpatents

    Nowak, Michael A.

    1994-01-01

    A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

  9. Research in Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  10. D Model Visualization Enhancements in Real-Time Game Engines

    NASA Astrophysics Data System (ADS)

    Merlo, A.; Sánchez Belenguer, C.; Vendrell Vidal, E.; Fantini, F.; Aliperta, A.

    2013-02-01

    This paper describes two procedures used to disseminate tangible cultural heritage through real-time 3D simulations providing accurate-scientific representations. The main idea is to create simple geometries (with low-poly count) and apply two different texture maps to them: a normal map and a displacement map. There are two ways to achieve models that fit with normal or displacement maps: with the former (normal maps), the number of polygons in the reality-based model may be dramatically reduced by decimation algorithms and then normals may be calculated by rendering them to texture solutions (baking). With the latter, a LOD model is needed; its topology has to be quad-dominant for it to be converted to a good quality subdivision surface (with consistent tangency and curvature all over). The subdivision surface is constructed using methodologies for the construction of assets borrowed from character animation: these techniques have been recently implemented in many entertainment applications known as "retopology". The normal map is used as usual, in order to shade the surface of the model in a realistic way. The displacement map is used to finish, in real-time, the flat faces of the object, by adding the geometric detail missing in the low-poly models. The accuracy of the resulting geometry is progressively refined based on the distance from the viewing point, so the result is like a continuous level of detail, the only difference being that there is no need to create different 3D models for one and the same object. All geometric detail is calculated in real-time according to the displacement map. This approach can be used in Unity, a real-time 3D engine originally designed for developing computer games. It provides a powerful rendering engine, fully integrated with a complete set of intuitive tools and rapid workflows that allow users to easily create interactive 3D contents. With the release of Unity 4.0, new rendering features have been added, including Direct

  11. Real time programming environment for Windows

    SciTech Connect

    LaBelle, D.R.

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  12. High-throughput quantitative real-time PCR.

    PubMed

    Arany, Zoltan P

    2008-07-01

    Recent technical advances in quantitative real-time PCR (qRT-PCR) have allowed for extensive miniaturization, thereby rendering the technique amenable to high-throughput assays. Large numbers of different nucleic acids can now rapidly be measured quantitatively. Many investigations can benefit from this approach, including determination of gene expression in hundreds of samples, determination of hundreds of genes in a few samples, or even quantification of nucleic acids other than mRNA. A simple technique is described here to quantify 1880 transcripts of choice from any number of starting RNA samples.

  13. Real-time data standards for the planetarium

    NASA Astrophysics Data System (ADS)

    Abbott, B.

    2008-06-01

    The American Museum of Natural History and the Hayden Planetarium have built the most accurate, comprehensive, 3-D atlas of the cosmos called the Digital Universe (DU). The DU enables one to journey from the mountains on Earth to the farthest quasars. The DU enjoys many distribution channels, including pre-rendered space-shows and news bulletins, live planetarium programmes, and a free version available on the internet. Recently, we have partnered with three planetarium vendors to bring the DU to planetariums around the world. These partnerships necessitatethe adoption or creation of standards for three-dimensional data and associated metadata. Many standards exist in the current Virtual Observatory framework and additional standards are being proposed as part of the VAMP programme. We intend to identify additional standards necessary for 3-D, real-time rendering tools for fulldome and flat-screen environments.

  14. The ALMA Real Time Control System

    NASA Astrophysics Data System (ADS)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  15. Real-time monitoring of landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Baum, Rex L.; Kean, Jason W.; Schulz, William H.; Highland, Lynn M.

    2012-01-01

    Landslides cause fatalities and property damage throughout the Nation. To reduce the impact from hazardous landslides, the U.S. Geological Survey develops and uses real-time and near-real-time landslide monitoring systems. Monitoring can detect when hillslopes are primed for sliding and can provide early indications of rapid, catastrophic movement. Continuous information from up-to-the-minute or real-time monitoring provides prompt notification of landslide activity, advances our understanding of landslide behavior, and enables more effective engineering and planning efforts.

  16. Achieving real-time performance in FIESTA

    NASA Technical Reports Server (NTRS)

    Wilkinson, William; Happell, Nadine; Miksell, Steve; Quillin, Robert; Carlisle, Candace

    1988-01-01

    The Fault Isolation Expert System for TDRSS Applications (FIESTA) is targeted for operation in a real-time online environment. Initial stages of the prototype development concentrated on acquisition and representation of the knowledge necessary to isolate faults in the TDRSS Network. Recent efforts focused on achieving real-time performance including: a discussion of the meaning of FIESTA real-time requirements, determination of performance levels (benchmarking) and techniques for optimization. Optimization techniques presented include redesign of critical relations, filtering of redundant data and optimization of patterns used in rules. Results are summarized.

  17. Real-time medical applications and telecommunications.

    PubMed

    Stravs, M

    1999-01-01

    Telecommunications play an important role in telemedicine. Many forms of telecommunication services based on different telecommunication technologies are developed for various needs. The paper deals with complex real-time applications which demand high telecommunication requirements. At the beginning, medical applications are categorised and real-time applications qualified as multimedia applications. Requirements for multimedia elements are listed separately. Later on, short introduction of related telecommunication protocols is given. Real-time medical applications can show their ability in case of guaranteed quality of services delivered by telecommunication network as it is explained in the end.

  18. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  19. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  20. Caustic design in periodic lattices.

    PubMed

    Efremidis, Nikolaos K; Chremmos, Ioannis D

    2012-04-01

    We study curved trajectory dynamics and design in discrete array settings. We find that beams with power law phases produce curved caustics associated with the fold and cusp type catastrophes. A parabolic phase produces a focus that suffers from spherical aberrations. More important, we find that by designing the initial phase or wavefront of the beam we can construct trajectories with pure power law caustics as well as aberration-free focusing of discrete waves.

  1. Causticizing for Black Liquor Gasifiers

    SciTech Connect

    Scott Sinquefeld; James Cantrell; Xiaoyan Zeng; Alan Ball; Jeff Empie

    2009-01-07

    The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.

  2. Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware.

    PubMed

    Levin, David; Aladl, Usaf; Germano, Guido; Slomka, Piotr

    2005-09-01

    We exploit consumer graphics hardware to perform real-time processing and visualization of high-resolution, 4D cardiac data. We have implemented real-time, realistic volume rendering, interactive 4D motion segmentation of cardiac data, visualization of multi-modality cardiac data and 3D display of multiple series cardiac MRI. We show that an ATI Radeon 9700 Pro can render a 512x512x128 cardiac Computed Tomography (CT) study at 0.9 to 60 frames per second (fps) depending on rendering parameters and that 4D motion based segmentation can be performed in real-time. We conclude that real-time rendering and processing of cardiac data can be implemented on consumer graphics cards.

  3. Real time 3D and heterogeneous data fusion

    SciTech Connect

    Little, C.Q.; Small, D.E.

    1998-03-01

    This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.

  4. Real-time scheduling using minimum search

    NASA Technical Reports Server (NTRS)

    Tadepalli, Prasad; Joshi, Varad

    1992-01-01

    In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it sppears that reasonably good schedules can be produced with a relatively shallow search.

  5. The LAA real-time benchmarks

    SciTech Connect

    Block, R.K.; Krischer, W.; Lone, S.

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  6. Real-Time Ada Problem Study

    DTIC Science & Technology

    1989-03-24

    define this set of problems. The authors were chosen because of their proven expertise in real-time development with Ada. They could enrich the results of...for Real-Time Embedded Systems". LabTek Corporation, the author , had proven expertise in embedded system design utilizing Motorola MC680XO- based...processors. The second report is entitledSoftware Enineering Problems Using Ada in Computers Integral to Weapons Systems. Its author , Sonicraft, had

  7. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  8. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  9. Personnel real time dosimetry in interventional radiology.

    PubMed

    Servoli, L; Bissi, L; Fabiani, S; Magalotti, D; Placidi, P; Scorzoni, A; Calandra, A; Cicioni, R; Chiocchini, S; Dipilato, A C; Forini, N; Paolucci, M; Di Lorenzo, R; Cappotto, F P; Scarpignato, M; Maselli, A; Pentiricci, A

    2016-12-01

    Interventional radiology and hemodynamic procedures have rapidly grown in number in the past decade, increasing the importance of personnel dosimetry not only for patients but also for medical staff. The optimization of the absorbed dose during operations is one of the goals that fostered the development of real-time dosimetric systems. Indeed, introducing proper procedure optimization, like correlating dose rate measurements with medical staff position inside the operating room, the absorbed dose could be reduced. Real-time dose measurements would greatly facilitate this task through real-time monitoring and automatic data recording. Besides real-time dose monitoring could allow automatic data recording. In this work, we will describe the calibration and validation of a wireless real-time prototype dosimeter based on a new sensor device (CMOS imager). The validation measurement campaign in clinical conditions has demonstrated the prototype capability of measuring dose-rates with a frequency in the range of few Hz, and an uncertainty smaller than 10%.

  10. Real-time Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-Ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-01-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  11. Visualization of Real-Time Data

    NASA Technical Reports Server (NTRS)

    Stansifer, Ryan; Engrand, Peter

    1996-01-01

    In this project we explored various approaches to presenting real-time data from the numerous systems monitored on the space shuttle to computer users. We examined the approach that several projects at the Kennedy Space Center (KSC) used to accomplish this. We undertook to build a prototype system to demonstrate that the Internet and the Java programming language could be used to present the real-time data conveniently. Several Java programs were developed that presented real-time data in different forms including one form that emulated the display screens of the PC GOAL system which is familiar to many at KSC. Also, we developed several communications programs to supply the data continuously. Furthermore, a framework was created using the World Wide Web (WWW) to organize the collection and presentation of the real-time data. We believe our demonstration project shows the great flexibility of the approach. We had no particular use of the data in mind, instead we wanted the most general and the least complex framework possible. People who wish to view data need only know how to use a WWW browser and the address (the URL). People wanting to build WWW documents containing real-time data need only know the values of a few parameters, they do not need to program in Java or any other language. These are stunning advantages over more monolithic systems.

  12. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  13. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  14. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  15. Network protocols for real-time applications

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1987-01-01

    The Fiber Distributed Data Interface (FDDI) and the SAE AE-9B High Speed Ring Bus (HSRB) are emerging standards for high-performance token ring local area networks. FDDI was designed to be a general-purpose high-performance network. HSRB was designed specifically for military real-time applications. A workshop was conducted at NASA Ames Research Center in January, 1987 to compare and contrast these protocols with respect to their ability to support real-time applications. This report summarizes workshop presentations and includes an independent comparison of the two protocols. A conclusion reached at the workshop was that current protocols for the upper layers of the Open Systems Interconnection (OSI) network model are inadequate for real-time applications.

  16. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  17. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  18. Mobile waste inspection real time radiography system

    SciTech Connect

    Vigil, J.; Taggart, D.; Betts, S.; Rael, C.; Martinez, F.; Mendez, J.

    1995-10-01

    The 450-KeV Mobile Real Time Radiography System was designed and purchased to inspect containers of radioactive waste produced at Los Alamos National Laboratory (LANL). The Mobile Real Time Radiography System has the capability of inspecting waste containers of various sizes from 5-gal. buckets to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). The fact that this unit is mobile makes it an attractive alternative to the costly road closures associated with moving waste from the waste generator to storage or disposal facilities.

  19. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  20. Software Package For Real-Time Graphics

    NASA Technical Reports Server (NTRS)

    Malone, Jacqueline C.; Moore, Archie L.

    1991-01-01

    Software package for master graphics interactive console (MAGIC) at Western Aeronautical Test Range (WATR) of NASA Ames Research Center provides general-purpose graphical display system for real-time and post-real-time analysis of data. Written in C language and intended for use on workstation of interactive raster imaging system (IRIS) equipped with level-V Unix operating system. Enables flight researchers to create their own displays on basis of individual requirements. Applicable to monitoring of complicated processes in chemical industry.

  1. Imaging of living cells in real time

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.; Nikandrov, Serguei L.

    1996-12-01

    Parameters of intrinsic cell motility is one of the cell activity characteristics which can be measured in real-time. For evaluation of certain organelles velocity we propose to use high sensitivity of computer-aided phase microscope airyscan to local phase changes connected with refractive index. This method is based on periodical scanning of cell profile in direction perpendicular to organelles movement. Analysis of the obtained 2-dimensional time-coordinate matrix allows us to define organelle velocity in quasi-real time and areas of cell activity. The experiments with onion cells confirm the method applicability for cell activity investigation.

  2. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  3. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  4. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  5. Real-Time Occupancy Change Analyzer

    SciTech Connect

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector to the detected change, it provides the actual x,y position of the change.

  6. Axial tomography from digitized real time radiography

    SciTech Connect

    Zolnay, A.S.; McDonald, W.M.; Doupont, P.A.; McKinney, R.L.; Lee, M.M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  7. Biotreatment of refinery spent sulfidic caustics

    SciTech Connect

    Sublette, K.L.; Rajganesh, B.; Woolsey, M.; Plato, A.

    1995-12-31

    Caustics are used in petroleum refinering to remove hydrogen sulfide from various hydrocarbon streams. Spent sulfidic caustics from two Conoco refineries have been successfully biotreated on bench and pilot scale, resulting in neutralization and removal of active sulfides. Sulfides were completely oxidized to sulfate by Thiobacillus denitrificans. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic.

  8. Real-time analysis of telemetry data

    NASA Technical Reports Server (NTRS)

    Kao, Simon A.; Laffey, Thomas J.; Schmidt, James L.; Read, Jackson Y.; Dunham, Larry L.

    1987-01-01

    This paper descibes a knowledge-based system for performing real-time monitoring and analysis of telemetry data from the NASA Hubble Space Telescope (HST). In order to handle asynchronous inputs and perform in real time the system consists of three or more separate processes, which run concurrently and communicate via a message passing scheme. The data management process gathers, compresses, and scales the incoming telemetry data befoe sending it to the other tasks. The inferencing process uses the incoming data to perform a real-time analysis of the state and health of the Space Telescope. The I/O process receives telemetry monitors from the data management process, updates its graphical displays in real time, and acts as the interface to the console operator. The three processes may run on the same or different computers. This system is currently under development and is being used to monitor testcases produced by the Bass Telemetry System in the Hardware/Software Integration Facility at Lockheed Missile and Space Co. in Sunnyvale, California.

  9. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  10. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  11. Real Time Grid Reliability Management 2005

    SciTech Connect

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  12. Real-time distributed multimedia systems

    SciTech Connect

    Rahurkar, S.S.; Bourbakis, N.G.

    1996-12-31

    This paper presents a survey on distributed multimedia systems and discusses real-time issues. In particular, different subsystems are reviewed that impact on multimedia networking, the networking for multimedia, the networked multimedia systems, and the leading edge research and developments efforts and issues in networking.

  13. Feedback as Real-Time Constructions

    ERIC Educational Resources Information Center

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  14. Real-time optoacoustic monitoring during thermotherapy

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Motamedi, Massoud

    2000-05-01

    Optoacoustic monitoring of tissue optical properties and speed of sound in real time can provide fast and accurate feedback information during thermotherapy performed with various heating or cooling agents. Amplitude and temporal characteristics of optoacoustic pressure waves are dependent on tissue properties. Detection and measurement of the optoacoustic waves may be used to monitor the extent of tissue hyperthermia, coagulation, or freezing with high resolution and contrast. We studied real-time optoacoustic monitoring of thermal coagulation induced by conductive heating and laser radiation and cryoablation with liquid nitrogen. Q-switched Nd:YAG laser pulses were used as probing radiation to induce optoacoustic waves in tissues. Dramatic changes in optoacoustic signal parameters were detected during tissue freezing and coagulation due to sharp changes in tissue properties. The dimensions of thermally- induced lesions were measured in real time with the optoacoustic technique. Our studies demonstrated that the laser optoacoustic technique is capable of real-time monitoring of tissue coagulation and freezing front with submillimeter spatial resolution. This may allow accurate thermal ablation or cryotherapy of malignant and benign lesions with minimal damage to normal tissues.

  15. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  16. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  17. Real-Time Seismology in Portugal

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Marreiros, C.; Carvalho, S.; Vales, D.; Lima, V.; Carrilho, F.

    2012-12-01

    Portugal is located next to the plate boundary between Eurasia (Iberia) and Africa (Nubia). The country has been repeatedly affected by some of the largest earthquakes, both onshore and offshore, in the historical European record, including the largest historical European earthquake, the great Lisbon earthquake of 1755 (~M8.5). The Portuguese territory has suffered directly the consequences of strong ground shaking (collapse of buildings, etc) and also some of the most destructive consequences of earthquakes (e.g. tsunamis, fires, etc). However, the rate of tectonic deformation in the Portuguese territory is low (the Eurasian-African plates converge at a rate of ~ 5 mm/yr), which results in long recurrence intervals between earthquakes. This low to moderate rate of seismic activity has two major negative effects: 1) it is difficult to study the regional seismo-tectonics with traditional passive methods; 2) the population is little aware of earthquake risk and unprepared to react in case of disaster. In this scenario, real-time seismology is key to monitoring earthquake crisis in real-time, providing early warnings about potentially destructive events, and assisting in the channeling of recovery efforts in case of disaster. In this paper we will present the real-time algorithms implemented at Instituto de Meteorologia (IM), the institution responsible for seismic monitoring in Portugal. In particular, we will focus on the following aspects: 1) Data collection and real-time transmission to the headquarters. Broadband seismological stations are owned and operated by five different institutions. The last years have witnessed an effort for integration, and presently most data arrives at IM lab in real-time. 2) Earthquake location and local magnitude determination. Data is automatically analyzed in order to obtain a first earthquake hypocenter and ML. While this process is mostly automatic, it still requires the revision by an operator, who is available 24h. 3

  18. Real-time remote scientific model validation

    NASA Technical Reports Server (NTRS)

    Frainier, Richard; Groleau, Nicolas

    1994-01-01

    This paper describes flight results from the use of a CLIPS-based validation facility to compare analyzed data from a space life sciences (SLS) experiment to an investigator's preflight model. The comparison, performed in real-time, either confirms or refutes the model and its predictions. This result then becomes the basis for continuing or modifying the investigator's experiment protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator team are able to react to their experiment data in real time. This facility, part of a larger science advisor system called Principal Investigator in a Box, was flown on the space shuttle in October, 1993. The software system aided the conduct of a human vestibular physiology experiment and was able to outperform humans in the tasks of data integrity assurance, data analysis, and scientific model validation. Of twelve preflight hypotheses associated with investigator's model, seven were confirmed and five were rejected or compromised.

  19. Real-time photo-magnetic imaging

    PubMed Central

    Nouizi, Farouk; Erkol, Hakan; Luk, Alex; Unlu, Mehmet B.; Gulsen, Gultekin

    2016-01-01

    We previously introduced a new high resolution diffuse optical imaging modality termed, photo-magnetic imaging (PMI). PMI irradiates the object under investigation with near-infrared light and monitors the variations of temperature using magnetic resonance thermometry (MRT). In this paper, we present a real-time PMI image reconstruction algorithm that uses analytic methods to solve the forward problem and assemble the Jacobian matrix much faster. The new algorithm is validated using real MRT measured temperature maps. In fact, it accelerates the reconstruction process by more than 250 times compared to a single iteration of the FEM-based algorithm, which opens the possibility for the real-time PMI. PMID:27867701

  20. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  1. AMON: Transition to real-time operations

    NASA Astrophysics Data System (ADS)

    Cowen, D. F.; Keivani, A.; Tešić, G.

    2016-04-01

    The Astrophysical Multimessenger Observatory Network (AMON) will link the world's leading high-energy neutrino, cosmic-ray, gamma-ray and gravitational wave observatories by performing real-time coincidence searches for multimessenger sources from observatories' subthreshold data streams. The resulting coincidences will be distributed to interested parties in the form of electronic alerts for real-time follow-up observation. We will present the science case, design elements, current and projected partner observatories, status of the AMON project, and an initial AMON-enabled analysis. The prototype of the AMON server has been online since August 2014 and processing archival data. Currently, we are deploying new high-uptime servers and will be ready to start issuing alerts as early as winter 2015/16.

  2. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  3. System Equivalent for Real Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Lin, Xi

    2011-07-01

    The purpose of this research is to develop a method of making system equivalents for the Real Time Digital Simulator (RTDS), which should enhance its capability of simulating large power systems. The proposed equivalent combines a Frequency Dependent Network Equivalent (FDNE) for the high frequency electromagnetic transients and a Transient Stability Analysis (TSA) type simulation block for the electromechanical transients. The frequency dependent characteristic for FDNE is obtained by curve-fitting frequency domain admittance characteristics using the Vector Fitting method. An approach for approximating the frequency dependent characteristic of large power networks from readily available typical power-flow data is also introduced. A new scheme of incorporating TSA solution in RTDS is proposed. This report shows how the TSA algorithm can be adapted to a real time platform. The validity of this method is confirmed with examples, including the study of a multi in-feed HVDC system based network.

  4. Real-Time Gauge/Gravity Duality

    SciTech Connect

    Skenderis, Kostas; Rees, Balt C. van

    2008-08-22

    We present a general prescription for the holographic computation of real-time n-point functions in nontrivial states. In quantum field theory such real-time computations involve a choice of a time contour in the complex time plane. The holographic prescription amounts to 'filling in' this contour with bulk solutions: real segments of the contour are filled in with Lorentzian solutions while imaginary segments are filled in with Riemannian solutions and appropriate matching conditions are imposed at the corners of the contour. We illustrate the general discussion by computing the 2-point function of a scalar operator using this prescription and by showing that this leads to an unambiguous answer with the correct i{epsilon} insertions.

  5. Real Time Radiation Exposure And Health Risks

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  6. Real time processor for array speckle interferometry

    NASA Technical Reports Server (NTRS)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-01-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  7. Distributed Real-Time Computing with Harness

    SciTech Connect

    Di Saverio, Emanuele; Cesati, Marco; Di Biagio, Christian; Pennella, Guido; Engelmann, Christian

    2007-01-01

    Modern parallel and distributed computing solutions are often built onto a ''middleware'' software layer providing a higher and common level of service between computational nodes. Harness is an adaptable, plugin-based middleware framework for parallel and distributed computing. This paper reports recent research and development results of using Harness for real-time distributed computing applications in the context of an industrial environment with the needs to perform several safety critical tasks. The presented work exploits the modular architecture of Harness in conjunction with a lightweight threaded implementation to resolve several real-time issues by adding three new Harness plug-ins to provide a prioritized lightweight execution environment, low latency communication facilities, and local timestamped event logging.

  8. Real-time imaging of quantum entanglement.

    PubMed

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  9. Neural Network Retinal Model Real Time Implementation

    DTIC Science & Technology

    1992-09-02

    addresses the specific needs of vision processing. The goal of this SBIR Phase I project has been to take a significant neural network vision...application and to map it onto dedicated hardware for real time implementation. The neural network was already demonstrated using software simulation on a...general purpose computer. During Phase 1, HNC took a neural network model of the retina and, using HNC’s Vision Processor (ViP) prototype hardware

  10. Real-Time Ocean Modeling Systems

    DTIC Science & Technology

    2013-10-22

    2002 2. REPORT TYPE 3. DATES COVERED (From - To) Journal Article 4 . TITLE AND SUBTITLE Real-time 16iebaf Modeling Systems \\&&»A 5a...Director NCST E.O. Hartwig, 7000 Public Affairs (Unclassified/ Unlimited Only), Code 7n30 4 Division, Code Author, Code HQ-NRL 5511/6 (Rev. 12-93...according to the routing in Section 4 . 1. NRL Reports Submit the diskette (if available), manuscript, typed double-spaced, complete with tables

  11. Real-Time X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Bulthuis, Ronald V.

    1988-01-01

    X-ray imaging instrument adapted to continuous scanning. Modern version of fluoroscope enables rapid x-ray inspection of parts. Developed for detection of buckling in insulated ducts. Uses radiation from radioactive gadolinium or thallium source. Instrument weighs only 6 1/2 lb. Quickly scanned by hand along duct surface, providing real-time image. Based on Lixiscope, developed at Goddard Space Flight Center.

  12. Nonlinear Real-Time Optical Signal Processing.

    DTIC Science & Technology

    1981-06-30

    bandwidth and space-bandwidth products. Real-time homonorphic and loga- rithmic filtering by halftone nonlinear processing has been achieved. A...Page ABSTRACT 1 1. RESEARCH OBJECTIVES AND PROGRESS 3 I-- 1.1 Introduction and Project overview 3 1.2 Halftone Processing 9 1.3 Direct Nonlinear...time homomorphic and logarithmic filtering by halftone nonlinear processing has been achieved. A detailed analysis of degradation due to the finite gamma

  13. Applications of real-time holography

    NASA Astrophysics Data System (ADS)

    Feinberg, J.

    1985-01-01

    Holographic principles are discussed, with a description of the steps of hologram production and reconstruction and the materials used in storage of the images. Real-time holography applications, including photolithography, double-exposure interferometry, time-averaged holography, parallel optical processing, optical phase conjugation, beam steering, and moving holograms, are described in detail. In addition, current areas of active research and some experimental applications are discussed.

  14. Nonlinear Real-Time Optical Signal Processing.

    DTIC Science & Technology

    1984-10-01

    DTIC ELECTE I B IIMAGE PROCESSING INSTITUTE 84 11 26 107 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Dota Entered), REPORT DOCUMENTATION...30, 1984 N NONLINEAR REAL-TIME OPTICAL SIGNAL PROCESSING i E~ A.A. Sawchuk, Principal Investigator T.C. Strand and A.R. Tanguay. Jr. October 1, 1984...RDepartment of Electrical Engineering Image Processing institute University of Southern California University Park-MC 0272 Los Angeles, California

  15. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  16. Real-time Interactive Tree Animation.

    PubMed

    Quigley, Ed; Yu, Yue; Huang, Jingwei; Lin, Winnie; Fedkiw, Ronald

    2017-01-30

    We present a novel method for posing and animating botanical tree models interactively in real time. Unlike other state of the art methods which tend to produce trees that are overly flexible, bending and deforming as if they were underwater plants, our approach allows for arbitrarily high stiffness while still maintaining real-time frame rates without spurious artifacts, even on quite large trees with over ten thousand branches. This is accomplished by using an articulated rigid body model with as-stiff-as-desired rotational springs in conjunction with our newly proposed simulation technique, which is motivated both by position based dynamics and the typical O(N) algorithms for articulated rigid bodies. The efficiency of our algorithm allows us to pose and animate trees with millions of branches or alternatively simulate a small forest comprised of many highly detailed trees. Even using only a single CPU core, we can simulate ten thousand branches in real time while still maintaining quite crisp user interactivity. This has allowed us to incorporate our framework into a commodity game engine to run interactively even on a low-budget tablet. We show that our method is amenable to the incorporation of a large variety of desirable effects such as wind, leaves, fictitious forces, collisions, fracture, etc.

  17. Real-time monitoring system for microfluidics

    NASA Astrophysics Data System (ADS)

    Sapuppo, F.; Cantelli, G.; Fortuna, L.; Arena, P.; Bucolo, M.

    2007-05-01

    A new non-invasive real-time system for the monitoring and control of microfluidodynamic phenomena is proposed. The general purpose design of such system is suitable for in vitro and in vivo experimental setup and therefore for microfluidic application in the biomedical field such as lab-on-chip and for research studies in the field of microcirculation. The system consists of an ad hoc optical setup for image magnification providing images suitable for image acquisition and processing. The optic system was designed and developed using discrete opto-mechanic components mounted on a breadboard in order to provide an optic path accessible at any point where the information needs to be acquired. The optic sensing, acquisition, and processing were performed using an integrated vision system based on the Cellular Nonlinear Networks (CNNs) analogic technology called Focal Plane Processor (FPP, Eye-RIS, Anafocus) and inserted in the optic path. Ad hoc algorithms were implemented for the real-time analysis and extraction of fluido-dynamic parameters in micro-channels. They were tested on images recorded during in vivo microcirculation experiments on hamsters and then they were applied on images optically acquired and processed in real-time during in vitro experiments on a continuous microfluidic device (serpentine mixer, ThinXXS) with a two-phase fluid.

  18. Real-time speckle photography: a breakthrough

    NASA Astrophysics Data System (ADS)

    Petrov, Valery

    1996-12-01

    Speckle photography for small displacements can be carried out rather easily. It is a well established method. Unfortunately problems arise when specklegrams must be obtained in real time. Silver halide media infer lengthy multi-stage photoprocessing of specklegrams. Real time speckle photography utilizing non-silver media can be implemented but the techniques involved are rather complicated. Extremely simple and inexpensive approaches to speckle photography are introduced here. They combine positive features of speckle photography and momental holography. This permits the user to produce quasi real time specklegrams within a few seconds. High quality speckle photographs were obtained with different laser sources on high resolution silver halide media: Russian PFG-03, PFG-03 C (color), Agfa-Gevaert 8E 75 HD films and plates. Very good specklegrams were obtained also in lighted environment. Hybrid holospecklegrams i.e. holograms and speckle photographs of the same object were obtained simultaneously on the same media. Such holospecklegrams were also produced within fa few seconds. Quite unexpectedly good specklegrams were recorded even in water. Photographs of momentally produced specklegrams are given.

  19. Real-time preprocessing of holographic information

    NASA Astrophysics Data System (ADS)

    Schilling, Bradley W.; Poon, Ting-Chung

    1995-11-01

    Optical scanning holography (OSH) is a holographic recording technique that uses active optical heterodyne scanning to generate holographic information pertaining to an object. The holographic information manifests itself as an electrical signal suitable for real-time image reconstruction using a spatial light modulator. The electrical signal that carries the holographic information can also be digitized for computer storage and processing, allowing the image reconstruction to be performed numerically. In previous experiments with this technique, holographic information has been recorded using the interference pattern of a plane wave and a spherical wave of different temporal frequencies to scan an object. However, the proper manipulation of the pupil functions in the recording stage can result in real-time processing of the holographic edge extraction technique as an important example of real-time preprocessing of holographic information that utilizes alternate pupils in the OSH recording stage. We investigate the theory of holographic preprocessing using a spatial frequency-domain analysis based on the recording system's optical transfer function. The theory is reinforced through computer simulation.

  20. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  1. A real-time sound field renderer based on digital Huygens' model

    NASA Astrophysics Data System (ADS)

    Yiyu, Tan; Inoguchi, Yasushi; Sugawara, Eiko; Otani, Makoto; Iwaya, Yukio; Sato, Yukinori; Matsuoka, Hiroshi; Tsuchiya, Takao

    2011-08-01

    Modeling acoustical behavior in a room is complicated and computationally intense. Although many methods have been proposed for computer simulation and computers have become faster and faster, the procedure is deeply time-consuming as sound space increases. With the development of semiconductor technology, an alternative solution is to simulate and rebuild the sound field distribution using hardware. Compared with other methods, the method based on digital Huygens' model (DHM) is simple and easily implemented by hardware. In this paper, two schemes of DHM are derived to analyze sound propagation in a two-dimensional space, and are implemented by field programmable gate array (FPGA). In a two-dimensional space of size 2 m×2 m, surrounded by rigid walls, the hardware simulation results of both schemes agree well with the software simulation result, and the calculation errors are relatively small. Compared with the software-based FDTD, original scheme, and updated scheme, a hardware system with 1024 nodes implemented by a Xilinx FPGA chip XC5VLX330T-FF1738 speeds up 7.1, 5.5, and 3.6 times, respectively.

  2. Real-time 3D video conference on generic hardware

    NASA Astrophysics Data System (ADS)

    Desurmont, X.; Bruyelle, J. L.; Ruiz, D.; Meessen, J.; Macq, B.

    2007-02-01

    Nowadays, video-conference tends to be more and more advantageous because of the economical and ecological cost of transport. Several platforms exist. The goal of the TIFANIS immersive platform is to let users interact as if they were physically together. Unlike previous teleimmersion systems, TIFANIS uses generic hardware to achieve an economically realistic implementation. The basic functions of the system are to capture the scene, transmit it through digital networks to other partners, and then render it according to each partner's viewing characteristics. The image processing part should run in real-time. We propose to analyze the whole system. it can be split into different services like central processing unit (CPU), graphical rendering, direct memory access (DMA), and communications trough the network. Most of the processing is done by CPU resource. It is composed of the 3D reconstruction and the detection and tracking of faces from the video stream. However, the processing needs to be parallelized in several threads that have as little dependencies as possible. In this paper, we present these issues, and the way we deal with them.

  3. Electrochemical sulfide removal and caustic recovery from spent caustic streams.

    PubMed

    Vaiopoulou, Eleni; Provijn, Thomas; Prévoteau, Antonin; Pikaar, Ilje; Rabaey, Korneel

    2016-04-01

    Spent caustic streams (SCS) are produced during alkaline scrubbing of sulfide containing sour gases. Conventional methods mainly involve considerable chemical dosing or energy expenditures entailing high cost but limited benefits. Here we propose an electrochemical treatment approach involving anodic sulfide oxidation preferentially to sulfur coupled to cathodic caustic recovery using a two-compartment electrochemical system. Batch experiments showed sulfide removal efficiencies of 84 ± 4% with concomitant 57 ± 4% efficient caustic production in the catholyte at a final concentration of 6.4 ± 0.1 wt% NaOH (1.6 M) at an applied current density of 100 A m(-2). Subsequent long-term continuous experiments showed that stable cell voltages (i.e. 2.7 ± 0.1 V) as well as constant sulfide removal efficiencies of 67 ± 5% at a loading rate of 47 g(S) L(-1) h(-1) were achieved over a period of 77 days. Caustic was produced at industrially relevant strengths for scrubbing (i.e. 5.1 ± 0.9 wt% NaOH) at current efficiencies of 96 ± 2%. Current density between 0 and 200 A m(-2) and sulfide loading rates of 50-200 g(S) L(-1) d(-1) were tested. The higher the current density the more oxidized the sulfur species produced and the higher the sulfide oxidation. On the contrary, high loading rate resulted in a reduction of sulfide oxidation efficiency. The results obtained in this study together with engineering calculations show that the proposed process could represent a cost-effective approach for sodium and sulfur recovery from SCS.

  4. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  5. Exploring Earthquakes in Real-Time

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  6. Systems Analyze Water Quality in Real Time

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  7. Real-Time Ada Demonstration Project

    DTIC Science & Technology

    1989-05-31

    CENER OR OFTAREENGINEERING ADVANCED SOFTWARE TECHNOLOGY Subject: Final Report - Real-Time Ada Demonstration Proj e-t- --.-. SEP 0 1989 D SEA)~ CIN...C02 0921I 6))00 I 31 MAY 1989 *:i ’C O~ 0"ed ~ 842 190 ?’ 45 DEMONSTRATION PROJECT FINAL REPORT PREPARED FOR: U.S. Army HQ CECOM Center for Software ...Engineering Advanced Software Technology Fort Monmouth, NJ 07703-5000 Accession For NTIS G1A&I DTIC TAB PREPARED BY: unannou:1r2d E LabTek Corporation

  8. Real-time teleteaching in medical physics.

    PubMed

    Woo, M; Ng, Kh

    2008-01-01

    Medical physics is a relatively small professional community, usually with a scarcity of expertise that could greatly benefit students entering the field. However, the reach of the profession can span great geographical distances, making the training of students a difficult task. In addition to the requirement of training new students, the evolving field of medical physics, with its many emerging advanced techniques and technologies, could benefit greatly from ongoing continuing education as well as consultation with experts.Many continuing education courses and workshops are constantly being offered, including many web-based study courses and virtual libraries. However, one mode of education and communication that has not been widely used is the real-time interactive process. Video-based conferencing systems do exist, but these usually require a substantial amount of effort and cost to set up.The authors have been working on promoting the ever-expanding capability of the Internet to facilitate the education of medical physics to students entering the field. A pilot project has been carried out for six years and reported previously. The project is a collaboration between the Department of Medical Physics at the Toronto Odette Cancer Centre in Canada and the Department of Biomedical Imaging at the University of Malaya in Malaysia. Since 2001, medical physics graduate students at the University of Malaya have been taught by lecturers from Toronto every year, using the Internet as the main tool of communication.The pilot study explored the different methods that can be used to provide real-time interactive remote education, and delivered traditional classroom lectures as well as hands-on workshops.Another similar project was started in 2007 to offer real-time teaching to a class of medical physics students at Wuhan University in Hubei, China. There are new challenges as well as new opportunities associated with this project. By building an inventory of tools and

  9. Real-time failure control (SAFD)

    NASA Technical Reports Server (NTRS)

    Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.

    1990-01-01

    The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.

  10. Low cost real time interactive analysis system

    NASA Technical Reports Server (NTRS)

    Stetina, F.

    1988-01-01

    Efforts continue to develop a low cost real time interactive analysis system for the reception of satellite data. A multi-purpose ingest hardware software frame formatter was demonstrated for GOES and TIROS data and work is proceeding on extending the capability to receive GMS data. A similar system was proposed as an archival and analysis system for use with INSAT data and studies are underway to modify the system to receive the planned SeaWiFS (ocean color) data. This system was proposed as the core of a number of international programs in support of U.S. AID activities. Systems delivered or nearing final testing are listed.

  11. Real-Time Surface Traffic Adviser

    NASA Technical Reports Server (NTRS)

    Glass, Brian J. (Inventor); Spirkovska, Liljana (Inventor); McDermott, William J. (Inventor); Reisman, Ronald J. (Inventor); Gibson, James (Inventor); Iverson, David L. (Inventor)

    2001-01-01

    A real-time data management system which uses data generated at different rates by multiple heterogeneous incompatible data sources are presented. In one embodiment, the invention is as an airport surface traffic data management system (traffic adviser) that electronically interconnects air traffic control, airline, and airport operations user communities to facilitate information sharing and improve taxi queuing. The system uses an expert system to fuse dam from a variety of airline, airport operations, ramp control, and air traffic control sources, in order to establish, predict, and update reference data values for every aircraft surface operation.

  12. Real-time video image processing

    NASA Astrophysics Data System (ADS)

    Smedley, Kirk G.; Yool, Stephen R.

    1990-11-01

    Lockheed has designed and implemented a prototype real-time Video Enhancement Workbench (VEW) using commercial offtheshelf hardware and custom software. The hardware components include a Sun workstation Aspex PIPE image processor time base corrector VCR video camera and realtime disk subsystem. A cornprehensive set of image processing functions can be invoked by the analyst at any time during processing enabling interactive enhancement and exploitation of video sequences. Processed images can be transmitted and stored within the system in digital or video form. VEW also provides image output to a laser printer and to Interleaf technical publishing software.

  13. Real-Time Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Cameron, Kelly B.; Owsley, Patrick A.

    1994-01-01

    Generic Reed-Solomon decoder fast enough to correct errors in real time in practical applications designed to be implemented in fewer and smaller very-large-scale integrated, VLSI, circuit chips. Configured to operate in pipelined manner. One outstanding aspect of decoder design is that Euclid multiplier and divider modules contain Galoisfield multipliers configured as combinational-logic cells. Operates at speeds greater than older multipliers. Cellular configuration highly regular and requires little interconnection area, making it ideal for implementation in extraordinarily dense VLSI circuitry. Flight electronics single chip version of this technology implemented and available.

  14. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  15. Reconfigurable real-time distributed processing network

    NASA Astrophysics Data System (ADS)

    Page, S. F.; Seely, R. D.; Hickman, D.

    2011-06-01

    This paper describes a novel real-time image and signal processing network, RONINTM, which facilitates the rapid design and deployment of systems providing advanced geospatial surveillance and situational awareness capability. RONINTM is a distributed software architecture consisting of multiple agents or nodes, which can be configured to implement a variety of state-of-the-art computer vision and signal processing algorithms. The nodes operate in an asynchronous fashion and can run on a variety of hardware platforms, thus providing a great deal of scalability and flexibility. Complex algorithmic configuration chains can be assembled using an intuitive graphical interface in a plug-and- play manner. RONINTM has been successfully exploited for a number of applications, ranging from remote event detection to complex multiple-camera real-time 3D object reconstruction. This paper describes the motivation behind the creation of the network, the core design features, and presents details of an example application. Finally, the on-going development of the network is discussed, which is focussed on dynamic network reconfiguration. This allows to the network to automatically adapt itself to node or communications failure by intelligently re-routing network communications and through adaptive resource management.

  16. Real Time Simulation of Power Grid Disruptions

    SciTech Connect

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  17. REal-time COsmic Ray Database (RECORD)

    NASA Astrophysics Data System (ADS)

    Usoskin, I.; Kozlov, Valery; Ksenofontov, Leonid, Kudela, Karel; Starodubtsev, Sergei; Turpanov, Alexey; Yanke, Victor

    2003-07-01

    In this paper we present a first distributed REal-time COsmic Ray Database (RECORD). The aim of the project is to develop a unified database with data from different neutron monitors collected together, in unified format and to provide a user with several commonly used data access methods. The database contains not only original cosmic ray data but also auxiliary data necessary for scientific data analysis. Currently the database includes Lomn.Stit, Moscow, Oulu; Tixie Bay, Yakutsk stations. The main database server is located in IKFIA SB RAS (Yakutsk) but there will be several mirrors of the database. The database and all its mirrors are up dated on the nearly real-time (1 hour) basis. The data access software includes WWW-interface, Perl scripts and C library, which may be linked to a user program. Most of frequently used functions are implemented to make it operable to users without SQL language knowledge. A draft of the data representation standard is suggested, based on common practice of neutron monitor community. The database engine is freely distributed open-sourced PostgreSQL server coupled with a set of replication to ols developed at Bio engineering division of the IRCCS E.Medea, Italy.

  18. Machine learning for real time remote detection

    NASA Astrophysics Data System (ADS)

    Labbé, Benjamin; Fournier, Jérôme; Henaff, Gilles; Bascle, Bénédicte; Canu, Stéphane

    2010-10-01

    Infrared systems are key to providing enhanced capability to military forces such as automatic control of threats and prevention from air, naval and ground attacks. Key requirements for such a system to produce operational benefits are real-time processing as well as high efficiency in terms of detection and false alarm rate. These are serious issues since the system must deal with a large number of objects and categories to be recognized (small vehicles, armored vehicles, planes, buildings, etc.). Statistical learning based algorithms are promising candidates to meet these requirements when using selected discriminant features and real-time implementation. This paper proposes a new decision architecture benefiting from recent advances in machine learning by using an effective method for level set estimation. While building decision function, the proposed approach performs variable selection based on a discriminative criterion. Moreover, the use of level set makes it possible to manage rejection of unknown or ambiguous objects thus preserving the false alarm rate. Experimental evidences reported on real world infrared images demonstrate the validity of our approach.

  19. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  20. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E. )

    1989-10-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas e.g. improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. In this paper, such issues are considered, examples given and possibilities discussed.

  1. Real-time design with peer tasks

    NASA Technical Reports Server (NTRS)

    Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.

    1995-01-01

    We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.

  2. Real-time PCR in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Hansen-Hagge, Thomas; Gärtner, Claudia

    2014-03-01

    A central method in a standard biochemical laboratory is represented by the polymerase chain reaction (PCR), therefore many attempts have been performed so far to implement this technique in lab-on-a-chip (LOC) devices. PCR is an ideal candidate for miniaturization because of a reduction of assay time and decreased costs for expensive bio-chemicals. In case of the "classical" PCR, detection is done by identification of DNA fragments electrophoretically separated in agarose gels. This method is meanwhile frequently replaced by the so-called Real-Time-PCR because here the exponential increase of amplificates can be observed directly by measurement of DNA interacting fluorescent dyes. Two main methods for on-chip PCRs are available: traditional "batch" PCR in chambers on a chip using thermal cycling, requiring about 30 minutes for a typical PCR protocol and continuous-flow PCR, where the liquid is guided over stationary temperature zones. In the latter case, the PCR protocol can be as fast as 5 minutes. In the presented work, a proof of concept is demonstrated for a real-time-detection of PCR products in microfluidic systems.

  3. An efficient real time superresolution ASIC system

    NASA Astrophysics Data System (ADS)

    Reddy, Dikpal; Yue, Zhanfeng; Topiwala, Pankaj

    2008-04-01

    Superresolution of images is an important step in many applications like target recognition where the input images are often grainy and of low quality due to bandwidth constraints. In this paper, we present a real-time superresolution application implemented in ASIC/FPGA hardware, and capable of 30 fps of superresolution by 16X in total pixels. Consecutive frames from the video sequence are grouped and the registered values between them are used to fill the pixels in the higher resolution image. The registration between consecutive frames is evaluated using the algorithm proposed by Schaum et al. The pixels are filled by averaging a fixed number of frames associated with the smallest error distances. The number of frames (the number of nearest neighbors) is a user defined parameter whereas the weights in the averaging process are decided by inverting the corresponding smallest error distances. Wiener filter is used to post process the image. Different input parameters, such as size of input image, enlarging factor and the number of nearest neighbors, can be tuned conveniently by the user. We use a maximum word size of 32 bits to implement the algorithm in Matlab Simulink as well as the hardware, which gives us a fine balance between the number of bits and performance. The algorithm performs with real time speed with very impressive superresolution results.

  4. Real-time Raman sensing without spectrometer

    NASA Astrophysics Data System (ADS)

    Kim, Min Ju; Kim, Sungho; Yang, Timothy K.; Kumar, Dinesh; Bae, Sung Chul

    2015-03-01

    Raman spectroscopy has been a powerful tool in various fields of science and technology ranging from analytical chemistry to biomedical imaging. In spite of unique features, Raman spectroscopy has also some limitations. Among them are weak Raman signal compared to strong fluorescence and relatively complicated setup with expensive and bulky spectrometer. In order to increase the sensitivity of Raman technique, many clever attempts have been made and some of them were very successful including CARS, SRS, and so on. However, these still requires expensive and more complicated setup. In this work, we have attempted to build a real-time compact Raman sensor without spectrometer. Conventional spectrometer was replaced with a narrow-band optical filter and alternatively modulated two lasers with slightly different wavelengths. At one laser, Raman signal from a target molecule was transmitted through the optical filter. At the other laser, this signal was blocked by the optical filter and could not be detected by photon detector. The alternative modulation of two lasers will modulate the Raman signal from a target molecule at the same modulation frequency. This modulated weak Raman signal was amplified by a lock-in amplifier. The advantages of this setup include compactness, low cost, real-time monitoring, and so on. We have tested the sensitivity of this setup and we found that it doesn't have enough sensitivity to detect single molecule-level, but it is still good enough to monitor the change of major chemical composition in the sample.

  5. Real-time sensor data validation

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1994-01-01

    This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.

  6. A way to treat phenolic caustic

    SciTech Connect

    Berne, F.; Cadron, E.

    1987-10-01

    Caustic used in the fluid catalytic cracking process will usually have more phenols than most spent caustic. Phenols place an added burden on the job of disposing of the spent caustic. Here is a scheme that has worked satisfactorily for the past three years at Lindsey Oil Refinery Ltd., Killingholm, UK. The system uses acidification, gas stripping, light cycle oil extraction and final deoiling with a coalescer.

  7. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  8. Real-time and interactive virtual Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Hirji, Samira; Downey, Donal B.; Holdsworth, David W.; Steinman, David A.

    2005-04-01

    This paper describes our "virtual" Doppler ultrasound (DUS) system, in which colour DUS (CDUS) images and DUS spectrograms are generated on-the-fly and displayed in real-time in response to position and orientation cues provided by a magnetically tracked handheld probe. As the presence of complex flow often confounds the interpretation of Doppler ultrasound data, this system will serve to be a fundamental tool for training sonographers and gaining insight into the relationship between ambiguous DUS images and complex blood flow dynamics. Recently, we demonstrated that DUS spectra could be realistically simulated in real-time, by coupling a semi-empirical model of the DUS physics to a 3-D computational fluid dynamics (CFD) model of a clinically relevant flow field. Our system is an evolution of this approach where a motion-tracking device is used to continuously update the origin and orientation of a slice passing through a CFD model of a stenosed carotid bifurcation. After calibrating our CFD model onto a physical representation of a human neck, virtual CDUS images from an instantaneous slice are then displayed at a rate of approximately 15 Hz by simulating, on-the-fly, an array of DUS spectra and colour coding the resulting spectral mean velocity using a traditional Doppler colour scale. Mimicking a clinical examination, the operator can freeze the CDUS image on-screen, and a spectrogram corresponding to the selected sample volume location is rendered at a higher frame rate of at least 30 Hz. All this is achieved using an inexpensive desktop workstation and commodity graphics card.

  9. Real-time forecasts of dengue epidemics

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Shaman, J. L.

    2015-12-01

    Dengue is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas with endemic dengue, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission is a significant public health challenge. Here we present a model of dengue transmission and a framework for optimizing model simulations with real-time observational data of dengue cases and environmental variables in order to generate ensemble-based forecasts of the timing and severity of disease outbreaks. The model-inference system is validated using synthetic data and dengue outbreak records. Retrospective forecasts are generated for a number of locations and the accuracy of these forecasts is quantified.

  10. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Cao, Ying (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  11. Real Time Correction of Aircraft Flight Fonfiguration

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.

  12. Real-time value-driven diagnosis

    NASA Technical Reports Server (NTRS)

    Dambrosio, Bruce

    1995-01-01

    Diagnosis is often thought of as an isolated task in theoretical reasoning (reasoning with the goal of updating our beliefs about the world). We present a decision-theoretic interpretation of diagnosis as a task in practical reasoning (reasoning with the goal of acting in the world), and sketch components of our approach to this task. These components include an abstract problem description, a decision-theoretic model of the basic task, a set of inference methods suitable for evaluating the decision representation in real-time, and a control architecture to provide the needed continuing coordination between the agent and its environment. A principal contribution of this work is the representation and inference methods we have developed, which extend previously available probabilistic inference methods and narrow, somewhat, the gap between probabilistic and logical models of diagnosis.

  13. Real time speech formant analyzer and display

    DOEpatents

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  14. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect

    BROCK CT

    2011-01-13

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  15. Identifying financial crises in real time

    NASA Astrophysics Data System (ADS)

    da Fonseca, Eder Lucio; Ferreira, Fernando F.; Muruganandam, Paulsamy; Cerdeira, Hilda A.

    2013-03-01

    Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities.

  16. Cerebral Autoregulation Real-Time Monitoring

    PubMed Central

    Tsalach, Adi; Ratner, Eliahu; Lokshin, Stas; Silman, Zmira; Breskin, Ilan; Budin, Nahum; Kamar, Moshe

    2016-01-01

    Cerebral autoregulation is a mechanism which maintains constant cerebral blood flow (CBF) despite changes in mean arterial pressure (MAP). Assessing whether this mechanism is intact or impaired and determining its boundaries is important in many clinical settings, where primary or secondary injuries to the brain may occur. Herein we describe the development of a new ultrasound tagged near infra red light monitor which tracks CBF trends, in parallel, it continuously measures blood pressure and correlates them to produce a real time autoregulation index. Its performance is validated in both in-vitro experiment and a pre-clinical case study. Results suggest that using such a tool, autoregulation boundaries as well as its impairment or functioning can be identified and assessed. It may therefore assist in individualized MAP management to ensure adequate organ perfusion and reduce the risk of postoperative complications, and might play an important role in patient care. PMID:27571474

  17. Terrestrial Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  18. Real-time, face recognition technology

    SciTech Connect

    Brady, S.

    1995-11-01

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory recently developed the real-time, face recognition technology KEN. KEN uses novel imaging devices such as silicon retinas developed at Caltech or off-the-shelf CCD cameras to acquire images of a face and to compare them to a database of known faces in a robust fashion. The KEN-Online project makes that recognition technology accessible through the World Wide Web (WWW), an internet service that has recently seen explosive growth. A WWW client can submit face images, add them to the database of known faces and submit other pictures that the system tries to recognize. KEN-Online serves to evaluate the recognition technology and grow a large face database. KEN-Online includes the use of public domain tools such as mSQL for its name-database and perl scripts to assist the uploading of images.

  19. Optimal, real-time control--colliders

    SciTech Connect

    Spencer, J.E.

    1991-05-01

    With reasonable definitions, optimal control is possible for both classical and quantal systems with new approaches called PISC(Parallel) and NISC(Neural) from analogy with RISC (Reduced Instruction Set Computing). If control equals interaction, observation and comparison to some figure of merit with interaction via external fields, then optimization comes from varying these fields to give design or operating goals. Structural stability can then give us tolerance and design constraints. But simulations use simplified models, are not in real-time and assume fixed or stationary conditions, so optimal control goes far beyond convergence rates of algorithms. It is inseparable from design and this has many implications for colliders. 12 refs., 3 figs.

  20. A Flexible Real-Time Architecture

    SciTech Connect

    WICKSTROM,GREGORY L.

    2000-08-17

    Assuring hard real-time characteristics of I/O associated with embedded software is often a difficult task. Input-Output related statements are often intermixed with the computational code, resulting in I/O timing that is dependent on the execution path and computational load. One way to mitigate this problem is through the use of interrupts. However, the non-determinism that is introduced by interrupt driven I/O may be so difficult to analyze that it is prohibited in some high consequence systems. This paper describes a balanced hardware/software solution to obtain consistent interrupt-free I/O timing, and results in software that is much more amenable to analysis.

  1. Real-time color holographic interferometry

    NASA Astrophysics Data System (ADS)

    Desse, Jean-Michel; Albe, Felix; Tribillon, Jean-Louis

    2002-09-01

    A new optical technique based on real-time color holographic interferometry has been developed for analyzing unsteady aerodynamic wakes in fluid mechanics or for measuring displacements and deformations in solid mechanics. The technique's feasibility is demonstrated here. It uses three coherent wavelengths produced simultaneously by a cw laser (mixed argon and krypton). Holograms are recorded on single-layer panchromatic silver halide (Slavich PFG 03C) plates. Results show the optical setup can be adjusted to obtain a uniform background color. The interference fringe pattern visualized is large and colored and exhibits a single central white fringe, which makes the zero order of the interferogram easy to identify. An application in a subsonic wind tunnel is presented, in which the unsteady wake past a cylinder is recorded at high rate.

  2. Real-time color holographic interferometry.

    PubMed

    Desse, Jean-Michel; Albe, Félix; Tribillon, Jean-Louis

    2002-09-01

    A new optical technique based on real-time color holographic interferometry has been developed for analyzing unsteady aerodynamic wakes in fluid mechanics or for measuring displacements and deformations in solid mechanics. The technique's feasibility is demonstrated here. It uses three coherent wavelengths produced simultaneously by a cw laser (mixed argon and krypton). Holograms are recorded on single-layer panchromatic silver halide (Slavich PFG 03C) plates. Results show the optical setup can be adjusted to obtain a uniform background color. The interference fringe pattern visualized is large and colored and exhibits a single central white fringe, which makes the zero order of the interferogram easy to identify. An application in a subsonic wind tunnel is presented, in which the unsteady wake past a cylinder is recorded at high rate.

  3. In-line real time air monitor

    DOEpatents

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  4. In-line real time air monitor

    DOEpatents

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  5. Real time speech formant analyzer and display

    DOEpatents

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  6. A Measure of Real-Time Intelligence

    NASA Astrophysics Data System (ADS)

    Gavane, Vaibhav

    2013-03-01

    We propose a new measure of intelligence for general reinforcement learning agents, based on the notion that an agent's environment can change at any step of execution of the agent. That is, an agent is considered to be interacting with its environment in real-time. In this sense, the resulting intelligence measure is more general than the universal intelligence measure (Legg and Hutter, 2007) and the anytime universal intelligence test (Hernández-Orallo and Dowe, 2010). A major advantage of the measure is that an agent's computational complexity is factored into the measure in a natural manner. We show that there exist agents with intelligence arbitrarily close to the theoretical maximum, and that the intelligence of agents depends on their parallel processing capability. We thus believe that the measure can provide a better evaluation of agents and guidance for building practical agents with high intelligence.

  7. Near Real Time Quantitative Gas Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Herget, William F.; Tromp, Marianne L.; Anderson, Charles R.

    1985-12-01

    A Fourier transform infrared (FT-IR) - based system has been developed and is undergoing evaluation for near real time multicomponent quantitative analysis of undiluted gaseous automotive exhaust emissions. The total system includes: (1) a gas conditioning system (GCS) for tracer gas injection, gas mixing, and temperature stabilization; and (2) an exhaust gas analyzer (EGA) consisting of a sample cell, an FT-IR system, and a computerized data processing system. Tests have shown that the system can monitor about 20 individual species (concentrations down to the 1-20 ppm range) with a time resolution of one second. Tests have been conducted on a chassis dynamometer system utilizing different autos, different fuels, and different driving cycles. Results were compared with those obtained using a standard constant volume sampling (CVS) system.

  8. Near real-time stereo vision system

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  9. Otolaryngology consultations by real-time telemedicine.

    PubMed Central

    Ullah, R.; Gilliland, D.; Adams, D.

    2002-01-01

    We aimed to assess the value of real-time telemedicine using low cost videoconferencing equipment for otorhinolaryngology consultations. A general practitioner, using low cost videoconferencing equipment, presented patients to an otorhinolaryngologist. After history taking and clinical examination, investigations were requested if required and a diagnosis and management plan formulated. The patients were then seen, by the same otorhinolaryngologist, for a conventional face-to-face consultation. Differences in the history, clinical examination and investigation requests were reported. The accuracy of diagnosis and correlation of management plans between the two consultations were analysed. Forty-three patients were admitted to the study but one, a young child, refused examination either by tele-link or the conventional approach and had to be excluded. There were thus 42 patients with 55 diagnoses included in the trial, 26 (62%) females and 16 (38%) males. Age range was 5 months to 70 years. There was no difficulty with any of the patients in obtaining an accurate history and ordering investigations, if required, via the telelink. Clinical examination during the tele-link consultation was inadequate for eight out of the first 20 patients, resulting in a wrong diagnosis in three patients and a missed diagnosis in five patients. All of the next 22 patients had a correct diagnosis and management plan. Comparison of data from the two types of consultation showed that a correct diagnosis and management plan was made in 34 patients. Low cost real-time telemedicine is a useful technique, providing reliable otorhinolaryngology consultations in a general practice setting. However initial difficulties due to inexperience in using the equipment need to be overcome. PMID:12137160

  10. Towards real time speckle controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf

    2016-03-01

    Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.

  11. Real-time visualization of joint cavitation.

    PubMed

    Kawchuk, Gregory N; Fryer, Jerome; Jaremko, Jacob L; Zeng, Hongbo; Rowe, Lindsay; Thompson, Richard

    2015-01-01

    Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking.

  12. FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Dandekar, Omkar S.; Shekhar, Raj

    2005-02-01

    Three-dimensional ultrasonic imaging, especially the emerging real-time version of it, is particularly valuable in medical applications such as echocardiography, obstetrics and surgical navigation. A known problem with ultrasound images is their high level of speckle noise. Anisotropic diffusion filtering has been shown to be effective in enhancing the visual quality of 3D ultrasound images and as preprocessing prior to advanced image processing. However, due to its arithmetic complexity and the sheer size of 3D ultrasound images, it is not possible to perform online, real-time anisotropic diffusion filtering using standard software implementations. We present an FPGA-based architecture that allows performing anisotropic diffusion filtering of 3D images at acquisition rates, thus enabling the use of this filtering technique in real-time applications, such as visualization, registration and volume rendering.

  13. Real-time data flow and product generating for GNSS

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Caissy, Mark

    2004-01-01

    The last IGS workshop with the theme 'Towards Real-Time' resulted in the design of a prototype for real-time data and sharing within the IGS. A prototype real-time network is being established that will serve as a test bed for real-time activities within the IGS. We review the developments of the prototype and discuss some of the existing methods and related products of real-time GNSS systems. Recommendations are made concerning real-time data distribution and product generation.

  14. A tool for modeling concurrent real-time computation

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.

    1990-01-01

    Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.

  15. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    PubMed

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays.

  16. Real-time range generation for ladar hardware-in-the-loop testing

    NASA Astrophysics Data System (ADS)

    Olson, Eric M.; Coker, Charles F.

    1996-05-01

    Real-time closed loop simulation of LADAR seekers in a hardware-in-the-loop facility can reduce program risk and cost. This paper discusses an implementation of real-time range imagery generated in a synthetic environment at the Kinetic Kill Vehicle Hardware-in-the Loop facility at Eglin AFB, for the stimulation of LADAR seekers and algorithms. The computer hardware platform used was a Silicon Graphics Incorporated Onyx Reality Engine. This computer contains graphics hardware, and is optimized for generating visible or infrared imagery in real-time. A by-produce of the rendering process, in the form of a depth buffer, is generated from all objects in view during its rendering process. The depth buffer is an array of integer values that contributes to the proper rendering of overlapping objects and can be converted to range values using a mathematical formula. This paper presents an optimized software approach to the generation of the scenes, calculation of the range values, and outputting the range data for a LADAR seeker.

  17. Real-time visualization of large volume datasets on standard PC hardware.

    PubMed

    Xie, Kai; Yang, Jie; Zhu, Y M

    2008-05-01

    In medical area, interactive three-dimensional volume visualization of large volume datasets is a challenging task. One of the major challenges in graphics processing unit (GPU)-based volume rendering algorithms is the limited size of texture memory imposed by current GPU architecture. We attempt to overcome this limitation by rendering only visible parts of large CT datasets. In this paper, we present an efficient, high-quality volume rendering algorithm using GPUs for rendering large CT datasets at interactive frame rates on standard PC hardware. We subdivide the volume dataset into uniform sized blocks and take advantage of combinations of early ray termination, empty-space skipping and visibility culling to accelerate the whole rendering process and render visible parts of volume data. We have implemented our volume rendering algorithm for a large volume data of 512 x 304 x 1878 dimensions (visible female), and achieved real-time performance (i.e., 3-4 frames per second) on a Pentium 4 2.4GHz PC equipped with NVIDIA Geforce 6600 graphics card ( 256 MB video memory). This method can be used as a 3D visualization tool of large CT datasets for doctors or radiologists.

  18. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    NASA Technical Reports Server (NTRS)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  19. Real-Time Principal-Component Analysis

    NASA Technical Reports Server (NTRS)

    Duong, Vu; Duong, Tuan

    2005-01-01

    A recently written computer program implements dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN), which was described in Method of Real-Time Principal-Component Analysis (NPO-40034) NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 59. To recapitulate: DOGEDYN is a method of sequential principal-component analysis (PCA) suitable for such applications as data compression and extraction of features from sets of data. In DOGEDYN, input data are represented as a sequence of vectors acquired at sampling times. The learning algorithm in DOGEDYN involves sequential extraction of principal vectors by means of a gradient descent in which only the dominant element is used at each iteration. Each iteration includes updating of elements of a weight matrix by amounts proportional to a dynamic initial learning rate chosen to increase the rate of convergence by compensating for the energy lost through the previous extraction of principal components. In comparison with a prior method of gradient-descent-based sequential PCA, DOGEDYN involves less computation and offers a greater rate of learning convergence. The sequential DOGEDYN computations require less memory than would parallel computations for the same purpose. The DOGEDYN software can be executed on a personal computer.

  20. Real-time adaptive radiometric compensation.

    PubMed

    Grundhöfer, Anselm; Bimber, Oliver

    2008-01-01

    Recent radiometric compensation techniques make it possible to project images onto colored and textured surfaces. This is realized with projector-camera systems by scanning the projection surface on a per-pixel basis. Using the captured information, a compensation image is calculated that neutralizes geometric distortions and color blending caused by the underlying surface. As a result, the brightness and the contrast of the input image is reduced compared to a conventional projection onto a white canvas. If the input image is not manipulated in its intensities, the compensation image can contain values that are outside the dynamic range of the projector. These will lead to clipping errors and to visible artifacts on the surface. In this article, we present an innovative algorithm that dynamically adjusts the content of the input images before radiometric compensation is carried out. This reduces the perceived visual artifacts while simultaneously preserving a maximum of luminance and contrast. The algorithm is implemented entirely on the GPU and is the first of its kind to run in real-time.

  1. Real-Time Accumulative Computation Motion Detectors

    PubMed Central

    Fernández-Caballero, Antonio; López, María Teresa; Castillo, José Carlos; Maldonado-Bascón, Saturnino

    2009-01-01

    The neurally inspired accumulative computation (AC) method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a) A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b) A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively. PMID:22303161

  2. Real-time virtual Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Khoshniat, Mahdieh; Thorne, Meghan L.; Poepping, Tamie L.; Holdsworth, David W.; Steinman, David A.

    2004-04-01

    Doppler ultrasound (DUS) is widely used to diagnose and plan treatments for vascular diseases, but the relationship between complex blood flow dynamics and the observed DUS signal is not completely understood. In this paper, we demonstrate that Doppler ultrasound can be realistically simulated in a real-time manner via the coupling of a known, previously computed velocity field with a simple model of the ultrasound physics. In the present case a 3D computational fluid dynamics (CFD) model of physiologically pulsatile flow a stenosed carotid bifurcation was interrogated using a sample volume of known geometry and power distribution. Velocity vectors at points within the sample volume were interpolated using a fast geometric search algorithm and, using the specified US probe characteristics and orientation, converted into Doppler shifts for subsequent display as a Doppler spectrogram or color DUS image. The important effect of the intrinsic spectral broadening was simulated by convolving the velocity at each point within the sample volume by a triangle function whose width was proportional to velocity. A spherical sample volume with a Gaussian power distribution was found to be adequate for producing realistic Doppler spectrogram in regions of uniform, jet, and recirculation flow. Fewer than 1000 points seeded uniformly within a radius comprising more than 99% of the total power were required, allowing spectra to be generated from high resolution CFD data at 100Hz frame rates on an inexpensive desktop workstation.

  3. High sensitivity real-time NVR monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D. (Inventor); Chuan, Raymond L. (Inventor)

    1997-01-01

    A real time non-volatile residue (NVR) monitor, which utilizes surface acoustic wave (SAW) resonators to detect molecular contamination in a given environment. The SAW resonators operate at a resonant frequency of approximately 200 MHz-2,000 MHz which enables the NVR monitor to detect molecular contamination on the order of 10.sup.-11 g-cm.sup.-2 to 10.sup.-13 g-cm.sup.2. The NVR monitor utilizes active temperature control of (SAW) resonators to achieve a stable resonant frequency. The temperature control system of the NVR monitor is able to directly heat and cool the SAW resonators utilizing a thermoelectric element to maintain the resonators at a present temperature independent of the environmental conditions. In order to enable the direct heating and cooling of the SAW resonators, the SAW resonators are operatively mounted to a heat sink. In one embodiment, the heat sink is located in between the SAW resonators and an electronic circuit board which contains at least a portion of the SAW control electronics. The electrical leads of the SAW resonators are connected through the heat sink to the circuit board via an electronic path which prevents inaccurate frequency measurement.

  4. Recommendations for Real-Time Speech MRI

    PubMed Central

    Lingala, Sajan Goud; Sutton, Brad P.; Miquel, Marc E.; Nayak, Krishna S.

    2016-01-01

    Real-time magnetic resonance imaging (RT-MRI) is being increasingly used for speech and vocal production research studies. Several imaging protocols have emerged based on advances in RT-MRI acquisition, reconstruction, and audio-processing methods. This review summarizes the state-of-the-art, discusses technical considerations, and provides specific guidance for new groups entering this field. We provide recommendations for performing RT-MRI of the upper airway. This is a consensus statement stemming from the ISMRM-endorsed Speech MRI summit held in Los Angeles, February 2014. A major unmet need identified at the summit was the need for consensus on protocols that can be easily adapted by researchers equipped with conventional MRI systems. To this end, we provide a discussion of tradeoffs in RT-MRI in terms of acquisition requirements, a priori assumptions, artifacts, computational load, and performance for different speech tasks. We provide four recommended protocols and identify appropriate acquisition and reconstruction tools. We list pointers to open-source software that facilitate implementation. We conclude by discussing current open challenges in the methodological aspects of RT-MRI of speech. PMID:26174802

  5. Real-time DIRCM system modeling

    NASA Astrophysics Data System (ADS)

    Petersson, Mikael

    2004-12-01

    Directed infrared countermeasures (DIRCM) play an increasingly important role in electronic warfare to counteract threats posed by infrared seekers. The usefulness and performance of such countermeasures depend, for example, on atmospheric conditions (attenuation and turbulence) and platform vibrations, causing pointing and tracking errors for the laser beam and reducing the power transferred to the seeker aperture. These problems make it interesting to simulate the performance of a DIRCM system in order to understand how easy or difficult it is to counteract an approaching threat and evaluate limiting factors in various situations. This paper describes a DIRCM model that has been developed, including atmospheric effects such as attenuation and turbulence as well as closed loop tracking algorithms, where the retro reflex of the laser is used for the pointing control of the beam. The DIRCM model is part of a large simulation framework (EWSim), which also incorporates several descriptions of different seekers (e.g. reticle, rosette, centroid, nutating cross) and models of robot dynamics. Effects of a jamming laser on a specific threat can be readily verified by simulations within this framework. The duel between missile and countermeasure is simulated in near real-time and visualized graphically in 3D. A typical simulation with a reticle seeker jammed by a modulated laser is included in the paper.

  6. Near Real Time Ship Detection Experiments

    NASA Astrophysics Data System (ADS)

    Brusch, S.; Lehner, S.; Schwarz, E.; Fritz, T.

    2010-04-01

    A new Near Real Time (NRT) ship detection processor SAINT (SAR AIS Integrated Toolbox) was developed in the framework of the ESA project MARISS. Data are received at DLRs ground segment DLR-BN (Neustrelitz, Germany). Results of the ship detection are available on ftp server within 30 min after the acquisition started. The detectability of ships on Synthetic Aperture Radar (SAR) ERS-2, ENVISAT ASAR and TerraSAR-X (TS-X) images is validated by coastal (live) AIS and space AIS. The monitoring areas chosen for surveillance are the North-, Baltic Sea, and Cape Town. The detectability in respect to environmental parameters like wind field, sea state, currents and changing coastlines due to tidal effects is investigated. In the South Atlantic a tracking experiment of the German research vessel Polarstern has been performed. Issues of piracy in particular in respect to ships hijacked at the Somali coast are discussed. Some examples using high resolution images from TerraSAR-X are given.

  7. Real-Time 3D Visualization

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  8. Real-time optoacoustic monitoring of stroke

    NASA Astrophysics Data System (ADS)

    Kneipp, Moritz; Turner, Jake; Hambauer, Sebastian; Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-03-01

    Characterizing disease progression and identifying possible therapeutic interventions in stroke is greatly aided by the use of longitudinal function imaging studies. In this study, we investigate the applicability of real-time multispectral optoacoustic tomography (MSOT) as a tool for non-invasive monitoring of the progression of stroke in the whole brain. The middle cerebral artery occlusion (MCAO) method was used to induce stroke. Mice were imaged under isoflurane anesthesia preoperatively and at several time points during and after the 60-minute occlusion. The animals were sacrificed after 24 hours and their excised brains frozen at -80°C for sectioning. The cryosection were stained using H&E staining to identify the ischemic lesion. Major vessels are readily identifiable in the whole mouse head in the in vivo optoacoustic scans. During ischemia, a reduction in cerebral blood volume is detectable in the cortex. Post ischemia, spectral unmixing of the optoacoustic signals shows an asymmetry of the deoxygenated hemoglobin in the hemisphere affected by MCAO. This hypoxic area was mainly located around the boundary of the ischemic lesion and was therefore identified as the ischemic penumbra. Non-invasive functional MSOT imaging is able to visualize the hypoxic penumbra in brains affected by stroke. Stopping the spread of the infarct area and revitalizing the penumbra is central in stroke research, this new imaging technique may therefore prove to be a valuable tool in the monitoring and developing new treatments.

  9. Ames Lab 101: Real-Time 3D Imaging

    SciTech Connect

    Zhang, Song

    2010-01-01

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  10. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2016-07-12

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  11. Real-time visual simulation of APT system based on RTW and Vega

    NASA Astrophysics Data System (ADS)

    Xiong, Shuai; Fu, Chengyu; Tang, Tao

    2012-10-01

    The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.

  12. 76 FR 42536 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... available and share traffic and travel conditions information via real-time information programs as required... additional comments relating to the costs and benefits of the Real-Time System Management Information...

  13. Real-time support for high performance aircraft operation

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1989-01-01

    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.

  14. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  15. 17 CFR 38.157 - Real-time market monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Real-time market monitoring... DESIGNATED CONTRACT MARKETS Compliance With Rules § 38.157 Real-time market monitoring. A designated contract market must conduct real-time market monitoring of all trading activity on its electronic...

  16. In-situ caustic generation from sewage: the impact of caustic strength and sewage composition.

    PubMed

    Pikaar, Ilje; Rozendal, René A; Rabaey, Korneel; Yuan, Zhiguo

    2013-10-01

    Periodic caustic dosage is a commonly used method by the water industry to elevate pH levels and deactivate sewer biofilms responsible for hydrogen sulfide generation. Caustic (NaOH) can be generated in-situ from sewage using a divided electrochemical cell, which avoids the need for transport, handling and storage of concentrated caustic solutions. In this study, we investigated the impact of caustic strength in the cathode compartment and the impact of sodium concentration in sewage on the Coulombic efficiency (CE) for caustic generation. The CE was found to be independent of the caustic strength produced in the range of up to ~3 wt%. Results showed that a caustic solution of ~3 wt% could be produced directly from sewage at a CE of up to 75 ± 0.5%. The sodium concentration in sewage had a significant impact on the CE for caustic generation as well as on the energy requirements of the system, with a higher sodium concentration leading to a higher CE and lower energy consumption. The proton, calcium, magnesium and ammonium concentrations in sewage affected the CE for caustic generation, especially at low sodium concentrations. Economical assessment based on the experimental results indicated that sulfide control in sewers using electrochemically-generated caustic from sewage is an economically attractive strategy.

  17. Apparatus Characterizes Transient Voltages in Real Time

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    is received, a volatile memory is filled with data for a total time of 200 ms. After the data are transferred to nonvolatile memory, the recorder rearms itself within 400 ms to enable recording of subsequent transients. Unfortunately, the recorded data must be retrieved through a serial communication link. Depending on the amount of data recorded, the memory can be filled before retrieval is completed. Although large amounts of data are recorded and retrieved, only a small part of the information (the selected parameters) is usually required. The present transient-voltage recorder provides the required information, without incurring the overhead associated with the recording, storage, and retrieval of complete transient-waveform data. In operation, this apparatus processes transient voltage waveforms in real time to extract and record the selected parameters. An analog-to-digital converter that operates at a speed of as much as 100 mega-samples per second is used to sample a transient waveform. A real-time comparator and peak detector are implemented by use of fast field-programmable gate arrays.

  18. Investigation into the use of a personal computer for generating real-time infrared imagery

    NASA Astrophysics Data System (ADS)

    le Roux, Francois P.; Collin, Francois G.; Leuschner, F. Wilhelm

    2001-08-01

    The simulation of infrared imagery forms an integral part of the design and evaluation of infrared systems. HWIL simulations require imagery at frame rates of 100Hz and above. The generation of real-time imagery used to be the domain of graphics super-computers and custom rendering hardware. We investigated the use of a new generation of personal computer graphics accelerators to generate real-time infrared imagery, using OpenGL as the graphics library. The hardware was a NVIDIA GeForce-based graphics accelerator running on a standard Pentium III computer. The graphics accelerator is limited to a color resolution of 8 bits per channel. A technique was investigated to artificially increase this resolution in order to increase the fidelity of the simulation. OpenGL was designed to render images in the visual band. The implementation of the simulation in OpenGL requires the mapping of spectrally variant entities such as atmospheric transmittance to single parameter equivalents. Various combinations of sensor spectral response, source radiance and atmospheric transmittance were investigated to determine the situations under which such a mapping is feasible. A combination of rendering images on the graphics card, and processing the resultant images on the personal computer was investigated to increase the rendering speed and the fidelity of the simulation.

  19. Real-time volumetric scintillation dosimetry

    NASA Astrophysics Data System (ADS)

    Beddar, S.

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential.

  20. Public Science with Real-Time Experiments

    NASA Astrophysics Data System (ADS)

    Lenardic, A.

    2013-12-01

    One of the best ways for professional scientists to engage in public outreach is to get outside of the university and/or lab walls and go out into the public. That is, go to public spaces to do some science experiments with the public - this includes students of all ages that constitute that public. Technological advance in portable measurement gear now allow one to do real, or near real, time experiments in outdoor, public spaces. We have been running a meta-experiment of this sort, aimed at the public display of science, for about a year now in Houston TX at the Lee and Joe Jamail Skatepark. The project goes under the title of Sk8Lab Houston and has introduced students of all ages to the power of scientific experimentation. We bring a portable science pack with us to the park. The pack has a range of wireless measurement gear that allow experiments to be done on the spot. Some of the experiments are designed by us but many are designed on by whoever suggests them to us that day. Over time the Sk8Lab scientists have built up a level of "trust" with the people who frequent the park (no one feels like we are gonna grade them at the park and they know that the learning is not on some regimented clock). This has broken down some learning walls and allowed for a more informal mode of exploration and a more genuine mode of experimentation (as compared to what often happens in class labs when students feel like they are just being forced to reproduce some known result). We will describe some of the test case experiments we have run and also discuss some of the trials, tribulations, and happy successes (many unplanned) along the way.

  1. A real-time prediction of UTC

    NASA Astrophysics Data System (ADS)

    Thomas, Claudine; Allan, David W.

    1994-05-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  2. Real-Time Feature Tracking Using Homography

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel S.; Cheng, Yang; Ansar, Adnan I.; Trotz, David C.; Padgett, Curtis W.

    2010-01-01

    This software finds feature point correspondences in sequences of images. It is designed for feature matching in aerial imagery. Feature matching is a fundamental step in a number of important image processing operations: calibrating the cameras in a camera array, stabilizing images in aerial movies, geo-registration of images, and generating high-fidelity surface maps from aerial movies. The method uses a Shi-Tomasi corner detector and normalized cross-correlation. This process is likely to result in the production of some mismatches. The feature set is cleaned up using the assumption that there is a large planar patch visible in both images. At high altitude, this assumption is often reasonable. A mathematical transformation, called an homography, is developed that allows us to predict the position in image 2 of any point on the plane in image 1. Any feature pair that is inconsistent with the homography is thrown out. The output of the process is a set of feature pairs, and the homography. The algorithms in this innovation are well known, but the new implementation improves the process in several ways. It runs in real-time at 2 Hz on 64-megapixel imagery. The new Shi-Tomasi corner detector tries to produce the requested number of features by automatically adjusting the minimum distance between found features. The homography-finding code now uses an implementation of the RANSAC algorithm that adjusts the number of iterations automatically to achieve a pre-set probability of missing a set of inliers. The new interface allows the caller to pass in a set of predetermined points in one of the images. This allows the ability to track the same set of points through multiple frames.

  3. Variational optical flow computation in real time.

    PubMed

    Bruhn, Andrés; Weickert, Joachim; Feddern, Christian; Kohlberger, Timo; Schnörr, Christoph

    2005-05-01

    This paper investigates the usefulness of bidirectional multigrid methods for variational optical flow computations. Although these numerical schemes are among the fastest methods for solving equation systems, they are rarely applied in the field of computer vision. We demonstrate how to employ those numerical methods for the treatment of variational optical flow formulations and show that the efficiency of this approach even allows for real-time performance on standard PCs. As a representative for variational optic flow methods, we consider the recently introduced combined local-global method. It can be considered as a noise-robust generalization of the Horn and Schunck technique. We present a decoupled, as well as a coupled, version of the classical Gauss-Seidel solver, and we develop several multgrid implementations based on a discretization coarse grid approximation. In contrast, with standard bidirectional multigrid algorithms, we take advantage of intergrid transfer operators that allow for nondyadic grid hierarchies. As a consequence, no restrictions concerning the image size or the number of traversed levels have to be imposed. In the experimental section, we juxtapose the developed multigrid schemes and demonstrate their superior performance when compared to unidirectional multgrid methods and nonhierachical solvers. For the well-known 316 x 252 Yosemite sequence, we succeeded in computing the complete set of dense flow fields in three quarters of a second on a 3.06-GHz Pentium4 PC. This corresponds to a frame rate of 18 flow fields per second which outperforms the widely-used Gauss-Seidel method by almost three orders of magnitude.

  4. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  5. A real-time prediction of UTC

    NASA Technical Reports Server (NTRS)

    Thomas, Claudine; Allan, David W.

    1994-01-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  6. ProteinShader: illustrative rendering of macromolecules

    PubMed Central

    Weber, Joseph R

    2009-01-01

    Background Cartoon-style illustrative renderings of proteins can help clarify structural features that are obscured by space filling or balls and sticks style models, and recent advances in programmable graphics cards offer many new opportunities for improving illustrative renderings. Results The ProteinShader program, a new tool for macromolecular visualization, uses information from Protein Data Bank files to produce illustrative renderings of proteins that approximate what an artist might create by hand using pen and ink. A combination of Hermite and spherical linear interpolation is used to draw smooth, gradually rotating three-dimensional tubes and ribbons with a repeating pattern of texture coordinates, which allows the application of texture mapping, real-time halftoning, and smooth edge lines. This free platform-independent open-source program is written primarily in Java, but also makes extensive use of the OpenGL Shading Language to modify the graphics pipeline. Conclusion By programming to the graphics processor unit, ProteinShader is able to produce high quality images and illustrative rendering effects in real-time. The main feature that distinguishes ProteinShader from other free molecular visualization tools is its use of texture mapping techniques that allow two-dimensional images to be mapped onto the curved three-dimensional surfaces of ribbons and tubes with minimum distortion of the images. PMID:19331660

  7. 27 CFR 21.102 - Caustic soda, liquid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Caustic soda, liquid. 21....102 Caustic soda, liquid. (a) The liquid caustic soda may consist of either 50 percent or 73 percent...: Accurately weigh 2 grams of liquid caustic soda into a 100 ml volumetric flask, dissolve, and dilute to...

  8. 27 CFR 21.102 - Caustic soda, liquid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Caustic soda, liquid. 21....102 Caustic soda, liquid. (a) The liquid caustic soda may consist of either 50 percent or 73 percent...: Accurately weigh 2 grams of liquid caustic soda into a 100 ml volumetric flask, dissolve, and dilute to...

  9. 27 CFR 21.102 - Caustic soda, liquid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Caustic soda, liquid. 21....102 Caustic soda, liquid. (a) The liquid caustic soda may consist of either 50 percent or 73 percent...: Accurately weigh 2 grams of liquid caustic soda into a 100 ml volumetric flask, dissolve, and dilute to...

  10. 27 CFR 21.102 - Caustic soda, liquid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Caustic soda, liquid. 21....102 Caustic soda, liquid. (a) The liquid caustic soda may consist of either 50 percent or 73 percent...: Accurately weigh 2 grams of liquid caustic soda into a 100 ml volumetric flask, dissolve, and dilute to...

  11. MEDIFRAME--remote volume rendering visualization framework.

    PubMed

    Unterhinninghofen, Roland; Giesel, Frederik; Dillmann, Rüdiger

    2011-01-01

    Tablet computers, netbooks, and other mobile devices find their way into medical applications. However, advanced visualization such as volume rendering of tomographic data is too demanding for these devices. Hence the concept of remote visualization gains attention again. Using powerful servers views are rendered and transmitted as video-stream to the mobile devices in real-time. In this article we present a new extension to our software framework Mediframe allowing easy setup of remote visualization in the medical imaging domain. We give an overview of the general visualization architecture and explain the remoting component in detail. Tests from different cities in Europe revealed good latency and rendering times as well as a surprisingly smooth user experience. We conclude that our remote visualization framework is a handy, functional extension to medical visualization applications.

  12. Caustic ingestion and esophageal function

    SciTech Connect

    Cadranel, S.; Di Lorenzo, C.; Rodesch, P.; Piepsz, A.; Ham, H.R. )

    1990-02-01

    The aim of the present study was to investigate esophageal motor function by means of krypton-81m esophageal transit scintigraphy and to compare the results with the functional and morphological data obtained by means of triple lumen manometry and endoscopy. In acute and subacute stages of the disease, all clinical, anatomical, and functional parameters were in good agreement, revealing significant impairment. In chronic stages, the severity of the dysphagia was not correlated to the importance of the residual stenosis. Conversely, 81mKr esophageal transit and manometric's findings were in good agreement with the clinical symptoms, during the entire follow-up period ranging between 3 months to 7 years. The 81mKr test is undoubtedly the easiest and probably the most physiological technique currently available for long-term functional evaluation of caustic esophagitis.

  13. Instrumentation development for real time brainwave monitoring.

    SciTech Connect

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could capture, analyze, and communicate

  14. Real-time {sup 90}Sr Counter

    SciTech Connect

    Kaneko, Naomi; Kawai, Hideyuki; Kodama, Satoshi; Kobayashi, Atsushi; Tabata, Makoto; Ito, Hiroshi; Han, Soorim

    2015-07-01

    Radioisotopes have been emitted around Japan due to a nuclear accident at the Fukushima Daiichi nuclear power station in March 2011. A problem is the contaminated water including the atomic nucleus which relatively has a long half- life time and soluble such as {sup 90}Sr, {sup 137}Cs. Internal exposures by {sup 90}Sr are more dangerous than {sup 137}Cs's because Sr has effective half-life time of 18 years and property of accumulation in a born. We have developed real-time {sup 90}Sr counter which is sensitive beta-ray of maximum kinematic energy of 2.28 MeV from {sup 90}Sr and insensitive of beta-ray of maximum kinematic energy of 1.17 MeV and gamma-ray from {sup 90}Sr by Cherenkov detection. This counter composes of Cerenkov counter, trigger scintillation counter and veto counter. Silica aerogel for Cherenkov counter can obtain refractive index between 1.017 and 1.049 easily. And wavelength shifting fiber (WLSF) is used as a light guide for extending effective area and producing lower cost. A mechanism of the identification of {sup 90}Sr is explained in following. In case of {sup 90}Sr, when the trigger counter reacts on the beta-ray from {sup 90}Sr, aerogel emits the Cherenkov light and WLSF reacts and read the Cherenkov light. On the other hand, in case of {sup 137}Cs, the trigger counter reacts on the beta-ray, aerogel stops the beta- ray and Cherenkov light is not emitted. Therefore, aerogel has a function as a radiator and shielding material. the gamma-ray is not reacted on the lower density detector. Cosmic rays would be also reacted by the veto counter. A prototype counter whose the effective area is 30 cm x 10 cm was obtained (2.0±1.2){sup 3} of mis-identification as {sup 137}Cs/{sup 90}Sr. Detection limit in the surface contamination inspection depends on measurement time and effective area mainly. The sensitivity of wide range, 10{sup -2} - 10{sup 4} Bq/cm{sup 2}, is obtained by adjustment of detection level in circuit of this counter. A lower

  15. Real-time Forensic Disaster Analysis

    NASA Astrophysics Data System (ADS)

    Wenzel, F.; Daniell, J.; Khazai, B.; Mühr, B.; Kunz-Plapp, T.; Markus, M.; Vervaeck, A.

    2012-04-01

    The Center for Disaster Management and Risk Reduction Technology (CEDIM, www.cedim.de) - an interdisciplinary research center founded by the German Research Centre for Geoscience (GFZ) and Karlsruhe Institute of Technology (KIT) - has embarked on a new style of disaster research known as Forensic Disaster Analysis. The notion has been coined by the Integrated Research on Disaster Risk initiative (IRDR, www.irdrinternational.org) launched by ICSU in 2010. It has been defined as an approach to studying natural disasters that aims at uncovering the root causes of disasters through in-depth investigations that go beyond the reconnaissance reports and case studies typically conducted after disasters. In adopting this comprehensive understanding of disasters CEDIM adds a real-time component to the assessment and evaluation process. By comprehensive we mean that most if not all relevant aspects of disasters are considered and jointly analysed. This includes the impact (human, economy, and infrastructure), comparisons with recent historic events, social vulnerability, reconstruction and long-term impacts on livelihood issues. The forensic disaster analysis research mode is thus best characterized as "event-based research" through systematic investigation of critical issues arising after a disaster across various inter-related areas. The forensic approach requires (a) availability of global data bases regarding previous earthquake losses, socio-economic parameters, building stock information, etc.; (b) leveraging platforms such as the EERI clearing house, relief-web, and the many sources of local and international sources where information is organized; and (c) rapid access to critical information (e.g., crowd sourcing techniques) to improve our understanding of the complex dynamics of disasters. The main scientific questions being addressed are: What are critical factors that control loss of life, of infrastructure, and for economy? What are the critical interactions

  16. Benchmarking real-time HEVC streaming

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2012-06-01

    Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently gaining pace. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC). Thus far, work on HEVC has concentrated on improvements to the coding efficiency and has not yet addressed transmission in networks other than to mandate byte stream compliance with Annex B of H.264/AVC. For practical networked HEVC applications a number of essential building blocks have yet to be defined. In this work, we design and prototype a real-time HEVC streaming system and empirically evaluate its performance, in particular we consider the robustness of the current Test Model under Consideration (TMuC HM4.0) for HEVC to packet loss caused by a reduction in available bandwidth both in terms of decoder resilience and degradation in perceptual video quality. A NAL unit packetisation and streaming framework for HEVC encoded video streams is designed, implemented and empirically tested in a number of streaming environments including wired, wireless, single path and multiple path network scenarios. As a first step the HEVC decoder's error resilience is tested under a comprehensive set of packet loss conditions and a simple error concealment method for HEVC is implemented. Similarly to H.264 encoded streams, the size and distribution of NAL units within an HEVC stream and the nature of the NAL unit dependencies influences the packetisation and streaming strategies which may be employed for such streams. The relationships between HEVC encoding mode and the quality of the received video are shown under a wide range of bandwidth constraints. HEVC streaming is evaluated in both single and multipath network configuration scenarios. Through the use of extensive experimentation, we establish a comprehensive set of benchmarks for HEVC streaming in loss prone network environments. We show the visual quality

  17. Real Time Wide Area Radiation Surveillance System

    NASA Astrophysics Data System (ADS)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  18. Parallel sphere rendering

    SciTech Connect

    Krogh, M.; Painter, J.; Hansen, C.

    1996-10-01

    Sphere rendering is an important method for visualizing molecular dynamics data. This paper presents a parallel algorithm that is almost 90 times faster than current graphics workstations. To render extremely large data sets and large images, the algorithm uses the MIMD features of the supercomputers to divide up the data, render independent partial images, and then finally composite the multiple partial images using an optimal method. The algorithm and performance results are presented for the CM-5 and the M.

  19. Real Time Flux Control in PM Motors

    SciTech Connect

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

  20. Real-Time Wireless Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non

  1. Fast Simulation of Tsunamis in Real Time

    NASA Astrophysics Data System (ADS)

    Fryer, G. J.; Wang, D.; Becker, N. C.; Weinstein, S. A.; Walsh, D.

    2011-12-01

    The U.S. Tsunami Warning Centers primarily base their wave height forecasts on precomputed tsunami scenarios, such as the SIFT model (Standby Inundation Forecasting of Tsunamis) developed by NOAA's Center for Tsunami Research. In SIFT, tsunami simulations for about 1600 individual earthquake sources, each 100x50 km, define shallow subduction worldwide. These simulations are stored in a database and combined linearly to make up the tsunami from any great earthquake. Precomputation is necessary because the nonlinear shallow-water wave equations are too time consuming to compute during an event. While such scenario-based models are valuable, they tacitly assume all energy in a tsunami comes from thrust at the décollement. The thrust assumption is often violated (e.g., 1933 Sanriku, 2007 Kurils, 2009 Samoa), while a significant number of tsunamigenic earthquakes are completely unrelated to subduction (e.g., 1812 Santa Barbara, 1939 Accra, 1975 Kalapana). Finally, parts of some subduction zones are so poorly defined that precomputations may be of little value (e.g., 1762 Arakan, 1755 Lisbon). For all such sources, a fast means of estimating tsunami size is essential. At the Pacific Tsunami Warning Center, we have been using our model RIFT (Real-time Inundation Forecasting of Tsunamis) experimentally for two years. RIFT is fast by design: it solves only the linearized form of the equations. At 4 arc-minutes resolution calculations for the entire Pacific take just a few minutes on an 8-processor Linux box. Part of the rationale for developing RIFT was earthquakes of M 7.8 or smaller, which approach the lower limit of the more complex SIFT's abilities. For such events we currently issue a fixed warning to areas within 1,000 km of the source, which typically means a lot of over-warning. With sources defined by W-phase CMTs, exhaustive comparison with runup data shows that we can reduce the warning area significantly. Even before CMTs are available, we routinely run models

  2. Transient imaging for real-time tracking around a corner

    NASA Astrophysics Data System (ADS)

    Klein, Jonathan; Laurenzis, Martin; Hullin, Matthias

    2016-10-01

    Non-line-of-sight imaging is a fascinating emerging area of research and expected to have an impact in numerous application fields including civilian and military sensing. Performance of human perception and situational awareness can be extended by the sensing of shapes and movement around a corner in future scenarios. Rather than seeing through obstacles directly, non-line-of-sight imaging relies on analyzing indirect reflections of light that traveled around the obstacle. In previous work, transient imaging was established as the key mechanic to enable the extraction of useful information from such reflections. So far, a number of different approaches based on transient imaging have been proposed, with back projection being the most prominent one. Different hardware setups were used for the acquisition of the required data, however all of them have severe drawbacks such as limited image quality, long capture time or very high prices. In this paper we propose the analysis of synthetic transient renderings to gain more insights into the transient light transport. With this simulated data, we are no longer bound to the imperfect data of real systems and gain more flexibility and control over the analysis. In a second part, we use the insights of our analysis to formulate a novel reconstruction algorithm. It uses an adapted light simulation to formulate an inverse problem which is solved in an analysis-by-synthesis fashion. Through rigorous optimization of the reconstruction, it then becomes possible to track known objects outside the line of side in real time. Due to the forward formulation of the light transport, the algorithm is easily expandable to more general scenarios or different hardware setups. We therefore expect it to become a viable alternative to the classic back projection approach in the future.

  3. Real time orthorectification of high resolution airborne pushbroom imagery

    NASA Astrophysics Data System (ADS)

    Reguera-Salgado, Javier; Martin-Herrero, Julio

    2011-11-01

    Advanced architectures have been proposed for efficient orthorectification of digital airborne camera images, including a system based on GPU processing and distributed computing able to geocorrect three digital still aerial photographs per second. Here, we address the computationally harder problem of geocorrecting image data from airborne pushbroom sensors, where each individual image line has associated its own camera attitude and position parameters. Using OpenGL and CUDA interoperability and projective texture techniques, originally developed for fast shadow rendering, image data is projected onto a Digital Terrain Model (DTM) as if by a slide projector placed and rotated in accordance with GPS position and inertial navigation (IMU) data. Each line is sequentially projected onto the DTM to generate an intermediate frame, consisting of a unique projected line shaped by the DTM relief. The frames are then merged into a geometrically corrected georeferenced orthoimage. To target hyperband systems, avoiding the high dimensional overhead, we deal with an orthoimage of pixel placeholders pointing to the raw image data, which are then combined as needed for visualization or processing tasks. We achieved faster than real-time performance in a hyperspectral pushbroom system working at a line rate of 30 Hz with 200 bands and 1280 pixel wide swath over a 1 m grid DTM, reaching a minimum processing speed of 356 lines per second (up to 511 lps), over eleven (up to seventeen) times the acquisition rate. Our method also allows the correction of systematic GPS and/or IMU biases by means of 3D user interactive navigation.

  4. Real-time Graphics Processing Unit Based Fourier Domain Optical Coherence Tomography and Surgical Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Kang

    2011-12-01

    In this dissertation, real-time Fourier domain optical coherence tomography (FD-OCT) capable of multi-dimensional micrometer-resolution imaging targeted specifically for microsurgical intervention applications was developed and studied. As a part of this work several ultra-high speed real-time FD-OCT imaging and sensing systems were proposed and developed. A real-time 4D (3D+time) OCT system platform using the graphics processing unit (GPU) to accelerate OCT signal processing, the imaging reconstruction, visualization, and volume rendering was developed. Several GPU based algorithms such as non-uniform fast Fourier transform (NUFFT), numerical dispersion compensation, and multi-GPU implementation were developed to improve the impulse response, SNR roll-off and stability of the system. Full-range complex-conjugate-free FD-OCT was also implemented on the GPU architecture to achieve doubled image range and improved SNR. These technologies overcome the imaging reconstruction and visualization bottlenecks widely exist in current ultra-high speed FD-OCT systems and open the way to interventional OCT imaging for applications in guided microsurgery. A hand-held common-path optical coherence tomography (CP-OCT) distance-sensor based microsurgical tool was developed and validated. Through real-time signal processing, edge detection and feed-back control, the tool was shown to be capable of track target surface and compensate motion. The micro-incision test using a phantom was performed using a CP-OCT-sensor integrated hand-held tool, which showed an incision error less than +/-5 microns, comparing to >100 microns error by free-hand incision. The CP-OCT distance sensor has also been utilized to enhance the accuracy and safety of optical nerve stimulation. Finally, several experiments were conducted to validate the system for surgical applications. One of them involved 4D OCT guided micro-manipulation using a phantom. Multiple volume renderings of one 3D data set were

  5. Ingestion of caustic alkali farm products.

    PubMed

    Neidich, G

    1993-01-01

    Since the Poison Prevention Packaging Act took effect, the number of ingestions of caustic alkali from household products has been significantly reduced. Commercial caustic alkalis used on farms, however, were not included in this legislation. Fourteen children over a 5 year period were seen after ingestion of commercial caustic alkalis used on farms. Seven of the children had ingested liquid pipeline cleaners and seven had ingested solid agents used for a variety of reasons. Six of seven children ingesting liquid agents did so from nonoriginal containers into which the caustic had been transferred for convenience. All seven children ingesting solid agents did so from the original container. Eight of the 14 children were found to have second-degree or worse esophageal involvement. Both solid and liquid caustic agents used commercially on farms can cause significant morbidity. Development of a child-resistant container for daily transfer of liquid pipeline agents could be helpful in preventing injuries from liquid pipeline cleaners. Pediatric gastroenterologists as well as primary care physicians in rural areas should be familiar with this type of injury and should take an active role in instructing parents of children living on farms to prevent such injuries. Extension of the Poison Prevention Packaging Act to caustic alkalis used on farms needs to be considered.

  6. Real-Time Polymerase Chain Reaction Assays for Rickettsial Diseases

    DTIC Science & Technology

    2004-06-01

    agents in the blood stream the diseases are also difficult to diagnose by laboratory methods. For that reason we have developed real - time PCR assays to...detect rickettsial disease agents both at the genus and the species level. Real - time PCR assays were developed to identify: 1) pathogenic Rickettsia...calculate the sensitivity of the assays. These real - time PCR assays were found to be capable of detecting rickettsial disease agents quickly and with great sensitivity and specificity.

  7. Extensions to Real-time Hierarchical Mine Detection Algorithm

    DTIC Science & Technology

    2002-09-01

    Extensions to Real-Time Hierarchical Mine Detection Algorithm System Number: Patron Number: Requester: Notes: DSIS Use only: Deliver to: DK...Recherche et developpement pour Ia defense Canada Extensions to Real-Time Hierarchical Mine Detection Algorithm Final Report Sinh Duong and Mabo R. Ito...EXTENSIONS TO REAL-TIME HIERARCHICAL MINE DETECTION ALGORITHM FINAL REPORT by Smh Duong and Mabo R Ito The Univer~ity of Bntl~h Columbia Vancouver

  8. Real-Time Trajectory Generation for Autonomous Nonlinear Flight Systems

    DTIC Science & Technology

    2006-04-01

    Real-Time Trajectory Generation for Autonomous Nonlinear Flight Systems AF02T002 Phase II Final Report Contract No. FA9550-04-C-0032 Principal...3. REPORT TYPE AND DATES COVERED Final Report for 14 April 2004-14 April 2006 Real-Time Trajectory Generation for Autonomous Nonlinear Flight...A 13. ABSTRACT (Maximum 200 Words) Unmanned aerial vehicle and smart munition systems need robust, real-time path generation and

  9. A Real-Time Linux for Multicore Platforms

    DTIC Science & Technology

    2013-12-20

    B . Chattopadhyay , S. Baruah. A lookup-table driven approach to partitioned scheduling, IEEE Real-Time Technology and Applications Symposium...reviewed journals: Number of Papers published in non peer-reviewed journals: ( b ) Papers published in non-peer-reviewed journals (N/ A for none) James H...Herman, B . Brandenburg, A . Mills, J. Anderson. Soft Real-Time on Multiprocessors:Are Analysis-Based Schedulers ReallyWorth It?, 32nd IEEE Real-Time

  10. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1993-01-01

    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.

  11. A direct PCA-based approach for real-time description of physiological organ deformations.

    PubMed

    Denis de Senneville, Baudouin; El Hamidi, Abdallah; Moonen, Chrit

    2015-04-01

    Dynamic magnetic resonance (MR)-imaging can provide functional and positional information in real-time, which can be conveniently used online to control a cancer therapy, e.g., using high intensity focused ultrasound or radio therapy. However, a precise real-time correction for motion is fundamental in abdominal organs to ensure an optimal treatment dose associated with a limited toxicity in nearby organs at risk. This paper proposes a real-time direct principal component analysis (PCA)-based technique which offers a robust approach for motion estimation of abdominal organs and allows correcting motion related artifacts. The PCA was used to detect spatio-temporal coherences of the periodic organ motion in a learning step. During the interventional procedure, physiological contributions were characterized quantitatively using a small set of parameters. A coarse-to-fine resolution scheme is proposed to improve the stability of the algorithm and afford a predictable constant latency of 80 ms. The technique was evaluated on 12 free-breathing volunteers and provided an improved real-time description of motion related to both breathing and cardiac cycles. A reduced learning step of 10 s was sufficient without any need for patient-specific control parameters, rendering the method suitable for clinical use.

  12. Multivariate volume rendering

    SciTech Connect

    Crawfis, R.A.

    1996-03-01

    This paper presents a new technique for representing multivalued data sets defined on an integer lattice. It extends the state-of-the-art in volume rendering to include nonhomogeneous volume representations. That is, volume rendering of materials with very fine detail (e.g. translucent granite) within a voxel. Multivariate volume rendering is achieved by introducing controlled amounts of noise within the volume representation. Varying the local amount of noise within the volume is used to represent a separate scalar variable. The technique can also be used in image synthesis to create more realistic clouds and fog.

  13. Parallel sphere rendering

    SciTech Connect

    Krogh, M.; Hansen, C.; Painter, J.; de Verdiere, G.C.

    1995-05-01

    Sphere rendering is an important method for visualizing molecular dynamics data. This paper presents a parallel divide-and-conquer algorithm that is almost 90 times faster than current graphics workstations. To render extremely large data sets and large images, the algorithm uses the MIMD features of the supercomputers to divide up the data, render independent partial images, and then finally composite the multiple partial images using an optimal method. The algorithm and performance results are presented for the CM-5 and the T3D.

  14. Real-time fault diagnosis for propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet

    1991-01-01

    Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.

  15. Real-time hyperspectral imaging for food safety applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  16. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  17. Casi real-time surface-laid mine detection system

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Stephen B.; McFee, John E.; Anger, Clifford D.

    2001-10-01

    A ground vehicle-based, real-time, surface mine detection system, utilizing a Compact Airborne Spectrographic Image (casi), efficient mine detection algorithms, and real-time processing systems, was designed and tested. The combined real-time system was capable of 'learning' the in-situ spectra of various mines, thus providing a spectral library for the detection algorithms. The real-time processing of the casi data involved three steps. The first step was the radiometric correction of the raw data. The second step involved the application of the mine detection algorithms to the corrected data, referencing the spectral library. In the final step, the results of the real-time processes were stored and displayed, usually within a few frame times of the data acquisition. To the authors knowledge, this system represents the first hyperspectral imager to detect mines in real-time. This paper describes the generation of the in-situ mine spectral library, the collection of the scene data, the real-time processing of the scene data and the subsequent display and recording of the detection data. The limitation and expansion capabilities of the real-time system are discussed as well as various techniques that were implemented to achieve the goals. Planned future improvements that have been identified to create a more robust and higher performance, yet simpler processing systems are also discussed.

  18. "Real-Time" Case Studies in Organizational Communication

    ERIC Educational Resources Information Center

    Long, Shawn D.

    2005-01-01

    This article presents an activity that integrates theory and application by examining the multiple communication events affecting a single organization in "real time" over the course of an academic term. The "real-time" case study (RTCS) avails students of the opportunity to examine organizational communication events as they are occurring in…

  19. Real-time high definition H.264 video decode using the Xbox 360 GPU

    NASA Astrophysics Data System (ADS)

    Arevalo Baeza, Juan Carlos; Chen, William; Christoffersen, Eric; Dinu, Daniel; Friemel, Barry

    2007-09-01

    The Xbox 360 is powered by three dual pipeline 3.2 GHz IBM PowerPC processors and a 500 MHz ATI graphics processing unit. The Graphics Processing Unit (GPU) is a special-purpose device, intended to create advanced visual effects and to render realistic scenes for the latest Xbox 360 games. In this paper, we report work on using the GPU as a parallel processing unit to accelerate the decoding of H.264/AVC high-definition (1920x1080) video. We report our experiences in developing a real-time, software-only high-definition video decoder for the Xbox 360.

  20. Novel Real-Time Facial Wound Recovery Synthesis Using Subsurface Scattering

    PubMed Central

    Chin, Seongah

    2014-01-01

    We propose a wound recovery synthesis model that illustrates the appearance of a wound healing on a 3-dimensional (3D) face. The H3 model is used to determine the size of the recovering wound. Furthermore, we present our subsurface scattering model that is designed to take the multilayered skin structure of the wound into consideration to represent its color transformation. We also propose a novel real-time rendering method based on the results of an analysis of the characteristics of translucent materials. Finally, we validate the proposed methods with 3D wound-simulation experiments using shading models. PMID:25197721

  1. Recent achievements in real-time computational seismology in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liang, W.; Huang, B.

    2012-12-01

    Real-time computational seismology is currently possible to be achieved which needs highly connection between seismic database and high performance computing. We have developed a real-time moment tensor monitoring system (RMT) by using continuous BATS records and moment tensor inversion (CMT) technique. The real-time online earthquake simulation service is also ready to open for researchers and public earthquake science education (ROS). Combine RMT with ROS, the earthquake report based on computational seismology can provide within 5 minutes after an earthquake occurred (RMT obtains point source information < 120 sec; ROS completes a 3D simulation < 3 minutes). All of these computational results are posted on the internet in real-time now. For more information, welcome to visit real-time computational seismology earthquake report webpage (RCS).

  2. Hardware for a real-time multiprocessor simulator

    NASA Technical Reports Server (NTRS)

    Blech, R. A.; Arpasi, D. J.

    1984-01-01

    The hardware for a real time multiprocessor simulator (RTMPS) developed at the NASA Lewis Research Center is described. The RTMPS is a multiple microprocessor system used to investigate the application of parallel processing concepts to real time simulation. It is designed to provide flexible data exchange paths between processors by using off the shelf microcomputer boards and minimal customized interfacing. A dedicated operator interface allows easy setup of the simulator and quick interpreting of simulation data. Simulations for the RTMPS are coded in a NASA designed real time multiprocessor language (RTMPL). This language is high level and geared to the multiprocessor environment. A real time multiprocessor operating system (RTMPOS) has also been developed that provides a user friendly operator interface. The RTMPS and supporting software are currently operational and are being evaluated at Lewis. The results of this evaluation will be used to specify the design of an optimized parallel processing system for real time simulation of dynamic systems.

  3. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  4. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  5. Real-Time MENTAT programming language and architecture

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  6. Hierarchical storage and visualization of real-time 3D data

    NASA Astrophysics Data System (ADS)

    Parry, Mitchell; Hannigan, Brendan; Ribarsky, William; Shaw, Christopher D.; Faust, Nickolas L.

    2001-08-01

    In this paper 'real-time 3D data' refers to volumetric data that are acquired and used as they are produced. Large scale, real-time data are difficult to store and analyze, either visually or by some other means, within the time frames required. Yet this is often quite important to do when decision-makers must receive and quickly act on new information. An example is weather forecasting, where forecasters must act on information received on severe storm development and movement. To meet the real-time requirements crude heuristics are often used to gather information from the original data. This is in spite of the fact that better and better real-time data are becoming available, the full use of which could significantly improve decisions. The work reported here addresses these issues by providing comprehensive data acquisition, analysis, and storage components with time budgets for the data management of each component. These components are put into a global geospatial hierarchical structure. The volumetric data are placed into this global structure, and it is shown how levels of detail can be derived and used within this structure. A volumetric visualization procedure is developed that conforms to the hierarchical structure and uses the levels of detail. These general methods are focused on the specific case of the VGIS global hierarchical structure and rendering system,. The real-time data considered are from collections of time- dependent 3D Doppler radars although the methods described here apply more generally to time-dependent volumetric data. This paper reports on the design and construction of the above hierarchical structures and volumetric visualizations. It also reports result for the specific application of 3D Doppler radar displayed over photo textured terrain height fields. Results are presented results for the specific application of 3D Doppler radar displayed over photo textured terrain height fields. Results are presented for display of time

  7. Remote rendering using vtk and vic.

    SciTech Connect

    Olson, R.; Papka, M.E.

    2000-09-19

    This paper presents a remote rendering application that involves the extension of the Visualization Toolkit (vtk) and the Video Conferencing Tool (vie) for use in remote rendering complete with interaction from the remote site using the vie user interface. Vtk is an open source C++ library, with Tel, Python, and Java bindings for computer graphics, image processing, and visualization [3]. Vtk provides a higher level of support, beyond the traditional low-level libraries, for creating visualization applications. Vtk includes algorithms to support the visualization of scalars, vectors, and tensors. Vic is a flexible tool built by Lawrence Berkeley National Laboratory for real-time video conferencing over the Internet [2]. Vie's user interface is built as Tcl/Tk script embedded in the applications. This allows developers to prototype changes to the interface in a simple and straightforward manner.

  8. 68. INTERIOR VIEW LOOKING OF THE CAUSTIC SODA (SODIUM HYDROXIDE) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. INTERIOR VIEW LOOKING OF THE CAUSTIC SODA (SODIUM HYDROXIDE) BUILDING, LOOKING AT CAUSTIC SODA MEASURING TANKS. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  9. Caustics and Caustic-Interference in Measurements of Contact Angle and Flow Visualization Through Laser Shadowgraphy

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Neng-Li

    2002-01-01

    As one of the basic elements of the shadowgraphy optical system, the image of the far field from the droplet implicates plentiful information on the droplet profile. An analysis of caustics by wave theory shows that a droplet with a cylindrically symmetric Gaussian-hill-type profile produces a circular directional caustic in far field, which arises from the singularities (inflection line on the surface). The sessile liquid droplets, which profiles are restricted by surface tension, usually have a 'protruding foot' where the surface inflects. Simple geometrical optics indicates that the circular caustic stemming from the surface inflection at the protruding-foot takes the shape of the outmost ring on the image of the far field. It is the diameter of the outmost ring that is used as one of the key parameters in the measurements of contact angle through the laser shadowgraphic method. Different surface characteristics of the droplets produce different type of caustics, and therefore, the shape of the caustics can be used to determine the surface property of the sessile droplets. The present paper describes the measurement method of contact angIe using the circular caustics and the estimation of the protruding-foot height through the caustic interference.

  10. Method of caustics for anisotropic materials

    NASA Astrophysics Data System (ADS)

    Rossmanith, H. P.

    1991-12-01

    During the past 25 years the optical method of caustics has matured to a very powerful tool for application in fracture mechanics for the determination of stress intensity factors or the J- integral, in contact mechanics for the determination of contact forces, etc. The technique is applicable to two-dimensional static or dynamic problems and works for any kind of stress- strain relationship. The method displays its full power when employed in conjunction with interactive numerical data reduction and evaluation procedures. Recently, the industrial application of high strength-low weight composite materials has boomed. Application of the method of caustics to anisotropic materials requires the development of the theoretical background. This contribution focuses on the theoretical development of the method of caustics and its applicability to anisotropic materials.

  11. Space Shuttle Main Engine real time stability analysis

    NASA Technical Reports Server (NTRS)

    Kuo, F. Y.

    1993-01-01

    The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.

  12. Real-Time MEG Source Localization Using Regional Clustering.

    PubMed

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S

    2015-11-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject's reaction and increases time efficiency by shortening acquisition and off-line analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements.

  13. Real-Time MEG Source Localization using Regional Clustering

    PubMed Central

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S.

    2015-01-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject’s reaction and increases time efficiency by shortening acquisition and offline analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping (dSPM) for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements. PMID:25782980

  14. Reviewing real-time performance of nuclear reactor safety systems

    SciTech Connect

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  15. Method for Real-Time Model Based Structural Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Smith, Timothy A. (Inventor); Urnes, James M., Sr. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  16. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  17. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  18. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  19. Decision graphs: a tool for developing real-time software

    SciTech Connect

    Kozubal, A.J.

    1981-01-01

    The use of decision graphs in the preparation of, in particular, real-time software is briefly described. The usefulness of decision graphs in software design, testing, and maintenance is pointed out. 2 figures. (RWR)

  20. Near-Real-Time and Laboratory Data by State

    EPA Pesticide Factsheets

    RadNet data from individual near-real-time air monitors is available on a clickable map and is also listed by state and city. Sampling locations for drinking water, precipitation and air filters are also listed.

  1. Real-time interactive speech technology at Threshold Technology, Incorporated

    NASA Technical Reports Server (NTRS)

    Herscher, Marvin B.

    1977-01-01

    Basic real-time isolated-word recognition techniques are reviewed. Industrial applications of voice technology are described in chronological order of their development. Future research efforts are also discussed.

  2. Challenges of AVHRR Vegetation Data for Real Time Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly

    2008-01-01

    Remote sensing data has long been used to monitor global ecosystems for floods and droughts and AVHRR data, as one of the first product, has many users interested in receiving the data within hours of acquisition. With the introduction of a new series of sensors in 2000 (the AVHRR/3 series), the quality of the NDVI datasets available for real time environmental monitoring has declined. This paper provides evidence of problems of cloud contamination, calibration and noise in the real time data which are not present in the historical AVHRR NDVIg dataset. These differences introduce significant uncertainty in the use of the real time data, degrading their utility for detecting climate variations in near real time.

  3. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  4. Application of real time PCR for diagnosis of Swine Dysentery.

    PubMed

    Akase, Satoru; Uchitani, Yumi; Sohmura, Yoshiko; Tatsuta, Keikichi; Sadamasu, Kenji; Adachi, Yoshikazu

    2009-03-01

    Evaluation of a genetic diagnostic technique using real time PCR of Swine Dysentery (SD) was performed using nox primers. Culture, ordinary PCR and real time PCR were compared in this experiment. Sixty-seven specimens from pigs with clinical signs of SD brought to a slaughterhouse in Shibaura, Tokyo, were used. B. hyodysenteriae was isolated from 49 of the pigs, was detected by ordinary PCR in 49 of the pigs and was detected by real time PCR in 54 of the pigs. Furthermore, we were able to determine the numbers of B. hyodysenteriae cells in all positive specimens by real time PCR. The rapid diagnostic technique established in this experiment was useful for detection of B. hyodysenteriae because it was more effective than ordinary PCR and culture.

  5. Cluster Computing for Embedded/Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Katz, D.; Kepner, J.

    1999-01-01

    Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.

  6. The Effects of Real-Time Interactive Multimedia Teleradiology System

    PubMed Central

    Al-Safadi, Lilac

    2016-01-01

    This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists' reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care. PMID:27294118

  7. Real-time water quality monitoring and providing water quality ...

    EPA Pesticide Factsheets

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  8. Real-Time Collision Avoidance for Dexterous 7-DOF Arms

    NASA Technical Reports Server (NTRS)

    Bon, Bruce; Seraji, Homayoun

    1996-01-01

    A new approach to real-time collison avoidance for dexterous 7-DOF arms and supportive simulation and experimental results are presented. The collision avoidance problem is formulated and solved as a force control problem.

  9. Prototype real-time baseband signal combiner. [deep space network

    NASA Technical Reports Server (NTRS)

    Howard, L. D.

    1980-01-01

    The design and performance of a prototype real-time baseband signal combiner, used to enhance the received Voyager 2 spacecraft signals during the Jupiter flyby, is described. Hardware delay paths, operating programs, and firmware are discussed.

  10. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  11. Real-time and reliable human detection in clutter scene

    NASA Astrophysics Data System (ADS)

    Tan, Yumei; Luo, Xiaoshu; Xia, Haiying

    2013-10-01

    To solve the problem that traditional HOG approach for human detection can not achieve real-time detection due to its time-consuming detection, an efficient algorithm based on first segmentation then identify method for real-time human detection is proposed to achieve real-time human detection in clutter scene. Firstly, the ViBe algorithm is used to segment all possible human target regions quickly, and more accurate moving objects is obtained by using the YUV color space to eliminate the shadow; secondly, using the body geometry knowledge can help to found the valid human areas by screening the regions of interest; finally, linear support vector machine (SVM) classifier and HOG are applied to train for human body classifier, to achieve accurate positioning of human body's locations. The results of our comparative experiments demonstrated that the approach proposed can obtain high accuracy, good real-time performance and strong robustness.

  12. Faster and cleaner real-time pure shift NMR experiments.

    PubMed

    Mauhart, Johannes; Glanzer, Simon; Sakhaii, Peyman; Bermel, Wolfgang; Zangger, Klaus

    2015-10-01

    Real-time pure shift experiments provide highly resolved proton NMR spectra which do not require any special processing. Although being more sensitive than their pseudo 2D counterparts, their signal intensities per unit time are still far below regular NMR spectra. In addition, scalar coupling evolution during the individual data chunks produces decoupling sidebands. Here we show that faster and cleaner real-time pure shift spectra can be obtained through the implementation of two parameter alterations. Variation of the FID chunk lengths between individual transients significantly suppresses decoupling sidebands for any kind of real-time pure shift spectra and thus allows for example the analysis of minor components in compound mixtures. Shifting the excitation frequency between individual scans of real-time slice-selective pure shift spectra increases their sensitivity obtainable in unit time by allowing faster repetitions of acquisitions.

  13. Real-time Position Control of Concentric Tube Robots.

    PubMed

    Dupont, Pierre E; Lock, Jesse; Itkowitz, Brandon

    2010-05-03

    A novel approach to constructing robots is based on concentrically combining pre-curved elastic tubes. By rotating and extending the tubes with respect to each other, their curvatures interact elastically to position and orient the robot's tip, as well as to control the robot's shape along its length. Since these robots form slender curves, they are well suited for minimally invasive medical procedures. A substantial challenge to their practical use is the real-time solution of their kinematics that are described by differential equations with split boundary equations. This paper proposes a numerically efficient approach to real-time position control. It is shown that the forward kinematics are smooth functions that can be pre-computed and accurately approximated using Fourier series. The inverse kinematics can be solved in real time using root finding applied to the functional approximation. Experimental demonstration of real-time position control using this approach is also described.

  14. The Effects of Real-Time Interactive Multimedia Teleradiology System.

    PubMed

    Al-Safadi, Lilac

    2016-01-01

    This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists' reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care.

  15. Realistic 3D Terrain Roaming and Real-Time Flight Simulation

    NASA Astrophysics Data System (ADS)

    Que, Xiang; Liu, Gang; He, Zhenwen; Qi, Guang

    2014-12-01

    This paper presents an integrate method, which can provide access to current status and the dynamic visible scanning topography, to enhance the interactive during the terrain roaming and real-time flight simulation. A digital elevation model and digital ortho-photo map data integrated algorithm is proposed as the base algorithm for our approach to build a realistic 3D terrain scene. A new technique with help of render to texture and head of display for generating the navigation pane is used. In the flight simulating, in order to eliminate flying "jump", we employs the multidimensional linear interpolation method to adjust the camera parameters dynamically and steadily. Meanwhile, based on the principle of scanning laser imaging, we draw pseudo color figures by scanning topography in different directions according to the real-time flying status. Simulation results demonstrate that the proposed algorithm is prospective for applications and the method can improve the effect and enhance dynamic interaction during the real-time flight.

  16. Real-time tracking mitochondrial dynamic remodeling with two-photon phosphorescent iridium (III) complexes.

    PubMed

    Huang, Huaiyi; Yang, Liang; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Diao, JiaJie; Liu, Jiankang; Ji, Liangnian; Long, Jiangang; Chao, Hui

    2016-03-01

    Mitochondrial fission and fusion control the shape, size, number, and function of mitochondria in the cells of organisms from yeast to mammals. The disruption of mitochondrial fission and fusion is involved in severe human diseases such as Parkinson's disease, Alzheimer's disease, metabolic diseases, and cancers. Agents that can real-time track the mitochondrial dynamics are of great importance. However, the short excitation wavelengths and rapidly photo-bleaching properties of commercial mitochondrial dyes render them unsuitable for tracking mitochondrial dynamics. Thus, mitochondrial targeting agents that exhibit superior photo-stability under continual light irradiation, deep tissue penetration and at intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds employ low-energy near-infrared light and have emerged as a non-invasive tool for real-time cell imaging. Here, cyclometalated Ir(III) complexes (Ir1-Ir5) are demonstrated as one- and two-photon phosphorescent probes for the real-time imaging and tracking of mitochondrial fission and fusion. The results indicate that Ir2 is well suited for two-photon phosphorescent tracking of mitochondrial fission and fusion in living cells and in Caenorhabditis elegans (C. elegans). This study provides a practical use for mitochondrial targeting two-photon phosphorescent Ir(III) complexes.

  17. Development of a Wireless and Near Real-Time 3D Ultrasound Strain Imaging System.

    PubMed

    Chen, Zhaohong; Chen, Yongdong; Huang, Qinghua

    2016-04-01

    Ultrasound elastography is an important medical imaging tool for characterization of lesions. In this paper, we present a wireless and near real-time 3D ultrasound strain imaging system. It uses a 3D translating device to control a commercial linear ultrasound transducer to collect pre-compression and post-compression radio-frequency (RF) echo signal frames. The RF frames are wirelessly transferred to a high-performance server via a local area network (LAN). A dynamic programming strain estimation algorithm is implemented with the compute unified device architecture (CUDA) on the graphic processing unit (GPU) in the server to calculate the strain image after receiving a pre-compression RF frame and a post-compression RF frame at the same position. Each strain image is inserted into a strain volume which can be rendered in near real-time. We take full advantage of the translating device to precisely control the probe movement and compression. The GPU-based parallel computing techniques are designed to reduce the computation time. Phantom and in vivo experimental results demonstrate that our system can generate strain volumes with good quality and display an incrementally reconstructed volume image in near real-time.

  18. Real-time distributed video coding for 1K-pixel visual sensor networks

    NASA Astrophysics Data System (ADS)

    Hanca, Jan; Deligiannis, Nikos; Munteanu, Adrian

    2016-07-01

    Many applications in visual sensor networks (VSNs) demand the low-cost wireless transmission of video data. In this context, distributed video coding (DVC) has proven its potential to achieve state-of-the-art compression performance while maintaining low computational complexity of the encoder. Despite their proven capabilities, current DVC solutions overlook hardware constraints, and this renders them unsuitable for practical implementations. This paper introduces a DVC architecture that offers highly efficient wireless communication in real-world VSNs. The design takes into account the severe computational and memory constraints imposed by practical implementations on low-resolution visual sensors. We study performance-complexity trade-offs for feedback-channel removal, propose learning-based techniques for rate allocation, and investigate various simplifications of side information generation yielding real-time decoding. The proposed system is evaluated against H.264/AVC intra, Motion-JPEG, and our previously designed DVC prototype for low-resolution visual sensors. Extensive experimental results on various data show significant improvements in multiple configurations. The proposed encoder achieves real-time performance on a 1k-pixel visual sensor mote. Real-time decoding is performed on a Raspberry Pi single-board computer or a low-end notebook PC. To the best of our knowledge, the proposed codec is the first practical DVC deployment on low-resolution VSNs.

  19. Real-time flight test data distribution and display

    NASA Technical Reports Server (NTRS)

    Nesel, Michael C.; Hammons, Kevin R.

    1988-01-01

    Enhancements to the real-time processing and display systems of the NASA Western Aeronautical Test Range are described. Display processing has been moved out of the telemetry and radar acquisition processing systems super-minicomputers into user/client interactive graphic workstations. Real-time data is provided to the workstations by way of Ethernet. Future enhancement plans include use of fiber optic cable to replace the Ethernet.

  20. Final report on Arete's real-time processor

    SciTech Connect

    Sanborn, J.; Reder, L.; Tong, K. )

    1990-01-12

    This is Arete Associates' final report on the initial phase of a project to develop a real-time processor for an airborne lidar system. Arete has developed a programmable Real-Time Processor (RTP) and image display and recording system. It is presently integrated with an ocean (water) lidar sensor (OWLS) system onboard one of the Navel Air Development Center's (NADC's) P-3A aircraft. The RTP is a rack mounted, PF/AT based system.

  1. Near real-time stereo matching using geodesic diffusion.

    PubMed

    De-Maeztu, Leonardo; Villanueva, Arantxa; Cabeza, Rafael

    2012-02-01

    Adaptive-weight algorithms currently represent the state of the art in local stereo matching. However, due to their computational requirements, these types of solutions are not suitable for real-time implementation. Here, we present a novel aggregation method inspired by the anisotropic diffusion technique used in image filtering. The proposed aggregation algorithm produces results similar to adaptive-weight solutions while reducing the computational requirements. Moreover, near real-time performance is demonstrated with a GPU implementation of the algorithm.

  2. Real-time shipboard orbit determination using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Brammer, R. F.

    1974-01-01

    The real-time tracking and orbit determination program used on board the NASA tracking ship, the USNS Vanguard, is described in this paper. The computer program uses a variety of filtering algorithms, including an extended Kalman filter, to derive real-time orbit determinations (position-velocity state vectors) from shipboard tracking and navigation data. Results from Apollo missions are given to show that orbital parameters can be estimated quickly and accurately using these methods.

  3. Evaluation Criteria for Real-Time Specification Languages

    DTIC Science & Technology

    1992-02-11

    languages designed to specify the requirements of real-time systems. It is intended for a reader who is beginning a real-time development project and... project staffed with unskilled or inexperienced personnel than one with seasoned veterans; sophisticated support tools may be irrelevant to a project ...motivate the project manager to think about long-term issues and provide a justification framework for choosing a particular language and rejecting

  4. Vector processing enhancements for real-time image analysis.

    SciTech Connect

    Shoaf, S.; APS Engineering Support Division

    2008-01-01

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  5. High speed, real-time, camera bandwidth converter

    DOEpatents

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  6. Real-time laser holographic Interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee, George

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil presssure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer.

  7. Real-time laser holographic interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee, George

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer.

  8. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  9. Improving Predictability in Embedded Real-Time Systems

    DTIC Science & Technology

    2000-12-01

    Systems CMU/SEI-2000-SR-011 Peter H. Feiler , Software Engineering Institute Bruce Lewis, U.S. Army Aviation and Missile Command Steve Vestal...SUBTITLE Improving Predictability in Embedded Real-Time Systems 5. FUNDING NUMBERS F19628-00-C-0003 6. AUTHOR(S) Peter H. Feiler , Bruce ...Carnegie Metton Software Engineering Institute Improving Predictability in Embedded Real-Time Systems Peter H. Feiler , Software Engineering

  10. Real-Time Optical Correlator Based On GaAs

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi; Cheng, Li-Jen

    1992-01-01

    Apparatus performs correlation between input image and reference image in real time by means of degenerate four-wave mixing in photorefractive crystal, which serves as real-time holographic medium. Gallium arsenide chosen to be photorefractive material in this application because at frame rate and level of illumination used in experiments, offers adequate diffraction efficiency. Frame rates as high as 1,000 s to negative 1st power achievable.

  11. Developing infrared array controller with software real time operating system

    NASA Astrophysics Data System (ADS)

    Sako, Shigeyuki; Miyata, Takashi; Nakamura, Tomohiko; Motohara, Kentaro; Uchimoto, Yuka Katsuno; Onaka, Takashi; Kataza, Hirokazu

    2008-07-01

    Real-time capabilities are required for a controller of a large format array to reduce a dead-time attributed by readout and data transfer. The real-time processing has been achieved by dedicated processors including DSP, CPLD, and FPGA devices. However, the dedicated processors have problems with memory resources, inflexibility, and high cost. Meanwhile, a recent PC has sufficient resources of CPUs and memories to control the infrared array and to process a large amount of frame data in real-time. In this study, we have developed an infrared array controller with a software real-time operating system (RTOS) instead of the dedicated processors. A Linux PC equipped with a RTAI extension and a dual-core CPU is used as a main computer, and one of the CPU cores is allocated to the real-time processing. A digital I/O board with DMA functions is used for an I/O interface. The signal-processing cores are integrated in the OS kernel as a real-time driver module, which is composed of two virtual devices of the clock processor and the frame processor tasks. The array controller with the RTOS realizes complicated operations easily, flexibly, and at a low cost.

  12. Real-time Java for on-board systems

    NASA Astrophysics Data System (ADS)

    Cechticky, V.; Pasetti, A.

    2002-07-01

    The Java language has several attractive features but cannot at present be used in on-board systems primarily because it lacks support for hard real-time operation. This shortcoming is in being addressed: some suppliers are already providing implementations of Java that are RT-compliant; Sun Microsystem has approved a formal specification for a real-time extension of the language; and an independent consortium is working on an alternative specification for real-time Java. It is therefore expected that, within a year or so, standardized commercial implementations of real-time Java will be on the market. Availability of real-time implementations now opens the way to its use on-board. Within this context, this paper has two objectives. Firstly, it discusses the suitability of Java for on-board applications. Secondly, it reports the results of an ESA study to port a software framework for on-board control systems to a commercial real-time version of Java.

  13. Real time magnetic resonance guided endomyocardial local delivery

    PubMed Central

    Corti, R; Badimon, J; Mizsei, G; Macaluso, F; Lee, M; Licato, P; Viles-Gonzalez, J F; Fuster, V; Sherman, W

    2005-01-01

    Objective: To investigate the feasibility of targeting various areas of left ventricle myocardium under real time magnetic resonance (MR) imaging with a customised injection catheter equipped with a miniaturised coil. Design: A needle injection catheter with a mounted resonant solenoid circuit (coil) at its tip was designed and constructed. A 1.5 T MR scanner with customised real time sequence combined with in-room scan running capabilities was used. With this system, various myocardial areas within the left ventricle were targeted and injected with a gadolinium-diethylenetriaminepentaacetic acid (DTPA) and Indian ink mixture. Results: Real time sequencing at 10 frames/s allowed clear visualisation of the moving catheter and its transit through the aorta into the ventricle, as well as targeting of all ventricle wall segments without further image enhancement techniques. All injections were visualised by real time MR imaging and verified by gross pathology. Conclusion: The tracking device allowed real time in vivo visualisation of catheters in the aorta and left ventricle as well as precise targeting of myocardial areas. The use of this real time catheter tracking may enable precise and adequate delivery of agents for tissue regeneration. PMID:15710717

  14. Real-time estimation of dynamic functional connectivity networks.

    PubMed

    Monti, Ricardo Pio; Lorenz, Romy; Braga, Rodrigo M; Anagnostopoulos, Christoforos; Leech, Robert; Montana, Giovanni

    2017-01-01

    Two novel and exciting avenues of neuroscientific research involve the study of task-driven dynamic reconfigurations of functional connectivity networks and the study of functional connectivity in real-time. While the former is a well-established field within neuroscience and has received considerable attention in recent years, the latter remains in its infancy. To date, the vast majority of real-time fMRI studies have focused on a single brain region at a time. This is due in part to the many challenges faced when estimating dynamic functional connectivity networks in real-time. In this work, we propose a novel methodology with which to accurately track changes in time-varying functional connectivity networks in real-time. The proposed method is shown to perform competitively when compared to state-of-the-art offline algorithms using both synthetic as well as real-time fMRI data. The proposed method is applied to motor task data from the Human Connectome Project as well as to data obtained from a visuospatial attention task. We demonstrate that the algorithm is able to accurately estimate task-related changes in network structure in real-time. Hum Brain Mapp 38:202-220, 2017. © 2016 Wiley Periodicals, Inc.

  15. Data-Driven Geospatial Visual Analytics for Real-Time Urban Flooding Decision Support

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hill, D.; Rodriguez, A.; Marini, L.; Kooper, R.; Myers, J.; Wu, X.; Minsker, B. S.

    2009-12-01

    Urban flooding is responsible for the loss of life and property as well as the release of pathogens and other pollutants into the environment. Previous studies have shown that spatial distribution of intense rainfall significantly impacts the triggering and behavior of urban flooding. However, no general purpose tools yet exist for deriving rainfall data and rendering them in real-time at the resolution of hydrologic units used for analyzing urban flooding. This paper presents a new visual analytics system that derives and renders rainfall data from the NEXRAD weather radar system at the sewershed (i.e. urban hydrologic unit) scale in real-time for a Chicago stormwater management project. We introduce a lightweight Web 2.0 approach which takes advantages of scientific workflow management and publishing capabilities developed at NCSA (National Center for Supercomputing Applications), streaming data-aware semantic content management repository, web-based Google Earth/Map and time-aware KML (Keyhole Markup Language). A collection of polygon-based virtual sensors is created from the NEXRAD Level II data using spatial, temporal and thematic transformations at the sewershed level in order to produce persistent virtual rainfall data sources for the animation. Animated color-coded rainfall map in the sewershed can be played in real-time as a movie using time-aware KML inside the web browser-based Google Earth for visually analyzing the spatiotemporal patterns of the rainfall intensity in the sewershed. Such system provides valuable information for situational awareness and improved decision support during extreme storm events in an urban area. Our further work includes incorporating additional data (such as basement flooding events data) or physics-based predictive models that can be used for more integrated data-driven decision support.

  16. Real-time dynamic simulation of the Cassini spacecraft using DARTS. Part 2: Parallel/vectorized real-time implementation

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Roberts, J. A.; Jain, A.; Man, G. K.

    1993-01-01

    Part 1 of this paper presented the requirements for the real-time simulation of Cassini spacecraft along with some discussion of the DARTS algorithm. Here, in Part 2 we discuss the development and implementation of parallel/vectorized DARTS algorithm and architecture for real-time simulation. Development of the fast algorithms and architecture for real-time hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it represents a hard real-time problem, in the sense that the correctness of the simulation depends on both the numerical accuracy and the exact timing of the computation. For a given model fidelity, the computation should be computed within a predefined time period. Further reduction in computation time allows increasing the fidelity of the model (i.e., inclusion of more flexible modes) and the integration routine.

  17. Evaluation of Open-Source Hard Real Time Software Packages

    NASA Technical Reports Server (NTRS)

    Mattei, Nicholas S.

    2004-01-01

    Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of

  18. Development of a multiplex real-time PCR assay for the detection of ruminant DNA.

    PubMed

    Ekins, Jason; Peters, Sharla M; Jones, Yolanda L; Swaim, Heidi; Ha, Tai; La Neve, Fabio; Civera, Tiziana; Blackstone, George; Vickery, Michael C L; Marion, Bill; Myers, Michael J; Yancy, Haile F

    2012-06-01

    The U.S. Food and Drug Administration (FDA) has previously validated a real-time PCR-based assay that is currently being used by the FDA and several state laboratories as the official screening method. Due to several shortcomings to the assay, a multiplex real-time PCR assay (MRTA) to detect three ruminant species (bovine, caprine, and ovine) was developed using a lyophilized bead design. The assay contained two primer or probe sets: a "ruminant" set to detect bovine-, caprine-, and ovine-derived materials and a second set to serve as an internal PCR control, formatted using a lyophilized bead design. Performance of the assay was evaluated against stringent acceptance criteria developed by the FDA's Center for Veterinary Medicine's Office of Research. The MRTA for the detection of ruminant DNA passed the stringent acceptance criteria for specificity, sensitivity, and selectivity. The assay met sensitivity and reproducibility requirements by detecting 30 of 30 complete feed samples fortified with meals at 0.1 % (wt/wt) rendered material from each of the three ruminant species. The MRTA demonstrated 100 % selectivity (0.0 % false positives) for negative controls throughout the assessment period. The assay showed ruggedness in both sample selection and reagent preparation. Second and third analyst trials confirmed the quality of the written standard operating procedure with consistency of results. An external laboratory participating in a peer-verification trial demonstrated 100 % specificity in identifying bovine meat and bone meal, while exhibiting a 0.03 % rate of false positives. The assay demonstrated equal levels of sensitivity and reproducibility compared with the FDA's current validated real-time PCR assay. The assay detected three prohibited species in less than 1.5 h of total assay time, a significant improvement over the current real-time assay. These results demonstrated this assay's suitability for routine regulatory use both as a primary screening tool

  19. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  20. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    NASA Astrophysics Data System (ADS)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  1. Real-time airborne hyperspectral imaging of land mines

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Steve; McFee, John E.; Anger, Cliff; Young, Jane

    2007-04-01

    DRDC Suffeld and Itres Research have jointly investigated the use of visible and infrared hyperspectral imaging (HSI) for surface and buried land mine detection since 1989. These studies have demonstrated reliable passive HSI detection of surface-laid mines, based on their reflectance spectra, from airborne and ground-based platforms. Commercial HSI instruments collect and store image data at aircraft speeds, but the data are analysed off- line. This is useful for humanitarian demining, but unacceptable for military countermine operations. We have developed a hardware and software system with algorithms that can process the raw hyperspectral data in real time to detect mines. The custom algorithms perform radiometric correction of the raw data, then classify pixels of the corrected data, referencing a spectral signature library. The classification results are stored and displayed in real time, that is, within a few frame times of the data acquisition. Such real-time mine detection was demonstrated for the first time from a slowly moving land vehicle in March 2000. This paper describes an improved system which can achieve real-time detection of mines from an airborne platform, with its commensurately higher data rates. The system is presently compatible with the Itres family of visible/near infrared, short wave infrared and thermal infrared pushbroom hyperspectral imagers and its broadband thermal infrared pushbroom imager. Experiments to detect mines from an airborne platform in real time were conducted at DRDC Suffield in November 2006. Surface-laid land mines were detected in real time from a slowly moving helicopter with generally good detection rates and low false alarm rates. To the authors' knowledge, this is the first time that land mines have been detected from an airborne platform in real time using hyperspectral imaging.

  2. Real-time arbitrary view synthesis method for ultra-HD auto-stereoscopic display

    NASA Astrophysics Data System (ADS)

    Cai, Yuanfa; Sang, Xinzhu; Duo, Chen; Zhao, Tianqi; Fan, Xin; Guo, Nan; Yu, Xunbo; Yan, Binbin

    2013-08-01

    An arbitrary view synthesis method from 2D-Plus-Depth image for real-time auto-stereoscopic display is presented. Traditional methods use depth image based rendering (DIBR) technology, which is a process of synthesizing "virtual" views of a scene from still or moving images and associated per-pixel depth information. All the virtual view images are generated and then the ultimate stereo-image is synthesized. DIBR can greatly decrease the number of reference images and is flexible and efficient as the depth images are used. However it causes some problems such as the appearance of holes in the rendered image, and the occurrence of depth discontinuity on the surface of the object at virtual image plane. Here, reversed disparity shift pixel rendering is used to generate the stereo-image directly, and the target image won't generate holes. To avoid duplication of calculation and also to be able to match with any specific three-dimensional display, a selecting table is designed to pick up appropriate virtual viewpoints for auto-stereoscopic display. According to the selecting table, only sub-pixels of the appropriate virtual viewpoints are calculated, so calculation amount is independent of the number of virtual viewpoints. In addition, 3D image warping technology is used to translate depth information to parallax between virtual viewpoints and parallax, and the viewer can adjust the zero-parallax-setting-plane (ZPS) and change parallax conveniently to suit his/her personal preferences. The proposed method is implemented with OPENGL and demonstrated on a laptop computer with a 2.3 GHz Intel Core i5 CPU and NVIDA GeForce GT540m GPU. We got a frame rate 30 frames per second with 4096×2340 video. High synthesis efficiency and good stereoscopic sense can be obtained. The presented method can meet the requirements of real-time ultra-HD super multi-view auto-stereoscopic display.

  3. Superposition rendering: Increased realism for interactive walkthroughs

    NASA Astrophysics Data System (ADS)

    Bastos, Rui M. R. De

    1999-11-01

    The light transport equation, conventionally known as the rendering equation in a slightly different form, is an implicit integral equation, which represents the interactions of light with matter and the distribution of light in a scene. This research describes a signals-and- systems approach to light transport and casts the light transport equation in terms of convolution. Additionally, the light transport problem is linearly decomposed into simpler problems with simpler solutions, which are then recombined to approximate the full solution. The central goal is to provide interactive photorealistic rendering of virtual environments. We show how the light transport problem can be cast in terms of signals-and-systems. The light is the signal and the materials are the systems. The outgoing light from a light transfer at a surface point is given by convolving the incoming light with the material's impulse response (the material's BRDF/BTDF). Even though the theoretical approach is presented in directional-space, we present an approximation in screen-space, which enables the exploitation of graphics hardware convolution for approximating the light transport equation. The convolution approach to light transport is not enough to fully solve the light transport problem at interactive rates with current machines. We decompose the light transport problem into simpler problems. The decomposition of the light transport problem is based on distinct characteristics of different parts of the problem: the ideally diffuse, the ideally specular, and the glossy transfers. A technique for interactive rendering of each of these components is presented as well a technique for superposing the independent components in a multipass manner in real time. Given the extensive use of the superposition principle in this research, we name our approach superposition rendering to distinguish it from other standard hardware-aided multipass rendering approaches.

  4. The improved broadband Real-Time Seismic Network in Romania

    NASA Astrophysics Data System (ADS)

    Neagoe, C.; Ionescu, C.

    2009-04-01

    Starting with 2002 the National Institute for Earth Physics (NIEP) has developed its real-time digital seismic network. This network consists of 96 seismic stations of which 48 broad band and short period stations and two seismic arrays are transmitted in real-time. The real time seismic stations are equipped with Quanterra Q330 and K2 digitizers, broadband seismometers (STS2, CMG40T, CMG 3ESP, CMG3T) and strong motions sensors Kinemetrics episensors (+/- 2g). SeedLink and AntelopeTM (installed on MARMOT) program packages are used for real-time (RT) data acquisition and exchange. The communication from digital seismic stations to the National Data Center in Bucharest is assured by 5 providers (GPRS, VPN, satellite communication, radio lease line and internet), which will assure the back-up communications lines. The processing centre runs BRTT's AntelopeTM 4.10 data acquisition and processing software on 2 workstations for real-time processing and post processing. The Antelope Real-Time System is also providing automatic event detection, arrival picking, event location and magnitude calculation. It provides graphical display and reporting within near-real-time after a local or regional event occurred. Also at the data center was implemented a system to collect macroseismic information using the internet on which macro seismic intensity maps are generated. In the near future at the data center will be install Seiscomp 3 data acquisition processing software on a workstation. The software will run in parallel with Antelope software as a back-up. The present network will be expanded in the near future. In the first half of 2009 NIEP will install 8 additional broad band stations in Romanian territory, which also will be transmitted to the data center in real time. The Romanian Seismic Network is permanently exchanging real -time waveform data with IRIS, ORFEUS and different European countries through internet. In Romania, magnitude and location of an earthquake are now

  5. Real-Time Tropospheric Delay Estimation using IGS Products

    NASA Astrophysics Data System (ADS)

    Stürze, Andrea; Liu, Sha; Söhne, Wolfgang

    2014-05-01

    The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it

  6. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Schmidt, James L.; Kao, Simon M.; Read, Jackson Y.; Weitzenkamp, Scott M.; Laffey, Thomas J.

    1988-01-01

    A multitasking architecture for performing real-time monitoring and analysis using knowledge-based problem solving techniques is described. To handle asynchronous inputs and perform in real time, the system consists of three or more distributed processes which run concurrently and communicate via a message passing scheme. The Data Management Process acquires, compresses, and routes the incoming sensor data to other processes. The Inference Process consists of a high performance inference engine that performs a real-time analysis on the state and health of the physical system. The I/O Process receives sensor data from the Data Management Process and status messages and recommendations from the Inference Process, updates its graphical displays in real time, and acts as the interface to the console operator. The distributed architecture has been interfaced to an actual spacecraft (NASA's Hubble Space Telescope) and is able to process the incoming telemetry in real-time (i.e., several hundred data changes per second). The system is being used in two locations for different purposes: (1) in Sunnyville, California at the Space Telescope Test Control Center it is used in the preflight testing of the vehicle; and (2) in Greenbelt, Maryland at NASA/Goddard it is being used on an experimental basis in flight operations for health and safety monitoring.

  7. A Practical Approach to Implementing Real-Time Semantics

    NASA Technical Reports Server (NTRS)

    Luettgen, Gerald; Bhat, Girish; Cleaveland, Rance

    1999-01-01

    This paper investigates implementations of process algebras which are suitable for modeling concurrent real-time systems. It suggests an approach for efficiently implementing real-time semantics using dynamic priorities. For this purpose a proces algebra with dynamic priority is defined, whose semantics corresponds one-to-one to traditional real-time semantics. The advantage of the dynamic-priority approach is that it drastically reduces the state-space sizes of the systems in question while preserving all properties of their functional and real-time behavior. The utility of the technique is demonstrated by a case study which deals with the formal modeling and verification of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North Carolina, an automated verification tool in which the process algebra with dynamic priority is implemented. It turns out that the state space of the bus-protocol model is about an order of magnitude smaller than the one resulting from real-time semantics. The accuracy of the model is proved by applying model checking for verifying several mandatory properties of the bus protocol.

  8. Lightweight distributed computing for intraoperative real-time image guidance

    NASA Astrophysics Data System (ADS)

    Suwelack, Stefan; Katic, Darko; Wagner, Simon; Spengler, Patrick; Bodenstedt, Sebastian; Röhl, Sebastian; Dillmann, Rüdiger; Speidel, Stefanie

    2012-02-01

    In order to provide real-time intraoperative guidance, computer assisted surgery (CAS) systems often rely on computationally expensive algorithms. The real-time constraint is especially challenging if several components such as intraoperative image processing, soft tissue registration or context aware visualization are combined in a single system. In this paper, we present a lightweight approach to distribute the workload over several workstations based on the OpenIGTLink protocol. We use XML-based message passing for remote procedure calls and native types for transferring data such as images, meshes or point coordinates. Two different, but typical scenarios are considered in order to evaluate the performance of the new system. First, we analyze a real-time soft tissue registration algorithm based on a finite element (FE) model. Here, we use the proposed approach to distribute the computational workload between a primary workstation that handles sensor data processing and visualization and a dedicated workstation that runs the real-time FE algorithm. We show that the additional overhead that is introduced by the technique is small compared to the total execution time. Furthermore, the approach is used to speed up a context aware augmented reality based navigation system for dental implant surgery. In this scenario, the additional delay for running the computationally expensive reasoning server on a separate workstation is less than a millisecond. The results show that the presented approach is a promising strategy to speed up real-time CAS systems.

  9. Spatio-temporal modeling for real-time ozone forecasting.

    PubMed

    Paci, Lucia; Gelfand, Alan E; Holland, David M

    2013-05-01

    The accurate assessment of exposure to ambient ozone concentrations is important for informing the public and pollution monitoring agencies about ozone levels that may lead to adverse health effects. High-resolution air quality information can offer significant health benefits by leading to improved environmental decisions. A practical challenge facing the U.S. Environmental Protection Agency (USEPA) is to provide real-time forecasting of current 8-hour average ozone exposure over the entire conterminous United States. Such real-time forecasting is now provided as spatial forecast maps of current 8-hour average ozone defined as the average of the previous four hours, current hour, and predictions for the next three hours. Current 8-hour average patterns are updated hourly throughout the day on the EPA-AIRNow web site. The contribution here is to show how we can substantially improve upon current real-time forecasting systems. To enable such forecasting, we introduce a downscaler fusion model based on first differences of real-time monitoring data and numerical model output. The model has a flexible coefficient structure and uses an efficient computational strategy to fit model parameters. Our hybrid computational strategy blends continuous background updated model fitting with real-time predictions. Model validation analyses show that we are achieving very accurate and precise ozone forecasts.

  10. Rendering the Topological Spines

    SciTech Connect

    Nieves-Rivera, D.

    2015-05-05

    Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.

  11. GPU-accelerated 3D mipmap for real-time visualization of ultrasound volume data.

    PubMed

    Kwon, Koojoo; Lee, Eun-Seok; Shin, Byeong-Seok

    2013-10-01

    Ultrasound volume rendering is an efficient method for visualizing the shape of fetuses in obstetrics and gynecology. However, in order to obtain high-quality ultrasound volume rendering, noise removal and coordinates conversion are essential prerequisites. Ultrasound data needs to undergo a noise filtering process; otherwise, artifacts and speckle noise cause quality degradation in the final images. Several two-dimensional (2D) noise filtering methods have been used to reduce this noise. However, these 2D filtering methods ignore relevant information in-between adjacent 2D-scanned images. Although three-dimensional (3D) noise filtering methods are used, they require more processing time than 2D-based methods. In addition, the sampling position in the ultrasonic volume rendering process has to be transformed between conical ultrasound coordinates and Cartesian coordinates. We propose a 3D-mipmap-based noise reduction method that uses graphics hardware, as a typical 3D mipmap requires less time to be generated and less storage capacity. In our method, we compare the density values of the corresponding points on consecutive mipmap levels and find the noise area using the difference in the density values. We also provide a noise detector for adaptively selecting the mipmap level using the difference of two mipmap levels. Our method can visualize 3D ultrasound data in real time with 3D noise filtering.

  12. View compensated compression of volume rendered images for remote visualization.

    PubMed

    Lalgudi, Hariharan G; Marcellin, Michael W; Bilgin, Ali; Oh, Han; Nadar, Mariappan S

    2009-07-01

    Remote visualization of volumetric images has gained importance over the past few years in medical and industrial applications. Volume visualization is a computationally intensive process, often requiring hardware acceleration to achieve a real time viewing experience. One remote visualization model that can accomplish this would transmit rendered images from a server, based on viewpoint requests from a client. For constrained server-client bandwidth, an efficient compression scheme is vital for transmitting high quality rendered images. In this paper, we present a new view compensation scheme that utilizes the geometric relationship between viewpoints to exploit the correlation between successive rendered images. The proposed method obviates motion estimation between rendered images, enabling significant reduction to the complexity of a compressor. Additionally, the view compensation scheme, in conjunction with JPEG2000 performs better than AVC, the state of the art video compression standard.

  13. Two essays on real-time pricing of electric power

    NASA Astrophysics Data System (ADS)

    Gupta, Nainish Kumar

    1997-09-01

    This dissertation contains two essays on a new innovative pricing mechanism in the electric power industry known as Real Time Pricing (RTP). RTP is a method of pricing electric power wherein at least one component of the price is set at or near levels that reflect the marginal costs of providing power during each time-specific interval. These prices vary in accord with time-specific, incremental supplier costs. RTP allows customers to manage their own bills by adjusting their consumption as spot prices and supplier costs vary, which may amount during a single day from 2 cents to 85 cents for one kilowatt hour (kWh) of usage. Using 1995 data the hypothesis that industrial customers shift their usage patterns of electricity in response to real time prices is tested. To measure customer responsiveness to real time electric rates, econometric techniques are applied to estimate demand elasticities.

  14. Test applications for heterogeneous real-time network testbed

    SciTech Connect

    Mines, R.F.; Knightly, E.W.

    1994-07-01

    This paper investigates several applications for a heterogeneous real-time network testbed. The network is heterogeneous in terms of network devices, technologies, protocols, and algorithms. The network is real-time in that its services can provide per-connection end-to-end performance guarantees. Although different parts of the network use different algorithms, all components have the necessary mechanisms to provide performance guarantees: admission control and priority scheduling. Three applications for this network are described in this paper: a video conferencing tool, a tool for combustion modeling using distributed computing, and an MPEG video archival system. Each has minimum performance requirements that must be provided by the network. By analyzing these applications, we provide insights to the traffic characteristics and performance requirements of practical real-time loads.

  15. A real-time VLC to UART protocol conversion system

    NASA Astrophysics Data System (ADS)

    Deng, Jian-zhi; Yao, Meng; Cheng, Xiao-hui; Deng, Zhuo-hong

    2016-07-01

    A real-time visible light communication (VLC) to universal asynchronous receiver/transmitter (UART) conversion system is made up of a transmitter with a light emitting diode (LED) and a receiver with a photodiode (PD), by which a VLC system is connected to traditional communication modes, and the data are transferred by wireless visible light. UART packets are converted to light packets by the modulation of a 10 kHz on-off-keying (OOK) light signal, and the data losses in the transportation are avoided by the protection of a data buffer mechanism. The experimental results reveal that the real-time VLC to UART conversion system can provide a real-time VLC transmission way for two UART devices in not less than 10 m at a baud rate not less than 19 200 Bd with stable ambient lighting at the same time.

  16. Seismic monitoring and real time damage estimation for lifelines

    SciTech Connect

    Takada, Shiro; Ogawa, Yasuo

    1995-12-31

    This paper presents a methodology for estimating the number of damaged locations of lifeline systems based on seismic monitoring ground motions taking consideration of liquefaction phenomena. The liquefaction area and the number of damage to the lifeline facilities can be synthetically indicated by a personal computer program developed for this purpose. The method is based on the real time observed data of strong ground motions. Osaka Gas Company had been developing the real time damage simulation system by planning to set additional tele-meter seismographs when the Hanshin Great Earthquake occurred. Other lifelines such as electricity, telecommunication, water and sewage systems in quake-hit area had not such a real time damage simulation tool based on observed ground motions. On the other hand, these lifelines have their own damage detection system such as pressure, flow, relay signal, etc.

  17. Real-Time Statistical Modeling of Blood Sugar.

    PubMed

    Otoom, Mwaffaq; Alshraideh, Hussam; Almasaeid, Hisham M; López-de-Ipiña, Diego; Bravo, José

    2015-10-01

    Diabetes is considered a chronic disease that incurs various types of cost to the world. One major challenge in the control of Diabetes is the real time determination of the proper insulin dose. In this paper, we develop a prototype for real time blood sugar control, integrated with the cloud. Our system controls blood sugar by observing the blood sugar level and accordingly determining the appropriate insulin dose based on patient's historical data, all in real time and automatically. To determine the appropriate insulin dose, we propose two statistical models for modeling blood sugar profiles, namely ARIMA and Markov-based model. Our experiment used to evaluate the performance of the two models shows that the ARIMA model outperforms the Markov-based model in terms of prediction accuracy.

  18. Explaining How to Play Real-Time Strategy Games

    NASA Astrophysics Data System (ADS)

    Metoyer, Ronald; Stumpf, Simone; Neumann, Christoph; Dodge, Jonathan; Cao, Jill; Schnabel, Aaron

    Real-time strategy games share many aspects with real situations in domains such as battle planning, air traffic control, and emergency response team management which makes them appealing test-beds for Artificial Intelligence (AI) and machine learning. End user annotations could help to provide supplemental information for learning algorithms, especially when training data is sparse. This paper presents a formative study to uncover how experienced users explain game play in real-time strategy games. We report the results of our analysis of explanations and discuss their characteristics that could support the design of systems for use by experienced real-time strategy game users in specifying or annotating strategy-oriented behavior.

  19. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  20. The VLBA Correlator---Real-Time in the Distributed ERA

    NASA Astrophysics Data System (ADS)

    Wells, Donald C.

    1993-01-01

    The Correlator is the signal processing engine of the Very Long Baseline Array [VLBA]. Radio signals are recorded on special wideband digital recorders at the 10 VLBA antennas and are shipped to the Array Operations Center in Socorro, New Mexico, where they are played back simultaneously into the Correlator. Real-time software and firmware controls the playback drives to achieve synchronization, compute models of the wavefront delay, control the numerous modules of the Correlator, and record FITS files of the fringe visibilities at the back-end of the Correlator. The Correlator system contains a total of more than 100 programmable computers, which communicate by means of various protocols. The VLBA Correlator's dependence on network protocols is an example of the radical transformation of the real-time world over the past five years: real-time is becoming more like conventional computing.

  1. Intelligent data management for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  2. Real-Time Parameter Estimation Using Output Error

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2014-01-01

    Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.

  3. Safe Runtime Verification of Real-Time Properties

    NASA Astrophysics Data System (ADS)

    Colombo, Christian; Pace, Gordon J.; Schneider, Gerardo

    Introducing a monitor on a system typically changes the system’s behaviour by slowing the system down and increasing memory consumption. This may possibly result in creating new bugs, or possibly even ‘fixing’ bugs, only to reappear as the monitor is removed. Properties written in a real-time logic, such as duration calculus, can be particularly sensitive to such changes induced through monitoring. The same problem occurs in other scenarios such as when a system is ported to a faster machine. In this paper, we identify a class of real-time properties, in duration calculus, which are monotonic under the slowing down (speeding up) of the underlying system. We apply this approach to the real-time runtime monitoring tool Larva, where we use duration calculus as a monitoring property specification language, so we automatically identify properties which can be shown to be monotonic with respect to system re-timing.

  4. Real-time structured light intraoral 3D measurement pipeline

    NASA Astrophysics Data System (ADS)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  5. Modeling and Real-Time Simulation of UPFC

    NASA Astrophysics Data System (ADS)

    Kimura, Misao; Takahashi, Choei; Kishibe, Hideto; Miyazaki, Yasuyuki; Noro, Yasuhiro; Iio, Naotaka

    We have developed a digital real time simulator of Power Electronics Controllers, so called FACTS (Flexible AC Transmission Systems) Controllers and/or Custom Power by using MATLABTM/SIMULINKTM and dSPACETM System. This paper describes the modeling and the calculation accuracy of a UPFC (Unified Power Flow Controller) model. Hence the developed simulator operates at a large time step, in order to improve simulation accuracy, a correction processing of the switching delay is implemented into the UPFC model. Calculation accuracy of the real time UPFC model is the same level as EMTDCTM results. We confirm stable operation of the developed UPFC model with connecting a commercial real time digital simulator (RTDSTM).

  6. Kalman filtering for real-time navigator processing.

    PubMed

    Spincemaille, Pascal; Nguyen, Thanh D; Prince, Martin R; Wang, Yi

    2008-07-01

    Navigator echoes are used in high-resolution cardiac MRI for tracking physiological motion to suppress motion artifacts. Alternatives to the conventional diaphragm navigator such as the cardiac fat navigator and the k-space center signal (self-navigator) were developed to monitor heart motion directly. These navigator data can be noisy or may contain undesirable frequency components. Real-time filtering of navigator data without delay, as opposed to the previously used retrospective frequency band filtering, is required for effective prospective navigator gating. One of the commonly used real-time filtering techniques is the Kalman filter, which adaptively estimates motion and suppresses measurement noise by using Bayesian statistics and a motion model. The Kalman filter is investigated in this work to filter noise and distinguish cardiac and respiratory components in navigator data. Preliminary imaging data demonstrate the feasibility of real-time Kalman filtering for prospective respiratory self-gating in CINE cardiac MRI.

  7. Coordinated scheduling for dynamic real-time systems

    NASA Technical Reports Server (NTRS)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  8. Towards real-time registration of 4D ultrasound images.

    PubMed

    Foroughi, Pezhman; Abolmaesumi, Purang; Hashtrudi-Zaad, Keyvan

    2006-01-01

    In this paper, we demonstrate a method for fast registration of sequences of 3D liver images, which could be used for the future real-time applications. In our method, every image is elastically registered to a so called fixed ultrasound image exploiting the information from previous registration. A few feature points are automatically selected, and tracked inside the images, while the deformation of other points are extrapolated with respect to the tracked points employing a fast free-form approach. The main intended application of the proposed method is real-time tracking of tumors for radiosurgery. The algorithm is evaluated on both naturally and artificially deformed images. Experimental results show that for around 85 percent accuracy, the process of tracking is completed very close to real time.

  9. Real-time measurement of mental workload: A feasibility study

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur; Humphrey, Darryl; Sirevaag, Erik; Mecklinger, Axel

    1990-01-01

    The primary goal of the study was to explore the utility of event-related brain potentials (ERP) as real-time measures of workload. To this end, subjects performed two different tasks both separately and together. One task required that subjects monitor a bank of constantly changing gauges and detect critical deviations. Difficulty was varied by changing the predictability of the gauges. The second task was mental arithmetic. Difficulty was varied by requiring subjects to perform operations on either two or three columns of numbers. Two conditions that could easily be distinguished on the basis of performance measures were selected for the real-time evaluation of ERPs. A bootstrapping approach was adopted in which one thousand samples of n trials (n = 1, 3, 5 ...65) were classified using several measures of P300 and Slow Wave amplitude. Classification accuracies of 85 percent were achieved with 25 trials. Results are discussed in terms of potential enhancements for real-time recording.

  10. Real-time RNA profiling within a single bacterium.

    PubMed

    Le, Thuc T; Harlepp, Sébastien; Guet, Calin C; Dittmar, Kimberly; Emonet, Thierry; Pan, Tao; Cluzel, Philippe

    2005-06-28

    Characterizing the dynamics of specific RNA levels requires real-time RNA profiling in a single cell. We show that the combination of a synthetic modular genetic system with fluorescence correlation spectroscopy allows us to directly measure in real time the activity of any specific promoter in prokaryotes. Using a simple inducible gene expression system, we found that induced RNA levels within a single bacterium of Escherichia coli exhibited a pulsating profile in response to a steady input of inducer. The genetic deletion of an efflux pump system, a key determinant of antibiotic resistance, altered the pulsating transcriptional dynamics and caused overexpression of induced RNA. In contrast with population measurements, real-time RNA profiling permits identifying relationships between genotypes and transcriptional dynamics that are accessible only at the level of the single cell.

  11. A framework for building real-time expert systems

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel

    1991-01-01

    The Space Station Freedom is an example of complex systems that require both traditional and artificial intelligence (AI) real-time methodologies. It was mandated that Ada should be used for all new software development projects. The station also requires distributed processing. Catastrophic failures on the station can cause the transmission system to malfunction for a long period of time, during which ground-based expert systems cannot provide any assistance to the crisis situation on the station. This is even more critical for other NASA projects that would have longer transmission delays (e.g., the lunar base, Mars missions, etc.). To address these issues, a distributed agent architecture (DAA) is proposed that can support a variety of paradigms based on both traditional real-time computing and AI. The proposed testbed for DAA is an autonomous power expert (APEX) which is a real-time monitoring and diagnosis expert system for the electrical power distribution system of the space station.

  12. Towards real-time medical diagnostics using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Randeberg, Lise L.

    2015-07-01

    Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.

  13. Real-time experiment interface for biological control applications.

    PubMed

    Lin, Risa J; Bettencourt, Jonathan; Wha Ite, John; Christini, David J; Butera, Robert J

    2010-01-01

    The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org).

  14. Single-protein nanomechanical mass spectrometry in real time

    PubMed Central

    Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L.

    2012-01-01

    Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs upon the NEMS resonator, its mass and the position-of-adsorption are determined by continuously tracking two driven vibrational modes of the device. We demonstrate the potential of multimode NEMS-based mass spectrometry by analyzing IgM antibody complexes in real-time. NEMS-MS is a unique and promising new form of mass spectrometry: it can resolve neutral species, provides resolving power that increases markedly for very large masses, and allows acquisition of spectra, molecule-by-molecule, in real-time. PMID:22922541

  15. Continuous real-time water information: an important Kansas resource

    USGS Publications Warehouse

    Loving, Brian L.; Putnam, James E.; Turk, Donita M.

    2014-01-01

    Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.

  16. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  17. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  18. New real-time strain imaging concepts using diagnostic ultrasound.

    PubMed

    Pesavento, A; Lorenz, A; Siebers, S; Ermert, H

    2000-06-01

    Two real-time strain imaging concepts and systems are presented. Both systems are based on a conventional ultrasound scanner that is connected to a PC with an A/D converter card for real-time data acquisition of rf data. Differential strain between successively acquired rf frames are estimated using phase root seeking. The first concept uses a special real-time implementation of manual elastography. In the second concept, denoted 'vibrography', the static compression is replaced by low-frequency axial vibration of the probe, still operating in quasistatic acquisition mode. The properties of both concepts are discussed with regard to noise and motion artefacts, and it is shown, using simulations and phantom experiments, that both imaging concepts yield the same kind of strain images. Vibrography has the advantage that no manual compression has to be applied, total compression can be very low and some motion artefacts are better suppressed.

  19. New real-time strain imaging concepts using diagnostic ultrasound

    NASA Astrophysics Data System (ADS)

    Pesavento, A.; Lorenz, A.; Siebers, S.; Ermert, H.

    2000-06-01

    Two real-time strain imaging concepts and systems are presented. Both systems are based on a conventional ultrasound scanner that is connected to a PC with an A/D converter card for real-time data acquisition of rf data. Differential strain between successively acquired rf frames are estimated using phase root seeking. The first concept uses a special real-time implementation of manual elastography. In the second concept, denoted `vibrography', the static compression is replaced by low-frequency axial vibration of the probe, still operating in quasistatic acquisition mode. The properties of both concepts are discussed with regard to noise and motion artefacts, and it is shown, using simulations and phantom experiments, that both imaging concepts yield the same kind of strain images. Vibrography has the advantage that no manual compression has to be applied, total compression can be very low and some motion artefacts are better suppressed.

  20. Real time lobster posture estimation for behavior research

    NASA Astrophysics Data System (ADS)

    Yan, Sheng; Alfredsen, Jo Arve

    2017-02-01

    In animal behavior research, the main task of observing the behavior of an animal is usually done manually. The measurement of the trajectory of an animal and its real-time posture description is often omitted due to the lack of automatic computer vision tools. Even though there are many publications for pose estimation, few are efficient enough to apply in real-time or can be used without the machine learning algorithm to train a classifier from mass samples. In this paper, we propose a novel strategy for the real-time lobster posture estimation to overcome those difficulties. In our proposed algorithm, we use the Gaussian mixture model (GMM) for lobster segmentation. Then the posture estimation is based on the distance transform and skeleton calculated from the segmentation. We tested the algorithm on a serials lobster videos in different size and lighting conditions. The results show that our proposed algorithm is efficient and robust under various conditions.

  1. Intercontinental comparison of caustic ingestion in children

    PubMed Central

    Rafeey, Mandana; Ghojazadeh, Morteza; Mehdizadeh, Amir; Hazrati, Hakimeh

    2015-01-01

    Purpose To investigate the caustic ingestion in children among different continents according to demographic characteristics (core purpose), main symptoms, common caustic agents, signs and symptoms, management, treatment and complications. Methods This systematic review was performed by searching the databases Science Direct, ProQuest, Google Scholar, and PubMed, electronically and manually. We included studies that were published from 1980 to 2013, at University of Medical Sciences of Tabriz, Iran. A strategic search was performed with keywords including caustic, corrosive, ingestion and children, and was limited to articles in English and Persian. Statistical analysis was performed by SPSS ver. 18. Results Of 63 selected articles of caustic ingestion with 9,888 samples, the proportion of Africa was 3 articles (4.8%) and 95 samples (1%), America 9 articles (14.3%) and 305 sample (3%), Asia 29 articles (46%) and 2,780 samples (28.1%), Europe 17 articles (27%) and 3,002 samples (30.4%), and Oceania 5 articles (7.9%) and 3,706 samples (37.5%). The average age was in the Africa 3.07±2.02 years, America 3.17±1.83 years, Asia 3.34±1.58 years, Europe 3.58±2.09 years and Oceania 3.52±2.02 years. Sex distribution was in Africa 76 males (0.91%) and 19 females (0.23%), America 49 males (0.58%) and 41 females (0.49%), Asia 1,575 males (18.76%) and 1,087 females (12.95%), Europe 1,018 males (12.13%) and 823 females (9.8%), and Oceania 1,918 males (22.85%) and 1,788 females (21.3%). Statistical analysis of the data indicated higher consumption in Europe and Oceania in the boys with higher average age of years. Conclusion The comparison of caustic ingestion indicated that the cause substances of caustic ingestion in children are different among continents, therefore prevention strategy and different treatment guidelines among continents will be needed. PMID:26770225

  2. Assay of gliadin by real-time immunopolymerase chain reaction.

    PubMed

    Henterich, Nadine; Osman, Awad A; Méndez, Enrique; Mothes, Thomas

    2003-10-01

    Patients with coeliac disease (gluten-sensitive enteropathy) are intolerant against gliadins from wheat and the respective proteins from related cereals and have to keep a lifelong gluten-free diet. For control of gliadin in gluten-free food sensitive assay techniques are necessary. We developed an immunopolymerase chain reaction (iPCR) assay for gliadin. In this technique immunological detection of gliadin by a monoclonal antibody R5 conjugated with an oligonucleotide is amplified by PCR. For quantification, iPCR was performed as real-time PCR (real-time iPCR) in one step. By means of real-time iPCR, the sensitivity of gliadin analysis was increased more than 30-fold above the level reached by enzyme immunoassay. Real time-iPCR using R5 directly conjugated with oligonucleotide was clearly more sensitive than real time-iPCR applying sequentially biotinylated R5, streptavidin, and biotinylated oligonucleotide. With directly conjugated R5 gliadin was detected at a concentration as low as 0.16 ng/mL corresponding to 16 microg gliadin/100 g food or 0.16 ppm (corresponding to 0.25 g of food extracted in 10 mL of solvent and 25-fold dilution of the extract prior to analysis). This is the first report applying the highly sensitive technique of iPCR for gliadin analysis. Furthermore, this is the first approach to perform real-time iPCR in one step without changing the reaction vessels after enzyme immunoassay for subsequent PCR analysis thus minimizing risks of contamination and loss of sensitivity.

  3. Simultaneous real-time monitoring of multiple cortical systems

    NASA Astrophysics Data System (ADS)

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-10-01

    Objective. Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results. Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. Significance. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  4. An approach to a real-time distribution system

    NASA Technical Reports Server (NTRS)

    Kittle, Frank P., Jr.; Paddock, Eddie J.; Pocklington, Tony; Wang, Lui

    1990-01-01

    The requirements of a real-time data distribution system are to provide fast, reliable delivery of data from source to destination with little or no impact to the data source. In this particular case, the data sources are inside an operational environment, the Mission Control Center (MCC), and any workstation receiving data directly from the operational computer must conform to the software standards of the MCC. In order to supply data to development workstations outside of the MCC, it is necessary to use gateway computers that prevent unauthorized data transfer back to the operational computers. Many software programs produced on the development workstations are targeted for real-time operation. Therefore, these programs must migrate from the development workstation to the operational workstation. It is yet another requirement for the Data Distribution System to ensure smooth transition of the data interfaces for the application developers. A standard data interface model has already been set up for the operational environment, so the interface between the distribution system and the application software was developed to match that model as closely as possible. The system as a whole therefore allows the rapid development of real-time applications without impacting the data sources. In summary, this approach to a real-time data distribution system provides development users outside of the MCC with an interface to MCC real-time data sources. In addition, the data interface was developed with a flexible and portable software design. This design allows for the smooth transition of new real-time applications to the MCC operational environment.

  5. Terahertz real-time imaging for nondestructive detection

    NASA Astrophysics Data System (ADS)

    Zhang, LiangLiang; Karpowicz, Nick; Zhang, CunLin; Zhao, YueJin; Zhang, XiCheng

    2008-03-01

    We present a real time imaging measurement in the terahertz (THz) frequency region. The dynamic subtraction technique is used to reduce long-term optical background drift. The reflective images of two targets, a Nikon camera's lens cap and a plastic toy gun, are obtained. For the lens cap, the image data were processed to be false color images. For the toy gun, we show that even under an optically opaque canvas bag, a clear terahertz image is obtained. It is shown that terahertz real time imaging can be used to nondestructively detect concealed objects.

  6. Real-time nondestructive imaging with THz waves

    NASA Astrophysics Data System (ADS)

    Zhang, LiangLiang; Karpowicz, Nick; Zhang, CunLin; Zhao, YueJin; Zhang, XiCheng

    2008-03-01

    We present a real-time imaging measurement in the terahertz (THz) frequency region. The dynamic subtraction technique is used to reduce long-term optical background drift. The reflective images of two targets, a Nikon camera's lens cap and a plastic toy gun, are obtained. For the lens cap, the image data were processed to be false-color images. For the toy gun, we show that even under an optically opaque canvas bag, a clear terahertz image is obtained. It is shown that terahertz real-time imaging can be used to nondestructively detect concealed objects.

  7. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  8. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  9. Real-Time Optical Hough Transform for Industrial Inspection

    NASA Astrophysics Data System (ADS)

    Richards, Jeffrey S.; Casasent, David P.

    1990-03-01

    We describe a real-time optical Hough transform (HT) inspection system and show quantitative inspection results using an industrial inspection application. The HT architecture uses an electronically addressed liquid crystal television (LCTV) as the real-time spatial light modulator, a novel selective edge-enhancement filtering technique, and realizes multiple slices of the HT with a computer generated hologram. The industrial case study of the inspection of cigarette packages is used to benchmark the HT processor. A test set of 100 packages is presented to the processor to qualify its effectiveness. The statistical significance of these finite test set results is also examined.

  10. ARTEMIS: Ares Real Time Environments for Modeling, Integration, and Simulation

    NASA Technical Reports Server (NTRS)

    Hughes, Ryan; Walker, David

    2009-01-01

    This slide presentation reviews the use of ARTEMIS in the development and testing of the ARES launch vehicles. Ares Real Time Environment for Modeling, Simulation and Integration (ARTEMIS) is the real time simulation supporting Ares I hardware-in-the-loop (HWIL) testing. ARTEMIS accurately models all Ares/Orion/Ground subsystems which interact with Ares avionics components from pre-launch through orbit insertion The ARTEMIS System integration Lab, and the STIF architecture is reviewed. The functional components of ARTEMIS are outlined. An overview of the models and a block diagram is presented.

  11. Real Time Mars Approach Navigation Aided by the Mars Network

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Duncan, Courtney; Lightsey, E. Glenn; Mogensen, Andreas

    2006-01-01

    A NASA Mars technology project is described that is building a prototype embedded real time Mars approach navigation capability which can be hosted on the Mars Network's Electra transceiver. The paper motivates the reason for doing real time Mars approach navigation via a set of analyses demonstrating its utility for enabling Mars pin-point landing (less than 1-km landing error). The development approach, software design, and test results are discussed. Finally, the way forward towards a flight demonstration on the Mars Science Laboratory (MSL) is presented.

  12. Real Time Mars Approach Navigation Aided by the Mars Network

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Duncan, Courtney; Lightsey, E. Glenn; Mogensen, Andreas

    2006-01-01

    A NASA Mars technology project is described that is building a prototype embedded real time Mars approach navigation capability which can be hosted on the Mars Network's Electra transceiver. The paper motivates the reason for doing real time Mars approach navigation via a set of analyses demonstrating its utility for enabling Mars pin-point landing (< 1-km landing error). The development approach, software design, and test results are discussed. Finally, the way forward towards a flight demonstration on the Mars Science Laboratory is presented.

  13. Facial landmark detection in real-time with correlation filtering

    NASA Astrophysics Data System (ADS)

    Contreras, Viridiana; Díaz-Ramírez, Víctor H.

    2016-09-01

    An algorithm for facial landmark detection based on template matched filtering is presented. The algorithm is able to detect and estimate the position of a set of prespecified landmarks by employing a bank of linear filters. Each filter in the bank is trained to detect a single landmark that is located in a small region of the input face image. The filter bank is implemented in parallel on a graphics processing unit to perform facial landmark detection in real-time. Computer simulation results obtained with the proposed algorithm are presented and discussed in terms of detection rate, accuracy of landmark location estimation, and real-time efficiency.

  14. Real-time Social Internet Data to Guide Forecasting Models

    SciTech Connect

    Del Valle, Sara Y.

    2016-09-20

    Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematical approaches and heterogeneous data streams.

  15. Mark 3 real-time fringe detection system

    NASA Technical Reports Server (NTRS)

    Levine, J. I.; Whitney, A. R.

    1980-01-01

    A RAM memory built into the Mark 3 decoder module allows the capture of 1 Megabit of data. Data may be collected either in real time or from a pre-recorded tape. Once collected, the data may be retrieved using a standard EIA serial data link. The data may be transmitted to a remote computer for cross correlation processing with similar data from other stations to verify fringes in real time. The data may also be analyzed by a local computer to verify phase calibration, bandpass, format, etc., during a Mark 3 observing session.

  16. Real-time alerts and reminders using information systems.

    PubMed

    Wanderer, Jonathan P; Sandberg, Warren S; Ehrenfeld, Jesse M

    2011-09-01

    Adoption of information systems throughout the hospital environment has enabled the development of real-time physiologic alerts and clinician reminder systems. These clinical tools can be made available through the deployment of anesthesia information management systems (AIMS). Creating usable alert systems requires understanding of technical considerations. Various successful implementations are reviewed, encompassing cost reduction, improved revenue capture, timely antibiotic administration, and postoperative nausea and vomiting prophylaxis. Challenges to the widespread use of real-time alerts and reminders include AIMS adoption rates and the difficulty in choosing appropriate areas and approaches for information systems support.

  17. Real-time prognosis of ICU physiological data streams.

    PubMed

    Sow, Daby; Biem, Alain; Sun, Jimeng; Hu, Jianying; Ebadollahi, Shahram

    2010-01-01

    This paper presents a system capable of predicting in real-time the evolution of Intensive Care Unit (ICU) physiological patient data streams. It leverages a state of the art stream computing platform to host analytics capable of making such prognosis in real time. The focus is on online algorithms that do not require a training phase. We use Fading-Memory Polynomial filters [8] on the frequency domain to predict windows of ICU data streams. We report on both the system and the performance of this approach when applied to traces of more than 1500 ICU patients obtained from the MIMIC-II database [1].

  18. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  19. Real-time optical holographic tracking of multiple objects.

    PubMed

    Chao, T H; Liu, H K

    1989-01-15

    A coherent optical correlation technique for real-time simultaneous tracking of several different objects making independent movements is described, and experimental results are presented. An evaluation of this system compared with digital computing systems is made. The real-time processing capability is obtained through the use of a liquid crystal television spatial light modulator and a dichromated gelatin multifocus hololens. A coded reference beam is utilized in the separation of the output correlation plane associated with each input target so that independent tracking can be achieved.

  20. Principles of real-time sonography in modern obstetrics

    SciTech Connect

    Perone, N.

    1984-01-01

    Introductory chapters assist the obstetrician in establishing an office-based ultrasound facility and choosing real-time ultrasound equipment. The author then offers step-by-step, superbly illustrated instructions on evaluation of the fetus in utero. Special attention is devoted to use of ultrasound in early pregnancy, antenatal assessment of fetal growth, evaluation of the placenta, diagnosis of congenital defects, and monitoring of fetal activity. Also included are chapters on the use of real-time sonography in invasive procedures such as amniocentesis and on sonographic study of gallbladder function in pregnancy.

  1. Handheld portable real-time tracking and communications device

    DOEpatents

    Wiseman, James M [Albuquerque, NM; Riblett, Jr., Loren E.; Green, Karl L [Albuquerque, NM; Hunter, John A [Albuquerque, NM; Cook, III, Robert N.; Stevens, James R [Arlington, VA

    2012-05-22

    Portable handheld real-time tracking and communications devices include; a controller module, communications module including global positioning and mesh network radio module, data transfer and storage module, and a user interface module enclosed in a water-resistant enclosure. Real-time tracking and communications devices can be used by protective force, security and first responder personnel to provide situational awareness allowing for enhance coordination and effectiveness in rapid response situations. Such devices communicate to other authorized devices via mobile ad-hoc wireless networks, and do not require fixed infrastructure for their operation.

  2. Handling Flight-Research Data In Real Time

    NASA Technical Reports Server (NTRS)

    Moore, Archie L.

    1988-01-01

    Researchers at widely separated locations able to participate in tests and analyze data immediately. Basic data-handling needs common: Communicates with vehicle, pilot, and test team; Acquires, computes, and displays data; knows exact location of research vehicle at all times. Continuing challenge for designers and operators of ground support facilities to perform tasks in real time and present integrated results to research team in real time. Paper presents several approaches to satisfaction of requirements of representative types of aircraft research programs at NASA Western Aeronautical Test Range of Ames Research Center.

  3. Real-time optical holographic tracking of multiple objects

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1989-01-01

    A coherent optical correlation technique for real-time simultaneous tracking of several different objects making independent movements is described, and experimental results are presented. An evaluation of this system compared with digital computing systems is made. The real-time processing capability is obtained through the use of a liquid crystal television spatial light modulator and a dichromated gelatin multifocus hololens. A coded reference beam is utilized in the separation of the output correlation plane associated with each input target so that independent tracking can be achieved.

  4. Real-time medical collaboration services over the web.

    PubMed

    Andrikos, Christos; Rassias, Georgios; Tsanakas, Panayiotis; Maglogiannis, Ilias

    2015-08-01

    The gradual shift in modern medical practice, from working alone clinical doctors to MDTs (Multi-Disciplinary Teams), raises the need of online real-time collaboration among geographically distributed medical personnel. The paper presents a Web-based platform, featuring an efficient medical data management and exchange, for hosting real-time collaborative services. The presented work leverages state-of-the-art features of the web (technologies and APIs) to support client-side medical data processing. Moreover, to address the typical bandwidth bottleneck and known scalability issues of centralized data sharing, an indirect RPC (Remote Process Call) scheme is introduced through object synchronization over the WebRTC paradigm.

  5. A heterogeneous hierarchical architecture for real-time computing

    SciTech Connect

    Skroch, D.A.; Fornaro, R.J.

    1988-12-01

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  6. Real-Time Multiprocessor Programming Language (RTMPL) user's manual

    NASA Technical Reports Server (NTRS)

    Arpasi, D. J.

    1985-01-01

    A real-time multiprocessor programming language (RTMPL) has been developed to provide for high-order programming of real-time simulations on systems of distributed computers. RTMPL is a structured, engineering-oriented language. The RTMPL utility supports a variety of multiprocessor configurations and types by generating assembly language programs according to user-specified targeting information. Many programming functions are assumed by the utility (e.g., data transfer and scaling) to reduce the programming chore. This manual describes RTMPL from a user's viewpoint. Source generation, applications, utility operation, and utility output are detailed. An example simulation is generated to illustrate many RTMPL features.

  7. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.; Todorov, E.; Levesque, S.

    2014-02-18

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  8. An Intelligent Real-Time System Architecture Implemented in ADA

    DTIC Science & Technology

    1992-12-01

    performed by the system is procedural in nature [ Wilber , 1989:75]. For example, if one was to create a fully autonomous system to pilot a modem fighter...Tindell, Ken , Bums, Alan, and Wellings, Andy, Allocating Hard Real Time Tasks (An NP-Hard Problem Made Easy), e-mail via ftp, 1992, Real Time Systems...Technology/ENS Wright-Patterson AFB, Ohio 45433-6583, Distribution Limited to DoD and DoD contractors only, April 1990. [ Wilber , 1989]. Wilber , George

  9. Real-time PCR in Food Science: Introduction.

    PubMed

    Rodriguez-Lazaro, David; Hernandez, Marta

    2013-01-01

    Food safety and quality control programmes are increasingly applied throughout the production food chain in order to guarantee added value products as well as to minimize the risk of infection for the consumer. The development of real-time PCR has represented one of the most significant advances in food diagnostics as it provides rapid, reliable and quantitative results. These aspects become increasingly important for the agricultural and food industry. Different strategies for real-time PCR diagnostics have been developed including unspecific detection independent of the target sequence using fluorescent dyes such as SYBR Green, or by sequence-specific fluorescent oligonucleotide probes such as TaqMan probes or molecular beacons.

  10. Steerable real-time sonographically guided needle biopsy.

    PubMed

    Buonocore, E; Skipper, G J

    1981-02-01

    A method for dynamic real-time ultrasonic guidance for percutaneous needle biopsy has been successful in obtaining cytologic and histologic specimens from abdominal masses. The system depends on a real-time ultrasonic transducer that has been rigidly attached to a laterally placed steerable needle holder. Using simple trigonometric functions, a chart has been derived that gives the exact angulation and needle length to produce quick, reliable, guided needle placements. Examples of successful renal, hepatobiliary, and retroperitoneal biopsies are presented. Advantages of this technique include speed, accuracy, low cost, three-dimensional format, and the omission of contrast media and radiation.

  11. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  12. Real-time selective sequencing using nanopore technology

    PubMed Central

    Loose, Matthew; Malla, Sunir; Stout, Michael

    2016-01-01

    The Oxford Nanopore MinION sequences DNA by sensing changes in electrical current flow in real-time as molecules traverse nanopores. Optionally, the voltage across specific nanopores can be reversed, ejecting the DNA molecule. This enables “Read Until”, the selection of specific DNA molecules for sequencing. We use dynamic time warping to match reads to reference, selecting regions of small genomes, individual amplicons, or normalization of the amplicon set. This first demonstration of direct selection of specific DNA molecules in real-time enables many novel future applications. PMID:27454285

  13. Ebstein's anomaly assessed by real-time 3-D echocardiography.

    PubMed

    Acar, Philippe; Abadir, Sylvia; Roux, Daniel; Taktak, Assaad; Dulac, Yves; Glock, Yves; Fournial, Gerard

    2006-08-01

    The outcome of patients with Ebstein's malformation depends mainly on the severity of the tricuspid valve malformation. Accurate description of the tricuspid anatomy by two-dimensional echocardiography remains difficult. We applied real-time three-dimensional echocardiography to 3 patients with Ebstein's anomaly. Preoperative and postoperative descriptions of the tricuspid valve were obtained from views taken inside the right ventricle. Surface of the leaflets as well as the commissures were obtained by three-dimensional echocardiography. Real time three-dimensional echocardiography is a promising tool, providing new views that will help to evaluate the ability and efficiency of surgical valve repair in patient with Ebstein's malformation.

  14. Integration of Real-Time Data Into Building Automation Systems

    SciTech Connect

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  15. Spectral decontamination of a real-time helicopter simulation

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1983-01-01

    Nonlinear mathematical models of a rotor system, referred to as rotating blade-element models, produce steady-state, high-frequency harmonics of significant magnitude. In a discrete simulation model, certain of these harmonics may be incompatible with realistic real-time computational constraints because of their aliasing into the operational low-pass region. However, the energy is an aliased harmonic may be suppressed by increasing the computation rate of an isolated, causal nonlinearity and using an appropriate filter. This decontamination technique is applied to Sikorsky's real-time model of the Black Hawk helicopter, as supplied to NASA for handling-qualities investigations.

  16. Real time microcontroller implementation of an adaptive myoelectric filter.

    PubMed

    Bagwell, P J; Chappell, P H

    1995-03-01

    This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.

  17. Molten-Caustic-Leaching System Integration Project

    SciTech Connect

    Not Available

    1992-01-01

    The objective of this project is to modify an existing molten-caustic-leaching (MCL) system for coal upgrading so that it operates in an integrated continuous manner. The overall strategy consists of several tasks, but only a few are discussed here. Tasks discussed are: MCL circuit component testing (coal sample procurement), final circuit modifications for integrated operation, coal product handling/waste disposal (coal inventory disposal, MCL solid waste disposal), project management and control. (VC)

  18. Caustics and the growth of droplets

    NASA Astrophysics Data System (ADS)

    Govindarajan, Rama; Ravichandran, S.; Ray, Samriddhi; Deepu, P.

    Caustics are formed when inertial particles of very different velocities collide in a flow, and are a consequence of the dissipative nature of particle motion in a suspension. Using a model vortex-dominated flow with heavy droplets in a saturated environment, we suggest that sling caustics form only within a neighbourhood around a vortex, the square of whose radius is proportional to the product of circulation and particle inertia. Droplets starting close to this critical radius congregate very close together, resulting in large spikes in (Lagrangian) number density. Allowing for merger when droplets collide, we show that droplets starting out close to the critical radius display a much more rapid growth in size than those starting elsewhere, and a large fraction of the large droplets are those that originate within the caustics-forming region. We test these predictions in a two-dimensional simulation of turbulent flow. We hope that our study will be of interest in long-standing problems of physical interest such as the mechanism of broadening of droplet spectra in a turbulent flow. Support from the Ministry of Earth Sciences, Government of India for the project Coupled physical processes in the Bay of Bengal and monsoon air-sea interaction under OMM is gratefully acknowledged.

  19. Real-time film recording from stroke-written CRT's

    NASA Technical Reports Server (NTRS)

    Hunt, R.; Grunwald, A. J.

    1980-01-01

    Real-time simulation studies often require motion-picture recording of events directly from stroke written cathode-ray tubes (CRT's). Difficulty presented is prevention of "flicker," which results from lack of synchronization between display sequence on CRT and shutter motion of camera. Programmable method has been devised for phasing display sequence to shutter motion, ensuring flicker-free recordings.

  20. Note: A real-time beam current density meter

    SciTech Connect

    Liu Junliang; Yu Deyang; Ruan Fangfang; Xue Yingli; Wang Wei

    2013-03-15

    We have developed a real-time beam current density meter for charged particle beams. It measures the mean current density by collimating a uniform and large diameter primary beam. The suppression of the secondary electrons and the deflection of the beam were simulated, and it was tested with a 105 keV Ar{sup 7+} ion beam.

  1. Real-time PCR: Advanced technologies and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book brings together contributions from 20 experts in the field of PCR, providing a broad perspective of the applications of quantitative real-time PCR (qPCR). The editors state in the preface that the aim is to provide detailed insight into underlying principles and methods of qPCR to provide ...

  2. Real-Time Analytics for the Healthcare Industry: Arrhythmia Detection.

    PubMed

    Agneeswaran, Vijay Srinivas; Mukherjee, Joydeb; Gupta, Ashutosh; Tonpay, Pranay; Tiwari, Jayati; Agarwal, Nitin

    2013-09-01

    It is time for the healthcare industry to move from the era of "analyzing our health history" to the age of "managing the future of our health." In this article, we illustrate the importance of real-time analytics across the healthcare industry by providing a generic mechanism to reengineer traditional analytics expressed in the R programming language into Storm-based real-time analytics code. This is a powerful abstraction, since most data scientists use R to write the analytics and are not clear on how to make the data work in real-time and on high-velocity data. Our paper focuses on the applications necessary to a healthcare analytics scenario, specifically focusing on the importance of electrocardiogram (ECG) monitoring. A physician can use our framework to compare ECG reports by categorization and consequently detect Arrhythmia. The framework can read the ECG signals and uses a machine learning-based categorizer that runs within a Storm environment to compare different ECG signals. The paper also presents some performance studies of the framework to illustrate the throughput and accuracy trade-off in real-time analytics.

  3. Novel Monitor Paradigm for Real-Time Exposure Assessment

    PubMed Central

    Negi, Indira; Tsow, Francis; Tanwar, Kshitiz; Zhang, Lihua; Iglesias, Rodrigo A.; Chen, Cheng; Rai, Anant; Forzani, Erica S.; Tao, Nongjian (NJ)

    2013-01-01

    A wearable monitor that can reliably, accurately and continuously measure personal exposure levels of various toxicants would not only accelerate the current environmental and occupational health and safety studies, but also enable new studies that are not possible with the current monitoring technology. Developing such a monitor has been a difficult challenge, and requires innovative sensing science and creative engineering. We have developed, built and tested a wearable monitor for real-time detection of toxic hydrocarbons and acids in environment. The monitor is low-cost, accurate, and user-friendly. In addition, it can communicate wirelessly with a cell phone in which the monitoring results can be processed, displayed, stored and transmitted to a designated computer. We have validated the functions and performance of the monitor, and carried out field tests with workers involving waste management, fire overhaul, and floor-cleaning activities, as well as with first- and second-hand smokers. The averaged exposure levels are in agreement with those determined by the standard NIOSH methods. The monitor provides accurate and real-time exposure assessment for the workers involving different activities. The real-time and continuous monitoring capability makes it possible to correlate the exposure levels with different activities and changes in the microenvironments. The monitor provides unprecedented real-time information that will help advance occupational safety and environmental health studies. It may also be used to better protect workers from occupational overexposure to toxic molecules. PMID:20551996

  4. BENEFITS OF SEWERAGE SYSTEM REAL-TIME CONTROL

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed computer-assisted management system for a specific urban sewerage network that is activated during a wet-weather flow event. Though uses of RTC systems had started in the mid 60s, recent developments in computers, telecommunication, in...

  5. Waste collection multi objective model with real time traceability data.

    PubMed

    Faccio, Maurizio; Persona, Alessandro; Zanin, Giorgia

    2011-12-01

    Waste collection is a highly visible municipal service that involves large expenditures and difficult operational problems, plus it is expensive to operate in terms of investment costs (i.e. vehicles fleet), operational costs (i.e. fuel, maintenances) and environmental costs (i.e. emissions, noise and traffic congestions). Modern traceability devices, like volumetric sensors, identification RFID (Radio Frequency Identification) systems, GPRS (General Packet Radio Service) and GPS (Global Positioning System) technology, permit to obtain data in real time, which is fundamental to implement an efficient and innovative waste collection routing model. The basic idea is that knowing the real time data of each vehicle and the real time replenishment level at each bin makes it possible to decide, in function of the waste generation pattern, what bin should be emptied and what should not, optimizing different aspects like the total covered distance, the necessary number of vehicles and the environmental impact. This paper describes a framework about the traceability technology available in the optimization of solid waste collection, and introduces an innovative vehicle routing model integrated with the real time traceability data, starting the application in an Italian city of about 100,000 inhabitants. The model is tested and validated using simulation and an economical feasibility study is reported at the end of the paper.

  6. Real time PCR in childhood tuberculosis: a valuable diagnostic tool.

    PubMed

    Dayal, Rajeshwar; Kashyap, Haripal; Pounikar, Gajanand; Kamal, Raj; Yadav, Neeraj Kumar; Singh, Manoj Kumar; Chauhan, Devendra Singh; Goyal, Ankur

    2015-02-01

    The present study was conducted to detect and quantitate Mycobacterium tuberculosis from various body fluid specimens of cases of tuberculosis by real time PCR technique and compare results with conventional PCR technique and culture. One hundred fifteen children (<18 y) with tuberculosis (diagnosed as per IAP guidelines) and 32 disease matched controls from the Department of Pediatrics, S.N. Medical College, Agra, were included in the study. Different body fluids (CSF, gastric aspirate, pleural fluid, ascitic fluid and lymph node aspirate) were subjected to culture, conventional PCR targeting insertion sequence 1S6110 and Real time PCR targeting 16srRNA of Mycobacterium tuberculosis. Real time PCR showed significantly better results than culture in all body fluids (p < 0.05). It was superior to conventional PCR in CSF (p < 0.05) but showed comparable results in gastric aspirate, pleural fluid, ascitic fluid and lymph node aspirate (p > 0.05). Hence, real time PCR is a promising diagnostic tool for childhood tuberculosis, particularly tubercular meningitis.

  7. Real-Time Attitude Independent Three Axis Magnetometer Calibration

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Lai, Kok-Lam; Harman, Richard R.

    2003-01-01

    In this paper new real-time approaches for three-axis magnetometer sensor calibration are derived. These approaches rely on a conversion of the magnetometer-body and geomagnetic-reference vectors into an attitude independent observation by using scalar checking. The goal of the full calibration problem involves the determination of the magnetometer bias vector, scale factors and non-orthogonality corrections. Although the actual solution to this full calibration problem involves the minimization of a quartic loss function, the problem can be converted into a quadratic loss function by a centering approximation. This leads to a simple batch linear least squares solution. In this paper we develop alternative real-time algorithms based on both the extended Kalman filter and Unscented filter. With these real-time algorithms, a full magnetometer calibration can now be performed on-orbit during typical spacecraft mission-mode operations. Simulation results indicate that both algorithms provide accurate integer resolution in real time, but the Unscented filter is more robust to large initial condition errors than the extended Kalman filter. The algorithms are also tested using actual data from the Transition Region and Coronal Explorer (TRACE).

  8. Our Experiment in Online, Real-Time Reference.

    ERIC Educational Resources Information Center

    Broughton, Kelly

    2001-01-01

    Describes experiences in providing real-time online reference services to users with remote Web access at the Bowling Green State University library. Discusses the decision making process first used to select HumanClick software to communicate via chat; and the selection of a fee-based customer service product, Virtual Reference Desk. (LRW)

  9. Citrus stubborn disease incidence determined by quantitative real time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative real-time (q) PCR was developed for detection of Spiroplasma citri, the causal agent of citrus stubborn disease (CSD), using the DNA binding fluorophore SYBR Green I. The primer pair, P58-3f/4r, developed based on sequences from the P58 putative adhesin multigene of the pathogen result...

  10. Real-Time Capture of Student Reasoning While Writing

    ERIC Educational Resources Information Center

    Franklin, Scott V.; Hermsen, Lisa M.

    2014-01-01

    We present a new approach to investigating student reasoning while writing: real-time capture of the dynamics of the writing process. Key-capture or video software is used to record the entire writing episode, including all pauses, deletions, insertions, and revisions. A succinct shorthand, "S notation," is used to highlight significant…

  11. Real-Time Forecasting of Echo-Centroid Motion.

    DTIC Science & Technology

    1979-01-01

    motions has been developed. The key to this development is an algorithm for correlating previous with current storm- centroid positions. The program was...Modifications and Addtions ..... ... 12 1) Data Acquisition ..... ........... . 12 2) Correlation Algorithm .... .......... . 13 3) Forecast... Algorithm ............... 16 4) Data Diaplay ..... ............... . 20 3. Real-Time Operation ..... ................ 22 4. Data and Methodology

  12. Real-Time PCR Quantification of Methanobrevibacter oralis in Periodontitis

    PubMed Central

    Bringuier, Amélie; Khelaifia, Saber; Richet, Hervé; Aboudharam, Gérard

    2013-01-01

    A real-time PCR assay developed to quantify Methanobrevibacter oralis indicated that its inoculum significantly correlated with periodontitis severity (P = 0.003), despite a nonsignificant difference in prevalence between controls (3/10) and patients (12/22) (P = 0.2, Fisher test). The M. oralis load can be used as a biomarker for periodontitis. PMID:23254133

  13. Real-time pair-feeding of animals

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Connolly, J. P.; Hitchman, M. J.; Humbert, J. E.

    1972-01-01

    Automatic pair-feeding system was developed which immediately dispenses same amount of food to control animal as has been consumed by experimental animal that has free access to food. System consists of: master feeding system; slave feeding station; and control mechanism. Technique performs real time pair-feeding without attendant time lag.

  14. REAL-TIME CONTROL OF COMBINED SEWER NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed management program for a specific urban sewerage system during a wet-weather event. The function of RTC is to assure efficient operation of the sewerage system and maximum utilization of existing storage capacity, either to fully conta...

  15. Learning and Design with Online Real-Time Collaboration

    ERIC Educational Resources Information Center

    Stevenson, Michael; Hedberg, John G.

    2013-01-01

    This paper explores the use of emerging Cloud technologies that support real-time online collaboration. It considers the extent to which these technologies can be leveraged to develop complex skillsets supporting interaction between multiple learners in online spaces. In a pilot study that closely examines how groups of learners translate two…

  16. Computerized Systems for Collecting Real-Time Observational Data.

    ERIC Educational Resources Information Center

    Kahng, SungWoo; Iwata, Brian

    1998-01-01

    A survey of 15 developers of computerized real-time observation systems found many systems have incorporated laptop or handheld computers as well as bar-code scanners. Most systems used IBM-compatible software, and ranged from free to complete systems costing more than $1,500. Data analysis programs were included with most programs. (Author/CR)

  17. Real-time PCR for Strongyloides stercoralis-associated meningitis.

    PubMed

    Nadir, Eyal; Grossman, Tamar; Ciobotaro, Pnina; Attali, Malka; Barkan, Daniel; Bardenstein, Rita; Zimhony, Oren

    2016-03-01

    Four immunocompromised patients, immigrants from Ethiopia, presented with diverse clinical manifestations of meningitis associated with Strongyloides stercoralis dissemination as determined by identification of intestinal larvae. The cerebrospinal fluid of 3 patients was tested by a validated (for stool) real-time PCR for S. stercoralis and was found positive, establishing this association.

  18. Method for Real-Time Structure Shape-Sensing

    NASA Technical Reports Server (NTRS)

    Ko, William L. (Inventor); Richards, William Lance (Inventor)

    2009-01-01

    The invention is a method for obtaining the displacement of a flexible structure by using strain measurements obtained by stain sensor,. By obtaining the displacement of structures in this manner, one may construct the deformed shape of the structure and display said deformed shape in real-time, enabling active control of the structure shape if desired.

  19. Real-time measurements of jet aircraft engine exhaust.

    PubMed

    Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F

    2005-05-01

    Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.

  20. Real-Time Visualization System for Computational Offloading

    DTIC Science & Technology

    2015-01-01

    Real- Time Visualization System for Computational Offloading by Bryan Dawson and David L Doria ARL-TN-0655 January 2015... Time Visualization System for Computational Offloading Bryan Dawson Oak Ridge Institute for Science and Education David L Doria Computational...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and

  1. Real-time segmentation by Active Geometric Functions.

    PubMed

    Duan, Qi; Angelini, Elsa D; Laine, Andrew F

    2010-06-01

    Recent advances in 4D imaging and real-time imaging provide image data with clinically important cardiac dynamic information at high spatial or temporal resolution. However, the enormous amount of information contained in these data has also raised a challenge for traditional image analysis algorithms in terms of efficiency. In this paper, a novel deformable model framework, Active Geometric Functions (AGF), is introduced to tackle the real-time segmentation problem. As an implicit framework paralleling to level-set, AGF has mathematical advantages in efficiency and computational complexity as well as several flexible feature similar to level-set framework. AGF is demonstrated in two cardiac applications: endocardial segmentation in 4D ultrasound and myocardial segmentation in MRI with super high temporal resolution. In both applications, AGF can perform real-time segmentation in several milliseconds per frame, which was less than the acquisition time per frame. Segmentation results are compared to manual tracing with comparable performance with inter-observer variability. The ability of such real-time segmentation will not only facilitate the diagnoses and workflow, but also enables novel applications such as interventional guidance and interactive image acquisition with online segmentation.

  2. Leading the Charge for Real-Time Data

    ERIC Educational Resources Information Center

    Aarons, Dakarai I.

    2009-01-01

    Well before the idea of using data to manage schools gained prominence on the national stage, Oklahoma's Western Heights school district had made the ideal of real-time, data-driven decisionmaking a reality. Back in 2001, Superintendent Joe Kitchens was already being spotlighted for his focus on creating a longitudinal-data system that would give…

  3. Introducing Undergraduate Students to Real-Time PCR

    ERIC Educational Resources Information Center

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  4. Real-Time Confocal Imaging Of The Living Eye

    NASA Astrophysics Data System (ADS)

    Jester, James V.; Cavanagh, H. Dwight; Essepian, John; Shields, William J.; Lemp, Michael A.

    1989-12-01

    In 1986, we adapted the Tandem Scanning Reflected Light Microscope of Petran and Hadraysky to permit non-invasive, confocal imaging of the living eye in real-time. We were first to obtain stable, confocal optical sections in vivo, from human and animal eyes. Using confocal imaging systems we have now studied living, normal volunteers, rabbits, cats and primates sequentially, non-invasively, and in real-time. The continued development of real-time confocal imaging systems will unlock the door to a new field of cell biology involving for the first time the study of dynamic cellular processes in living organ systems. Towards this end we have concentrated our initial studies on three areas (1) evaluation of confocal microscope systems for real-time image acquisition, (2) studies of the living normal cornea (epithelium, stroma, endothelium) in human and other species; and (3) sequential wound-healing responses in the cornea in single animals to lamellar-keratectomy injury (cellular migration, inflammation, scarring). We believe that this instrument represents an important, new paradigm for research in cell biology and pathology and that it will fundamentally alter all experimental and clinical approaches in future years.

  5. Real-time keypoint recognition using restricted Boltzmann machine.

    PubMed

    Yuan, Miaolong; Tang, Huajin; Li, Haizhou

    2014-11-01

    Feature point recognition is a key component in many vision-based applications, such as vision-based robot navigation, object recognition and classification, image-based modeling, and augmented reality. Real-time performance and high recognition rates are of crucial importance to these applications. In this brief, we propose a novel method for real-time keypoint recognition using restricted Boltzmann machine (RBM). RBMs are generative models that can learn probability distributions of many different types of data including labeled and unlabeled data sets. Due to the inherent noise of the training data sets, we use an RBM to model statistical distributions of the training data. Furthermore, the learned RBM can be used as a competitive classifier to recognize the keypoints in real-time during the tracking stage, thus making it advantageous to be employed in applications that require real-time performance. Experiments have been conducted under a variety of conditions to demonstrate the effectiveness and generalization of the proposed approach.

  6. A new real-time tsunami detection algorithm

    NASA Astrophysics Data System (ADS)

    Chierici, Francesco; Embriaco, Davide; Pignagnoli, Luca

    2017-01-01

    Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection based on the real-time tide removal and real-time band-pass filtering of seabed pressure recordings. The algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability with respect to the most widely used tsunami detection algorithm, while containing the computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. Pressure data sets acquired by Bottom Pressure Recorders in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event which occurred at Haida Gwaii on 28 October 2012 using data recorded by the Bullseye underwater node of Ocean Networks Canada. The algorithm successfully ran for test purpose in year-long missions onboard abyssal observatories, deployed in the Gulf of Cadiz and in the Western Ionian Sea.

  7. Real-time speech gisting for ATC applications

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Kirk A.

    1995-06-01

    Command and control within the ATC environment remains primarily voice-based. Hence, automatic real time, speaker independent, continuous speech recognition (CSR) has many obvious applications and implied benefits to the ATC community: automated target tagging, aircraft compliance monitoring, controller training, automatic alarm disabling, display management, and many others. However, while current state-of-the-art CSR systems provide upwards of 98% word accuracy in laboratory environments, recent low-intrusion experiments in the ATCT environments demonstrated less than 70% word accuracy in spite of significant investments in recognizer tuning. Acoustic channel irregularities and controller/pilot grammar verities impact current CSR algorithms at their weakest points. It will be shown herein, however, that real time context- and environment-sensitive gisting can provide key command phrase recognition rates of greater than 95% using the same low-intrusion approach. The combination of real time inexact syntactic pattern recognition techniques and a tight integration of CSR, gisting, and ATC database accessor system components is the key to these high phase recognition rates. A system concept for real time gisting in the ATC context is presented herein. After establishing an application context, discussion presents a minimal CSR technology context then focuses on the gisting mechanism, desirable interfaces into the ATCT database environment, and data and control flow within the prototype system. Results of recent tests for a subset of the functionality are presented together with suggestions for further research.

  8. Model Checking Real Time Java Using Java PathFinder

    NASA Technical Reports Server (NTRS)

    Lindstrom, Gary; Mehlitz, Peter C.; Visser, Willem

    2005-01-01

    The Real Time Specification for Java (RTSJ) is an augmentation of Java for real time applications of various degrees of hardness. The central features of RTSJ are real time threads; user defined schedulers; asynchronous events, handlers, and control transfers; a priority inheritance based default scheduler; non-heap memory areas such as immortal and scoped, and non-heap real time threads whose execution is not impeded by garbage collection. The Robust Software Systems group at NASA Ames Research Center has JAVA PATHFINDER (JPF) under development, a Java model checker. JPF at its core is a state exploring JVM which can examine alternative paths in a Java program (e.g., via backtracking) by trying all nondeterministic choices, including thread scheduling order. This paper describes our implementation of an RTSJ profile (subset) in JPF, including requirements, design decisions, and current implementation status. Two examples are analyzed: jobs on a multiprogramming operating system, and a complex resource contention example involving autonomous vehicles crossing an intersection. The utility of JPF in finding logic and timing errors is illustrated, and the remaining challenges in supporting all of RTSJ are assessed.

  9. Real-time feedback control of a mesoscopic superposition

    SciTech Connect

    Jacobs, Kurt; Finn, Justin; Vinjanampathy, Sai

    2011-04-15

    We show that continuous real-time feedback can be used to track, control, and protect a mesoscopic superposition of two spatially separated wave packets. The feedback protocol is enabled by an approximate state estimator and requires two continuous measurements, performed simultaneously. For nanomechanical and superconducting resonators, both measurements can be implemented by coupling the resonators to superconducting qubits.

  10. Real Time Measurement of Host Bioenergetics During Mycobacterium Tuberculosis Infection

    DTIC Science & Technology

    2014-09-01

    1 AWARD NUMBER: W81XWH-13-1-0149 TITLE: Real Time Measurement of Host Bioenergetics During Mycobacterium Tuberculosis Infection ... Tuberculosis 5a. CONTRACT NUMBER Infection 5b. GRANT NUMBER W81XWH-13-1-0149 5c. PROGRAM ELEMENT NUMBER 6...resistant state, sometimes reactivating to cause tuberculosis (TB) decades after the primary infection , has puzzled scientists for years. This

  11. Real-Time Ocean Data in the Classroom

    ERIC Educational Resources Information Center

    Murray, Laura; Gibson, Deidre; Ward, Angela

    2008-01-01

    To apply students' savvy internet skills in the science classroom--as well as capture their interest in science and investigation, and provide opportunities for authentic research--introduce them to real-time data from ocean-observing systems. Students can use data from these ocean-observing systems to discover the winds and waves from storms or…

  12. 75 FR 68418 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... comment (or signing the comment, if submitted on behalf of an association, business, or labor union). You... technology-dependent application, or any particular business approach for establishing a real-time... technology, technology- dependent application, and business approach options that yield information...

  13. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  14. Building influenza surveillance pyramids in near real time, Australia.

    PubMed

    Dalton, Craig B; Carlson, Sandra J; Butler, Michelle T; Elvidge, Elissa; Durrheim, David N

    2013-11-01

    A timely measure of circulating influenza virus severity has been elusive. Flutracking, the Australian online influenza-like illness surveillance system, was used to construct a surveillance pyramid in near real time for 2011/2012 participants and demonstrated a striking difference between years. Such pyramids will facilitate rapid estimation of attack rates and disease severity.

  15. ANALYSIS OF REAL-TIME VEHICLE HYDROCARBON EMISSIONS DATA

    EPA Science Inventory

    The report gives results of analyses using real-time dynamometer test emissions data from 13 passenger cars to examine variations in emissions during different speeds or modes of travel. The resulting data provided a way to separately identify idle, cruise, acceleration, and dece...

  16. Distributed simulation using a real-time shared memory network

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Mattern, Duane L.; Wong, Edmond; Musgrave, Jeffrey L.

    1993-01-01

    The Advanced Control Technology Branch of the NASA Lewis Research Center performs research in the area of advanced digital controls for aeronautic and space propulsion systems. This work requires the real-time implementation of both control software and complex dynamical models of the propulsion system. We are implementing these systems in a distributed, multi-vendor computer environment. Therefore, a need exists for real-time communication and synchronization between the distributed multi-vendor computers. A shared memory network is a potential solution which offers several advantages over other real-time communication approaches. A candidate shared memory network was tested for basic performance. The shared memory network was then used to implement a distributed simulation of a ramjet engine. The accuracy and execution time of the distributed simulation was measured and compared to the performance of the non-partitioned simulation. The ease of partitioning the simulation, the minimal time required to develop for communication between the processors and the resulting execution time all indicate that the shared memory network is a real-time communication technique worthy of serious consideration.

  17. Real-Time Case Method: Analysis of a Second Implementation

    ERIC Educational Resources Information Center

    Theroux, James M.

    2009-01-01

    In 2005, M. Hopkins and J. Theroux implemented the second example of an experimental case study, at 11 business schools in the United States and Canada. The new type of case study, named the "real-time case (RTC) study," uses the Internet to bring business reality to business courses and to facilitate communication among faculty,…

  18. Real-time Java for flight applications: an update

    NASA Technical Reports Server (NTRS)

    Dvorak, D.

    2003-01-01

    The RTSJ is a specification for supporting real-time execution in the Java programming language. The specification has been shaped by several guiding principles, particularly: predictable execution as the first priority in all tradeoffs, no syntactic extensions to Java, and backward compatibility.

  19. Species identification in meat products using real-time PCR.

    PubMed

    Jonker, K M; Tilburg, J J H C; Hagele, G H; de Boer, E

    2008-05-01

    One of the most convenient methods for the identification of animal species in processed meat products is the examination of DNA sequences. Real-time polymerase chain reaction (qPCR) techniques are particularly suitable because even small fragments of DNA formed during heat processing of the meat can be amplified and identified. A real-time PCR method has been developed and evaluated for the identification of processed meat products. In test mixtures containing beef, pork, horse, mutton, chicken and turkey, it was possible to identify these species down to a level of 0.05%. By adjusting the number of cycles, it was possible to detect levels as low as 0.01% of these species. Cross-reactivity between these species was not found, except for pure horsemeat (250 ng DNA) in the assay for turkey meat. Cross-reactivity of deer, roe, ostrich, kangaroo, goat, domestic duck, mallard, goose, pigeon, guinea fowl, quail and pheasant was also investigated and it was found that amounts as high as 250 ng DNA of these species in the reaction vial did not result in (false) positive signals except for amounts higher than 125 ng deer DNA and higher than 50 ng pigeon DNA in the determination of chicken and beef, respectively. More than 150 meat samples were examined using DNA hybridization and real-time PCR. A comparison of the results showed a better performance of the real-time procedure compared to DNA hybridization.

  20. Real-Time IRI driven by GIRO data

    NASA Astrophysics Data System (ADS)

    Galkin, Ivan; Huang, Xueqin; Reinisch, Bodo; Bilitza, Dieter; Vesnin, Artem

    Real-time extensions of the empirical International Reference Ionosphere (IRI) model are based on assimilative techniques that preserve the IRI formalism which is optimized for the description of climatological ionospheric features. The Global Ionosphere Radio Observatory (GIRO) team has developed critical parts of an IRI Real Time Assimilative Model (IRTAM) for the global ionospheric plasma distribution using measured data available in real time from ~50 ionosondes of the GIRO network, The current assimilation results present global assimilative maps of foF2 and hmF2 that reproduce available data at the sensor sites and smoothly return to the climatological specifications when and where the data are missing, and are free from artificial sharp gradients and short-lived artifacts when viewed in time progression. Animated real-time maps of foF2 and hmF2 are published with a few minutes latency at http://giro.uml.edu/IRTAM/. Our real-time IRI modeling uses morphing, a technique that transforms the climatological ionospheric specifications to match the observations by iteratively computing corrections to the original coefficients of the diurnal/spatial expansions, used in IRI to map the key ionospheric characteristics, while keeping the IRI expansion basis formalism intact. Computation of the updated coefficient set for a given point in time includes analysis of the latest 24-hour history of observations, which allows the morphing technique to sense evolving ionospheric dynamics even with a sparse sensor network. A Non-linear Error Compensation Technique for Associative Restoration (NECTAR), one of the features in our morphing approach, has been in operation at the Lowell GIRO Data Center since 2013. The cornerstone of NECTAR is a recurrent neural network optimizer that is responsible for smoothing the transitions between the grid cells where observations are available. NECTAR has proved suitable for real-time operations that require the assimilation code to be

  1. Test of Real-Time Space Weather Predictors

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Bala, R.

    2013-12-01

    We are testing four real-time empirical space weather prediction functions to see which has been most successful, running in real time, for the past two years. Data from the "Wing Model" (presently running at SWPC in Boulder); the "Boyle Model" have been running in real time for a number of years, with the Boyle Index given online with alerts since 2003. The "Ram Model" and the "Newell Model" (also running at Rice University) have all been providing Kp predictions in real time for one year. We are testing their relative effectiveness in predicting Kp, and also their "up time", by using their actual predictions posted in real time against the final version Kp values. The Boyle model is a neural network model with 12-hour lookback time, using the Boyle Index as the base function, and yields one-hour and three-hour ahead predictions. The Ram model is similar to the Boyle model, but adds a pressure term to the base function. The Newell model is also a 12-hour neural net, but using the Newell function as its base. The Wing model gives a one- and four-hour prediction, with the prediction time variable with the solar wind velocity. All three Rice models are available in real time at http://mms.rice.edu/realtime/forecast.html , and the Wing model at http://www.swpc.noaa.gov/wingkp/ . Early results indicate that any of the three Rice neural net predictors had a slightly better success rate in predicting Kp in real time than Wing. In the image below from August 1-7, 2013, Wing's correlation coefficient was 0.682, with three hours of missing data (shown as -1). The Boyle function's correlation coefficient was 0.782, the Ram function was 0.788 and the Newell function was 0.793. In addition, Wing's prediction has missing data more often (roughly 1% over a year of data) than the Rice predictions (roughly 0.1% over a year of data), meaning it had less reliability. All of the models could successfully predict one hour-ahead Kp, on average, to better than one step in Kp, and the

  2. Integrating Real-time Earthquakes into Natural Hazard Courses

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Benz, H. M.; Whitlock, J. S.; Bittenbinder, A. N.; Bogaert, B. B.

    2001-12-01

    Natural hazard courses are playing an increasingly important role in college and university earth science curricula. Students' intrinsic curiosity about the subject and the potential to make the course relevant to the interests of both science and non-science students make natural hazards courses popular additions to a department's offerings. However, one vital aspect of "real-life" natural hazard management that has not translated well into the classroom is the real-time nature of both events and response. The lack of a way to entrain students into the event/response mode has made implementing such real-time activities into classroom activities problematic. Although a variety of web sites provide near real-time postings of natural hazards, students essentially learn of the event after the fact. This is particularly true for earthquakes and other events with few precursors. As a result, the "time factor" and personal responsibility associated with natural hazard response is lost to the students. We have integrated the real-time aspects of earthquake response into two natural hazard courses at Penn State (a 'general education' course for non-science majors, and an upper-level course for science majors) by implementing a modification of the USGS Earthworm system. The Earthworm Database Management System (E-DBMS) catalogs current global seismic activity. It provides earthquake professionals with real-time email/cell phone alerts of global seismic activity and access to the data for review/revision purposes. We have modified this system so that real-time response can be used to address specific scientific, policy, and social questions in our classes. As a prototype of using the E-DBMS in courses, we have established an Earthworm server at Penn State. This server receives national and global seismic network data and, in turn, transmits the tailored alerts to "on-duty" students (e-mail, pager/cell phone notification). These students are responsible to react to the alarm

  3. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES

    SciTech Connect

    George Scott III

    2002-08-01

    Ongoing Phase 2 work comprises the development and field-testing of a real-time reservoir stimulation diagnostic system. Phase 3 work commenced in June 2001, and involved conducting research, development and field-testing of real-time enhanced dual-fluid stimulation processes. Experimental field-testing to date includes three well tests. Application of these real-time stimulation processes and diagnostic technologies has been technically successful with commercial production from the ''marginal'' reservoirs in the first two well tests. The third well test proved downhole-mixing is an efficient process for acid stimulation of a carbonate reservoir that produced oil and gas with 2200 psi bottomhole reservoir pressure, however, subsequent shut-in pressure testing indicated the reservoir was characterized by low-permeability. Realtimezone continues to seek patent protection in foreign markets to the benefit of both RTZ and NETL. Realtimezone and the NETL have licensed the United States patented to Halliburton Energy Services (HES). Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies, from well testing conducted over the last 12-month work period and including well test scheduled for year-end of 2002. Technical data transfer to industry is ongoing via Internet tech-transfer, public presentations and industry publications. Final Phase 3 test work will be focused on further field-testing the innovational process of blending stimulation fluids downhole. This system provides a number of advantages in comparison to older industry fracturing techniques and allows the operator to control reservoir fracture propagation and concentrations of proppant placed in the reservoir, in real-time. Another observed advantage is that lower friction pressures result, which results in lower pump treating pressures and safer reservoir hydraulic fracturing jobs.

  4. Real-Time Traffic Information for Emergency Evacuations

    SciTech Connect

    Franzese, Oscar; Zhang, Li; Mahmoud, Anas M.

    2010-01-01

    There are many instances in which it is possible to plan ahead for an emergency evacuation (e.g., a chemical processing facility explosion). For those cases, if an accident were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other cases (e.g., the derailment of a train transporting hazardous materials), there may not be any previously developed plan to be implemented, and decisions must be made ad-hoc on how to proceed with an emergency evacuation. In both situations, the availability of real-time traffic information plays a critical role in the management of the evacuation operations. Due to cost constraints, only large urban areas have traffic sensor deployments that permit access to some sort of real-time traffic information; an evacuation taking place in other areas of the country would have to proceed without real-time traffic information. In order to improve operations during a vehicular emergency evacuation anywhere, a system of sensors that uses newly developed real-time traffic-information-gathering technologies to assess traffic conditions and to detect incidents on the main evacuation routes is presented in this paper. A series of tests, both in a controlled environment and in the field, were conducted to study the feasibility of such a system of traffic sensors and to assess its ability to provide real-time traffic information during an emergency evacuation. The results of these tests indicated that the prototype sensors are reliable and accurate for the type of application that is the focus of this paper.

  5. Exploring Gigabyte Datasets in Real Time: Architectures, Interfaces and Time-Critical Design

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    Architectures and Interfaces: The implications of real-time interaction on software architecture design: decoupling of interaction/graphics and computation into asynchronous processes. The performance requirements of graphics and computation for interaction. Time management in such an architecture. Examples of how visualization algorithms must be modified for high performance. Brief survey of interaction techniques and design, including direct manipulation and manipulation via widgets. talk discusses how human factors considerations drove the design and implementation of the virtual wind tunnel. Time-Critical Design: A survey of time-critical techniques for both computation and rendering. Emphasis on the assignment of a time budget to both the overall visualization environment and to each individual visualization technique in the environment. The estimation of the benefit and cost of an individual technique. Examples of the modification of visualization algorithms to allow time-critical control.

  6. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    SciTech Connect

    Lastras-Martínez, A. E-mail: alastras@gmail.com; Ortega-Gallegos, J.; Guevara-Macías, L. E.; Nuñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F.; Lastras-Montaño, L. A.; Lastras-Montaño, M. A.

    2014-03-01

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  7. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  8. Real time 3D visualization of ultrasonic data using a standard PC.

    PubMed

    Nikolov, Svetoslav Ivanov; Pablo Gómez Gonzaléz, Juan; Arendt Jensen, Jørgen

    2003-08-01

    This paper describes a flexible, software-based scan converter capable of rendering 3D volumetric data in real time on a standard PC. The display system is used in the remotely accessible and software-configurable multichannel ultrasound sampling system (RASMUS system) developed at the Center for Fast Ultrasound Imaging. The display system is split into two modules: data transfer and display. These two modules are independent and communicate using shared memory and a predefined set of functions. It is, thus, possible to use the display program with a different data-transfer module which is tailored to another source of data (scanner, database, etc.). The data-transfer module of the RASMUS system is based on a digital signal processor from Analog Devices--ADSP 21060. The beamformer is connected to a PC via the link channels of the ADSP. A direct memory access channel transfers the data from the ADSP to a memory buffer. The display module, which is based on OpenGL, uses this memory buffer as a texture map that is passed to the graphics board. The scan conversion, image interpolation, and logarithmic compression are performed by the graphics board, thus reducing the load on the main processor to a minimum. The scan conversion is done by mapping the ultrasonic data to polygons. The format of the image is determined only by the coordinates of the polygons allowing for any kind of geometry to be displayed on the screen. Data from color flow mapping is added by alpha-blending. The 3D data are displayed either as cross-sectional planes, or as a fully rendered 3D volume displayed as a pyramid. All sides of the pyramid can be changed to reveal B-mode or C-mode scans, and the pyramid can be rotated in all directions in real time.

  9. Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing

    NASA Astrophysics Data System (ADS)

    Thong, Patricia S. P.; Tandjung, Stephanus S.; Movania, Muhammad Mobeen; Chiew, Wei-Ming; Olivo, Malini; Bhuvaneswari, Ramaswamy; Seah, Hock-Soon; Lin, Feng; Qian, Kemao; Soo, Khee-Chee

    2012-05-01

    Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures. To move toward real-time "virtual" biopsy of oral lesions, we interfaced an embedded computing system to a confocal laser endomicroscope to achieve a prototype three-dimensional (3-D) fluorescence imaging system. A field-programmable gated array computing platform was programmed to enable synchronization of cross-sectional image grabbing and Z-depth scanning, automate the acquisition of confocal image stacks and perform volume rendering. Fluorescence imaging of the human and murine oral cavities was carried out using the fluorescent dyes fluorescein sodium and hypericin. Volume rendering of cellular and tissue structures from the oral cavity demonstrate the potential of the system for 3-D fluorescence visualization of the oral cavity in real-time. We aim toward achieving a real-time virtual biopsy technique that can complement current diagnostic techniques and aid in targeted biopsy for better clinical outcomes.

  10. Real-time 3D video compression for tele-immersive environments

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyu; Cui, Yi; Anwar, Zahid; Bocchino, Robert; Kiyanclar, Nadir; Nahrstedt, Klara; Campbell, Roy H.; Yurcik, William

    2006-01-01

    Tele-immersive systems can improve productivity and aid communication by allowing distributed parties to exchange information via a shared immersive experience. The TEEVE research project at the University of Illinois at Urbana-Champaign and the University of California at Berkeley seeks to foster the development and use of tele-immersive environments by a holistic integration of existing components that capture, transmit, and render three-dimensional (3D) scenes in real time to convey a sense of immersive space. However, the transmission of 3D video poses significant challenges. First, it is bandwidth-intensive, as it requires the transmission of multiple large-volume 3D video streams. Second, existing schemes for 2D color video compression such as MPEG, JPEG, and H.263 cannot be applied directly because the 3D video data contains depth as well as color information. Our goal is to explore from a different angle of the 3D compression space with factors including complexity, compression ratio, quality, and real-time performance. To investigate these trade-offs, we present and evaluate two simple 3D compression schemes. For the first scheme, we use color reduction to compress the color information, which we then compress along with the depth information using zlib. For the second scheme, we use motion JPEG to compress the color information and run-length encoding followed by Huffman coding to compress the depth information. We apply both schemes to 3D videos captured from a real tele-immersive environment. Our experimental results show that: (1) the compressed data preserves enough information to communicate the 3D images effectively (min. PSNR > 40) and (2) even without inter-frame motion estimation, very high compression ratios (avg. > 15) are achievable at speeds sufficient to allow real-time communication (avg. ~ 13 ms per 3D video frame).

  11. Capability of a Mobile Monitoring System to Provide Real-Time Data Broadcasting and Near Real-Time Source Attribution

    NASA Astrophysics Data System (ADS)

    Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.

    2014-12-01

    It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the

  12. Real-time dual-band haptic music player for mobile devices.

    PubMed

    Hwang, Inwook; Lee, Hyeseon; Choi, Seungmoon

    2013-01-01

    We introduce a novel dual-band haptic music player for real-time simultaneous vibrotactile playback with music in mobile devices. Our haptic music player features a new miniature dual-mode actuator that can produce vibrations consisting of two principal frequencies and a real-time vibration generation algorithm that can extract vibration commands from a music file for dual-band playback (bass and treble). The algorithm uses a "haptic equalizer" and provides plausible sound-to-touch modality conversion based on human perceptual data. In addition, we present a user study carried out to evaluate the subjective performance (precision, harmony, fun, and preference) of the haptic music player, in comparison with the current practice of bass-band-only vibrotactile playback via a single-frequency voice-coil actuator. The evaluation results indicated that the new dual-band playback outperforms the bass-only rendering, also providing several insights for further improvements. The developed system and experimental findings have implications for improving the multimedia experience with mobile devices.

  13. Near Real Time Tools for ISS Plasma Science and Engineering Applications

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard; Shim, Ja Soon; Kuznetsova, Maria M.; Pulkkinen, Antti, A.

    2013-01-01

    The International Space Station (ISS) program utilizes a plasma environment forecast for estimating electrical charging hazards for crews during extravehicular activity (EVA). The process uses ionospheric electron density (Ne) and temperature (Te) measurements from the ISS Floating Potential Measurement Unit (FPMU) instrument suite with the assumption that the plasma conditions will remain constant for one to fourteen days with a low probability for a space weather event which would significantly change the environment before an EVA. FPMU data is typically not available during EVA's, therefore, the most recent FPMU data available for characterizing the state of the ionosphere during EVA is typically a day or two before the start of an EVA or after the EVA has been completed. Three near real time space weather tools under development for ISS applications are described here including: (a) Ne from ground based ionosonde measurements of foF2 (b) Ne from near real time satellite radio occultation measurements of electron density profiles (c) Ne, Te from a physics based ionosphere model These applications are used to characterize the ISS space plasma environment during EVA periods when FPMU data is not available, monitor for large changes in ionosphere density that could render the ionosphere forecast and plasma hazard assessment invalid, and validate the "persistence of conditions" forecast assumption. In addition, the tools are useful for providing space environment input to science payloads on ISS and anomaly investigations during periods the FPMU is not operating.

  14. Ring array transducers for real-time 3-D imaging of an atrial septal occluder.

    PubMed

    Light, Edward D; Lindsey, Brooks D; Upchurch, Joseph A; Smith, Stephen W

    2012-08-01

    We developed new miniature ring array transducers integrated into interventional device catheters such as used to deploy atrial septal occluders. Each ring array consisted of 55 elements operating near 5 MHz with interelement spacing of 0.20 mm. It was constructed on a flat piece of copper-clad polyimide and then wrapped around an 11 French O.D. catheter. We used a braided cabling technology from Tyco Electronics Corporation to connect the elements to the Volumetric Medical Imaging (VMI) real-time 3-D ultrasound scanner. Transducer performance yielded a -6 dB fractional bandwidth of 20% centered at 4.7 MHz without a matching layer vs. average bandwidth of 60% centered at 4.4 MHz with a matching layer. Real-time 3-D rendered images of an en face view of a Gore Helex septal occluder in a water tank showed a finer texture of the device surface from the ring array with the matching layer.

  15. Fast surface and volume rendering based on shear-warp factorization for a surgical simulator.

    PubMed

    Kim, Keun Ho; Kwon, Min Jeong; Kwon, Sung Min; Ra, Jong Beom; Park, HyunWook

    2002-01-01

    Fast simultaneous visualization of 3D medical images and medical instruments is necessary for a surgical simulator. Because unconstrained motion of a medical instrument is more frequent than that of the patient, the visualization of medical instruments is performed in real time using surface rendering. However, volume rendering is usually used for realistic visualization of the 3D medical image. We have developed an algorithm to combine a volume-rendered image and a surface-rendered image using a Z-buffer for depth cueing, which is applied to a surgical simulator. Surface rendering is used for visualization of a medical instrument, whereas 3D medical images such as CT and MRI are usually visualized by volume rendering, because segmentation of the medical image is difficult. In this study, when the volume-rendered image is combined with the surface-rendered image, the amount of computation is reduced by early ray termination and instrument-region masking in the sheared image space. Using these methods, a fast combination of volume-rendered and surface-rendered images is performed with high image quality. The method is appropriate for real-time visualization of 3D medical images and medical instrument motion in the images, and can be applied to image-guided therapy and surgical simulators.

  16. Determination of Uncalibrated Phase Delays for Real-Time PPP

    NASA Astrophysics Data System (ADS)

    Hinterberger, Fabian; Weber, Robert; Huber, Katrin; Lesjak, Roman

    2014-05-01

    Today PPP is a well-known technique of GNSS based positioning used for a wide range of post-processing applications. Using observations of a single GNSS receiver and applying precise orbit and clock information derived from global GNSS networks highly precise positions can be obtained. The atmospheric delays are usually mitigated by linear combination (ionosphere) and parameter estimation (troposphere). Within the last years also the demand for real-time PPP increased. In 2012, the IGS real-time working group started a pilot project to broadcast real-time precise orbits and clock correction streams. Nevertheless, real-time PPP is in its starting phase and currently only few applications make use of the technique although SSR-Messages are already implemented in RTCM3.1. The problems of still limited accuracy compared to Network-RTK as well as long convergence times might be solved by almost instantaneous integer ambiguity resolution at zero-difference level which is a major topic of current scientific investigations. Therefore a national consortium has carried out over the past 2 years the research project PPP-Serve (funded by the Austrian Research Promotion Agency - FFG), which aimed at the development of appropriate algorithms for real-time PPP with special emphasis on the ambiguity resolution of zero-difference observations. We have established a module which calculates based on GPS-reference station data-streams of a dense network (obtained from IGS via BKG) so-called wide-lane and narrow-lane satellite specific calibration phase delays. While the wide-lane phase delays are almost stable over longer periods, the estimation of narrow-lane phase delays has to be re-established every 24 hours. These phase-delays are submitted via a real-time module to the rover where they are used for point positioning via a PPP-model. This presentation deals with the process and obstacles of calculating the wide-lane and narrow-lane phase-delays (based on SD -observations between

  17. The VLBA correlator: Real-time in the distributed era

    NASA Technical Reports Server (NTRS)

    Wells, D. C.

    1992-01-01

    The correlator is the signal processing engine of the Very Long Baseline Array (VLBA). Radio signals are recorded on special wideband (128 Mb/s) digital recorders at the 10 telescopes, with sampling times controlled by hydrogen maser clocks. The magnetic tapes are shipped to the Array Operations Center in Socorro, New Mexico, where they are played back simultaneously into the correlator. Real-time software and firmware controls the playback drives to achieve synchronization, compute models of the wavefront delay, control the numerous modules of the correlator, and record FITS files of the fringe visibilities at the back-end of the correlator. In addition to the more than 3000 custom VLSI chips which handle the massive data flow of the signal processing, the correlator contains a total of more than 100 programmable computers, 8-, 16- and 32-bit CPUs. Code is downloaded into front-end CPU's dependent on operating mode. Low-level code is assembly language, high-level code is C running under a RT OS. We use VxWorks on Motorola MVME147 CPU's. Code development is on a complex of SPARC workstations connected to the RT CPU's by Ethernet. The overall management of the correlation process is dependent on a database management system. We use Ingres running on a Sparcstation-2. We transfer logging information from the database of the VLBA Monitor and Control System to our database using Ingres/NET. Job scripts are computed and are transferred to the real-time computers using NFS, and correlation job execution logs and status flow back by the route. Operator status and control displays use windows on workstations, interfaced to the real-time processes by network protocols. The extensive network protocol support provided by VxWorks is invaluable. The VLBA Correlator's dependence on network protocols is an example of the radical transformation of the real-time world over the past five years. Real-time is becoming more like conventional computing. Paradoxically, 'conventional

  18. Real-time Tsunami Inundation Prediction Using High Performance Computers

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  19. Simultaneous Real-Time Monitoring of Multiple Cortical Systems

    PubMed Central

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-01-01

    Objective Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor, or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach We study these questions using electrocorticographic (ECoG) signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (6 for offline parameter optimization, 6 for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelope. These decoders were trained separately and executed simultaneously in real time. Significance This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  20. Cost evaluation of a DSN high level real-time language

    NASA Technical Reports Server (NTRS)

    Mckenzie, M.

    1977-01-01

    The hypothesis that the implementation of a DSN High Level Real Time Language will reduce real time software expenditures is explored. The High Level Real Time Language is found to be both affordable and cost-effective.

  1. Real-time micro-modelling of city evacuations

    NASA Astrophysics Data System (ADS)

    Löhner, Rainald; Haug, Eberhard; Zinggerling, Claudio; Oñate, Eugenio

    2017-01-01

    A methodology to integrate geographical information system (GIS) data with large-scale pedestrian simulations has been developed. Advances in automatic data acquisition and archiving from GIS databases, automatic input for pedestrian simulations, as well as scalable pedestrian simulation tools have made it possible to simulate pedestrians at the individual level for complete cities in real time. An example that simulates the evacuation of the city of Barcelona demonstrates that this is now possible. This is the first step towards a fully integrated crowd prediction and management tool that takes into account not only data gathered in real time from cameras, cell phones or other sensors, but also merges these with advanced simulation tools to predict the future state of the crowd.

  2. Real-Time Fourier Synthesis of Ensembles with Timbral Interpolation

    NASA Astrophysics Data System (ADS)

    Haken, Lippold

    1990-01-01

    In Fourier synthesis, natural musical sounds are produced by summing time-varying sinusoids. Sounds are analyzed to find the amplitude and frequency characteristics for their sinusoids; interpolation between the characteristics of several sounds is used to produce intermediate timbres. An ensemble can be synthesized by summing all the sinusoids for several sounds, but in practice it is difficult to perform such computations in real time. To solve this problem on inexpensive hardware, it is useful to take advantage of the masking effects of the auditory system. By avoiding the computations for perceptually unimportant sinusoids, and by employing other computation reduction techniques, a large ensemble may be synthesized in real time on the Platypus signal processor. Unlike existing computation reduction techniques, the techniques described in this thesis do not sacrifice independent fine control over the amplitude and frequency characteristics of each sinusoid.

  3. GPU-based real-time trinocular stereo vision

    NASA Astrophysics Data System (ADS)

    Yao, Yuanbin; Linton, R. J.; Padir, Taskin

    2013-01-01

    Most stereovision applications are binocular which uses information from a 2-camera array to perform stereo matching and compute the depth image. Trinocular stereovision with a 3-camera array has been proved to provide higher accuracy in stereo matching which could benefit applications like distance finding, object recognition, and detection. This paper presents a real-time stereovision algorithm implemented on a GPGPU (General-purpose graphics processing unit) using a trinocular stereovision camera array. Algorithm employs a winner-take-all method applied to perform fusion of disparities in different directions following various image processing techniques to obtain the depth information. The goal of the algorithm is to achieve real-time processing speed with the help of a GPGPU involving the use of Open Source Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. The results are compared in accuracy and speed to verify the improvement.

  4. Real-time landslide warning during heavy rainfall

    USGS Publications Warehouse

    Keefer, D.K.; Wilson, R.C.; Mark, R.K.; Brabb, E.E.; Brown, W. M.; Ellen, S.D.; Harp, E.L.; Wieczorek, G.F.; Alger, C.S.; Zatkin, R.S.

    1987-01-01

    A real-time system for issuing warnings of landslides during major storms is being developed for the San Francisco Bay region, California. The system is based on empirical and theoretical relations between rainfall and landslide initiation, geologic determination of areas susceptible to landslides, real-time monitoring of a regional network of telemetering rain gages, and National Weather Service precipitation forecasts. This system was used to issue warnings during the storms of 12 to 21 February 1986, which produced 800 millimeters of rainfall in the region. Although analysis after the storms suggests that modifications and additional developments are needed, the system successfully predicted the times of major landslide events. It could be used as a prototype for systems in other landslide-prone regions.

  5. An intelligent processing environment for real-time simulation

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Wells, Buren Earl, Jr.

    1988-01-01

    The development of a highly efficient and thus truly intelligent processing environment for real-time general purpose simulation of continuous systems is described. Such an environment can be created by mapping the simulation process directly onto the University of Alamba's OPERA architecture. To facilitate this effort, the field of continuous simulation is explored, highlighting areas in which efficiency can be improved. Areas in which parallel processing can be applied are also identified, and several general OPERA type hardware configurations that support improved simulation are investigated. Three direct execution parallel processing environments are introduced, each of which greatly improves efficiency by exploiting distinct areas of the simulation process. These suggested environments are candidate architectures around which a highly intelligent real-time simulation configuration can be developed.

  6. Real-time seam tracking for rocket thrust chamber manufacturing

    SciTech Connect

    Schmitt, D.J.; Novak, J.L.; Starr, G.P.; Maslakowski, J.E.

    1993-11-01

    A sensor-based control approach for real-time seam tracking of rocket thrust chamber assemblies has been developed to enable automation of a braze paste dispensing process. This approach utilizes a non-contact Multi-Axis Seam Tracking (MAST) sensor to track the seams. Thee MAST sensor measures capacitance variations between the sensor and the workpiece and produces four varying voltages which are read directly into the robot controller. A PID control algorithm which runs at the application program level has been designed based upon a simple dynamic model of the combined robot and sensor plant. The control algorithm acts on the incoming sensor signals in real-time to guide the robot motion along the seam path. Experiments demonstrate that seams can be tracked at 100 mm/sec within the accuracy required for braze paste dispensing.

  7. Real-time nanoscopy by using blinking enhanced quantum dots.

    PubMed

    Watanabe, Tomonobu M; Fukui, Shingo; Jin, Takashi; Fujii, Fumihiko; Yanagida, Toshio

    2010-10-06

    Superresolution optical microscopy (nanoscopy) is of current interest in many biological fields. Superresolution optical fluctuation imaging, which utilizes higher-order cumulant of fluorescence temporal fluctuations, is an excellent method for nanoscopy, as it requires neither complicated optics nor illuminations. However, it does need an impractical number of images for real-time observation. Here, we achieved real-time nanoscopy by modifying superresolution optical fluctuation imaging and enhancing the fluctuation of quantum dots. Our developed quantum dots have higher blinking than commercially available ones. The fluctuation of the blinking improved the resolution when using a variance calculation for each pixel instead of a cumulant calculation. This enabled us to obtain microscopic images with 90-nm and 80-ms spatial-temporal resolution by using a conventional fluorescence microscope without any optics or devices.

  8. Current Trends in Ligand Binding Real-Time Measurement Technologies.

    PubMed

    Fraser, Stephanie; Shih, Judy Y; Ware, Mark; O'Connor, Edward; Cameron, Mark J; Schwickart, Martin; Zhao, Xuemei; Regnstrom, Karin

    2017-03-20

    Numerous advances in ligand binding assay (LBA) real-time measurement technologies have been made within the last several years, ranging from the development of novel platforms to drive technology expansion to the adaptation of existing platforms to optimize performance and throughput. In this review, we have chosen to focus on technologies that provide increased value to two distinct segments of the LBA community. First, experimentally, by measuring real-time binding events, these technologies provide data that can be used to interrogate receptor/ligand binding interactions. While overall the platforms are not new, they have made significant advances in throughput, multiplexing, and/or sensitivity. Second, clinically, these point-of-care (POC) technologies provide instantaneous information which facilitates rapid treatment decisions.

  9. Real time analysis of multichannel data in tokamaks

    NASA Astrophysics Data System (ADS)

    Wijnands, T.; Parlange, F.; Couturier, B.; Moulin, D.

    1996-10-01

    Four different techniques for the fast analysis of multichannel data in plasma physics are discussed. All four of these techniques are general and sufficiently fast to be used in real time applications. Function parametrization, canonical correlation analysis and a neural network of the multilayer perceptron (MLP) type are compared with a unique linear mapping based on a singular value decomposition, which is used as a reference. Applications deal with the identification of the plasma boundary and some global plasma parameters in the DIII-D and the Tore Supra tokamaks by using magnetic measurements. The results of an MLP-1 neural network, employed for the real time plasma position determination in Tore Supra, are presented

  10. Toward real-time performance benchmarks for Ada

    NASA Technical Reports Server (NTRS)

    Clapp, Russell M.; Duchesneau, Louis; Volz, Richard A.; Mudge, Trevor N.; Schultze, Timothy

    1986-01-01

    The issue of real-time performance measurements for the Ada programming language through the use of benchmarks is addressed. First, the Ada notion of time is examined and a set of basic measurement techniques are developed. Then a set of Ada language features believed to be important for real-time performance are presented and specific measurement methods discussed. In addition, other important time related features which are not explicitly part of the language but are part of the run-time related features which are not explicitly part of the language but are part of the run-time system are also identified and measurement techniques developed. The measurement techniques are applied to the language and run-time system features and the results are presented.

  11. Real-time focal stack compositing for handheld mobile cameras

    NASA Astrophysics Data System (ADS)

    Solh, Mashhour

    2013-03-01

    Extending the depth of field using a single lens camera on a mobile device can be achieved by capturing a set of images each focused at a different depth or focal stack then combine these samples of the focal stack to form a single all-in-focus image or an image refocused at a desired depth of field. Focal stack compositing in real time for a handheld mobile camera has many challenges including capturing, processing power, handshaking, rolling shutter artifacts, occlusion, and lens zoom effect. In this paper, we describe a system for a real time focal stack compositing system for handheld mobile device with an alignment and compositing algorithms. We will also show all-in-focus images captured and processed by a cell phone camera running on Android OS.

  12. Real-time high dynamic range laser scanning microscopy

    PubMed Central

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-01-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979

  13. Real-time multiplexed digital cavity-enhanced spectroscopy

    DOE PAGES

    Boyson, Toby K.; Dagdigian, Paul J.; Pavey, Karl D.; ...

    2015-10-01

    Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. In addition, this Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylatemore » and show parts-per-billion per root hertz sensitivity measured in real-time.« less

  14. Apollo experience report: Real-time auxiliary computing facility development

    NASA Technical Reports Server (NTRS)

    Allday, C. E.

    1972-01-01

    The Apollo real time auxiliary computing function and facility were an extension of the facility used during the Gemini Program. The facility was expanded to include support of all areas of flight control, and computer programs were developed for mission and mission-simulation support. The scope of the function was expanded to include prime mission support functions in addition to engineering evaluations, and the facility became a mandatory mission support facility. The facility functioned as a full scale mission support activity until after the first manned lunar landing mission. After the Apollo 11 mission, the function and facility gradually reverted to a nonmandatory, offline, on-call operation because the real time program flexibility was increased and verified sufficiently to eliminate the need for redundant computations. The evaluation of the facility and function and recommendations for future programs are discussed in this report.

  15. Light sheet microscopy for real-time developmental biology.

    PubMed

    Weber, Michael; Huisken, Jan

    2011-10-01

    Within only a few short years, light sheet microscopy has contributed substantially to the emerging field of real-time developmental biology. Low photo-toxicity and high-speed multiview acquisition have made selective plane illumination microscopy (SPIM) a popular choice for studies of organ morphogenesis and function in zebrafish, Drosophila, and other model organisms. A multitude of different light sheet microscopes have emerged for the noninvasive imaging of specimens ranging from single molecules to cells, tissues, and entire embryos. In particular, developmental biology can benefit from the ability to watch developmental events occur in real time in an entire embryo, thereby advancing our understanding on how cells form tissues and organs. However, it presents a new challenge to our existing data and image processing tools. This review gives an overview of where we stand as light sheet microscopy branches out, explores new areas, and becomes more specialized.

  16. Prospects for eruption prediction in near real-time

    USGS Publications Warehouse

    Voight, B.; Cornelius, R.R.

    1991-01-01

    THE 'materials science' method for eruption prediction1-3 arises from the application of a general law governing the failure of materials: ??-?? ??-A=0, where A and ?? are empirical constants, and ?? is an observable quantity such as ground deformation, seismicity or gas emission. This law leads to the idea of the 'inverse-rate' plot, in which the time of failure can be estimated by extrapolation of the curve of ??-1 versus time to a pre-deter-mined intercept. Here we suggest that this method can be combined with real-time seismic amplitude monitoring to provide a tool for near-real-time eruption prediction, and we demonstrate how it might have been used to predict two dome-growth episodes at Mount St Helens volcano in 1985 and 1986, and two explosive eruptions at Redoubt volcano in 1989-90.

  17. In Brief: Underwater volcano gets real-time monitoring

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-05-01

    A real-time underwater earthquake monitoring system was installed on the top of Kick'em Jenny, an underwater volcano located off the north coast of Grenada, on 6 May. The Real Time Offshore Seismic Station (RTOSS) consists of an ocean-bottom seismometer connected by a stretchy hose to a buoy on the ocean surface. The buoy is powered by solar panels and transmits seismic data by high-frequency radio to an observatory in Sauteurs, Grenada. The RTOSS research team, led by scientists from the Woods Hole Oceanographic Institution, is coordinating with the Grenadian National Disaster Management Agency and the Seismic Unit of the University of the West Indies to incorporate the RTOSS data into existing regional monitoring. Kick'em Jenny, the only `live' submarine volcano in the West Indies, last erupted in 2001.

  18. Fast underdetermined BSS architecture design methodology for real time applications.

    PubMed

    Mopuri, Suresh; Reddy, P Sreenivasa; Acharyya, Amit; Naik, Ganesh R

    2015-01-01

    In this paper, we propose a high speed architecture design methodology for the Under-determined Blind Source Separation (UBSS) algorithm using our recently proposed high speed Discrete Hilbert Transform (DHT) targeting real time applications. In UBSS algorithm, unlike the typical BSS, the number of sensors are less than the number of the sources, which is of more interest in the real time applications. The DHT architecture has been implemented based on sub matrix multiplication method to compute M point DHT, which uses N point architecture recursively and where M is an integer multiples of N. The DHT architecture and state of the art architecture are coded in VHDL for 16 bit word length and ASIC implementation is carried out using UMC 90 - nm technology @V DD = 1V and @ 1MHZ clock frequency. The proposed architecture implementation and experimental comparison results show that the DHT design is two times faster than state of the art architecture.

  19. Complete chemical analysis of aerosol particles in real-time

    SciTech Connect

    Yang, Mo; Reilly, P.T.A.; Gieray, R.A.; Whitten, W.B.; Ramsey, J.M.

    1996-12-31

    Real-time mass spectrometry of individual aerosol particles using an ion trap mass spectrometer is described. The microparticles are sampled directly from the air by a particle inlet system into the vacuum chamber. An incoming particle is detected as it passes through two CW laser beams and a pulsed laser is triggered to intercept the particle for laser ablation ionization at the center of the ion trap. The produced ions are analyzed by the ion trap mass spectrometer. Ions of interest are selected and dissociated through collision with buffer gas atoms for further fragmentation analysis. Real-time chemical analyses of inorganic, organic, and bacterial aerosol articles have been demonstrated. It has been confirmed that the velocity and the size of the incoming particles highly correlate to each other. The performance of the inlet system, particle detection, and preliminary results are discussed.

  20. Airborne ocean water lidar (OWL) real time processor (RTP)

    NASA Astrophysics Data System (ADS)

    Hryszko, M.

    1995-03-01

    The Hyperflo Real Time Processor (RTP) was developed by Pacific-Sierra Research Corporation as a part of the Naval Air Warfare Center's Ocean Water Lidar (OWL) system. The RTP was used for real time support of open ocean field tests at Barbers Point, Hawaii, in March 1993 (EMERALD I field test), and Jacksonville, Florida, in July 1994 (EMERALD I field test). This report describes the system configuration, and accomplishments associated with the preparation and execution of these exercises. This document is intended to supplement the overall test reports and provide insight into the development and use of the PTP. A secondary objective is to provide basic information on the capabilities, versatility and expandability of the Hyperflo RTP for possible future projects. It is assumed herein that the reader has knowledge of the OWL system, field test operations, general lidar processing methods, and basic computer architecture.

  1. Real-time tomographic holography for augmented reality

    PubMed Central

    Galeotti, John M.; Siegel, Mel; Stetten, George

    2011-01-01

    The concept and instantiation of Real-Time Tomographic Holography (RTTH) for augmented reality is presented. RTTH enables natural hand-eye coordination to guide invasive medical procedures without requiring tracking or a head-mounted device. It places a real-time virtual image of an object's cross-section into its actual location, without noticeable viewpoint dependence (e.g. parallax error). The virtual image is viewed through a flat narrow-band Holographic Optical Element with optical power that generates an in-situ virtual image (within 1 m of the HOE) from a small SLM display without obscuring a direct view of the physical world. Rigidly fixed upon a medical ultrasound probe, an RTTH device could show the scan in its actual location inside the patient, even as the probe was moved relative to the patient. PMID:20634827

  2. Real-time polarimetric biosensing using macroporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Álvarez, Jesús; Sola, Laura; Platt, Geoff; Cretich, Marina; Swann, Marcus; Chiari, Marcella; Hill, Daniel; Martínez-Pastor, Juan

    2013-05-01

    We report the first demonstration of real-time biosensing in free standing macroporous alumina membranes. The membranes with their 200 nm diameter pores are ideal candidates for biosensing applications where fast response times for small sample volumes are needed as they allow analytes to flow through the pores close to the bioreceptors immobilized on the pores walls. A bulk refractive index sensitivity of 5.2x10-6 refractive index units was obtained from signal responses to different concentrations of NaCl solutions flowing through the pores. Finally, after functionalizing the alumina pore surfaces with an epoxysilane and then spotting it with β-Lactoglobulin protein, the interactions between the β-lactoglobulin and rabbit anti-β-lactoglobulin, as well as the interaction between the rabbit anti-β-lactoglobulin and a secondary antibody anti-rabbit Immunoglobulin G were monitored in real-time.

  3. Case for real-time systems development - Quo vadis?

    NASA Technical Reports Server (NTRS)

    Erb, Dona M.

    1991-01-01

    The paper focuses on the distinctive issues of computer-aided software engineering (CASE) products for the development of real-time systems. CASE technologies and associated standardization efforts are evolving from sets of conflicting interests. The majority of case products are intended for use in the development of management information systems. CASE products to support the development of large, complex real-time systems must provide additional capabilities. Generic concerns include the quality of the implementation of the required method for the phase of the system's development and whether the vendor is stable and committed to evolving the products in parallel with nonproprietary standards. The CASE market is undergoing considerable consolidation. The paper describes the major forces, cooperating entities, and remaining uncertainties that need to be weighed in near-term CASE procurements to limit risk of loss of investment in project time, trianing, and money.

  4. Real-time in vivo cancer diagnosis using Raman spectroscopy.

    PubMed

    Wang, Wenbo; Zhao, Jianhua; Short, Michael; Zeng, Haishan

    2015-07-01

    Raman spectroscopy has becoming a practical tool for rapid in vivo tissue diagnosis. This paper provides an overview on the latest development of real-time in vivo Raman systems for cancer detection. Instrumentation, data handling, as well as oncology applications of Raman techniques were covered. Optic fiber probes designs for Raman spectroscopy were discussed. Spectral data pre-processing, feature extraction, and classification between normal/benign and malignant tissues were surveyed. Applications of Raman techniques for clinical diagnosis for different types of cancers, including skin cancer, lung cancer, stomach cancer, oesophageal cancer, colorectal cancer, cervical cancer, and breast cancer, were summarized. Schematic of a real-time Raman spectrometer for skin cancer detection. Without correction, the image captured on CCD camera for a straight entrance slit has a curvature. By arranging the optic fiber array in reverse orientation, the curvature could be effectively corrected.

  5. Real-time simulation of moving ground-target signatures

    NASA Astrophysics Data System (ADS)

    Schmitz, James L.; Gross, David C.; Wasserman, Aaron

    2001-08-01

    Automatic target recognition (ATR) and feature-aided tracking (FAT) algorithms that use one-dimensional (1-D) high range resolution (HRR) profiles require unique or distinguishable target features. This paper explores the use of Xpatch extracted scattering centers to generate synthetic moving ground target signatures. The goal is to develop a real-time prediction capability for generating moving ground target signatures to facilitate the determination of unique and distinguishable target features. The repository of moving ground target signatures is extremely limited in target variation, target articulation, and aspect and illumination angle coverage. The development of a real-time moving target signature capability that provides first order moving target signature will facilitate the development of features and their analysis. The proposed moving target signature simulation is described in detail and includes both the strengths and weaknesses of using a scattering center approach for generation of moving target signatures.

  6. Real-time system for road following and obstacle detection

    NASA Astrophysics Data System (ADS)

    Denasi, Sandra; Lanzone, Claudio; Martinese, Paolo; Pettiti, Giuseppe; Quaglia, Giorgio; Viglione, Luca

    1994-10-01

    Path planning of a vehicle running in a structured environment requires road boundaries evaluation for mapping its position and reducing the search area for obstacle detection. This paper describes a real time system that has been developed in the framework of the EUREKA PROMETHEUS European project and is presently under test on a Mobile Laboratory (MOBLAB). The road boundaries are detected by highlighting the large homogeneous region that lies in the bottom of the image, in front of the vehicle. Edge detection, local thresholding and morphological filtering techniques are used to define this region. Its boundaries are tracked in the sequence, relying on hypotheses of continuity of color and shape of the road to overcome drawbacks due to shadows, intersections, hidden boundaries. The proposed technique has been implemented on an integrated system based on a real time imaging processor and a workstation.

  7. Modelling the world in real time: how robots engineer information.

    PubMed

    Davison, Andrew J

    2003-12-15

    Programming robots and other autonomous systems to interact with the world in real time is bringing into sharp focus general questions about representation, inference and understanding. These artificial agents use digital computation to interpret the data gleaned from sensors and produce decisions and actions to guide their future behaviour. In a physical system, however, finite computational resources unavoidably impose the need to approximate and make selective use of the information available to reach prompt deductions. Recent research has led to widespread adoption of the methodology of Bayesian inference, which provides the absolute framework to understand this process fully via modelling as informed, fully acknowledged approximation. The performance of modern systems has improved greatly on the heuristic methods of the early days of artificial intelligence. We discuss the general problem of real-time inference and computation, and draw on examples from recent research in computer vision and robotics: specifically visual tracking and simultaneous localization and mapping.

  8. Monte Carlo Study of Real Time Dynamics on the Lattice

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Başar, Gökçe; Bedaque, Paulo F.; Vartak, Sohan; Warrington, Neill C.

    2016-08-01

    Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from a highly oscillatory phase of the path integral. In this Letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and, in principle, applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.

  9. Real-Time Location Tracking of Multiple Construction Laborers

    PubMed Central

    Lim, Jin-Sun; Song, Ki-Il; Lee, Hang-Lo

    2016-01-01

    A real-time location (RTL) system was developed to improve safety for multiple laborers in confined construction sites. The RTL system can monitor the location and movement of multiple laborers in real time. A portable RTL system with a low-battery mode was developed to accommodate various constraints in the construction site. A conventional RTL system that uses radio signal strength indicators (RSSIs) has high error, so an accelerometer with Bluetooth Low Energy (BLE) was added, and a calculation process is suggested. Field tests were performed for validation in underground construction and bridge overlay sites. The results show that the accelerometer and BLE can be used as effective sensors to detect the movement of laborers. When the sensor is fixed, the average error ranges 0.2–0.22 m, and when the sensor is moving, the average error ranges 0.1–0.47 m. PMID:27827973

  10. Adaptive Proactive Inhibitory Control for Embedded Real-Time Applications

    PubMed Central

    Yang, Shufan; McGinnity, T. Martin; Wong-Lin, KongFatt

    2012-01-01

    Psychologists have studied the inhibitory control of voluntary movement for many years. In particular, the countermanding of an impending action has been extensively studied. In this work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type model based on current findings in animal electrophysiological and human psychophysical experiments. We then implement this model on a field-programmable gate array (FPGA) prototyping system, using dedicated real-time hardware circuitry. Our results show that the FPGA-based implementation can run in real-time while achieving behavioral performance qualitatively suggestive of the animal experiments. Implementing such biological inhibitory control in an embedded device can lead to the development of control systems that may be used in more realistic cognitive robotics or in neural prosthetic systems aiding human movement control. PMID:22701420

  11. Real-Time Prognostics of a Rotary Valve Actuator

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew

    2015-01-01

    Valves are used in many domains and often have system-critical functions. As such, it is important to monitor the health of valves and their actuators and predict remaining useful life. In this work, we develop a model-based prognostics approach for a rotary valve actuator. Due to limited observability of the component with multiple failure modes, a lumped damage approach is proposed for estimation and prediction of damage progression. In order to support the goal of real-time prognostics, an approach to prediction is developed that does not require online simulation to compute remaining life, rather, a function mapping the damage state to remaining useful life is found offline so that predictions can be made quickly online with a single function evaluation. Simulation results demonstrate the overall methodology, validating the lumped damage approach and demonstrating real-time prognostics.

  12. Real time markerless motion tracking using linked kinematic chains

    DOEpatents

    Luck, Jason P.; Small, Daniel E.

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  13. Noninvasive and Real-Time Plasmon Waveguide Resonance Thermometry

    PubMed Central

    Zhang, Pengfei; Liu, Le; He, Yonghong; Zhou, Yanfei; Ji, Yanhong; Ma, Hui

    2015-01-01

    In this paper, the noninvasive and real-time plasmon waveguide resonance (PWR) thermometry is reported theoretically and demonstrated experimentally. Owing to the enhanced evanescent field and thermal shield effect of its dielectric layer, a PWR thermometer permits accurate temperature sensing and has a wide dynamic range. A temperature measurement sensitivity of 9.4 × 10−3 °C is achieved and the thermo optic coefficient nonlinearity is measured in the experiment. The measurement of water cooling processes distributed in one dimension reveals that a PWR thermometer allows real-time temperature sensing and has potential to be applied for thermal gradient analysis. Apart from this, the PWR thermometer has the advantages of low cost and simple structure, since our transduction scheme can be constructed with conventional optical components and commercial coating techniques. PMID:25871718

  14. Implementing real-time robotic systems using CHIMERA II

    NASA Technical Reports Server (NTRS)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1990-01-01

    A description is given of the CHIMERA II programming environment and operating system, which was developed for implementing real-time robotic systems. Sensor-based robotic systems contain both general- and special-purpose hardware, and thus the development of applications tends to be a time-consuming task. The CHIMERA II environment is designed to reduce the development time by providing a convenient software interface between the hardware and the user. CHIMERA II supports flexible hardware configurations which are based on one or more VME-backplanes. All communication across multiple processors is transparent to the user through an extensive set of interprocessor communication primitives. CHIMERA II also provides a high-performance real-time kernel which supports both deadline and highest-priority-first scheduling. The flexibility of CHIMERA II allows hierarchical models for robot control, such as NASREM, to be implemented with minimal programming time and effort.

  15. Real-Time Walk Light Detection with a Mobile Phone.

    PubMed

    Ivanchenko, Volodymyr; Coughlan, James; Shen, Huiying

    2010-07-01

    Crossing an urban traffic intersection is one of the most dangerous activities of a blind or visually impaired person's travel. Building on past work by the authors on the issue of proper alignment with the crosswalk, this paper addresses the complementary issue of knowing when it is time to cross. We describe a prototype portable system that alerts the user in real time once the Walk light is illuminated. The system runs as a software application on an off-the-shelf Nokia N95 mobile phone, using computer vision algorithms to analyze video acquired by the built-in camera to determine in real time if a Walk light is currently visible. Once a Walk light is detected, an audio tone is sounded to alert the user. Experiments with a blind volunteer subject at urban traffic intersections demonstrate proof of concept of the system, which successfully alerted the subject when the Walk light appeared.

  16. Real-time simulator for intravascular ultrasound (IVUS)

    NASA Astrophysics Data System (ADS)

    Abkai, Ciamak; Becherer, Nico; Hesser, Jürgen; Männer, Reinhard

    2007-03-01

    Intravascular Ultrasound (IVUS) plays a significant role in diagnostics of atherosclerotic diseases. Simulation of imaging techniques promises a better understanding of the physical background and segmentation strategies. Most simulation approaches describe ultrasonic backscattering using wave-equation based simplifications. More complicated real-time simulation techniques are not available so far. In this paper, we present an empirical model derived from wave-equations given by the Rayleigh integration method. According to boundary conditions and weak scatterers, a hybrid approach including the Beer-Lambert law to model attenuation is introduced. Scatterers are described by a 4D vessel-system model based on elastic tubes. Sophisticated discretization and numerical simplifications in addition to a highly optimized implementation of the model yields a real-time and realistic IVUS simulation with 20 frames/s on a 3.2 GHz Pentium 4 PC.

  17. A real-time impurity solver for DMFT

    NASA Astrophysics Data System (ADS)

    Kim, Hyungwon; Aron, Camille; Han, Jong E.; Kotliar, Gabriel

    Dynamical mean-field theory (DMFT) offers a non-perturbative approach to problems with strongly correlated electrons. The method heavily relies on the ability to numerically solve an auxiliary Anderson-type impurity problem. While powerful Matsubara-frequency solvers have been developed over the past two decades to tackle equilibrium situations, the status of real-time impurity solvers that could compete with Matsubara-frequency solvers and be readily generalizable to non-equilibrium situations is still premature. We present a real-time solver which is based on a quantum Master equation description of the dissipative dynamics of the impurity and its exact diagonalization. As a benchmark, we illustrate the strengths of our solver in the context of the equilibrium Mott-insulator transition of the one-band Hubbard model and compare it with iterative perturbation theory (IPT) method. Finally, we discuss its direct application to a nonequilibrium situation.

  18. Real-time EEG-based happiness detection system.

    PubMed

    Jatupaiboon, Noppadon; Pan-ngum, Setha; Israsena, Pasin

    2013-01-01

    We propose to use real-time EEG signal to classify happy and unhappy emotions elicited by pictures and classical music. We use PSD as a feature and SVM as a classifier. The average accuracies of subject-dependent model and subject-independent model are approximately 75.62% and 65.12%, respectively. Considering each pair of channels, temporal pair of channels (T7 and T8) gives a better result than the other area. Considering different frequency bands, high-frequency bands (Beta and Gamma) give a better result than low-frequency bands. Considering different time durations for emotion elicitation, that result from 30 seconds does not have significant difference compared with the result from 60 seconds. From all of these results, we implement real-time EEG-based happiness detection system using only one pair of channels. Furthermore, we develop games based on the happiness detection system to help user recognize and control the happiness.

  19. Conducting real-time multiplayer experiments on the web.

    PubMed

    Hawkins, Robert X D

    2015-12-01

    Group behavior experiments require potentially large numbers of participants to interact in real time with perfect information about one another. In this paper, we address the methodological challenge of developing and conducting such experiments on the web, thereby broadening access to online labor markets as well as allowing for participation through mobile devices. In particular, we combine a set of recent web development technologies, including Node.js with the Socket.io module, HTML5 canvas, and jQuery, to provide a secure platform for pedagogical demonstrations and scalable, unsupervised experiment administration. Template code is provided for an example real-time behavioral game theory experiment which automatically pairs participants into dyads and places them into a virtual world. In total, this treatment is intended to allow those with a background in non-web-based programming to modify the template, which handles the technical server-client networking details, for their own experiments.

  20. Real-time high dynamic range laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.