Science.gov

Sample records for real-time flood forecasting

  1. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  2. A Stochastic-Dynamic Model for Real Time Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Chow, K. C. A.; Watt, W. E.; Watts, D. G.

    1983-06-01

    A stochastic-dynamic model for real time flood forecasting was developed using Box-Jenkins modelling techniques. The purpose of the forecasting system is to forecast flood levels of the Saint John River at Fredericton, New Brunswick. The model consists of two submodels: an upstream model used to forecast the headpond level at the Mactaquac Dam and a downstream model to forecast the water level at Fredericton. Inputs to the system are recorded values of the water level at East Florenceville, the headpond level and gate position at Mactaquac, and the water level at Fredericton. The model was calibrated for the spring floods of 1973, 1974, 1977, and 1978, and its usefulness was verified for the 1979 flood. The forecasting results indicated that the stochastic-dynamic model produces reasonably accurate forecasts for lead times up to two days. These forecasts were then compared to those from the existing forecasting system and were found to be as reliable as those from the existing system.

  3. Improving real time flood forecasting using fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Lohani, Anil Kumar; Goel, N. K.; Bhatia, K. K. S.

    2014-02-01

    In order to improve the real time forecasting of foods, this paper proposes a modified Takagi Sugeno (T-S) fuzzy inference system termed as threshold subtractive clustering based Takagi Sugeno (TSC-T-S) fuzzy inference system by introducing the concept of rare and frequent hydrological situations in fuzzy modeling system. The proposed modified fuzzy inference systems provide an option of analyzing and computing cluster centers and membership functions for two different hydrological situations, i.e. low to medium flows (frequent events) as well as high to very high flows (rare events) generally encountered in real time flood forecasting. The methodology has been applied for flood forecasting using the hourly rainfall and river flow data of upper Narmada basin, Central India. The available rainfall-runoff data has been classified in frequent and rare events and suitable TSC-T-S fuzzy model structures have been suggested for better forecasting of river flows. The performance of the model during calibration and validation is evaluated by performance indices such as root mean square error (RMSE), model efficiency and coefficient of correlation (R). In flood forecasting, it is very important to know the performance of flow forecasting model in predicting higher magnitude flows. The above described performance criteria do not express the prediction ability of the model precisely from higher to low flow region. Therefore, a new model performance criterion termed as peak percent threshold statistics (PPTS) is proposed to evaluate the performance of a flood forecasting model. The developed model has been tested for different lead periods using hourly rainfall and discharge data. Further, the proposed fuzzy model results have been compared with artificial neural networks (ANN), ANN models for different classes identified by Self Organizing Map (SOM) and subtractive clustering based Takagi Sugeno fuzzy model (SC-T-S fuzzy model). It has been concluded from the study that the

  4. A channel dynamics model for real-time flood forecasting

    USGS Publications Warehouse

    Hoos, A.B.; Koussis, A.D.; Beale, G.O.

    1989-01-01

    A new channel dynamics scheme ASPIRE (alternative system predictor in real time), designed specifically for real-time river flow forecasting, is introduced to reduce uncertainty in the forecast. ASPIRE is a storage routing model that limits the influence of catchment model forecast errors to the downstream station closest to the catchment. Comparisons with the Muskingum routing scheme in field tests suggest that the ASPIRE scheme can provide more accurate forecasts, probably because discharge observations are used to a maximum advantage and routing reaches (and model errors in each reach) are uncoupled. Using ASPIRE in conjunction with the Kalman filter did not improve forecast accuracy relative to a deterministic updating procedure. Theoretical analysis suggests that this is due to a large process noise to measurement noise ratio. -Authors

  5. Real-time application of meteorological ensembles for Danube flood forecasting

    NASA Astrophysics Data System (ADS)

    Csík, A.; Gauzer, B.; Gnandt, B.; Balint, G.

    2009-04-01

    Flood forecasting schemes may have the most diverse structure depending on catchment size, response or concentration time and the availability of real time input data. The centre of weight of the hydrological forecasting system is often shifted from hydrological tools to the meteorological observation and forecasting systems. At lowland river sections simple flood routing techniques prevail where accuracy of discharge estimation might depend mostly on the accuracy of upstream discharge estimation. In large river basin systems both elements are present. Attempts are made enabling the use of ensemble of short and medium term meteorological forecast results for real-time flood forecasting by coupling meteorological and hydrological modelling tools. The system is designed in three parts covering the upper and central Danube. The large number of nodes (41) makes the system in fact semi distributed in basin scale. All of the nodes are prepared for forecast purposes. Real time mode runs are carried out in 6 hourly time steps. The available meteorological analysis and forecasting tools are linked to the flood forecasting system. Meteorological forecasts include 6 days and 12 days out of the ECMWF 10-14-day ahead EPS and VarEPS. The hydrological side of the system includes the data ingestion part producing semi distributed catchment wise input from gridded fields and rainfall-runoff, flood routing modules. Operational application of the of the ensemble system has been studied by the comparison of real time deterministic forecast and the experimental real time ensemble forecast results since the summer of 2008 on the river Danube. The period of June-October 2008 included mostly low water period interrupted by smaller floods. The real time ensemble hydrological forecasting experiment proved that the use of meteorological ensembles to produce sets of hydrological predictions increased the capability to issue forecasts with describing current uncertainties. As the result of the

  6. Flood Foresight: A near-real time flood monitoring and forecasting tool for rapid and predictive flood impact assessment

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Shelton, Kay; Wood, Elizabeth; Berry, Robert; Bevington, John; Hankin, Barry; Lewis, Gavin; Gubbin, Andrew; Griffiths, Samuel; Barnard, Paul; Pinnell, Marc; Huyck, Charles

    2017-04-01

    The hours and days immediately after a major flood event are often chaotic and confusing, with first responders rushing to mobilise emergency responders, provide alleviation assistance and assess loss to assets of interest (e.g., population, buildings or utilities). Preparations in advance of a forthcoming event are becoming increasingly important; early warning systems have been demonstrated to be useful tools for decision markers. The extent of damage, human casualties and economic loss estimates can vary greatly during an event, and the timely availability of an accurate flood extent allows emergency response and resources to be optimised, reduces impacts, and helps prioritise recovery. In the insurance sector, for example, insurers are under pressure to respond in a proactive manner to claims rather than waiting for policyholders to report losses. Even though there is a great demand for flood inundation extents and severity information in different sectors, generating flood footprints for large areas from hydraulic models in real time remains a challenge. While such footprints can be produced in real time using remote sensing, weather conditions and sensor availability limit their ability to capture every single flood event across the globe. In this session, we will present Flood Foresight (www.floodforesight.com), an operational tool developed to meet the universal requirement for rapid geographic information, before, during and after major riverine flood events. The tool provides spatial data with which users can measure their current or predicted impact from an event - at building, basin, national or continental scales. Within Flood Foresight, the Screening component uses global rainfall predictions to provide a regional- to continental-scale view of heavy rainfall events up to a week in advance, alerting the user to potentially hazardous situations relevant to them. The Forecasting component enhances the predictive suite of tools by providing a local

  7. Research on classified real-time flood forecasting framework based on K-means cluster and rough set.

    PubMed

    Xu, Wei; Peng, Yong

    2015-01-01

    This research presents a new classified real-time flood forecasting framework. In this framework, historical floods are classified by a K-means cluster according to the spatial and temporal distribution of precipitation, the time variance of precipitation intensity and other hydrological factors. Based on the classified results, a rough set is used to extract the identification rules for real-time flood forecasting. Then, the parameters of different categories within the conceptual hydrological model are calibrated using a genetic algorithm. In real-time forecasting, the corresponding category of parameters is selected for flood forecasting according to the obtained flood information. This research tests the new classified framework on Guanyinge Reservoir and compares the framework with the traditional flood forecasting method. It finds that the performance of the new classified framework is significantly better in terms of accuracy. Furthermore, the framework can be considered in a catchment with fewer historical floods.

  8. An extended real-time flood impact forecasting system for the Chapare watershed in Bolivia

    NASA Astrophysics Data System (ADS)

    Rossi, Lauro; Gabellani, Simone; Masoero, Alessandro; Dolia, Daniele; Rudari, Roberto

    2016-04-01

    All over the world a lot of cities are located in flood-prone areas and million of people are exposed to inundation risk. To cope with that the social safety demands efficient civil protection structures able to reduce flood risk by issuing warnings. This task requires civil protection organisms to adopt systems able to support their activities in predicting floods and rainfall impacts. For this reason flood early warning systems, based on rainfall observations and predictions, has become very useful because they are able to provide in advance a quantitative evaluation of possible effects in term of discharge and peak flow. Traditionally those forecasting systems use hydrologic models coupled with meteorological models to forecast discharge in relevant river sections and are called hydro-meteorological chains. In order to have a better representation of the flood dynamics, these hydro-meteorological chains can be expanded to include bi-dimensional hydraulic models where the level exposure is high or flow singularities (e.g. junctions, deltas, etc.) require more accurate investigation. That information allows the generation of real-time inundation scenarios that can be used by civil protection and authorities to estimate impact on population and take counter-measures. The new real-time flood impact forecasting chain consists of a suite of hydrometeorological tools that combines meteorological models, a disaggregation tool and a fully distributed hydrological model and a bidimensional hydraulic model that produces inundation scenarios in the most exposed river segments of the flood plain and a scenario tool that allows the assessment of assets involved. The complete modelling chain has been implemented in the Chapare watershed in Bolivia and it is managed by the Dewetra platform, which since 2013 is used by the Civil Defense and National Meteorological service as the main national Early Warning supporting tool.

  9. The role of rating curve uncertainty in real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Ocio, David; Le Vine, Nataliya; Westerberg, Ida; Pappenberger, Florian; Buytaert, Wouter

    2017-05-01

    Data assimilation has been widely tested for flood forecasting, although its use in operational systems is mainly limited to a simple statistical error correction. This can be due to the complexity involved in making more advanced formal assumptions about the nature of the model and measurement errors. Recent advances in the definition of rating curve uncertainty allow estimating a flow measurement error that includes both aleatory and epistemic uncertainties more explicitly and rigorously than in the current practice. The aim of this study is to understand the effect such a more rigorous definition of the flow measurement error has on real-time data assimilation and forecasting. This study, therefore, develops a comprehensive probabilistic framework that considers the uncertainty in model forcing data, model structure, and flow observations. Three common data assimilation techniques are evaluated: (1) Autoregressive error correction, (2) Ensemble Kalman Filter, and (3) Regularized Particle Filter, and applied to two locations in the flood-prone Oria catchment in the Basque Country, northern Spain. The results show that, although there is a better match between the uncertain forecasted and uncertain true flows, there is a low sensitivity for the threshold exceedances used to issue flood warnings. This suggests that a standard flow measurement error model, with a spread set to a fixed flow fraction, represents a reasonable trade-off between complexity and realism. Standard models are therefore recommended for operational flood forecasting for sites with well-defined stage-discharge curves that are based on a large range of flow observations.

  10. Data assimilation method for real-time flash flood forecasting using a physically based distributed model

    NASA Astrophysics Data System (ADS)

    Larnier, K.; Roux, H.; Garambois, P.; Dartus, D.

    2012-04-01

    The MARINE model (Roux et al, 2011) is a physically based distributed model dedicated to real time flash flood forecasting on small to medium catchments. The infiltration capacity is evaluated by the Green and Ampt equation and the surface runoff calculation is divided into two parts: the land surface flow and the flow in the drainage network both based on kinematic wave hypothesis. In order to take into account rainfall spatial-temporal variability as well as the various behaviours of soil types among the catchment, the model is spatially distributed, which can also help to understand the flood driving processes. The model integrates remote sensing data such as the land coverage map with spatial resolution adapted to hydrological scales. Minimal data requirements for the model are: the Digital Elevation Model describing catchment topography and the location and description of the drainage network. Moreover some parameters are not directly measurable and need to be calibrated. Most of the sources of uncertainties can be propagated thanks to variational method (Castaings et al, 2009) and finally help to determine time dependent uncertainty intervals. This study also investigates the methodology developed for real-time flash flood forecasting using the MARINE model and data assimilation techniques. According to prior sensitivity analyses and calibrations, parameters values were determined as constants or initial guess. Then a data assimilation method called the adjoint state method is used to update some of the most sensitive parameters to improve accuracy of discharges predictions. The forecast errors are evaluated as a function of lead time and discussed from an operational point of view. Multiple strategies in term of updatable parameters set, length of time window, parameters bounds and observation threshold used to trigger the assimilation method are discussed regarding accuracy, robustness and real-time feasibility.

  11. Forecasting surface water flooding hazard and impact in real-time

    NASA Astrophysics Data System (ADS)

    Cole, Steven J.; Moore, Robert J.; Wells, Steven C.

    2016-04-01

    Across the world, there is increasing demand for more robust and timely forecast and alert information on Surface Water Flooding (SWF). Within a UK context, the government Pitt Review into the Summer 2007 floods provided recommendations and impetus to improve the understanding of SWF risk for both off-line design and real-time forecasting and warning. Ongoing development and trial of an end-to-end real-time SWF system is being progressed through the recently formed Natural Hazards Partnership (NHP) with delivery to the Flood Forecasting Centre (FFC) providing coverage over England & Wales. The NHP is a unique forum that aims to deliver coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK. Within the NHP, a real-time Hazard Impact Model (HIM) framework has been developed that includes SWF as one of three hazards chosen for initial trialling. The trial SWF HIM system uses dynamic gridded surface-runoff estimates from the Grid-to-Grid (G2G) hydrological model to estimate the SWF hazard. National datasets on population, infrastructure, property and transport are available to assess impact severity for a given rarity of SWF hazard. Whilst the SWF hazard footprint is calculated in real-time using 1, 3 and 6 hour accumulations of G2G surface runoff on a 1 km grid, it has been possible to associate these with the effective rainfall design profiles (at 250m resolution) used as input to a detailed flood inundation model (JFlow+) run offline to produce hazard information resolved to 2m resolution. This information is contained in the updated Flood Map for Surface Water (uFMfSW) held by the Environment Agency. The national impact datasets can then be used with the uFMfSW SWF hazard dataset to assess impacts at this scale and severity levels of potential impact assigned at 1km and for aggregated county areas in real-time. The impact component is being led by the Health and Safety Laboratory (HSL) within the NHP

  12. The POLIMI forecasting chain for real time flood and drought predictions

    NASA Astrophysics Data System (ADS)

    Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Mancini, Marco

    2016-04-01

    Nowadays coupling meteorological and hydrological models is recognized by scientific community as a necessary way to forecast extreme hydrological phenomena, in order to activate useful mitigation measurements and alert systems in advance. The development and implementation of a real-time forecasting chain with a hydro-meteorological operational alert procedure for flood and drought events is presented in this study. Different weather models are used to build the POLIMI operative chain: the probabilistic COSMO-LEPS model with 16 ensembles developed by ARPA-Emilia Romagna, the deterministic Bolam and Moloch models, developed by the Italian ISAC-CNR, and nine further simulations obtained by different runs of the WRF-ARW (3), WRF-NMM (2), ETA2012 (1) and the GFS (3), provided by the private Epson Meteo Center and Terraria companies. All the meteorological runs are then implemented with the rainfall-runoff physically-based distributed FEST-WB model, developed at Politecnico di Milano to obtain a multi-model approach system with hydrological ensemble forecasts in different areas of study over the Italian country. As far as concerning drought predictions, three test-beds are monitored: two in maize fields, one in the Puglia region (South of Italy), and another in the Po Valley area, (northern Italy), and one in a golf course in Milan city. The hydrological model was here calibrated and validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station, TDR probes and remote sensing images. Regarding flood forecasts, two test-sites are chosen: the first one is the urban area northern Milan where three catchments (the Seveso, Olona, and Lambro River basins) are used to show how early warning systems are an effective complement to structural measures for flood control in Milan city which flooded frequently in the last 25 years, while the second test-site is the Idro Lake, located between the Lombardy and Trentino region where the

  13. A search for model parsimony in a real time flood forecasting system

    NASA Astrophysics Data System (ADS)

    Grossi, G.; Balistrocchi, M.

    2009-04-01

    As regards the hydrological simulation of flood events, a physically based distributed approach is the most appealing one, especially in those areas where the spatial variability of the soil hydraulic properties as well as of the meteorological forcing cannot be left apart, such as in mountainous regions. On the other hand, dealing with real time flood forecasting systems, less detailed models requiring a minor number of parameters may be more convenient, reducing both the computational costs and the calibration uncertainty. In fact in this case a precise quantification of the entire hydrograph pattern is not necessary, while the expected output of a real time flood forecasting system is just an estimate of the peak discharge, the time to peak and in some cases the flood volume. In this perspective a parsimonious model has to be found in order to increase the efficiency of the system. A suitable case study was identified in the northern Apennines: the Taro river is a right tributary to the Po river and drains about 2000 km2 of mountains, hills and floodplain, equally distributed . The hydrometeorological monitoring of this medium sized watershed is managed by ARPA Emilia Romagna through a dense network of uptodate gauges (about 30 rain gauges and 10 hydrometers). Detailed maps of the surface elevation, land use and soil texture characteristics are also available. Five flood events were recorded by the new monitoring network in the years 2003-2007: during these events the peak discharge was higher than 1000 m3/s, which is actually quite a high value when compared to the mean discharge rate of about 30 m3/s. The rainfall spatial patterns of such storms were analyzed in previous works by means of geostatistical tools and a typical semivariogram was defined, with the aim of establishing a typical storm structure leading to flood events in the Taro river. The available information was implemented into a distributed flood event model with a spatial resolution of 90m

  14. Real-time flood forecasts & risk assessment using a possibility-theory based fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Khan, U. T.

    2016-12-01

    Globally floods are one of the most devastating natural disasters and improved flood forecasting methods are essential for better flood protection in urban areas. Given the availability of high resolution real-time datasets for flood variables (e.g. streamflow and precipitation) in many urban areas, data-driven models have been effectively used to predict peak flow rates in river; however, the selection of input parameters for these types of models is often subjective. Additionally, the inherit uncertainty associated with data models along with errors in extreme event observations means that uncertainty quantification is essential. Addressing these concerns will enable improved flood forecasting methods and provide more accurate flood risk assessments. In this research, a new type of data-driven model, a quasi-real-time updating fuzzy neural network is developed to predict peak flow rates in urban riverine watersheds. A possibility-to-probability transformation is first used to convert observed data into fuzzy numbers. A possibility theory based training regime is them used to construct the fuzzy parameters and the outputs. A new entropy-based optimisation criterion is used to train the network. Two existing methods to select the optimum input parameters are modified to account for fuzzy number inputs, and compared. These methods are: Entropy-Wavelet-based Artificial Neural Network (EWANN) and Combined Neural Pathway Strength Analysis (CNPSA). Finally, an automated algorithm design to select the optimum structure of the neural network is implemented. The overall impact of each component of training this network is to replace the traditional ad hoc network configuration methods, with one based on objective criteria. Ten years of data from the Bow River in Calgary, Canada (including two major floods in 2005 and 2013) are used to calibrate and test the network. The EWANN method selected lagged peak flow as a candidate input, whereas the CNPSA method selected lagged

  15. Real-Time Flood Forecasting System Using Channel Flow Routing Model with Updating by Particle Filter

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Chikamori, H.; Nagai, A.

    2008-12-01

    A real-time flood forecasting system using channel flow routing model was developed for runoff forecasting at water gauged and ungaged points along river channels. The system is based on a flood runoff model composed of upstream part models, tributary part models and downstream part models. The upstream part models and tributary part models are lumped rainfall-runoff models, and the downstream part models consist of a lumped rainfall-runoff model for hillslopes adjacent to a river channel and a kinematic flow routing model for a river channel. The flow forecast of this model is updated by Particle filtering of the downstream part model as well as by the extended Kalman filtering of the upstream part model and the tributary part models. The Particle filtering is a simple and powerful updating algorithm for non-linear and non-gaussian system, so that it can be easily applied to the downstream part model without complicated linearization. The presented flood runoff model has an advantage in simlecity of updating procedure to the grid-based distributed models, which is because of less number of state variables. This system was applied to the Gono-kawa River Basin in Japan, and flood forecasting accuracy of the system with both Particle filtering and extended Kalman filtering and that of the system with only extended Kalman filtering were compared. In this study, water gauging stations in the objective basin were divided into two types of stations, that is, reference stations and verification stations. Reference stations ware regarded as ordinary water gauging stations and observed data at these stations are used for calibration and updating of the model. Verification stations ware considered as ungaged or arbitrary points and observed data at these stations are used not for calibration nor updating but for only evaluation of forecasting accuracy. The result confirms that Particle filtering of the downstream part model improves forecasting accuracy of runoff at

  16. Model Integration for Real-Time Flood Forecasting Inundation Mapping for Nashville Tributaries

    NASA Astrophysics Data System (ADS)

    Charley, W.; Moran, B.; LaRosa, J.

    2012-12-01

    In May of 2010, between 14 and 19 inches of rain fell on the Nashville metro area in two days, quickly overwhelming tributaries to the Cumberland River and causing wide-spread, serious flooding. Tractor-trailers and houses were seen floating down Mill Creek, a primary tributary in the south eastern area of Nashville. Twenty-six people died and over 2 billion dollars in damage occurred as a result of the flood. Since that time, several other significant rainfall events have occurred in the area. Emergency responders were unable to deliver aid or preventive measures to areas under threat of flooding (or under water) in time to reduce damages because they could not identify those areas far enough in advance of the floods. Nashville Metro Water, the National Weather Service, the US Geological Survey and the US Army Corps of Engineers established a joint venture to seek ways to better forecast short-term flood events in the region. One component of this effort was a pilot project to compute and display real time inundation maps for Mill Creek, a 108 square-mile basin to the south east of Nashville. HEC-RTS (Real-Time Simulation) was used to assimilate and integrate the hydrologic model HEC-HMS with the hydraulics model HEC-RAS and the inundation mapping program HEC-RAS Mapper. The USGS, along with the other agencies, installed additional precipitation and flow/stage gages in the area. Measurements are recorded every 5-30 minutes and are posted on the USGS NWIS database, which are downloaded by HEC-RTS. Using this data in combination with QPFs (Quantitative Precipitation Forecasts) from the NWS, HEC-RTS applies HEC-HMS and HEC-RAS to estimate current and forecast stage hydrographs. The peak stages are read by HEC-RAS Mapper to compute inundation depths for 6 by 6 foot grid cells. HEC-RTS displays the inundation on a high resolution MrSid aerial photo, along with subbasin boundary, street and various other layers. When a user zooms in and "mouses" over a cell, the

  17. Improving the effectiveness of real-time flood forecasting through Predictive Uncertainty estimation: the multi-temporal approach

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Todini, Ezio

    2015-04-01

    The negative effects of severe flood events are usually contrasted through structural measures that, however, do not fully eliminate flood risk. Non-structural measures, such as real-time flood forecasting and warning, are also required. Accurate stage/discharge future predictions with appropriate forecast lead-time are sought by decision-makers for implementing strategies to mitigate the adverse effects of floods. Traditionally, flood forecasting has been approached by using rainfall-runoff and/or flood routing modelling. Indeed, both types of forecasts, cannot be considered perfectly representing future outcomes because of lacking of a complete knowledge of involved processes (Todini, 2004). Nonetheless, although aware that model forecasts are not perfectly representing future outcomes, decision makers are de facto implicitly assuming the forecast of water level/discharge/volume, etc. as "deterministic" and coinciding with what is going to occur. Recently the concept of Predictive Uncertainty (PU) was introduced in hydrology (Krzysztofowicz, 1999), and several uncertainty processors were developed (Todini, 2008). PU is defined as the probability of occurrence of the future realization of a predictand (water level/discharge/volume) conditional on: i) prior observations and knowledge, ii) the available information obtained on the future value, typically provided by one or more forecast models. Unfortunately, PU has been frequently interpreted as a measure of lack of accuracy rather than the appropriate tool allowing to take the most appropriate decisions, given a model or several models' forecasts. With the aim to shed light on the benefits for appropriately using PU, a multi-temporal approach based on the MCP approach (Todini, 2008; Coccia and Todini, 2011) is here applied to stage forecasts at sites along the Upper Tiber River. Specifically, the STAge Forecasting-Rating Curve Model Muskingum-based (STAFOM-RCM) (Barbetta et al., 2014) along with the Rating

  18. Efficiency of a real time flood forecasting system in the Alps and in the Apennines: deterministic versus ensemble predictions

    NASA Astrophysics Data System (ADS)

    Grossi, G.

    2009-04-01

    Real time hydrological forecasting is still a challenging task for most of the Italian territory, especially in mountain areas where both the topography and the meteorological forcing are affected by a strong spatial variability. Nevertheless there is an increasing request to provide some clues for the development of efficient real time flood forecasting systems, for warning population as well as for water management purposes. In this perspective the efficiency of a real time forecasting system needs to be investigated, with particular care to the uncertainty of the provided prediction and to how this prediction will be handled by water resources managers and land protection services. To this aim a real time flood forecasting system using both deterministic and ensemble meteorological predictions has been implemented at University of Brescia and applied to an Alpine area (the Toce River - Piemonte Region) and to an Apennine area (the Taro River - Emilia Romagna Region). The Map D- Phase experiment (autumn 2007) was a good test for the implemented system: daily rainfall fields provided by high resolution deterministic limited area meteorological models and esemble rainfall predictions provided by coarser resolution meteorological models could be used to force a hydrological model and produce either a single deterministic or an esemble of flood forecats. Namely only minor flood events occurred in the Alpine area in autumn 2007, while one major flood event affected the Taro river at the end of November 2007. Focusing on this major event the potentials of the forecasting system was tested and evaluated with reference also to the geographical and climatic characteristics of the investigated area.

  19. The Design and Implementation of a Real-Time Flood Forecasting System in Durban, South Africa

    NASA Astrophysics Data System (ADS)

    Sinclair, Scott; Pegram, Geoff

    2003-04-01

    In South Africa, five flood events during the period 1994-1996 resulted in the loss of 173 lives, more than 7000 people requiring evacuation and/or emergency shelter and damages to the value of R680 million (White paper on Disaster Management 1998). The South African Disaster management bill provides for "...preventing or reducing the risk of disasters, mitigating the severity of disasters ...". To this end a pilot study funded by the Water Research Commission aims at providing flood forecasts for the Mgeni and Mlazi catchments near the city of Durban in South Africa. The importance and usefulness of flood forecasting is particularly evident in an urban context where the density of population and infrastructure provide great potential for disaster. A reliable flood warning or forecasting system cannot prevent the occurrence of floods, but provides a key tool that can allow decision makers to be proactive rather than reactive in their response to a flooding event. Taking preventative measures before the fact can significantly reduce the social and economic impacts associated with a disaster. The flood forecasting system described here makes use of a "best estimate" spatial rainfield (obtained by combining radar and telemetered rain gauge rainfall estimates) as input to a linear catchment model. The catchment model parameters are dynamically updated in response to measured streamflows using Kalman filtering techniques, allowing improved forecasts of streamflow as the catchment conditions change. Precomputed flood lines and a graphical representation of the spatial rainfield are dynamically displayed on a GIS in the Durban disaster management control center enabling Disaster Managers to be proactive in times of impending floods.

  20. Application of satellite-based rainfall and medium range meteorological forecast in real-time flood forecasting in the Mahanadi River basin

    NASA Astrophysics Data System (ADS)

    Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath

    2016-04-01

    Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling

  1. The Role of Rating Curve Uncertainty in Real Time Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Ocio, D.; Le Vine, N.; Westerberg, I.; Pappenberger, F.; Buytaert, W.

    2016-12-01

    Data assimilation (DA) techniques have been widely tested in flood forecasting, although their use in operational systems is mainly limited to a statistical error correction. The complexity of selecting a priori hypotheses about the nature of model and measurement errors can be behind this fact. Model error may result in large deviations between observed and predicted flows, but is difficult to quantify objectively. Measurement error is often used in DA to help represent the true discharge and to improve the forecast quality. It is possible to specify this error objectively, but this requires an analysis of the uncertainty in the underlying rating curve model.Recent advances in the definition of rating curve uncertainty, based on the available gaugings together with the results from hydraulic modelling, have opened new possibilities to establish an unbiased measurement error including both aleatory and epistemic uncertainties, instead of adopting a benchmark, albeit arbitrary, choice. We addressed this issue by constructing a comprehensive probabilistic framework where forcing data, model structure and observation uncertainties have all been considered to test the effect that the selection of the measurement error model may have on the performance of three common DA techniques: Autoregressive error correction, Ensemble Kalman Filter and Particle Filter. Results from gauging stations located in the flood-prone Oria catchment (Basque Country, northern Spain) serves to establish a general guidance for future applications. They point towards a modest impact on forecasting skills when the official rating curve is close to the median true flow, suggesting that a benchmark measurement error model can still be used operationally providing that the existing rating curve is properly defined.

  2. Distributed precipitation corrections in Alpine areas for a real-time flood forecasting system

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter

    2014-05-01

    This contribution presents a method for estimating spatial and temporal distributed precipitation correction factors. The approach is applied for a flood forecasting model in the Upper Enns and Upper Mur catchments in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. These correction factors are however mostly applied for whole catchments in a lumped manor, neglecting, that the magnitude of precipitation errors are spatially distributed. For the presented study a multiplicative linear correction model is therefore implemented, which enables a distribution of the correction factors as a function of elevation. The applied rainfall-runoff model COSERO is set up with a spatial resolution of 1x1km2. The correction of the rainfall pattern is thereby applied for every grid cell. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore additionally separate correction factors for winter and summer months are estimated. The parameters for the correction model are estimated for every catchment based on independent station observations and observed and simulated runoff of the conceptual rainfall-runoff model. As driving input the INCA-precipitation fields of the Austrian Central Institute for Meteorology and Geodynamics (ZAMG) are used. Due to the mentioned errors, these precipitation fields are corrected according to the described method. The results show a significant improvement of the simulated

  3. Status and Future of a Real-time Global Flood Detection and Forecasting System Using Satellite Rainfall Information

    NASA Astrophysics Data System (ADS)

    Adler, R. F.; Wu, H.; Hong, Y.; Policelli, F.; Pierce, H.

    2011-12-01

    Over the last several years a Global Flood Monitoring System (GFMS) has been running in real-time to detect the occurrence of floods (see trmm.gsfc.nasa.gov and click on "Floods and Landslides"). The system uses 3-hr resolution composite rainfall analyses (TRMM Multi-satellite Precipitation Analysis [TMPA]) as input into a hydrological model that calculates water depth at each grid (at 0.25 degree latitude-longitude) over the tropics and mid-latitudes. These calculations can provide information useful to national and international agencies in understanding the location, intensity, timeline and impact on populations of these significant hazard events. The status of these flood calculations will be shown by case study examples and a statistical comparison against a global flood event database. The validation study indicates that results improve with longer duration (> 3 days) floods and that the statistics are impacted by the presence of dams, which are not accounted for in the model calculations. Limitations in the flood calculations that are related to the satellite rainfall estimates include space and time resolution limitations and underestimation of shallow orographic and monsoon system rainfall. The current quality of these flood estimations is at the level of being useful, but there is a potential for significant improvement, mainly through improved and more timely satellite precipitation information and improvement in the hydrological models being used. NASA's Global Precipitation Measurement (GPM) program should lead to better precipitation analyses utilizing space-time interpolations that maintain accurate intensity distributions along with methods to disaggregate the rain information research should lead to improved rain estimation for shallow, orographic rainfall systems and some types of monsoon rainfall, a current problem area for satellite rainfall. Higher resolution flood models with accurate routing and regional calibration, and the use of satellite

  4. Improving real-time probabilistic channel flood forecasting by incorporating the uncertainty of inflow using Particle Filter

    NASA Astrophysics Data System (ADS)

    Xu, X.

    2016-12-01

    The uncertainty associated with inflow boundary forcing data has been recognized as an important and dominant source of uncertainties in hydraulic model. Here, we develop a real-time probabilistic channel flood forecasting model with a novel function to incorporate the uncertainty of forcing inflow. This new approach couples a hydraulic model with the Sequential Monte Carlo (SMC), Particle filter (PF), data assimilation algorithm. Stage observations at hydrological stations along the channel are assimilated at each time step to update the model states in order to improve next time step's forecasting. We test this new approach for a real flood event occurred during June 27, 2009 and July 9, 2009 in the river reach from upstream Cuntan station to downstream Zhongxian station of the Middle Yangtze River, China. As compared with open loop model simulations, model evaluations with several quantitative deterministic and probabilistic metrics indicate that accuracy of the ensemble mean prediction and reliability of the uncertainty quantification are improved pronouncedly as a result of the PF assimilation. Further assessment of forecasting performance at different lead times shows that the degree of model improvement weakens with the increase of lead time due to the gradual diminishing of updating effect on initial conditions. The examination of different number of particles shows that the optimal number of particles can be chosen as a tradeoff between model performance and computation burden. The analysis of different assimilation frequency indicates that higher assimilation frequency can help improve the model performance by incorporating more observation information and updating model states to better represent instantaneous flood conditions.

  5. All-season flash flood forecasting system for real-time operations

    USDA-ARS?s Scientific Manuscript database

    Flash floods can cause extensive damage to both life and property, especially because they are difficult to predict. Flash flood prediction requires high-resolution meteorologic observations and predictions, as well as calibrated hydrologic models in addition to extensive data handling. We have de...

  6. A wavelet-based non-linear autoregressive with exogenous inputs (WNARX) dynamic neural network model for real-time flood forecasting using satellite-based rainfall products

    NASA Astrophysics Data System (ADS)

    Nanda, Trushnamayee; Sahoo, Bhabagrahi; Beria, Harsh; Chatterjee, Chandranath

    2016-08-01

    Although flood forecasting and warning system is a very important non-structural measure in flood-prone river basins, poor raingauge network as well as unavailability of rainfall data in real-time could hinder its accuracy at different lead times. Conversely, since the real-time satellite-based rainfall products are now becoming available for the data-scarce regions, their integration with the data-driven models could be effectively used for real-time flood forecasting. To address these issues in operational streamflow forecasting, a new data-driven model, namely, the wavelet-based non-linear autoregressive with exogenous inputs (WNARX) is proposed and evaluated in comparison with four other data-driven models, viz., the linear autoregressive moving average with exogenous inputs (ARMAX), static artificial neural network (ANN), wavelet-based ANN (WANN), and dynamic nonlinear autoregressive with exogenous inputs (NARX) models. First, the quality of input rainfall products of Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA), viz., TRMM and TRMM-real-time (RT) rainfall products is assessed through statistical evaluation. The results reveal that the satellite rainfall products moderately correlate with the observed rainfall, with the gauge-adjusted TRMM product outperforming the real-time TRMM-RT product. The TRMM rainfall product better captures the ground observations up to 95 percentile range (30.11 mm/day), although the hit rate decreases for high rainfall intensity. The effect of antecedent rainfall (AR) and climate forecast system reanalysis (CFSR) temperature product on the catchment response is tested in all the developed models. The results reveal that, during real-time flow simulation, the satellite-based rainfall products generally perform worse than the gauge-based rainfall. Moreover, as compared to the existing models, the flow forecasting by the WNARX model is way better than the other four models studied herein with the

  7. Real time flood forecasting in the Nan Basin, Thailand, by using a distributed Xin'anjiang Model

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Qiu, Xiaobin

    2015-04-01

    process is adaptively corrected by Attenuation memory least squares method to obtain final forecasting flood process. Verifications of this real-time flood forecasting model show high precision and the model system has been practically used in Thailand.

  8. A Distributed, Physically-Based, Rainfall-Runoff Model Incorporating Topography for Real-Time Flood Forecasting

    DTIC Science & Technology

    1990-10-01

    Maximum 200 words) We present a distributed, physically-based model of runoff generation in a catchment, for operational use in flood forecasting. The...being exceeded in the month in question. The observed hydrographs for the various storms were, generally , in the area comprised between the "dry" and...We present a distributed, physically-based model of runoff generation in a catchment, for operational use in flood forecasting. The model accounts for

  9. Calibrating the FloodMap Model to Improve the Integrated HydroProg-FloodMap Real-Time Multimodel Ensemble System for Forecasting Inundation

    NASA Astrophysics Data System (ADS)

    Świerczyńska, M. G.; Yu, D.; Miziński, B.; Niedzielski, T.; Latocha, A.; Parzóch, K.

    2015-12-01

    HydroProg is a novel system (research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland) which produces early warnings against peak flows. It works in real time and uses outputs from multiple hydrologic models to compute the multimodel ensemble prediction of riverflow, i.e. the hydrograph. The system has been experimentally implemented for the upper Nysa Kłodzka river basin (SW Poland). We also integrated the system with the well-established hydrodynamic model, known as FloodMap, to forecast flood inundation (HydroProg computes hydrograph prediction and FloodMap maps the hydrograph prognosis into terrain). The HydroProg-FloodMap solution works at five sites. The real-time experimental forecasts are available at http://www.klodzko.hydroprog.uni.wroc.pl/. The FloodMap model is calibrated at each site on a basis of the available Digital Elevation Model (DEM) or Digital Surface Model (DSM) and hydrograph data. However, since the launch of the HydroProg-FloodMap solution no true data on inundation has been available to check the model outputs against observation, and hence to redo the calibration if necessary. If we consider past events, which occurred before the launch of the system, there exists the observed inundation map for the Żelazno site. It was produced by geomorphological mapping of consequences of the flood in June 2009. The aim of the study is therefore to use this specific data set for a single site, calibrate the FloodMap model using inundation data, and identify the physical-geographical characteristics of terrain under which we are allowed to extrapolate the parameters to the other four sites. We conducted a spatial analysis of land use (based on Polish national database of topographical objects) and topography (based on DEM/DSM from the Light Detection and Ranging (LiDAR)) in order to identify similarities of the studied areas and hence to improve the estimates of the Manning's roughness coefficient.

  10. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan

    2017-07-01

    An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.

  11. Advancing the cyberinfrastructure for sustaining high resolution, real-time streamflow and flood forecasts at a national scale

    NASA Astrophysics Data System (ADS)

    Arctur, D. K.; Maidment, D. R.; Clark, E. P.; Gochis, D. J.; Somos-Valenzuela, M. A.; Salas, F. R.; Nelson, J.

    2015-12-01

    In just the last year, it has become feasible to generate and refresh national 15-hour forecasts of streamflow and flood inundation, every hour at high resolution (average 3km stream segments), based on a workflow integrating US National Weather Service forecasts, the WRF-Hydro land surface model, the RAPID streamflow routing model, and other models. This capability has come about through a collaboration of numerous agencies, academic research and data centers, and commercial software vendors. This presentation provides insights and lessons learned for the development and evolution of a scalable architecture for water observations and forecasts that should be sustained operationally.

  12. A hydro-meteorological ensemble prediction system for real-time flood forecasting purposes in the Milano area

    NASA Astrophysics Data System (ADS)

    Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Romero, Romualdo; Homar, Victor; Mancini, Marco

    2015-04-01

    Analysis of forecasting strategies that can provide a tangible basis for flood early warning procedures and mitigation measures over the Western Mediterranean region is one of the fundamental motivations of the European HyMeX programme. Here, we examine a set of hydro-meteorological episodes that affected the Milano urban area for which the complex flood protection system of the city did not completely succeed before the occurred flash-floods. Indeed, flood damages have exponentially increased in the area during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. The flood forecasting system tested in this work comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models, in order to provide a hydrological ensemble prediction system (HEPS). Deterministic and probabilistic quantitative precipitation forecasts (QPFs) have been provided by WRF model in a set of 48-hours experiments. HEPS has been generated by combining different physical parameterizations (i.e. cloud microphysics, moist convection and boundary-layer schemes) of the WRF model in order to better encompass the atmospheric processes leading to high precipitation amounts. We have been able to test the value of a probabilistic versus a deterministic framework when driving Quantitative Discharge Forecasts (QDFs). Results highlight (i) the benefits of using a high-resolution HEPS in conveying uncertainties for this complex orographic area and (ii) a better simulation of the most of extreme precipitation events, potentially enabling valuable probabilistic QDFs. Hence, the HEPS copes with the significant deficiencies found in the deterministic QPFs. These shortcomings would prevent to correctly forecast the location and timing of high precipitation rates and

  13. The multi temporal/multi-model approach to predictive uncertainty assessment in real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Brocca, Luca; Todini, Ezio

    2017-08-01

    This work extends the multi-temporal approach of the Model Conditional Processor (MCP-MT) to the multi-model case and to the four Truncated Normal Distributions (TNDs) approach, demonstrating the improvement on the single-temporal one. The study is framed in the context of probabilistic Bayesian decision-making that is appropriate to take rational decisions on uncertain future outcomes. As opposed to the direct use of deterministic forecasts, the probabilistic forecast identifies a predictive probability density function that represents a fundamental knowledge on future occurrences. The added value of MCP-MT is the identification of the probability that a critical situation will happen within the forecast lead-time and when, more likely, it will occur. MCP-MT is thoroughly tested for both single-model and multi-model configurations at a gauged site on the Tiber River, central Italy. The stages forecasted by two operative deterministic models, STAFOM-RCM and MISDc, are considered for the study. The dataset used for the analysis consists of hourly data from 34 flood events selected on a time series of six years. MCP-MT improves over the original models' forecasts: the peak overestimation and the rising limb delayed forecast, characterizing MISDc and STAFOM-RCM respectively, are significantly mitigated, with a reduced mean error on peak stage from 45 to 5 cm and an increased coefficient of persistence from 0.53 up to 0.75. The results show that MCP-MT outperforms the single-temporal approach and is potentially useful for supporting decision-making because the exceedance probability of hydrometric thresholds within a forecast horizon and the most probable flooding time can be estimated.

  14. The flood event of 10-12 November 2013 on the Tiber River basin (central Italy): real-time flood forecasting with uncertainty supporting risk management and decision-making

    NASA Astrophysics Data System (ADS)

    Berni, Nicola; Brocca, Luca; Barbetta, Silvia; Pandolfo, Claudia; Stelluti, Marco; Moramarco, Tommaso

    2014-05-01

    The Italian national hydro-meteorological early warning system is composed by 21 regional offices (Functional Centres, CF). Umbria Region (central Italy) CF provides early warning for floods and landslides, real-time monitoring and decision support systems (DSS) for the Civil Defence Authorities when significant events occur. The alert system is based on hydrometric and rainfall thresholds with detailed procedures for the management of critical events in which different roles of authorities and institutions involved are defined. The real-time flood forecasting system is based also on different hydrological and hydraulic forecasting models. Among these, the MISDc rainfall-runoff model ("Modello Idrologico SemiDistribuito in continuo"; Brocca et al., 2011) and the flood routing model named STAFOM-RCM (STAge Forecasting Model-Rating Curve Model; Barbetta et al., 2014) are continuously operative in real-time providing discharge and stage forecasts, respectively, with lead-times up to 24 hours (when quantitative precipitation forecasts are used) in several gauged river sections in the Upper-Middle Tiber River basin. Models results are published in real-time in the open source CF web platform: www.cfumbria.it. MISDc provides discharge and soil moisture forecasts for different sub-basins while STAFOM-RCM provides stage forecasts at hydrometric sections. Moreover, through STAFOM-RCM the uncertainty of the forecast stage hydrograph is provided in terms of 95% Confidence Interval (CI) assessed by analyzing the statistical properties of model output in terms of lateral. In the period 10th-12th November 2013, a severe flood event occurred in Umbria mainly affecting the north-eastern area and causing significant economic damages, but fortunately no casualties. The territory was interested by intense and persistent rainfall; the hydro-meteorological monitoring network recorded locally rainfall depth over 400 mm in 72 hours. In the most affected area, the recorded rainfall depths

  15. Development of a Distributed Hydrologic Model Using Triangulated Irregular Networks for Continuous, Real-Time Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Vivoni, E. R.; Bras, R. L.; Entekhabi, D.

    2001-05-01

    The Triangulated Irregular Networks (TINs) are widespread in many finite-element modeling applications stressing high spatial non-uniformity while describing the domain of interest in an optimized fashion that results in superior computational efficiency. TINs, being adaptive to the complexity of any terrain, are capable of maintaining topological relations between critical surface features and therefore afford higher flexibility in data manipulation. The TIN-based Real-time Integrated Basin Simulator (tRIBS) is a distributed hydrologic model that utilizes the mesh architecture and the software environment developed for the CHILD landscape evolution model and employs the hydrologic routines of its raster-oriented version, RIBS. As a totally independent software unit, the tRIBS consolidates the strengths of the distributed approach and efficient computational data platform. The current version couples the unsaturated and the saturated zones and accounts for the interaction of moving infiltration fronts with a variable groundwater surface, allowing the model to handle both storm and interstorm periods in a continuous fashion. Recent model enhancements have included the development of interstorm hydrologic fluxes through an evapotranspiration scheme as well as incorporation of a rainfall interception module. Overall, the tRIBS model has proven to properly mimic successive phases of the distributed catchment response by reproducing various runoff production mechanisms and handling their meteorological constraints. Important improvements in modeling options, robustness to data availability and overall design flexibility have also been accomplished. The current efforts are focused on further model developments as well as the application of the tRIBS to various watersheds.

  16. Real-time forecasts of dengue epidemics

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Shaman, J. L.

    2015-12-01

    Dengue is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas with endemic dengue, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission is a significant public health challenge. Here we present a model of dengue transmission and a framework for optimizing model simulations with real-time observational data of dengue cases and environmental variables in order to generate ensemble-based forecasts of the timing and severity of disease outbreaks. The model-inference system is validated using synthetic data and dengue outbreak records. Retrospective forecasts are generated for a number of locations and the accuracy of these forecasts is quantified.

  17. REAL-TIME high-resolution urban surface water flood mapping to support flood emergency management

    NASA Astrophysics Data System (ADS)

    Guan, M.; Yu, D.; Wilby, R.

    2016-12-01

    Strong evidence has shown that urban flood risks will substantially increase because of urbanisation, economic growth, and more frequent weather extremes. To effectively manage these risks require not only traditional grey engineering solutions, but also a green management solution. Surface water flood risk maps based on return period are useful for planning purposes, but are limited for application in flood emergencies, because of the spatiotemporal heterogeneity of rainfall and complex urban topography. Therefore, a REAL-TIME urban surface water mapping system is highly beneficial to increasing urban resilience to surface water flooding. This study integrated numerical weather forecast and high-resolution urban surface water modelling into a real-time multi-level surface water mapping system for Leicester City in the UK. For rainfall forecast, the 1km composite rain radar from the Met Office was used, and we used the advanced rainfall-runoff model - FloodMap to predict urban surface water at both city-level (10m-20m) and street-level (2m-5m). The system is capable of projecting 3-hour urban surface water flood, driven by rainfall derived from UK Met Office radar. Moreover, this system includes real-time accessibility mapping to assist the decision-making of emergency responders. This will allow accessibility (e.g. time to travel) from individual emergency service stations (e.g. Fire & Rescue; Ambulance) to vulnerable places to be evaluated. The mapping results will support contingency planning by emergency responders ahead of potential flood events.

  18. Real-time Social Internet Data to Guide Forecasting Models

    SciTech Connect

    Del Valle, Sara Y.

    2016-09-20

    Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematical approaches and heterogeneous data streams.

  19. Near-real-time simulation and internet-based delivery of forecast-flood inundation maps using two-dimensional hydraulic modeling--A pilot study for the Snoqualmie River, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Fulford, Janice M.; Voss, Frank D.

    2002-01-01

    A system of numerical hydraulic modeling, geographic information system processing, and Internet map serving, supported by new data sources and application automation, was developed that generates inundation maps for forecast floods in near real time and makes them available through the Internet. Forecasts for flooding are generated by the National Weather Service (NWS) River Forecast Center (RFC); these forecasts are retrieved automatically by the system and prepared for input to a hydraulic model. The model, TrimR2D, is a new, robust, two-dimensional model capable of simulating wide varieties of discharge hydrographs and relatively long stream reaches. TrimR2D was calibrated for a 28-kilometer reach of the Snoqualmie River in Washington State, and is used to estimate flood extent, depth, arrival time, and peak time for the RFC forecast. The results of the model are processed automatically by a Geographic Information System (GIS) into maps of flood extent, depth, and arrival and peak times. These maps subsequently are processed into formats acceptable by an Internet map server (IMS). The IMS application is a user-friendly interface to access the maps over the Internet; it allows users to select what information they wish to see presented and allows the authors to define scale-dependent availability of map layers and their symbology (appearance of map features). For example, the IMS presents a background of a digital USGS 1:100,000-scale quadrangle at smaller scales, and automatically switches to an ortho-rectified aerial photograph (a digital photograph that has camera angle and tilt distortions removed) at larger scales so viewers can see ground features that help them identify their area of interest more effectively. For the user, the option exists to select either background at any scale. Similar options are provided for both the map creator and the viewer for the various flood maps. This combination of a robust model, emerging IMS software, and application

  20. Streamflow forecast uncertainty evolution and its effect on real-time reservoir operation

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Singh, Vijay P.; Lu, Weiwei; Zhang, Junhong; Zhou, Jianzhong; Guo, Shenglian

    2016-09-01

    When employing streamflow forecasting in practical applications, such as reservoir operation, one important issue is to deal with the uncertainty involved in forecasting. Traditional studies dealing with the uncertainty in streamflow forecasting have been limited in describing the evolution of forecast uncertainty. This paper proposes a copula-based uncertainty evolution (CUE) model to describe the evolution of streamflow forecast uncertainty. The generated forecast uncertainty series fits the observed series well in terms of observed mean, standard deviation and skewness. Daily flow with forecast uncertainty are simulated and used to determine the effect of forecast uncertainty on real-time reservoir operation of the Three Gorges Reservoir (TGR), China. Results show that using the forecast inflow coupled with the pre-release module for reservoir operation of TGR in flood season cannot increase the flood risk.

  1. Spatio-temporal modeling for real-time ozone forecasting.

    PubMed

    Paci, Lucia; Gelfand, Alan E; Holland, David M

    2013-05-01

    The accurate assessment of exposure to ambient ozone concentrations is important for informing the public and pollution monitoring agencies about ozone levels that may lead to adverse health effects. High-resolution air quality information can offer significant health benefits by leading to improved environmental decisions. A practical challenge facing the U.S. Environmental Protection Agency (USEPA) is to provide real-time forecasting of current 8-hour average ozone exposure over the entire conterminous United States. Such real-time forecasting is now provided as spatial forecast maps of current 8-hour average ozone defined as the average of the previous four hours, current hour, and predictions for the next three hours. Current 8-hour average patterns are updated hourly throughout the day on the EPA-AIRNow web site. The contribution here is to show how we can substantially improve upon current real-time forecasting systems. To enable such forecasting, we introduce a downscaler fusion model based on first differences of real-time monitoring data and numerical model output. The model has a flexible coefficient structure and uses an efficient computational strategy to fit model parameters. Our hybrid computational strategy blends continuous background updated model fitting with real-time predictions. Model validation analyses show that we are achieving very accurate and precise ozone forecasts.

  2. Incorporate Hydrologic Forecast for Real-Time Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Cai, X.; Zhao, J.

    2011-12-01

    Advances in weather forecasting, hydrologic modeling, and hydro-climatic teleconnection relationships have significantly improved streamflow forecast precision and lead-time. The advances provide great opportunities to improve the operation rules of water resources systems, for example, updating reservoir operation curves using long-term forecast, or even replacing operation rules by real-time optimization and simulation models utilizing various streamflow forecast products. However, incorporation of forecast for real-time optimization of reservoir operation needs more understanding of the forecast uncertainty (FU) evolution with forecast horizon (FH, the advance time of a forecast) and the complicating effect of FU and FH. Increasing horizon may provide more information for decision making in a long time framework but with increasing error and less reliable information. This presentation addresses the challenges on the use of hydrologic forecast for real-time reservoir operations through the following two particular studies: 1) Evaluating the effectiveness of the various hydrological forecast products for reservoir operation with an explicit simulation of dynamic evolution of uncertainties involved in those products. A hypothetical example shows that optimal reservoir operation varies with the hydrologic forecast products. The utility of the reservoir operation with ensemble or probabilistic streamflow forecast (with a probabilistic uncertainty distribution) is the highest compared to deterministic streamflow forecast (DSF) with the forecast uncertainty represented in the form of deterministic forecast errors and DSF-based probabilistic streamflow forecast with the forecast uncertainty represented by a conditional distribution of forecast uncertainty for a given DSF. 2) Identifying an effective forecast horizon (EFH) under a limited inflow forecast considering the complicating effect of FH and FU, as well as streamflow variability and reservoir characteristics

  3. Real-Time Forecasting of Echo-Centroid Motion.

    DTIC Science & Technology

    1979-01-01

    motions has been developed. The key to this development is an algorithm for correlating previous with current storm- centroid positions. The program was...Modifications and Addtions ..... ... 12 1) Data Acquisition ..... ........... . 12 2) Correlation Algorithm .... .......... . 13 3) Forecast... Algorithm ............... 16 4) Data Diaplay ..... ............... . 20 3. Real-Time Operation ..... ................ 22 4. Data and Methodology

  4. Real-time flood extent maps based on social media

    NASA Astrophysics Data System (ADS)

    Eilander, Dirk; van Loenen, Arnejan; Roskam, Ruud; Wagemaker, Jurjen

    2015-04-01

    During a flood event it is often difficult to get accurate information about the flood extent and the people affected. This information is very important for disaster risk reduction management and crisis relief organizations. In the post flood phase, information about the flood extent is needed for damage estimation and calibrating hydrodynamic models. Currently, flood extent maps are derived from a few sources such as satellite images, areal images and post-flooding flood marks. However, getting accurate real-time or maximum flood extent maps remains difficult. With the rise of social media, we now have a new source of information with large numbers of observations. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at 8 tweets per second during floods in early 2014. A fair amount of these tweets also contains observations of water depth and location. Our hypothesis is that based on the large numbers of tweets it is possible to generate real-time flood extent maps. In this study we use tweets from the city of Jakarta, Indonesia, to generate these flood extent maps. The data-mining procedure looks for tweets with a mention of 'banjir', the Bahasa Indonesia word for flood. It then removes modified and retweeted messages in order to keep unique tweets only. Since tweets are not always sent directly from the location of observation, the geotag in the tweets is unreliable. We therefore extract location information using mentions of names of neighborhoods and points of interest. Finally, where encountered, a mention of a length measure is extracted as water depth. These tweets containing a location reference and a water level are considered to be flood observations. The strength of this method is that it can easily be extended to other regions and languages. Based on the intensity of tweets in Jakarta during a flood event we can provide a rough estimate of the flood extent. To provide more accurate flood extend

  5. Intelligent Real-Time Reservoir Operation for Flood Control

    NASA Astrophysics Data System (ADS)

    Chang, L.; Hsu, H.

    2008-12-01

    Real-time flood control of a multi-purpose reservoir should consider decreasing the flood peak stage downstream and storing floodwaters for future usage during typhoon seasons. It is a continuous and instant decision-making process based on relevant operating rules, policy and water laws, in addition the immediate rainfall and the hydrology information; however, it is difficult to learn the intelligent experience from the elder operators. The main purpose of this study is to establish the automatic reservoir flood control model to achieve the goal of a reservoir operation during flood periods. In this study, we propose an intelligent reservoir operating methodology for real-time flood control. First, the genetic algorithm is used to search the optimal solutions, which can be considered as extracting the knowledge of reservoir operation strategies. Then, the adaptive network-based fuzzy inference system (ANFIS), which uses a hybrid learning procedure for extracting knowledge in the form of fuzzy if-then rules, is used to learn the input-output patterns and then to estimate the optimal flood operation. The Shihmen reservoir in Northern Taiwan was used as a case study, where its 26 typhoon events are investigated by the proposed method. The results demonstrate that the proposed control model can perform much better than the original reservoir operator in 26 flood events and effectively achieve decreasing peak flood stage downstream and storing floodwaters for future usage.

  6. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been

  7. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, Herb (Technical Monitor)

    2002-01-01

    We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).

  8. A Real-Time Web Services Hub to Improve Situation Awareness during Flash Flood Events

    NASA Astrophysics Data System (ADS)

    Salas, F. R.; Liu, F.; Maidment, D. R.; Hodges, B. R.

    2011-12-01

    The central Texas corridor is one of the most flash flood-prone regions in the United States. Over the years, flash floods have resulted in hundreds of flood fatalities and billions of dollars in property damage. In order to mitigate risk to residents and infrastructure during flood events, both citizens and emergency responders need to exhibit proactive behavior instead of reactive. Real-time and forecasted flood information is fairly limited and hard to come by at varying spatial scales. The University of Texas at Austin has collaborated with IBM Research-Austin and ESRI to build a distributed real-time flood information system through a framework that leverages large scale data management and distribution, Open Geospatial Consortium standardized web services, and smart map applications. Within this paradigm, observed precipitation data encoded in WaterML is ingested into HEC-HMS and then delivered to a high performance hydraulic routing software package developed by IBM that utilizes the latest advancements in VLSI design, numerical linear algebra and numerical integration techniques on contemporary multicore architecture to solve fully dynamic Saint Venant equations at both small and large scales. In this paper we present a real-time flood inundation map application that in conjunction with a web services Hub, seamlessly integrates hydrologic information available through both public and private data services, model services and mapping services. As a case study for this project, we demonstrate how this system has been implemented in the City of Austin, Texas.

  9. Preparing for floods: flood forecasting and early warning

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah

    2016-04-01

    Flood forecasting and early warning has continued to stride ahead in strengthening the preparedness phases of disaster risk management, saving lives and property and reducing the overall impact of severe flood events. For example, continental and global scale flood forecasting systems such as the European Flood Awareness System and the Global Flood Awareness System provide early information about upcoming floods in real time to various decisionmakers. Studies have found that there are monetary benefits to implementing these early flood warning systems, and with the science also in place to provide evidence of benefit and hydrometeorological institutional outlooks warming to the use of probabilistic forecasts, the uptake over the last decade has been rapid and sustained. However, there are many further challenges that lie ahead to improve the science supporting flood early warning and to ensure that appropriate decisions are made to maximise flood preparedness.

  10. Near real time wind energy forecasting incorporating wind tunnel modeling

    NASA Astrophysics Data System (ADS)

    Lubitz, William David

    A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.

  11. Real time drought forecasting system for irrigation management

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Corbari, C.; Salerno, R.; Meucci, S.; Mancini, M.

    2013-12-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in European areas traditionally rich of water such as the Po Valley in northern Italy. In dry periods problems of water shortage can be enhanced by conflictual uses of water such as irrigation, industrial and power production (hydroelectric and thermoelectric). Further, over the last decade the social perspective about this issue is increasing due to possible impacts of climate change and global warming scenarios which come out from the fourth IPCC Report. The increased frequency of drought periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the real-time drought forecasting system PRE.G.I., an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management". The system is based on ensemble prediction (20 members) at long-range (30 days) with hydrological simulations of water balance to forecast the soil water content over a maize field. The hydrological model was validated against measurements of latent heat flux acquired by an eddy-covariance station, and soil moisture measured by TDR probes. Reliability of the forecasting system and its benefits were assessed on the growing season of 2012. Obtained results show how the proposed drought forecasting system is able to have a high reliability of forecast at least for a fortnight as lead time.

  12. Real-time Monitoring and Simulating of Urban Flood, a Case Study in Guangzhou

    NASA Astrophysics Data System (ADS)

    Huang, H.; Wang, X.; Zhang, S.; Liu, Y.

    2014-12-01

    In recent years urban flood frequently occurred and seriously impacted city's normal operation, particular on transportation. The increase of urban flood could be attributed to many factors, such as the increase of impervious land surface and extreme precipitation, the decrease of surface storage capacity, poor maintenance of drainage utilities, and so on. In order to provide accurate and leading prediction on urban flooding, this study acquires precise urban topographic data via air-borne Lidar system, collects detailed underground drainage pipes, and installs in-situ monitoring networks on precipitation, water level, video record and traffic speed in the downtown area of Panyu District, Guangzhou, China. Based on the above data acquired, a urban flood model with EPA SWMM5 is established to simulate the flooding and inundation processes in the study area of 20 km2. The model is driven by the real-time precipitation data and calibrated by the water level data, which are converted to flooding volume with precise topographic data. After calibration, the model could be employed to conduct sensitivity analysis for investigating primary factors of urban flooding, and to simulate the flooding processes in different scenarios, which are beneficial to assessment of flooding risk and drainage capacity. This model is expected to provide real-time forecasting in emergency management.

  13. A Methodology for Tsunami Wave Propagation Forecast in Real Time

    NASA Astrophysics Data System (ADS)

    Wang, D.; Walsh, D.; Becker, N. C.; Fryer, G. J.

    2009-12-01

    U.S. Tsunami Warning Centers (TWCs) forecast tsunami wave heights using databases of pre-computed tsunami scenarios such as the Standby Inundation Forecasting of Tsunamis (SIFT) model developed by the Pacific Marine Environmental Laboratory and the database model of the West Coast and Alaska Tsunami Warning Center. These models, however, cannot anticipate all possible earthquake hypocenters and focal mechanisms. We have therefore developed a new wave-height model complimentary to the database approach that uses real-time earthquake parameters to produce a real-time wave propagation forecast, a model we call real-time inundation forecasting of tsunamis (RIFT). Our model employs a mass-conserving second order finite difference method of linear shallow water equations with a leapfrog scheme in time and a staggered grid in space. The model's user may customize its domain by selecting one of twenty predefined ocean basins and marginal seas. The user may also let RIFT choose the computation domain automatically, in which case it will determine its computational domain by calculating tsunami travel time for the earthquake to cover the region specified by the TWCs' warning criteria based on the earthquake's magnitude. For example, the US Tsunami Warning Centers will issue a Tsunami Warning for the region within three hours travel time from the epicenter of a magnitude 7.9 earthquake. We demonstrate that RIFT can produce a tsunami wave-height forecast for this region at 4-arc-minute resolution in less than one minute using a modern 4-CPU Linux workstation, including the time needed to dynamically compute the boundaries of the domain. The user may also use smaller domains to generate a tsunami forecast much more quickly when an earthquake poses only a local tsunami threat, such as a large earthquake in Hawaii. In this case, the model can forecast tsunami wave heights for the entire state of Hawaii in less than five seconds at 1-arc-minute resolution. RIFT needs an earthquake

  14. Real Time Flood Alert System (RTFAS) for Puerto Rico

    USGS Publications Warehouse

    Lopez-Trujillo, Dianne

    2010-01-01

    The Real Time Flood Alert System is a web-based computer program, developed as a data integration tool, and designed to increase the ability of emergency managers to rapidly and accurately predict flooding conditions of streams in Puerto Rico. The system includes software and a relational database to determine the spatial and temporal distribution of rainfall, water levels in streams and reservoirs, and associated storms to determine hazardous and potential flood conditions. The computer program was developed as part of a cooperative agreement between the U.S. Geological Survey Caribbean Water Science Center and the Puerto Rico Emergency Management Agency, and integrates information collected and processed by these two agencies and the National Weather Service.

  15. A Real-time Operational Global Ocean Forecast System

    NASA Astrophysics Data System (ADS)

    Mehra, A.; Rivin, I.

    2010-12-01

    Efforts are ongoing to implement a real-time operational global ocean forecast system at NCEP/NWS/NOAA. This system will be based on an eddy resolving 1/12 degree global HYCOM model (Chassignet et al., 2009) and is part of a larger national backbone capability of ocean modeling at NWS in a strong partnership with US Navy. Long term plans include coupling it to Hurricane prediction models (eg. HWRF) and for providing ocean component for seasonal to interannual climate forecast systems (eg. CFS). The forecast system will run once a day and produce a week long forecast using the daily initialization fields produced at NAVOCEANO using NCODA, a 3D multi-variate data assimilation methodology (Cummings, 2005). The operational ocean model configuration has 32 hybrid layers and a horizontal grid size of (4500 x 3298). It is forced with surface fluxes from the operational Global Forecast System (GFS) fields. References: Chassignet, E.P., H.E. Hurlburt, E.J. Metzger, O.M. Smedstad, J. Cummings, G.R. Halliwell, R. Bleck, R. Baraille, A.J. Wallcraft, C. Lozano, H.L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, and J. Wilkin, 2009. U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22(2), 64-75. Cummings, J.A., 2005: Operational multivariate ocean data assimilation. Quart. J. Royal Met. Soc., Part C, 131(613), 3583-3604.

  16. Real-time drought forecasting system for irrigation management

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Corbari, C.; Salerno, R.; Meucci, S.; Mancini, M.

    2014-09-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in European areas which traditionally have an abundant supply of water, such as the Po Valley in northern Italy. In dry periods, water shortage problems can be enhanced by conflicting uses of water, such as irrigation, industry and power production (hydroelectric and thermoelectric). Furthermore, in the last decade the social perspective in relation to this issue has been increasing due to the possible impact of climate change and global warming scenarios which emerge from the IPCC Fifth Assessment Report (IPCC, 2013). Hence, the increased frequency of drought periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the PREGI real-time drought forecasting system; PREGI is an Italian acronym that means "hydro-meteorological forecast for irrigation management". The system, planned as a tool for irrigation optimization, is based on meteorological ensemble forecasts (20 members) at medium range (30 days) coupled with hydrological simulations of water balance to forecast the soil water content on a maize field in the Muzza Bassa Lodigiana (MBL) consortium in northern Italy. The hydrological model was validated against measurements of latent heat flux acquired by an eddy-covariance station, and soil moisture measured by TDR (time domain reflectivity) probes; the reliability of this forecasting system and its benefits were assessed in the 2012 growing season. The results obtained show how the proposed drought forecasting system is able to have a high reliability of forecast at least for 7-10 days ahead of time.

  17. Real-time drought forecasting system for irrigation managment

    NASA Astrophysics Data System (ADS)

    Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Masseroni, Daniele; Meucci, Stefania; Pala, Francesca; Salerno, Raffaele; Meazza, Giuseppe; Chiesa, Marco; Mancini, Marco

    2013-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in in European areas traditionally rich of water such as the Po Valley. In dry periods, the problem of water shortage can be enhanced by conflictual use of water such as irrigation, industrial and power production (hydroelectric and thermoelectric). Further, over the last decade the social perspective on this issue is increasing due to climate change and global warming scenarios which come out from the last IPCC Report. The increased frequency of dry periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the real-time drought forecasting system Pre.G.I., an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management". The system is based on ensemble prediction at long range (30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin. The studied area covers 74,000 ha in the middle of the Po Valley, near the city of Lodi. The hydrological ensemble forecasts are based on 20 meteorological members of the non-hydrostatic WRF model with 30 days as lead-time, provided by Epson Meteo Centre, while the hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The hydrological model was validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station. Reliability of the forecasting system and its benefits was assessed on some cases-study occurred in the recent years.

  18. Real-time forecasts of tomorrow's earthquakes in California

    USGS Publications Warehouse

    Gerstenberger, M.C.; Wiemer, S.; Jones, L.M.; Reasenberg, P.A.

    2005-01-01

    Despite a lack of reliable deterministic earthquake precursors, seismologists have significant predictive information about earthquake activity from an increasingly accurate understanding of the clustering properties of earthquakes. In the past 15 years, time-dependent earthquake probabilities based on a generic short-term clustering model have been made publicly available in near-real time during major earthquake sequences. These forecasts describe the probability and number of events that are, on average, likely to occur following a mainshock of a given magnitude, but are not tailored to the particular sequence at hand and contain no information about the likely locations of the aftershocks. Our model builds upon the basic principles of this generic forecast model in two ways: it recasts the forecast in terms of the probability of strong ground shaking, and it combines an existing time-independent earthquake occurrence model based on fault data and historical earthquakes with increasingly complex models describing the local time-dependent earthquake clustering. The result is a time-dependent map showing the probability of strong shaking anywhere in California within the next 24 hours. The seismic hazard modelling approach we describe provides a better understanding of time-dependent earthquake hazard, and increases its usefulness for the public, emergency planners and the media.

  19. A Near Real-time Probabilistic Drought Forecasting Framework

    NASA Astrophysics Data System (ADS)

    Zarekarizi, M.; Moradkhani, H.; Yan, H.; Beal, B.

    2016-12-01

    Droughts unlike other natural disasters such as floods, evolve slowly over time and expand into large areas of land. Early and accurate drought predictions can benefit water resources and emergency managers by enhancing drought preparedness. Some hydrologic variables show persistence, with the memory spanning from weeks to months. This study uses the memory of hydrological variables to predict their future states via multivariate statistical modeling. The statistical model employed in this study takes the uncertainty of predictions into account by generating an ensemble of predictions. Here, we present a drought forecasting framework which issues monthly and seasonal drought forecasts. This framework estimates droughts with different lead times and updates the forecasts when more data become available. Forecasts are generated by conditioning future values of hydrological variables on antecedent drought status. The statistical model is initialized by soil moisture simulations retrieved from a calibrated hydrologic model. The predictability of both hydrological and agricultural droughts are assessed in this study through the proposed framework. The framework is implemented on the Western US basins and the ability of the model to predict officially declared droughts of the region is assessed. Results show that proposed multivariate models are able to capture the drought onset and persistence of the drought states, which potentially facilitate drought preparation and mitigation.

  20. Tracking and forecasting ecosystem interactions in real time.

    PubMed

    Deyle, Ethan R; May, Robert M; Munch, Stephan B; Sugihara, George

    2016-01-13

    Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time--a requirement for managing resources in a nonlinear, non-equilibrium world. © 2016 The Author(s).

  1. Radar Based Precipitation Forecasting for Flood Warning

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2007-12-01

    Precipitation is one of the most important inputs for flood warning. The accuracy of the measured precipitation controls the effectiveness of flood warning, while the forecasted precipitation increases the lead time of flood warning, this is vital for catastrophically flood warning as it provides time for flood management, such as the emergency evacuation of the people and properties within the flood prone area, so to avoid flood damages. This paper presents an algorithm for forecasting precipitation based on Chinese next generation weather radar- CINRAD for catastrophically flood warning. This algorithm includes radar data quality control, precipitation estimation and forecasting, result correction. The radar data, received at every 5-6 minutes, is quality controlled first to delete the data noises, the pre-processed radar data then is used to estimate the precipitation, which will be employed to calibrate the radar equation parameters, then the pre-processed radar data and calibrated radar equation parameters will be input to the precipitation procedure to forecast precipitation. A software based on the above algorithm is developed that can be used to forecast precipitation on real ¡§Ctime. The radar in Guangzhou city, the biggest city in southern China is studied and the precipitation in 2005 and 2006 in Liuxihe River Basin in southern China were forecasted to validate the effectiveness, the results show this algorithm is encouraging and will be put into real-time operation in the flood warning of Liuxihe River in 2007.

  2. Flood and Weather Monitoring Using Real-time Twitter Data Streams

    NASA Astrophysics Data System (ADS)

    Demir, I.; Sit, M. A.; Sermet, M. Y.

    2016-12-01

    Social media data is a widely used source to making inference within public crisis periods and events in disaster times. Specifically, since Twitter provides large-scale data publicly in real-time, it is one of the most extensive resources with location information. This abstract provides an overview of a real-time Twitter analysis system to support flood preparedness and response using a comprehensive information-centric flood ontology and natural language processing. Within the scope of this project, we deal with acquisition and processing of real-time Twitter data streams. System fetches the tweets with specified keywords and classifies them as related to flooding or heavy weather conditions. The system uses machine learning algorithms to discover patterns using the correlation between tweets and Iowa Flood Information System's (IFIS) extensive resources. The system uses these patterns to forecast the formation and progress of a potential future flood event. While fetching tweets, predefined hashtags are used for filtering and enhancing the relevancy for selected tweets. With this project, tweets can also be used as an alternative data source where other data sources are not sufficient for specific tasks. During the disasters, the photos that people upload alongside their tweets can be collected and placed to appropriate locations on a mapping system. This allows decision making authorities and communities to see the most recent outlook of the disaster interactively. In case of an emergency, concentration of tweets can help the authorities to determine a strategy on how to reach people most efficiently while providing them the supplies they need. Thanks to the extendable nature of the flood ontology and framework, results from this project will be a guide for other natural disasters, and will be shared with the community.

  3. Real-Time Application of Multi-Satellite Precipitation Analysis for Floods and Landslides

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Hong, Yang; Huffman, George

    2007-01-01

    Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets-- both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers, In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described

  4. Real-Time Application of Multi-Satellite Precipitation Analysis for Floods and Landslides

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Hong, Yang; Huffman, George

    2007-01-01

    Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets-- both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers, In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described

  5. Best Practice for Rainfall Measurement, Torrential Flood Monitoring and Real Time Alerting System in Serbia

    NASA Astrophysics Data System (ADS)

    Stefanovic, Milutin; Milojevic, Mileta; Zlatanovic, Nikola

    2014-05-01

    Serbia occupies 88.000 km2 and its confined zone menaced with torrent flood occupies 50.000km2. Floods on large rivers and torrents are the most frequent natural disasters in Serbia. This is the result of a geographic position and relief of Serbia. Therefore, defense from these natural disasters has been institutionalized since the 19th century. Through its specialized bodies and public companies, the State organized defense from floods on large rivers and protection of international and other main roads. The Topčiderska River is one of a number of rivers in Serbia that is a threat to both urban and rural environments. In this text, general characteristics of this river will be illustrated, as well as the historical natural hazards that have occurred in the part of Belgrade near Topčiderska River. Belgrade is the capital of Serbia, its political, administrative and financial center, which means that there are significant financial capacities and human resources for investments in all sectors, and specially in the water resources sector. Along the Topčiderska catchment there are many industrial, traffic and residential structures that are in danger of floods and flood protection is more difficult with rapid high flows. The goal is to use monitoring on the Topčiderska River basin to set up a modern system for monitoring in real time and forecast of torrential floods. This paper represents a system of remote detection and monitoring of torrential floods and rain measurements in real time on Topciderka river and ready for a quick response.

  6. Flood Forecasting in Wales: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    How, Andrew; Williams, Christopher

    2015-04-01

    With steep, fast-responding river catchments, exposed coastal reaches with large tidal ranges and large population densities in some of the most at-risk areas; flood forecasting in Wales presents many varied challenges. Utilising advances in computing power and learning from best practice within the United Kingdom and abroad have seen significant improvements in recent years - however, many challenges still remain. Developments in computing and increased processing power comes with a significant price tag; greater numbers of data sources and ensemble feeds brings a better understanding of uncertainty but the wealth of data needs careful management to ensure a clear message of risk is disseminated; new modelling techniques utilise better and faster computation, but lack the history of record and experience gained from the continued use of more established forecasting models. As a flood forecasting team we work to develop coastal and fluvial forecasting models, set them up for operational use and manage the duty role that runs the models in real time. An overview of our current operational flood forecasting system will be presented, along with a discussion on some of the solutions we have in place to address the challenges we face. These include: • real-time updating of fluvial models • rainfall forecasting verification • ensemble forecast data • longer range forecast data • contingency models • offshore to nearshore wave transformation • calculation of wave overtopping

  7. The Assessment of Grid Resolution for Real-time Flood Warning in Urban area

    NASA Astrophysics Data System (ADS)

    Hsu, M. H.; Huang, C. J.; Teng, W. H.; Huang, C. Y.

    2016-12-01

    According to the unique natural environment, Taiwan confronts a severe flood damage problem in typhoon seasons. Recently, due to global climate change and extreme weather, the prediction and prevention of flood damage becomes one of the most important research issues. The highly development area and densely concentrated population result in severe damage during flood occurs. Flood management and response plan become more important in metropolitan area. For the past two decades, the hydrological monitory and rainfall intense prediction techniques have a great progress in its accuracy. QPESUMS (Quantitative Precipitation Estimation and Segregation Using Multiple Sensors) developed by the Central Weather Bureau was applied to observe real-time Radar rainfall and its spatial distribution. DTM (Digital Terrain Model) and 2D inundation model which considers the blockage effect of buildings were applied to simulate the water depth in metropolitan area. In this study, Kaohsiung city is selected as the study area and typhoon Fanapi which makes tremendous flood damage in Southern Taiwan in 2010 is adopted as the study case. The main purpose of this study is to find the proper grid resolution of flood forecasting computations in Kaohsiung city from the evaluations of the efficiency and accuracy of three different resolutions.

  8. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover

  9. Real-time eruption forecasting using the material Failure Forecast Method with a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Boué, A.; Lesage, P.; Cortés, G.; Valette, B.; Reyes-Dávila, G.

    2015-04-01

    Many attempts for deterministic forecasting of eruptions and landslides have been performed using the material Failure Forecast Method (FFM). This method consists in adjusting an empirical power law on precursory patterns of seismicity or deformation. Until now, most of the studies have presented hindsight forecasts based on complete time series of precursors and do not evaluate the ability of the method for carrying out real-time forecasting with partial precursory sequences. In this study, we present a rigorous approach of the FFM designed for real-time applications on volcano-seismic precursors. We use a Bayesian approach based on the FFM theory and an automatic classification of seismic events. The probability distributions of the data deduced from the performance of this classification are used as input. As output, it provides the probability of the forecast time at each observation time before the eruption. The spread of the a posteriori probability density function of the prediction time and its stability with respect to the observation time are used as criteria to evaluate the reliability of the forecast. We test the method on precursory accelerations of long-period seismicity prior to vulcanian explosions at Volcán de Colima (Mexico). For explosions preceded by a single phase of seismic acceleration, we obtain accurate and reliable forecasts using approximately 80% of the whole precursory sequence. It is, however, more difficult to apply the method to multiple acceleration patterns.

  10. An experimental system for flood risk forecasting at global scale

    NASA Astrophysics Data System (ADS)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  11. From Forecast Hydrology to Real-Time Inundation Mapping at Continental Scale

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Maidment, D.; Liu, Y.; Tarboton, D. G.; Lin, P.

    2016-12-01

    The NOAA National Water Center is bringing a new National Water Model (NWM) into operation in summer 2016 that will forecast flow in 2.7 million stream reaches of the continental United States (CONUS) as defined by the NHDPlus geospatial dataset. Using the 10m National Elevation Dataset as a terrain base, a Height Above Nearest Drainage (HAND) grid was created for the CONUS using the ROGER supercomputing facility at NCSA. This quantifies the height of each grid cell above the NHDPlus stream that it drains into, and given depth of flow in each stream reach can be used to map flood potential inundation. We also used HAND to derive reach level hydraulic geometry parameters needed for hydraulic routing, or calculation of depth using Manning's equation and a steady flow approximation. Setting a depth and selecting grid cells within the NHDPlus catchment draining to each NHDPlus reach HAND provides estimates of volume (summing cell area times inundation depth), surface area (inundated cells) and bed area (based on inundated cells and cell slope). Reach average cross section area is the approximated as volume/length, wetted perimeter as bed area/length, top width as surface area/length and hydraulic radius as cross section area/wetted perimeter. Using these for a range of depths, together with estimates of other Manning's equation inputs, a rating curve relating water depth to streamflow discharge was generated for each NHDPlus stream reach. The forecast discharges from the NWM can then be converted to water surface elevations, and subsequently to flood inundation extents. Texas, which contains about 100,000 NHDPlus reaches, was used as a case study of flood inundation mapping to be linked to the National Water Model. Real-time inundation maps were created for the entire state during the flood event in October, 2015 with the historical forecast output from the NWM prototype version as the input. These inundation maps are compared with the historical inundation extents

  12. Real-time extreme weather event attribution with forecast seasonal SSTs

    NASA Astrophysics Data System (ADS)

    Haustein, K.; Otto, F. E. L.; Uhe, P.; Schaller, N.; Allen, M. R.; Hermanson, L.; Christidis, N.; McLean, P.; Cullen, H.

    2016-06-01

    Within the last decade, extreme weather event attribution has emerged as a new field of science and garnered increasing attention from the wider scientific community and the public. Numerous methods have been put forward to determine the contribution of anthropogenic climate change to individual extreme weather events. So far nearly all such analyses were done months after an event has happened. Here we present a new method which can assess the fraction of attributable risk of a severe weather event due to an external driver in real-time. The method builds on a large ensemble of atmosphere-only general circulation model simulations forced by seasonal forecast sea surface temperatures (SSTs). Taking the England 2013/14 winter floods as an example, we demonstrate that the change in risk for heavy rainfall during the England floods due to anthropogenic climate change, is of similar magnitude using either observed or seasonal forecast SSTs. Testing the dynamic response of the model to the anomalous ocean state for January 2014, we find that observed SSTs are required to establish a discernible link between a particular SST pattern and an atmospheric response such as a shift in the jetstream in the model. For extreme events occurring under strongly anomalous SST patterns associated with known low-frequency climate modes, however, forecast SSTs can provide sufficient guidance to determine the dynamic contribution to the event.

  13. Further Evaluation of a Satellite-based Real-time Global Flood Monitoring System

    NASA Astrophysics Data System (ADS)

    Wu, H.; Adler, R. F.; Tian, Y.; Hong, Y.; Policelli, F.

    2011-12-01

    A real-time global flood monitoring system (GFMS) driven by Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) rainfall was further developed with a relatively more physically based hydrological model. The performance in flood detection of this new version of the GFMS was evaluated against available flood event archives (Wu et al, 2011). This new GFMS is quantitatively evaluated in terms of flood event detection during the TRMM era (1998-2010) using a global retrospective simulation (3-hourly and 1/8 degree spatial resolution) with the TMPA 3B42V6 rainfall. Four methods were explored to define flood events from the model results, including three percentile-based statistic methods and a Log Pearson-III flood frequency curve method. The evaluation showed the GFMS detection performance improves with longer flood durations and larger affected areas. The impact of dams was detected in the validation statistics. The presence of dams tends to result in more false alarms and false alarm duration. The GFMS statistics for flood durations > 3 days and for areas without dams vary across the four identification methods, but center around a POD of ~ 0.70 and a FAR of ~ 0.65. When both flood events-based categorical verification metrics and flood duration metrics are considered, a method using the 95th percentile runoff depth plus two parameters related to variability and basin size (method 3) may be more suitable for application to our routine, real-time flood calculations. The evaluation showed the GFMS detection performance improves with longer flood durations and larger affected areas. The new GFMS (operationally available at http://trmm.gsfc.nasa.gov/) improved not only the flood detection performance, but also in the presentation of flood evolution (start, development and recession) in the drainage network. The new GFMS is further evaluated with more quantitative flood properties including flood peak timing, peak stage, peak volumes

  14. Local flood forecasting - From data collection to communicating forecasts

    NASA Astrophysics Data System (ADS)

    Smith, P. J.; Beven, K.

    2013-12-01

    An important aspect of improving resilience to flooding is the provision of timely warnings to flood sensitive locations thus allowing mitigating measures to be implemented. For specific locations such small communities (often in head water catchments) or river side factories the ability of traditional centralised forecasting systems to provide timely & accurate forecasts may be challenged. This is due in part to the finite resources of monitoring agencies which results in courser spatial scales of model and data collection then may be required for the generation of accurate forecasts. One strategy to improve flood resilience at such locations is to develop automated location specific forecasts. In this presentation we outline a methodology to achieve this based on the installation of adequate telemetered monitoring equipment; generally a water level sensor and a rain gauge. This allows the construction of a local flood forecasting model which may be coupled with available precipitation forecasts. The construction of the hydrological forecasting model consists of a guided process which incorporates both data assimilation and the representation of the forecast uncertainty based on post processing. The guided process requires the modeller to make only a few choices thus allowing rapid model deployment and revision. To be of use the derived forecasts must be made available in real time and updated frequently; maybe every five minutes. Traditional practices in issuing warnings dependent on expert interpretation must therefore be altered so that those at the site of interest become their own `experts'. To aid this appropriate presentation of both the predictions and past performance of the model, designed to encourage realistic interpretation of the forecasts and their uncertainties is considered. The resulting forecast chain is demonstrated on UK case studies.

  15. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, H. (Technical Monitor)

    2001-01-01

    In this report, we review the progress to date including results from data analyses and present a schedule of milestones for the remainder of the project. We discuss the processing of flood extent data and SSM/I brightness temperature data for the 1993 Midwest Flood. We present preliminary results from the derivation of open water fraction from brightness temperatures.

  16. Ensemble flood forecasting: A review

    NASA Astrophysics Data System (ADS)

    Cloke, H. L.; Pappenberger, F.

    2009-09-01

    SummaryOperational medium range flood forecasting systems are increasingly moving towards the adoption of ensembles of numerical weather predictions (NWP), known as ensemble prediction systems (EPS), to drive their predictions. We review the scientific drivers of this shift towards such 'ensemble flood forecasting' and discuss several of the questions surrounding best practice in using EPS in flood forecasting systems. We also review the literature evidence of the 'added value' of flood forecasts based on EPS and point to remaining key challenges in using EPS successfully.

  17. Ensemble flood forecasting: A review

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah; Pappenberger, Florian

    2010-05-01

    Operational medium range flood forecasting systems are increasingly moving towards the adoption of ensembles of numerical weather predictions (NWP), known as ensemble prediction systems (EPS), to drive their predictions. We review the scientific drivers of this shift towards such ‘ensemble flood forecasting' and discuss several of the questions surrounding best practice in using EPS in flood forecasting systems. We also review the literature evidence of the ‘added value' of flood forecasts based on EPS and point to remaining key challenges in using EPS successfully. A continuous review can be found on the website: http://www.floodrisk.net/.

  18. Flood Warning and Forecasting System in Slovakia

    NASA Astrophysics Data System (ADS)

    Leskova, Danica

    2016-04-01

    In 2015, it finished project Flood Warning and Forecasting System (POVAPSYS) as part of the flood protection in Slovakia till 2010. The aim was to build POVAPSYS integrated computerized flood forecasting and warning system. It took a qualitatively higher level of output meteorological and hydrological services in case of floods affecting large territorial units, as well as local flood events. It is further unfolding demands on performance and coordination of meteorological and hydrological services, troubleshooting observation, evaluation of data, fast communication, modeling and forecasting of meteorological and hydrological processes. Integration of all information entering and exiting to and from the project POVAPSYS provides Hydrological Flood Forecasting System (HYPOS). The system provides information on the current hydrometeorological situation and its evolution with the generation of alerts and notifications in case of exceeding predefined thresholds. HYPOS's functioning of the system requires flawless operability in critical situations while minimizing the loss of its key parts. HYPOS is a core part of the project POVAPSYS, it is a comprehensive software solutions based on a modular principle, providing data and processed information including alarms, in real time. In order to achieve full functionality of the system, in proposal, we have put emphasis on reliability, robustness, availability and security.

  19. Real-Time Influenza Forecasts during the 2012–2013 Season

    PubMed Central

    Shaman, Jeffrey; Karspeck, Alicia; Yang, Wan; Tamerius, James; Lipsitch, Marc

    2013-01-01

    Recently, we developed a seasonal influenza prediction system that uses an advanced data assimilation technique and real-time estimates of influenza incidence to optimize and initialize a population-based mathematical model of influenza transmission dynamics. This system was used to generate and evaluate retrospective forecasts of influenza peak timing in New York City. Here we present weekly forecasts of seasonal influenza developed and run in real time for 108 cites in the United States during the recent 2012–2013 season. Reliable ensemble forecasts of influenza outbreak peak timing with leads of up to 9 weeks were produced. Forecast accuracy increased as the season progressed, and the forecasts significantly outperformed alternate, analog prediction methods. By Week 52, prior to peak for the majority of cities, 63% of all ensemble forecasts were accurate. To our knowledge, this is the first time predictions of seasonal influenza have been made in real time and with demonstrated accuracy. PMID:24302074

  20. Real time probabilistic precipitation forecasts in the Milano urban area: comparison between a physics and pragmatic approach

    NASA Astrophysics Data System (ADS)

    Ceppi, Alessandro; Ravazzani, Giovanni; Lombardi, Gabriele; Amengual, Arnau; Homar, Victor; Romero, Romu; Mancini, Marco

    2016-04-01

    Precipitation forecasts from mesoscale numerical weather prediction (NWP) models often contain features that are not deterministically predictable. In particular, accurate forecasts of deep moist convection and extreme rainfall are arduous to be predicted in terms of amount, time and target over small hydrological basins due to uncertainties arising from the numerical weather prediction (NWP), physical parameterizations and high sensitivity to misrepresentation of the atmospheric state, therefore they require a probabilistic forecast approach. Here, we examine some hydro-meteorological episodes that affected the Milano urban watersheds using a flood forecasting system which comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models. The first approach is based on a hydrological ensemble prediction system (HEPS) designed to explicitly cope with uncertainties in the initial and lateral boundary conditions (IC/LBCs) and physical parameterizations of the NWP model. The second involves a pragmatic post-processing procedure by randomly shifting in space the precipitation field provided by the deterministic WRF model run in order to get a cluster of different simulations. Although the physics-based approach needs a high computational cost, it outperforms the pragmatic set of configurations, which, however, turns out to be an acceptable low-budget alternative for real time flood forecasts over small urban basins when a single deterministic run is available.

  1. New Techniques for Real-Time Stage Forecasting for Tributaries in the Nashville Area

    NASA Astrophysics Data System (ADS)

    Charley, W.; Moran, B.; LaRosa, J.

    2011-12-01

    On Saturday, May 1, 2010, heavy rain began falling in the Cumberland River Valley, Tennessee, and continued through the following day. 13.5 inches was measured at Nashville, an unprecedented amount that doubled the previous 2-day record, and exceeded the May monthly total record of 11 inches. Elsewhere in the valley, amounts of over 19 inches were measured. This intensity of rainfall quickly overwhelmed tributaries to the Cumberland in the Nashville area, causing wide-spread and serious flooding. Tractor-trailers and houses were seen floating down Mill Creek, a primary tributary in the south eastern area of Nashville. Twenty-six people died and over 2 billion dollars in damage occurred as a result of the flood. Since that time, several other significant rainfall events have occurred in the area. As a result of the flood, agencies in the Nashville area want better capabilities to forecast stages for the local tributaries. Better stage forecasting will help local agencies close roads, evacuate homes and businesses and similar actions. An interagency group, consisting of Metro Nashville Water Services and Office of Emergency Management, the National Weather Service, the US Geological Survey and the US Army Corps of Engineers, has been established to seek ways to better forecast short-term events in the region. It should be noted that the National Weather Service has the official responsibility of forecasting stages. This paper examines techniques and algorithms that are being developed to meet this need and the practical aspects of integrating them into a usable product that can quickly and accurately forecast stages in the short-time frame of the tributaries. This includes not only the forecasting procedure, but also the procedure to acquire the latest precipitation and stage data to make the forecasts. These procedures are integrated into the program HEC-RTS, the US Army Corps of Engineers Real-Time Simulation program. HEC-RTS is a Java-based integration tool that

  2. Real time forecasting of near-future evolution.

    PubMed

    Gerrish, Philip J; Sniegowski, Paul D

    2012-09-07

    A metaphor for adaptation that informs much evolutionary thinking today is that of mountain climbing, where horizontal displacement represents change in genotype, and vertical displacement represents change in fitness. If it were known a priori what the 'fitness landscape' looked like, that is, how the myriad possible genotypes mapped onto fitness, then the possible paths up the fitness mountain could each be assigned a probability, thus providing a dynamical theory with long-term predictive power. Such detailed genotype-fitness data, however, are rarely available and are subject to change with each change in the organism or in the environment. Here, we take a very different approach that depends only on fitness or phenotype-fitness data obtained in real time and requires no a priori information about the fitness landscape. Our general statistical model of adaptive evolution builds on classical theory and gives reasonable predictions of fitness and phenotype evolution many generations into the future.

  3. Real Time Data in Synoptic Meteolorolgy and Weather Forecasting Education

    NASA Astrophysics Data System (ADS)

    Campetella, C. M.; Gassmann, M. I.

    2006-05-01

    The Department of Atmospheric and Oceanographic Sciences (DAOS) of the University of Buenos Aires is the university component of the World Meteorological Organization (WMO) Regional Meteorological Training Center (RMTC) in Region III. In January, 2002 our RMTC was invited to take part in the MeteoForum pilot project that was developed jointly by the COMET and Unidata programs of the University Corporation for Atmospheric Research (UCAR). MeteoForum comprises an international network of WMO Region III and IV RMTCs working collaboratively with universities to enhance their roles of training and education through information technologies and multilingual collections of resources. The DAOS undertook to improve its infrastructure to be able to access hydro-meteorological information in real-time as part of the Unidata community. In 2003, the DAOS received some Unidata equipment grant funds to update its computer infrastructure, improving communications with an operationally quicker system. Departmental networking was upgraded to 100 Mb/s capability while, at the same time, new computation resources were purchased that increased the number of computers available for student use from 5 to 8. This upgrade has also resulted in more and better computers being available for student and faculty research. A video projection system, purchased with funds provided by the COMET program as part of Meteoforum, is used in classrooms with Internet connections for a variety of educational activities. The upgraded computing and networking facilities have contributed to the development of educational modules using real-time hydro-meteorological and other digital data for the classroom. With the aid of Unidata personal, the Unidata Local Data Management (LDM) software was installed and configured to request and process real-time feeds of global observational data; global numerical model output from the US National Centers for Environmental Prediction (NCEP) models; and all imager channels

  4. Near Real Time Data for Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2014-12-01

    Space weather operations presents unique challenges for data systems and providers. Space weather events evolve more quickly than terrestrial weather events. While terrestrial weather occurs on timescales of minutes to hours, space weather storms evolve on timescales of seconds to minutes. For example, the degradation of the High Frequency Radio communications between the ground and commercial airlines is nearly instantaneous when a solar flare occurs. Thus the customer is observing impacts at the same time that the operational forecast center is seeing the event unfold. The diversity and spatial scale of the space weather system is such that no single observation can capture the salient features. The vast space that encompasses space weather and the scarcity of observations further exacerbates the situation and make each observation even more valuable. The physics of interplanetary space, through which many major storms propagate, is very different from the physics of the ionosphere where most of the impacts are felt. And while some observations can be made from ground-based observatories, many of the most critical data comes from satellites, often in unique orbits far from Earth. In this presentation, I will describe some of the more important sources and types of data that feed into the operational alerts, watches, and warnings of space weather storms. Included will be a discussion of some of the new space weather forecast models and the data challenges that they bring forward.

  5. Tracking and forecasting ecosystem interactions in real time

    PubMed Central

    Deyle, Ethan R.; May, Robert M.; Munch, Stephan B.; Sugihara, George

    2016-01-01

    Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world. PMID:26763700

  6. Risk Analysis and Management for Real-time Flood Control Operation

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zhong, P. A.; Zhang, Y.; Yeh, W. W. G.

    2016-12-01

    We propose a risk analysis model for the real-time flood control operation of a complex flood control system and a multiobjective risk management model for the real-time flood control optimal operation of a reservoir. The risk analysis model is established by decomposing the original system into three basic subsystems. Risk analysis of each basic subsystem is carried-out independently by a submodel. The results from all subsystems are integrated by the Copula theory to determine the overall risk of the entire flood control system for real-time operation. The multiobjective risk management model determines the optimal operation schedules that satisfy the given flood control objectives and minimizes the overall risks at the same time. The two objectives considered in this study are: 1) to minimize the risk of the reservoir and its upstream area and 2) to minimize the risk of the downstream city protection. The Non-dominated Sorting Genetic Algorithm-II is used to solve the multiobjective model and generate the Pareto optimal front. Then a comprehensive filter method is proposed to select several representative non-dominated solutions from the Pareto optimal front for the decision makers to make flood control management. The proposed models are applied to the flood control system in the middle reaches of the Huaihe river basin in China. The results show that the proposed method can provide a practical way to estimate the risks in real-time flood control operation of a complex flood control system and provide a new way to conduct the real-time flood control optimal operation and risk management of a reservoir.

  7. Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model.

    PubMed

    Funk, Sebastian; Camacho, Anton; Kucharski, Adam J; Eggo, Rosalind M; Edmunds, W John

    2016-12-16

    Real-time forecasts of infectious diseases can help public health planning, especially during outbreaks. If forecasts are generated from mechanistic models, they can be further used to target resources or to compare the impact of possible interventions. However, paremeterising such models is often difficult in real time, when information on behavioural changes, interventions and routes of transmission are not readily available. Here, we present a semi-mechanistic model of infectious disease dynamics that was used in real time during the 2013-2016 West African Ebola epidemic, and show fits to a Ebola Forecasting Challenge conducted in late 2015 with simulated data mimicking the true epidemic. We assess the performance of the model in different situations and identify strengths and shortcomings of our approach. Models such as the one presented here which combine the power of mechanistic models with the flexibility to include uncertainty about the precise outbreak dynamics may be an important tool in combating future outbreaks.

  8. Case studies of extended model-based flood forecasting: prediction of dike strength and flood impacts

    NASA Astrophysics Data System (ADS)

    Stuparu, Dana; Bachmann, Daniel; Bogaard, Tom; Twigt, Daniel; Verkade, Jan; de Bruijn, Karin; de Leeuw, Annemargreet

    2017-04-01

    Flood forecasts, warning and emergency response are important components in flood risk management. Most flood forecasting systems use models to translate weather predictions to forecasted discharges or water levels. However, this information is often not sufficient for real time decisions. A sound understanding of the reliability of embankments and flood dynamics is needed to react timely and reduce the negative effects of the flood. Where are the weak points in the dike system? When, how much and where the water will flow? When and where is the greatest impact expected? Model-based flood impact forecasting tries to answer these questions by adding new dimensions to the existing forecasting systems by providing forecasted information about: (a) the dike strength during the event (reliability), (b) the flood extent in case of an overflow or a dike failure (flood spread) and (c) the assets at risk (impacts). This work presents three study-cases in which such a set-up is applied. Special features are highlighted. Forecasting of dike strength. The first study-case focusses on the forecast of dike strength in the Netherlands for the river Rhine branches Waal, Nederrijn and IJssel. A so-called reliability transformation is used to translate the predicted water levels at selected dike sections into failure probabilities during a flood event. The reliability of a dike section is defined by fragility curves - a summary of the dike strength conditional to the water level. The reliability information enhances the emergency management and inspections of embankments. Ensemble forecasting. The second study-case shows the setup of a flood impact forecasting system in Dumfries, Scotland. The existing forecasting system is extended with a 2D flood spreading model in combination with the Delft-FIAT impact model. Ensemble forecasts are used to make use of the uncertainty in the precipitation forecasts, which is useful to quantify the certainty of a forecasted flood event. From global

  9. Value of Probabilistic Weather Forecasts: Assessment by Real-Time Optimization of Irrigation Scheduling

    SciTech Connect

    Cai, Ximing; Hejazi, Mohamad I.; Wang, Dingbao

    2011-09-29

    This paper presents a modeling framework for real-time decision support for irrigation scheduling using the National Oceanic and Atmospheric Administration's (NOAA's) probabilistic rainfall forecasts. The forecasts and their probability distributions are incorporated into a simulation-optimization modeling framework. In this study, modeling irrigation is determined by a stochastic optimization program based on the simulated soil moisture and crop water-stress status and the forecasted rainfall for the next 1-7 days. The modeling framework is applied to irrigated corn in Mason County, Illinois. It is found that there is ample potential to improve current farmers practices by simply using the proposed simulation-optimization framework, which uses the present soil moisture and crop evapotranspiration information even without any forecasts. It is found that the values of the forecasts vary across dry, normal, and wet years. More significant economic gains are found in normal and wet years than in dry years under the various forecast horizons. To mitigate drought effect on crop yield through irrigation, medium- or long-term climate predictions likely play a more important role than short-term forecasts. NOAA's imperfect 1-week forecast is still valuable in terms of both profit gain and water saving. Compared with the no-rain forecast case, the short-term imperfect forecasts could lead to additional 2.4-8.5% gain in profit and 11.0-26.9% water saving. However, the performance of the imperfect forecast is only slightly better than the ensemble weather forecast based on historical data and slightly inferior to the perfect forecast. It seems that the 1-week forecast horizon is too limited to evaluate the role of the various forecast scenarios for irrigation scheduling, which is actually a seasonal decision issue. For irrigation scheduling, both the forecast quality and the length of forecast time horizon matter. Thus, longer forecasts might be necessary to evaluate the role

  10. Earthquake and failure forecasting in real-time: A Forecasting Model Testing Centre

    NASA Astrophysics Data System (ADS)

    Filgueira, Rosa; Atkinson, Malcolm; Bell, Andrew; Main, Ian; Boon, Steven; Meredith, Philip

    2013-04-01

    Across Europe there are a large number of rock deformation laboratories, each of which runs many experiments. Similarly there are a large number of theoretical rock physicists who develop constitutive and computational models both for rock deformation and changes in geophysical properties. Here we consider how to open up opportunities for sharing experimental data in a way that is integrated with multiple hypothesis testing. We present a prototype for a new forecasting model testing centre based on e-infrastructures for capturing and sharing data and models to accelerate the Rock Physicist (RP) research. This proposal is triggered by our work on data assimilation in the NERC EFFORT (Earthquake and Failure Forecasting in Real Time) project, using data provided by the NERC CREEP 2 experimental project as a test case. EFFORT is a multi-disciplinary collaboration between Geoscientists, Rock Physicists and Computer Scientist. Brittle failure of the crust is likely to play a key role in controlling the timing of a range of geophysical hazards, such as volcanic eruptions, yet the predictability of brittle failure is unknown. Our aim is to provide a facility for developing and testing models to forecast brittle failure in experimental and natural data. Model testing is performed in real-time, verifiably prospective mode, in order to avoid selection biases that are possible in retrospective analyses. The project will ultimately quantify the predictability of brittle failure, and how this predictability scales from simple, controlled laboratory conditions to the complex, uncontrolled real world. Experimental data are collected from controlled laboratory experiments which includes data from the UCL Laboratory and from Creep2 project which will undertake experiments in a deep-sea laboratory. We illustrate the properties of the prototype testing centre by streaming and analysing realistically noisy synthetic data, as an aid to generating and improving testing methodologies in

  11. Portals for Real-Time Earthquake Data and Forecasting: Challenge and Promise (Invited)

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Feltstykket, R.; Donnellan, A.; Glasscoe, M. T.

    2013-12-01

    Earthquake forecasts have been computed by a variety of countries world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. However, recent events clearly demonstrate that mitigating personal risk is becoming the responsibility of individual members of the public. Open access to a variety of web-based forecasts, tools, utilities and information is therefore required. Portals for data and forecasts present particular challenges, and require the development of both apps and the client/server architecture to deliver the basic information in real time. The basic forecast model we consider is the Natural Time Weibull (NTW) method (JBR et al., Phys. Rev. E, 86, 021106, 2012). This model uses small earthquakes (';seismicity-based models') to forecast the occurrence of large earthquakes, via data-mining algorithms combined with the ANSS earthquake catalog. This method computes large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Localizing these forecasts in space so that global forecasts can be computed in real time presents special algorithmic challenges, which we describe in this talk. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we compute real-time global forecasts at a grid scale of 0.1o. We analyze and monitor the performance of these models using the standard tests, which include the Reliability/Attributes and Receiver Operating Characteristic (ROC) tests. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges of serving up these datasets over the web on web-based platforms such as those at www.quakesim.org , www.e-decider.org , and www.openhazards.com.

  12. Sub-seasonal Predictability of Heavy Precipitation Events: Implication for Real-time Flood Management in Iran

    NASA Astrophysics Data System (ADS)

    Najafi, H.; Shahbazi, A.; Zohrabi, N.; Robertson, A. W.; Mofidi, A.; Massah Bavani, A. R.

    2016-12-01

    Each year, a number of high impact weather events occur worldwide. Since any level of predictability at sub-seasonal to seasonal timescale is highly beneficial to society, international efforts is now on progress to promote reliable Ensemble Prediction Systems for monthly forecasts within the WWRP/WCRP initiative (S2S) project and North American Multi Model Ensemble (NMME). For water resources managers in the face of extreme events, not only can reliable forecasts of high impact weather events prevent catastrophic losses caused by floods but also contribute to benefits gained from hydropower generation and water markets. The aim of this paper is to analyze the predictability of recent severe weather events over Iran. Two recent heavy precipitations are considered as an illustration to examine whether S2S forecasts can be used for developing flood alert systems especially where large cascade of dams are in operation. Both events have caused major damages to cities and infrastructures. The first severe precipitation was is in the early November 2015 when heavy precipitation (more than 50 mm) occurred in 2 days. More recently, up to 300 mm of precipitation is observed within less than a week in April 2016 causing a consequent flash flood. Over some stations, the observed precipitation was even more than the total annual mean precipitation. To analyze the predictive capability, ensemble forecasts from several operational centers including (European Centre for Medium-Range Weather Forecasts (ECMWF) system, Climate Forecast System Version 2 (CFSv2) and Chinese Meteorological Center (CMA) are evaluated. It has been observed that significant changes in precipitation anomalies were likely to be predicted days in advance. The next step will be to conduct thorough analysis based on comparing multi-model outputs over the full hindcast dataset developing real-time high impact weather prediction systems.

  13. Real-time forecasting of the April 11, 2012 Sumatra tsunami

    NASA Astrophysics Data System (ADS)

    Wang, Dailin; Becker, Nathan C.; Walsh, David; Fryer, Gerard J.; Weinstein, Stuart A.; McCreery, Charles S.; Sardiña, Victor; Hsu, Vindell; Hirshorn, Barry F.; Hayes, Gavin P.; Duputel, Zacharie; Rivera, Luis; Kanamori, Hiroo; Koyanagi, Kanoa K.; Shiro, Brian

    2012-10-01

    The April 11, 2012, magnitude 8.6 earthquake off the northern coast of Sumatra generated a tsunami that was recorded at sea-level stations as far as 4800 km from the epicenter and at four ocean bottom pressure sensors (DARTs) in the Indian Ocean. The governments of India, Indonesia, Sri Lanka, Thailand, and Maldives issued tsunami warnings for their coastlines. The United States' Pacific Tsunami Warning Center (PTWC) issued an Indian Ocean-wide Tsunami Watch Bulletin in its role as an Interim Service Provider for the region. Using an experimental real-time tsunami forecast model (RIFT), PTWC produced a series of tsunami forecasts during the event that were based on rapidly derived earthquake parameters, including initial location and Mwp magnitude estimates and the W-phase centroid moment tensor solutions (W-phase CMTs) obtained at PTWC and at the U. S. Geological Survey (USGS). We discuss the real-time forecast methodology and how successive, real-time tsunami forecasts using the latest W-phase CMT solutions improved the accuracy of the forecast.

  14. Real-time forecasting of the April 11, 2012 Sumatra tsunami

    USGS Publications Warehouse

    Wang, Dailin; Becker, Nathan C.; Walsh, David; Fryer, Gerard J.; Weinstein, Stuart A.; McCreery, Charles S.; ,

    2012-01-01

    The April 11, 2012, magnitude 8.6 earthquake off the northern coast of Sumatra generated a tsunami that was recorded at sea-level stations as far as 4800 km from the epicenter and at four ocean bottom pressure sensors (DARTs) in the Indian Ocean. The governments of India, Indonesia, Sri Lanka, Thailand, and Maldives issued tsunami warnings for their coastlines. The United States' Pacific Tsunami Warning Center (PTWC) issued an Indian Ocean-wide Tsunami Watch Bulletin in its role as an Interim Service Provider for the region. Using an experimental real-time tsunami forecast model (RIFT), PTWC produced a series of tsunami forecasts during the event that were based on rapidly derived earthquake parameters, including initial location and Mwp magnitude estimates and the W-phase centroid moment tensor solutions (W-phase CMTs) obtained at PTWC and at the U. S. Geological Survey (USGS). We discuss the real-time forecast methodology and how successive, real-time tsunami forecasts using the latest W-phase CMT solutions improved the accuracy of the forecast.

  15. Real time tests for long lead-time forecasting of the magnetic field vectors within CMEs

    NASA Astrophysics Data System (ADS)

    Savani, Neel; Vourlidas, Angelos; Pulkkinen, Antti; Wold, Alexandra M.

    2016-07-01

    The direction of magnetic vectors within coronal mass ejections, CMEs, has significant importance for forecasting terrestrial behavior. We have developed a technique to estimate the time-varying magnetic field at Earth for periods within CMEs (Savani et al 2015, 2016). This technique reduces the complex dynamics in order to create a reliable prediction methodology to operate everyday under robust conditions. In this presentation, we focus on the results and skill scores of the forecasting technique calculated from 40 historical CME events from the pre-STEREO mission. Since these results provided substantial improvements in the long lead-time Kp index forecasts, we have now begun testing under real-time conditions. We will also show the preliminary results of our methodology under these real-time conditions within the CCMC hosted at NASA Goddard Space Flight Center.

  16. Evaluation of multiple hydraulic models in generating design/near-real time flood inundation extents under various geophysical settings

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Rajib, M. A.; Jafarzadegan, K.; Merwade, V.

    2015-12-01

    Application of land surface/hydrologic models within an operational flood forecasting system can provide probable time of occurrence and magnitude of streamflow at specific locations along a stream. Creating time-varying spatial extent of flood inundation and depth requires the use of a hydraulic or hydrodynamic model. Models differ in representing river geometry and surface roughness which can lead to different output depending on the particular model being used. The result from a single hydraulic model provides just one possible realization of the flood extent without capturing the uncertainty associated with the input or the model parameters. The objective of this study is to compare multiple hydraulic models toward generating ensemble flood inundation extents. Specifically, relative performances of four hydraulic models, including AutoRoute, HEC-RAS, HEC-RAS 2D, and LISFLOOD are evaluated under different geophysical conditions in several locations across the United States. By using streamflow output from the same hydrologic model (SWAT in this case), hydraulic simulations are conducted for three configurations: (i) hindcasting mode by using past observed weather data at daily time scale in which models are being calibrated against USGS streamflow observations, (ii) validation mode using near real-time weather data at sub-daily time scale, and (iii) design mode with extreme streamflow data having specific return periods. Model generated inundation maps for observed flood events both from hindcasting and validation modes are compared with remotely sensed images, whereas the design mode outcomes are compared with corresponding FEMA generated flood hazard maps. The comparisons presented here will give insights on probable model-specific nature of biases and their relative advantages/disadvantages as components of an operational flood forecasting system.

  17. Use of Real-time Satellite Rainfall Information in a Global Flood Estimation System

    NASA Astrophysics Data System (ADS)

    Adler, R. F.; Wu, H.; Tian, Y.

    2012-12-01

    The TRMM Multi-satellite Precipitation Analysis (TMPA) is a merger of precipitation information from mainly passive microwave sensors on polar orbiting satellites. This information is cross-calibrated in terms of rainrate using data from the Tropical Rainfall Measuring Mission (TRMM) flying in an inclined orbit at 35°. A research quality analysis is produced a few months after observation time, but a real-time product is also generated within a few hours of observation. This real-time, or RT, product can be used to quickly diagnose heavy rain events over most of the globe. This rainfall information is also used as the key input into an experimental system, the Global Flood Monitoring System (GFMS), which produces real-time, quasi-global flood estimates. Images and output data are available for use by the community (http://oas.gsfc.nasa.gov/globalflood/). The method uses the 3-hr resolution composite rainfall analyses as input into a hydrological model that calculates water depth and streamflow at each grid (at 0.125 ° latitude-longitude) over the tropics and mid-latitudes. Flood detection and intensity estimates are based on water depth thresholds calculated from a 13-year retrospective run using the satellite rainfall and model. Examination of individual cases in real-time or retrospectively often indicates skill in detecting the occurrence of a flood event and a reasonable evolution of water depth (at the scale of the calculation) and downstream movement of high water levels. A recently published study evaluating calculated flood occurrence from the GFMS against a global flood event database is reviewed. The statistics indicate that flood detection results improve with longer duration (> 3 days) floods and that the statistics are impacted by the presence of large dams, which are not accounted for in the model calculations. Overall, for longer floods in basins without large dams, the Probability of Detection (POD) of floods is ~ 0.7, while the False Alarm Rate

  18. Real-Time Assessment of the 16 September 2015 Chile Tsunami and Implications for Near-Field Forecast

    NASA Astrophysics Data System (ADS)

    Tang, Liujuan; Titov, Vasily V.; Moore, Christopher; Wei, Yong

    2016-02-01

    The magnitude 8.3 earthquake in central Chile on 16 September 2015 and the resulting tsunami severely affected the region, with 15 deaths ( Onemi in Monitoreo por sismo de mayor intensidad. (In Spanish) [Available at: http://www.onemi.cl/alerta/se-declara-alerta-roja-por-sismo-de-mayor-intensidad-y-alarma-de-tsunami/], 2015), over one million evacuated, and flooding in nearby coastal cities. We present our real-time assessment of the 2015 Chile tsunami using the Short-term Inundation Forecasting for Tsunamis system, and post-event analyses with local community models in Chile. We evaluate three real-time tsunami sources, which were inverted at the time that the first quarter-, half-, and full-wave passed the first tsunameter (DART 32402, located approximately 580 km north-northwest of the epicenter), respectively. Measurement comparisons from 26 deep-ocean tsunameters and 38 coastal tide stations show that good model accuracies are achieved for all three sources, particularly for the local sites that recorded the most destructive waves. The study highlights the forecast speed, time and accuracy dependence, and their implications for the local forecast capability. Our analyses suggest that the tsunami's main origination area is about 100-200 km long and 100 km wide, to the north of the earthquake epicenter along the trench and the total estimated tsunami wave energy is 7.9 × 1013 J (with 13 % uncertainty). The study provides important guidelines for the earliest reliable estimate of tsunami energy and local forecasts. They can be obtained with the first quarter-wave of tsunameter recording. These results are also confirmed by a forecast analysis of the 2011 Japan tsunami. Furthermore, we find that the first half-wave tsunameter data are sufficient to accurately forecast the 2015 Chile tsunami, due to the specific orientation between the nearest tsunameter and the source. The study also suggests expanding the operational use of the local community models in real

  19. Flood forecasting in Niger-Benue basin using satellite and quantitative precipitation forecast data

    NASA Astrophysics Data System (ADS)

    Haile, Alemseged Tamiru; Tefera, Fekadu Teshome; Rientjes, Tom

    2016-10-01

    Availability of reliable, timely and accurate rainfall data is constraining the establishment of flood forecasting and early warning systems in many parts of Africa. We evaluated the potential of satellite and weather forecast data as input to a parsimonious flood forecasting model to provide information for flood early warning in the central part of Nigeria. We calibrated the HEC-HMS rainfall-runoff model using rainfall data from post real time Tropical Rainfall Measuring Mission (TRMM) Multi satellite Precipitation Analysis product (TMPA). Real time TMPA satellite rainfall estimates and European Centre for Medium-Range Weather Forecasts (ECMWF) rainfall products were tested for flood forecasting. The implication of removing the systematic errors of the satellite rainfall estimates (SREs) was explored. Performance of the rainfall-runoff model was assessed using visual inspection of simulated and observed hydrographs and a set of performance indicators. The forecast skill was assessed for 1-6 days lead time using categorical verification statistics such as Probability Of Detection (POD), Frequency Of Hit (FOH) and Frequency Of Miss (FOM). The model performance satisfactorily reproduced the pattern and volume of the observed stream flow hydrograph of Benue River. Overall, our results show that SREs and rainfall forecasts from weather models have great potential to serve as model inputs for real-time flood forecasting in data scarce areas. For these data to receive application in African transboundary basins, we suggest (i) removing their systematic error to further improve flood forecast skill; (ii) improving rainfall forecasts; and (iii) improving data sharing between riparian countries.

  20. Satellites, tweets, forecasts: the future of flood disaster management?

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Floods have devastating effects on lives and livelihoods around the world. Structural flood defence measures such as dikes and dams can help protect people. However, it is the emerging science and technologies for flood disaster management and preparedness, such as increasingly accurate flood forecasting systems, high-resolution satellite monitoring, rapid risk mapping, and the unique strength of social media information and crowdsourcing, that are most promising for reducing the impacts of flooding. Here, we describe an innovative framework which integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. The integrated framework enables improved flood impact forecast, thanks to the real-time integration of forecasting and monitoring components, and increases the timeliness and efficiency of satellite mapping, with the aim of capturing flood peaks and following the evolution of flooding processes. Thanks to the proposed framework, emergency responders will have access to a broad range of timely and accurate information for more effective and robust planning, decision-making, and resource allocation.

  1. Forecaster priorities for improving probabilistic flood forecasts

    NASA Astrophysics Data System (ADS)

    Wetterhall, Fredrik; Pappenberger, Florian; Alfieri, Lorenzo; Cloke, Hannah; Thielen, Jutta

    2014-05-01

    Hydrological ensemble prediction systems (HEPS) have in recent years been increasingly used for the operational forecasting of floods by European hydrometeorological agencies. The most obvious advantage of HEPS is that more of the uncertainty in the modelling system can be assessed. In addition, ensemble prediction systems generally have better skill than deterministic systems both in the terms of the mean forecast performance and the potential forecasting of extreme events. Research efforts have so far mostly been devoted to the improvement of the physical and technical aspects of the model systems, such as increased resolution in time and space and better description of physical processes. Developments like these are certainly needed; however, in this paper we argue that there are other areas of HEPS that need urgent attention. This was also the result from a group exercise and a survey conducted to operational forecasters within the European Flood Awareness System (EFAS) to identify the top priorities of improvement regarding their own system. They turned out to span a range of areas, the most popular being to include verification of an assessment of past forecast performance, a multi-model approach for hydrological modelling, to increase the forecast skill on the medium range (>3 days) and more focus on education and training on the interpretation of forecasts. In light of limited resources, we suggest a simple model to classify the identified priorities in terms of their cost and complexity to decide in which order to tackle them. This model is then used to create an action plan of short-, medium- and long-term research priorities with the ultimate goal of an optimal improvement of EFAS in particular and to spur the development of operational HEPS in general.

  2. Real-time forecasting of sample failure in laboratory rock deformation experiments

    NASA Astrophysics Data System (ADS)

    Bell, Andrew; Main, Ian; Atkinson, Malcolm; Filgueira, Rosa; Meredith, Philip; Boon, Steve

    2013-04-01

    The ability to accurately forecast catastrophic failure in rocks is likely to be a key component in reliable eruption forecasting models. The processes controlling the approach to failure produce highly non-linear behaviour, with a large stochastic component due to material heterogeneity. In the laboratory, mechanical, hydraulic, and rock physical properties are known to change in systematic ways prior to catastrophic failure. The effectiveness of such signals in real-time forecasting has never been tested before in a controlled laboratory setting; previous work has often been qualitative in nature, and subject to retrospective selection bias. Here we describe a collaborative experiment in real-time data assimilation to explore the limits of predictability of rock failure in a best-case scenario. Data are streamed from a remote rock deformation laboratory to a user-friendly portal, where several proposed physical/stochastic models can be analyzed in parallel in real time, using a variety of statistical fitting techniques, including least squares regression, maximum likelihood fitting, Markov-chain Monte-Carlo and Bayesian analysis. The results are posted and regularly updated on the web site prior to catastrophic failure, to ensure a true and verifiable prospective test of forecasting power.

  3. Risk Analysis of Multipurpose Reservoir Real-time Operation based on Probabilistic Hydrologic Forecasting

    NASA Astrophysics Data System (ADS)

    Liu, P.

    2011-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based probabilistic hydrologic forecasting, which outputs a lot of inflow scenarios or traces, does well in depicting the inflow not only the marginal distribution but also their corrections. This motivates us to analyze the reservoir operating risk by inputting probabilistic hydrologic forecasting into reservoir real-time operation. The proposed procedure involves: (1) based upon the Bayesian inference, two alternative techniques, the generalized likelihood uncertainty estimation (GLUE) and Markov chain Monte Carlo (MCMC), are implemented for producing probabilistic hydrologic forecasting, respectively, (2) the reservoir risk is defined as the ratio of the number of traces that excessive (or below) the critical value to the total number of traces, and (3) a multipurpose reservoir operation model is build to produce Pareto solutions for trade-offs between risks and profits with the inputted probabilistic hydrologic forecasting. With a case study of the China's Three Gorges Reservoir, it is found that the reservoir real-time operation risks can be estimated and minimized based on the proposed methods, and this is great potential benefit in decision and choosing the most realistic one.

  4. Real-Time CME Forecasting Using HMI Active-Region Magnetograms and Flare History

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser F.; Khazanov, Igor

    2011-01-01

    We have recently developed a method of predicting an active region s probability of producing a CME, an X-class Flare, an M-class Flare, or a Solar Energetic Particle Event from a free-energy proxy measured from SOHO/MDI line-of-sight magnetograms. This year we have added three major improvements to our forecast tool: 1) Transition from MDI magnetogram to SDO/HMI magnetogram allowing us near-real-time forecasts, 2) Automation of acquisition and measurement of HMI magnetograms giving us near-real-time forecasts (no older than 2 hours), and 3) Determination of how to improve forecast by using the active region s previous flare history in combination with its free-energy proxy. HMI was turned on in May 2010 and MDI was turned off in April 2011. Using the overlap period, we have calibrated HMI to yield what MDI would measure. This is important since the value of the free-energy proxy used for our forecast is resolution dependent, and the forecasts are made from results of a 1996-2004 database of MDI observations. With near-real-time magnetograms from HMI, near-real-time forecasts are now possible. We have augmented the code so that it continually acquires and measures new magnetograms as they become available online, and updates the whole-sun forecast from the coming day. The next planned improvement is to use an active region s previous flare history, in conjunction with its free-energy proxy, to forecast the active region s event rate. It has long been known that active regions that have produced flares in the past are likely to produce flares in the future, and that active regions that are nonpotential (have large free-energy) are more likely to produce flares in the future. This year we have determined that persistence of flaring is not just a reflection of an active region s free energy. In other words, after controlling for free energy, we have found that active regions that have flared recently are more likely to flare in the future.

  5. The FASTER Approach: A New Tool for Calculating Real-Time Tsunami Flood Hazards

    NASA Astrophysics Data System (ADS)

    Wilson, R. I.; Cross, A.; Johnson, L.; Miller, K.; Nicolini, T.; Whitmore, P.

    2014-12-01

    In the aftermath of the 2010 Chile and 2011 Japan tsunamis that struck the California coastline, emergency managers requested that the state tsunami program provide more detailed information about the flood potential of distant-source tsunamis well ahead of their arrival time. The main issue is that existing tsunami evacuation plans call for evacuation of the predetermined "worst-case" tsunami evacuation zone (typically at a 30- to 50-foot elevation) during any "Warning" level event; the alternative is to not call an evacuation at all. A solution to provide more detailed information for secondary evacuation zones has been the development of tsunami evacuation "playbooks" to plan for tsunami scenarios of various sizes and source locations. To determine a recommended level of evacuation during a distant-source tsunami, an analytical tool has been developed called the "FASTER" approach, an acronym for factors that influence the tsunami flood hazard for a community: Forecast Amplitude, Storm, Tides, Error in forecast, and the Run-up potential. Within the first couple hours after a tsunami is generated, the National Tsunami Warning Center provides tsunami forecast amplitudes and arrival times for approximately 60 coastal locations in California. At the same time, the regional NOAA Weather Forecast Offices in the state calculate the forecasted coastal storm and tidal conditions that will influence tsunami flooding. Providing added conservatism in calculating tsunami flood potential, we include an error factor of 30% for the forecast amplitude, which is based on observed forecast errors during recent events, and a site specific run-up factor which is calculated from the existing state tsunami modeling database. The factors are added together into a cumulative FASTER flood potential value for the first five hours of tsunami activity and used to select the appropriate tsunami phase evacuation "playbook" which is provided to each coastal community shortly after the forecast

  6. Global system for hydrological monitoring and forecasting in real time at high resolution

    NASA Astrophysics Data System (ADS)

    Ortiz, Enrique; De Michele, Carlo; Todini, Ezio; Cifres, Enrique

    2016-04-01

    This project presented at the EGU 2016 born of solidarity and the need to dignify the most disadvantaged people living in the poorest countries (Africa, South America and Asia, which are continually exposed to changes in the hydrologic cycle suffering events of large floods and/or long periods of droughts. It is also a special year this 2016, Year of Mercy, in which we must engage with the most disadvantaged of our Planet (Gaia) making available to them what we do professionally and scientifically. The project called "Global system for hydrological monitoring and forecasting in real time at high resolution" is Non-Profit and aims to provide at global high resolution (1km2) hydrological monitoring and forecasting in real time and continuously coupling Weather Forecast of Global Circulation Models, such us GFS-0.25° (Deterministic and Ensembles Run) forcing a physically based distributed hydrological model computationally efficient, such as the latest version extended of TOPKAPI model, named TOPKAPI-eXtended. Finally using the MCP approach for the proper use of ensembles for Predictive Uncertainty assessment essentially based on a multiple regression in the Normal space, can be easily extended to use ensembles to represent the local (in time) smaller or larger conditional predictive uncertainty, as a function of the ensemble spread. In this way, each prediction in time accounts for both the predictive uncertainty of the ensemble mean and that of the ensemble spread. To perform a continuous hydrological modeling with TOPKAPI-X model and have hot start of hydrological status of watersheds, the system assimilated products of rainfall and temperature derived from remote sensing, such as product 3B42RT of TRMM NASA and others.The system will be integrated into a Decision Support System (DSS) platform, based on geographical data. The DSS is a web application (For Pc, Tablet/Mobile phone): It does not need installation (all you need is a web browser and an internet

  7. Global Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    NASA Astrophysics Data System (ADS)

    Smith, M.; Slayback, D. A.; Policelli, F.; Brakenridge, G. R.; Tokay, M.

    2012-12-01

    Flooding is among the most destructive, frequent, and costly natural disasters faced by modern society, with several major events occurring each year. In the past few years, major floods have devastated parts of China, Thailand, Pakistan, Australia, and the Philippines, among others. The toll of these events, in financial costs, displacement of individuals, and deaths, is substantial and continues to rise as climate change generates more extreme weather events. When these events do occur, the disaster management community requires frequently updated and easily accessible information to better understand the extent of flooding and better coordinate response efforts. With funding from NASA's Applied Sciences program, we have developed, and are now operating, a near real-time global flood mapping system to help provide critical flood extent information within 24-48 hours after flooding events. The system applies a water detection algorithm to MODIS imagery received from the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard. The LANCE system typically processes imagery in less than 3 hours after satellite overpass, and our flood mapping system can output flood products within ½ hour of acquiring the LANCE products. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows an initial assessment of flooding extent by late afternoon, every day, and more robust assessments after accumulating imagery over a longer period; the MODIS sensors are optical, so cloud cover remains an issue, which is partly overcome by using multiple looks over one or more days. Other issues include the relatively coarse scale of the MODIS imagery (250 meters), the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extents. We have made progress on some of these issues

  8. Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Erofeeva, S.; Kurapov, A. L.; Pasmans, I.

    2016-02-01

    Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).

  9. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

    SciTech Connect

    Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao

    2015-01-01

    The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

  10. November 2004 space weather events: Real-time observations and forecasts

    NASA Astrophysics Data System (ADS)

    Trichtchenko, L.; Zhukov, A.; van der Linden, R.; Stankov, S. M.; Jakowski, N.; StanisłAwska, I.; Juchnikowski, G.; Wilkinson, P.; Patterson, G.; Thomson, A. W. P.

    2007-06-01

    Space weather events with their solar origin and their distribution through the heliosphere affect the whole magnetosphere-ionosphere-Earth system. Their real-time monitoring and forecasting are important for science and technology. Here we discuss one of the largest space weather events of Solar Cycle 23, in November 2004, which was also one of the most difficult periods to forecast. Nine halo coronal mass ejections (CMEs), interacting on their way through the interplanetary medium and forming two geoeffective interplanetary structures, exemplify the complexity of the event. Real-time and quasi-real-time observations of the ground geomagnetic field show rapid and extensive expansion of the auroral oval to 55° in geomagnetic latitude accompanied by great variability of the ionosphere. Geomagnetically induced currents (GICs) seen in ground networks, such as power grids and pipelines, were significant during the event, although no problems were reported. Forecasts of the CME propagation, global and local ground geomagnetic activity, and ionospheric parameters, issued by several regional warning centers, revealed certain deficiencies in predictions of the interplanetary characteristics of the CME, size of the geomagnetic disturbances, and complexity of the ionospheric variations produced by this event. This paper is a collective report based on the materials presented at the splinter session on November 2004 events during the first European Space Weather Week.

  11. A Real-Time Data-Assimilative Nowcast/Forecast System for the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Farrara, J.; Chao, Y.; Li, Z.; Wang, X.; Zhang, H.; He, R.; Qian, H.

    2012-12-01

    Based on the Regional Ocean Modeling System (ROMS), this talk will describe a real-time data-assimilative ocean nowcast/forecast system that has been developed as part of the GOMEX-Pilot Prediction Project funded by Department of Energy. This project seeks to evaluate and demonstrate numerical model-based operational predictions of the circulation of the Gulf of Mexico with a particular focus on the Loop Current and associated eddies. The data assimilation component of this system uses a multi-scale 3-dimensional variational (3DVAR) methodology that is capable of assimilating different types of observational data and is also computationally efficient enough for near real-time operations. In order to demonstrate the model performance and prediction skills, only the routine observations (e.g., satellite observations) are used for data assimilation. A set of real-time 3-month forecasts was conducted during the Fall of 2011 to evaluate the potential of the system to predict variations in the Loop Current and associated eddies, including eddy-shedding events. The skill of these forecasts will be analyzed with an emphasis on an eddy-shedding event that took place in November 2011.

  12. Application of Global Real-Time Landslide Forecasting System for International use

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D. B.; Lerner-Lam, A.; Hong, Y.; Adler, R.

    2008-12-01

    The variability of natural hazard events by category significantly vary in their spatial and temporal extents and onsets, requiring a catered, and focused approach to appropriately address the risk and vulnerability of the specific hazard event. The advent of satellite data products has helped to monitor tropical cyclones, droughts, and flooding conditions and consequent impacts. Geophysical events such as earthquake are continually monitored on a global seismic network. However, a warning or monitoring system has not been established at larger scales for landslides, a hazard with the smallest spatial extent but highest frequency and arguably largest impacts globally. One of the major challenges in landslide hazard research is the field's focus on site specific investigations, drawing on high resolution surface data as well as detailed landslide inventories and rainfall information to provide an estimate of static landslide hazard susceptibility. Few studies have approached the issue of landslide risk and susceptibility from a dynamic standpoint to estimate the potential for landslide susceptibility conditions in a time frame that allows for a better understanding of the physical processes both scientifically and as it relates to societal response. To present a more dynamic representation of landslide hazard risk at larger spatial scales new research has developed an algorithm which couples a landslide hazard susceptibility map with real-time satellite derived rainfall to forecast areas with high landslide potential at the global scale. The algorithm draws on near-real time Tropical Rainfall Measuring Mission (TRMM) data as well as other satellite products to obtain a 3-hourly picture of locations across the world where the surface susceptibility conditions are high and the rainfall accumulation exceeds a defined threshold. The resulting forecasts are updated every 3 hours on a website, highlighting pixels satisfying these conditions on a 0.25º grid. The spatial

  13. Global Near Real-Time MODIS and Landsat Flood Mapping and Product Delivery

    NASA Astrophysics Data System (ADS)

    Policelli, F. S.; Slayback, D. A.; Tokay, M. M.; Brakenridge, G. R.

    2014-12-01

    Flooding is the most destructive, frequent, and costly natural disaster faced by modern society, and is increasing in frequency and damage (deaths, displacements, and financial costs) as populations increase and climate change generates more extreme weather events. When major flooding events occur, the disaster management community needs frequently updated and easily accessible information to better understand the extent of flooding and coordinate response efforts. With funding from NASA's Applied Sciences program, we developed and are now operating a near real-time global flood mapping system to help provide flood extent information within 24-48 hours of events. The principal element of the system applies a water detection algorithm to MODIS imagery, which is processed by the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard within a few hours of satellite overpass. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows the system to deliver an initial daily assessment of flood extent by late afternoon, and more robust assessments after accumulating cloud-free imagery over several days. Cloud cover is the primary limitation in detecting surface water from MODIS imagery. Other issues include the relatively coarse scale of the MODIS imagery (250 meters) for some events, the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extent. We are working on improvements to address these limitations. We have also begun delivery of near real time water maps at 30 m resolution from Landsat imagery. Although Landsat is not available daily globally, but only every 8 days if imagery from both operating platforms (Landsat 7 and 8) is accessed, it can provide useful higher resolution data on water extent when a clear acquisition coincides with an active

  14. Daily High-Resolution Flood Maps of Africa: 1992-present with Near Real Time Updates

    NASA Astrophysics Data System (ADS)

    Picton, J.; Galantowicz, J. F.; Root, B.

    2016-12-01

    The ability to characterize past and current flood extents frequently, accurately, and at high resolution is needed for many applications including risk assessment, wetlands monitoring, and emergency management. However, remote sensing methods have not been capable of meeting all of these requirements simultaneously. Cloud cover too often obscures the surface for visual and infrared sensors and observations from radar sensors are too infrequent to create consistent historical databases or monitor evolving events. Lower-resolution (10-50 km) passive microwave sensors, such as SSM/I, AMSR-E, and AMSR2, are sensitive to water cover, acquire useful data during clear and cloudy conditions, have revisit periods of up to twice daily, and provide a continuous record of data from 1992 to the present. What they lack most is the resolution needed to map flood extent. We will present results from a flood mapping system capable of producing high-resolution (90-m) flood extent depictions from lower resolution microwave data. The system uses the strong sensitivity of microwave data to surface water coverage combined with land surface and atmospheric data to derive daily flooded fraction estimates on a sensor-footprint basis. The system downscales flooded fraction to make high-resolution Boolean flood extent depictions that are spatially continuous and consistent with the lower resolution data. The downscaling step is based on a relative floodability (RF) index derived from higher-resolution topographic and hydrological data. We process RF to create a flooded fraction threshold map that relates each 90-m grid point to the surrounding terrain at the microwave scale. We have derived daily, 90-m resolution flood maps for Africa covering 1992-present using SSM/I, AMSR-E, and AMSR2 data and we are now producing new daily maps in near real time. The flood maps are being used by the African Risk Capacity (ARC) Agency to underpin an intergovernmental river flood insurance program in

  15. A centralized real-time controller for the reservoir's management on the Seine River using ensemble weather forecasting

    NASA Astrophysics Data System (ADS)

    Ficchi, Andrea; Raso, Luciano; Jay-Allemand, Maxime; Dorchies, David; Malaterre, Pierre-Olivier; Pianosi, Francesca; Van Overloop, Peter-Jules

    2013-04-01

    The reservoirs on the Seine River, upstream of Paris, are regulated with the objective of reducing floods and supporting low flows. The current management of these reservoirs is empirical, reactive, and decentralized, mainly based on filling curves, constructed from an analysis of historical floods and low flows. When inflows are significantly different from their seasonal average, this management strategy proves inefficient. Climate change is also a challenge, for the possible modification of future hydrologic conditions. To improve such management strategy, in this study we investigate the use of Tree-Based Model Predictive Control (TB-MPC), a proactive and centralized method that uses all the information available in real-time, including ensemble weather forecasting. In TB-MPC, a tree is generated from an ensemble of weather forecast. The tree structure summarizes the information contained in the ensemble, specifying the time, along the optimization horizon, when forecast trajectories diverge and thus uncertainty is expected to be resolved. This information is then used in the model predictive control framework. The TB-MPC controller is implemented in combination with the integrated model of the water system, including a semi-distributed hydrologic model of the watershed, a simplified hydraulic model of the river network, and the four reservoir models. Optimization takes into account the cost associated to floods and low-flows, and a penalty cost based on the final reservoir storages. The performances of the TB-MPC controller will be simulated and compared with those of deterministic MPC and with the actual management performances. This work is part of the Climaware European project (2010-2013) set up to develop and to assess measures for sustainable water resources management regarding adaptation to climate change.

  16. Improving real-time inflow forecasting into hydropower reservoirs through a complementary modelling framework

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2015-08-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead time is considered within the day-ahead (Elspot) market of the Nordic exchange market. A complementary modelling framework presents an approach for improving real-time forecasting without needing to modify the pre-existing forecasting model, but instead formulating an independent additive or complementary model that captures the structure the existing operational model may be missing. We present here the application of this principle for issuing improved hourly inflow forecasts into hydropower reservoirs over extended lead times, and the parameter estimation procedure reformulated to deal with bias, persistence and heteroscedasticity. The procedure presented comprises an error model added on top of an unalterable constant parameter conceptual model. This procedure is applied in the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead times up to 17 h. Evaluation of the percentage of observations bracketed in the forecasted 95 % confidence interval indicated that the degree of success in containing 95 % of the observations varies across seasons and hydrologic years.

  17. Impact of meteorological predictions on real-time spring flow forecasting

    NASA Astrophysics Data System (ADS)

    Coulibaly, Paulin

    2003-12-01

    Meteorological predictions, such as precipitation and temperature, are commonly used to improve real-time hydrologic forecasting, despite their inherent uncertainty and their absence in the model calibration stage. In this study, we quantify the effect of meteorological prediction errors on the accuracy of daily spring reservoir inflow forecasts using weather predictions in both the model calibration and testing phases. Different modelling experiments are compared using an operational conceptual model and nonlinear empirical models to assess the effects of using daily numerical weather predictions as opposed to the use of historical observations. It is found that, even with large prediction errors, meteorological forecasts can provide significant improvement of spring flow forecast for up to 7 days lead time, particularly for low flows. Spring flow prediction errors associated with the type of hydrological model used are significantly larger than those related to the meteorological predictions, particularly for 1 to 4 days ahead forecasts. The experimental results also indicate that multiple model-based forecasting using an iterative prediction approach appears to be the most effective method for an adequate use of weather predictions. Copyright

  18. A Real-Time Measurement System for Long-Life Flood Monitoring and Warning Applications

    PubMed Central

    Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta

    2012-01-01

    A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events. PMID:22666028

  19. A real-time measurement system for long-life flood monitoring and warning applications.

    PubMed

    Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta

    2012-01-01

    A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km(2) semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events.

  20. Cyberinfrastructure to support Real-time, End-to-End, High Resolution, Localized Forecasting

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.; Lindholm, D.; Baltzer, T.; Domenico, B.

    2004-12-01

    From natural disasters such as flooding and forest fires to man-made disasters such as toxic gas releases, the impact of weather-influenced severe events on society can be profound. Understanding, predicting, and mitigating such local, mesoscale events calls for a cyberinfrastructure to integrate multidisciplinary data, tools, and services as well as the capability to generate and use high resolution data (such as wind and precipitation) from localized models. The need for such end to end systems -- including data collection, distribution, integration, assimilation, regionalized mesoscale modeling, analysis, and visualization -- has been realized to some extent in many academic and quasi-operational environments, especially for atmospheric sciences data. However, many challenges still remain in the integration and synthesis of data from multiple sources and the development of interoperable data systems and services across those disciplines. Over the years, the Unidata Program Center has developed several tools that have either directly or indirectly facilitated these local modeling activities. For example, the community is using Unidata technologies such as the Internet Data Distribution (IDD) system, Local Data Manger (LDM), decoders, netCDF libraries, Thematic Realtime Environmental Distributed Data Services (THREDDS), and the Integrated Data Viewer (IDV) in their real-time prediction efforts. In essence, these technologies for data reception and processing, local and remote access, cataloging, and analysis and visualization coupled with technologies from others in the community are becoming the foundation of a cyberinfrastructure to support an end-to-end regional forecasting system. To build on these capabilities, the Unidata Program Center is pleased to be a significant contributor to the Linked Environments for Atmospheric Discovery (LEAD) project, a NSF-funded multi-institutional large Information Technology Research effort. The goal of LEAD is to create an

  1. Multiple Solutions of Real-time Tsunami Forecasting Using Short-term Inundation Forecasting for Tsunamis Tool

    NASA Astrophysics Data System (ADS)

    Gica, E.

    2016-12-01

    The Short-term Inundation Forecasting for Tsunamis (SIFT) tool, developed by NOAA Center for Tsunami Research (NCTR) at the Pacific Marine Environmental Laboratory (PMEL), is used in forecast operations at the Tsunami Warning Centers in Alaska and Hawaii. The SIFT tool relies on a pre-computed tsunami propagation database, real-time DART buoy data, and an inversion algorithm to define the tsunami source. The tsunami propagation database is composed of 50×100km unit sources, simulated basin-wide for at least 24 hours. Different combinations of unit sources, DART buoys, and length of real-time DART buoy data can generate a wide range of results within the defined tsunami source. For an inexperienced SIFT user, the primary challenge is to determine which solution, among multiple solutions for a single tsunami event, would provide the best forecast in real time. This study investigates how the use of different tsunami sources affects simulated tsunamis at tide gauge locations. Using the tide gauge at Hilo, Hawaii, a total of 50 possible solutions for the 2011 Tohoku tsunami are considered. Maximum tsunami wave amplitude and root mean square error results are used to compare tide gauge data and the simulated tsunami time series. Results of this study will facilitate SIFT users' efforts to determine if the simulated tide gauge tsunami time series from a specific tsunami source solution would be within the range of possible solutions. This study will serve as the basis for investigating more historical tsunami events and tide gauge locations.

  2. Data-Driven Geospatial Visual Analytics for Real-Time Urban Flooding Decision Support

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hill, D.; Rodriguez, A.; Marini, L.; Kooper, R.; Myers, J.; Wu, X.; Minsker, B. S.

    2009-12-01

    Urban flooding is responsible for the loss of life and property as well as the release of pathogens and other pollutants into the environment. Previous studies have shown that spatial distribution of intense rainfall significantly impacts the triggering and behavior of urban flooding. However, no general purpose tools yet exist for deriving rainfall data and rendering them in real-time at the resolution of hydrologic units used for analyzing urban flooding. This paper presents a new visual analytics system that derives and renders rainfall data from the NEXRAD weather radar system at the sewershed (i.e. urban hydrologic unit) scale in real-time for a Chicago stormwater management project. We introduce a lightweight Web 2.0 approach which takes advantages of scientific workflow management and publishing capabilities developed at NCSA (National Center for Supercomputing Applications), streaming data-aware semantic content management repository, web-based Google Earth/Map and time-aware KML (Keyhole Markup Language). A collection of polygon-based virtual sensors is created from the NEXRAD Level II data using spatial, temporal and thematic transformations at the sewershed level in order to produce persistent virtual rainfall data sources for the animation. Animated color-coded rainfall map in the sewershed can be played in real-time as a movie using time-aware KML inside the web browser-based Google Earth for visually analyzing the spatiotemporal patterns of the rainfall intensity in the sewershed. Such system provides valuable information for situational awareness and improved decision support during extreme storm events in an urban area. Our further work includes incorporating additional data (such as basement flooding events data) or physics-based predictive models that can be used for more integrated data-driven decision support.

  3. Validation of Real-time Dust Forecasting for the Iraq Region of Southwest Asia

    NASA Astrophysics Data System (ADS)

    Liu, M.; Westphal, D. L.; Walker, A. L.; Holt, T. R.; Richardson, K. A.; Miller, S. D.

    2005-12-01

    Dust storms are a significant weather phenomenon in the Iraq region in spring. Real-time dust forecasting using the Navy's Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS? with an inline dust aerosol model was conducted for the Operation Iraqi Freedom (OIF) in March and April 2003. Daily forecasts of dust mass concentration, visibility and optical depth were produced out to 72 hours on nested grids of 9-, 27- and 81-km resolution. In this work, the model performance is evaluated using ground weather reports, visibility observations, and enhanced satellite retrievals. COAMPS successfully predicted the timing, magnitude, duration and spatial coverage of the five major dust episodes. A detailed validation of the severest dust storm of OIF shows the high-resolution forecasts of the dust front are consistent with satellite images and the corresponding cold front observations. A statistical analysis of dust visibility for the OIF period reveals that COAMPS generates higher bias, RMS and relative errors at the stations having high frequency of dust storms, and that the errors are resolution dependent with the 9-km grid errors being the lowest. The calculation of forecast rates shows COAMPS achieved a dust storm prediction rate of 50 to 90% and threat score of 0.3 to 0.55 at the stations with frequent dust storms. Overall it predicted more than 85% of the observed dust and non-dust weather at all stations. A comparison of the forecast rates and statistical errors for the forecasts of different lengths (12 to 72 hours) for both dust and dynamics fields reveals little dependence of model accuracy on forecast length, implying that COAMPS accurately and consistently forecasted the severest of the OIF dust events. (COAMPS?is a registered trademark of the Naval Research Laboratory).

  4. Global, Daily, Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    NASA Astrophysics Data System (ADS)

    Slayback, D. A.; Policelli, F. S.; Brakenridge, G. R.; Tokay, M. M.; Smith, M. M.; Kettner, A. J.

    2013-12-01

    Flooding is the most destructive, frequent, and costly natural disaster faced by modern society, and is expected to increase in frequency and damage with climate change and population growth. Some of 2013's major floods have impacted the New York City region, the Midwest, Alberta, Australia, various parts of China, Thailand, Pakistan, and central Europe. The toll of these events, in financial costs, displacement of individuals, and deaths, is substantial and continues to rise as climate change generates more extreme weather events. When these events do occur, the disaster management community requires frequently updated and easily accessible information to better understand the extent of flooding and better coordinate response efforts. With funding from NASA's Applied Sciences program, we developed and are now operating a near real-time global flood mapping system to help provide critical flood extent information within 24-48 hours of events. The system applies a water detection algorithm to MODIS imagery received from the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard within a few hours of satellite overpass. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows an initial daily assessment of flooding extent by late afternoon, and more robust assessments after accumulating cloud-free imagery over several days. Cloud cover is the primary limitation in detecting surface water from MODIS imagery. Other issues include the relatively coarse scale of the MODIS imagery (250 meters), the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extents. We have made progress on many of these issues, and are working to develop higher resolution flood detection using alternate sensors, including Landsat and various radar sensors. Although these

  5. A real-time, event-triggered storm surge forecasting system for the state of North Carolina

    NASA Astrophysics Data System (ADS)

    Mattocks, Craig; Forbes, Cristina

    A new real-time, event-triggered storm surge prediction system has been developed for the State of North Carolina to assist emergency managers, policy-makers and other government officials with evacuation planning, decision-making and resource deployment during tropical storm landfall and flood inundation events. The North Carolina Forecast System (NCFS) was designed and built to provide a rapid response assessment of hurricane threat, accomplished by driving a high-resolution, two-dimensional, depth-integrated version of the ADCIRC (Advanced Circulation) coastal ocean model with winds from a synthetic asymmetric gradient wind vortex. These parametric winds, calculated at exact finite-element mesh node locations and directly coupled to the ocean model at every time step, are generated from National Hurricane Center (NHC) forecast advisories the moment they are inserted into the real-time weather data stream, maximizing the number of hours of forecast utility. Tidal harmonic constituents are prescribed at the open water boundaries and applied as tidal potentials in the interior of the ocean model domain. A directional surface roughness parameterization that modulates the wind speed at a given location based on the types of land cover encountered upwind, a forest canopy sheltering effect, and a spatially varying distribution of Manning's-n friction coefficient used for computing the bottom/channel bed friction are also included in the storm surge model. Comparisons of the simulated wind speeds and phases against their real meteorological counterparts, of model elevations against actual sea surface elevations measured by NOAA tide gauges along the NC coast, and of simulated depth-averaged current velocities against Acoustic Doppler Current Profiler (ADCP) data, indicate that this new system produces remarkably realistic predictions of winds and storm surge.

  6. An experimental system for flood risk forecasting and monitoring at global scale

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter

    2017-04-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.

  7. Evaluation of WRF-CFSv2 seasonal climate forecasting model over Thailand: the 2016 real-time seasonal forecasts

    NASA Astrophysics Data System (ADS)

    Chotamonsak, Chakrit; Wiranwetchayan, Orawan; Lapyai, Duangnapha; Thanadolmethaphorn, Punnathorn

    2017-04-01

    The Weather and Research Forecast (WRF) model was used for dynamically downscaling the NCEP's operational seasonal forecast model Climate Forecast System version 2 (CFSv2) to evaluate the 2016 seasonal climate forecasts over Thailand. The model configuration, physical parameterizations, and performance results are described in this work. The three sets (March-August, April-September, and May-October) of WRF-CFSv2 real-time seasonal forecast results were analyzed. The WRF-CFSv2 model performance is evaluated against near surface observations for precipitation, temperature, relative humidity and wind field (both speed and direction) available from Thai Meteorological Department (TMD). The statistical measures considered are correlation coefficient, mean bias (MB) and root mean square error (RMSE). It is found that the high-resolution downscaled datasets from WRF-CFSv2 seasonal climate model bring significant improvement in the seasonal temperature forecasts compared to the raw CFSv2 global prediction, especially in the northern Thailand where the geography is the most complex terrain. On average, WRF-CFSv2 downscaling forecasts reduced wet bias and errors of seasonal mean precipitation from CFSv2 prediction.

  8. Flood and Landslide Applications of Near Real-time Satellite Rainfall Products

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Negri, Andrew; Huffman, George J.

    2007-01-01

    Floods and associated landslides are one of the most widespread natural hazards on Earth, responsible for tens of thousands of deaths and billions of dollars in property damage every year. During 1993-2002, over 1000 of the more than 2,900 natural disasters reported were due to floods. These floods and associated landslides claimed over 90,000 lives, affected over 1.4 billion people and cost about $210 billion. The impact of these disasters is often felt most acutely in less developed regions. In many countries around the world, satellite-based precipitation estimation may be the best source of rainfall data due to lack of surface observing networks. Satellite observations can be of essential value in improving our understanding of the occurrence of hazardous events and possibly in lessening their impact on local economies and in reducing injuries, if they can be used to create reliable warning systems in cost-effective ways. This article addressed these opportunities and challenges by describing a combination of satellite-based real-time precipitation estimation with land surface characteristics as input, with empirical and numerical models to map potential of landslides and floods. In this article, a framework to detect floods and landslides related to heavy rain events in near-real-time is proposed. Key components of the framework are: a fine resolution precipitation acquisition system; a comprehensive land surface database; a hydrological modeling component; and landslide and debris flow model components. A key precipitation input dataset for the integrated applications is the NASA TRMM-based multi-satellite precipitation estimates. This dataset provides near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg. By careful integration of remote sensing and in-situ observations, and assimilation of these observations into hydrological and landslide/debris flow models with surface topographic information, prediction of useful

  9. Coupling flood forecasting and social media crowdsourcing

    NASA Astrophysics Data System (ADS)

    Kalas, Milan; Kliment, Tomas; Salamon, Peter

    2016-04-01

    Social and mainstream media monitoring is being more and more recognized as valuable source of information in disaster management and response. The information on ongoing disasters could be detected in very short time and the social media can bring additional information to traditional data feeds (ground, remote observation schemes). Probably the biggest attempt to use the social media in the crisis management was the activation of the Digital Humanitarian Network by the United Nations Office for the Coordination of Humanitarian Affairs in response to Typhoon Yolanda. The network of volunteers performing rapid needs & damage assessment by tagging reports posted to social media which were then used by machine learning classifiers as a training set to automatically identify tweets referring to both urgent needs and offers of help. In this work we will present the potential of coupling a social media streaming and news monitoring application ( GlobalFloodNews - www.globalfloodsystem.com) with a flood forecasting system (www.globalfloods.eu) and the geo-catalogue of the OGC services discovered in the Google Search Engine (WMS, WFS, WCS, etc.) to provide a full suite of information available to crisis management centers as fast as possible. In GlobalFloodNews we use advanced filtering of the real-time Twitter stream, where the relevant information is automatically extracted using natural language and signal processing techniques. The keyword filters are adjusted and optimized automatically using machine learning algorithms as new reports are added to the system. In order to refine the search results the forecasting system will be triggering an event-based search on the social media and OGC services relevant for crisis response (population distribution, critical infrastructure, hospitals etc.). The current version of the system makes use of USHAHIDI Crowdmap platform, which is designed to easily crowdsource information using multiple channels, including SMS, email

  10. Web-Based Real Time Earthquake Forecasting and Personal Risk Management

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2012-12-01

    Earthquake forecasts have been computed by a variety of countries and economies world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. One example is the Working Group on California Earthquake Probabilities that has been responsible for the official California earthquake forecast since 1988. However, in a time of increasingly severe global financial constraints, we are now moving inexorably towards personal risk management, wherein mitigating risk is becoming the responsibility of individual members of the public. Under these circumstances, open access to a variety of web-based tools, utilities and information is a necessity. Here we describe a web-based system that has been operational since 2009 at www.openhazards.com and www.quakesim.org. Models for earthquake physics and forecasting require input data, along with model parameters. The models we consider are the Natural Time Weibull (NTW) model for regional earthquake forecasting, together with models for activation and quiescence. These models use small earthquakes ('seismicity-based models") to forecast the occurrence of large earthquakes, either through varying rates of small earthquake activity, or via an accumulation of this activity over time. These approaches use data-mining algorithms combined with the ANSS earthquake catalog. The basic idea is to compute large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Each of these approaches has computational challenges associated with computing forecast information in real time. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we show that real-time forecasting is possible at a grid scale of 0.1o. We have analyzed the performance of these models using Reliability/Attributes and standard Receiver Operating Characteristic (ROC) tests. We show how the Reliability and

  11. Generating Real-Time Tsunami Forecast Animations for Tsunami Warning Operations

    NASA Astrophysics Data System (ADS)

    Becker, N. C.; Wang, D.; Fryer, G. J.; Weinstein, S.

    2012-12-01

    The complex calculations inherent in tsunami forecast models once required supercomputers to solve and could only be deployed in an operational setting as a database of precomputed best-guess solutions for likely future tsunamis. More recently scientists at the Pacific Tsunami Warning Center (PTWC) developed a tsunami forecast model, RIFT, that takes an earthquake's centroid moment tensor solution—either from nearby historic events or rapidly determined by W-phase analysis—and solves the linear shallow water equations in real time with commercial off-the-shelf computer servers and open-source software tools (Wang et al., 2009). RIFT not only rapidly calculates tsunami forecasts in real time, but also generates and archives data grids easily ingested by other software packages to generate maps and animations in a variety of image, video, and geobrowser file formats (e.g., KML). These graphical products aid both operational and outreach efforts as they help PTWC scientists to rapidly ingest and comprehend large, complex data sets, to share these data with emergency managers, and to educate the general public about the behavior of tsunamis. Prior to developing animation capability PTWC used tsunami travel time contour maps to show expected arrival times of the first tsunami waves. Though useful to expert users, such maps can mislead a nonexpert as they do not show amplitude information and give the impression that tsunami waves have constant amplitudes throughout an ocean basin. A tsunami forecast "energy map" improves tsunami hazard communication by showing the variability in maximum wave heights, but does not show the timing of the maximum wave arrivals. A tsunami forecast animation, however, shows both how fast the tsunami will move and the distribution of its amplitudes over time, thus communicating key concepts about tsunami behavior such as reflection and refraction of waves, that the first arriving wave is not necessarily the largest wave, and that tsunami

  12. Discriminant Flash-Flood Forecasting in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Yates, D.; Sharif, H.; Rindahl, B.

    2003-12-01

    This study demonstrates the application of high-resolution weather radar data, quantitative precipitation nowcasting, combined with simple hydrologic modeling to forecast flood potential for multiple, discriminate urban watersheds. The approach defines meta-data models based on the Extensive Markup Language (XML) to disseminate severe storm attributes (their size, orientation, history, and forecast position) and 5-minute, 2-hour rainfall accumulations for the watersheds to an Automated Location Evaluation in Real Time (ALERT) urban flood warning system- the Urban Drainage and Flood Control District (UDFCD), in Denver Colorado, USA. In addition, a simple graphical display system based on the World Wide Web Consortium's (W3C) Scalable Vector Graphics (SVG) format, requires only the simple exchange of small XML data files from the Nowcasting server to the UDFCD client for monitoring storm position and streamflow by the UDFCD in realtime. Example of severe storms that produce local flooding in the UDFCD domain will be shown.

  13. Real-time monitoring and short-term forecasting of drought in Norway

    NASA Astrophysics Data System (ADS)

    Kwok Wong, Wai; Hisdal, Hege

    2013-04-01

    Drought is considered to be one of the most costly natural disasters. Drought monitoring and forecasting are thus important for sound water management. In this study hydrological drought characteristics applicable for real-time monitoring and short-term forecasting of drought in Norway were developed. A spatially distributed hydrological model (HBV) implemented in a Web-based GIS framework provides a platform for drought analyses and visualizations. A number of national drought maps can be produced, which is a simple and effective way to communicate drought conditions to decision makers and the public. The HBV model is driven by precipitation and air temperature data. On a daily time step it calculates the water balance for 1 x 1 km2 grid cells characterized by their elevation and land use. Drought duration and areal drought coverage for runoff and subsurface storage (sum of soil moisture and groundwater) were derived. The threshold level method was used to specify drought conditions on a grid cell basis. The daily 10th percentile thresholds were derived from seven-day windows centered on that calendar day from the reference period 1981-2010 (threshold not exceeded 10% of the time). Each individual grid cell was examined to determine if it was below its respective threshold level. Daily drought-stricken areas can then be easily identified when visualized on a map. The drought duration can also be tracked and calculated by a retrospective analysis. Real-time observations from synoptic stations interpolated to a regular grid of 1 km resolution constituted the forcing data for the current situation. 9-day meteorological forecasts were used as input to the HBV model to obtain short-term hydrological drought forecasts. Downscaled precipitation and temperature fields from two different atmospheric models were applied. The first two days of the forecast period adopted the forecasts from Unified Model (UM4) while the following seven days were based on the 9-day forecasts

  14. The policy and science supporting flash flood forecasting in Scotland

    NASA Astrophysics Data System (ADS)

    Cranston, Michael; Maxey, Richard; Speight, Linda; Tavendale, Amy; Cole, Steven; Robson, Alice; Moore, Robert

    2013-04-01

    In 2012, the Scottish Environment Protection Agency (SEPA) published its Flood Warning Strategy. The strategy aims to ensure that emerging science is at the heart of supporting its strategic aim of reducing the impact of river flooding through the provision of reliable and timely flood warnings and allowing Scotland's flood warning authority to develop forecasting approaches in areas not previously considered. One specific area of agreed commitment is in the development of methods for forecasting in rapid response or flashy catchments. Previous policies have stated that flood warning provision would not be possible without adequate hydrological response time (greater than three hours). The particular challenge with meeting this new aim is on the reliance of increasingly uncertain flooding predictions at the shorter timescale against a more cautious and traditional approach to flood warning which relies on hydrological observations and real time verification of forecasts. This therefore places increasing demands on developing hydrometeorological forecasting capabilities. This paper will present on some scientific developments supporting the latest policy. In particular on Grid-2-Grid, a distributed hydrological model, which has been in operation across Scotland for over a year (Cranston, et al., 2012) and on a specific assessment of its capabilities using high resolution and ensemble rainfall forecasts. The paper will focus on Comrie, a community in Scotland that has been devastated twice during 2012 by flash flooding and considers the various challenges in meeting this strategic aim. References Cranston, M., Maxey, R., Tavendale, A., Buchanan, P., Motion, A., Moore, R. M., Cole, S., Robson, A. and Minett, A. (2012) Countrywide flood forecasting in Scotland: challenges for hydrometeorological uncertainty and prediction. Weather Radar and Hydrology (Proceedings of a symposium held in Exeter, UK, April 2011), IAHS Publ. 351, 2012)

  15. A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China

    NASA Astrophysics Data System (ADS)

    Cong, Z.

    2015-12-01

    In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting

  16. Extending RST-FLOOD to thermal infrared data: a possible operational strategy for flooded areas detection in near real time

    NASA Astrophysics Data System (ADS)

    Faruolo, Mariapia; Coviello, Irina; Lacava, Teodosio; Pergola, Nicola; Tramutoli, Valerio

    2013-04-01

    In the recent years the use of remote sensing data has been growing rapidly in the flood risk context, because they can offer the possibility to support hydrological and hydraulic analyses aimed at both improving flood inundation models and better understanding hydrodynamic processes for managing flood emergency. Optical sensors aboard meteorological satellites may provide a useful contribution for a rapid detection and mapping of areas interested by a flood. Such sensors, being able to guarantee a steady and frequent stream of images (with a temporal resolution variable from hours to minutes), have in fact a great potential for near real time monitoring of flood evolution. Actually, to be effectively used for supporting flood risk management and assessment, such kind of data must be analyzed using reliable earth observation (EO) techniques in order to guarantee consistent results regardless of the used data/sensor. The methodology used and shown in this paper has been moving in this direction. Such a methodology, known as RST (Robust Satellite Techniques) approach (in the paper named RST-FLOOD to indicate its specific application to flood risk) and based entirely on satellite remote sensing data, is a multi-temporal scheme of data analysis which identifies statistically significant anomalies of the investigated signal on the basis of a preliminary characterization of the signal in normal (i.e. unperturbed) conditions. Its implementation on visible and near infrared bands of AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) sensors, for studying different flooding events occurred worldwide, already showed its potential in correctly detecting flooded zones furnishing reliable flood maps. The main issue of this approach is its limited application during daylight. In this paper, the proposed approach has been extended to satellite thermal data in order to assess its potential in identifying flooded pixel also

  17. Adapting CALIPSO Climate Measurements for Near Real Time Analyses and Forecasting

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Trepte, Charles R.; Winker, David M.; Avery, Melody A.; Campbell, James; Hoff, Ray; Young, Stuart; Getzewich, Brian J.; Tackett, Jason L.; Kar, Jayanta

    2011-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder satellite Observations (CALIPSO) mission was originally conceived and designed as a climate measurements mission, with considerable latency between data acquisition and the release of the level 1 and level 2 data products. However, the unique nature of the CALIPSO lidar backscatter profiles quickly led to the qualitative use of CALIPSO?s near real time (i.e., ? expedited?) lidar data imagery in several different forecasting applications. To enable quantitative use of their near real time analyses, the CALIPSO project recently expanded their expedited data catalog to include all of the standard level 1 and level 2 lidar data products. Also included is a new cloud cleared level 1.5 profile product developed for use by operational forecast centers for verification of aerosol predictions. This paper describes the architecture and content of the CALIPSO expedited data products. The fidelity and accuracy of the expedited products are assessed via comparisons to the standard CALIPSO data products.

  18. An Indian monsoon intraseasonal oscillations (MISO) index for real time monitoring and forecast verification

    NASA Astrophysics Data System (ADS)

    Suhas, E.; Neena, J. M.; Goswami, B. N.

    2013-06-01

    The wet/dry spells of the Indian summer monsoon (ISM) rainfall are governed by northward propagating boreal summer monsoon intraseasonal oscillations (MISO). Unlike for the Madden Julian Oscillation (e.g. RMM indices, Wheeler and Hendon in Mon Weather Rev 132:1917-1932, 2004), a low dimensional real-time monitoring and forecast verification metric for the MISO is not currently available. Here, for the first time, we present a real time monitoring index developed for identifying the amplitude and phase of the MISO over the ISM domain. The index is constructed by applying extended empirical orthogonal function (EEOF) analysis on daily unfiltered rainfall anomalies averaged over the longitudinal domain 60.5°E-95.5°E. The gravest two modes of the EEOFs together explain about 23 % of the total variance, similar to the variance explained by MISO in observation. The pair of first two principal components (PCs) of the EEOFs is named as MISO1 and MISO2 indices which together represent the evolution of the MISOs in a low dimensional phase space. Power spectral analysis reveals that the MISO indices neatly isolate the MISO signal from the higher frequency noise. It is found that the current amplitude and phase of the MISO can be estimated by preserving a memory of at least 15 days. Composite pictures of the spatio-temporal evolution of the MISOs over the ISM domain are brought out using the MISO indices. It is further demonstrated that the MISO indices can be used in the quantification of skill of extended range forecasts of MISOs. Since the MISO index does not rely on any sort of time filtering, it has great potential for real time monitoring of the MISO and may be useful in developing some prediction scheme.

  19. Geophysical Tracking of a Subglacial Flood in Near Real-Time

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Jóhannesson, Tómas; Ofeigsson, Benedikt G.; Roberts, Matthew J.; Bean, Christopher J.; Vogfjörd, Kristin S.; Jones, Morgan T.; Pfeffer, Melissa A.; Bergsson, Baldur; Pálsson, Finnur

    2017-04-01

    Subglacial lakes and volcanoes in Iceland pose a risk to people, livestock and infrastructure when water drains in subglacial floods. Many of these floods occur every year and efforts are made to forecast them and evacuate in time. The two Skaftá cauldrons are located at the southwestern part of Vatnajökull glacier and usually drain once every two years. However, following drainage in 2010, the eastern cauldron did not drain before October 2015. While water accumulated over these five years, scientists - within the EU-funded project FutureVolc - improved the monitoring network around southwest Vatnajökull in order to record the flood in great detail. The network finally comprised two seismic arrays, a GPS instrument on top of the cauldron, two GPS instruments above the flood path, gas measurements at the glaciers' edge, hydrological measurements at river gauges and osmotic sampler data. We present how the GPS, gas and hydrological instruments allow us to detect the start of and subglacial propagation of the flood. The derived timing is consistent with the approximate time of rupturing of the ice close to the glacier edge and the source movement observed in the seismic signals. The subglacial flow of water is accompanied by seismic tremor, whose source location moves downslope with the flood front. This tremor is followed by about 24 hours of stronger tremor bursts from the direction of the empty cauldron.

  20. Real-time Ensemble Forecasting of Coronal Mass Ejections using the WSA-ENLIL+Cone Model

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; MacNeice, P. J.; Rastaetter, L.; Kuznetsova, M. M.; Odstrcil, D.

    2013-12-01

    Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions due to uncertainties in determining CME input parameters. Ensemble modeling of CME propagation in the heliosphere is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL cone model available at the Community Coordinated Modeling Center (CCMC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. A distribution of n (routinely n=48) CME input parameters are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest (satellites or planets), including a probability distribution of CME shock arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). Ensemble simulations have been performed experimentally in real-time at the CCMC since January 2013. We present the results of ensemble simulations for a total of 15 CME events, 10 of which were performed in real-time. The observed CME arrival was within the range of ensemble arrival time predictions for 5 out of the 12 ensemble runs containing hits. The average arrival time prediction was computed for each of the twelve ensembles predicting hits and using the actual arrival time an average absolute error of 8.20 hours was found for all twelve ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this

  1. Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data

    NASA Astrophysics Data System (ADS)

    Veerakachen, Watcharee; Raksapatcharawong, Mongkol

    2015-09-01

    Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.

  2. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the

  3. Towards Real Time Tsunami Forecasting without Source: A Data Assimilation Approach with Dense Tsunameter Network

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Obara, K.; Shinohara, M.; Kanazawa, T.; Uehira, K.

    2013-12-01

    Real time tsunami observation networks with ocean bottom pressure sensors and GPS buoys are significantly improved in this decade, after several significant earthquakes such as the 2004 Sumatra-Andaman earthquake (Mw9.3) and the 2011 Off the Pacific Coast of Tohoku Earthquake (Mw9.0). In particular along the Pacific coast in northeastern Japan, a new cabled-type seismograph/tsunameter network are being under construction (e.g., Uehira et al., 2012; Saito, 2013). It will cover a vast area of roughly 400 km x 900 km including the source area of the Tohoku Earthquake, with average station separation of about 30 km. All stations are linked by ocean-bottom cables, and all data including seismic waves and tsunami heights will be collected in real time. To fully utilize power of such a dense observation network on tsunami hazard mitigation, we develop a new forecasting method that assimilates observed sea height with numerical simulation of tsunami propagation in real time. In this method, tsunami height at a certain time step is first predicted by numerical simulation and compared with the observed tsunami heights at stations. Residuals between observation and numerical forecast are used for correction of tsunami wave height and its flux. Then, the corrected wavefield are substituted for prediction of tsunami heights at the next time step by numerical simulation. We performed preliminary numerical test of the data assimilation technique with the layout of aforementioned tsunamater network in NE Japan as a feasibility study of real time tsunami forecasting. First we calculated tsunami wave propagation by the Tohoku earthquake based on the initial sea height estimated from the faulting in order to get the time series of sea height. The calculated time-series of tsunami height at the sensor locations are regarded as 'observed data' in the numerical test. Then, data assimilation is carried out for every one second to estimate the sea height based on the observed data. We

  4. The real-time SEP forecasting tools of the 'HESPERIA' HORIZON 2020 project

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga E.; Nunez, Marlon; Heber, Bernd; Labrenz, Johannes; Posner, Arik; Milas, Nick; Tsiropoula, Georgia; Pavlos, Evgenios; Sarlanis, Christos

    2017-04-01

    In this study, we describe the two real-time prediction tools, that have been developed in the framework of the HESPERIA project based upon the proven concepts UMASEP and REleASE. A major impact on human and robotic space exploration activities is the sudden and prompt occurrence of solar energetic ion events. The fact that near-relativistic electrons (1 MeV electrons have 95% of the speed of light) travel faster than ions (30 MeV protons have 25% of the speed of light) and are always present in Solar Energetic Particle (SEP) events can be used to forecast the arrival of protons from SEP events with real-time measurements of near relativistic electrons. The faster electrons arrive at L1 30 to 90 minutes before the slower protons. The Relativistic Electron Alert System for Exploration (REleASE) forecasting scheme (Posner, 2007) uses this effect to predict the proton flux by utilizing the actual electron flux and the increase of the electron flux in the last 60 minutes. In the framework of the HESPERIA project, a clone of the REleASE system was built in the open source programming language PYTHON. The same forecasting principle with use of the same forecasting matrices were in addition adapted to real-time electron flux measurements from the Electron, Proton & Alpha Monitor (EPAM) onboard the Advanced Composition Explorer (ACE). It is shown, that the REleASE forecasting scheme can be adapted to work with any near relativistic electron flux measurements. Solar energetic particles (SEPs) are sometimes energetic enough and the flux is high enough to cause air showers in the stratosphere and in the troposphere, which are an important ionization source in the atmosphere. >500 MeV solar protons are so energetic that they usually have effects on the ground, producing what is called a Ground Level Enhancement (GLE) event. Within the HESPERIA project a predictor of >500 SEP proton events at the near-earth (e.g. at geostationary orbit) has been developed. In order to predict

  5. Heat wave over India during summer 2015: an assessment of real time extended range forecast

    NASA Astrophysics Data System (ADS)

    Pattanaik, D. R.; Mohapatra, M.; Srivastava, A. K.; Kumar, Arun

    2017-08-01

    Hot winds are the marked feature of summer season in India during late spring preceding the climatological onset of the monsoon season in June. Some years the conditions becomes very vulnerable with the maximum temperature ( T max) exceeding 45 °C for many days over parts of north-western, eastern coastal states of India and Indo-Gangetic plain. During summer of 2015 (late May to early June) eastern coastal states, central and northwestern parts of India experienced severe heat wave conditions leading to loss of thousands of human life in extreme high temperature conditions. It is not only the loss of human life but also the animals and birds were very vulnerable to this extreme heat wave conditions. In this study, an attempt is made to assess the performance of real time extended range forecast (forecast up to 3 weeks) of this scorching T max based on the NCEP's Climate Forecast System (CFS) latest version coupled model (CFSv2). The heat wave condition was very severe during the week from 22 to 28 May with subsequent week from 29 May to 4 June also witnessed high T max over many parts of central India including eastern coastal states of India. The 8 ensemble members of operational CFSv2 model are used once in a week to prepare the weekly bias corrected deterministic (ensemble mean) T max forecast for 3 weeks valid from Friday to Thursday coinciding with the heat wave periods of 2015. Using the 8 ensemble members separately and the CFSv2 corresponding hindcast climatology the probability of above and below normal T max is also prepared for the same 3 weeks. The real time deterministic and probabilistic forecasts did indicate impending heat wave over many parts of India during late May and early June of 2015 associated with strong northwesterly wind over main land mass of India, delaying the sea breeze, leading to heat waves over eastern coastal regions of India. Thus, the capability of coupled model in providing early warning of such killer heat wave can be very

  6. ASSESSMENT OF AN ENSEMBLE OF SEVEN REAL-TIME OZONE FORECASTS OVER EASTERN NORTH AMERICA DURING THE SUMMER OF 2004

    EPA Science Inventory

    The real-time forecasts of ozone (O3) from seven air quality forecast models (AQFMs) are statistically evaluated against observations collected during July and August of 2004 (53 days) through the Aerometric Information Retrieval Now (AIRNow) network at roughly 340 mon...

  7. ASSESSMENT OF AN ENSEMBLE OF SEVEN REAL-TIME OZONE FORECASTS OVER EASTERN NORTH AMERICA DURING THE SUMMER OF 2004

    EPA Science Inventory

    The real-time forecasts of ozone (O3) from seven air quality forecast models (AQFMs) are statistically evaluated against observations collected during July and August of 2004 (53 days) through the Aerometric Information Retrieval Now (AIRNow) network at roughly 340 mon...

  8. Real-time Mainshock Forecast by Statistical Discrimination of Foreshock Clusters

    NASA Astrophysics Data System (ADS)

    Nomura, S.; Ogata, Y.

    2016-12-01

    Foreshock discremination is one of the most effective ways for short-time forecast of large main shocks. Though many large earthquakes accompany their foreshocks, discreminating them from enormous small earthquakes is difficult and only probabilistic evaluation from their spatio-temporal features and magnitude evolution may be available. Logistic regression is the statistical learning method best suited to such binary pattern recognition problems where estimates of a-posteriori probability of class membership are required. Statistical learning methods can keep learning discreminating features from updating catalog and give probabilistic recognition of forecast in real time. We estimated a non-linear function of foreshock proportion by smooth spline bases and evaluate the possibility of foreshocks by the logit function. In this study, we classified foreshocks from earthquake catalog by the Japan Meteorological Agency by single-link clustering methods and learned spatial and temporal features of foreshocks by the probability density ratio estimation. We use the epicentral locations, time spans and difference in magnitudes for learning and forecasting. Magnitudes of main shocks are also predicted our method by incorporating b-values into our method. We discuss the spatial pattern of foreshocks from the classifier composed by our model. We also implement a back test to validate predictive performance of the model by this catalog.

  9. Development of a flash flood warning system based on real-time radar data and process-based erosion modelling

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Kaiser, Andreas; Buchholtz, Arno; Schmidt, Jürgen

    2017-04-01

    Extreme rainfall events and resulting flash floods led to massive devastations in Germany during spring 2016. The study presented aims on the development of a early warning system, which allows the simulation and assessment of negative effects on infrastructure by radar-based heavy rainfall predictions, serving as input data for the process-based soil loss and deposition model EROSION 3D. Our approach enables a detailed identification of runoff and sediment fluxes in agricultural used landscapes. In a first step, documented historical events were analyzed concerning the accordance of measured radar rainfall and large scale erosion risk maps. A second step focused on a small scale erosion monitoring via UAV of source areas of heavy flooding events and a model reconstruction of the processes involved. In all examples damages were caused to local infrastructure. Both analyses are promising in order to detect runoff and sediment delivering areas even in a high temporal and spatial resolution. Results prove the important role of late-covering crops such as maize, sugar beet or potatoes in runoff generation. While e.g. winter wheat positively affects extensive runoff generation on undulating landscapes, massive soil loss and thus muddy flows are observed and depicted in model results. Future research aims on large scale model parameterization and application in real time, uncertainty estimation of precipitation forecast and interface developments.

  10. Understanding uncertainty in distributed flash flood forecasting for semiarid regions 1909

    USDA-ARS?s Scientific Manuscript database

    Semi-arid flash floods pose a significant danger for life and property in the US. One effective way to mitigate flood risk is by implementing a rainfall-runoff model in a real-time forecast and warning system. This study used a physically based, distributed semi-arid rainfall-runoff model driven by ...

  11. Forecasting Daily Patient Outflow From a Ward Having No Real-Time Clinical Data

    PubMed Central

    Tran, Truyen; Luo, Wei; Phung, Dinh; Venkatesh, Svetha

    2016-01-01

    Background: Modeling patient flow is crucial in understanding resource demand and prioritization. We study patient outflow from an open ward in an Australian hospital, where currently bed allocation is carried out by a manager relying on past experiences and looking at demand. Automatic methods that provide a reasonable estimate of total next-day discharges can aid in efficient bed management. The challenges in building such methods lie in dealing with large amounts of discharge noise introduced by the nonlinear nature of hospital procedures, and the nonavailability of real-time clinical information in wards. Objective Our study investigates different models to forecast the total number of next-day discharges from an open ward having no real-time clinical data. Methods We compared 5 popular regression algorithms to model total next-day discharges: (1) autoregressive integrated moving average (ARIMA), (2) the autoregressive moving average with exogenous variables (ARMAX), (3) k-nearest neighbor regression, (4) random forest regression, and (5) support vector regression. Although the autoregressive integrated moving average model relied on past 3-month discharges, nearest neighbor forecasting used median of similar discharges in the past in estimating next-day discharge. In addition, the ARMAX model used the day of the week and number of patients currently in ward as exogenous variables. For the random forest and support vector regression models, we designed a predictor set of 20 patient features and 88 ward-level features. Results Our data consisted of 12,141 patient visits over 1826 days. Forecasting quality was measured using mean forecast error, mean absolute error, symmetric mean absolute percentage error, and root mean square error. When compared with a moving average prediction model, all 5 models demonstrated superior performance with the random forests achieving 22.7% improvement in mean absolute error, for all days in the year 2014. Conclusions In the

  12. Flood forecasting and alert system for Arda River basin

    NASA Astrophysics Data System (ADS)

    Artinyan, Eram; Vincendon, Beatrice; Kroumova, Kamelia; Nedkov, Nikolai; Tsarev, Petko; Balabanova, Snezhanka; Koshinchanov, Georgy

    2016-10-01

    The paper presents the set-up and functioning of a flood alert system based on SURFEX-TOPODYN platform for the cross-border Arda River basin. The system was built within a Bulgarian-Greek project funded by the European Territorial Cooperation (ETC) Programme and is in operational use since April 2014. The basin is strongly influenced by Mediterranean cyclones during the autumn-winter period and experiences dangerous rapid floods, mainly after intensive rain, often combined with snow melt events. The steep mountainous terrain leads to floods with short concentration time and high river speed causing damage to settlements and infrastructure. The main challenge was to correctly simulate the riverflow in near-real time and to timely forecast peak floods for small drainage basins below 100 km2 but also for larger ones of about 1900 km2 using the same technology. To better account for that variability, a modification of the original hydrological model parameterisation is proposed. Here we present the first results of a new model variant which uses dynamically adjusted TOPODYN river velocity as function of the computed partial streamflow discharge. Based on historical flooding data, river sections along endangered settlements were included in the river flow forecasting. A continuous hydrological forecast for 5 days ahead was developed for 18 settlements in Bulgaria and for the border with Greece, thus giving enough reaction time in case of high floods. The paper discusses the practical implementation of models for the Arda basin, the method used to calibrate the models' parameters, the results of the calibration-validation procedure and the way the information system is organised. A real case of forecasted rapid floods that occurred after the system's finalisation is analysed. One of the important achievements of the project is the on-line presentation of the forecasts that takes into account their temporal variability and uncertainty. The web presentation includes a

  13. Real-time short-term forecast of water inflow into Bureyskaya reservoir

    NASA Astrophysics Data System (ADS)

    Motovilov, Yury

    2017-04-01

    During several recent years, a methodology for operational optimization in hydrosystems including forecasts of the hydrological situation has been developed on example of Burea reservoir. The forecasts accuracy improvement of the water inflow into the reservoir during planning of water and energy regime was one of the main goals for implemented research. Burea river is the second left largest Amur tributary after Zeya river with its 70.7 thousand square kilometers watershed and 723 km-long river course. A variety of natural conditions - from plains in the southern part to northern mountainous areas determine a significant spatio-temporal variability in runoff generation patterns and river regime. Bureyskaya hydropower plant (HPP) with watershed area 65.2 thousand square kilometers is a key station in the Russian Far Eastern energy system providing its reliable operation. With a spacious reservoir, Bureyskaya HPP makes a significant contribution to the protection of the Amur region from catastrophic floods. A physically-based distributed model of runoff generation based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform has been developed for the Burea River basin. The model describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface, ground and river flow. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The model setup for Bureya river basin included watershed and river network schematization with GIS module by DEM analysis, meteorological time-series preparation, model calibration and validation against historical observations. The results showed good

  14. Real time soil moisture forecasts for irrigation management: the Pre.G.I. project

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Mancini, M.; Salerno, R.

    2012-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully. Future climate change scenarios, combined with limited water resources require better irrigation management and planning for farmers' water cooperatives. This has occurred also in areas traditionally rich of water as Lombardy Region, in the North of Italy. In this study we show the development and implementation of a real-time drought forecasting system with a soil moisture hydrological alert, in particular we describe preliminary results of the Pre.G.I. Project, an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management", funded by Lombardy Region. The project develops a support decision system based on an ensemble weather prediction in the medium-long range (up to 30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin, in order to use the irrigation water in a wiser and thriftier way. The studied area covers 74,000 ha in the middle of the Po Valley, near Lodi city. The hydrological ensemble forecasts are based on 20 meteorological members of a modified version of the non-hydrostatic WRF model, with multiple nesting to scale to the region of interest. Different physical schemes are also used to take into account a larger variability; these data are provided by Epson Meteo Centre. The hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The analysis shows the system reliability based on most significant case-studies occurred in the recent years.

  15. Introduction of Drought Monitoring and Forecasting System based on Real-time Water Information Using ICT

    NASA Astrophysics Data System (ADS)

    Lee, Y., II; Kim, H. S.; Chun, G.

    2016-12-01

    There were severe damages such as restriction on water supply caused by continuous drought from 2014 to 2015 in South Korea. Through this drought event, government of South Korea decided to establish National Drought Information Analysis Center in K-water(Korea Water Resources Corporation) and introduce a national drought monitoring and early warning system to mitigate those damages. Drought index such as SPI(Standard Precipitation Index), PDSI(Palmer Drought Severity Index) and SMI(Soil Moisture Index) etc. have been developed and are widely used to provide drought information in many countries. However, drought indexes are not appropriate for drought monitoring and early warning in civilized countries with high population density such as South Korea because it could not consider complicated water supply network. For the national drought monitoring and forecasting of South Korea, `Drought Information Analysis System' (D.I.A.S) which is based on the real time data(storage, flowrate, waterlevel etc.) was developed. Based on its advanced methodology, `DIAS' is changing the paradigm of drought monitoring and early warning systems. Because `D.I.A.S' contains the information of water supply network from water sources to the people across the nation and provides drought information considering the real-time hydrological conditions of each and every water source. For instance, in case the water level of a specific dam declines to predetermined level of caution, `D.I.A.S' will notify people who uses the dam as a source of residential or industrial water. It is expected to provide credible drought monitoring and forecasting information with a strong relationship between drought information and the feelings of people rely on water users by `D.I.A.S'.

  16. Improving probabilistic flood forecasting through a data assimilation scheme based on genetic programming

    NASA Astrophysics Data System (ADS)

    Mediero, L.; Garrote, L.; Chavez-Jimenez, A.

    2012-12-01

    Opportunities offered by high performance computing provide a significant degree of promise in the enhancement of the performance of real-time flood forecasting systems. In this paper, a real-time framework for probabilistic flood forecasting through data assimilation is presented. The distributed rainfall-runoff real-time interactive basin simulator (RIBS) model is selected to simulate the hydrological process in the basin. Although the RIBS model is deterministic, it is run in a probabilistic way through the results of calibration developed in a previous work performed by the authors that identifies the probability distribution functions that best characterise the most relevant model parameters. Adaptive techniques improve the result of flood forecasts because the model can be adapted to observations in real time as new information is available. The new adaptive forecast model based on genetic programming as a data assimilation technique is compared with the previously developed flood forecast model based on the calibration results. Both models are probabilistic as they generate an ensemble of hydrographs, taking the different uncertainties inherent in any forecast process into account. The Manzanares River basin was selected as a case study, with the process being computationally intensive as it requires simulation of many replicas of the ensemble in real time.

  17. Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting

    NASA Astrophysics Data System (ADS)

    Yu, Pao-Shan; Yang, Tao-Chang; Chen, Szu-Yin; Kuo, Chen-Min; Tseng, Hung-Wei

    2017-09-01

    This study aims to compare two machine learning techniques, random forests (RF) and support vector machine (SVM), for real-time radar-derived rainfall forecasting. The real-time radar-derived rainfall forecasting models use the present grid-based radar-derived rainfall as the output variable and use antecedent grid-based radar-derived rainfall, grid position (longitude and latitude) and elevation as the input variables to forecast 1- to 3-h ahead rainfalls for all grids in a catchment. Grid-based radar-derived rainfalls of six typhoon events during 2012-2015 in three reservoir catchments of Taiwan are collected for model training and verifying. Two kinds of forecasting models are constructed and compared, which are single-mode forecasting model (SMFM) and multiple-mode forecasting model (MMFM) based on RF and SVM. The SMFM uses the same model for 1- to 3-h ahead rainfall forecasting; the MMFM uses three different models for 1- to 3-h ahead forecasting. According to forecasting performances, it reveals that the SMFMs give better performances than MMFMs and both SVM-based and RF-based SMFMs show satisfactory performances for 1-h ahead forecasting. However, for 2- and 3-h ahead forecasting, it is found that the RF-based SMFM underestimates the observed radar-derived rainfalls in most cases and the SVM-based SMFM can give better performances than RF-based SMFM.

  18. Web-based hydrological modeling system for flood forecasting and risk mapping

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Cheng, Qiuming

    2008-10-01

    Mechanism of flood forecasting is a complex system, which involves precipitation, drainage characterizes, land use/cover types, ground water and runoff discharge. The application of flood forecasting model require the efficient management of large spatial and temporal datasets, which involves data acquisition, storage, pre-processing and manipulation, analysis and display of model results. The extensive datasets usually involve multiple organizations, but no single organization can collect and maintain all the multidisciplinary data. The possible usage of the available datasets remains limited primarily because of the difficulty associated with combining data from diverse and distributed data sources. Difficulty in linking data, analysis tools and model is one of the barriers to be overcome in developing real-time flood forecasting and risk prediction system. The current revolution in technology and online availability of spatial data, particularly, with the construction of Canadian Geospatial Data Infrastructure (CGDI), a lot of spatial data and information can be accessed in real-time from distributed sources over the Internet to facilitate Canadians' need for information sharing in support of decision-making. This has resulted in research studies demonstrating the suitability of the web as a medium for implementation of flood forecasting and flood risk prediction. Web-based hydrological modeling system can provide the framework within which spatially distributed real-time data accessed remotely to prepare model input files, model calculation and evaluate model results for flood forecasting and flood risk prediction. This paper will develop a prototype web-base hydrological modeling system for on-line flood forecasting and risk mapping in the Oak Ridges Moraine (ORM) area, southern Ontario, Canada, integrating information retrieval, analysis and model analysis for near real time river runoff prediction, flood frequency prediction, flood risk and flood inundation

  19. A Multi-Model Real Time Forecasting Prototype System in the Mara Basin (Kenya/Tanzania)

    NASA Astrophysics Data System (ADS)

    Serrat-Capdevila, A.; Valdes, J. B.; Valdes, R.; Demaria, E. M.; Durcik, M.; Maitaria, K.; Roy, T.

    2013-12-01

    Remote sensing data and hydrologic models can respond to monitoring and forecasting needs in Africa and other poorly gauged regions. We present here the progress to date in developing a multi-model platform to provide hydrologic monitoring and forecasting using real time remote sensing observations. Satellite precipitation products such as CMORPH, TMPA (at 0.25° resolution) and PERSIANN-CCS (at 4km resolution) are used to force two models of different structure. One model is physically based and distributed, and the other is conceptual and lumped at the sub-basin level. The performance of both models is evaluated using different metrics, and the uncertainty in their predictions based on the errors incurred during the historical simulations period is computed. The models were compared and the potential increase in performance from using both models versus a single one will be assessed. This work provides insights into the advantages of a multi-model platform over a single model, with respect to different management and decision-making purposes. The methods were applied to the Mara Basin (Kenya/Tanzania), where growing human demands on water and land use are likely to alter significantly the hydrologic balance of the basin and the ecosystems that depend on it. These efforts are part of the Applied Sciences Team of the NASA SERVIR Program in collaboration with its East Africa Hub at the Regional Center for Mapping of Resources for Development (Nairobi,Kenya).

  20. Real time forecasts through physical and stochastic models of earthquake clustering

    NASA Astrophysics Data System (ADS)

    Murru, M.; Console, R.; Catalli, F.; Falcone, G.

    2005-12-01

    The phenomenon of earthquake interaction has become a popular subject of study because it can shed light on the physical processes leading to earthquakes, and because it has a potential value for short-term earthquake forecast and hazard mitigation. In this study we start from a purely stochastic approach known as the so-called epidemic model (ETAS) introduced by Ogata in 1988 and its variations. Then we build up an approach by which this model and the rate-and-state constitutive law introduced by Dieterich in the `90s have been merged in a single algorithm and statistically tested. Tests on real seismicity and comparison with a plain time-independent Poissonian model through likelihood-based methods have reliably proved their validity. The models are suitable for real-time forecast of the seismic activity. In the context of the low-magnitude Italian seismicity recorded from 1987 to 2005, the new model incorporating the physical concept of the rate-and-state theory performs not better than the purely stochastic model. Nevertheless, it has the advantage of needing a smaller number of free parameters and providing new interesting insights on the physics of the seismogenic process.

  1. Community-wide space weather Scoreboards: Facilitating the Validation of Real-time CME, Flare, and SEP Forecasts

    NASA Astrophysics Data System (ADS)

    Mullinix, R.; Mays, M. L.; Kuznetsova, M. M.; Andries, J.; Bingham, S.; Bloomfield, D.; Boblitt, J. M.; Crosby, N. B.; Dierckxsens, M.; Guerra, J. A.; Leka, K. D.; Marsh, M. S.; Murray, S.; Wiegand, C.

    2016-12-01

    Confidence assessment of predictive space weather models ultimately determines the value of forecasts for end users. Testing predictive capabilities before event onset is important and especially relevant for validating space weather models. This poster presents three real-time forecast validation projects facilitated by the CCMC via forecast collection "scoreboards": (1) CME arrival time and geomagnetic storm strength, (2) flare occurrence probability, and (3) SEP onset, duration, peak flux, probability, and overall profile. The CME, Flare, and SEP scoreboards enable world-wide community involvement in real-time predictions, foster community validation projects, and ultimately help researchers improve their CME, flare, and SEP forecasts. All CME, Flare, SEP forecast modelers and experts worldwide are invited to advise or participate in this effort. The flare and SEP systems are automated such that model developers can routinely upload their predictions to an anonymous ftp and the data is accessible to anyone via an API. The "CME arrival time scoreboard" (https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/) provides a central location for the community to: submit their CME arrival time forecast in real-time, quickly view all forecasts at once in real-time, and compare forecasting methods when the event has arrived. There are currently 19 registered CME arrival time prediction methods. The "Flare Scoreboard" (http://ccmc.gsfc.nasa.gov/challenges/flare.php) project is led by the UK Met Office.The full disk and active region flare forecasts can currently be viewed on an interactive display overlaid on an SDO/AIA or HMI image of the Sun and will be dynamically paired with a display of flare probability time series (coming soon). The "SEP Scoreboard" (http://ccmc.gsfc.nasa.gov/challenges/sep.php) project is led by BIRA-IASB and the UK Met Office. SEP forecasts can be roughly divided into three categories: continuous/Probabilistic, solar event triggered, non near real-time

  2. Air quality real-time forecast before and during the G-20 ...

    EPA Pesticide Factsheets

    The 2016 G-20 Hangzhou summit, the eleventh annual meeting of the G-20 heads of government, will be held during September 3-5, 2016 in Hangzhou, China. For a successful summit, it is important to ensure good air quality. To achieve this goal, governments of Hangzhou and its surrounding provinces will enforce a series of emission reductions, such as a forced closure of major highly-polluting industries and also limiting car and construction emissions in the cities and surroundings during the 2016 G-20 Hangzhou summit. Air quality forecast systems consisting of the two-way coupled WRF-CMAQ and online-coupled WRF-Chem have been applied to forecast air quality in Hangzhou regularly. This study will present the results of real-time forecasts of air quality over eastern China using 12-km grid spacing and for Hangzhou area using 4-km grid spacing with these two modeling systems using emission inventories for base and 2016 G-20 scenarios before and during the 2016 G-20 Hangzhou summit. Evaluations of models’ performance for both cases for PM2.5, PM10, O3, SO2, NO2, CO, air quality index (AQI), and aerosol optical depth (AOD) are carried out by comparing them with observations obtained from satellites, such as MODIS, and surface monitoring networks. The effects of the emission reduction efforts on expected air quality improvements during the2016 G-20 Hangzhou summit will be studied in depth. This study provides insights on how air quality will be improved by a plan

  3. Air quality real-time forecast before and during the G-20 ...

    EPA Pesticide Factsheets

    The 2016 G-20 Hangzhou summit, the eleventh annual meeting of the G-20 heads of government, will be held during September 3-5, 2016 in Hangzhou, China. For a successful summit, it is important to ensure good air quality. To achieve this goal, governments of Hangzhou and its surrounding provinces will enforce a series of emission reductions, such as a forced closure of major highly-polluting industries and also limiting car and construction emissions in the cities and surroundings during the 2016 G-20 Hangzhou summit. Air quality forecast systems consisting of the two-way coupled WRF-CMAQ and online-coupled WRF-Chem have been applied to forecast air quality in Hangzhou regularly. This study will present the results of real-time forecasts of air quality over eastern China using 12-km grid spacing and for Hangzhou area using 4-km grid spacing with these two modeling systems using emission inventories for base and 2016 G-20 scenarios before and during the 2016 G-20 Hangzhou summit. Evaluations of models’ performance for both cases for PM2.5, PM10, O3, SO2, NO2, CO, air quality index (AQI), and aerosol optical depth (AOD) are carried out by comparing them with observations obtained from satellites, such as MODIS, and surface monitoring networks. The effects of the emission reduction efforts on expected air quality improvements during the2016 G-20 Hangzhou summit will be studied in depth. This study provides insights on how air quality will be improved by a plan

  4. A Near Real-Time Monitoring System for NWP Forecast and Satellite-Based Products

    NASA Astrophysics Data System (ADS)

    Vasquez, L.; Peng, G.; Urzen, M.; Hankins, B.; Zhang, H.

    2012-12-01

    A data repository for collocated model forecasts and simulations and in-situ observations for Surface Fluxes Analysis (SurFA) project has been established at the US National Climatic Data Center (NCDC; www.ncdc.noaa.gov/thredds/surfa.html), which is also one of the data centers for the National Oceanic and Atmospheric Administration (NOAA)'s satellite and other climate data. The SurFA project is initiated by the World Climate Research Program (WCRP) Working Groups on Numerical Experimentation and on the Surface Fluxes (WGNE and WGSF), Observation & Assimilation Panel (WOAP), and the Ocean Observation Panel for Climate (OOPC) to evaluate the performance of high-resolution global Numerical Weather Prediction (NWP) forecast variables and satellite-based products used in computing surface fluxes such as surface winds against high quality in-situ observations. SPEC is a satellite product evaluation system that is developed at NCDC and designed to facilitate the integrated operational monitoring of NOAA's satellite and modeling systems and products. Currently, it has the capability of ingesting data via various types of data servers, co- locating fields in time and space of various data formats, and providing users with various data output formats including NetCDF format and basic analysis and visualization functionality. A prototype has been developed utilizing the existing capability and functionality of SPEC and the SurFA datasets to monitor the performance of NWP short-range forecast winds and satellite-derived winds by identifying potential outliers in near real-time and in an automatic fashion. An end-to-end system design and data flow will be outlined along with examples of its applications and future improvement. Such a system can be readily applied to other model variables.

  5. Application of hydrological models for flood forecasting and flood control in India and Bangladesh

    NASA Astrophysics Data System (ADS)

    Refsgaard, J. C.; Havnø, K.; Ammentorp, H. C.; Verwey, A.

    A general mathematical modelling system for real-time flood forecasting and flood control planning is described. The system comprises a lumped conceptual rainfall-runoff model, a hydrodynamic model for river routing, reservoir and flood plain simulation, an updating procedure for real-time operation and a comprehensive data management system. The system is presently applied for real-time forecasting of the two 20 000 km 2 (Yamuna and Damodar) catchments in India as well as for flood control modelling at the same two catchments in India. In another project the system is being established for the entire Bangladesh with a coarse discretization and for the South East Region of Bangladesh with a fine model discretization. The objectives of the modelling application in Bangladesh are to enable predictions of the effects of alternative river regulation structures in terms of changes in water levels, inundations, siltration and salinity. The modelling system has been transferred to the Central Water Commission of India and the Master Plan Organization of Bangladesh in connection with comprehensive training programmes. The models are presently being operated by Indian and Bangladeshi engineers in the two countries.

  6. Global and Regional Real-time Systems for Flood and Drought Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Gourley, J. J.; Xue, X.; Flamig, Z.

    2015-12-01

    A Hydrometeorological Extreme Mapping and Prediction System (HyXtreme-MaP), initially built upon the Coupled Routing and Excess STorage (CREST) distributed hydrological model, is driven by real-time quasi-global TRMM/GPM satellites and by the US Multi-Radar Multi-Sensor (MRMS) radar network with dual-polarimetric upgrade to simulate streamflow, actual ET, soil moisture and other hydrologic variables at 1/8th degree resolution quasi-globally (http://eos.ou.edu) and at 250-meter 2.5-mintue resolution over the Continental United States (CONUS: http://flash.ou.edu).­ Multifaceted and collaborative by-design, this end-to-end research framework aims to not only integrate data, models, and applications but also brings people together (i.e., NOAA, NASA, University researchers, and end-users). This presentation will review the progresses, challenges and opportunities of such HyXTREME-MaP System used to monitor global floods and droughts, and also to predict flash floods over the CONUS.

  7. Implementation of remote sensing data for flood forecasting

    NASA Astrophysics Data System (ADS)

    Grimaldi, S.; Li, Y.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2016-12-01

    Flooding is one of the most frequent and destructive natural disasters. A timely, accurate and reliable flood forecast can provide vital information for flood preparedness, warning delivery, and emergency response. An operational flood forecasting system typically consists of a hydrologic model, which simulates runoff generation and concentration, and a hydraulic model, which models riverine flood wave routing and floodplain inundation. However, these two types of models suffer from various sources of uncertainties, e.g., forcing data initial conditions, model structure and parameters. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using streamflow measurements, and such applications are limited in well-gauged areas. The recent increasing availability of spatially distributed Remote Sensing (RS) data offers new opportunities for flood events investigation and forecast. Based on an Australian case study, this presentation will discuss the use 1) of RS soil moisture data to constrain a hydrologic model, and 2) of RS-derived flood extent and level to constrain a hydraulic model. The hydrological model is based on a semi-distributed system coupled with a two-soil-layer rainfall-runoff model GRKAL and a linear Muskingum routing model. Model calibration was performed using either 1) streamflow data only or 2) both streamflow and RS soil moisture data. The model was then further constrained through the integration of real-time soil moisture data. The hydraulic model is based on LISFLOOD-FP which solves the 2D inertial approximation of the Shallow Water Equations. Streamflow data and RS-derived flood extent and levels were used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space was quantified and discussed.

  8. A Real-Time MODIS Vegetation Composite for Land Surface Models and Short-Term Forecasting

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.; Jedlovec, Gary J.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center is producing real-time, 1- km resolution Normalized Difference Vegetation Index (NDVI) gridded composites over a Continental U.S. domain. These composites are updated daily based on swath data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the polar orbiting NASA Aqua and Terra satellites, with a product time lag of about one day. A simple time-weighting algorithm is applied to the NDVI swath data that queries the previous 20 days of data to ensure a continuous grid of data populated at all pixels. The daily composites exhibited good continuity both spatially and temporally during June and July 2010. The composites also nicely depicted high greenness anomalies that resulted from significant rainfall over southwestern Texas, Mexico, and New Mexico during July due to early-season tropical cyclone activity. The SPoRT Center is in the process of computing greenness vegetation fraction (GVF) composites from the MODIS NDVI data at the same spatial and temporal resolution for use in the NASA Land Information System (LIS). The new daily GVF dataset would replace the monthly climatological GVF database (based on Advanced Very High Resolution Radiometer [AVHRR] observations from 1992-93) currently available to the Noah land surface model (LSM) in both LIS and the public version of the Weather Research and Forecasting (WRF) model. The much higher spatial resolution (1 km versus 0.15 degree) and daily updates based on real-time satellite observations have the capability to greatly improve the simulation of the surface energy budget in the Noah LSM within LIS and WRF. Once code is developed in LIS to incorporate the daily updated GVFs, the SPoRT Center will conduct simulation sensitivity experiments to quantify the impacts and improvements realized by the MODIS real-time GVF data. This presentation will describe the methodology used to develop the 1-km MODIS NDVI composites and

  9. Real-time tsunami inundation forecasting and damage mapping towards enhancing tsunami disaster resiliency

    NASA Astrophysics Data System (ADS)

    Koshimura, S.; Hino, R.; Ohta, Y.; Kobayashi, H.; Musa, A.; Murashima, Y.

    2014-12-01

    With use of modern computing power and advanced sensor networks, a project is underway to establish a new system of real-time tsunami inundation forecasting, damage estimation and mapping to enhance society's resilience in the aftermath of major tsunami disaster. The system consists of fusion of real-time crustal deformation monitoring/fault model estimation by Ohta et al. (2012), high-performance real-time tsunami propagation/inundation modeling with NEC's vector supercomputer SX-ACE, damage/loss estimation models (Koshimura et al., 2013), and geo-informatics. After a major (near field) earthquake is triggered, the first response of the system is to identify the tsunami source model by applying RAPiD Algorithm (Ohta et al., 2012) to observed RTK-GPS time series at GEONET sites in Japan. As performed in the data obtained during the 2011 Tohoku event, we assume less than 10 minutes as the acquisition time of the source model. Given the tsunami source, the system moves on to running tsunami propagation and inundation model which was optimized on the vector supercomputer SX-ACE to acquire the estimation of time series of tsunami at offshore/coastal tide gauges to determine tsunami travel and arrival time, extent of inundation zone, maximum flow depth distribution. The implemented tsunami numerical model is based on the non-linear shallow-water equations discretized by finite difference method. The merged bathymetry and topography grids are prepared with 10 m resolution to better estimate the tsunami inland penetration. Given the maximum flow depth distribution, the system performs GIS analysis to determine the numbers of exposed population and structures using census data, then estimates the numbers of potential death and damaged structures by applying tsunami fragility curve (Koshimura et al., 2013). Since the tsunami source model is determined, the model is supposed to complete the estimation within 10 minutes. The results are disseminated as mapping products to

  10. [Real-time irrigation forecast of cotton mulched with plastic film under drip irrigation based on meteorological date].

    PubMed

    Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei

    2015-02-01

    It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.

  11. Impact of scatterometer wind (ASCAT-A/B) data assimilation on semi real-time forecast system at KIAPS

    NASA Astrophysics Data System (ADS)

    Han, H. J.; Kang, J. H.

    2016-12-01

    Since Jul. 2015, KIAPS (Korea Institute of Atmospheric Prediction Systems) has been performing the semi real-time forecast system to assess the performance of their forecast system as a NWP model. KPOP (KIAPS Protocol for Observation Processing) is a part of KIAPS data assimilation system and has been performing well in KIAPS semi real-time forecast system. In this study, due to the fact that KPOP would be able to treat the scatterometer wind data, we analyze the effect of scatterometer wind (ASCAT-A/B) on KIAPS semi real-time forecast system. O-B global distribution and statistics of scatterometer wind give use two information which are the difference between background field and observation is not too large and KPOP processed the scatterometer wind data well. The changes of analysis increment because of O-B global distribution appear remarkably at the bottom of atmospheric field. It also shows that scatterometer wind data cover wide ocean where data would be able to short. Performance of scatterometer wind data can be checked through the vertical error reduction against IFS between background and analysis field and vertical statistics of O-A. By these analysis result, we can notice that scatterometer wind data will influence the positive effect on lower level performance of semi real-time forecast system at KIAPS. After, long-term result based on effect of scatterometer wind data will be analyzed.

  12. Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venners, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; Limaye, Ashutosh; O'Brien, Raymond

    2015-01-01

    The use of cloud computing resources continues to grow within the public and private sector components of the weather enterprise as users become more familiar with cloud-computing concepts, and competition among service providers continues to reduce costs and other barriers to entry. Cloud resources can also provide capabilities similar to high-performance computing environments, supporting multi-node systems required for near real-time, regional weather predictions. Referred to as "Infrastructure as a Service", or IaaS, the use of cloud-based computing hardware in an on-demand payment system allows for rapid deployment of a modeling system in environments lacking access to a large, supercomputing infrastructure. Use of IaaS capabilities to support regional weather prediction may be of particular interest to developing countries that have not yet established large supercomputing resources, but would otherwise benefit from a regional weather forecasting capability. Recently, collaborators from NASA Marshall Space Flight Center and Ames Research Center have developed a scripted, on-demand capability for launching the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS), which includes pre-compiled binaries of the latest version of the Weather Research and Forecasting (WRF) model. The WRF-EMS provides scripting for downloading appropriate initial and boundary conditions from global models, along with higher-resolution vegetation, land surface, and sea surface temperature data sets provided by the NASA Short-term Prediction Research and Transition (SPoRT) Center. This presentation will provide an overview of the modeling system capabilities and benchmarks performed on the Amazon Elastic Compute Cloud (EC2) environment. In addition, the presentation will discuss future opportunities to deploy the system in support of weather prediction in developing countries supported by NASA's SERVIR Project, which provides capacity building

  13. Improvement in cloud predictions using satellite data assimilation for real-time forecasting

    NASA Astrophysics Data System (ADS)

    Vellore, R.; Koracin, D.; Wetzel, M.

    2006-12-01

    adiabatic lapse rate; (b) the second step is to compute the cloud top height using cloud base temperature, and the satellite- derived cloud top temperature following the wet adiabatic lapse rate in the cloud layer; (c) the third step is to obtain a representative lapse rate for the computing domain; (d) the fourth step is to compute the cloud top heights for the individual satellite pixels in the entire domain. The information on cloud top height and cloud top temperature obtained from the cloudy pixels is then dynamically assimilated into the model analysis using Cressman's objective analysis. Using the improved model analyses, a deterministic forecast will be carried out with an option of four-dimensional data assimilation of model winds and thermodynamic variables for a pre- forecast period of one complete diurnal cycle. Verification will be carried out using the hourly surface observations and cloud base measurements, and also using the satellite cloud imagery against the simulated cloud imagery and associated cloud products. The data assimilation of the derived cloud products is being tested in modeling systems such as the Mesoscale Model 5 (MM5) and the Weather Research Forecasting Model (WRF). The data assimilation of cloud products and verification is intended for the pre-processing module in a real-time forecasting system using various objective analysis procedures such as the Cressman-type, multi-quadric and 3DVAR. This study is to develop an efficient forecasting system to support naval aircraft and rotorcraft operations at the Fallon Naval Air Station, Fallon, Nevada.

  14. Salish Sea Nowcast: A Real-time High-Resolution Model for Forecasts and Research Support

    NASA Astrophysics Data System (ADS)

    Latornell, D.; Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Machuca, I.

    2016-02-01

    The Salish Sea real-time model system produces two forecasts and a nowcast daily, providing storm surge forecasts for several municipality stakeholders.Without human intervention, the automation system collects the required forcing data from various web services, runs the model and publishes results in the form of plots on several web pages.Here we will present the automation framework that enables a research model to be run operationally.The automation runs across two computer systems with a cloud computing facility running the numerical model (NEMO in our case), and a local Linux server doing everything else.The system has a modular, asynchronous architecture that is coordinated by a messaging framework.A manager process coordinates the sequencing and operation of a collection of worker processes each responsible for a specific task in the preparation for a model run, execution of the run, analysis, visualization, and publication to the web of the run results.Techniques that make the system reasonably fault tolerant will be discussed.The modular design easily allows researchers with a variety of skill sets to contribute to the framework to the benefit of the project and its knowledge transfer to stakeholders.We will discuss the performance of the system during the 2014-2016 storm surge seasons,and routine evaluation against sea surface height observation data streams.Daily model runs with best available weather and river runoff forcing facilitate continuous evaluation against cabled observatory data streams.We will show how those evaluations provide important insights that help to driveresearch that improves the model.

  15. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  16. Ensemble Data Assimilation with HSPF for Improved Real-Time Water Quality Forecasting

    NASA Astrophysics Data System (ADS)

    Kim, S.; Riazi, H.; rafieei nasab, A.; Shin, C.; Seo, D.

    2013-05-01

    An ensemble data assimilation (DA) procedure for the Hydrologic Simulation Program - Fortran (HSPF) model has been developed, tested and evaluated for implementation in real-time water quality forecasting. The procedure, referred to herein as MLEF-HSPF, uses maximum likelihood ensemble filter (MLEF) which combines strengths of variational assimilation (VAR) and ensemble Kalman filter (EnKF). To evaluate the procedure, MLEF-HSPF was run daily for a 2-yr period for the Kumho River Subbasin of the Nakdong River Basin in Korea. A set of performance measures was used to assess the marginal value of DA-aided predictions of stream flow and water quality variables such as water temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), ammonium (NH4), nitrate (NO3), phosphate (PO4) and chlorophyll a. Due to large dimensionality of the state vector and complexity of the biochemical processes involved, DA with HSPF poses additional challenges. In this presentation, we describe MLEF-HSPF, summarize the evaluation results and identify the challenges.

  17. A model for real-time quantitative rainfall forecasting using remote sensing. 1. Formulation

    NASA Astrophysics Data System (ADS)

    French, Mark N.; Krajewski, Witold F.

    1994-04-01

    A physically based rainfall forecasting model for real-time hydrologic applications is developed with emphasis on utilization of remote sensing observations. Temporal and spatial scales of interest are lead times of the order of hours and areas of the order of 10 km2. The dynamic model is derived from conservation of mass in a cloud column as defined by the continuity equations for air, liquid water, water vapor, and cloud water. Conservation of momentum is modeled using a semi-Lagrangian frame of reference. The model state is vertically integrated liquid water content in a column of the atmosphere. Additionally, laws of thermodynamics, adiabatic air parcel theory, and cloud microphysics are applied to derive a basic parameterization of the governing equations of model dynamics. The parameterization is in terms of hydrometeorologic observables including radar reflectivity, satellite-infrared brightness temperature, and ground-level air temperature, dew point temperature, and pressure. Implementation and application is described by French et al. (this issue) and involves incorporation of uncertainty analysis and a two-dimensional spatial domain, where the dynamics of the continuous space-time rainfall process are discretized onto a rectangular grid.

  18. A decomposition-integration risk analysis method for real-time operation of a complex flood control system

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhong, Ping-An; Zhang, Yu; Navar, David; Yeh, William W.-G.

    2017-03-01

    Risk analysis plays an important role in decision making for real-time flood control operation of complex flood control systems. A typical flood control system consists of reservoirs, river channels, and downstream control points. The system generally is characterized by nonlinearity and large scale. Additionally, the input variables are mostly stochastic. Because of the dimensionality problem, generally, it would not be possible to carry out risk analysis without decomposition. In this paper, we propose a decomposition-integration approach whereby the original complex flood control system is decomposed into a number of independent subsystems. We conduct risk analysis for each subsystem and then integrate the results by means of combination theory of stochastic processes. We evaluate the propagation of uncertainties through the complex flood control system and calculate the risk of reservoir overtopping, as well as the risk of flooding at selected downstream control points. We apply the proposed methodology to a flood control system in the middle reaches of the Huaihe River basin in China. The results show that the proposed method is practical and provides a way to estimate the risks in real-time flood control operation of a complex flood control system.

  19. Multiple indices method for real-time tsunami inundation forecast using a dense offshore observation network

    NASA Astrophysics Data System (ADS)

    Yamamoto, N.; Aoi, S.; Hirata, K.; Suzuki, W.; Kunugi, T.; Nakamura, H.

    2015-12-01

    We started to develop a new methodology for real-time tsunami inundation forecast system (Aoi et al., 2015, this meeting) using densely offshore tsunami observations of the Seafloor Observation Network for Earthquakes and Tsunamis (S-net), which is under construction along the Japan Trench (Kanazawa et al., 2012, JpGU; Uehira et al., 2015, IUGG). In our method, the most important concept is involving any type and/or form uncertainties in the tsunami forecast, which cannot be dealt with any of standard linear/nonlinear least square approaches. We first prepare a Tsunami Scenario Bank (TSB), which contains offshore tsunami waveforms at the S-net stations and tsunami inundation information calculated from any possible tsunami source. We then quickly select several acceptable tsunami scenarios that can explain offshore observations by using multiple indices and appropriate thresholds, after a tsunami occurrence. At that time, possible tsunami inundations coupled with selected scenarios are forecasted (Yamamoto et al., 2014, AGU). Currently, we define three indices: correlation coefficient and two variance reductions, whose L2-norm part is normalized either by observations or calculations (Suzuki et al., 2015, JpGU; Yamamoto et al., 2015, IUGG). In this study, we construct the TSB, which contains various tsunami source models prepared for the probabilistic tsunami hazard assessment in the Japan Trench region (Hirata et al., 2014, AGU). To evaluate the propriety of our method, we adopt the fault model based on the 2011 Tohoku earthquake as a pseudo "observation". We also calculate three indices using coastal maximum tsunami height distributions between observation and calculation. We then obtain the correlation between coastal and offshore indices. We notice that the index value of coastal maximum tsunami heights is closer to 1 than the index value of offshore waveforms, i.e., the coastal maximum tsunami height may be predictable within appropriate thresholds defined for

  20. Evaluation of Real-time Hurricane Forecasts Using the Advanced Hurricane WRF Model for the 2007 Atlantic Hurricane Season.

    NASA Astrophysics Data System (ADS)

    Done, J. M.

    2007-12-01

    Real-time forecasts have been conducted with the Advanced Hurricane WRF Model (AHW) for named storms of the 2007 Atlantic hurricane season. Taking advantage of increased computational power over previous years, 5- day forecasts are conducted daily using three domains; two nests of 4km and 1.3km grid-spacing track the vortex within a fixed parent domain of 12km grid-spacing. In this presentation, forecast accuracy in terms of track and intensity will be presented. The quality of the forecast storm intensity can vary dramatically between storms, and sometimes between successive forecasts of a given storm. This variability in model performance is explored by analyzing the statistics of the observed and model storm intensities for the 2007 hurricane season. Conditions under which the model performs poorly are identified and a series of sensitivity simulations highlight aspects of the modeling system to which the forecast intensity is most sensitive.

  1. Verification of a probabilistic flood forecasting system for an Alpine Region of northern Italy

    NASA Astrophysics Data System (ADS)

    Laiolo, P.; Gabellani, S.; Rebora, N.; Rudari, R.; Ferraris, L.; Ratto, S.; Stevenin, H.

    2012-04-01

    Probabilistic hydrometeorological forecasting chains are increasingly becoming an operational tool used by civil protection centres for issuing flood alerts. One of the most important requests of decision makers is to have reliable systems, for this reason an accurate verification of their predictive performances become essential. The aim of this work is to validate a probabilistic flood forecasting system: Flood-PROOFS. The system works in real time, since 2008, in an alpine Region of northern Italy, Valle d'Aosta. It is used by the Civil Protection regional service to issue warnings and by the local water company to protect its facilities. Flood-PROOFS uses as input Quantitative Precipitation Forecast (QPF) derived from the Italian limited area model meteorological forecast (COSMO-I7) and forecasts issued by regional expert meteorologists. Furthermore the system manages and uses both real time meteorological and satellite data and real time data on the maneuvers performed by the water company on dams and river devices. The main outputs produced by the computational chain are deterministic and probabilistic discharge forecasts in different cross sections of the considered river network. The validation of the flood prediction system has been conducted on a 25 months period considering different statistical methods such as Brier score, Rank histograms and verification scores. The results highlight good performances of the system as support system for emitting warnings but there is a lack of statistics especially for huge discharge events.

  2. Effects of Real-Time NASA Vegetation Data on Model Forecasts of Severe Weather

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bell, Jordan R.; LaFontaine, Frank J.; Peters-Lidard, Christa D.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA-EOS Aqua and Terra satellites. NASA SPoRT started generating daily real-time GVF composites at 1-km resolution over the Continental United States beginning 1 June 2010. A companion poster presentation (Bell et al.) primarily focuses on impact results in an offline configuration of the Noah land surface model (LSM) for the 2010 warm season, comparing the SPoRT/MODIS GVF dataset to the current operational monthly climatology GVF available within the National Centers for Environmental Prediction (NCEP) and Weather Research and Forecasting (WRF) models. This paper/presentation primarily focuses on individual case studies of severe weather events to determine the impacts and possible improvements by using the real-time, high-resolution SPoRT-MODIS GVFs in place of the coarser-resolution NCEP climatological GVFs in model simulations. The NASA-Unified WRF (NU-WRF) modeling system is employed to conduct the sensitivity simulations of individual events. The NU-WRF is an integrated modeling system based on the Advanced Research WRF dynamical core that is designed to represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales in a coupled simulation environment. For this experiment, the coupling between the NASA Land Information System (LIS) and the WRF model is utilized to measure the impacts of the daily SPoRT/MODIS versus the monthly NCEP climatology GVFs. First, a spin-up run of the LIS is integrated for two years using the Noah LSM to ensure that the land surface fields reach an equilibrium state on the 4-km grid mesh used. Next, the spin-up LIS is run in two separate modes beginning on 1 June 2010, one continuing with the climatology GVFs while the

  3. A real-time evaluation and demonstration of strategies for 'Over-The-Loop' ensemble streamflow forecasting in US watersheds

    NASA Astrophysics Data System (ADS)

    Wood, Andy; Clark, Elizabeth; Mendoza, Pablo; Nijssen, Bart; Newman, Andy; Clark, Martyn; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    ' (SHARP) to implement, assess and demonstrate real-time over-the-loop ensemble flow forecasts in a range of US watersheds. The system relies on fully ensemble techniques, including: an 100-member ensemble of meteorological model forcings and an ensemble particle filter data assimilation for initializing watershed states; analog/regression-based downscaling of ensemble weather forecasts from GEFS; and statistical post-processing of ensemble forecast outputs, all of which run in real-time within a workflow managed by ECWMF's ecFlow libraries over large US regional domains. We describe SHARP and present early hindcast and verification results for short to seasonal range streamflow forecasts in a number of US case study watersheds.

  4. Optimized Flood Forecasts Using a Statistical Enemble

    NASA Astrophysics Data System (ADS)

    Silver, Micha; Fredj, Erick

    2016-04-01

    The method presented here assembles an optimized flood forecast from a set of consecutive WRF-Hydro simulations by applying coefficients which we derive from straightforward statistical procedures. Several government and research institutions that produce climate data offer ensemble forecasts, which merge predictions from different models to gain a more accurate fit to observed data. Existing ensemble forecasts present climate and weather predictions only. In this research we propose a novel approach to constructing hydrological ensembles for flood forecasting. The ensemble flood forecast is created by combining predictions from the same model, but initiated at different times. An operative flood forecasting system, run by the Israeli Hydrological Service, produces flood forecasts twice daily with a 72 hour forecast period. By collating the output from consecutive simulation runs we have access to multiple overlapping forecasts. We then apply two statistical procedures to blend these consecutive forecasts, resulting in a very close fit to observed flood runoff. We first employ cross-correlation with a time lag to determine a time shift for each of the original, consecutive forecasts. This shift corrects for two possible sources of error: slow or fast moving weather fronts in the base climate data; and mis-calibrations of the WRF-Hydro model in determining the rate of flow of surface runoff and in channels. We apply this time shift to all consecutive forecasts, then run a linear regression with the observed runoff data as the dependent variable and all shifted forecasts as the predictor variables. The solution to the linear regression equation is a set of coefficients that corrects the amplitude errors in the forecasts. These resulting regression coefficients are then applied to the consecutive forecasts producing a statistical ensemble which, by design, closely matches the observed runoff. After performing this procedure over many storm events in the Negev region

  5. Successive estimation of a tsunami wavefield without earthquake source data: A data assimilation approach toward real-time tsunami forecasting

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Obara, Kazushige; Shinohara, Masanao; Kanazawa, Toshihiko; Uehira, Kenji

    2015-10-01

    We propose a tsunami forecasting method based on a data assimilation technique designed for dense tsunameter networks. Rather than using seismic source parameters or initial sea surface height as the initial condition of for a tsunami forecasting, it estimates the current tsunami wavefield (tsunami height and tsunami velocity) in real time by repeatedly assimilating dense tsunami data into a numerical simulation. Numerical experiments were performed using a simple 1-D station array and the 2-D layout of the new S-net tsunameter network around the Japan Trench. Treating a synthetic tsunami calculated by the finite-difference method as observed data, the data assimilation reproduced the assumed tsunami wavefield before the tsunami struck the coastline. Because the method estimates the full tsunami wavefield, including velocity, these wavefields can be used as initial conditions for other tsunami simulations to calculate inundation or runup for real-time forecasting.

  6. Decision making based on global flood forecasts and satellite-derived inundation maps in data-sparse regions

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Hirpa, Feyera A.; Thielen-del Pozo, Jutta; Salamon, Peter; Brakenridge, G. Robert; Pappenberger, Florian; De Groeve, Tom

    2016-04-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response decisions. Global-scale flood forecasting and satellite-based flood detection systems are currently operating, however their reliability for decision making applications needs to be assessed. In this study, we performed comparative evaluations of several operational global flood forecasting and flood detection systems, using major flood events recorded over 2012-2014. Specifically, we evaluated the spatial extent and temporal characteristics of flood detections from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS). Furthermore, we compared the GFDS flood maps with those from NASA's two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Results reveal that: 1) general agreement was found between the GFDS and MODIS flood detection systems, 2) large differences exist in the spatio-temporal characteristics of the GFDS detections and GloFAS forecasts, and 3) the quantitative validation of global flood disasters in data-sparse regions is highly challenging. Overall, the satellite remote sensing provides useful near real-time flood information that can be useful for risk management. We highlight the known limitations of global flood detection and forecasting systems, and propose ways forward to improve the reliability of large scale flood monitoring tools.

  7. On the integration of HydroProg and FloodMap: towards real-time inundation predictions in the upper Nysa Klodzka basin (SW Poland)

    NASA Astrophysics Data System (ADS)

    Yu, Dapeng; Mizinski, Bartlomiej; Latocha, Agnieszka; Parzoch, Krzysztof; Niedzielski, Tomasz

    2015-04-01

    The paper summarizes attempts to link the HydroProg system for issuing the real-time warnings against hydrologic hazards (research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland) with the hydrodynamic FloodMap model. HydroProg itself integrates hydrometeorological gauging networks with dissimilar hydrologic models in order to deliver multiple river stage prognoses and their multimodel ensemble prediction. FloodMap uses HydroProg-delivered forecasts and, along with data on topography and bed profiles, produces short-term (3-hour) prognoses of inundation. The research is carried out in five test sites located in the upper Nysa Klodzka basin (SW Poland), where the HydroProg-Klodzko prototype is experimentally implemented, and is steadily providing the users with experimental prognoses of river stages (www.klodzko.hydroprog.uni.wroc.pl). The successful implementation of HydroProg in Klodzko County is due to the partnership with its authorities who developed and maintain the Local System for Flood Monitoring (Lokalny System Oslony Przeciwpowodziowej - LSOP). For the purpose of HydroProg-FloodMap integration we selected: (1) three hydrograph prediction approaches offered by HydroProg-Klodzko, (2) five specific peak flow events, and (3) five test sites along four mountainous rivers of the study area, focusing on 3-hour hydrograph predictions. The calibration of the FloodMap model is based on an overbank flow reconstruction, produced as a result of mapping geomorphological consequences of the flood that occurred in the Zelazno site on 26-28 June 2009. The discussion as to whether the calibrated model can be extrapolated and used in the remaining test sites is also provided. By utilizing FloodMap with observed water depth data we produce simulated inundation, which we verify against the orthophoto images acquired by the Unmanned Aerial Vehicle (UAV). Subsequently, we again run the FloodMap model with the HydroProg-delivered prognoses of

  8. Development of Real-time Tsunami Inundation Forecast Using Ocean Bottom Tsunami Networks along the Japan Trench

    NASA Astrophysics Data System (ADS)

    Aoi, S.; Yamamoto, N.; Suzuki, W.; Hirata, K.; Nakamura, H.; Kunugi, T.; Kubo, T.; Maeda, T.

    2015-12-01

    In the 2011 Tohoku earthquake, in which huge tsunami claimed a great deal of lives, the initial tsunami forecast based on hypocenter information estimated using seismic data on land were greatly underestimated. From this lesson, NIED is now constructing S-net (Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench) which consists of 150 ocean bottom observatories with seismometers and pressure gauges (tsunamimeters) linked by fiber optic cables. To take full advantage of S-net, we develop a new methodology of real-time tsunami inundation forecast using ocean bottom observation data and construct a prototype system that implements the developed forecasting method for the Pacific coast of Chiba prefecture (Sotobo area). We employ a database-based approach because inundation is a strongly non-linear phenomenon and its calculation costs are rather heavy. We prepare tsunami scenario bank in advance, by constructing the possible tsunami sources, and calculating the tsunami waveforms at S-net stations, coastal tsunami heights and tsunami inundation on land. To calculate the inundation for target Sotobo area, we construct the 10-m-mesh precise elevation model with coastal structures. Based on the sensitivities analyses, we construct the tsunami scenario bank that efficiently covers possible tsunami scenarios affecting the Sotobo area. A real-time forecast is carried out by selecting several possible scenarios which can well explain real-time tsunami data observed at S-net from tsunami scenario bank. An advantage of our method is that tsunami inundations are estimated directly from the actual tsunami data without any source information, which may have large estimation errors. In addition to the forecast system, we develop Web services, APIs, and smartphone applications and brush them up through social experiments to provide the real-time tsunami observation and forecast information in easy way to understand toward urging people to evacuate.

  9. An Analytical Framework for Flood Water Conservation Considering Forecast Uncertainty and Acceptable Risk

    NASA Astrophysics Data System (ADS)

    Ding, W.; Zhang, C.

    2015-12-01

    Reservoir water levels are usually not allowed to exceed the flood limited water level (FLWL) during flood season, which neglects the meteorological and real-time forecast information and leads to the great waste of water resources. With the development of weather forecasting, hydrologic modeling, and hydro-climatic teleconnection, the streamflow forecast precision have improved a lot, which provides the technical support for the flood water utilization. This paper addresses how much flood water can be conserved for use after the flood season through the operation of reservoir based on uncertain forecast information by taking into account the residual flood control capacity (the difference between flood conveyance capacity and the expected inflow in a lead time). A two-stage model for dynamic control of the flood limited water level (the maximum allowed water level during the flood season, DC-FLWL) is established considering forecast uncertainty and acceptable flood risk. It is found that DC-FLWL is applicable when the reservoir inflow ranges from small to medium levels of the historical records, while both forecast uncertainty and acceptable risk in the downstream affect the feasible space of DC-FLWL. As forecast uncertainty increases (under a given risk level) or as acceptable risk level decreases (under a given forecast uncertainty level), the minimum required safety margin for flood control increases, and the chance for DC-FLWL decreases. The derived hedging rules from the modeling framework illustrate either the dominant role of water conservation or flood control or the tradeoff between the two objectives under different levels of forecast uncertainty and acceptable risk. These rules may provide useful guidelines for conserving water from flood, especially in the area with heavy water stress.

  10. Flood Forecasting in River System Using ANFIS

    SciTech Connect

    Ullah, Nazrin; Choudhury, P.

    2010-10-26

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  11. Flood Forecasting in River System Using ANFIS

    NASA Astrophysics Data System (ADS)

    Ullah, Nazrin; Choudhury, P.

    2010-10-01

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  12. Operational Precipitation prediction in Support of Real-Time Flash Flood Prediction and Reservoir Management

    NASA Astrophysics Data System (ADS)

    Georgakakos, K. P.

    2006-05-01

    The presentation will outline the implementation and performance evaluation of a number of national and international projects pertaining to operational precipitation estimation and prediction in the context of hydrologic warning systems and reservoir management support. In all cases, uncertainty measures of the estimates and predictions are an integral part of the precipitation models. Outstanding research issues whose resolution is likely to lead to improvements in the operational environment are presented. The presentation draws from the experience of the Hydrologic Research Center (http://www.hrc-lab.org) prototype implementation projects at the Panama Canal, Central America, Northern California, and South-Central US. References: Carpenter, T.M, and K.P. Georgakakos, "Discretization Scale Dependencies of the Ensemble Flow Range versus Catchment Area Relationship in Distributed Hydrologic Modeling," Journal of Hydrology, 2006, in press. Carpenter, T.M., and K.P. Georgakakos, "Impacts of Parametric and Radar Rainfall Uncertainty on the Ensemble Streamflow Simulations of a Distributed Hydrologic Model," Journal of Hydrology, 298, 202-221, 2004. Georgakakos, K.P., Graham, N.E., Carpenter, T.M., Georgakakos, A.P., and H. Yao, "Integrating Climate- Hydrology Forecasts and Multi-Objective Reservoir Management in Northern California," EOS, 86(12), 122,127, 2005. Georgakakos, K.P., and J.A. Sperfslage, "Operational Rainfall and Flow Forecasting for the Panama Canal Watershed," in The Rio Chagres: A Multidisciplinary Profile of a Tropical Watershed, R.S. Harmon, ed., Kluwer Academic Publishers, The Netherlands, Chapter 16, 323-334, 2005. Georgakakos, K. P., "Analytical results for operational flash flood guidance," Journal of Hydrology, doi:10.1016/j.jhydrol.2005.05.009, 2005.

  13. A method for probabilistic flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Hardy, Jill; Gourley, Jonathan J.; Kirstetter, Pierre-Emmanuel; Hong, Yang; Kong, Fanyou; Flamig, Zachary L.

    2016-10-01

    Flash flooding is one of the most costly and deadly natural hazards in the United States and across the globe. This study advances the use of high-resolution quantitative precipitation forecasts (QPFs) for flash flood forecasting. The QPFs are derived from a stormscale ensemble prediction system, and used within a distributed hydrological model framework to yield basin-specific, probabilistic flash flood forecasts (PFFFs). Before creating the PFFFs, it is important to characterize QPF uncertainty, particularly in terms of location which is the most problematic for hydrological use of QPFs. The SAL methodology (Wernli et al., 2008), which stands for structure, amplitude, and location, is used for this error quantification, with a focus on location. Finally, the PFFF methodology is proposed that produces probabilistic hydrological forecasts. The main advantages of this method are: (1) identifying specific basin scales that are forecast to be impacted by flash flooding; (2) yielding probabilistic information about the forecast hydrologic response that accounts for the locational uncertainties of the QPFs; (3) improving lead time by using stormscale NWP ensemble forecasts; and (4) not requiring multiple simulations, which are computationally demanding.

  14. Piloting a real-time surface water flood nowcasting system for enhancing operational resilience of emergency responders

    NASA Astrophysics Data System (ADS)

    Yu, Dapeng; Guan, Mingfu; Wilby, Robert; Bruce, Wright; Szegner, Mark

    2017-04-01

    Emergency services (such as Fire & Rescue, and Ambulance) can face the challenging tasks of having to respond to or operate under extreme and fast changing weather conditions, including surface water flooding. UK-wide, return period based surface water flood risk mapping undertaken by the Environment Agency provides useful information about areas at risks. Although these maps are useful for planning purposes for emergency responders, their utility to operational response during flood emergencies can be limited. A street-level, high resolution, real-time, surface water flood nowcasting system, has been piloted in the City of Leicester, UK to assess emergency response resilience to surface water flooding. Precipitation nowcasting over 7- and 48-hour horizons are obtained from the UK Met Office and used as inputs to the system. A hydro-inundation model is used to simulate urban surface water flood depths/areas at both the city and basin scale, with a 20 m and 3 m spatial resolution respectively, and a 15-minute temporal resolution, 7-hour and 48-hour in advance. Based on this, we evaluate both the direct and indirect impacts of potential surface water flood events on emergency responses, including: (i) identifying vulnerable populations (e.g. care homes and schools) at risk; and (ii) generating novel metrics of accessibility (e.g. travel time from service stations to vulnerable sites; spatial coverage with certain legislative timeframes) in real-time. In doing so, real-time information on potential risks and impacts of emerging flood incidents arising from intense rainfall can be communicated via a dedicated web-based platform to emergency responders thereby improving response times and operational resilience.

  15. Numerical modelling for real-time forecasting of marine oil pollution and hazard assessment

    NASA Astrophysics Data System (ADS)

    De Dominicis, Michela; Pinardi, Nadia; Bruciaferri, Diego; Liubartseva, Svitlana

    2015-04-01

    (MEDESS4MS) system, which is an integrated operational multi-model oil spill prediction service, that can be used by different users to run simulations of oil spills at sea, even in real time, through a web portal. The MEDESS4MS system gathers different oil spill modelling systems and data from meteorological and ocean forecasting systems, as well as operational information on response equipment, together with environmental and socio-economic sensitivity maps. MEDSLIK-II has been also used to provide an assessment of hazard stemming from operational oil ship discharges in the Southern Adriatic and Northern Ionian (SANI) Seas. Operational pollution resulting from ships consists of a movable hazard with a magnitude that changes dynamically as a result of a number of external parameters varying in space and time (temperature, wind, sea currents). Simulations of oil releases have been performed with realistic oceanographic currents and the results show that the oil pollution hazard distribution has an inherent spatial and temporal variability related to the specific flow field variability.

  16. Real-Time Ocean Forecasting System in support of U.S. Coast Guard's Search and Rescue Operations

    NASA Astrophysics Data System (ADS)

    Schoch, C.; Chao, Y.; Howlett, E.; Allen, A. A.

    2012-12-01

    This talk will describe a real-time ocean forecasting system off the U.S. west coast developed to enhance U.S. Coast Guard (USCG) decision support tools for search and rescue operations. The forecasting model is based on the Regional Ocean Modeling System (ROMS) with multi-domain nested configurations. A multi-scale 3-dimensional variational (3DVAR) data assimilation scheme is used to assimilate both in situ (e.g., gliders) and remotely sensed data from both satellite and land-based platforms (e.g., high-frequency (HF) radars). The performance of this real-time ocean forecasting system was evaluated during a two-week field experiment during July-August 2009 in Prince William Sound, Alaska. The 72-hour ocean forecast fields in Alaska's Prince William Sound and California coastal ocean are now produced in real-time and accessible by the USCG's decision support tool during search and rescue operations. Recent test results using the independent data collected by the USCG will be discussed.

  17. Real-Time Global Flood Estimation Using Satellite-Based Precipitation and a Coupled Land Surface and Routing Model

    NASA Technical Reports Server (NTRS)

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian

    2014-01-01

    A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50 deg. N - 50 deg. S at relatively high spatial (approximately 12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is approximately 0.9 and the false alarm ratio is approximately 0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30 deg. S - 30 deg. N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  18. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model

    SciTech Connect

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian

    2014-03-01

    A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50°N–50°S at relatively high spatial (~12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30°S–30°N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. Finally, there were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  19. Developing Real-Time Emissions Estimates for Enhanced Air Quality Forecasting

    EPA Science Inventory

    Exploring the relationship between ambient temperature, energy demand, and electric generating unit point source emissions and potential techniques for incorporating real-time information on the modulating effects of these variables using the Mid-Atlantic/Northeast Visibility Uni...

  20. Developing Real-Time Emissions Estimates for Enhanced Air Quality Forecasting

    EPA Science Inventory

    Exploring the relationship between ambient temperature, energy demand, and electric generating unit point source emissions and potential techniques for incorporating real-time information on the modulating effects of these variables using the Mid-Atlantic/Northeast Visibility Uni...

  1. Assessing the viability of `over-the-loop' real-time short-to-medium range ensemble streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Clark, E.; Mendoza, P. A.; Nijssen, B.; Newman, A. J.; Clark, M. P.; Arnold, J.; Nowak, K. C.

    2016-12-01

    Hydromet Analysis, Research, and Prediction' (SHARP) to implement, assess and demonstrate real-time over-the-loop forecasts. We present early hindcast and verification results from SHARP for short to medium range streamflow forecasts in a number of US case study watersheds.

  2. A Satellite Driven Real-time Forecasting Platform in the Upper Zambezi Basin: A Multi-model Comparison

    NASA Astrophysics Data System (ADS)

    Valdes, J. B.; Wi, S.; Serrat-Capdevila, A.; Demaria, E. M.; Durcik, M.

    2015-12-01

    In large basins such as the Upper Zambezi where concentration times are of many days or even weeks, satellite precipitation products available in real-time become a key component enabling - with the use of hydrologic models - streamflow forecasts for downstream locations with enough lead time to inform decision-making. We present a real-time streamflow forecasting application based on this concept, using the TMPA and CMORPH rainfall products (which we bias-correct using the CHIRPS product) to force four distributed hydrologic models (VIC, HyMod, HBV, Sacramento) covering a variety of levels of model complexity. This study aims at establishing a multi-model satellite-based streamflow forecasting platform as a tool that can inform water management in real-time. This work is part of the efforts of the SERVIR Applied Sciences Team to bring NASA Earth Observation Applications into decision support tools for managing water resources in the Upper Zambezi, in collaboration with the Southern African Development Community Climate Services Center and the Zambezi Watercourse Commission.

  3. Multidisciplinary Approach to Flood Forecasting on the Base of Earth Observation Data and Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Zelentsov, Viacheslav; Potryasaev, Semen; Sokolov, Boris

    2016-08-01

    In this paper a new approach to the creation of short- term forecasting systems of river flooding is being further developed. It provides highly accurate forecasting results due to operative obtaining and integrated processing of the remote sensing and ground- based water flow data in real time. Forecasting of flood areas and depths is performed on a time interval of 12 to 48 hours to be able to perform the necessary steps to alert and evacuate the population. Forecast results are available as web services. The proposed system extends traditional separate methods based on satellite monitoring or modeling of a river's physical processes, by using an interdisciplinary approach, integration of different models and technologies, and through intelligent choice of the most suitable models for a flood forecasting.

  4. Near Real-time Ecological Forecasting of Peatland Responses to Warming and CO2 Treatment through EcoPAD-SPRUCE

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Jiang, J.; Stacy, M.; Ricciuto, D. M.; Hanson, P. J.; Sundi, N.; Luo, Y.

    2016-12-01

    Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our Ecological Platform for Assimilation of Data (EcoPAD) facilitates the integration of current best knowledge from models, manipulative experimentations, observations and other modern techniques and provides both near real-time and long-term forecasting of ecosystem dynamics. As a case study, the web-based EcoPAD platform synchronizes real- or near real-time field measurements from the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment experiment, assimilates multiple data streams into process based models, enhances timely feedback between modelers and experimenters, and ultimately improves ecosystem forecasting and makes best utilization of current knowledge. In addition to enable users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, and (v) conduct ecological forecasting, EcoPAD-SPRUCE automated the workflow from real-time data acquisition, model simulation to result visualization. EcoPAD-SPRUCE promotes seamless feedback between modelers and experimenters, hand in hand to make better forecasting of future changes. The framework of EcoPAD-SPRUCE (with flexible API, Application Programming Interface) is easily portable and will benefit scientific communities, policy makers as well as the general public.

  5. Recent development for near-field tsunami forecasting based on real time GNSS and offshore tsunami data

    NASA Astrophysics Data System (ADS)

    Ohta, Y.; Tsushima, H.; Kawamoto, S.; Miyagawa, K.; Yahagi, T.; Sato, Y.; Hino, R.; Demachi, T.; Iinuma, T.; Miura, S.

    2014-12-01

    The 2011 Tohoku earthquake and its associated tsunami clearly showed the need for an accurate tsunami early warning system. In a short time between the occurrence of earthquakes and associating tsunamis and the tsunami arrivals to near-field coastal inhabited regions, we can use many different kinds of observations for real-time tsunami forecasting. Since individual type of the observations has its advantages and disadvantages, it is strongly required to make use of multiple kinds of data for improving estimated size and arrival timing of imminent tsunamis by reinforcing one another. For example, the rapid analysis of short-period seismic wave data, such as earthquake early warning system in Japan will provide the first information on the size and location of an earthquake, helping issuing tsunami information immediately after earthquakes. Real-time GNSS data have an advantage over the short-time seismograms because robust estimations of location and dimension of coseismic faults can be derived from spatial patterns of permanent coseismic displacement measured by real-time GNSS data. It is one of the important lessons learnt from the 2011 Tohoku earthquake that estimation of reliable finite source fault models is indispensable in tsunami forecasting after massive earthquakes. Offshore measurements of coming tsunamis must be data most relevant to the arrival times and sizes of tsunamis along shorelines. However, it takes more time to obtain credible spatial distribution of tsunami wave height from the observations due to much slower propagation of tsunamis than seismic waves and deformations. In the presentation, we will introduce the current status of the real-time crustal deformation monitoring system based on the GNSS data developed by Geospatial Information Authority of Japan and Tohoku University. We also briefly introduce the real-time tsunami forecasting based on the offshore tsunami data, developed by the Meteorological Research Institute of Japan

  6. Operational flash flood forecasting platform based on grid technology

    NASA Astrophysics Data System (ADS)

    Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.

    2009-04-01

    effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.

  7. Testing an innovative framework for flood forecasting, monitoring and mapping in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Between May and June 2016, France was hit by severe floods, particularly in the Loire and Seine river basins. In this work, we use this case study to test an innovative framework for flood forecasting, mapping and monitoring. More in detail, the system integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. We explore in detail the performance of each component of the system, demonstrating the improvements in respect to stand-alone flood forecasting and monitoring systems. We show how the performances of the forecasting component can be refined using the real-time feedback from social media monitoring to identify which areas were flooded, to evaluate the flood intensity, and therefore to correct impact estimations. Moreover, we show how the integration with impact forecast and social media monitoring can improve the timeliness and efficiency of satellite based emergency mapping, and reduce the chances of missing areas where flooding is already happening. These results illustrate how the new integrated approach leads to a better and earlier decision making and a timely evaluation of impacts.

  8. Real-Time Foreshock Probability Forecasting Experiments in Japan, Southern California and Whole Globe

    NASA Astrophysics Data System (ADS)

    Ogata, Y.

    2014-12-01

    I am concerned with whether currently occurring earthquakes will be "foreshocks" of a significantly larger earthquake or not. When plural earthquakes occur in a region, I attempt to statistically discriminate foreshocks from a swarm or the mainshock-aftershock sequence. The forecast needs identification of an earthquake cluster using the single-link algorithm; and then the probability is calculated based on the clustering strength and magnitude correlations. The probability forecast model were estimated from the JMA hypocenter data of earthquakes of M≧4 in the period 1926-1993 (Ogata et al., 1996). Then we presented the performance and validation of the forecasts during 1994 - 2010 by using the same model (Ogata and Katsura, 2012). The forecasts perform significantly better than the unconditional (average) foreshock probability throughout Japan region. The frequency of the actual foreshocks is consistent with the forecasted probabilities. In my poster, I would like to discuss details of the outcomes in the forecasting and evaluations. Furthermore, I would like to apply the forecasting in California and global catalogs to show some universality in the forecasting procedure. Reference: [1] Ogata, Y., Utsu, T. and Katsura, K. (1996). Statistical discrimination of foreshocks from other earthquake clusters, Geophys. J. Int. 127, 17-30. [2]Ogata, Y. and Katsura, K. (2012). Prospective foreshock forecast experiment during the last 17 years, Geophys. J. Int., 191, 1237-1244.

  9. The Central European Flood in June 2013: Experiences from a Near-Real Time Disaster Analysis in Germany

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Khazai, Bijan; Mühr, Bernhard; Elmer, Florian; Bessel, Tina; Möhrle, Stella; Dittrich, André; Kreibich, Heidi; Fohringer, Joachim; Kunz-Plapp, Tina; Trieselmann, Werner; Kunz, Michael; Merz, Bruno

    2014-05-01

    The central European flood in June 2013 once again revealed that complete flood protection is not possible. Inundations caused severe damage to buildings, infrastructure and agricultural lands. Official estimates of total damage in Germany amount to approx. 8bn € which is lower than the damage caused by the August 2002 flood - the most expensive natural hazard experienced so far in Germany. Repeated and long lasting precipitation in combination with extremely adverse preconditions induced a large scale flood event. In Germany, particularly the catchment areas of the Danube and Elbe were affected. The June 2013 flood has been the most severe flood event in terms of spatial extent and magnitude of flood peaks in Germany during the last 60 years. Large scale inundation occurred as a consequence of levee breaches near Deggendorf (Danube), Groß Rosenau and Fischbeck (Elbe). The flood has had a great impact on people, transportation and the economy. In many areas more than 50,000 thousand people were evacuated. Electrical grid and local water supply utilities failed during the floods. Furthermore, traffic was disrupted in the interregional transportation network including federal highways and long distance railways. CEDIM analysed and assessed the flood event within its current research activity on near real time forensic disaster analysis (CEDIM FDA: www.cedim.de). This contribution gives an overview about the CEDIM FDA analyses' results. It describes the key hydro-meteorological factors that triggered this extraordinary event and draws comparisons to major flood events in August 2002 and July 1954. Further, it shows the outcomes of a rapid initial impact assessment on the district level using social, economic and institutional indicators which are supplemented with information on the number of people evacuated and transportation disruptions and combined with the magnitude of the event.

  10. A Real-time, Coupled, Refined Forecasting System for Coastal Prediction

    NASA Astrophysics Data System (ADS)

    Armstrong, B. N.; Warner, J. C.; Signell, R. P.

    2010-12-01

    In the coastal zone, storms are one of the primary environmental forces causing coastal change. These discrete events often produce large waves, storm surges, and flooding, resulting in coastal erosion. In addition, strong storm-generated currents may pose threats to life, property, and navigation. The ability to predict these events, their location, duration, and magnitude allows resource managers to better prepare for the storm impacts as well as guide post-storm survey assessments and recovery efforts. As a step towards increasing our capability for prediction of these events and to help us study the physical processes that occur we have developed an automated system to run components of the Coupled Ocean - Atmosphere - Wave - Sediment Transport (COAWST) Modeling System as a daily forecast. The current daily system couples Regional Ocean Model System (ROMS) and Simulation Waves Nearshore (SWAN) models to predict currents, salinity, temperature, wave height and direction, and sediment transport for the US East Coast and Gulf of Mexico on a 5 km scale. As part of the system a refined grid for the area of Cape Hatteras, NC at a resolution of 1 km is included. Management of the system is controlled by the Windows Scheduler to start Matlab® and run scripts and functions. Data required by the modeling system include daily modeled wave, wind, atmospheric surface inputs, and climatology fields. The Unidata Internet Data Distribution/Local Data Manager (http://www.unidata.ucar.edu/software/ldm/) is used to download National Centers for Environmental Prediction (NCEP) GFS global 5 degree data and NCEP NAM Conus 12km data to a local server. The Matlab “structs” tool and NJ-Toolbox (http://njtbx.sourceforge.net/njdocs/njtbxhelp/njtbxhelp.html) are used to access these large data sets on the local server as well as Wave Watch 3 (WW3) and NCEP model data sets available remotely on the Nomads http://nomads.ncep.noaa.gov site and Hybrid Coordinate Ocean Model (HYCOM) data

  11. The surface drifter program for real time and off-line validation of ocean forecasts and reanalyses

    NASA Astrophysics Data System (ADS)

    Hernandez, Fabrice; Regnier, Charly; Drévillon, Marie

    2017-04-01

    As part of the Global Ocean Observing System, the Global Drifter Program (GDP) is comprised of an array of about 1250 drifting buoys spread over the global ocean, that provide operational, near-real time surface velocity, sea surface temperature (SST) and sea level pressure observations. This information is used mainly used for numerical weather forecasting, research, and in-situ calibration/verification of satellite observations. Since 2013 the drifting buoy SST measurements are used for near real time assessment of global forecasting systems from Canada, France, UK, USA, Australia in the frame of the GODAE OceanView Intercomparison and Validation Task. For most of these operational systems, these data are not used for assimilation, and offer an independent observation assessment. This approach mimics the validation performed for SST satellite products. More recently, validation procedures have been proposed in order to assess the surface dynamics of Mercator Océan global and regional forecast and reanalyses. Velocities deduced from drifter trajectories are used in two ways. First, the Eulerian approach where buoy and ocean model velocity values are compared at the position of drifters. Then, from discrepancies, statistics are computed and provide an evaluation of the ocean model's surface dynamics reliability. Second, the Lagrangian approach, where drifting trajectories are simulated at each location of the real drifter trajectory using the ocean model velocity fields. Then, on daily basis, real and simulated drifter trajectories are compared by analyzing the spread after one day, two days etc…. The cumulated statistics on specific geographical boxes are evaluated in term of dispersion properties of the "real ocean" as captured by drifters, and those properties in the ocean model. This approach allows to better evaluate forecasting score for surface dispersion applications, like Search and Rescue, oil spill forecast, drift of other objects or contaminant

  12. Medium range flood forecasts at global scale

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Wood, A. W.; Lettenmaier, D. P.; Wood, E. F.

    2006-12-01

    While weather and climate forecast methods have advanced greatly over the last two decades, this capability has yet to be evidenced in mitigation of water-related natural hazards (primarily floods and droughts), especially in the developing world. Examples abound of extreme property damage and loss of life due to floods in the underdeveloped world. For instance, more than 4.5 million people were affected by the July 2000 flooding of the Mekong River and its tributaries in Cambodia, Vietnam, Laos and Thailand. The February- March 2000 floods in the Limpopo River of Mozambique caused extreme disruption to that country's fledgling economy. Mitigation of these events through advance warning has typically been modest at best. Despite the above noted improvement in weather and climate forecasts, there is at present no system for forecasting of floods globally, notwithstanding that the potential clearly exists. We describe a methodology that is eventually intended to generate global flood predictions routinely. It draws heavily from the experimental North American Land Data Assimilation System (NLDAS) and the companion Global Land Data Assimilation System (GLDAS) for development of nowcasts, and the University of Washington Experimental Hydrologic Prediction System to develop ensemble hydrologic forecasts based on Numerical Weather Prediction (NWP) models which serve both as nowcasts (and hence reduce the need for in situ precipitation and other observations in parts of the world where surface networks are critically deficient) and provide forecasts for lead times as long as fifteen days. The heart of the hydrologic modeling system is the University of Washington/Princeton University Variable Infiltration Capacity (VIC) macroscale hydrology model. In the prototype (tested using retrospective data), VIC is driven globally up to the time of forecast with daily ERA40 precipitation (rescaled on a monthly basis to a station-based global climatology), ERA40 wind, and ERA40

  13. Ensemble forecasting of short-term system scale irrigation demands using real-time flow data and numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara

    2016-06-01

    Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.

  14. Probabilistic flood forecast: Exact and approximate predictive distributions

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, Roman

    2014-09-01

    For quantification of predictive uncertainty at the forecast time t0, the future hydrograph is viewed as a discrete-time continuous-state stochastic process {Hn: n=1,…,N}, where Hn is the river stage at time instance tn>t0. The probabilistic flood forecast (PFF) should specify a sequence of exceedance functions {F‾n: n=1,…,N} such that F‾n(h)=P(Zn>h), where P stands for probability, and Zn is the maximum river stage within time interval (t0,tn], practically Zn=max{H1,…,Hn}. This article presents a method for deriving the exact PFF from a probabilistic stage transition forecast (PSTF) produced by the Bayesian forecasting system (BFS). It then recalls (i) the bounds on F‾n, which can be derived cheaply from a probabilistic river stage forecast (PRSF) produced by a simpler version of the BFS, and (ii) an approximation to F‾n, which can be constructed from the bounds via a recursive linear interpolator (RLI) without information about the stochastic dependence in the process {H1,…,Hn}, as this information is not provided by the PRSF. The RLI is substantiated by comparing the approximate PFF against the exact PFF. Being reasonably accurate and very simple, the RLI may be attractive for real-time flood forecasting in systems of lesser complexity. All methods are illustrated with a case study for a 1430 km headwater basin wherein the PFF is produced for a 72-h interval discretized into 6-h steps.

  15. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm

    PubMed Central

    2012-01-01

    Background Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches. Methods We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability. Results Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model. Conclusions Our results show that large-scale models can be used to provide valuable real-time forecasts of

  16. Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2008-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.

  17. Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2008-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.

  18. A multi-source data assimilation framework for flood forecasting: Accounting for runoff routing lags

    NASA Astrophysics Data System (ADS)

    Meng, S.; Xie, X.

    2015-12-01

    In the flood forecasting practice, model performance is usually degraded due to various sources of uncertainties, including the uncertainties from input data, model parameters, model structures and output observations. Data assimilation is a useful methodology to reduce uncertainties in flood forecasting. For the short-term flood forecasting, an accurate estimation of initial soil moisture condition will improve the forecasting performance. Considering the time delay of runoff routing is another important effect for the forecasting performance. Moreover, the observation data of hydrological variables (including ground observations and satellite observations) are becoming easily available. The reliability of the short-term flood forecasting could be improved by assimilating multi-source data. The objective of this study is to develop a multi-source data assimilation framework for real-time flood forecasting. In this data assimilation framework, the first step is assimilating the up-layer soil moisture observations to update model state and generated runoff based on the ensemble Kalman filter (EnKF) method, and the second step is assimilating discharge observations to update model state and runoff within a fixed time window based on the ensemble Kalman smoother (EnKS) method. This smoothing technique is adopted to account for the runoff routing lag. Using such assimilation framework of the soil moisture and discharge observations is expected to improve the flood forecasting. In order to distinguish the effectiveness of this dual-step assimilation framework, we designed a dual-EnKF algorithm in which the observed soil moisture and discharge are assimilated separately without accounting for the runoff routing lag. The results show that the multi-source data assimilation framework can effectively improve flood forecasting, especially when the runoff routing has a distinct time lag. Thus, this new data assimilation framework holds a great potential in operational flood

  19. Predictive Methods for Real-Time Control of Flood Operation of a Multireservoir System: Methodology and Comparative Study

    NASA Astrophysics Data System (ADS)

    Niewiadomska-Szynkiewicz, Ewa; Malinowski, Krzysztof; Karbowski, Andrzej

    1996-04-01

    Predictive methods for real-time flood operation of water systems consisting of reservoirs located in parallel on tributaries to the main river are presented and discussed. The aspect of conflicting individual goals of the local decision units and other objectives important from an overall point of view is taken into account. The particular attention is focused on hierarchical control structure which provides framework for organization of an on-line reservoir management problem. The important factor involved in flood control the uncertainty with respect to future inflows is taken into consideration. A case study of the upper Vistula river basin system in the southern part of Poland is presented. Simulation results based on 11 historical floods are briefly described and discussed.

  20. Predictive Skill of Meteorological Drought Based on Multi-Model Ensemble Forecasts: A Real-Time Assessment

    NASA Astrophysics Data System (ADS)

    Chen, L. C.; Mo, K. C.; Zhang, Q.; Huang, J.

    2014-12-01

    Drought prediction from monthly to seasonal time scales is of critical importance to disaster mitigation, agricultural planning, and multi-purpose reservoir management. Starting in December 2012, NOAA Climate Prediction Center (CPC) has been providing operational Standardized Precipitation Index (SPI) Outlooks using the North American Multi-Model Ensemble (NMME) forecasts, to support CPC's monthly drought outlooks and briefing activities. The current NMME system consists of six model forecasts from U.S. and Canada modeling centers, including the CFSv2, CM2.1, GEOS-5, CCSM3.0, CanCM3, and CanCM4 models. In this study, we conduct an assessment of the predictive skill of meteorological drought using real-time NMME forecasts for the period from May 2012 to May 2014. The ensemble SPI forecasts are the equally weighted mean of the six model forecasts. Two performance measures, the anomaly correlation coefficient and root-mean-square errors against the observations, are used to evaluate forecast skill.Similar to the assessment based on NMME retrospective forecasts, predictive skill of monthly-mean precipitation (P) forecasts is generally low after the second month and errors vary among models. Although P forecast skill is not large, SPI predictive skill is high and the differences among models are small. The skill mainly comes from the P observations appended to the model forecasts. This factor also contributes to the similarity of SPI prediction among the six models. Still, NMME SPI ensemble forecasts have higher skill than those based on individual models or persistence, and the 6-month SPI forecasts are skillful out to four months. The three major drought events occurred during the 2012-2014 period, the 2012 Central Great Plains drought, the 2013 Upper Midwest flash drought, and 2013-2014 California drought, are used as examples to illustrate the system's strength and limitations. For precipitation-driven drought events, such as the 2012 Central Great Plains drought

  1. Cooperative satellite-based flood detection, mapping, and river monitoring in near real time

    NASA Technical Reports Server (NTRS)

    Brakenridge, Robert G.; Nghiem, Son V.

    2004-01-01

    The North Atlantic Oscillation (NAO), the Pacific-North American (PNA) teleconnection pattern, and the El Nino-Southern Oscillation (ENSO) combine to influence the planetary wave structure over the northern hemisphere. Floods and droughts are associated around the world with ENSO through such teleconnections, and improved flood prediction relies on understanding them better. The scientific study of floods, and consistent measurements thereof, are needed in order to allow 'Greenhouse warming' predictions about flooding to be tested, and the hydrologic effects of other phenomena such as ENSO to be evaluated. The needed tasks are: 1) detection/warning of flooding, 2) flood magnitude assessment, 3) flood inundation mapping, and 4) preservation of the record of flooding. Accomplishing these same tasks provides direct local societal benefits as well: they can save lives and reduce economic loss. We emphasize that the basic science observations need not be divorced from the immediate practical applications: both can occur together, and just as is the case for meteorological remote sensing.

  2. Tools and Products of Real-Time Modeling: Opportunities for Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2009-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the last element. Specifically, we will discuss present capabilities, and the potential to derive further tools. These capabilities will be interpreted in the context of a broad-based, bootstrapping activity for modern Space Weather forecasting.

  3. Using Landslide Failure Forecast Models in Near Real Time: the Mt. de La Saxe case-study

    NASA Astrophysics Data System (ADS)

    Manconi, Andrea; Giordan, Daniele

    2014-05-01

    Forecasting the occurrence of landslide phenomena in space and time is a major scientific challenge. The approaches used to forecast landslides mainly depend on the spatial scale analyzed (regional vs. local), the temporal range of forecast (long- vs. short-term), as well as the triggering factor and the landslide typology considered. By focusing on short-term forecast methods for large, deep seated slope instabilities, the potential time of failure (ToF) can be estimated by studying the evolution of the landslide deformation over time (i.e., strain rate) provided that, under constant stress conditions, landslide materials follow creep mechanism before reaching rupture. In the last decades, different procedures have been proposed to estimate ToF by considering simplified empirical and/or graphical methods applied to time series of deformation data. Fukuzono, 1985 proposed a failure forecast method based on the experience performed during large scale laboratory experiments, which were aimed at observing the kinematic evolution of a landslide induced by rain. This approach, known also as the inverse-velocity method, considers the evolution over time of the inverse value of the surface velocity (v) as an indicator of the ToF, by assuming that failure approaches while 1/v tends to zero. Here we present an innovative method to aimed at achieving failure forecast of landslide phenomena by considering near-real-time monitoring data. Starting from the inverse velocity theory, we analyze landslide surface displacements on different temporal windows, and then apply straightforward statistical methods to obtain confidence intervals on the time of failure. Our results can be relevant to support the management of early warning systems during landslide emergency conditions, also when the predefined displacement and/or velocity thresholds are exceeded. In addition, our statistical approach for the definition of confidence interval and forecast reliability can be applied also to

  4. Real-time Aerosol Forecasting over North America using RAP-Chem and the GSI.

    NASA Astrophysics Data System (ADS)

    Pagowski, M.

    2015-12-01

    RAP-Chem is an implementation of WRF-Chem meteorology-chemistry model that is run daily at NOAA/ESRL over continental domain for air-quality forecasting. The chemical forecasts are combined with observations of species using three-dimensional variational data assimilation procedure implemented in the Gridpoint Statistical Interpolation (GSI). In the presentation we detail the method of the assimilation and show verification statistics of the model performance.

  5. Performance and Quality Assessment of the Forthcoming Copernicus Marine Service Global Ocean Monitoring and Forecasting Real-Time System

    NASA Astrophysics Data System (ADS)

    Lellouche, J. M.; Le Galloudec, O.; Greiner, E.; Garric, G.; Regnier, C.; Drillet, Y.

    2016-02-01

    Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity.Since May 2015, Mercator Ocean opened the Copernicus Marine Service (CMS) and is in charge of the global ocean analyses and forecast, at eddy resolving resolution. In this context, R&D activities have been conducted at Mercator Ocean these last years in order to improve the real-time 1/12° global system for the next CMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefit among others from the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting …This presentation doesn't focus on the impact of each update, but rather on the overall behavior of the system integrating all updates. This assessment reports on the products quality improvements, highlighting the level of performance and the reliability of the new system.

  6. Evaluating the performance of real-time streamflow forecasting using multi-satellite precipitation products in the Upper Zambezi, Africa

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Valdes, J. B.; Wi, S.; Serrat-Capdevila, A.; Valdés-Pineda, R.; Durcik, M.

    2016-12-01

    In under-instrumented basins around the world, accurate and timely forecasts of river streamflows have the potential of assisting water and natural resource managers in their management decisions. The Upper Zambezi river basin is the largest basin in southern Africa and its water resources are critical to sustainable economic growth and poverty reduction in eight riparian countries. We present a real-time streamflow forecast for the basin using a multi-model-multi-satellite approach that allows accounting for model and input uncertainties. Three distributed hydrologic models with different levels of complexity: VIC, HYMOD_DS, and HBV_DS are setup at a daily time step and a 0.25 degree spatial resolution for the basin. The hydrologic models are calibrated against daily observed streamflows at the Katima-Mulilo station using a Genetic Algorithm. Three real-time satellite products: Climate Prediction Center's morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and Tropical Rainfall Measuring Mission (TRMM-3B42RT) are bias-corrected with daily CHIRPS estimates. Uncertainty bounds for predicted flows are estimated with the Inverse Variance Weighting method. Because concentration times in the basin range from a few days to more than a week, we include the use of precipitation forecasts from the Global Forecasting System (GFS) to predict daily streamflows in the basin with a 10-days lead time. The skill of GFS-predicted streamflows is evaluated and the usefulness of the forecasts for short term water allocations is presented.

  7. Real-time updating of the flood frequency distribution through data assimilation

    NASA Astrophysics Data System (ADS)

    Aguilar, Cristina; Montanari, Alberto; Polo, María-José

    2017-07-01

    We explore the memory properties of catchments for predicting the likelihood of floods based on observations of average flows in pre-flood seasons. Our approach assumes that flood formation is driven by the superimposition of short- and long-term perturbations. The former is given by the short-term meteorological forcing leading to infiltration and/or saturation excess, while the latter is originated by higher-than-usual storage in the catchment. To exploit the above sensitivity to long-term perturbations, a meta-Gaussian model and a data assimilation approach are implemented for updating the flood frequency distribution a season in advance. Accordingly, the peak flow in the flood season is predicted in probabilistic terms by exploiting its dependence on the average flow in the antecedent seasons. We focus on the Po River at Pontelagoscuro and the Danube River at Bratislava. We found that the shape of the flood frequency distribution is noticeably impacted by higher-than-usual flows occurring up to several months earlier. The proposed technique may allow one to reduce the uncertainty associated with the estimation of flood frequency.

  8. Areal Rainfall Estimation for Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Jones, A.; Bell, V.; Moore, R.

    2003-04-01

    This study deals with the estimation of catchment areal rainfall for the purpose of real-time flood forecasting using rainfall-runoff models. In the UK the two sources of rainfall data on the appropriate timescale are a sparse network of telemetered raingauges, with typical gauge spacings of 10 to 20km, and rainfall estimates derived from weather radar. The focus here is placed on raingauge estimation of rainfall. A survey of the literature reveals a vast number of methods developed for the estimation of areal rainfall from raingauge measurements on a range of spatial and temporal scales, ranging from simple weighting schemes to more complex interpolation methods. A review of previous method intercomparison studies identifies the need for a full evaluation of methods. Evaluation of a selection of nine weighting methods including Thiessen polygons, Standard Average Annual Rainfall (SAAR) weights and DTM-derived elevation weights has been carried out for two UK catchments. One catchment, the Brue in Somerset, is equipped with a special dense network of raingauges installed as part of the HYREX experiment. Evaluation was carried out using the PDM rainfall-runoff model with areal rainfall estimated from several sub-networks of raingauges and modelled flow compared with observed flow. Modelled flow was also compared with flow modelled using the ‘ground truth’ of areal rainfall estimated from the dense raingauge network. Estimates of 15 minute areal rainfall using each method were also compared directly with the areal estimate from the dense network for individual events characterised by either convective or stratiform rain. For stratiform rain, results indicated that all methods give reasonably accurate results, even when only two gauges are used, and the performances of the methods tested were almost indistinguishable. For convective rain, the Thiessen method gave consistently better results than the other methods, and the SAAR-method gave consistently worse

  9. Probabilistic Flash Flood Forecasting using Stormscale Ensembles

    NASA Astrophysics Data System (ADS)

    Hardy, J.; Gourley, J. J.; Kain, J. S.; Clark, A.; Novak, D.; Hong, Y.

    2013-12-01

    Flash flooding is one of the most costly and deadly natural hazards in the US and across the globe. The loss of life and property from flash floods could be mitigated with better guidance from hydrological models, but these models have limitations. For example, they are commonly initialized using rainfall estimates derived from weather radars, but the time interval between observations of heavy rainfall and a flash flood can be on the order of minutes, particularly for small basins in urban settings. Increasing the lead time for these events is critical for protecting life and property. Therefore, this study advances the use of quantitative precipitation forecasts (QPFs) from a stormscale NWP ensemble system into a distributed hydrological model setting to yield basin-specific, probabilistic flash flood forecasts (PFFFs). Rainfall error characteristics of the individual members are first diagnosed and quantified in terms of structure, amplitude, and location (SAL; Wernli et al., 2008). Amplitude and structure errors are readily correctable due to their diurnal nature, and the fine scales represented by the CAPS QPF members are consistent with radar-observed rainfall, mainly showing larger errors with afternoon convection. To account for the spatial uncertainty of the QPFs, we use an elliptic smoother, as in Marsh et al. (2012), to produce probabilistic QPFs (PQPFs). The elliptic smoother takes into consideration underdispersion, which is notoriously associated with stormscale ensembles, and thus, is good for targeting the approximate regions that may receive heavy rainfall. However, stormscale details contained in individual members are still needed to yield reasonable flash flood simulations. Therefore, on a case study basis, QPFs from individual members are then run through the hydrological model with their predicted structure and corrected amplitudes, but the locations of individual rainfall elements are perturbed within the PQPF elliptical regions using Monte

  10. Successful Detection of Floods in Real Time Onboard EO1 Through NASA's ST6 Autonomous Sciencecraft Experiment (ASE)

    NASA Astrophysics Data System (ADS)

    Ip, F.; Dohm, J. M.; Baker, V. R.; Castano, R.; Cichy, B.; Chien, S.; Davies, A.; Doggett, T.; Greeley, R.

    2004-12-01

    For the first time, a spacecraft has the ability to autonomously detect and react to flood events. Flood detection and the investigation of flooding dynamics in real time from space have never been done before at least not until now. Part of the challenge for the hydrological community has been the difficulty of obtaining cloud-free scenes from orbit at sufficient temporal and spatial resolutions to accurately assess flooding. In addition, the large spatial extent of drainage networks coupled with the size of the data sets necessary to be downlinked from satellites add to the difficulty of monitoring flooding from space. Technology developed as part of the Autonomous Sciencecraft Experiment (ASE) creates the new capability to autonomously detect, assess, and react to dynamic events, thereby enabling the monitoring of transient processes such as flooding in real time. In addition to being able to autonomously process the imaged data onboard the spacecraft for the first time and search the data for specific spectral features, the ASE Science Team has developed and tested change detection algorithms for the Hyperion spectrometer on EO-1. For flood events, if a change is detected in the onboard processed image (i.e. an increase in the number of ¡wet¡" pixels relative to a baseline image where the system is in normal flow condition or relatively dry), the spacecraft is autonomously retasked to obtain additional scenes. For instance, in February 2004 a rare flooding of the Australian Diamantina River was captured by EO-1. In addition, in August during ASE onboard testing a Zambezi River scene in Central Africa was successfully triggered by the classifier to autonomously take another observation. Yet another successful trigger-response flooding test scenario of the Yellow River in China was captured by ASE on 8/18/04. These exciting results pave the way for future smart reconnaissance missions of transient processes on Earth and beyond. Acknowledgments: We are grateful

  11. Construction of Real-time Forecast System on the Boreal Summer Intraseasonal Oscillation

    NASA Astrophysics Data System (ADS)

    Kim, H.; Wheeler, M. C.; Lee, J.; Gottschalck, J.

    2013-12-01

    Hae-Jeong Kim1, Matthew C. Wheeler2, June-Yi Lee3 and Jon C. Gottschalck4 1APEC Climate Center, 12 Centum 7-ro, Haeundae-gu, Busan, 612-020, South Korea 2Centre for Australian Weather and Climate Research Bureau of Meteorology, Melbourne, Australia 3Global Monsoon Climate Laboratory, Pusan National University, Busan, Korea 4Climate Prediction Center, NOAA/National Weather Service, Washington D. C., USA *E-mail : shout@apcc21.org The boreal summer intraseasonal oscillation (BSISO) is one of the dominant mode of variability in the Asian summer monsoon and global monsoon (e.g. Webster et al., 1998; Lee et al., 2013). The BSISO influences summer monsoon onsets (e.g. Wang and Xie, 1997) and interacts with a wide range of atmospheric circulation and associated weather (e.g. Lee et al., 2011; Wang et al., 2012). In addition, the wet and dry spells of the BSISO strongly can influence extreme hydro-meteorological events, major driving forces of natural disasters (Lau and Waliser 2005). Thus, it is important to monitor and predict the BSISO. As the occurrence of and concern over extreme climate events rises, moreover, the provision of high-quality BSISO forecasts will become increasingly relevant. APCC has recently begun to provide the BSISO forecast information service at http://www.apcc21.org/eng/service/bsiso/fore/japcc030601.jsp. The forecast is contributed by the Australian Bureau of Meteorology, the US National Centers for Environmental Prediction, the European Center for Medium Range Weather Forecasts and UK Meteorology Office in cooperation with the CAS/WCRP Working Group on Numerical Experimentation (WGNE) Madden Julian Oscillation (MJO) Task Force. The APCC BSISO forecasts are displayed by newly developed indices proposed by Lee at al. (2013) that are able to overcome the limitation of the RMM index (Wheeler and Hendon, 2004) in terms of representing BSISO activity with northward propagation over off-equatorial monsoon domain. The BSISO forecast information can be

  12. Real-time forecasts of tomorrow's earthquakes in California: a new mapping tool

    USGS Publications Warehouse

    Gerstenberger, Matt; Wiemer, Stefan; Jones, Lucy

    2004-01-01

    We have derived a multi-model approach to calculate time-dependent earthquake hazard resulting from earthquake clustering. This file report explains the theoretical background behind the approach, the specific details that are used in applying the method to California, as well as the statistical testing to validate the technique. We have implemented our algorithm as a real-time tool that has been automatically generating short-term hazard maps for California since May of 2002, at http://step.wr.usgs.gov

  13. A Review of Real-Time Markov Model ENSO Forecast in 1996-2015: Why did it Forecast a Strong El Nino since March 2015?

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2015-12-01

    The Markov model for real time ENSO forecast at Climate Prediction Center of National Centers for Environmental Prediction (NCEP) is based on observed sea surface temperature, sea level from the NCEP ocean reanalysis, and pseudo wind stress from the Florida State University in 1980-1995. The Markov model is constructed in a reduced multivariate EOF (MEOF) space with 3 MEOFs. The cross-validated hindcast skill of NINO3.4 in 1980-1995 is competitive among dynamical and statistical models. The model was implemented into operation at CPC in early 2000s since it successfully forecasted the El Nino in winter 1997/98 starting from November 1996 initial conditions (I.C.). In this study, we assessed the real time forecast skill of ENSO by the Markov model in 1996-2015 and compared it with that of other operational forecast models. It is found that the Markov model has lower forecast skill of ENSO in the 2000s than that in the 1980s and 1990s, which is common among ENSO forecast models. The lower forecast skill of the Markov model in the 2000s can be attributed to weak precursor of positive heat content anomaly in the equatorial Pacific and a shorter lead time of the precursor relative to NINO3.4, both of which is related to the decadal change of ENSO. However, out of surprise, the Markov model successfully forecasted the El Nino in winter 2014/15 starting from February 2014 I.C.. In addition, the Markov model forecasted the continuation of the El Nino into the spring/summer/fall of 2015. Starting from March 2015 I.C., the Markov model forecasted a strong El Nino in winter 2015/16. This surprising long-lead forecast skill can be attributed to the positive second principal component (PC) of MEOF that leads NINO3.4 by 6-9 months, a precursor commonly seen in the 1980s and 1990s. This provided us confidence in the model forecast of a strong El Nino in winter 2015/16 that is highly consistent with the ensemble forecast of dynamical models.

  14. Precipitation and floodiness: forecasts of flood hazard at the regional scale

    NASA Astrophysics Data System (ADS)

    Stephens, Liz; Day, Jonny; Pappenberger, Florian; Cloke, Hannah

    2016-04-01

    In 2008, a seasonal forecast of an increased likelihood of above-normal rainfall in West Africa led the Red Cross to take early humanitarian action (such as prepositioning of relief items) on the basis that this forecast implied heightened flood risk. However, there are a number of factors that lead to non-linearity between precipitation anomalies and flood hazard, so in this presentation we use a recently developed global-scale hydrological model driven by the ERA-Interim/Land precipitation reanalysis (1980-2010) to quantify this non-linearity. Using these data, we introduce the concept of floodiness to measure the incidence of floods over a large area, and quantify the link between monthly precipitation, river discharge and floodiness anomalies. Our analysis shows that floodiness is not well correlated with precipitation, demonstrating the problem of using seasonal precipitation forecasts as a proxy for forecasting flood hazard. This analysis demonstrates the value of developing hydrometeorological forecasts of floodiness for decision-makers. As a result, we are now working with the European Centre for Medium-Range Weather Forecasts and the Joint Research Centre, as partners of the operational Global Flood Awareness System (GloFAS), to implement floodiness forecasts in real-time.

  15. Real-time forecasting and predictability of catastrophic failure events: from rock failure to volcanoes and earthquakes

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Bell, A. F.; Naylor, M.; Atkinson, M.; Filguera, R.; Meredith, P. G.; Brantut, N.

    2012-12-01

    Accurate prediction of catastrophic brittle failure in rocks and in the Earth presents a significant challenge on theoretical and practical grounds. The governing equations are not known precisely, but are known to produce highly non-linear behavior similar to those of near-critical dynamical systems, with a large and irreducible stochastic component due to material heterogeneity. In a laboratory setting mechanical, hydraulic and rock physical properties are known to change in systematic ways prior to catastrophic failure, often with significant non-Gaussian fluctuations about the mean signal at a given time, for example in the rate of remotely-sensed acoustic emissions. The effectiveness of such signals in real-time forecasting has never been tested before in a controlled laboratory setting, and previous work has often been qualitative in nature, and subject to retrospective selection bias, though it has often been invoked as a basis in forecasting natural hazard events such as volcanoes and earthquakes. Here we describe a collaborative experiment in real-time data assimilation to explore the limits of predictability of rock failure in a best-case scenario. Data are streamed from a remote rock deformation laboratory to a user-friendly portal, where several proposed physical/stochastic models can be analysed in parallel in real time, using a variety of statistical fitting techniques, including least squares regression, maximum likelihood fitting, Markov-chain Monte-Carlo and Bayesian analysis. The results are posted and regularly updated on the web site prior to catastrophic failure, to ensure a true and and verifiable prospective test of forecasting power. Preliminary tests on synthetic data with known non-Gaussian statistics shows how forecasting power is likely to evolve in the live experiments. In general the predicted failure time does converge on the real failure time, illustrating the bias associated with the 'benefit of hindsight' in retrospective analyses

  16. JPSS application in a near real time regional numerical forecast system at CIMSS

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, P.; Han, H.; Zhu, F.; Schmit, T. J.; Goldberg, M.

    2015-12-01

    Observations from next generation of environmental sensors onboard the Suomi National Polar-Orbiting Parnership (S-NPP) and its successor, the Joint Polar Satellite System (JPSS), provide us the critical information for numerical weather forecast (NWP). How to better represent these satellite observations and how to get value added information into NWP system still need more studies. Recently scientists from Cooperative Institute of Meteorological Satellite Studies (CIMSS) at University of Wisconsin-Madison have developed a near realtime regional Satellite Data Assimilation system for Tropical storm forecasts (SDAT) (http://cimss.ssec.wisc.edu/sdat). The system is built with the community Gridpoint Statistical Interpolation (GSI) assimilation and advanced Weather Research Forecast (WRF) model. With GSI, SDAT can assimilate all operational available satellite data including GOES, AMSUA/AMSUB, HIRS, MHS, ATMS, AIRS and IASI radiances and some satellite derived products. In addition, some research products, such as hyperspectral IR retrieved temperature and moisture profiles, GOES imager atmospheric motion vector (AMV) and GOES sounder layer precipitable water (LPW), are also added into the system. Using SDAT as a research testbed, studies have been conducted to show how to improve high impact weather forecast by better handling cloud information in satellite data. Previously by collocating high spatial resolution MODIS data with hyperspectral resolution AIRS data, precise clear pixels of AIRS can be identified and some partially or thin cloud contamination from pixels can be removed by taking advantage of high spatial resolution and high accurate MODIS cloud information. The results have demonstrated that both of these strategies have greatly improved the hurricane track and intensity forecast. We recently have extended these methodologies into processing CrIS/VIIRS data. We also tested similar ideas in microwave sounders by the collocation of AMSU/MODIS and ATMS

  17. Integration of Remote Sensing derived Actual Evapotranspiration with Meteorological Data for Real Time Demand Forecasting in Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Ullah, M. K.; Hafeez, M. M.; Chemin, Y.; Faux, R.; Sixsmith, J.

    2010-12-01

    Irrigated agriculture is major consumer of fresh water, but a large part of the water devour for irrigation is wasted due to poor management of irrigation systems. Improving water management in irrigated areas require the analysis of real time water demand in order to determine the possibilities in which it may be modified and rationalised. Real time water demand information in irrigated areas is a key for planning about sustainable use of irrigation water. These activities are needed not only to improve water productivity, but also to increase the sustainability of irrigated agriculture by saving irrigation water. Demand forecasting entail the complete understanding of spatial and expected temporal variability of metrological parameters and evapotranspiration (ET). ET is the overriding aspect for irrigation demand forecasting at farm to catchment scale. Many models have been used to measure the ET rate, either empirical or functional. The major disadvantage of this approach is that most methods generate only point values, resulting in estimates that are not representative of large areas. These methods are based on crop factors under ideal conditions and cannot therefore represent actual crop ET. Satellite remote sensing is a powerful mean to estimate ET over various spatial and temporal scales. For improved irrigation system management and operation, a holistic approach of integrating remote sensing derived ET from SAM-ET (spatial algorithm for mapping ET) algorithm, for Australian agro-ecosystem, with forecasted meteorological data and field application loss functions for major crops were used to forecast actual water demand in Coleambally Irrigation Area (CIA), New South Wales, Australia. It covers approximately 79,000 ha of intensive irrigation and comprise of number of secondary and tertiary canals. In order to capture the spatial variability, CIA has been divided into 22 nodes based on direction of flow and connectivity. All hydrological data of inflow (i

  18. Kalman filter estimation model in flood forecasting

    NASA Astrophysics Data System (ADS)

    Husain, Tahir

    Elementary precipitation and runoff estimation problems associated with hydrologic data collection networks are formulated in conjunction with the Kalman Filter Estimation Model. Examples involve the estimation of runoff using data from a single precipitation station and also from a number of precipitation stations. The formulations demonstrate the role of state-space, measurement, and estimation equations of the Kalman Filter Model in flood forecasting. To facilitate the formulation, the unit hydrograph concept and antecedent precipitation index is adopted in the estimation model. The methodology is then applied to estimate various flood events in the Carnation Creek of British Columbia.

  19. Near real time Forensic Disaster Analysis of the central European flood in June 2013 in Germany: Impact and management

    NASA Astrophysics Data System (ADS)

    Khazai, Bijan; Bessel, Tina; Möhrle, Stella; Dittrich, André; Schröter, Kai; Mühr, Bernhard; Elmer, Florian; Kunz-Plapp, Tina; Trieselmann, Werner; Kunz, Michael

    2014-05-01

    Within its current research activity on near real time Forensic Disaster Analysis (FDA), researchers from the Center for Disaster Management and Risk Reduction Technology (CEDIM) aim to identify major risk drivers and to understand the root causes of disaster and infer the implications for disaster mitigation. A key component of this activity is the development of rapid assessment tools which allow for a science based estimate of disaster impacts. The central European flood in June 2013 caused in Germany severe damage to buildings, infrastructure and agricultural lands and has had a great impact on people, transportation and the economy. In many areas thousands of people were evacuated. Electrical grid and local water supply utilities failed during the floods. Furthermore, traffic was disrupted in the interregional transportation network including federal highways and long distance railways. CEDIM analysed the impact and management of the flood event within an FDA activity. An analysis on the amount and spatial distribution of flood-related Twitter messages in Germany revealed a high interest in the flood in the social media. Furthermore, an analysis of the resilience of selected affected areas in Germany has been carried out to assess the impact of the flood on the district level. The resilience indicator is based on social, economic and institutional indicators which are supplemented with information on the number of people evacuated and transportation disruptions. Combined with the magnitude of the event, an index is calculated that allows for a rapid initial but preliminary estimate of the flood impact. Results show high resilience of the administrative districts along the Danube while heavy impacts are seen along the Mulde and Elbe.

  20. A Pro-active Real-time Forecasting and Decision Support System for Daily Management of Marine Works

    NASA Astrophysics Data System (ADS)

    Bollen, Mark; Leyssen, Gert; Smets, Steven; De Wachter, Tom

    2016-04-01

    Marine Works involving turbidity generating activities (eg. dredging, dredge spoil placement) can generate environmental stress in and around a project area in the form of sediment plumes causing light reduction and sedimentation. If these works are situated near sensitive habitats like sea-grass beds, coral reefs or sensitive human activities eg. aquaculture farms or water intakes, or if contaminants are present in the water soil environmental scrutiny is advised. Environmental Regulations can impose limitations to these activities in the form of turbidity thresholds, spill budgets, contaminant levels. Breaching environmental regulations can result in increased monitoring, adaptation of the works planning and production rates and ultimately in a (temporary) stop of activities all of which entail time and cost impacts for a contractor and/or client. Sediment plume behaviour is governed by the dredging process, soil properties and ambient conditions (currents, water depth) and can be modelled. Usually this is done during the preparatory EIA phase of a project, for estimation of environmental impact based on climatic scenarios. An operational forecasting tool is developed to adapt marine work schedules to the real-time circumstances and thus evade exceedance of critical threshold levels at sensitive areas. The forecasting system is based on a Python-based workflow manager with a MySQL database and a Django frontend web tool for user interaction and visualisation of the model results. The core consists of a numerical hydrodynamic model with sediment transport module (Mike21 from DHI). This model is driven by space and time varying wind fields and wave boundary conditions, and turbidity inputs (suspended sediment source terms) based on marine works production rates and soil properties. The resulting threshold analysis allows the operator to indicate potential impact at the sensitive areas and instigate an adaption of the marine work schedule if needed. In order to use

  1. Factors controlling storm impacts on coastal barriers and beaches - A preliminary basis for near real-time forecasting

    USGS Publications Warehouse

    Morton, R.A.

    2002-01-01

    Analysis of ground conditions and meteorological and oceanographic parameters for some of the most severe Atlantic and Gulf Coast storms in the U.S. reveals the primary factors affecting morphological storm responses of beaches and barrier islands. The principal controlling factors are storm characteristics, geographic position relative to storm path, timing of storm events, duration of wave exposure, wind stress, degree of flow confinement, antecedent topography and geologic framework, sediment textures, vegetative cover, and type and density of coastal development. A classification of commonly observed storm responses demonstrates the sequential interrelations among (1) land elevations, (2) water elevations in the ocean and adjacent lagoon (if present), and (3) stages of rising water during the storm. The predictable coastal responses, in relative order from high frequency beach erosion to low frequency barrier inundation, include: beach erosion, berm migration, dune erosion, washover terrace construction, perched fan deposition, sheetwash, washover channel incision, washout formation, and forced and unforced ebb flow. Near real-time forecasting of expected storm impacts is possible if the following information is available for the coast: a detailed morphological and topographic characterization, accurate storm-surge and wave-runup models, the real-time reporting of storm parameters, accurate forecasts of the storm position relative to a particular coastal segment, and a conceptual model of geological processes that encompasses observed morphological changes caused by extreme storms.

  2. Puget Sound Operational Forecast System - A Real-time Predictive Tool for Marine Resource Management and Emergency Responses

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang; Chase, Jared M.; Wang, Taiping

    2009-12-01

    To support marine ecological resource management and emergency response and to enhance scientific understanding of physical and biogeochemical processes in Puget Sound, a real-time Puget Sound Operational Forecast System (PS-OFS) was developed by the Coastal Ocean Dynamics & Ecosystem Modeling group (CODEM) of Pacific Northwest National Laboratory (PNNL). PS-OFS employs the state-of-the-art three-dimensional coastal ocean model and closely follows the standards and procedures established by National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). PS-OFS consists of four key components supporting the Puget Sound Circulation and Transport Model (PS-CTM): data acquisition, model execution and product archive, model skill assessment, and model results dissemination. This paper provides an overview of PS-OFS and its ability to provide vital real-time oceanographic information to the Puget Sound community. PS-OFS supports pacific northwest region’s growing need for a predictive tool to assist water quality management, fish stock recovery efforts, maritime emergency response, nearshore land-use planning, and the challenge of climate change and sea level rise impacts. The structure of PS-OFS and examples of the system inputs and outputs, forecast results are presented in details.

  3. Operational flood forecasting system of Umbria Region "Functional Centre

    NASA Astrophysics Data System (ADS)

    Berni, N.; Pandolfo, C.; Stelluti, M.; Ponziani, F.; Viterbo, A.

    2009-04-01

    The hydrometeorological alert office (called "Decentrate Functional Centre" - CFD) of Umbria Region, in central Italy, is the office that provides technical tools able to support decisions when significant flood/landslide events occur, furnishing 24h support for the whole duration of the emergency period, according to the national directive DPCM 27 February 2004 concerning the "Operating concepts for functional management of national and regional alert system during flooding and landslide events for civil protection activities purposes" that designs, within the Italian Civil Defence Emergency Management System, a network of 21 regional Functional Centres coordinated by a central office at the National Civil Protection Department in Rome. Due to its "linking" role between Civil Protection "real time" activities and environmental/planning "deferred time" ones, the Centre is in charge to acquire and collect both real time and quasi-static data: quantitative data from monitoring networks (hydrometeorological stations, meteo radar, ...), meteorological forecasting models output, Earth Observation data, hydraulic and hydrological simulation models, cartographic and thematic GIS data (vectorial and raster type), planning studies related to flooding areas mapping, dam managing plans during flood events, non instrumental information from direct control of "territorial presidium". A detailed procedure for the management of critical events was planned, also in order to define the different role of various authorities and institutions involved. Tiber River catchment, of which Umbria region represents the main upper-medium portion, includes also regional trans-boundary issues very important to cope with, especially for what concerns large dam behavior and management during heavy rainfall. The alert system is referred to 6 different warning areas in which the territory has been divided into and based on a threshold system of three different increasing critical levels according

  4. Real-time weather forecasting in the Western Mediterranean Basin: An application of the RAMS model

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Caselles, V.; Estrela, M. J.

    2014-03-01

    A regional forecasting system based on the Regional Atmospheric Modeling System (RAMS) is being run at the CEAM Foundation. The model is started twice daily with a forecast range of 72 h. For the period June 2007 to August 2010 the verification of the model has been done using a series of automatic meteorological stations from the CEAM network and located within the Valencia Region (Western Mediterranean Basin). Air temperature, relative humidity and wind speed and direction of the output of the model have been compared with observations. For these variables, an operational verification has been performed by computing different statistical scores for 18 weather stations. This verification process has been carried out for each season of the year separately. As a result, it has been revealed that the model presents significant differences in the forecast of the meteorological variables analysed throughout the year. Moreover, due to the physical complexity of the area of study, the model presents different degree of accuracy between coastal and inland stations. Precipitation has also been verified by means of yes/no contingency tables as well as scatter plots. These tables have been built using 4 specific thresholds that have permitted to compute some categorical statistics. From the results found, it is shown that the precipitation forecast in the area of study is in general over-predicted, but with marked differences between the seasons of the year. Finally, dividing the available data by season of the year, has permitted us to analyze differences in the observed patterns for the magnitudes mentioned above. These results have been used to better understand the behavior of the RAMS model within the Valencia Region.

  5. Timetable of an operational flood forecasting system

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Jaun, Simon; Zappa, Massimiliano

    2010-05-01

    At present a new underground part of Zurich main station is under construction. For this purpose the runoff capacity of river Sihl, which is passing beneath the main station, is reduced by 40%. If a flood is to occur the construction site is evacuated and gates can be opened for full runoff capacity to prevent bigger damages. However, flooding the construction site, even if it is controlled, is coupled with costs and retardation. The evacuation of the construction site at Zurich main station takes about 2 to 4 hours and opening the gates takes another 1 to 2 hours each. In the upper part of the 336 km2 Sihl catchment the Sihl lake, a reservoir lake, is situated. It belongs and is used by the Swiss Railway Company for hydropower production. This lake can act as a retention basin for about 46% of the Sihl catchment. Lowering the lake level to gain retention capacity, and therewith safety, is coupled with direct loss for the Railway Company. To calculate the needed retention volume and the water to be released facing unfavourable weather conditions, forecasts with a minimum lead time of 2 to 3 days are needed. Since the catchment is rather small, this can only be realised by the use of meteorological forecast data. Thus the management of the construction site depends on accurate forecasts to base their decisions on. Therefore an operational hydrological ensemble prediction system (HEPS) was introduced in September 2008 by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). It delivers daily discharge forecasts with a time horizon of 5 days. The meteorological forecasts are provided by MeteoSwiss and stem from the operational limited-area COSMO-LEPS which downscales the ECMWF ensemble prediction system to a spatial resolution of 7 km. Additional meteorological data for model calibration and initialisation (air temperature, precipitation, water vapour pressure, global radiation, wind speed and sunshine duration) and radar data are also provided by

  6. The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems

    NASA Astrophysics Data System (ADS)

    Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.

    2010-09-01

    , has become evident. However, despite the demonstrated advantages, worldwide the incorporation of HEPS in operational flood forecasting is still limited. The applicability of HEPS for smaller river basins was tested in MAP D-Phase, an acronym for "Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region" which was launched in 2005 as a Forecast Demonstration Project of World Weather Research Programme of WMO, and entered a pre-operational and still active testing phase in 2007. In Europe, a comparatively high number of EPS driven systems for medium-large rivers exist. National flood forecasting centres of Sweden, Finland and the Netherlands, have already implemented HEPS in their operational forecasting chain, while in other countries including France, Germany, Czech Republic and Hungary, hybrids or experimental chains have been installed. As an example of HEPS, the European Flood Alert System (EFAS) is being presented. EFAS provides medium-range probabilistic flood forecasting information for large trans-national river basins. It incorporates multiple sets of weather forecast including different types of EPS and deterministic forecasts from different providers. EFAS products are evaluated and visualised as exceedance of critical levels only - both in forms of maps and time series. Different sources of uncertainty and its impact on the flood forecasting performance for every grid cell has been tested offline but not yet incorporated operationally into the forecasting chain for computational reasons. However, at stations where real-time discharges are available, a hydrological uncertainty processor is being applied to estimate the total predictive uncertainty from the hydrological and input uncertainties. Research on long-term EFAS results has shown the need for complementing statistical analysis with case studies for which examples will be shown.

  7. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models

    NASA Astrophysics Data System (ADS)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2015-10-01

    Reliable river flow forecasts play a key role in flood risk mitigation. Among different approaches of river flow forecasting, data driven approaches have become increasingly popular in recent years due to their minimum information requirements and ability to simulate nonlinear and non-stationary characteristics of hydrological processes. In this study, attempts are made to apply four different types of data driven approaches, namely traditional artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), wavelet neural networks (WNN), and, hybrid ANFIS with multi resolution analysis using wavelets (WNF). Developed models applied for real time flood forecasting at Casino station on Richmond River, Australia which is highly prone to flooding. Hourly rainfall and runoff data were used to drive the models which have been used for forecasting with 1, 6, 12, 24, 36 and 48 h lead-time. The performance of models further improved by adding an upstream river flow data (Wiangaree station), as another effective input. All models perform satisfactorily up to 12 h lead-time. However, the hybrid wavelet-based models significantly outperforming the ANFIS and ANN models in the longer lead-time forecasting. The results confirm the robustness of the proposed structure of the hybrid models for real time runoff forecasting in the study area.

  8. Skill assessment of a real-time forecast system utilizing a coupled hydrologic and coastal hydrodynamic model during Hurricane Irene (2011)

    NASA Astrophysics Data System (ADS)

    Dresback, Kendra M.; Fleming, Jason G.; Blanton, Brian O.; Kaiser, Carola; Gourley, Jonathan J.; Tromble, Evan M.; Luettich, Richard A.; Kolar, Randall L.; Hong, Yang; Van Cooten, Suzanne; Vergara, Humberto J.; Flamig, Zac L.; Lander, Howard M.; Kelleher, Kevin E.; Nemunaitis-Monroe, Kodi L.

    2013-12-01

    Due to the devastating effects of recent hurricanes in the Gulf of Mexico (e.g., Katrina, Rita, Ike and Gustav), the development of a high-resolution, real-time, total water level prototype system has been accelerated. The fully coupled model system that includes hydrology is an extension of the ADCIRC Surge Guidance System (ASGS), and will henceforth be referred to as ASGS-STORM (Scalable, Terrestrial, Ocean, River, Meteorological) to emphasize the major processes that are represented by the system.The ASGS-STORM system incorporates tides, waves, winds, rivers and surge to produce a total water level, which provides a holistic representation of coastal flooding. ASGS-STORM was rigorously tested during Hurricane Irene, which made landfall in late August 2011 in North Carolina. All results from ASGS-STORM for the advisories were produced in real-time, forced by forecast wind and pressure fields computed using a parametric tropical cyclone model, and made available via the web. Herein, a skill assessment, analyzing wind speed and direction, significant wave heights, and total water levels, is used to evaluate ASGS-STORM's performance during Irene for three advisories and the best track from the National Hurricane Center (NHC). ASGS-STORM showed slight over-prediction for two advisories (Advisory 23 and 25) due to the over-estimation of the storm intensity. However, ASGS-STORM shows notable skill in capturing total water levels, wind speed and direction, and significant wave heights in North Carolina when utilizing Advisory 28, which had a slight shift in the track but provided a more accurate estimation of the storm intensity, along with the best track from the NHC. Results from ASGS-STORM have shown that as the forecast of the advisories improves, so does the accuracy of the models used in the study; therefore, accurate input from the weather forecast is a necessary, but not sufficient, condition to ensure the accuracy of the guidance provided by the system. While

  9. FEWS Vecht, a crossing boundaries flood forecasting system

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; Filius, Pieter; Tromp, Gerben; Renner, Tobias

    2013-04-01

    The river Vecht is a cross boundary river, starting in Germany and flowing to the Netherlands. The river is completely dependant on rainfall in the catchment. Being one of the smaller big rivers in the Netherlands, there was still no operational forecasting system avaible because of the hugh number of involved organisations (2 in Germany, 5 in the Netherlands) and many other stake holders. In 2011 a first operational forecasting system has been build by using the Delft-FEWS software. It collects the real time fluvial and meteorological observations from all the organisations, in that sense being a portal where all the collected information is available and can be consistantly interpreted as a whole. In 2012 an HBV rainfall runoff model and a Sobek 1D hydraulic model has been build. These models have been integrated into the FEWS system and are operationally running since the 2012 autumn. The system forecasts 5 days ahead using a 5 days ECMWF rainfall ensemble forecast. It enables making scenarios, especially useful for the operation of storage reservoirs. During the 2012 Christmas days a (relatively small) T=2 flood occurred (Q=175-200 m3/s) and proved the system to run succesfully. Dissemination of the forecasts is performed by using the FEWS system in all organisations, connected to the central system through internet. There is also a (password protected) website available that provides the current forecast to all stake holders in the catchment. The challenge of the project was not to make the models and to build the fews, but to connect all data and all operators together into one system, even cross boundary. Also in that sense the FEWS Vecht system has proved to be very succesful.

  10. Multi-index method using offshore ocean-bottom pressure data for real-time tsunami forecast

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naotaka; Aoi, Shin; Hirata, Kenji; Suzuki, Wataru; Kunugi, Takashi; Nakamura, Hiromitsu

    2016-07-01

    We developed a real-time tsunami forecast method using only pressure data collected from the bottom of the ocean via a dense offshore observation network. The key feature of the method is rapid matching between offshore tsunami observations and pre-calculated offshore tsunami spatial distributions. We first calculate the tsunami waveforms at offshore stations and the maximum coastal tsunami heights from any possible tsunami source model and register them in the proposed Tsunami Scenario Bank (TSB). When a tsunami occurs, we use multiple indices to quickly select dozens of appropriate tsunami scenarios that can explain the offshore observations. At the same time, the maximum coastal tsunami heights coupled with the selected tsunami scenarios are forecast. We apply three indices, which are the correlation coefficient and two kinds of variance reductions normalized by the L2-norm of either the observation or calculation, to match the observed spatial distributions with the pre-calculated spatial distributions in the TSB. We examine the ability of our method to select appropriate tsunami scenarios by conducting synthetic tests using a scenario based on "pseudo-observations." For these tests, we construct a tentative TSB, which contains tsunami waveforms at locations in the Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench and maximum coastal tsunami heights, using about 2000 tsunami source models along the Japan Trench. Based on the test results, we confirm that the method can select appropriate tsunami scenarios within a certain precision by using the two kinds of variance reductions, which are sensitive to the tsunami size, and the correlation coefficient, which is sensitive to the tsunami source location. In this paper, we present the results and discuss the characteristics and behavior of the multi-index method. The addition of tsunami inundation components to the TSB is expected to enable the application of this method to real-time

  11. Near Real-Time Flood Monitoring and Impact Assessment Systems. Chapter 6; [Case Study: 2011 Flooding in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Ahamed, Aakash; Bolten, John; Doyle, Colin; Fayne, Jessica

    2016-01-01

    Floods are the costliest natural disaster, causing approximately 6.8 million deaths in the twentieth century alone. Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD. Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries. Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change. Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assess flooding and extend analytical methods to estimate impacted population and infrastructure. Measuring flood extent in situ is generally impractical, time consuming, and can be inaccurate. Remotely sensed imagery acquired from space-borne and airborne sensors provides a viable platform for consistent and rapid wall-to-wall monitoring of large flood events through time. Terabytes of freely available satellite imagery are made available online each day by NASA, ESA, and other international space research institutions. Advances in cloud computing and data storage technologies allow researchers to leverage these satellite data and apply analytical methods at scale. Repeat-survey earth observations help provide insight about how natural phenomena change through time, including the progression and recession of floodwaters. In recent years, cloud-penetrating radar remote sensing techniques (e.g., Synthetic Aperture Radar) and high temporal resolution imagery platforms (e.g., MODIS and its 1-day return period), along with high performance computing infrastructure, have enabled significant advances in software systems that provide flood warning, assessments, and hazard reduction potential. By incorporating social and economic data

  12. LiDAR-Derived Flood-Inundation Maps for Real-Time Flood-Mapping Applications, Tar River Basin, North Carolina

    USGS Publications Warehouse

    Bales, Jerad D.; Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia

    2007-01-01

    reaches at 0.305-meter increments for water levels ranging from bankfull to approximately the highest recorded water level at the downstream-most gage in each modeled reach. Inundated areas were identified by subtracting the water-surface elevation in each 1.5-meter by 1.5-meter grid cell from the land-surface elevation in the cell through an automated routine that was developed to identify all inundated cells hydraulically connected to the cell at the downstream-most gage in the model domain. Inundation maps showing transportation networks and orthoimagery were prepared for display on the Internet. These maps also are linked to the U.S. Geological Survey North Carolina Water Science Center real-time streamflow website. Hence, a user can determine the near real-time stage and water-surface elevation at a U.S. Geological Survey streamgage site in the Tar River basin and link directly to the flood-inundation maps for a depiction of the estimated inundated area at the current water level. Although the flood-inundation maps represent distinct boundaries of inundated areas, some uncertainties are associated with these maps. These are uncertainties in the topographic data for the hydraulic model computational grid and inundation maps, effective friction values (Manning's n), model-validation data, and forecast hydrographs, if used. The Tar River flood-inundation maps were developed by using a steady-flow hydraulic model. This assumption clearly has less of an effect on inundation maps produced for low flows than for high flows when it typically takes more time to inundate areas. A flood in which water levels peak and fall slowly most likely will result in more inundation than a similar flood in which water levels peak and fall quickly. Limitations associated with the steady-flow assumption for hydraulic modeling vary from site to site. The one-dimensional modeling approach used in this study resulted in good agreement between measurements and simulations. T

  13. Real-time forecasting of Hong Kong beach water quality by 3D deterministic model.

    PubMed

    Chan, S N; Thoe, W; Lee, J H W

    2013-03-15

    Bacterial level (e.g. Escherichia coli) is generally adopted as the key indicator of beach water quality due to its high correlation with swimming associated illnesses. A 3D deterministic hydrodynamic model is developed to provide daily water quality forecasting for eight marine beaches in Tsuen Wan, which are only about 8 km from the Harbour Area Treatment Scheme (HATS) outfall discharging 1.4 million m(3)/d of partially-treated sewage. The fate and transport of the HATS effluent and its impact on the E. coli level at nearby beaches are studied. The model features the seamless coupling of near field jet mixing and the far field transport and dispersion of wastewater discharge from submarine outfalls, and a spatial-temporal dependent E. coli decay rate formulation specifically developed for sub-tropical Hong Kong waters. The model prediction of beach water quality has been extensively validated against field data both before and after disinfection of the HATS effluent. Compared with daily beach E. coli data during August-November 2011, the model achieves an overall accuracy of 81-91% in forecasting compliance/exceedance of beach water quality standard. The 3D deterministic model has been most valuable in the interpretation of the complex variation of beach water quality which depends on tidal level, solar radiation and other hydro-meteorological factors. The model can also be used in optimization of disinfection dosage and in emergency response situations.

  14. Real time wave forecasting using wind time history and numerical model

    NASA Astrophysics Data System (ADS)

    Jain, Pooja; Deo, M. C.; Latha, G.; Rajendran, V.

    Operational activities in the ocean like planning for structural repairs or fishing expeditions require real time prediction of waves over typical time duration of say a few hours. Such predictions can be made by using a numerical model or a time series model employing continuously recorded waves. This paper presents another option to do so and it is based on a different time series approach in which the input is in the form of preceding wind speed and wind direction observations. This would be useful for those stations where the costly wave buoys are not deployed and instead only meteorological buoys measuring wind are moored. The technique employs alternative artificial intelligence approaches of an artificial neural network (ANN), genetic programming (GP) and model tree (MT) to carry out the time series modeling of wind to obtain waves. Wind observations at four offshore sites along the east coast of India were used. For calibration purpose the wave data was generated using a numerical model. The predicted waves obtained using the proposed time series models when compared with the numerically generated waves showed good resemblance in terms of the selected error criteria. Large differences across the chosen techniques of ANN, GP, MT were not noticed. Wave hindcasting at the same time step and the predictions over shorter lead times were better than the predictions over longer lead times. The proposed method is a cost effective and convenient option when a site-specific information is desired.

  15. Near Real-Time Flood Monitoring and Impact Assessment Systems. Chapter 6; [Case Study: 2011 Flooding in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Ahamed, Aakash; Bolten, John; Doyle, C.; Fayne, Jessica

    2016-01-01

    Floods are the costliest natural disaster (United Nations 2004), causing approximately6.8 million deaths in the twentieth century alone (Doocy et al. 2013).Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD(Munich Re 2013). Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries (Davies et al. 2014).Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change (IPCC 2007). Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assessflooding and extend analytical methods to estimate impacted population and infrastructure.

  16. Performance and quality assessment of the recent updated CMEMS global ocean monitoring and forecasting real-time system

    NASA Astrophysics Data System (ADS)

    Le Galloudec, Olivier; Lellouche, Jean-Michel; Greiner, Eric; Garric, Gilles; Régnier, Charly; Drévillon, Marie; Drillet, Yann

    2017-04-01

    Since May 2015, Mercator Ocean opened the Copernicus Marine Environment and Monitoring Service (CMEMS) and is in charge of the global eddy resolving ocean analyses and forecast. In this context, Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity. R&D activities have been conducted at Mercator Ocean these last years to improve the real-time 1/12° global system for recent updated CMEMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefited of the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting, … This presentation will show the impact of some updates separately, with a particular focus on adaptive tuning experiments of satellite Sea Level Anomaly (SLA) and Sea Surface Temperature (SST) observations errors. For the SLA, the a priori prescribed observation error is globally greatly reduced. The median value of the error changed

  17. New Measurements and Modeling Capability to Improve Real-time Forecast of Cascadia Tsunamis along U.S. West Coast

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Titov, V. V.; Bernard, E. N.; Spillane, M. C.

    2014-12-01

    The tragedies of 2004 Sumatra and 2011 Tohoku tsunamis exposed the limits of our knowledge in preparing for devastating tsunamis, especially in the near field. The 1,100-km coastline of the Pacific coast of North America has tectonic and geological settings similar to Sumatra and Japan. The geological records unambiguously show that the Cascadia fault had caused devastating tsunamis in the past and this geological process will cause tsunamis in the future. Existing observational instruments along the Cascadia Subduction Zone are capable of providing tsunami data within minutes of tsunami generation. However, this strategy requires separation of the tsunami signals from the overwhelming high-frequency seismic waves produced during a strong earthquake- a real technical challenge for existing operational tsunami observational network. A new-generation of nano-resolution pressure sensors can provide high temporal resolution of the earthquake and tsunami signals without loosing precision. The nano-resolution pressure sensor offers a state-of the-science ability to separate earthquake vibrations and other oceanic noise from tsunami waveforms, paving the way for accurate, early warnings of local tsunamis. This breakthrough underwater technology has been tested and verified for a couple of micro-tsunami events (Paros et al., 2011). Real-time forecast of Cascadia tsunamis is becoming a possibility with the development of nano-tsunameter technology. The present study provides an investigation on optimizing the placement of these new sensors so that the forecast time can be shortened.. The presentation will cover the optimization of an observational array to quickly detect and forecast a tsunami generated by a strong Cascadia earthquake, including short and long rupture scenarios. Lessons learned from the 2011 Tohoku tsunami will be examined to demonstrate how we can improve the local forecast using the new technology We expect this study to provide useful guideline for

  18. Leveraging Advanced Computational Algorithms and Satellite Remote Sensing Products for Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Aristizabal, F.; Judge, J.; Rangarajan, A.

    2016-12-01

    According to the 2015 World Disasters Report published by the International Federation of Red Cross and Red Crescent Societies, floods, on an average annual reported basis during the period of 2005 to 2014, produced over 5,900 fatalities, over 86 million affected individuals, and over $34 billion in damages. Flood warning and forecasting systems relying on earth observations have generally employed deterministic, process-based hydrology models for near real-time operational applications. Limited research exists examining the application of computational and informatics algorithms for flood forecasting from earth observation data products.The goal of this study is to determine the efficacy of data-driven methodologies for accurately forecasting riverine flooding while exclusively utilizing remotely-sensed, satellite-based observations. Several data-driven spatiotemporal techniques for other applications have been employed such as adaptive resonance theory-MMAP (ART-MMAP) networks and associative neural networks. The initial methodology for flood prediction, similar to ART-MMAP, will be applied to a significant, historical flood spanning a data-rich agricultural area. Existing flood monitoring systems that could be appropriated as dependent data include MODIS Near-Real Time Global Flood Mapping and the Global Flood Detection System. Auxiliary data that are relational and causational to flooding include ground moisture, precipitation, elevation models, and land-cover all which are available from earth observation products. Ground data from observational records and in-situ stream gauges will be used to verify the accuracy of predictions and quantify omission and commission errors.

  19. Integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Mosimann, Markus; Weingartner, Rolf

    2016-04-01

    A key aspect of disaster prevention is flood discharge forecasting which is used for early warning and therefore as a decision support for intervention forces. Hereby, the phase between the issued forecast and the time when the expected flood occurs is crucial for an optimal planning of the intervention. Typically, river discharge forecasts cover the regional level only, i.e. larger catchments. However, it is important to note that these forecasts are not useable directly for specific target groups on local level because these forecasts say nothing about the consequences of the predicted flood in terms of affected areas, number of exposed residents and houses. For this, on one hand simulations of the flooding processes and on the other hand data of vulnerable objects are needed. Furthermore, flood modelling in a high spatial and temporal resolution is required for robust flood loss estimation. This is a resource-intensive task from a computing time point of view. Therefore, in real-time applications flood modelling in 2D is not suited. Thus, forecasting flood losses in the short-term (6h-24h in advance) requires a different approach. Here, we propose a method to downscale the river discharge forecast to a spatially-explicit flood loss forecast. The principal procedure is to generate as many flood scenarios as needed in advance to represent the flooded areas for all possible flood hydrographs, e.g. very high peak discharges of short duration vs. high peak discharges with high volumes. For this, synthetic flood hydrographs were derived from the hydrologic time series. Then, the flooded areas of each scenario were modelled with a 2D flood simulation model. All scenarios were intersected with the dataset of vulnerable objects, in our case residential, agricultural and industrial buildings with information about the number of residents, the object-specific vulnerability, and the monetary value of the objects. This dataset was prepared by a data-mining approach. For each

  20. Development of Hydrometeorological Monitoring and Forecasting as AN Essential Component of the Early Flood Warning System:

    NASA Astrophysics Data System (ADS)

    Manukalo, V.

    2012-12-01

    Defining issue The river inundations are the most common and destructive natural hazards in Ukraine. Among non-structural flood management and protection measures a creation of the Early Flood Warning System is extremely important to be able to timely recognize dangerous situations in the flood-prone areas. Hydrometeorological information and forecasts are a core importance in this system. The primary factors affecting reliability and a lead - time of forecasts include: accuracy, speed and reliability with which real - time data are collected. The existing individual conception of monitoring and forecasting resulted in a need in reconsideration of the concept of integrated monitoring and forecasting approach - from "sensors to database and forecasters". Result presentation The Project: "Development of Flood Monitoring and Forecasting in the Ukrainian part of the Dniester River Basin" is presented. The project is developed by the Ukrainian Hydrometeorological Service in a conjunction with the Water Management Agency and the Energy Company "Ukrhydroenergo". The implementation of the Project is funded by the Ukrainian Government and the World Bank. The author is nominated as the responsible person for coordination of activity of organizations involved in the Project. The term of the Project implementation: 2012 - 2014. The principal objectives of the Project are: a) designing integrated automatic hydrometeorological measurement network (including using remote sensing technologies); b) hydrometeorological GIS database construction and coupling with electronic maps for flood risk assessment; c) interface-construction classic numerical database -GIS and with satellite images, and radar data collection; d) providing the real-time data dissemination from observation points to forecasting centers; e) developing hydrometeoroogical forecasting methods; f) providing a flood hazards risk assessment for different temporal and spatial scales; g) providing a dissemination of

  1. Transmission dynamics of cholera in Yemen, 2017: a real time forecasting.

    PubMed

    Nishiura, Hiroshi; Tsuzuki, Shinya; Yuan, Baoyin; Yamaguchi, Takayuki; Asai, Yusuke

    2017-07-26

    A large epidemic of cholera, caused by Vibrio cholerae, serotype Ogawa, has been ongoing in Yemen, 2017. To improve the situation awareness, the present study aimed to forecast the cholera epidemic, explicitly addressing the reporting delay and ascertainment bias. Using weekly incidence of suspected cases, updated as a revised epidemic curve every week, the reporting delay was explicitly incorporated into the estimation model. Using the weekly case fatality risk as calculated by the World Health Organization, ascertainment bias was adjusted, enabling us to parameterize the family of logistic curves (i.e., logistic and generalized logistic models) for describing the unbiased incidence in 2017. The cumulative incidence at the end of the epidemic, was estimated at 790,778 (95% CI: 700,495, 914,442) cases and 767,029 (95% CI: 690,877, 871,671) cases, respectively, by using logistic and generalized logistic models. It was also estimated that we have just passed through the epidemic peak by week 26, 2017. From week 27 onwards, the weekly incidence was predicted to decrease. Cholera epidemic in Yemen, 2017 was predicted to soon start to decrease. If the weekly incidence is reported in the up-to-the-minute manner and updated in later weeks, not a single data point but the entire epidemic curve must be precisely updated.

  2. Advances in Global Flood Forecasting Systems

    NASA Astrophysics Data System (ADS)

    Thielen-del Pozo, J.; Pappenberger, F.; Burek, P.; Alfieri, L.; Kreminski, B.; Muraro, D.

    2012-12-01

    A trend of increasing number of heavy precipitation events over many regions in the world during the past century has been observed (IPCC, 2007), but conclusive results on a changing frequency or intensity of floods have not yet been established. However, the socio-economic impact particularly of floods is increasing at an alarming trend. Thus anticipation of severe events is becoming a key element of society to react timely to effectively reduce socio-economic damage. Anticipation is essential on local as well as on national or trans-national level since management of response and aid for major disasters requires a substantial amount of planning and information on different levels. Continental and trans-national flood forecasting systems already exist. The European Flood Awareness System (EFAS) has been developed in close collaboration with the National services and is going operational in 2012, enhancing the national forecasting centres with medium-range probabilistic added value information while at the same time providing the European Civil Protection with harmonised information on ongoing and upcoming floods for improved aid management. Building on experiences and methodologies from EFAS, a Global Flood Awareness System (GloFAS) has now been developed jointly between researchers from the European Commission Joint Research Centre (JRC) and the European Centre for Medium-Range Weather Forecast (ECWMF). The prototype couples HTESSEL, the land-surface scheme of the ECMWF NWP model with the LISFLOOD hydrodynamic model for the flow routing in the river network. GloFAS is set-up on global scale with horizontal grid spacing of 0.1 degree. The system is driven with 51 ensemble members from VAREPS with a time horizon of 15 days. In order to allow for the routing in the large rivers, the coupled model is run for 45 days assuming zero rainfall after day 15. Comparison with observations have shown that in some rivers the system performs quite well while in others the hydro

  3. Development of a System to Generate Near Real Time Tropospheric Delay and Precipitable Water Vapor in situ at Geodetic GPS Stations, to Improve Forecasting of Severe Weather Events

    NASA Astrophysics Data System (ADS)

    Moore, A. W.; Bock, Y.; Geng, J.; Gutman, S. I.; Laber, J. L.; Morris, T.; Offield, D. G.; Small, I.; Squibb, M. B.

    2012-12-01

    We describe a system under development for generating ultra-low latency tropospheric delay and precipitable water vapor (PWV) estimates in situ at a prototype network of geodetic GPS sites in southern California, and demonstrating their utility in forecasting severe storms commonly associated with flooding and debris flow events along the west coast of North America through infusion of this meteorological data at NOAA National Weather Service (NWS) Forecast Offices and the NOAA Earth System Research Laboratory (ESRL). The first continuous geodetic GPS network was established in southern California in the early 1990s and much of it was converted to real-time (latency <1s) high-rate (1Hz) mode over the following decades. GPS stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV using collocated pressure and temperature measurements, the basis for GPS meteorology (Bevis et al. 1992, 1994; Duan et al. 1996) as implemented by NOAA with a nationwide distribution of about 300 GPS-Met stations providing PW estimates at subhourly resolution currently used in operational weather forecasting in the U.S. We improve upon the current paradigm of transmitting large quantities of raw data back to a central facility for processing into higher-order products. By operating semi-autonomously, each station will provide low-latency, high-fidelity and compact data products within the constraints of the narrow communications bandwidth that often occurs in the aftermath of natural disasters. The onsite ambiguity-resolved precise point positioning solutions are enabled by a power-efficient, low-cost, plug-in Geodetic Module for fusion of data from in situ sensors including GPS and a low-cost MEMS meteorological sensor package. The decreased latency (~5 minutes) PW estimates will provide the detailed knowledge of the distribution and magnitude of PW that NWS forecasters require to monitor and predict severe winter

  4. Ocean Model Analysis and Prediction System (Ocean Maps): Operational Ocean Forecasting Base on Near Real-Time Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Brassington, G. B.

    2006-07-01

    BLU Elink> is a join t Australian governmen t initiative to develop Austr alia's f irst operational ocean forecasting system called O cean MAPS. The project has transitioned to th e implemen tation and trial phase using the infrastructure of the Bureau of Meteorology. OceanMAPS has a g lobal grid with 1/10° by 1/10° resolution in the Australian region (90E-180E, 70S- 16N) and uses the Modular Ocean Model version 4 optimised for the NEC SX6. The analysis uses an ensemb le based multi-variate optimal interpolation scheme wh ere model error cov ariances ar e der ived from a 72-member ensemble of in tra-seasonal anomalies based on a 12-year ocean only model integration. The scheme has been formulated to assimilate near real- time sea level heigh t anomalies processed from Jason-1, ENVISAT and Geosat Follow-On and profile observations including Argo, X BT and the TAO array. The operation al configuration including the data manag emen t of the near real- time observ ations is review ed.

  5. Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.

    2015-12-01

    Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted

  6. Forecasting skills of the ensemble hydro-meteorological system for the Po river floods

    NASA Astrophysics Data System (ADS)

    Ricciardi, Giuseppe; Montani, Andrea; Paccagnella, Tiziana; Pecora, Silvano; Tonelli, Fabrizio

    2013-04-01

    The Po basin is the largest and most economically important river-basin in Italy. Extreme hydrological events, including floods, flash floods and droughts, are expected to become more severe in the next future due to climate change, and related ground effects are linked both with environmental and social resilience. A Warning Operational Center (WOC) for hydrological event management was created in Emilia Romagna region. In the last years, the WOC faced challenges in legislation, organization, technology and economics, achieving improvements in forecasting skill and information dissemination. Since 2005, an operational forecasting and modelling system for flood modelling and forecasting has been implemented, aimed at supporting and coordinating flood control and emergency management on the whole Po basin. This system, referred to as FEWSPo, has also taken care of environmental aspects of flood forecast. The FEWSPo system has reached a very high level of complexity, due to the combination of three different hydrological-hydraulic chains (HEC-HMS/RAS - MIKE11 NAM/HD, Topkapi/Sobek), with several meteorological inputs (forecasted - COSMOI2, COSMOI7, COSMO-LEPS among others - and observed). In this hydrological and meteorological ensemble the management of the relative predictive uncertainties, which have to be established and communicated to decision makers, is a debated scientific and social challenge. Real time activities face professional, modelling and technological aspects but are also strongly interrelated with organization and human aspects. The authors will report a case study using the operational flood forecast hydro-meteorological ensemble, provided by the MIKE11 chain fed by COSMO_LEPS EQPF. The basic aim of the proposed approach is to analyse limits and opportunities of the long term forecast (with a lead time ranging from 3 to 5 days), for the implementation of low cost actions, also looking for a well informed decision making and the improvement of

  7. GIS model-based real-time hydrological forecasting and operation management system for the Lake Balaton and its watershed

    NASA Astrophysics Data System (ADS)

    Adolf Szabó, János; Zoltán Réti, Gábor; Tóth, Tünde

    2017-04-01

    Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land-use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date GIS model-based real-time hydrological forecasting and operation management systems for aiding decision-making processes to improve water management. After years of researches and developments the HYDROInform Ltd. has developed an integrated, on-line IT system (DIWA-HFMS: DIstributed WAtershed - Hydrologyc Forecasting & Modelling System) which is able to support a wide-ranging of the operational tasks in water resources management such as: forecasting, operation of lakes and reservoirs, water-control and management, etc. Following a test period, the DIWA-HFMS has been implemented for the Lake Balaton and its watershed (in 500 m resolution) at Central-Transdanubian Water Directorate (KDTVIZIG). The significant pillars of the system are: - The DIWA (DIstributed WAtershed) hydrologic model, which is a 3D dynamic water-balance model that distributed both in space and its parameters, and which was developed along combined principles but its mostly based on physical foundations. The DIWA integrates 3D soil-, 2D surface-, and 1D channel-hydraulic components as well. - Lakes and reservoir-operating component; - Radar-data integration module; - fully online data collection tools; - scenario manager tool to create alternative scenarios, - interactive, intuitive, highly graphical user interface. In Vienna, the main functions, operations and results-management of the system will be presented.

  8. Enhancing flood forecasting with the help of processed based calibration

    NASA Astrophysics Data System (ADS)

    Cullmann, Johannes; Krauße, Thomas; Philipp, Andy

    -234; Cullmann, J., Schmitz, G.H., Görner, W., 2006. A new strategy for online flood forecasting in mountainous catchments. in: IAHS Red Book, vol. 303]. Merging of the singular parameter class models is done with the help of a sigmoidal weighting procedure. The new approach thus integrates all available information from the specially calibrated WaSiM-ETH class models, accounting for the different processes and dynamics governing the various event classes. For example it portrays the flood formation process with parameters accounting for the characteristics of the event class models. Implications arising from this study are demonstrated for a catchment in the Erzgebirge (Ore-mountains) in East Germany (1700 km). The computational efficiency, together with the convincing agreement between the predicted and observed flood peaks underlines the potential of the new parameterisation strategy in the context of operational real time forecasting.

  9. LAV@HAZARD: a Web-GIS Framework for Real-Time Forecasting of Lava Flow Hazards

    NASA Astrophysics Data System (ADS)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.

    2014-12-01

    Crucial to lava flow hazard assessment is the development of tools for real-time prediction of flow paths, flow advance rates, and final flow lengths. Accurate prediction of flow paths and advance rates requires not only rapid assessment of eruption conditions (especially effusion rate) but also improved models of lava flow emplacement. Here we present the LAV@HAZARD web-GIS framework, which combines spaceborne remote sensing techniques and numerical simulations for real-time forecasting of lava flow hazards. By using satellite-derived discharge rates to drive a lava flow emplacement model, LAV@HAZARD allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We take advantage of the flexibility of the HOTSAT thermal monitoring system to process satellite images coming from sensors with different spatial, temporal and spectral resolutions. HOTSAT was designed to ingest infrared satellite data acquired by the MODIS and SEVIRI sensors to output hot spot location, lava thermal flux and discharge rate. We use LAV@HAZARD to merge this output with the MAGFLOW physics-based model to simulate lava flow paths and to update, in a timely manner, flow simulations. Thus, any significant changes in lava discharge rate are included in the predictions. A significant benefit in terms of computational speed was obtained thanks to the parallel implementation of MAGFLOW on graphic processing units (GPUs). All this useful information has been gathered into the LAV@HAZARD platform which, due to the high degree of interactivity, allows generation of easily readable maps and a fast way to explore alternative scenarios. We will describe and demonstrate the operation of this framework using a variety of case studies pertaining to Mt Etna, Sicily. Although this study was conducted on Mt Etna, the approach used is designed to be applicable to other volcanic areas around the world.

  10. Forecasting space weather: Using ACE data to provide real-time predictions of high-intensity energetic storm particle events

    NASA Astrophysics Data System (ADS)

    Wagstaff, K.; Ho, G. C.; Vandegriff, J.; Plauger, J.

    2003-04-01

    Geo-effective interplanetary (IP) shocks are often accompanied by Energetic Storm Particle (ESP) events, during which the intensity of charged particles can increase by several orders of magnitude. Such high intensities of incident ions present a radiation hazard to astronauts and electronics in Earth orbit. Observations by NASA's Advanced Composition Explorer (ACE) spacecraft indicate that these events are usually preceded by characteristic signatures in the ion intensities, thus providing an opportunity for predicting the events before they arrive. We have developed an algorithm that can forecast the arrival of ESP events. Using historical ion data from ACE, we trained an artificial neural network to detect the characteristic signals that warn of an impending event. The network predicts the time remaining until the maximum intensity is reached. We trained the network on 37 events, from 1997 to 2002, and tested it on a separate set of 18 events from the same time period. Initial performance of the network is very encouraging; the average uncertainty in predictions made 24 hours in advance is 9.4 hours, while the uncertainty improves to 4.9 hours when the event is 12 hours away. Recently, we have integrated our predictive algorithm in a system that uses real-time ACE data provided by the NOAA Space Environment Center. This system continually processes the latest ACE data and reports whether or not there is an impending ESP event. After detecting an event, our algorithm predicts the time remaining until the peak intensity occurs. For example, on November 25, 2002, our real-time system successfully detected an upcoming event and steadily produced predictions until the corresponding IP shock hit, at 9:45 p.m. on November 26, 2002. By providing a significant amount of lead-time, as well updated predictions every five minutes, this system can be a crucial source of information to mission planners, satellite operations controllers, and scientists.

  11. A Real-Time Nowcast/Forecast System for Radar Electrojet Clutter Driven by Global Assimilative Models of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Carrano, C. S.; Alcala, C. M.; Liang, P.; Groves, K. M.; Donatelli, D. E.; Daniell, R. E.

    2006-12-01

    -region. This deficiency is particularly pronounced during geomagnetic storm activity, when the ionospheric response deviates most from climatological behavior. The latest version of the SBR-IES tool can accept, as input, real-time specifications of the ionosphere provided by global assimilative models (e.g. PRISM or GAIM) that are currently or soon to be in operational use at AFWA. Forecasts of radar clutter can be generated using forecasts of the ionospheric state provided by the Ionospheric Forecast Model (IFM), for example. In the near future we plan to include the high resolution specification of the electric field provided by the real-time incoherent scatter radars of the Super Dual Auroral Radar Network (SuperDARN). It is expected that the use of data assimilative models to provide the background ionospheric densities, temperatures, and electric field will lead to substantially more accurate and high resolution predictions of radar electrojet clutter. Moreover, these improvements can be made without sacrificing real-time impact assessment requirements.

  12. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009).

    PubMed

    Nishiura, Hiroshi

    2011-02-16

    Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance.

  13. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009)

    PubMed Central

    2011-01-01

    Background Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. Methods A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. Results The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Conclusions Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance. PMID:21324153

  14. The potential of remotely sensed soil moisture for operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S.; Bierkens, M. F.

    2013-12-01

    , compared to assimilation of discharge only. The rank histograms show that the forecast is not biased. The timing errors in the flood predictions are decreased when soil moisture data is used and imminent floods can be forecasted with skill one day earlier. In conclusion, our study shows that assimilation of satellite soil moisture increases the performance of flood forecasting systems for large catchments, like the Upper Danube. The additional gain is highest when discharge observations from both upstream and downstream areas are used in combination with the soil moisture data. These results show the potential of future soil moisture missions with a higher spatial resolution like SMAP to improve near-real time flood forecasting in large catchments.

  15. Skill of Real-Time Operational Forecasts with the APCC Multi-Model Ensemble Prediction System for the Period of 2008-2015

    NASA Astrophysics Data System (ADS)

    Min, Young-Mi; Kryjov, Vladimir N.; Oh, Sang Myeong; Lee, Hyun-Ju

    2017-04-01

    This paper assesses the real-time one-month lead forecasts of three-month (seasonal) mean temperature and precipitation on a monthly basis issued by the Asia-Pacific Economic Cooperation (APEC) Climate Center (APCC) for 2008-2015 (8 years, 96 forecasts). It shows the current level of the APCC operational multi-model prediction system performance. The skill of the APCC forecasts strongly depends on seasons and regions that it is higher for the tropics and boreal winter than for the extratropics and boreal summer due to direct effects and remote teleconnections from boundary forcings. The forecast skill for temperature is generally higher than that of precipitation. The APCC operational probabilistic forecasts during this period show a cold bias (underforecasting of above-normal temperature and overforecasting of below-normal temperature) underestimating a long-term warming trend. A wet bias is evident for precipitation, particularly in the extratropical regions. The skill of both temperature and precipitation forecasts strongly depends upon the ENSO strength. Particularly, the highest forecast skill noted in 2015/16 boreal winter is associated with the strong forcing of an extreme El Nino event. Meanwhile, the relatively low skill is associated with the transition and/or continuous ENSO-neutral phases of 2012-14. In general, the skill of the real-time forecasts is close to that of historical ones. The regions, featuring the high skill of seasonal forecasts, feature lower interseasonal variability of skill characteristics than the regions of low skill.

  16. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Tekeli, Ahmet Emre; Fouli, Hesham

    2016-10-01

    Floods are among the most common disasters harming humanity. In particular, flash floods cause hazards to life, property and any type of structures. Arid and semi-arid regions are equally prone to flash floods like regions with abundant rainfall. Despite rareness of intensive and frequent rainfall events over Kingdom of Saudi Arabia (KSA); an arid/semi-arid region, occasional flash floods occur and result in large amounts of damaging surface runoff. The flooding of 16 November, 2013 in Riyadh; the capital city of KSA, resulted in killing some people and led to much property damage. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) data (3B42RT) are used herein for flash flood forecasting. 3B42RT detected high-intensity rainfall events matching with the distribution of observed floods over KSA. A flood early warning system based on exceedance of threshold limits on 3B42RT data is proposed for Riyadh. Three different indexes: Constant Threshold (CT), Cumulative Distribution Functions (CDF) and Riyadh Flood Precipitation Index (RFPI) are developed using 14-year 3B42RT data from 2000 to 2013. RFPI and CDF with 90% captured the three major flooding events that occurred in February 2005, May 2010 and November 2013 in Riyadh. CT with 3 mm/h intensity indicated the 2013 flooding, but missed those of 2005 and 2010. The methodology implemented herein is a first-step simple and accurate way for flash flood forecasting over Riyadh. The simplicity of the methodology enables its applicability for the TRMM follow-on missions like Global Precipitation Measurement (GPM) mission.

  17. An evaluation of the real-time tropical cyclone forecast skill of the Navy Operational Global Atmospheric Prediction System in the western North Pacific

    NASA Technical Reports Server (NTRS)

    Fiorino, Michael; Goerss, James S.; Jensen, Jack J.; Harrison, Edward J., Jr.

    1993-01-01

    The paper evaluates the meteorological quality and operational utility of the Navy Operational Global Atmospheric Prediction System (NOGAPS) in forecasting tropical cyclones. It is shown that the model can provide useful predictions of motion and formation on a real-time basis in the western North Pacific. The meterological characteristics of the NOGAPS tropical cyclone predictions are evaluated by examining the formation of low-level cyclone systems in the tropics and vortex structure in the NOGAPS analysis and verifying 72-h forecasts. The adjusted NOGAPS track forecasts showed equitable skill to the baseline aid and the dynamical model. NOGAPS successfully predicted unusual equatorward turns for several straight-running cyclones.

  18. Adaptive space-time sampling with wireless sensor nodes for flood forecasting

    NASA Astrophysics Data System (ADS)

    Neal, Jeffrey C.; Atkinson, Peter M.; Hutton, Craig W.

    2012-01-01

    SummaryThis paper investigates a method for the real-time design and execution of a space-time sampling strategy in the context of flood forecasting. Measurements of water level taken by a network of wireless sensors were assimilated into a one-dimensional hydrodynamic model using an ensemble Kalman filter, to create a forecasting model. This research focused on methods for targeting measurements in real-time to be assimilated by the forecasting model, such that the power-limited but flexible sensor network could be used optimally. Two targeting methods were developed. The first targeted measurements systematically over space and time until the forecasting model predicted that the probability of the water level exceeding a pre-defined threshold was less than 5%. The second method targeted measurements based on the expected decrease in forecasted water level error variance at a validation time and location, quickly calculated for various sets of measurements by an ensemble transform Kalman filter. Targeting measurements based on the decrease in forecast error variance was shown to be more efficient than a systematic sampling method.

  19. Evaluation of Flood Forecast and Warning in Elbe river basin - Impact of Forecaster's Strategy

    NASA Astrophysics Data System (ADS)

    Danhelka, Jan; Vlasak, Tomas

    2010-05-01

    Czech Hydrometeorological Institute (CHMI) is responsible for flood forecasting and warning in the Czech Republic. To meet that issue CHMI operates hydrological forecasting systems and publish flow forecast in selected profiles. Flood forecast and warning is an output of system that links observation (flow and atmosphere), data processing, weather forecast (especially NWP's QPF), hydrological modeling and modeled outputs evaluation and interpretation by forecaster. Forecast users are interested in final output without separating uncertainties of separate steps of described process. Therefore an evaluation of final operational forecasts was done for profiles within Elbe river basin produced by AquaLog forecasting system during period 2002 to 2008. Effects of uncertainties of observation, data processing and especially meteorological forecasts were not accounted separately. Forecast of flood levels exceedance (peak over the threshold) during forecasting period was the main criterion as flow increase forecast is of the highest importance. Other evaluation criteria included peak flow and volume difference. In addition Nash-Sutcliffe was computed separately for each time step (1 to 48 h) of forecasting period to identify its change with the lead time. Textual flood warnings are issued for administrative regions to initiate flood protection actions in danger of flood. Flood warning hit rate was evaluated at regions level and national level. Evaluation found significant differences of model forecast skill between forecasting profiles, particularly less skill was evaluated at small headwater basins due to domination of QPF uncertainty in these basins. The average hit rate was 0.34 (miss rate = 0.33, false alarm rate = 0.32). However its explored spatial difference is likely to be influenced also by different fit of parameters sets (due to different basin characteristics) and importantly by different impact of human factor. Results suggest that the practice of interactive

  20. Characterizing 13 Years of Surface Water Variability from MODIS-based Near Real-Time Flood Mapping Products in the Indus River, Tonle Sap Lake, and Lake Chad.

    NASA Astrophysics Data System (ADS)

    Slayback, D. A.; Brakenridge, G. R.; Policelli, F. S.

    2015-12-01

    Driven by an increase in extreme weather events in a warming world, flooding appears to be increasing in many regions. Since 2012, we have been using the twice-daily near-global observations of the two MODIS instruments to operate a near real-time flood mapping capability. Primarily intended to support disaster response efforts, our system generates daily near-global maps of flood water extent, at 250 m resolution. Although cloud cover is a challenge, the twice-daily coverage from the Terra and Aqua satellites helps to capture most major events. We use the MOD44W product (the "MODIS 250-m land-water mask") to differentiate "normal" water from flood water. Products from the system are freely available, and used by disaster response agencies and academic and industry researchers. An open question, however, is: how "normal" are recently observed floods? Destructive and — as reported by the press — record floods seem to be occurring more and more frequently. With the MODIS archive going back to 1999 (Terra satellite) and 2002 (Aqua satellite), we now have more than a decade of twice-daily near-global observations to begin answering this question. Although the 13 years of available twice-daily data (2002-2015) are not sufficient to fully characterize surface water normals (e.g., 100-year floods), we can start examining recent trends in surface water extent and flood frequency. To do so, we have back-processed our surface water product through mid-2002 (Aqua launch) for a few regions, and have used this to evaluate the variability in surface water extent and flood frequency. These results will eventually feed back into an improved characterization of flood water in our near real-time flood product. Here we will present results on trends in surface water extent and flood frequency for a few regions, including the Indus in Pakistan, the Tonle Sap lake in Cambodia, and lake Chad in Africa.

  1. An integrated modeling framework for real-time irrigation scheduling: the benefit of spectroscopy and weather forecasts

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Polinova, Maria; Housh, Mashor

    2016-04-01

    ). These studies have only incorporated short-term (weekly) forecasts, missing the potential benefit of the mid-term (seasonal) climate forecasts The latest progress in new data acquisition technologies (mainly in the field of Earth observation by remote sensing and imaging spectroscopy systems) as well as the state-of-the-art achievements in the fields of geographical information systems (GIS), computer science and climate and climate impact modelling enable to develop both integrated modelling and realistic spatial simulations. The present method is the use of field spectroscopy technology to keep constant monitoring of the field. The majority of previously developed decision support systems use satellite remote sensing data that provide very limited capabilities (conventional and basic parameters). The alternative is to use a more progressive technology of hyperspectral airborne or ground-based imagery data that provide an exhaustive description of the field. Nevertheless, this alternative is known to be very costly and complex. As such, we will present a low-cost imaging spectroscopy technology supported by detailed and fine-resolution field spectroscopy as a cost effective option for near field real-time monitoring tool. In order to solve the soil water balance and to predict the water irrigation volume a pedological survey is realized in the evaluation study areas.The remote sensing and field spectroscopy were applied to integrate continuous feedbacks from the field (e.g. soil moisture, organic/inorganic carbon, nitrogen, salinity, fertilizers, sulphur acid, texture; crop water-stress, plant stage, LAI , chlorophyll, biomass, yield prediction applying PROSPECT+SILT ; Fraction of Absorbed Photosynthetically Active Radiation FAPAR) estimated based on remote sensing information to minimize the errors associated with crop simulation process. A stochastic optimization model will be formulated that take into account both mid-term seasonal probabilistic climate prediction

  2. Medium Range Flood Forecasting for Agriculture Damage Reduction

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S. H. M.

    2014-12-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) flood forecasting model has been developed for Bangladesh and Thailand. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range flood forecasts in a way that is not commonly practiced globally today.

  3. Flash flood warnings using the ensemble precipitation forecasting technique: A case study on forecasting floods in Taiwan caused by typhoons

    NASA Astrophysics Data System (ADS)

    Yang, Tsun-Hua; Yang, Sheng-Chi; Ho, Jui-Yi; Lin, Gwo-Fong; Hwang, Gong-Do; Lee, Cheng-Shang

    2015-01-01

    A flash flood is an event that develops rapidly. Given early warnings with sufficient lead time, flood forecasting can help people prepare disaster prevention measures. To provide this early warning, a statistics-based flood forecasting model was developed to evaluate the flooding potential in urban areas using ensemble quantitative precipitation forecasts (the Taiwan Cooperative Precipitation Ensemble Forecast Experiment, TAPEX). The proposed model uses different sources of information, such as (i) the designed capacity of storm sewer systems, (ii) a flood inundation potential database, and (iii) historical flooding observations, to evaluate the potential for flash flooding situations to occur. Using 24-, 48- and 72-h ahead precipitation forecasts from the TAPEX, the proposed model can assess the flooding potential with two levels of risk and at the township scale with a 3-day lead time. The proposed model is applied to Pingtung County, which includes 33 townships and is located in southern Taiwan. A dataset of typhoon storms from 2010 to 2014 was used to evaluate the model performance. The accuracy and threat score for testing events are 0.68 and 0.30, respectively, with a lead time of 24 h. The accuracy and threat score for training events are 0.82 and 0.31, respectively, with a lead time of 24 h. The model performance decreases when the lead time is extended. However, the model demonstrates its potential as a valuable reference to improve emergency responses to alleviate the loss of lives and property due to flooding.

  4. Skill of real-time operational forecasts with the APCC multi-model ensemble prediction system during the period 2008-2015

    NASA Astrophysics Data System (ADS)

    Min, Young-Mi; Kryjov, Vladimir N.; Oh, Sang Myeong; Lee, Hyun-Ju

    2017-02-01

    This paper assesses the real-time 1-month lead forecasts of 3-month (seasonal) mean temperature and precipitation on a monthly basis issued by the Asia-Pacific Economic Cooperation Climate Center (APCC) for 2008-2015 (8 years, 96 forecasts). It shows the current level of the APCC operational multi-model prediction system performance. The skill of the APCC forecasts strongly depends on seasons and regions that it is higher for the tropics and boreal winter than for the extratropics and boreal summer due to direct effects and remote teleconnections from boundary forcings. There is a negative relationship between the forecast skill and its interseasonal variability for both variables and the forecast skill for precipitation is more seasonally and regionally dependent than that for temperature. The APCC operational probabilistic forecasts during this period show a cold bias (underforecasting of above-normal temperature and overforecasting of below-normal temperature) underestimating a long-term warming trend. A wet bias is evident for precipitation, particularly in the extratropical regions. The skill of both temperature and precipitation forecasts strongly depends upon the ENSO strength. Particularly, the highest forecast skill noted in 2015/2016 boreal winter is associated with the strong forcing of an extreme El Nino event. Meanwhile, the relatively low skill is associated with the transition and/or continuous ENSO-neutral phases of 2012-2014. As a result the skill of real-time forecast for boreal winter season is higher than that of hindcast. However, on average, the level of forecast skill during the period 2008-2015 is similar to that of hindcast.

  5. Pathways to designing and running an operational flood forecasting system: an adventure game!

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Pappenberger, Florian; Ramos, Maria-Helena; Cloke, Hannah; Crochemore, Louise; Giuliani, Matteo; Aalbers, Emma

    2017-04-01

    In the design and building of an operational flood forecasting system, a large number of decisions have to be taken. These include technical decisions related to the choice of the meteorological forecasts to be used as input to the hydrological model, the choice of the hydrological model itself (its structure and parameters), the selection of a data assimilation procedure to run in real-time, the use (or not) of a post-processor, and the computing environment to run the models and display the outputs. Additionally, a number of trans-disciplinary decisions are also involved in the process, such as the way the needs of the users will be considered in the modelling setup and how the forecasts (and their quality) will be efficiently communicated to ensure usefulness and build confidence in the forecasting system. We propose to reflect on the numerous, alternative pathways to designing and running an operational flood forecasting system through an adventure game. In this game, the player is the protagonist of an interactive story driven by challenges, exploration and problem-solving. For this presentation, you will have a chance to play this game, acting as the leader of a forecasting team at an operational centre. Your role is to manage the actions of your team and make sequential decisions that impact the design and running of the system in preparation to and during a flood event, and that deal with the consequences of the forecasts issued. Your actions are evaluated by how much they cost you in time, money and credibility. Your aim is to take decisions that will ultimately lead to a good balance between time and money spent, while keeping your credibility high over the whole process. This game was designed to highlight the complexities behind decision-making in an operational forecasting and emergency response context, in terms of the variety of pathways that can be selected as well as the timescale, cost and timing of effective actions.

  6. Action-based flood forecasting for triggering humanitarian action

    NASA Astrophysics Data System (ADS)

    Coughlan de Perez, Erin; van den Hurk, Bart; van Aalst, Maarten K.; Amuron, Irene; Bamanya, Deus; Hauser, Tristan; Jongma, Brenden; Lopez, Ana; Mason, Simon; Mendler de Suarez, Janot; Pappenberger, Florian; Rueth, Alexandra; Stephens, Elisabeth; Suarez, Pablo; Wagemaker, Jurjen; Zsoter, Ervin

    2016-09-01

    Too often, credible scientific early warning information of increased disaster risk does not result in humanitarian action. With financial resources tilted heavily towards response after a disaster, disaster managers have limited incentive and ability to process complex scientific data, including uncertainties. These incentives are beginning to change, with the advent of several new forecast-based financing systems that provide funding based on a forecast of an extreme event. Given the changing landscape, here we demonstrate a method to select and use appropriate forecasts for specific humanitarian disaster prevention actions, even in a data-scarce location. This action-based forecasting methodology takes into account the parameters of each action, such as action lifetime, when verifying a forecast. Forecasts are linked with action based on an understanding of (1) the magnitude of previous flooding events and (2) the willingness to act "in vain" for specific actions. This is applied in the context of the Uganda Red Cross Society forecast-based financing pilot project, with forecasts from the Global Flood Awareness System (GloFAS). Using this method, we define the "danger level" of flooding, and we select the probabilistic forecast triggers that are appropriate for specific actions. Results from this methodology can be applied globally across hazards and fed into a financing system that ensures that automatic, pre-funded early action will be triggered by forecasts.

  7. The FAST-T approach for operational, real time, short term hydrological forecasting: Results from the Betania Hydropower Reservoir case study

    NASA Astrophysics Data System (ADS)

    Domínguez, Efraín; Angarita, Hector; Rosmann, Thomas; Mendez, Zulma; Angulo, Gustavo

    2013-04-01

    A viable quantitative hydrological forecasting service is a combination of technological elements, personnel and knowledge, working together to establish a stable operational cycle of forecasts emission, dissemination and assimilation; hence, the process for establishing such system usually requires significant resources and time to reach an adequate development and integration in order to produce forecasts with acceptable levels of performance. Here are presented the results of this process for the recently implemented Operational Forecast Service for the Betania's Hydropower Reservoir - or SPHEB, located at the Upper-Magdalena River Basin (Colombia). The current scope of the SPHEB includes forecasting of water levels and discharge for the three main streams affluent to the reservoir, for lead times between +1 to +57 hours, and +1 to +10 days. The core of the SPHEB is the Flexible, Adaptive, Simple and Transient Time forecasting approach, namely FAST-T. This comprises of a set of data structures, mathematical kernel, distributed computing and network infrastructure designed to provide seamless real-time operational forecast and automatic model adjustment in case of failures in data transmission or assimilation. Among FAST-T main features are: an autonomous evaluation and detection of the most relevant information for the later configuration of forecasting models; an adaptively linearized mathematical kernel, the optimal adaptive linear combination or OALC, which provides a computationally simple and efficient algorithm for real-time applications; and finally, a meta-model catalog, containing prioritized forecast models at given stream conditions. The SPHEB is at present feed by the fraction of hydrological monitoring network installed at the basin that has telemetric capabilities via NOAA-GOES satellites (8 stages, approximately 47%) with data availability of about a 90% at one hour intervals. However, there is a dense network of 'conventional' hydro

  8. Improving flash flood forecasting with distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Yangbo

    2016-04-01

    In China, flash food is usually regarded as flood occured in small and medium sized watersheds with drainage area less than 200 km2, and is mainly induced by heavy rains, and occurs in where hydrological observation is lacked. Flash flood is widely observed in China, and is the flood causing the most casualties nowadays in China. Due to hydrological data scarcity, lumped hydrological model is difficult to be employed for flash flood forecasting which requires lots of observed hydrological data to calibrate model parameters. Physically based distributed hydrological model discrete the terrain of the whole watershed into a number of grid cells at fine resolution, assimilate different terrain data and precipitation to different cells, and derive model parameteris from the terrain properties, thus having the potential to be used in flash flood forecasting and improving flash flood prediction capability. In this study, the Liuxihe Model, a physically based distributed hydrological model mainly proposed for watershed flood forecasting is employed to simulate flash floods in the Ganzhou area in southeast China, and models have been set up in 5 watersheds. Model parameters have been derived from the terrain properties including the DEM, the soil type and land use type, but the result shows that the flood simulation uncertainty is high, which may be caused by parameter uncertainty, and some kind of uncertainty control is needed before the model could be used in real-time flash flood forecastin. Considering currently many Chinese small and medium sized watersheds has set up hydrological observation network, and a few flood events could be collected, it may be used for model parameter optimization. For this reason, an automatic model parameter optimization algorithm using Particle Swam Optimization(PSO) is developed to optimize the model parameters, and it has been found that model parameters optimized even only with one observed flood events could largely reduce the flood

  9. Assessment of A Mesoscale Numerical Weather Prediction Model Parameterization for Flood Forecasting in the Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Sikder, M. S.; Hossain, F.

    2016-12-01

    The Indian subcontinent comprises a few of the world's most populated international river basins such as the Ganges, Brahmaputra, Indus. These river basins are located within the monsoon climate regime. Early flood forecasting is vital to this region, where over 900 million people are directly or indirectly affected by the annual monsoon flooding. Using the model simulated hydro-meteorological data in the flood forecasting system is one of the most effective ways to forecast floods in this region, as the real-time observed data are unavailable due to hydro-political issue. It is therefore appropriate to assess a mesoscale Numerical Weather Prediction (NWP) model to find out a common set of suitable model parameterization schemes to assist the flood forecasting systems of this region. In this study, we used the Weather Research and Forecasting (WRF) model to estimate precipitation of the Ganges-Brahmaputra for peak one month of the 2015 monsoon using 30 different combinations. Combinations of five cloud microphysics, three cumulus parameterization schemes, and two spatial resolutions were used in this step to detect the best schemes for the Ganges-Brahmaputra. Finally, we applied the selected best combinations in the Indus basin to simulate the 2010 extreme event and found a similar model response as the Ganges-Brahmaputra basin. Our results identified a common set of suitable model parameterization schemes, which performs well all over the Indian subcontinent. The basin discharge can also be estimated using a pre-calibrated hydrological model based on the best set of forcing data from the WRF outputs.

  10. Recent advances associated with flood forecast and warning systems

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, Roman

    1995-07-01

    Floods remain one of the most frequent and devastating natural hazards worldwide. In the United States alone, there are 20,000 flood-prone communities; 3,000 of them receive site-specific flood forecasts from the National Weather Service (NWS), and 1,000 have local warning systems; the remaining communities receive county-wide warnings. Between 1965 and 1985, floods accounted for 63% of the federally declared disasters (337 out of 531), took 1,767 lives, and caused 5 billion worth of damage annually, on the average. The Great Flood of 1993, documented by the National Oceanic and Atmospheric Administration [NOAA, 1994], provided a vivid demonstration of Cromwell's rule: one should never assign the exceedance probability of zero to any prior observation. The duration (from March to November), the extent (over nine states) and the magnitude (exceeding previous floods of record at 95 forecast points) made this the most catastrophic flooding in modern U.S. history: 54,000 persons were evacuated, 50,000 homes were damaged, and economic losses of 15-20 billion have been estimated. The event also tested the limits of the Nation's forecast and warning services as flood stages were exceeded at about 500 forecast points.

  11. Study of Beijiang catchment flash-flood forecasting model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Huang, S.; Dong, Y.

    2015-05-01

    Beijiang catchment is a small catchment in southern China locating in the centre of the storm areas of the Pearl River Basin. Flash flooding in Beijiang catchment is a frequently observed disaster that caused direct damages to human beings and their properties. Flood forecasting is the most effective method for mitigating flash floods, the goal of this paper is to develop the flash flood forecasting model for Beijiang catchment. The catchment property data, including DEM, land cover types and soil types, which will be used for model construction and parameter determination, are downloaded from the website freely. Based on the Liuxihe Model, a physically based distributed hydrological model, a model for flash flood forecasting of Beijiang catchment is set up. The model derives the model parameters from the terrain properties, and further optimized with the observed flooding process, which improves the model performance. The model is validated with a few observed floods occurred in recent years, and the results show that the model is reliable and is promising for flash flood forecasting.

  12. Proper estimation of hydrological parameters from flood forecasting aspects

    NASA Astrophysics Data System (ADS)

    Miyamoto, Mamoru; Matsumoto, Kazuhiro; Tsuda, Morimasa; Yamakage, Yuzuru; Iwami, Yoichi; Yanami, Hitoshi; Anai, Hirokazu

    2016-04-01

    The hydrological parameters of a flood forecasting model are normally calibrated based on an entire hydrograph of past flood events by means of an error assessment function such as mean square error and relative error. However, the specific parts of a hydrograph, i.e., maximum discharge and rising parts, are particularly important for practical flood forecasting in the sense that underestimation may lead to a more dangerous situation due to delay in flood prevention and evacuation activities. We conducted numerical experiments to find the most proper parameter set for practical flood forecasting without underestimation in order to develop an error assessment method for calibration appropriate for flood forecasting. A distributed hydrological model developed in Public Works Research Institute (PWRI) in Japan was applied to fifteen past floods in the Gokase River basin of 1,820km2 in Japan. The model with gridded two-layer tanks for the entire target river basin included hydrological parameters, such as hydraulic conductivity, surface roughness and runoff coefficient, which were set according to land-use and soil-type distributions. Global data sets, e.g., Global Map and Digital Soil Map of the World (DSMW), were employed as input data for elevation, land use and soil type. The values of fourteen types of parameters were evenly sampled with 10,001 patterns of parameter sets determined by the Latin Hypercube Sampling within the search range of each parameter. Although the best reproduced case showed a high Nash-Sutcliffe Efficiency of 0.9 for all flood events, the maximum discharge was underestimated in many flood cases. Therefore, two conditions, which were non-underestimation in the maximum discharge and rising parts of a hydrograph, were added in calibration as the flood forecasting aptitudes. The cases with non-underestimation in the maximum discharge and rising parts of the hydrograph also showed a high Nash-Sutcliffe Efficiency of 0.9 except two flood cases

  13. Application of WRF - SWAT OpenMI 2.0 based models integration for real time hydrological modelling and forecasting

    NASA Astrophysics Data System (ADS)

    Bugaets, Andrey; Gonchukov, Leonid

    2014-05-01

    Intake of deterministic distributed hydrological models into operational water management requires intensive collection and inputting of spatial distributed climatic information in a timely manner that is both time consuming and laborious. The lead time of the data pre-processing stage could be essentially reduced by coupling of hydrological and numerical weather prediction models. This is especially important for the regions such as the South of the Russian Far East where its geographical position combined with a monsoon climate affected by typhoons and extreme heavy rains caused rapid rising of the mountain rivers water level and led to the flash flooding and enormous damage. The objective of this study is development of end-to-end workflow that executes, in a loosely coupled mode, an integrated modeling system comprised of Weather Research and Forecast (WRF) atmospheric model and Soil and Water Assessment Tool (SWAT 2012) hydrological model using OpenMI 2.0 and web-service technologies. Migration SWAT into OpenMI compliant involves reorganization of the model into a separate initialization, performing timestep and finalization functions that can be accessed from outside. To save SWAT normal behavior, the source code was separated from OpenMI-specific implementation into the static library. Modified code was assembled into dynamic library and wrapped into C# class implemented the OpenMI ILinkableComponent interface. Development of WRF OpenMI-compliant component based on the idea of the wrapping web-service clients into a linkable component and seamlessly access to output netCDF files without actual models connection. The weather state variables (precipitation, wind, solar radiation, air temperature and relative humidity) are processed by automatic input selection algorithm to single out the most relevant values used by SWAT model to yield climatic data at the subbasin scale. Spatial interpolation between the WRF regular grid and SWAT subbasins centroid (which are

  14. Flash flood warnings for ungauged basins based on high-resolution precipitation forecasts

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Janet, Bruno

    2016-04-01

    Early detection of flash floods, which are typically triggered by severe rainfall events, is still challenging due to large meteorological and hydrologic uncertainties at the spatial and temporal scales of interest. Also the rapid rising of waters necessarily limits the lead time of warnings to alert communities and activate effective emergency procedures. To better anticipate such events and mitigate their impacts, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium (up to 1000 km²) ungauged basins based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The current deterministic AIGA system has been run in real-time in the South of France since 2005 and has been tested in the RHYTMME project (rhytmme.irstea.fr/). It ingests the operational radar-gauge QPE grids from Météo-France to run a simplified hourly distributed hydrologic model at a 1-km² resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. The calibration and regionalization of the hydrologic model has been recently enhanced for implementing the national flash flood warning system for the entire French territory by 2016. To further extend the effective warning lead time, the flash flood warning system is being enhanced to ingest Météo-France's AROME-NWC high-resolution precipitation nowcasts. The AROME-NWC system combines the most recent available observations with forecasts from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015). AROME-NWC pre-operational deterministic precipitation forecasts, produced every hour at a 2.5-km resolution for a 6-hr forecast horizon, were provided for 3 significant rain events in September and November 2014 and

  15. Satellite Remote Sensing and Hydrological Modeling for Real-time Flood Inundation Mapping: A Case Study in Nzoia Basin, Lake Victoria, Africa

    NASA Astrophysics Data System (ADS)

    Khan, S.; Li, L.; Adler, R.; Policelli, F.; Habib, S.; Irwin, D.; Hong, Y.; Korme, T.

    2009-05-01

    Floods are among the most recurrent natural disasters around the globe impacting human being. Its trend has increased over the last decades. Getting satisfactory ground data for setting-up a flood prediction system had been a major constraint in the past despite the availability of numerous hydrological models. In the regions where installation of the ground equipments is limited by the available resources and rugged terrain, remotely sensed information with the global coverage have become an alternative and supplement to the ground-based observations in order to implement a cost-effective flood prediction system in many under-gauged regions. First, this presentation will demonstrate the applicability of integrating NASA's standard satellite precipitation products with a flood prediction model for disaster management in Nzoia, sub-basin of Lake Victoria, Africa. A high-resolution distributed hydrologic model has been calibrated for the period of 1985-2006 and benchmark streamflow simulations is produced with the calibrated hydrological model using the rain gauge data and observed discharges. Afterward, continuous discharge predictions forced by real-time satellite precipitation data was made. Acceptable results are obtained in comparison with the benchmark performance. Moreover, it is identified that the flood prediction results are improved with systematically bias-corrected satellite rainfall data. Finally, a space-based flood monitoring technique is also utilized to compare the flood inundation maps with the hydrologically modeled surface flooding map in terms of probability of detection of flooding areas and temporal correlation. The ultimate goal of the project is to build up disaster management capacity in East Africa by providing local governmental officials and international aid organizations a practical decision-support tool in order to better assess emerging flood impacts and to quantify spatial extent of flood risk, as well as to respond to such flood

  16. Hydrological model calibration for enhancing global flood forecast skill

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera A.; Beck, Hylke E.; Salamon, Peter; Thielen-del Pozo, Jutta

    2016-04-01

    Early warning systems play a key role in flood risk reduction, and their effectiveness is directly linked to streamflow forecast skill. The skill of a streamflow forecast is affected by several factors; among them are (i) model errors due to incomplete representation of physical processes and inaccurate parameterization, (ii) uncertainty in the model initial conditions, and (iii) errors in the meteorological forcing. In macro scale (continental or global) modeling, it is a common practice to use a priori parameter estimates over large river basins or wider regions, resulting in suboptimal streamflow estimations. The aim of this work is to improve flood forecast skill of the Global Flood Awareness System (GloFAS; www.globalfloods.eu), a grid-based forecasting system that produces flood forecast unto 30 days lead, through calibration of the distributed hydrological model parameters. We use a combination of in-situ and satellite-based streamflow data for automatic calibration using a multi-objective genetic algorithm. We will present the calibrated global parameter maps and report the forecast skill improvements achieved. Furthermore, we discuss current challenges and future opportunities with regard to global-scale early flood warning systems.

  17. Short-term Ensemble Flood Forecasting Experiments in Brazil

    NASA Astrophysics Data System (ADS)

    Collischonn, Walter; Meller, Adalberto; Fan, Fernando; Moreira, Demerval; Dias, Pedro; Buarque, Diogo; Bravo, Juan

    2013-04-01

    Flood Forecasting and issuing early warnings to communities under risk can help reduce the impacts of those events. However, to be effective, warnings should be given several hours in advance. The best solution to extend the lead time is possibly the use of rainfall-runoff models with input given by rainfall and streamflow observations and by forecasts of future precipitation derived from numerical weather prediction (NWP) models. Recent studies showed that probabilistic or ensemble flood forecasts produced using ensemble precipitation forecasts as input data outperform deterministic flood forecasts in several cases in Europe and the United States, and ensemble flood forecasting systems are increasingly becoming operational in these regions. In Brazil, on the other hand, operational flood warning systems are rare, and often based on simplified river routing or linear transfer function models. However, a large number of global and regional meteorological models is operationally run covering most of the country, and forecasts of those models are available for recent years. We used this available data to conduct experiments of short term ensemble flood forecasting in the Paraopeba River basin (12 thousand km2), located in Southeastern Brazil. Streamflow forecasts were produced using the MGB-IPH hydrological model, using a simple empirical state updating method and using an ensemble of precipitation forecasts generated by several models, with different initial conditions and parameterizations, from several weather forecasting centers. A single deterministic streamflow forecast, based on a quantitative precipitation forecast derived from the optimal combination of several outputs of NWP models was used as a reference to assess the performance of the ensemble streamflow forecasts. Flood forecasts experiments were performed for three rainy seasons (austral summer) between 2008-2011. The results for predictions of dichotomous events, which mean exceeding or not flood

  18. Performance of the 'material Failure Forecast Method' in real-time situations: A Bayesian approach applied on effusive and explosive eruptions

    NASA Astrophysics Data System (ADS)

    Boué, A.; Lesage, P.; Cortés, G.; Valette, B.; Reyes-Dávila, G.; Arámbula-Mendoza, R.; Budi-Santoso, A.

    2016-11-01

    Most attempts of deterministic eruption forecasting are based on the material Failure Forecast Method (FFM). This method assumes that a precursory observable, such as the rate of seismic activity, can be described by a simple power law which presents a singularity at a time close to the eruption onset. Until now, this method has been applied only in a small number of cases, generally for forecasts in hindsight. In this paper, a rigorous Bayesian approach of the FFM designed for real-time applications is applied. Using an automatic recognition system, seismo-volcanic events are detected and classified according to their physical mechanism and time series of probability distributions of the rates of events are calculated. At each time of observation, a Bayesian inversion provides estimations of the exponent of the power law and of the time of eruption, together with their probability density functions. Two criteria are defined in order to evaluate the quality and reliability of the forecasts. Our automated procedure has allowed the analysis of long, continuous seismic time series: 13 years from Volcán de Colima, Mexico, 10 years from Piton de la Fournaise, Reunion Island, France, and several months from Merapi volcano, Java, Indonesia. The new forecasting approach has been applied to 64 pre-eruptive sequences which present various types of dominant seismic activity (volcano-tectonic or long-period events) and patterns of seismicity with different level of complexity. This has allowed us to test the FFM assumptions, to determine in which conditions the method can be applied, and to quantify the success rate of the forecasts. 62% of the precursory sequences analysed are suitable for the application of FFM and half of the total number of eruptions are successfully forecast in hindsight. In real-time, the method allows for the successful forecast of 36% of all the eruptions considered. Nevertheless, real-time forecasts are successful for 83% of the cases that fulfil the

  19. The RHYTMME system: an operational real-time warning and mapping system for flash floods, debris flows, landslide and rock falls in Southeastern France.

    NASA Astrophysics Data System (ADS)

    Fouchier, Catherine; Mériaux, Patrice; Atger, Frédéric; Ecrepont, Stéphane; Liébault, Frédéric; Bertrand, Mélanie; Bel, Coraline; Batista, Dominique; Azemard, Pierre; Saint-Martin, Clotilde; Javelle, Pierre

    2016-04-01

    Almost all municipalities of Southeastern France are concerned by natural hazards triggered by heavy rainfalls such as floods, debris flows, landslides and rock falls. Although some tools exist to forecast and monitor heavy rains and floods in France, their spatial resolution sometimes does not meet the needs of local risk managers who have to monitor events at a small spatial scale. In order to improve the risk management in the mountainous and Mediterranean areas of Southeastern France, Irstea and Météo-France have led the RHYTMME project. The goal of this project is to improve the ability to forecast and localize high-risk rainfall-induced hazards in the Provence-Alpes-Côte d'Azur administrative area. This goal is currently under achievement thanks to the implementation of a real-time warning and mapping system for rainfall induced natural hazards, fed by radar data and whose outputs are made available via the Internet to operators in charge of risk management (local and regional authorities, emergency and rescue services, road and rail networks managers, ...). This system provides maps which display in real-time: - the radar estimations of rainfall for different rain durations and at the spatial resolution of 1 km² (Westrelin et al., 2013), - the estimation of the scarcity of these rainfall estimations, also at the spatial resolution of 1 km², thanks to a comparison with threshold values provided by a regionalized stochastic hourly point rainfall generator (Arnaud et al., 2007), - an anticipation of the rivers discharges, computed at the outlet of 1700 watersheds of Southeastern France thanks to the AIGA warning system which combines a rainfall runoff model and an estimation of the scarcity of the discharges thanks to a comparison with threshold values (Javelle et al., 2014). Maps of susceptibility to debris flow, landslide and rock falls can also be displayed in the RHYTMME warning system along with the real time maps of rainfall hazard (Batista, 2013a

  20. Global, Persistent, Real-time Multi-sensor Automated Satellite Image Analysis and Crop Forecasting in Commercial Cloud

    NASA Astrophysics Data System (ADS)

    Brumby, S. P.; Warren, M. S.; Keisler, R.; Chartrand, R.; Skillman, S.; Franco, E.; Kontgis, C.; Moody, D.; Kelton, T.; Mathis, M.

    2016-12-01

    Cloud computing, combined with recent advances in machine learning for computer vision, is enabling understanding of the world at a scale and at a level of space and time granularity never before feasible. Multi-decadal Earth remote sensing datasets at the petabyte scale (8×10^15 bits) are now available in commercial cloud, and new satellite constellations will generate daily global coverage at a few meters per pixel. Public and commercial satellite observations now provide a wide range of sensor modalities, from traditional visible/infrared to dual-polarity synthetic aperture radar (SAR). This provides the opportunity to build a continuously updated map of the world supporting the academic community and decision-makers in government, finanace and industry. We report on work demonstrating country-scale agricultural forecasting, and global-scale land cover/land, use mapping using a range of public and commercial satellite imagery. We describe processing over a petabyte of compressed raw data from 2.8 quadrillion pixels (2.8 petapixels) acquired by the US Landsat and MODIS programs over the past 40 years. Using commodity cloud computing resources, we convert the imagery to a calibrated, georeferenced, multiresolution tiled format suited for machine-learning analysis. We believe ours is the first application to process, in less than a day, on generally available resources, over a petabyte of scientific image data. We report on work combining this imagery with time-series SAR collected by ESA Sentinel 1. We report on work using this reprocessed dataset for experiments demonstrating country-scale food production monitoring, an indicator for famine early warning. We apply remote sensing science and machine learning algorithms to detect and classify agricultural crops and then estimate crop yields and detect threats to food security (e.g., flooding, drought). The software platform and analysis methodology also support monitoring water resources, forests and other general

  1. MERCATOR Ocean Monitoring and Forecasting : from satellite altimetry to a routine near-real-time 4D vision of the oceans

    NASA Astrophysics Data System (ADS)

    Bahurel, P.; Dombrowsky, E.; de Mey, P.; Le Provost, C.; Le Traon, P.-Y.; Fleury, L.; Charon, I.; de Prada, T.; Toumazou, V.; Siefridt, L.

    2003-04-01

    The MERCATOR OCEAN monitoring and forecasting system has been regularly delivering weekly ocean bulletins with 2-week forecasts since January 2001, based on routine assimilation of near-real-time altimetry (Topex/Poseidon, ERS-2, and today JASON-1) into three dimensional ocean models. At the international level, the Global Ocean Data Assimilation Experiment (GODAE) is entering now its demonstration phase (2003-2005). It is a international experiment which aims at applying state-of-the-art models and assimilation techniques, at the global scale, to provide products useful for a wide range of applications from coastal monitoring to global climate change studies. Funded by the major French organizations involved in oceanography (CNES, CNRS, IFREMER, IRD, Météo-France and SHOM), MERCATOR aims at building up this capacity for the monitoring and forecasting of ocean physical variables, based on numerical modelling, remote sensing, in situ observations and assimilation techniques. In the early days of 2003, MERCATOR started the near-real-time operation phase of its high resolution in North Atlantic and Mediterranean sea. After a brief introduction to the Global Ocean Data Assimilation Experiment (GODAE) and the recent developements in Europe in operational oceanography, the presentation focusses on recent results from the new high resolution Mercator ocean forecasting, in North Atlantic and Med sea. and system. A special attention is paid to the scientific validation and assesment of the outputs of such systems, identified as a key point for the success of the GODAE experiment.

  2. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    NASA Astrophysics Data System (ADS)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  3. Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis

    NASA Astrophysics Data System (ADS)

    BozorgMagham, Amir E.; Ross, Shane D.; Schmale, David G.

    2013-09-01

    The language of Lagrangian coherent structures (LCSs) provides a new means for studying transport and mixing of passive particles advected by an atmospheric flow field. Recent observations suggest that LCSs govern the large-scale atmospheric motion of airborne microorganisms, paving the way for more efficient models and management strategies for the spread of infectious diseases affecting plants, domestic animals, and humans. In addition, having reliable predictions of the timing of hyperbolic LCSs may contribute to improved aerobiological sampling of microorganisms with unmanned aerial vehicles and LCS-based early warning systems. Chaotic atmospheric dynamics lead to unavoidable forecasting errors in the wind velocity field, which compounds errors in LCS forecasting. In this study, we reveal the cumulative effects of errors of (short-term) wind field forecasts on the finite-time Lyapunov exponent (FTLE) fields and the associated LCSs when realistic forecast plans impose certain limits on the forecasting parameters. Objectives of this paper are to (a) quantify the accuracy of prediction of FTLE-LCS features and (b) determine the sensitivity of such predictions to forecasting parameters. Results indicate that forecasts of attracting LCSs exhibit less divergence from the archive-based LCSs than the repelling features. This result is important since attracting LCSs are the backbone of long-lived features in moving fluids. We also show under what circumstances one can trust the forecast results if one merely wants to know if an LCS passed over a region and does not need to precisely know the passage time.

  4. Extending flood forecasting lead time in large basin by coupling bias-corrected WRF QPF with distributed hydrological model

    NASA Astrophysics Data System (ADS)

    LI, J.; Chen, Y.; Wang, H. Y.

    2016-12-01

    In large basin flood forecasting, the forecasting lead time is very important. Advances in numerical weather forecasting in the past decades provides new input to extend flood forecasting lead time in large rivers. Challenges for fulfilling this goal currently is that the uncertainty of QPF with these kinds of NWP models are still high, so controlling the uncertainty of QPF is an emerging technique requirement.The Weather Research and Forecasting (WRF) model is one of these NWPs, and how to control the QPF uncertainty of WRF is the research topic of many researchers among the meteorological community. In this study, the QPF products in the Liujiang river basin, a big river with a drainage area of 56,000 km2, was compared with the ground observation precipitation from a rain gauge networks firstly, and the results show that the uncertainty of the WRF QPF is relatively high. So a post-processed algorithm by correlating the QPF with the observed precipitation is proposed to remove the systematical bias in QPF. With this algorithm, the post-processed WRF QPF is close to the ground observed precipitation in area-averaged precipitation. Then the precipitation is coupled with the Liuxihe model, a physically based distributed hydrological model that is widely used in small watershed flash flood forecasting. The Liuxihe Model has the advantage with gridded precipitation from NWP and could optimize model parameters when there are some observed hydrological data even there is only a few, it also has very high model resolution to improve model performance, and runs on high performance supercomputer with parallel algorithm if executed in large rivers. Two flood events in the Liujiang River were collected, one was used to optimize the model parameters and another is used to validate the model. The results show that the river flow simulation has been improved largely, and could be used for real-time flood forecasting trail in extending flood forecasting leading time.

  5. Enhancing Community Based Early Warning Systems in Nepal with Flood Forecasting Using Local and Global Models

    NASA Astrophysics Data System (ADS)

    Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab

    2017-04-01

    Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53

  6. Flood forecasting for River Mekong with data-based models

    NASA Astrophysics Data System (ADS)

    Shahzad, Khurram M.; Plate, Erich J.

    2014-09-01

    In many regions of the world, the task of flood forecasting is made difficult because only a limited database is available for generating a suitable forecast model. This paper demonstrates that in such cases parsimonious data-based hydrological models for flood forecasting can be developed if the special conditions of climate and topography are used to advantage. As an example, the middle reach of River Mekong in South East Asia is considered, where a database of discharges from seven gaging stations on the river and 31 rainfall stations on the subcatchments between gaging stations is available for model calibration. Special conditions existing for River Mekong are identified and used in developing first a network connecting all discharge gages and then models for forecasting discharge increments between gaging stations. Our final forecast model (Model 3) is a linear combination of two structurally different basic models: a model (Model 1) using linear regressions for forecasting discharge increments, and a model (Model 2) using rainfall-runoff models. Although the model based on linear regressions works reasonably well for short times, better results are obtained with rainfall-runoff modeling. However, forecast accuracy of Model 2 is limited by the quality of rainfall forecasts. For best results, both models are combined by taking weighted averages to form Model 3. Model quality is assessed by means of both persistence index PI and standard deviation of forecast error.

  7. Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic of GPS data: application to the Tohoku 2011 tsunami

    USGS Publications Warehouse

    Yong, Wei; Newman, Andrew V.; Hayes, Gavin P.; Titov, Vasily V.; Tang, Liujuan

    2014-01-01

    Correctly characterizing tsunami source generation is the most critical component of modern tsunami forecasting. Although difficult to quantify directly, a tsunami source can be modeled via different methods using a variety of measurements from deep-ocean tsunameters, seismometers, GPS, and other advanced instruments, some of which in or near real time. Here we assess the performance of different source models for the destructive 11 March 2011 Japan tsunami using model–data comparison for the generation, propagation, and inundation in the near field of Japan. This comparative study of tsunami source models addresses the advantages and limitations of different real-time measurements with potential use in early tsunami warning in the near and far field. The study highlights the critical role of deep-ocean tsunami measurements and rapid validation of the approximate tsunami source for high-quality forecasting. We show that these tsunami measurements are compatible with other real-time geodetic data, and may provide more insightful understanding of tsunami generation from earthquakes, as well as from nonseismic processes such as submarine landslide failures.

  8. Should seasonal rainfall forecasts be used for flood preparedness?

    NASA Astrophysics Data System (ADS)

    Coughlan de Perez, Erin; Stephens, Elisabeth; Bischiniotis, Konstantinos; van Aalst, Maarten; van den Hurk, Bart; Mason, Simon; Nissan, Hannah; Pappenberger, Florian

    2017-09-01

    In light of strong encouragement for disaster managers to use climate services for flood preparation, we question whether seasonal rainfall forecasts should indeed be used as indicators of the likelihood of flooding. Here, we investigate the primary indicators of flooding at the seasonal timescale across sub-Saharan Africa. Given the sparsity of hydrological observations, we input bias-corrected reanalysis rainfall into the Global Flood Awareness System to identify seasonal indicators of floodiness. Results demonstrate that in some regions of western, central, and eastern Africa with typically wet climates, even a perfect tercile forecast of seasonal total rainfall would provide little to no indication of the seasonal likelihood of flooding. The number of extreme events within a season shows the highest correlations with floodiness consistently across regions. Otherwise, results vary across climate regimes: floodiness in arid regions in southern and eastern Africa shows the strongest correlations with seasonal average soil moisture and seasonal total rainfall. Floodiness in wetter climates of western and central Africa and Madagascar shows the strongest relationship with measures of the intensity of seasonal rainfall. Measures of rainfall patterns, such as the length of dry spells, are least related to seasonal floodiness across the continent. Ultimately, identifying the drivers of seasonal flooding can be used to improve forecast information for flood preparedness and to avoid misleading decision-makers.

  9. Semi-empirical mixed statistical flood forecasting for the Mekong River

    NASA Astrophysics Data System (ADS)

    Khurram Shahzad, Muhammad; Ihringer, Jürgen; Plate, Erich J.

    2010-05-01

    day flood forecast at these 4 points. The results of this approach show that that the Nash - Sutcliffe criterion for the forecast is better than 90% in most cases. A more appropriate efficiency criterion named as persistence Index similar in structure to the NS criterion (Berthet et al., 2009; Kitanidis and Bras, 1980a; Kitanidis and Bras, 1980b): the variant of which is also used by Plate (Plate & Lindenmaier, 2008) is utilized to assess the quality of forecast which ranges from 0,5 to 0,75. This criterion based on implication that the deviation of the future observed from the present value should be large relative to the deviation of the observed value from the forecasted value. References: Kitanidis PK, Bras RL. 1980a. Real-Time Forecasting With A Conceptual Hydrologic Model.1. Analysis Of Uncertainty. Water Resources Research 16: 1025-1033. Kitanidis PK, Bras RL. 1980b. Real-Time Forecasting With A Conceptual Hydrologic Model.2. Applications And Results. Water Resources Research 16: 1034-1044. Plate, E.J. and Lindenmaier, F. (2008) " Quality assessments of forecast", 6th Annual Mekong Flood Forum,Phnom Penh, Cambodia 27-28 May

  10. The near real time Forensic Disaster Analysis of the central European flood in June 2013 - A graphical representation of the main results

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Elmer, Florian; Trieselmann, Werner; Kreibich, Heidi; Kunz, Michael; Khazai, Bijan; Dransch, Doris; Wenzel, Friedemann; Zschau, Jochen; Merz, Bruno; Mühr, Bernhard; Kunz-Plapp, Tina; Möhrle, Stella; Bessel, Tina; Fohringer, Joachim

    2014-05-01

    The Central European flood of June 2013 is one of the most severe flood events that have occurred in Central Europe in the past decades. All major German river basins were affected (Rhine, Danube, and Elbe as well as the smaller Weser catchment).In terms of spatial extent and event magnitude, it was the most severe event at least since 1950. Within the current research focus on near real time forensic disaster analysis, the Center for Disaster Management and Risk Reduction Technology (CEDIM) assessed and analysed the multiple facets of the flood event from the beginning. The aim is to describe the on-going event, analyse the event sources, link the physical characteristics to the impact and consequences of the event and to understand the root causes that turn the physical event into a disaster (or prevent it from becoming disastrous). For the near real time component of this research, tools for rapid assessment and concise presentation of analysis results are essential. This contribution provides a graphical summary of the results of the CEDIM-FDA analyses on the June 2013 flood. It demonstrates the potential of visual representations for improving the communication and hence usability of findings in a rapid, intelligible and expressive way as a valuable supplement to usual event reporting. It is based on analyses of the hydrometeorological sources, the flood pathways (from satellite imagery, data extraction from social media), the resilience of the affected regions, and causal loss analysis. The prototypical representation of the FDA-results for the June 2013 flood provides an important step in the development of graphical event templates for the visualisation of forensic disaster analyses. These are intended to become a standard component of future CEDIM-FDA event activities.

  11. Slovak Flood Forecasting Service at the National and International Level

    NASA Astrophysics Data System (ADS)

    Leskova, Danica; Mikuličková, Michaela

    2017-04-01

    National Flood Forecasting Service is based on national legislation /Slovak legislation/ so that it could deal with the flood situation at the local level. Information about international rivers, e.g.: Danube, March (Morava), Uh, and Latorica are received on the basis of bilateral agreements. An important supplementary information is the European Flood Awareness System (EFAS). In this presentation a forecasting system POVAPSYS, which has been in Slovakia in use since 2016, is also shown. The Slovak Hydrometeorological Institute (SHMI) is a partner of EFAS, but simultaneously is a part of consortium of the EFAS Dissemination Centre, and its role is to analyze results of models, to analyze hydrometeorological situation, to disseminate information, and to send flood notifications to the EFAS partners. Both systems will be presented.

  12. Comparison between genetic programming and an ensemble Kalman filter as data assimilation techniques for probabilistic flood forecasting

    NASA Astrophysics Data System (ADS)

    Mediero, L.; Garrote, L.; Requena, A.; Chávez, A.

    2012-04-01

    Flood events are among the natural disasters that cause most economic and social damages in Europe. Information and Communication Technology (ICT) developments in last years have enabled hydrometeorological observations available in real-time. High performance computing promises the improvement of real-time flood forecasting systems and makes the use of post processing techniques easier. This is the case of data assimilation techniques, which are used to develop an adaptive forecast model. In this paper, a real-time framework for probabilistic flood forecasting is presented and two data assimilation techniques are compared. The first data assimilation technique uses genetic programming to adapt the model to the observations as new information is available, updating the estimation of the probability distribution of the model parameters. The second data assimilation technique uses an ensemble Kalman filter to quantify errors in both hydrologic model and observations, updating estimates of system states. Both forecast models take the result of the hydrologic model calibration as a starting point and adapts the individuals of this first population to the new observations in each operation time step. Data assimilation techniques have great potential when are used in hydrological distributed models. The distributed RIBS (Real-time Interactive Basin Simulator) rainfall-runoff model was selected to simulate the hydrological process in the basin. The RIBS model is deterministic, but it is run in a probabilistic way through Monte Carlo simulations over the probability distribution functions that best characterise the most relevant model parameters, which were identified by a probabilistic multi-objective calibration developed in a previous work. The Manzanares River basin was selected as a case study. Data assimilation processes are computationally intensive. Therefore, they are well suited to test the applicability of the potential of the Grid technology to

  13. Looking at the big scale - Global Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Burek, P.; Alfieri, L.; Thielen-del Pozo, J.; Muraro, D.; Pappenberger, F.; Krzeminsk, B.

    2012-04-01

    Reacting to the increasing need for better preparedness to worldwide hydrological extremes, the Joint Research Centre has joined forces with the European Centre for Medium-Range Weather Forecast (ECMWF), to couple state-of-the art weather forecasts with a hydrological model on global scale. On a pre-operationally basis a fully hydro-meteorological flood forecasting model is running since July 2011 and producing daily probabilistic discharge forecast with worldwide coverage and forecast horizon of about 1 month. An important aspect of this global system is that it is set-up on continental scale and therefore independent of administrative and political boundaries - providing downstream countries with information on upstream river conditions as well as continental and global overviews. The prototype of a Global Flood Alert System consists of HTESSEL land surface scheme coupled with LISFLOOD hydrodynamic model for the flow routing in the river network. Both hydrological models are set up on global coverage with horizontal grid resolution of 0.1° and daily time step for input and output data. To estimate corresponding discharge warning thresholds for selected return periods, the coupled HTESSEL-LISFLOOD hydrological model is driven with ERA-Interim input meteorological data for a 21 year period from 1989 onward. For daily forecasts the ensemble stream flow predictions are run by feeding Variable Resolution Ensemble Prediction System (VarEPS) weather forecasts into the coupled model. VarEPS consist of 51-member ensemble global forecasts for 15 days. The hydrological simulations are computed for a 45-day time horizon, to account the routing of flood waves through large river basins with time of concentration of the order of one month. Both results, the discharge thresholds from the long term run and the multiple hydrographs of the daily ensemble stream flow prediction are joined together to produce probabilistic information of critical threshold exceedance. Probabilistic

  14. Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting

    NASA Astrophysics Data System (ADS)

    Wardah, T.; Abu Bakar, S. H.; Bardossy, A.; Maznorizan, M.

    2008-07-01

    SummaryFrequent flash-floods causing immense devastation in the Klang River Basin of Malaysia necessitate an improvement in the real-time forecasting systems being used. The use of meteorological satellite images in estimating rainfall has become an attractive option for improving the performance of flood forecasting-and-warning systems. In this study, a rainfall estimation algorithm using the infrared (IR) information from the Geostationary Meteorological Satellite-5 (GMS-5) is developed for potential input in a flood forecasting system. Data from the records of GMS-5 IR images have been retrieved for selected convective cells to be trained with the radar rain rate in a back-propagation neural network. The selected data as inputs to the neural network, are five parameters having a significant correlation with the radar rain rate: namely, the cloud-top brightness-temperature of the pixel of interest, the mean and the standard deviation of the temperatures of the surrounding five by five pixels, the rate of temperature change, and the sobel operator that indicates the temperature gradient. In addition, three numerical weather prediction (NWP) products, namely the precipitable water content, relative humidity, and vertical wind, are also included as inputs. The algorithm is applied for the areal rainfall estimation in the upper Klang River Basin and compared with another technique that uses power-law regression between the cloud-top brightness-temperature and radar rain rate. Results from both techniques are validated against previously recorded Thiessen areal-averaged rainfall values with coefficient correlation values of 0.77 and 0.91 for the power-law regression and the artificial neural network (ANN) technique, respectively. An extra lead time of around 2 h is gained when the satellite-based ANN rainfall estimation is coupled with a rainfall-runoff model to forecast a flash-flood event in the upper Klang River Basin.

  15. Design and development of a Java-based graphical user interface to monitor/control a meteorological real-time forecasting system

    NASA Astrophysics Data System (ADS)

    Gómez, Igor; José Estrela, María

    2010-10-01

    A regional forecasting system based on the Regional Atmospheric Modeling System (RAMS) is being run at the CEAM Foundation. The operational model involves several processes running in the background at specified times and executing a set of systematic steps. This system is being used as a support for a heat-wave warning system, a wind forecasting system for fire warning and prevention, and for general forecasting tasks. However, it is relatively difficult to use by researchers and forecasters without sophisticated information technology (IT) skill. In this paper, we report an effort to develop a tool to facilitate the monitoring of the system. This tool is based on the client-server architecture and enables those with little IT skill to monitor/control the state of the different processes involved in the real-time simulation. This tool has been successfully used in controlling the RAMS-based applications developed at CEAM since 2006. The design and the functionality and utilities of the tool reviewed in this paper could be exported and customized to be used by other research centres and institutions who offer services based on operational atmospheric models as routine jobs (MM5, WRF, etc.), as e.g. air pollution forecasting systems, other prevention and emergency response systems, etc.

  16. Flood Forecasting via Time Lag Forward Network; Kelantan, Malaysia

    NASA Astrophysics Data System (ADS)

    Jajarmizadeh, Milad; Mohd Sidek, Lariyah; Bte Basri, Hidayah; Shakira Jaffar, Aminah

    2016-03-01

    Forecasting water level is one of the critical issues in Malaysia for Kelantan region. Based on the flood events in 2014, this study investigates the hourly-forecasting of water level in one station namely Kg Jenob in Kelantan. For this issue, Time Lag Forward Network (TLFN) is evaluated for forecasting the water level as dynamic model. Heuristic method in stepwise forward methodology is performed. Rainfall and water level are the input and output of the modelling respectively. For selected flood period 15/12/2014 to 30/12/2014, 8 scenarios are developed to obtain a minimum error in water level forecasting. By monitoring the error, it will show that the optimum configuration of network has 2 processors in hidden layer and 7 lags have enough contribution on the result of hourly forecasting. Transfer functions in hidden and output layers are is Tangent hyperbolic and bias. Observed and simulated data are compared with usual error criteria called Mean Square Error (MSE) and Root Mean Square Error (RMSE) which obtained 0.005 and 0.07 respectively. In conclusion, this study will be as a baseline for Kelantan to show that TLFN has promising result to forecast the flood events.

  17. Application of Rainfall-Runoff Simulation for Flood Forecasting

    DTIC Science & Technology

    1993-06-01

    other parameters, to improve results. 2. Forecasting is generally performed in two separate executions of HECIF. In the first, unit hydrograph , loss...warning criteria; HBC1F and the Sacramento Method are described as illustra- tions of models for real-time application. Finally, aspects of model selec...systems. The tradeoff between lead time (warning time) and warning reliability can be illustrated by considering a simple threshold-stage method of

  18. An Operational Flood Forecast System for the Indus Valley

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Webster, P. J.

    2012-12-01

    The Indus River is central to agriculture, hydroelectric power, and the potable water supply in Pakistan. The ever-present risk of drought - leading to poor soil conditions, conservative dam practices, and higher flood risk - amplifies the consequences of abnormally large precipitation events during the monsoon season. Preparation for the 2010 and 2011 floods could have been improved by coupling quantitative precipitation forecasts to a distributed hydrological model. The nature of slow-rise discharge on the Indus and overtopping of riverbanks in this basin indicate that medium-range (1-10 day) probabilistic weather forecasts can be used to assess flood risk at critical points in the basin. We describe a process for transforming these probabilities into an alert system for supporting flood mitigation and response decisions on a daily basis. We present a fully automated two-dimensional flood forecast methodology based on meteorological variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) Variable Ensemble Prediction System (VarEPS). Energy and water fluxes are calculated in 25km grid cells using macroscale hydrologic parameterizations from the UW Variable Infiltration Capacity (VIC) model. A linear routing model transports grid cell surface runoff and baseflow within each grid cell to the outlet and into the stream network. The overflow points are estimated using flow directions, flow velocities, and maximum discharge thresholds from each grid cell. Flood waves are then deconvolved from the in-channel discharge time series and propagated into adjacent cells until a storage criterion based on average grid cell elevation is met. Floodwaters are drained back into channels as a continuous process, thus simulating spatial extent, depth, and persistence on the plains as the ensemble forecast evolves with time.

  19. Assimilation of stream discharge for flood forecasting: Updating a semidistributed model with an integrated data assimilation scheme

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Ryu, Dongryeol; Western, Andrew W.; Wang, Q. J.

    2015-05-01

    Real-time discharge observations can be assimilated into flood models to improve forecast accuracy; however, the presence of time lags in the routing process and a lack of methods to quantitatively represent different sources of uncertainties challenge the implementation of data assimilation techniques for operational flood forecasting. To address these issues, an integrated error parameter estimation and lag-aware data assimilation (IEELA) scheme was recently developed for a lumped model. The scheme combines an ensemble-based maximum a posteriori (MAP) error estimation approach with a lag-aware ensemble Kalman smoother (EnKS). In this study, the IEELA scheme is extended to a semidistributed model to provide for more general application in flood forecasting by including spatial and temporal correlations in model uncertainties between subcatchments. The result reveals that using a semidistributed model leads to more accurate forecasts than a lumped model in an open-loop scenario. The IEELA scheme improves the forecast accuracy significantly in both lumped and semidistributed models, and the superiority of the semidistributed model remains in the data assimilation scenario. However, the improvements resulting from IEELA are confined to the outlet of the catchment where the discharge observations are assimilated. Forecasts at "ungauged" internal locations are not improved, and in some instances, even become less accurate.

  20. Design and Prototype Implementation of non-Triggered Database-driven Real-time Tsunami Forecast System using Multi-index Method

    NASA Astrophysics Data System (ADS)

    Yamamoto, N.; Aoi, S.; Suzuki, W.; Hirata, K.; Takahashi, N.; Kunugi, T.; Nakamura, H.

    2016-12-01

    We have launched a new project to develop real-time tsunami inundation forecast system for the Pacific coast of Chiba prefecture (Kujukuri-Sotobo region), Japan (Aoi et al., 2015, AGU). In this study, we design a database-driven real-time tsunami forecast system using the multi-index method (Yamamoto et al., 2016, EPS) and implement a prototype system. In the previous study (Yamamoto et al., 2015, AGU), we assumed that the origin-time of tsunami was known before a forecast based on comparing observed and calculated ocean-bottom pressure waveforms stored in the Tsunami Scenario Bank (TSB). As shown in the figure, we assume the scenario origin-times by defining the scenario elapsed timeτp to compare observed and calculated waveforms. In this design, when several appropriate tsunami scenarios were selected by multiple indices (two variance reductions and correlation coefficient), the system could make tsunami forecast using the selected tsunami scenarios for the target coastal region without any triggered information derived from observed seismic and/or tsunami data. In addition, we define the time range Tq shown in the figure for masking perturbations contaminated by ocean-acoustic and seismic waves on the observed pressure records (Saito, 2015, JpGU). Following the proposed design, we implement a prototype system of real-time tsunami inundation forecast system for the exclusive use of the target coastal region using ocean-bottom pressure data from the Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench (S-net) (Kanazawa et al., 2012, JpGU; Uehira et al., 2015, IUGG), which is constructed by National Research institute for Earth Science and Disaster Resilience (NIED). For the prototype system, we construct a prototype TSB using interplate earthquake fault models located along the Japan Trench (Mw 7.6-9.8), the Sagami Trough (Mw 7.6-8.6), and the Nankai Trough (Mw 7.6-8.6) as well as intraplate earthquake fault models (Mw 7.6-8.6) within

  1. Medium Range Ensembles Flood Forecasts for Community Level Applications

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S.; Kawasaki, A.; Babel, M. S.; AIT

    2013-05-01

    Early warning is a key element for disaster risk reduction. In recent decades, there has been a major advancement in medium range and seasonal forecasting. These could provide a great opportunity to improve early warning systems and advisories for early action for strategic and long term planning. This could result in increasing emphasis on proactive rather than reactive management of adverse consequences of flood events. This can be also very helpful for the agricultural sector by providing a diversity of options to farmers (e.g. changing cropping pattern, planting timing, etc.). An experimental medium range (1-10 days) flood forecasting model has been developed for Bangladesh which provides 51 set of discharge ensembles forecasts of one to ten days with significant persistence and high certainty. This could help communities (i.e. farmer) for gain/lost estimation as well as crop savings. This paper describe the application of ensembles probabilistic flood forecast at the community level for differential decision making focused on agriculture. The framework allows users to interactively specify the objectives and criteria that are germane to a particular situation, and obtain the management options that are possible, and the exogenous influences that should be taken into account before planning and decision making. risk and vulnerability assessment was conducted through community consultation. The forecast lead time requirement, users' needs, impact and management options for crops, livestock and fisheries sectors were identified through focus group discussions, informal interviews and questionnaire survey.

  2. Validation of the new HelioClim-3 version 4 real-time and short-term forecast service using 14 BSRN stations

    NASA Astrophysics Data System (ADS)

    Thomas, Claire; Saboret, Laurent; Wey, Etienne; Blanc, Philippe; Wald, Lucien

    2016-07-01

    Meteosat Second Generation (MSG) satellite images acquired every 15 min during daytime are currently processed by the Heliosat-2 method every night to generate the HelioClim-3 (HC3) database of the surface solar irradiation for the day before. A new service is proposed based on version 4 of HC3 (HC3v4) that offers real-time and forecasted irradiation for horizons up to a few hours. The service is based on a local persistence of the clear-sky index. Its results were compared to coincident high quality 15 min global irradiations measured in fourteen stations belonging to the Baseline Surface Radiation Network (BSRN). For forecasts for a temporal horizon of 15 min ahead, the relative bias and root mean square error (RMSE) range respectively from 0 to 2 %, and 20 to 23 % for most stations. The correlation coefficient ranges from 0.94 to 0.95. These performances are similar to HC3v4 for the same stations. Expectedly, the quality of the forecasts degrades as the temporal horizon increases. For 1 h ahead forecasts of 15 min irradiation, the relative bias, root mean square error (RMSE) and correlation coefficient range respectively from -3 to 1 %, 30 to 37 %, and 0.90 to 0.91.

  3. Flood forecasting with DDD-application of a parsimonious hydrological model in operational flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Haddeland, Ingjerd

    2014-05-01

    A new parameter-parsimonious rainfall-runoff model, DDD (Distance Distribution Dynamics) has been run operationally at the Norwegian Flood Forecasting Service for approximately a year. DDD has been calibrated for, altogether, 104 catchments throughout Norway, and provide runoff forecasts 8 days ahead on a daily temporal resolution driven by precipitation and temperature from the meteorological forecast models AROME (48 hrs) and EC (192 hrs). The current version of DDD differs from the standard model used for flood forecasting in Norway, the HBV model, in its description of the subsurface and runoff dynamics. In DDD, the capacity of the subsurface water reservoir M, is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than the HBV model. Experiences using DDD show that especially the timing of flood peaks has improved considerably and in a comparison between DDD and HBV, when assessing timeseries of 64 years for 75 catchments, DDD had a higher hit rate and a lower false alarm rate than HBV. For flood peaks higher than the mean annual flood the median hit rate is 0.45 and 0.41 for the DDD and HBV models respectively. Corresponding number for the false alarm rate is 0.62 and 0.75 For floods over the five year return interval, the median hit rate is 0.29 and 0.28 for the DDD and HBV models, respectively with false alarm rates equal to 0.67 and 0.80. During 2014 the Norwegian flood forecasting service will run DDD operationally at a 3h temporal

  4. Fuzzy exemplar-based inference system for flood forecasting

    NASA Astrophysics Data System (ADS)

    Chang, Li-Chiu; Chang, Fi-John; Tsai, Ya-Hsin

    2005-02-01

    Fuzzy inference systems have been successfully applied in numerous fields since they can effectively model human knowledge and adaptively make decision processes. In this paper we present an innovative fuzzy exemplar-based inference system (FEIS) for flood forecasting. The FEIS is based on a fuzzy inference system, with its clustering ability enhanced through the Exemplar-Aided Constructor of Hyper-rectangles algorithm, which can effectively simulate human intelligence by learning from experience. The FEIS exhibits three important properties: knowledge extraction from numerical data, knowledge (rule) modeling, and fuzzy reasoning processes. The proposed model is employed to predict streamflow 1 hour ahead during flood events in the Lan-Yang River, Taiwan. For the purpose of comparison the back propagation neural network (BPNN) is also performed. The results show that the FEIS model performs better than the BPNN. The FEIS provides a great learning ability, robustness, and high predictive accuracy for flood forecasting.

  5. Near Real-time Full-wave Centroid Moment Tensor (CMT) Inversion for Ground-motion forecast in 3D Earth Structure of Southern California

    NASA Astrophysics Data System (ADS)

    Chen, P.; Lee, E.; Jordan, T. H.; Maechling, P. J.

    2011-12-01

    Accurate and rapid CMT inversion is important for seismic hazard analysis. We have developed an algorithm for very rapid full-wave CMT inversions in a 3D Earth structure model and applied it on earthquakes recorded by the Southern California Seismic Network (SCSN). The procedure relies on the use of receiver-side Green tensors (RGTs), which comprise the spatial-temporal displacements produced by the three orthogonal unit impulsive point forces acting at the receiver. We have constructed a RGT database for 219 broadband stations in Southern California using an updated version of the 3D SCEC Community Velocity Model (CVM) version 4.0 and a staggered-grid finite-difference code. Finite-difference synthetic seismograms for any earthquake in our modeling volume can be simply calculated by extracting a small, source-centered volume from the RGT database and applying the reciprocity principle. We have developed an automated algorithm that combines a grid-search for suitable epicenter and focal mechanisms with a gradient-descent method that further refines the grid-search results. In this algorithm, the CMT solutions are inverted near real-time by using waveform in a 3D Earth structure. Comparing with the CMT solutions provided by the Southern California Seismic Network (SCSN) shows that our solutions generally provide better fit to the observed waveforms. Our algorithm may provide more robust CMT solutions for earthquakes in Southern California. In addition, the rapid and accurate full-wave CMT inversion has potential to extent to accurate near real-time ground-motion prediction based on 3D structure model for earthquake early warning purpose. When combined with real-time telemetered waveform recordings, our algorithm can provide (near) real-time ground-motion forecast.

  6. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore

    PubMed Central

    Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S.Y.; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R.

    2015-01-01

    Background: With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. Objectives: We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. Methods: We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Results: Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore’s dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Conclusions: Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Citation: Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak

  7. Development of web-based services for a novel ensemble flood forecasting and risk assessment system

    NASA Astrophysics Data System (ADS)

    He, Y.; Manful, D. Y.; Cloke, H. L.; Wetterhall, F.; Li, Z.; Bao, H.; Pappenberger, F.; Wesner, S.; Schubert, L.; Yang, L.; Hu, Y.

    2009-12-01

    interoperability through strong security and workflow capabilities. A physical network diagram and a work flow scheme of all the models, codes and databases used to achieve the NEWS algorithm are presented. They constitute a first step in the development of a platform for providing real time flood forecasting services on the web to mitigate 21st century weather phenomena.

  8. Development of web-based services for an ensemble flood forecasting and risk assessment system

    NASA Astrophysics Data System (ADS)

    Yaw Manful, Desmond; He, Yi; Cloke, Hannah; Pappenberger, Florian; Li, Zhijia; Wetterhall, Fredrik; Huang, Yingchun; Hu, Yuzhong

    2010-05-01

    through strong security and workflow capabilities. A physical network diagram and a work flow scheme of all the models, codes and databases used to achieve the NEWS algorithm are presented. They constitute a first step in the development of a platform for providing real time flood forecasting services on the web to mitigate 21st century weather phenomena.

  9. Accounting for rainfall systematic spatial variability in flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kévin; Labat, David; Dartus, Denis

    2016-10-01

    Just as with the storms that cause them, flash floods are highly variable and non-linear phenomena in both time and space; hence understanding and anticipating the genesis of flash floods is far from straightforward. There is therefore a huge requirement for tools with the potential to provide advance warning of situations likely to lead to flash floods, and thus provide additional time for the flood forecasting services. The Flash Flood Guidance (FFG) method is used on US catchments to estimate the average number of inches of rainfall for given durations required to produce flash flooding. This rainfall amount is used afterwards as a flood warning threshold. In Europe, flash floods often occur on small catchments (approximately 100 km2) and it has already been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, an improved FFG method which accounts for rainfall spatial variability is proposed. The objectives of this paper are (i) to assess the FFG method applicability on French Mediterranean catchments with a distributed process-oriented hydrological model and (ii) to assess the effect of the rainfall spatial variability on this method. The results confirm the influence of the spatial variability of rainfall events in relation with its interaction with soil properties.

  10. New developments at the Flood Forecasting Centre: operational flood risk assessment and guidance

    NASA Astrophysics Data System (ADS)

    Pilling, Charlie

    2017-04-01

    The Flood Forecasting Centre (FFC) is a partnership between the UK Met Office, the Environment Agency and Natural Resources Wales. The FFC was established in 2009 to provide an overview of flood risk across England and Wales and to provide flood guidance services primarily for the emergency response community. The FFC provides forecasts for all natural sources of flooding, these being fluvial, surface water, coastal and groundwater. This involves an assessment of possible hydrometeorological events and their impacts over the next five days. During times of heightened flood risk, the close communication between the FFC, the Environment Agency and Natural Resources Wales allows mobilization and deployment of staff and flood defences. Following a number of severe flood events during winters 2013-14 and 2015-16, coupled with a drive from the changing landscape in national incident response, there is a desire to identify flood events at even longer lead time. This earlier assessment and mobilization is becoming increasingly important and high profile within Government. For example, following the exceptional flooding across the north of England in December 2015 the Environment Agency have invested in 40 km of temporary barriers that will be moved around the country to help mitigate against the impacts of large flood events. Efficient and effective use of these barriers depends on identifying the broad regions at risk well in advance of the flood, as well as scaling the magnitude and duration of large events. Partly in response to this, the FFC now produce a flood risk assessment for a month ahead. In addition, since January 2017, the 'new generation' daily flood guidance statement includes an assessment of flood risk for the 6 to 10 day period. Examples of both these new products will be introduced, as will some of the new developments in science and technical capability that underpin these assessments. Examples include improvements to fluvial forecasting from 'fluvial

  11. Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Grimaldi, Stefania; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.

    2016-09-01

    Accurate, precise and timely forecasts of flood wave arrival time, depth and velocity at each point of the floodplain are essential to reduce damage and save lives. Current computational capabilities support hydraulic models of increasing complexity over extended catchments. Yet a number of sources of uncertainty (e.g., input and boundary conditions, implementation data) may hinder the delivery of accurate predictions. Field gauging data of water levels and discharge have traditionally been used for hydraulic model calibration, validation and real-time constraint. However, the discrete spatial distribution of field data impedes the testing of the model skill at the two-dimensional scale. The increasing availability of spatially distributed remote sensing (RS) observations of flood extent and water level offers the opportunity for a comprehensive analysis of the predictive capability of hydraulic models. The adequate use of the large amount of information offered by RS observations triggers a series of challenging questions on the resolution, accuracy and frequency of acquisition of RS observations; on RS data processing algorithms; and on calibration, validation and data assimilation protocols. This paper presents a review of the availability of RS observations of flood extent and levels, and their use for calibration, validation and real-time constraint of hydraulic flood forecasting models. A number of conclusions and recommendations for future research are drawn with the aim of harmonising the pace of technological developments and their applications.

  12. Using CATS Near-Real-time Lidar Observations to Monitor and Constrain Volcanic Sulfur Dioxide (SO2) Forecasts

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Yorks, J.; Krotkov, N. A.; da Silva, A. M.; Mcgill, M.

    2016-01-01

    An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5 days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.

  13. Using CATS Near-Real-Time Lidar Observations to Monitor and Constrain Volcanic Sulfur Dioxide (SO2) Forecasts

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Yorks, J.; Krotkov, N. A.; Da Silva, A. M.; McGill, M.

    2016-01-01

    An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.

  14. DEVELOPMENT OF A REAL-TIME FORECASTING SYSTEM FOR ROAD FACILITIES IN YAMAGUCHI PREFECTURE AND ITS PRACTICAL APPLICATIONS

    NASA Astrophysics Data System (ADS)

    Yamane, Satoru; Yoshimura, Takashi; Miyamoto, Ayaho

    Maintenance strategy for road facilities on the road network which is an essential lifeline supporting our life is becoming a major social concern in safety and securer civil societies for not only Yamaguchi prefecture but also other prefectures in recently. This paper describes a road facilities maintenance man-agement support system combined with the latest information and communication technologies, such as the information function at the position of the GPS cellular phone with web GIS, etc. By using the system, because information can be shared by using location information function, photograph function, e-mail functionality, and web GIS of the GPS cellular phone to its maximum, an efficient, effective maintenance management can be done. From the comparison of the results of applying the system to an actual road network in Yamaguchi prefecture area, the road administrator can in real time confirm the position and the situation of the facilities damage of the road from the Internet, and a quick mending can be done.

  15. Using CATS Near-Real-time Lidar Observations to Monitor and Constrain Volcanic Sulfur Dioxide (SO2) Forecasts

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Yorks, J.; Krotkov, N. A.; da Silva, A. M.; Mcgill, M.

    2016-01-01

    An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5 days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.

  16. Using CATS near-real-time lidar observations to monitor and constrain volcanic sulfur dioxide (SO2) forecasts

    NASA Astrophysics Data System (ADS)

    Hughes, E. J.; Yorks, J.; Krotkov, N. A.; Silva, A. M.; McGill, M.

    2016-10-01

    An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5 days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.

  17. A Modeling Approach for Flash Flood Forecasting for Small Watersheds in Iowa

    NASA Astrophysics Data System (ADS)

    Lincoln, W. S.; Franz, K. J.

    2008-12-01

    Current flood predictions are limited by often out-dated statistical guidance and a rigid modeling system that seldom accounts for basin-specific hydrologic response times. The National Weather Service (NWS) SACramento Soil Moisture Accounting Model (SACSMA), which is used to generate short-range (1-7 days) streamflow forecasts, is most commonly run at a 6-hour timestep. The 6-hour timestep can be inadequate for capturing flood crests in small watersheds (<1500 km2) with 6-12 hour response times. Flood warnings and watches are issued according to Flash Flood Guidance (FFG). FFG is based on statistical relationships between historical streamflow observations, antecedent precipitation and rain rates, and is seldom updated. Modern hydrologic modeling techniques may improve flood forecasting accuracy and lead time in small watersheds. In this study, we apply the US Army Corps Hydrologic Engineering Center-Hydrological Modeling System (HEC-HMS) to small forecast basins in central Iowa to test the feasibility of using the HEC-HMS in real-time at the Des Moines Weather Forecast Office (DMX). The watershed is configured in a semi- distributed, event-based manner, using the Green and Ampt infiltration model and Muskingum routing. Basin specific soil parameters are estimated from historical simulations from the Water Erosion Prediction Project (WEPP) model, which is run by Iowa State University's Daily Erosion Project. Additional model parameters are found via GIS and automatic and manual calibration methods. The model is driven by basin-average precipitation estimates obtained from the University of Iowa Hydro-NEXRAD system (based on a 1.0km CAPPI height and simple bias correction). Initial soil moisture estimates are derived from the WEPP product. Input uncertainties, based on radar data analysis, are carried through the operational modeling process to find lower and upper uncertainty bounds for every forecast. Preliminary analysis of the parameters derived from the WEPP

  18. Impact of rainfall spatial variability on Flash Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin

    2014-05-01

    According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes δ1 and δ2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes δ1 and δ2, the threshold value is read on the diagram. A warning threshold diagram is

  19. Forecasting flood-prone areas using Shannon's entropy model

    NASA Astrophysics Data System (ADS)

    Haghizadeh, Ali; Siahkamari, Safoura; Haghiabi, Amir Hamzeh; Rahmati, Omid

    2017-04-01

    With regard to the lack of quality information and data in watersheds, it is of high importance to present a new method for evaluating flood potential. Shannon's entropy model is a new model in evaluating dangers and it has not yet been used to evaluate flood potential. Therefore, being a new model in determining flood potential, it requires evaluation and investigation in different regions and this study is going to deal with this issue. For to this purpose, 70 flooding areas were recognized and their distribution map was provided by ArcGIS10.2 software in the study area. Information layers of altitude, slope angle, slope aspect, plan curvature, drainage density, distance from the river, topographic wetness index (TWI), lithology, soil type, and land use were recognized as factors affecting flooding and the mentioned maps were provided and digitized by GIS environment. Then, flood susceptibility forecasting map was provided and model accuracy evaluation was conducted using ROC curve and 30% flooding areas express good precision of the model (73.5%) for the study area.

  20. A first large-scale flood inundation forecasting model

    SciTech Connect

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode

  1. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of

  2. Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts.

    PubMed

    Lowe, Rachel; Barcellos, Christovam; Coelho, Caio A S; Bailey, Trevor C; Coelho, Giovanini Evelim; Graham, Richard; Jupp, Tim; Ramalho, Walter Massa; Carvalho, Marilia Sá; Stephenson, David B; Rodó, Xavier

    2014-07-01

    With more than a million spectators expected to travel among 12 different cities in Brazil during the football World Cup, June 12-July 13, 2014, the risk of the mosquito-transmitted disease dengue fever is a concern. We addressed the potential for a dengue epidemic during the tournament, using a probabilistic forecast of dengue risk for the 553 microregions of Brazil, with risk level warnings for the 12 cities where matches will be played. We obtained real-time seasonal climate forecasts from several international sources (European Centre for Medium-Range Weather Forecasts [ECMWF], Met Office, Meteo-France and Centro de Previsão de Tempo e Estudos Climáticos [CPTEC]) and the observed dengue epidemiological situation in Brazil at the forecast issue date as provided by the Ministry of Health. Using this information we devised a spatiotemporal hierarchical Bayesian modelling framework that enabled dengue warnings to be made 3 months ahead. By assessing the past performance of the forecasting system using observed dengue incidence rates for June, 2000-2013, we identified optimum trigger alert thresholds for scenarios of medium-risk and high-risk of dengue. Our forecasts for June, 2014, showed that dengue risk was likely to be low in the host cities Brasília, Cuiabá, Curitiba, Porto Alegre, and São Paulo. The risk was medium in Rio de Janeiro, Belo Horizonte, Salvador, and Manaus. High-risk alerts were triggered for the northeastern cities of Recife (p(high)=19%), Fortaleza (p(high)=46%), and Natal (p(high)=48%). For these high-risk areas, particularly Natal, the forecasting system did well for previous years (in June, 2000-13). This timely dengue early warning permits the Ministry of Health and local authorities to implement appropriate, city-specific mitigation and control actions ahead of the World Cup. European Commission's Seventh Framework Research Programme projects DENFREE, EUPORIAS, and SPECS; Conselho Nacional de Desenvolvimento Científico e Tecnol

  3. Retracking CryoSat waveforms for near-real-time ocean forecast products, platform attitude, and other applications

    NASA Astrophysics Data System (ADS)

    Smith, W. H.; Scharroo, R.; Lillibridge, J. L.; Leuliette, E. W.

    2011-12-01

    The SIRAL altimeter on CryoSat, launched in 2010, can operate in three modes: the low-rate mode (LRM) behaves as a conventional altimeter; the SAR mode allows more precise range and more focused footprint through use of synthetic aperture radar (SAR), also known as delay-Doppler, processing; the SARIN mode, or interferometric SAR, also affords across-track slope determination from interferometry. We have been working on several CryoSat studies over this year and will present some highlights. For the conventional LRM mode, we have built a retracker that processes near-real-time (FDM: Fast Delivery Mode) and Level 1-B data at 20 Hz to yield wind speed, wave height, and sea surface height anomaly. These data are being fed to NOAA's National Centers for Environmental Prediction. The retracking also estimates the off-nadir mispointing angle of the satellite. After accounting for an effect due to orbit height variations, we find that the off-nadir angle estimates are sufficiently accurate that we have used them to calibrate biases in the pitch and roll of the spacecraft platform reported by the platform attitude control system. These biases account for mis-alignment between the star tracker bench and the antenna boresight. We have Full Bit Rate (FBR) data in SAR mode for some ocean passes, including portions crossing coastlines, both from ocean to land and from land to ocean. FBR data includes all the raw I and Q samples of the raw radar echoes, prior to the range FFT that deramps the chirp, or the azimuth FFT that initiates the delay-Doppler SAR focusing calculation. We are currently working on these data with several applications in mind: (1) We can use these data to trace exactly what happens as the instrument crosses a coastline. (2) We can use these data to derive a LRM (conventional) waveform as well as a SAR waveform, and can compare the performance of these two modes under the same conditions (sea state, propagation, etc.) (3) We can test a conjecture by J R

  4. Delft FEWS: An open shell flood forecasting platform

    NASA Astrophysics Data System (ADS)

    Reggiani, P.; Kwadijk, J. C. J.; Werner, M. G. F.; van Dijk, M. J.; Schellekens, J.; van Kappel, R. R.; Sprokkereef, E.

    2003-04-01

    DELFT FEWS is a flood forecasting system developed over several years at Delft Hydraulics. The main philosophy underlying the system is to provide an open shell tool, that allows integration of arbitrary hydrological and river routing models with meteorological data and numerical weather forecasts. In its actual form DELFT-FEWS constitutes a collection of platform-independent software modules, linked to a central database. The database is used to store historical runoff data from gauging stations, and meteorological data from local and synoptic meteorological stations. These can be updated on-line through direct access to national weather services, weather forecast centres and hydro-meteorological services. In addition, the platform is designed to import and convert numerical weather forecasts produced by weather agencies, and interface them with the database. The system incorporates a wide range of algorithms for data verification, interpolation, model updating and data assimilation. These can be employed for data verification and reconstruction of missing values, as well as for pre processing of meteorological data, such that are made ready for use in hydrological models. The various hydrological and routing models are included into the system via appropriate model adapters, that convert data in the database to specific model data formats and vice versa. In this manner a concatenation of various operational and already tested models into model cascades is facilitated within a single and consistent computational framework. To date the system has been successfully tested with various numerical weather forecasts, including deterministic and ensemble forecasts provided by national weather forecast centres and the European Centre for Medium-Range Weather Forecast. The hydrodynamic river routing module SOBEK, the LISFLOOD suite of raster-based hydrology and hydraulic codes and the well-known HBV hydrological model were included for the computation of the hydrologic

  5. Basic atmospheric measurements via Arduino Uno microcontroller with commercially available sensors towards simple real-time weather forecasting for increased classroom engagement

    NASA Astrophysics Data System (ADS)

    Eckel, Ryan; Tanner, Meghan; Senevirathne, Indrajith

    Makers, engineers and the applied physics community have adapted Arduino microcontrollers due to their versatility, robustness and cost effectiveness. Arduino microcontroller environment coupled with commercially available sensors have been used to systematically measure, record and analyze temperature, humidity and barometric pressure for building a simplified weather station for subsequent educational purposes. This data will become available in classroom settings for real-time analysis towards simple weather forecasting. Setup was assembled via breadboard, wire and simple soldering with an Arduino Uno ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial DHT22 humidity and temperature sensor, and BMP180 barometric pressure sensor were used to obtain relative humidity, temperature and the barometric pressure. A weather resistant enclosure protected the system while stable real-time data measurements were obtained, and uploaded onto the PC. The data was used to predict atmospheric conditions and lifting condensation level (LCL). Discussion will focus on capabilities and limitations of these systems and corresponding teaching aspects. Lock Haven University Nanotechnology Program.

  6. Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore.

    PubMed

    Ong, Jimmy Boon Som; Chen, Mark I-Cheng; Cook, Alex R; Lee, Huey Chyi; Lee, Vernon J; Lin, Raymond Tzer Pin; Tambyah, Paul Ananth; Goh, Lee Gan

    2010-04-14

    Reporting of influenza-like illness (ILI) from general practice/family doctor (GPFD) clinics is an accurate indicator of real-time epidemic activity and requires little effort to set up, making it suitable for developing countries currently experiencing the influenza A (H1N1-2009) pandemic or preparing for subsequent epidemic waves. We established a network of GPFDs in Singapore. Participating GPFDs submitted returns via facsimile or e-mail on their work days using a simple, standard data collection format, capturing: gender; year of birth; "ethnicity"; residential status; body temperature (degrees C); and treatment (antiviral or not); for all cases with a clinical diagnosis of an acute respiratory illness (ARI). The operational definition of ILI in this study was an ARI with fever of 37.8 degrees C or more. The data were processed daily by the study co-ordinator and fed into a stochastic model of disease dynamics, which was refitted daily using particle filtering, with data and forecasts uploaded to a website which could be publicly accessed. Twenty-three GPFD clinics agreed to participate. Data collection started on 2009-06-26 and lasted for the duration of the epidemic. The epidemic appeared to have peaked around 2009-08-03 and the ILI rates had returned to baseline levels by the time of writing. This real-time surveillance system is able to show the progress of an epidemic and indicates when the peak is reached. The resulting information can be used to form forecasts, including how soon the epidemic wave will end and when a second wave will appear if at all.

  7. Real-Time Epidemic Monitoring and Forecasting of H1N1-2009 Using Influenza-Like Illness from General Practice and Family Doctor Clinics in Singapore

    PubMed Central

    Ong, Jimmy Boon Som; Chen, Mark I-Cheng; Cook, Alex R.; Lee, Huey Chyi; Lee, Vernon J.; Lin, Raymond Tzer Pin; Tambyah, Paul Ananth; Goh, Lee Gan

    2010-01-01

    Background Reporting of influenza-like illness (ILI) from general practice/family doctor (GPFD) clinics is an accurate indicator of real-time epidemic activity and requires little effort to set up, making it suitable for developing countries currently experiencing the influenza A (H1N1 -2009) pandemic or preparing for subsequent epidemic waves. Methodology/Principal Findings We established a network of GPFDs in Singapore. Participating GPFDs submitted returns via facsimile or e-mail on their work days using a simple, standard data collection format, capturing: gender; year of birth; “ethnicity”; residential status; body temperature (°C); and treatment (antiviral or not); for all cases with a clinical diagnosis of an acute respiratory illness (ARI). The operational definition of ILI in this study was an ARI with fever of 37.8°C or more. The data were processed daily by the study co-ordinator and fed into a stochastic model of disease dynamics, which was refitted daily using particle filtering, with data and forecasts uploaded to a website which could be publicly accessed. Twenty-three GPFD clinics agreed to participate. Data collection started on 2009-06-26 and lasted for the duration of the epidemic. The epidemic appeared to have peaked around 2009-08-03 and the ILI rates had returned to baseline levels by the time of writing. Conclusions/Significance This real-time surveillance system is able to show the progress of an epidemic and indicates when the peak is reached. The resulting information can be used to form forecasts, including how soon the epidemic wave will end and when a second wave will appear if at all. PMID:20418945

  8. Disseminating near-real-time hazards information and flood maps in the Philippines through Web-GIS.

    PubMed

    A Lagmay, Alfredo Mahar Francisco; Racoma, Bernard Alan; Aracan, Ken Adrian; Alconis-Ayco, Jenalyn; Saddi, Ivan Lester

    2017-09-01

    The Philippines being a locus of tropical cyclones, tsunamis, earthquakes and volcanic eruptions, is a hotbed of disasters. These natural hazards inflict loss of lives and costly damage to property. Situated in a region where climate and geophysical tempest is common, the Philippines will inevitably suffer from calamities similar to those experienced recently. With continued development and population growth in hazard prone areas, it is expected that damage to infrastructure and human losses would persist and even rise unless appropriate measures are immediately implemented by government. In 2012, the Philippines launched a responsive program for disaster prevention and mitigation called the Nationwide Operational Assessment of Hazards (Project NOAH), specifically for government warning agencies to be able to provide a 6hr lead-time warning to vulnerable communities against impending floods and to use advanced technology to enhance current geo-hazard vulnerability maps. To disseminate such critical information to as wide an audience as possible, a Web-GIS using mashups of freely available source codes and application program interface (APIs) was developed and can be found in the URLs http://noah.dost.gov.ph and http://noah.up.edu.ph/. This Web-GIS tool is now heavily used by local government units in the Philippines in their disaster prevention and mitigation efforts and can be replicated in countries that have a proactive approach to address the impacts of natural hazards but lack sufficient funds. Copyright © 2017. Published by Elsevier B.V.

  9. Toward seamless high-resolution flash flood forecasting over Europe based on radar nowcasting and NWP: An evaluation with case studies

    NASA Astrophysics Data System (ADS)

    Park, Shinju; Berenguer, Marc; Sempere-Torres, Daniel; Baugh, Calum; Smith, Paul

    2017-04-01

    Flash floods induced by heavy rain are one of the hazardous natural events that significantly affect human lives. Because flash floods are characterized by their rapid onset, forecasting flash flood to lead an effective response requires accurate rainfall predictions with high spatial and temporal resolution and adequate representation of the hydrologic and hydraulic processes within a catchment that determine rainfall-runoff accumulations. We present extreme flash flood cases which occurred throughout Europe in 2015-2016 that were identified and forecasted by two real-time approaches: 1) the European Rainfall-Induced Hazard Assessment System (ERICHA) and 2) the European Runoff Index based on Climatology (ERIC). ERICHA is based on the nowcasts of accumulated precipitation generated from the pan-European radar composites produced by the EUMETNET project OPERA. It has the advantage of high-resolution precipitation inputs and rapidly updated forecasts (every 15 minutes), but limited forecast lead time (up to 8 hours). ERIC, on the other hand, provides 5-day forecasts based on the COSMO-LEPS NWP simulations updated 2 times a day but is only produced at a 7 km resolution. We compare the products from both systems and focus on showing the advantages, limitations and complementarities of ERICHA and ERIC for seamless high-resolution flash flood forecasting.

  10. Forecast skill of a high-resolution real-time mesoscale model designed for weather support of operations at Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory E.; Zack, John W.; Manobianco, John

    1994-01-01

    NASA funded Mesoscale Environmental Simulations and Operations (MESO), Inc. to develop a version of the Mesoscale Atmospheric Simulation System (MASS). The model has been modified specifically for short-range forecasting in the vicinity of KSC/CCAS. To accomplish this, the model domain has been limited to increase the number of horizontal grid points (and therefore grid resolution) and the model' s treatment of precipitation, radiation, and surface hydrology physics has been enhanced to predict convection forced by local variations in surface heat, moisture fluxes, and cloud shading. The objective of this paper is to (1) provide an overview of MASS including the real-time initialization and configuration for running the data pre-processor and model, and (2) to summarize the preliminary evaluation of the model's forecasts of temperature, moisture, and wind at selected rawinsonde station locations during February 1994 and July 1994. MASS is a hydrostatic, three-dimensional modeling system which includes schemes to represent planetary boundary layer processes, surface energy and moisture budgets, free atmospheric long and short wave radiation, cloud microphysics, and sub-grid scale moist convection.

  11. Consensus Seasonal Flood Forecasts and Warning Response System (FFWRS): an alternate for nonstructural flood management in Bangladesh.

    PubMed

    Chowdhury, Rashed

    2005-06-01

    Despite advances in short-range flood forecasting and information dissemination systems in Bangladesh, the present system is less than satisfactory. This is because of short lead-time products, outdated dissemination networks, and lack of direct feedback from the end-user. One viable solution is to produce long-lead seasonal forecasts--the demand for which is significantly increasing in Bangladesh--and disseminate these products through the appropriate channels. As observed in other regions, the success of seasonal forecasts, in contrast to short-term forecast, depends on consensus among the participating institutions. The Flood Forecasting and Warning Response System (henceforth, FFWRS) has been found to be an important component in a comprehensive and participatory approach to seasonal flood management. A general consensus in producing seasonal forecasts can thus be achieved by enhancing the existing FFWRS. Therefore, the primary objective of this paper is to revisit and modify the framework of an ideal warning response system for issuance of consensus seasonal flood forecasts in Bangladesh. The five-stage FFWRS-i) Flood forecasting, ii) Forecast interpretation and message formulation, iii) Warning preparation and dissemination, iv) Responses, and v) Review and analysis-has been modified. To apply the concept of consensus forecast, a framework similar to that of the Southern African Regional Climate Outlook Forum (SARCOF) has been discussed. Finally, the need for a climate Outlook Fora has been emphasized for a comprehensive and participatory approach to seasonal flood hazard management in Bangladesh.

  12. Short period forecasting of catchment-scale precipitation. Part II: a water-balance storm model for short-term rainfall and flood forecasting

    NASA Astrophysics Data System (ADS)

    Bell, V. A.; Moore, R. J.

    A simple two-dimensional rainfall model, based on advection and conservation of mass in a vertical cloud column, is investigated for use in short-term rainfall and flood forecasting at the catchment scale under UK conditions. The model is capable of assimilating weather radar, satellite infra-red and surface weather observations, together with forecasts from a mesoscale numerical weather prediction model, to obtain frequently updated forecasts of rainfall fields. Such data assimilation helps compensate for the simplified model dynamics and, taken together, provides a practical real-time forecasting scheme for catchment scale applications. Various ways are explored for using information from a numerical weather prediction model (16.8 km grid) within the higher resolution model (5 km grid). A number of model variants is considered, ranging from simple persistence and advection methods used as a baseline, to different forms of the dynamic rainfall model. Model performance is assessed using data from the Wardon Hill radar in Dorset for two convective events, on 10 June 1993 and 16 July 1995, when thunderstorms occurred over southern Britain. The results show that (i) a simple advection-type forecast may be improved upon by using multiscan radar data in place of data from the lowest scan, and (ii) advected, steady-state predictions from the dynamic model, using "inferred updraughts", provides the best performance overall. Updraught velocity is inferred at the forecast origin from the last two radar fields, using the mass-balance equation and associated data and is held constant over the forecast period. This inference model proves superior to the buoyancy parameterisation of updraught employed in the original formulation. A selection of the different rainfall forecasts is used as input to a catchment flow forecasting model, the IH PDM (Probability Distributed Moisture) model, to assess their effect on flow forecast accuracy for the 135 km2 Brue catchment in Somerset.

  13. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-11-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  14. Observed and forecast flood-inundation mapping application-A pilot study of an eleven-mile reach of the White River, Indianapolis, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Morlock, Scott E.; Arihood, Leslie D.; Kiesler, James L.

    2011-01-01

    Near-real-time and forecast flood-inundation mapping products resulted from a pilot study for an 11-mile reach of the White River in Indianapolis. The study was done by the U.S. Geological Survey (USGS), Indiana Silver Jackets hazard mitigation taskforce members, the National Weather Service (NWS), the Polis Center, and Indiana University, in cooperation with the City of Indianapolis, the Indianapolis Museum of Art, the Indiana Department of Homeland Security, and the Indiana Department of Natural Resources, Division of Water. The pilot project showed that it is technically feasible to create a flood-inundation map library by means of a two-dimensional hydraulic model, use a map from the library to quickly complete a moderately detailed local flood-loss estimate, and automatically run the hydraulic model during a flood event to provide the maps and flood-damage information through a Web graphical user interface. A library of static digital flood-inundation maps was created by means of a calibrated two-dimensional hydraulic model. Estimated water-surface elevations were developed for a range of river stages referenced to a USGS streamgage and NWS flood forecast point colocated within the study reach. These maps were made available through the Internet in several formats, including geographic information system, Keyhole Markup Language, and Portable Document Format. A flood-loss estimate was completed for part of the study reach by using one of the flood-inundation maps from the static library. The Federal Emergency Management Agency natural disaster-loss estimation program HAZUS-MH, in conjunction with local building information, was used to complete a level 2 analysis of flood-loss estimation. A Service-Oriented Architecture-based dynamic flood-inundation application was developed and was designed to start automatically during a flood, obtain near real-time and forecast data (from the colocated USGS streamgage and NWS flood forecast point within the study reach

  15. Tsunami simulation method initiated from waveforms observed by ocean bottom pressure sensors for real-time tsunami forecast; Applied for 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Tanioka, Yuichiro

    2017-04-01

    After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami

  16. PAI-OFF: A new proposal for online flood forecasting in flash flood prone catchments

    NASA Astrophysics Data System (ADS)

    Schmitz, G. H.; Cullmann, J.

    2008-10-01

    SummaryThe Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and - optionally, if backwater effects have a significant impact on the flow regime - a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) - portraying the rainfall-runoff process - and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF - essentially consisting of the coupled "hydrologic" PoNN and "hydrodynamic" MLFN - to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km 2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting.

  17. Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand National Disaster Exercise `Ruaumoko'

    NASA Astrophysics Data System (ADS)

    Lindsay, Jan; Marzocchi, Warner; Jolly, Gill; Constantinescu, Robert; Selva, Jacopo; Sandri, Laura

    2010-03-01

    The Auckland Volcanic Field (AVF) is a young basaltic field that lies beneath the urban area of Auckland, New Zealand’s largest city. Over the past 250,000 years the AVF has produced at least 49 basaltic centers; the last eruption was only 600 years ago. In recognition of the high risk associated with a possible future eruption in Auckland, the New Zealand government ran Exercise Ruaumoko in March 2008, a test of New Zealand’s nation-wide preparedness for responding to a major disaster resulting from a volcanic eruption in Auckland City. The exercise scenario was developed in secret, and covered the period of precursory activity up until the eruption. During Exercise Ruaumoko we adapted a recently developed statistical code for eruption forecasting, namely BET_EF (Bayesian Event Tree for Eruption Forecasting), to independently track the unrest evolution and to forecast the most likely onset time, location and style of the initial phase of the simulated eruption. The code was set up before the start of the exercise by entering reliable information on the past history of the AVF as well as the monitoring signals expected in the event of magmatic unrest and an impending eruption. The average probabilities calculated by BET_EF during Exercise Ruaumoko corresponded well to the probabilities subjectively (and independently) estimated by the advising scientists (differences of few percentage units), and provided a sound forecast of the timing (before the event, the eruption probability reached 90%) and location of the eruption. This application of BET_EF to a volcanic field that has experienced no historical activity and for which otherwise limited prior information is available shows its versatility and potential usefulness as a tool to aid decision-making for a wide range of volcano types. Our near real-time application of BET_EF during Exercise Ruaumoko highlighted its potential to clarify and possibly optimize decision-making procedures in a future AVF eruption

  18. Regional hydrological models for distributed flash-floods forecasting: towards an estimation of potential impacts and damages

    NASA Astrophysics Data System (ADS)

    Le Bihan, Guillaume; Payrastre, Olivier; Gaume, Eric; Pons, Frederic; Moncoulon, David

    2016-04-01

    Hydrometeorological forecasting is an essential component of real-time flood management. The information it provides is of great help for crisis managers to anticipate the inundations and the associated risks. In the particular case of flash-floods, which may affect a large amount of small watersheds spread over the territory (up to 300 000 km of waterways considering a drained area of 5 km² minimum in France), appropriate flood forecasting systems are still under development. In France, highly distributed hydrological models have been implemented, enabling a real-time assessment of the potential intensity of flash-floods from the records of weather radars: AIGA-hydro system (Lavabre et al., 2005; Javelle et al., 2014), PreDiFlood project (Naulin et al., 2013). The approach presented here aims to go one step further by offering a direct assessment of the potential impacts of the simulated floods on inhabited areas. This approach is based on an a priori analysis of the study area in order (1) to evaluate with a simplified hydraulic approach (DTM treatment) the potentially flooded areas for different discharge levels, and (2) to identify the associated buildings and/or population at risk from geographic databases. This preliminary analysis enables to build an impact model (discharge-impact curve) on each river reach, which is then used to directly estimate the potentially affected assets based on a distributed rainfall runoff model. The overall principle of this approach was already presented at the 8th Hymex workshop. Therefore, the presentation will be here focused on the first validation results in terms of (1) accuracy of flooded areas simulated from DTM treatments, and (2) relevance of estimated impacts. The inundated areas simulated were compared to the European Directive cartography results (where available), showing an overall good correspondence in a large majority of cases, but also very significant errors for approximatively 10% of the river reaches

  19. Remote-Sensing and Automated Water Resources Tracking: Near Real-Time Decision Support for Water Managers Facing Drought and Flood

    NASA Astrophysics Data System (ADS)

    Reiter, M. E.; Elliott, N.; Veloz, S.; Love, F.; Moody, D.; Hickey, C.; Fitzgibbon, M.; Reynolds, M.; Esralew, R.

    2016-12-01

    Innovative approaches for tracking the Earth's natural resources, especially water which is essential for all living things, are essential during a time of rapid environmental change. The Central Valley is a nexus for water resources in California, draining the Sacramento and San Joaquin River watersheds. The distribution of water throughout California and the Central Valley, while dynamic, is highly managed through an extensive regional network of canals, levees, and pumps. Water allocation and delivery is determined through a complex set of rules based on water contracts, historic priority, and other California water policies. Furthermore, urban centers, agriculture, and the environment throughout the state are already competing for water, particularly during drought. Competition for water is likely to intensify as California is projected to experience continued increases in demand due to population growth and more arid growing conditions, while also having reduced or modified water supply due to climate change. As a result, it is difficult to understand or predict how water will be used to fulfill wildlife and wetland conservation needs. A better understanding of the spatial distribution of water in near real-time can facilitate adaptation of water resource management to changing conditions on the landscape, both over the near- and long-term. The Landsat satellite mission delivers imagery every 16-days from nearly every place on the earth at a high spatial resolution. We have integrated remote sensing of satellite data, classification modeling, bioinformatics, optimization, and ecological analyses to develop an automated near real-time water resources tracking and decision-support system for the Central Valley of California. Our innovative system has applications for coordinated water management in the Central Valley to support people, places, and wildlife and is being used to understand the factors that drive variation in the distribution and abundance of water

  20. Real-time Reservoir Operation Based on a Combination of Long-term and Short-term Optimization and Hydrological Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Meier, P.; Tilmant, A.; Boucher, M.; Anctil, F.

    2012-12-01

    features two large and three smaller reservoirs. Electricity is produced at four of the five dams. Besides the production of hydropower, the reservoirs are used to mitigate floods and for recreational purposes. The hydrological ensemble forecasts are generated with the HYDROTEL model, using meteorological ensemble forecasts issued by Environment Canada as forcing data. The framework described above is applied on a rolling horizon optimization mode on a period of almost two years from March 2002 to the end of 2003. The autumn of 2003 is characterized by a period of strong rainfall events which eventually led to flooding in parts of the river basin. Results show, that this coupled optimization is able to maximize the power production without neglecting the multiple purposes of the reservoir. While the optimization process itself is relatively straight-forward, taking a decision form the set of optimal policies is not. For each ensemble member of the hydrological forecast an optimal operation policy is obtained. Therefore, a strategy of decision taking has to be developed, which allows the incorporation of the information provided by the ensemble forecast as a whole. Different decision making strategies are presented and assessed.

  1. Improvements in NOAA SURFRAD and ISIS sites for near real-time solar irradiance for verification of NWP solar forecasts for the DOE NOAA Solar Forecast Improvement Project (SFIP)

    NASA Astrophysics Data System (ADS)

    Lantz, K. O.; McComiskey, A. C.; Long, C. N.; Marquis, M.; Olson, J. B.; James, E.; Benjamin, S.; Clack, C.

    2015-12-01

    The DOE-NOAA Solar Forecasting Improvement Project's (SFIP) main goal is to improve solar forecasting and thereby increase penetration of solar renewable energy on the electric grid. NOAA's ISIS and SURFRAD network is part of this initiative by providing high quality solar irradiance measurements for verification of improvements in solar forecasting for the short-term, day ahead, and ramp events. There are 14 ISIS and SURFRAD stations across the continental United States. We will give an overview of recent improvements in the networks for this project. The NOAA SURFRAD team has three main components: 1) In addition to the existing stations, two mobile SURFRAD stations have been built and deployed for 1 year each at two separate solar utility plants. 2) NOAA SURFRAD/ISIS will update the communications at their sites to provide near real-time data for verification activities at the 14 sites. 3) Global horizontal irradiance (GHI), direct normal solar irradiance (DNI), and aerosol optical depth at various spatial and temporal averaging will be compared to forecasts from the 3-km High-Resolution Rapid Refresh (HRRR) and an advanced version of the 13-km Rapid Refresh (RAP) models. We will explore statistical correlations between in-coming and out-going shortwave radiation and longwave radiation at the surface for specific meteorological regimes and how well these are captured by NWP models.

  2. General characteristics of causes of urban flood damage and flood forecasting/warning system in Seoul, Korea Young-Il Moon1, 2, Jong-Suk Kim1, 2 1 Department of Civil Engineering, University of Seoul, Seoul 130-743, South Korea 2 Urban Flood Research Inst

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-Suk

    2015-04-01

    Due to rapid urbanization and climate change, the frequency of concentrated heavy rainfall has increased, causing urban floods that result in casualties and property damage. As a consequence of natural disasters that occur annually, the cost of damage in Korea is estimated to be over two billion US dollars per year. As interest in natural disasters increase, demands for a safe national territory and efficient emergency plans are on the rise. In addition to this, as a part of the measures to cope with the increase of inland flood damage, it is necessary to build a systematic city flood prevention system that uses technology to quantify flood risk as well as flood forecast based on both rivers and inland water bodies. Despite the investment and efforts to prevent landside flood damage, research and studies of landside-river combined hydro-system is at its initial stage in Korea. Therefore, the purpose of this research introduces the causes of flood damage in Seoul and shows a flood forecasting and warning system in urban streams of Seoul. This urban flood forecasting and warning system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area and also supports synthetic decision-making for prevention through real-time monitoring. Although we cannot prevent damage from typhoons or localized heavy rain, we can minimize that damage with accurate and timely forecast and a prevention system. To this end, we developed a flood forecasting and warning system, so in case of an emergency there is enough time for evacuation and disaster control. Keywords: urban flooding, flood risk, inland-river system, Korea Acknowledgments This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  3. Recent Operational Innovations and Future Developments at the Flood Forecasting Centre

    NASA Astrophysics Data System (ADS)

    Millard, Jon; Pilling, Charlie

    2015-04-01

    The Flood Forecasting Centre (FFC) was established in 2009 to give an overview of flood risk across England and Wales and is a partnership between the UK Met Office, the Environment Agency and Natural Resources Wales. Primarily serving the emergency response community, the FFC aims to provide trusted guidance to help protect lives and livelihoods from flooding across England and Wales from its base at the Met Office in Exeter. The flood forecasts consist of an assessment of the likelihood as well as the expected level of impacts of flood events during the next five days. The FFC provide forecasts for all natural sources of flooding, namely; fluvial, coastal, surface water and groundwater but liaise closely with meteorologists at the Met Office and local flood forecasters at the Environment Agency and Natural Resources Wales. Key challenges include providing; forecasts with longer lead times especially for fluvial and coastal events, forecasts at shorter timescales and with more spatial focus for rapid response catchments and surface water events, and also clear communications of forecast uncertainties. As well as operational activities, the FFC run a significant development and improvement programme and are linked in with Met Office and Environment Agency science projects in order to bring new science into operations to try and meet these challenges and improve performance. Latest developments which are now being applied operationally to provide an enhanced flood warning service will be presented. Examples include; the use of the national hydrological model Grid to Grid (G2G) for both fluvial and surface water flooding, extended surge ensembles for coastal flooding, enhancements in the surface water forecasting tool, and improvements to products communicating these forecasts. An overview of the current projects under development will also be provided, including; improvements to data within G2G, surface water hazard impact modelling, 7 day wave ensemble forecasts

  4. Comprehensive evaluation of multi-year real-time air quality forecasting using an online-coupled meteorology-chemistry model over southeastern United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Hong, Chaopeng; Yahya, Khairunnisa; Li, Qi; Zhang, Qiang; He, Kebin

    2016-08-01

    An online-coupled meteorology-chemistry model, WRF/Chem-MADRID, has been deployed for real time air quality forecast (RT-AQF) in southeastern U.S. since 2009. A comprehensive evaluation of multi-year RT-AQF shows overall good performance for temperature and relative humidity at 2-m (T2, RH2), downward surface shortwave radiation (SWDOWN) and longwave radiation (LWDOWN), and cloud fraction (CF), ozone (O3) and fine particles (PM2.5) at surface, tropospheric ozone residuals (TOR) in O3 seasons (May-September), and column NO2 in winters (December-February). Moderate-to-large biases exist in wind speed at 10-m (WS10), precipitation (Precip), cloud optical depth (COT), ammonium (NH4+), sulfate (SO42-), and nitrate (NO3-) from the IMPROVE and SEARCH networks, organic carbon (OC) at IMPROVE, and elemental carbon (EC) and OC at SEARCH, aerosol optical depth (AOD) and column carbon monoxide (CO), sulfur dioxide (SO2), and formaldehyde (HCHO) in both O3 and winter seasons, column nitrogen dioxide (NO2) in O3 seasons, and TOR in winters. These biases indicate uncertainties in the boundary layer and cloud process treatments (e.g., surface roughness, microphysics cumulus parameterization), emissions (e.g., O3 and PM precursors, biogenic, mobile, and wildfire emissions), upper boundary conditions for all major gases and PM2.5 species, and chemistry and aerosol treatments (e.g., winter photochemistry, aerosol thermodynamics). The model shows overall good skills in reproducing the observed multi-year trends and inter-seasonal variability in meteorological and radiative variables such as T2, WS10, Precip, SWDOWN, and LWDOWN, and relatively well in reproducing the observed trends in surface O3 and PM2.5, but relatively poor in reproducing the observed column abundances of CO, NO2, SO2, HCHO, TOR, and AOD. The sensitivity simulations using satellite-constrained boundary conditions for O3 and CO show substantial improvement for both spatial distribution and domain-mean performance

  5. Operational flood-forecasting in the Piemonte region - development and verification of a fully distributed physically-oriented hydrological model

    NASA Astrophysics Data System (ADS)

    Rabuffetti, D.; Ravazzani, G.; Barbero, S.; Mancini, M.

    2009-03-01

    A hydrological model for real time flood forecasting to Civil Protection services requires reliability and rapidity. At present, computational capabilities overcome the rapidity needs even when a fully distributed hydrological model is adopted for a large river catchment as the Upper Po river basin closed at Ponte Becca (nearly 40 000 km2). This approach allows simulating the whole domain and obtaining the responses of large as well as of medium and little sized sub-catchments. The FEST-WB hydrological model (Mancini, 1990; Montaldo et al., 2007; Rabuffetti et al., 2008) is implemented. The calibration and verification activities are based on more than 100 flood events, occurred along the main tributaries of the Po river in the period 2000-2003. More than 300 meteorological stations are used to obtain the forcing fields, 10 cross sections with continuous and reliable discharge time series are used for calibration while verification is performed on about 40 monitored cross sections. Furthermore meteorological forecasting models are used to force the hydrological model with Quantitative Precipitation Forecasts (QPFs) for 36 h horizon in "operational setting" experiments. Particular care is devoted to understanding how QPF affects the accuracy of the Quantitative Discharge Forecasts (QDFs) and to assessing the QDF uncertainty impact on the warning system reliability. Results are presented either in terms of QDF and of warning issues highlighting the importance of an "operational based" verification approach.

  6. Forecasting of Storm Surge Floods Using ADCIRC and Optimized DEMs

    NASA Technical Reports Server (NTRS)

    Valenti, Elizabeth; Fitzpatrick, Patrick

    2005-01-01

    Increasing the accuracy of storm surge flood forecasts is essential for improving preparedness for hurricanes and other severe storms and, in particular, for optimizing evacuation scenarios. An interactive database, developed by WorldWinds, Inc., contains atlases of storm surge flood levels for the Louisiana/Mississippi gulf coast region. These atlases were developed to improve forecasting of flooding along the coastline and estuaries and in adjacent inland areas. Storm surge heights depend on a complex interaction of several factors, including: storm size, central minimum pressure, forward speed of motion, bottom topography near the point of landfall, astronomical tides, and most importantly, maximum wind speed. The information in the atlases was generated in over 100 computational simulations, partly by use of a parallel-processing version of the ADvanced CIRCulation (ADCIRC) model. ADCIRC is a nonlinear computational model of hydrodynamics, developed by the U.S. Army Corps of Engineers and the US Navy, as a family of two- and three-dimensional finite element based codes. It affords a capability for simulating tidal circulation and storm surge propagation over very large computational domains, while simultaneously providing high-resolution output in areas of complex shoreline and bathymetry. The ADCIRC finite-element grid for this project covered the Gulf of Mexico and contiguous basins, extending into the deep Atlantic Ocean with progressively higher resolution approaching the study area. The advantage of using ADCIRC over other storm surge models, such as SLOSH, is that input conditions can include all or part of wind stress, tides, wave stress, and river discharge, which serve to make the model output more accurate.

  7. Evaluation of the MACC operational forecast system - potential and challenges of global near-real-time modelling with respect to reactive gases in the troposphere

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Blechschmidt, A.-M.; Bouarar, I.; Brunke, E.-G.; Clerbaux, C.; Cupeiro, M.; Cristofanelli, P.; Eskes, H.; Flemming, J.; Flentje, H.; George, M.; Gilge, S.; Hilboll, A.; Inness, A.; Kapsomenakis, J.; Richter, A.; Ries, L.; Spangl, W.; Stein, O.; Weller, R.; Zerefos, C.

    2015-03-01

    Monitoring Atmospheric Composition and Climate (MACC/MACCII) currently represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu), which will become fully operational in the course of 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5 day forecasts of atmospheric composition fields. It is the only assimilation system world-wide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases (CO, O3, and NO2) covering the period between 2009 and 2012. A validation was performed based on CO and O3 surface observations from the Global Atmosphere Watch (GAW) network, O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and furthermore, NO2 tropospheric columns derived from the satellite sensors SCIAMACHY and GOME-2, and CO total columns derived from the satellite sensor MOPITT. The MACC system proved capable of reproducing reactive gas concentrations in consistent quality, however, with a seasonally dependent bias compared to surface and satellite observations: for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the years, with monthly Modified Normalised Mean Biases (MNMBs) ranging between -30 and 30% at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterization. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at a highest, especially over the US, Europe and Asia

  8. Evaluation of the MACC operational forecast system - potential and challenges of global near-real-time modelling with respect to reactive gases in the troposphere

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Blechschmidt, A.-M.; Bouarar, I.; Brunke, E.-G.; Clerbaux, C.; Cupeiro, M.; Cristofanelli, P.; Eskes, H.; Flemming, J.; Flentje, H.; George, M.; Gilge, S.; Hilboll, A.; Inness, A.; Kapsomenakis, J.; Richter, A.; Ries, L.; Spangl, W.; Stein, O.; Weller, R.; Zerefos, C.

    2015-12-01

    The Monitoring Atmospheric Composition and Climate (MACC) project represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu/), which became fully operational during 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5-day forecasts of atmospheric composition fields. It is the only assimilation system worldwide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases covering the period between 2009 and 2012. A validation was performed based on carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) surface observations from the Global Atmosphere Watch (GAW) network, the O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and, furthermore, NO2 tropospheric columns, as well as CO total columns, derived from satellite sensors. The MACC system proved capable of reproducing reactive gas concentrations with consistent quality; however, with a seasonally dependent bias compared to surface and satellite observations - for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the year, with monthly modified normalised mean biases (MNMBs) ranging between -30 and 30 % at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterisation. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at their highest level, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data

  9. Near-real time forecasts of MeV protons based on sub-relativistic electrons: communicating the outputs to the end users

    NASA Astrophysics Data System (ADS)

    Sarlanis, Christos; Heber, Bernd; Labrenz, Johannes; Kühl, Patrick; Marquardt, Johannes; Dimitroulakos, John; Papaioannou, Athanasios; Posner, Arik

    2017-04-01

    Solar Energetic Particle (SEP) events are one of the most important elements of space weather. Given that the complexity of the underlying physical processes of the acceleration and propagation of SEP events is still a very active research area, the prognosis of SEP event occurrence and their corresponding characteristics remains challenging. In order to provide up to an hour warning time before these particles arrive at Earth, relativistic electron and below 50 MeV proton data from the Electron Proton Helium Instrument (EPHIN) on SOHO were used to implement the 'Relativistic Electron Alert System for Exploration (REleASE)'. The REleASE forecasting scheme was recently rewritten in the open access programming language PYTHON and will be made publicly available. As a next step, along with relativistic electrons (v > 0.9 c) provided by SOHO, near-relativistic (v <0.8 c) electron measurements from other instruments like the Electron Proton Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) have been utilized. In this work, we demonstrate the real-time outputs derived by the end user from the REleASE using both SOHO/EPHIN and ACE/EPAM. We further, show a user friendly illustration of the outputs that make use of a "traffic light" to monitor the different warning stages: quiet, warning, alert offering a simple guidance to the end users. Finally, the capabilities offered by this new system, accessing both the pictorial and textural outputs REleASE are being presented. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  10. Evaluating the Performance of Wavelet-based Data-driven Models for Multistep-ahead Flood Forecasting in an Urbanized Watershed

    NASA Astrophysics Data System (ADS)

    Kasaee Roodsari, B.; Chandler, D. G.

    2015-12-01

    A real-time flood forecast system is presented to provide emergency management authorities sufficient lead time to execute plans for evacuation and asset protection in urban watersheds. This study investigates the performance of two hybrid models for real-time flood forecasting at different subcatchments of Ley Creek watershed, a heavily urbanized watershed in the vicinity of Syracuse, New York. Hybrid models include Wavelet-Based Artificial Neural Network (WANN) and Wavelet-Based Adaptive Neuro-Fuzzy Inference System (WANFIS). Both models are developed on the basis of real time stream network sensing. The wavelet approach is applied to decompose the collected water depth timeseries to Approximation and Detail components. The Approximation component is then used as an input to ANN and ANFIS models to forecast water level at lead times of 1 to 10 hours. The performance of WANN and WANFIS models are compared to ANN and ANFIS models for different lead times. Initial results demonstrated greater predictive power of hybrid models.

  11. Using ensemble rainfall predictions in a countrywide flood forecasting model in Scotland

    NASA Astrophysics Data System (ADS)

    Cranston, M. D.; Maxey, R.; Tavendale, A. C. W.; Buchanan, P.

    2012-04-01

    Improving flood predictions for all sources of flooding is at the centre of flood risk management policy in Scotland. With the introduction of the Flood Risk Management (Scotland) Act providing a new statutory basis for SEPA's flood warning responsibilities, the pressures on delivering hydrological science developments in support of this legislation has increased. Specifically, flood forecasting capabilities need to develop in support of the need to reduce the impact of flooding through the provision of actively disseminated, reliable and timely flood warnings. Flood forecasting in Scotland has developed significantly in recent years (Cranston and Tavendale, 2012). The development of hydrological models to predict flooding at a catchment scale has relied upon the application of rainfall runoff models utilising raingauge, radar and quantitative precipitation forecasts in the short lead time (less than 6 hours). Single or deterministic forecasts based on highly uncertain rainfall predictions have led to the greatest operational difficulties when communicating flood risk with emergency responders, therefore the emergence of probability-based estimates offers the greatest opportunity for managing uncertain predictions. This paper presents operational application of a physical-conceptual distributed hydrological model on a countrywide basis across Scotland. Developed by CEH Wallingford for SEPA in 2011, Grid-to-Grid (G2G) principally runs in deterministic mode and employs radar and raingauge estimates of rainfall together with weather model predictions to produce forecast river flows, as gridded time-series at a resolution of 1km and for up to 5 days ahead (Cranston, et al., 2012). However the G2G model is now being run operationally using ensemble predictions of rainfall from the MOGREPS-R system to provide probabilistic flood forecasts. By presenting a range of flood predictions on a national scale through this approach, hydrologists are now able to consider an

  12. Using Passive Microwaves for Open Water Monitoring and Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Parinussa, R.; Johnson, F.; Sharma, A.; Lakshmi, V.

    2015-12-01

    One of the biggest and severest natural disasters that society faces is floods. An important component that can help in reducing the impact of floods is satellite remote sensing as it allows for consistent monitoring and obtaining catchment information in absence of physical contact. Nowadays, passive microwave remote sensing observations are available in near real time (NRT) with a couple of hours delay from the actual sensing. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is a multi-frequency passive microwave sensor onboard the Global Change Observation Mission 1 - Water that was launched in May 2012. Several of these frequencies have a high sensitivity to the land surface and they also have the capacity to penetrate clouds. These advantages come at the cost of the relatively coarse spatial resolution (footprints range from ~5 to ~50 km) which in turn allows for global monitoring. A relatively simple methodology to monitor the fraction of open water from AMSR2 observations is presented here. Low frequency passive microwave observations have sensitivity to the land surface but are modulated by overlying signals from physical temperature and vegetation cover. We developed a completely microwave based artificial neural network supported by physically based components to monitor the fraction of open water. Three different areas, located in China, Southeast Asia and Australia, were selected for testing purposes and several different characteristics were examined. First, the overall performance of the methodology was evaluated against the NASA NRT Global Flood Mapping system. Second, the skills of the various different AMSR2 frequencies were tested and revealed that artificial contamination is a factor to consider. The different skills of the tested frequencies are of interest to apply the methodology to alternative passive microwave sensors. This will be of benefit in using the numerous multi-frequency passive microwaves sensors currently observing our Earth

  13. Urban flood early warning systems: approaches to hydrometeorological forecasting and communicating risk

    NASA Astrophysics Data System (ADS)

    Cranston, Michael; Speight, Linda; Maxey, Richard; Tavendale, Amy; Buchanan, Peter

    2015-04-01

    One of the main challenges for the flood forecasting community remains the provision of reliable early warnings of surface (or pluvial) flooding. The Scottish Flood Forecasting Service has been developing approaches for forecasting the risk of surface water flooding including capitalising on the latest developments in quantitative precipitation forecasting from the Met Office. A probabilistic Heavy Rainfall Alert decision support tool helps operational forecasters assess the likelihood of surface water flooding against regional rainfall depth-duration estimates from MOGREPS-UK linked to historical short-duration flooding in Scotland. The surface water flood risk is communicated through the daily Flood Guidance Statement to emergency responders. A more recent development is an innovative risk-based hydrometeorological approach that links 24-hour ensemble rainfall forecasts through a hydrological model (Grid-to-Grid) to a library of impact assessments (Speight et al., 2015). The early warning tool - FEWS Glasgow - presents the risk of flooding to people, property and transport across a 1km grid over the city of Glasgow with a lead time of 24 hours. Communication of the risk was presented in a bespoke surface water flood forecast product designed based on emergency responder requirements and trialled during the 2014 Commonwealth Games in Glasgow. The development of new approaches to surface water flood forecasting are leading to improved methods of communicating the risk and better performance in early warning with a reduction in false alarm rates with summer flood guidance in 2014 (67%) compared to 2013 (81%) - although verification of instances of surface water flooding remains difficult. However the introduction of more demanding hydrometeorological capabilities with associated greater levels of uncertainty does lead to an increased demand on operational flood forecasting skills and resources. Speight, L., Cole, S.J., Moore, R.J., Pierce, C., Wright, B., Golding, B

  14. Automatic removal of outliers in hydrologic time series and quality control of rainfall data: processing a real-time database of the Local System for Flood Monitoring in Klodzko County, Poland

    NASA Astrophysics Data System (ADS)

    Mizinski, Bartlomiej; Niedzielski, Tomasz; Kryza, Maciej; Szymanowski, Mariusz

    2013-04-01

    Real-time hydrological forecasting requires the highest quality of both hydrologic and meteorological data collected in a given river basin. Large outliers may lead to inaccurate predictions, with substantial departures between observations and prognoses considered even in short term. Although we need the correctness of both riverflow and rainfall data, they cannot be processed in the same way to produce a filtered output. Indeed, hydrologic time series at a given gauge can be interpolated in time domain after having detected suspicious values, however if no outlier has been detected at the upstream sites. In the case of rainfall data, interpolation is not suitable as we cannot verify the potential outliers at a given site against data from other sites especially in the complex terrain. This is due to the fact that very local convective events may occur, leading to large rainfall peaks at a limited space. Hence, instead of interpolating data, we rather perform a flagging procedure that only ranks outliers according to the likelihood of occurrence. Following the aforementioned assumptions, we have developed a few modules that serve a purpose of a fully automated correction of a database that is updated in real-time every 15 minutes, and the main objective of the work was to produce a high-quality database for a purpose of hydrologic rainfall-runoff modeling and ensemble prediction. The database in question is available courtesy of the County Office in Kłodzko (SW Poland), the institution which owns and maintains the Local System for Flood Monitoring in Kłodzko County. The dedicated prediction system, known as HydroProg, is now being built at the University of Wrocław (Poland). As the entire prediction system, the correction modules work automatically in real time and are developed in R language. They are plugged in to a larger IT infrastructure. Hydrologic time series, which are water levels recorded every 15 minutes at 22 gauges located in Kłodzko County, are

  15. Comparison of Multiple Quantitative Precipitation Estimates for Warm-Season Flood Forecasting in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Moreno, H. A.; Vivoni, E. R.; Gochis, D. J.

    2010-12-01

    Quantitative Precipitation Estimates (QPEs) from ground and satellite platforms can potentially serve as input to hydrologic models used for flood forecasting in mountainous watersheds. This work compares the impact of ten different high-resolution (4-km and hourly) precipitation products on flood forecast skill in a large region of the Colorado Front Range. These products range from radar fields (Level II, Stage III and IV) to satellite estimates (HydroEstimator, AutoEstimator, Blend, GMSRA, PERSIANN-CCS). We examine QPE skill relative to ground rain gauges to detect error characteristics during the 2004 summer season which exhibited above-average precipitation accumulations in the region. We then quantify flood forecast skill by using the TIN-based Real time Integrated Basin Simulator (tRIBS) as an analysis tool in four mountain basins. The structural features of radar and satellite precipitation products determine the timing and magnitude of simulated summer floods in the study basins. Use of ground-based radar and multi-sensor satellite estimates minimize streamflow differences at the outlet locations compared to satellite-only QPEs which tend to underestimate total rainfall volumes, resulting in significant hydrologic response uncertainties. Given the generally low rainfall estimates from satellite-only products, a mean field bias correction is applied to all products and results are compared against non-corrected precipitation products. An exploratory analysis is conducted to assess precipitation volume differences between the bias-corrected and raw satellite products. Probability density functions of the differences allow examining the links between QPE bias, the diurnal precipitation cycle and topographic position. Analysis of the spatiotemporal precipitation and streamflow patterns help identify benefits and shortcomings of high-resolution QPEs for summer storms in mountainous areas.

  16. An integrated error estimation and lag-aware data assimilation scheme for real-time flood forecasting

    USDA-ARS?s Scientific Manuscript database

    The performance of conventional filtering methods can be degraded by ignoring the time lag between soil moisture and discharge response when discharge observations are assimilated into streamflow modelling. This has led to the ongoing development of more optimal ways to implement sequential data ass...

  17. Fews-Risk: A step towards risk-based flood forecasting

    NASA Astrophysics Data System (ADS)

    Bachmann, Daniel; Eilander, Dirk; de Leeuw, Annemargreet; Diermanse, Ferdinand; Weerts, Albrecht; de Bruijn, Karin; Beckers, Joost; Boelee, Leonore; Brown, Emma; Hazlewood, Caroline

    2015-04-01

    Operational flood prediction and the assessment of flood risk are important components of flood management. Currently, the model-based prediction of discharge and/or water level in a river is common practice for operational flood forecasting. Based on the prediction of these values decisions about specific emergency measures are made within operational flood management. However, the information provided for decision support is restricted to pure hydrological or hydraulic aspects of a flood. Information about weak sections within the flood defences, flood prone areas and assets at risk in the protected areas are rarely used in a model-based flood forecasting system. This information is often available for strategic planning, but is not in an appropriate format for operational purposes. The idea of FEWS-Risk is the extension of existing flood forecasting systems with elements of strategic flood risk analysis, such as probabilistic failure analysis, two dimensional flood spreading simulation and the analysis of flood impacts and consequences. Thus, additional information is provided to the decision makers, such as: • Location, timing and probability of failure of defined sections of the flood defence line; • Flood spreading, extent and hydraulic values in the hinterland caused by an overflow or a breach flow • Impacts and consequences in case of flooding in the protected areas, such as injuries or casualties and/or damages to critical infrastructure or economy. In contrast with purely hydraulic-based operational information, these additional data focus upon decision support for answering crucial questions within an operational flood forecasting framework, such as: • Where should I reinforce my flood defence system? • What type of action can I take to mend a weak spot in my flood defences? • What are the consequences of a breach? • Which areas should I evacuate first? This presentation outlines the additional required workflows towards risk-based flood

  18. Application of Satellite information (JASON-2) in improvement of Flood Forecasting and Early Warning Service in Bangladesh

    NASA Astrophysics Data System (ADS)

    Hossain, M. A.; Anderson, E. R.; Bhuiyan, M. A.; Hossain, F.; Shah-Newaz, S. M.

    2014-12-01

    Bangladesh is the lowest riparian of the huge system of the Ganges, Brahmaputra and Meghna (GBM) basins, second to that of Amazan, with 1.75 million sq-km catchment area, only 7% is inside Bangladesh. High inflow from GBM associated with the intense rainfall is the source of flood in Bangladesh. Flood Forecasting and Early Warning (FFEW) is the mandate and responsibility of Bangladesh Water Development Board (BWDB) and Flood Forecasting and Warning Center (FFWC) under BWDB has been carrying out this responsibility since 1972 and operational on 7-days a week during monsoon (May to October). FFEW system started with few hours lead time has been upgraded up to to 5-days with reasonable accuracy. At FFWC numerical Hydrodynamic model is used for generating water level (WL) forecast upto 5-days at 54 points on 29 rivers based on real-time observed WL of 83 and rainfall of 56 stations with boundary estimationa on daily basis. Main challenge of this system is the boundary estimation is the limited upstream data of the transboundary rivers, obstacle for increasing lead-time for FFEW. The satellite based upper catchment data may overcome this limitation. Recent NASA-French joint Satellite mission JASON-2 records Water Elevation (WE) and it may be used within 24 hours. Using JASON-2 recorded WE data of 4 and 3 virtual stations on the Ganges and Brahmaputra rivers , respectively (upper catchment), a new methodology has been developed for increasing lead time of forecast. Correlation between the JASON-2 recorded WE on the virtual stations at the upper catchment and WL of 2 dominating boundary stations at model boundary on the Ganges and Brahmaputra has been derived for generating WL forecast at those 2 boundary stations, which used as input in model. FFWC has started experimental 8-days lead-time WL forecast at 09 stations (5 in Brahmaputra and 4 in Ganges) using generated boundary data and regularly updating the results in the website. The trend of the forecasted WL using

  19. Taking into account hydrological modelling uncertainty in Mediterranean flash-floods forecasting

    NASA Astrophysics Data System (ADS)

    Edouard, Simon; Béatrice, Vincendon; Véronique, Ducrocq

    2015-04-01

    Title : Taking into account hydrological modelling uncertainty in Mediterranean flash-floods forecasting Authors : Simon EDOUARD*, Béatrice VINCENDON*, Véronique Ducrocq* * : GAME/CNRM(Météo-France, CNRS)Toulouse,France Mediterranean intense weather events often lead to devastating flash-floods (FF). Increasing the lead time of FF forecasts would permit to better anticipate their catastrophic consequences. These events are one part of Mediterranean hydrological cycle. HyMeX (HYdrological cycle in the Mediterranean EXperiment) aims at a better understanding and quantification of the hydrological cycle and related processes in the Mediterranean. In order to get a lot of data, measurement campaigns were conducted. The first special observing period (SOP1) of these campaigns, served as a test-bed for a real-time hydrological ensemble prediction system (HEPS) dedicated to FF forecasting. It produced an ensemble of quantitative discharge forecasts (QDF) using the ISBA-TOP system. ISBATOP is a coupling between the surface scheme ISBA and a version of TOPMODEL dedicated to Mediterranean fast responding rivers. ISBA-TOP was driven with several quantitative precipitation forecasts (QPF) ensembles based on AROME atmospheric convection-permitting model. This permitted to take into account the uncertainty that affects QPF and that propagates up to the QDF. This uncertainty is major for discharge forecasting especially in the case of Mediterranean flash-floods. But other sources of uncertainty need to be sampled in HEPS systems. One of them is inherent to the hydrological modelling. The ISBA-TOP coupled system has been improved since the initial version, that was used for instance during Hymex SOP1. The initial ISBA-TOP consisted into coupling a TOPMODEL approach with ISBA-3L, which represented the soil stratification with 3 layers. The new version consists into coupling the same TOPMODEL approach with a version of ISBA where more than ten layers describe the soil vertical

  20. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    NASA Astrophysics Data System (ADS)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  1. A Coastal Flood Decision Support Tool for Forecast Operations in Alaska

    NASA Astrophysics Data System (ADS)

    van Breukelen, C. M.; Moore, A.; Plumb, E. W.

    2015-12-01

    ABSTRACT Coastal flooding and erosion poses a serious threat to infrastructure, livelihood, and property for communities along Alaska's northern and western coastline. While the National Weather Service Alaska Region (NWS-AR) forecasts conditions favorable for coastal flooding, an improvement can be made in communicating event impacts between NWS-AR and local residents. Scientific jargon used by NWS-AR to indicate the severity of flooding potential is often misconstrued by residents. Additionally, the coastal flood forecasting process is cumbersome and time consuming due to scattered sources of flood guidance. To alleviate these problems, a single coastal flooding decision support tool was created for the Fairbanks Weather Forecast Office to help bridge the communication gap, streamline the forecast and warning process, and take into account both the meteorological and socioeconomic systems at work during a flood event. This tool builds on previous research and data collected by the Alaska Division of Geological and Geophysical Surveys (DGGS) and the NWS-AR, using high resolution elevation data to model the impacts of storm tide rise above the mean lower low water level on five of the most at-risk communities along the Alaskan coast. Important local buildings and infrastructure are highlighted, allowing forecasters to relate the severity of the storm tide in terms of local landmarks that are familiar to residents. In this way, this decision support tool allows for a conversion from model output storm tide levels into real world impacts that are easily understood by forecasters, emergency managers, and other stakeholders, helping to build a Weather-Ready Nation. An overview of the new coastal flood decision support tool in NWS-AR forecast operations will be discussed. KEYWORDS Forecasting; coastal flooding; coastal hazards; decision support

  2. Application of Medium and Seasonal Flood Forecasts for Agriculture Damage Assessment

    NASA Astrophysics Data System (ADS)

    Fakhruddin, Shamsul; Ballio, Francesco; Menoni, Scira

    2015-04-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) and seasonal (20-25 days) flood forecasting model has been developed for Thailand and Bangladesh. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty and qualitative outlooks for 20-25 days. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range and seasonal flood forecasts in a way that is not commonly practiced globally today.

  3. Application Study of Empirical Model and Xiaohuajian Flood Forecasting Model in the Middle Yellow River

    NASA Astrophysics Data System (ADS)

    Hu, Caihong

    2013-04-01

    Xiaolandi-Huayuankou region is an important rainstorm centre in the middle Yellow river, which drainage area of 35883km2. A set of forecasting methods applied in this region was formed throughout years of practice. The Xiaohuajian flood forecasting model and empirical model were introduced in this paper. The simulated processes of the Xiaohuajian flood forecasting model include evapotranspiration, infiltration, runoff, river flow. Infiltration and surface runoff are calculated utilizing the Horton model for infiltration into multilayered soil profiles. Overland flow is routed by Nash instantaneous unit hydrograph and Section Muskingum method. The empirical model are simulated using P~Pa~R and empirical relation approach for runoff generation and concentration. The structures of these two models were analyzed and compared in detail. Yihe river basin located in Xiaolandi-Huayuankou region was selected for the purpose of the study. The results show that the accuracy of the two methods are similar, however, the accuracy of Xiaohuajian flood forecasting model for flood forecasting is relatively higher, especially the process of the flood; the accuracy of the empirical methods is much worse, but it can also be accept. The two models are both practicable, so the two models can be combined to apply. The result of the Xiaohuajian flood forecasting model can be used to guide the reservoir for flood control, and the result of empirical methods can be as a reference.

  4. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    SciTech Connect

    Martin Wilde, Principal Investigator

    2012-12-31

    ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational

  5. A Multitemporal Remote Sensing Approach to Streamflow Prediction and Flood Vulnerability Forecasting

    NASA Astrophysics Data System (ADS)

    Weissling, B. P.; Xie, H.

    2006-12-01

    precipitation, land surface temperature, and select vegetation indices accounted for 78% (R2adj = 0.78) of the variance of gage station observed streamflow for calendar year 2004. Efforts are underway to calibrate and validate this model for other time periods within the data availability window of MODIS imagery products, and for other watersheds of varying size and similar climatic regime within the Guadalupe River and neighboring basins. The success of this remote sensing approach will have implications for developing near real-time flood risk and vulnerability forecasting models for both gaged and ungaged watersheds, as well as water supply management in regions of the world with limited resources to undertake conventional ground-based hydrologic studies.

  6. California climate change, hydrologic response, and flood forecasting

    SciTech Connect

    Miller, Norman L.

    2003-11-11

    There is strong evidence that the lower atmosphere has been warming at an unprecedented rate during the last 50 years, and it is expected to further increase at least for the next 100 years. Warmer air mass implies a higher capacity to hold water vapor and an increased likelihood of an acceleration of the global water cycle. This acceleration is not validated and considerable new research has gone into understanding aspects of the water cycle (e.g. Miller et al. 2003). Several significant findings on the hydrologic response to climate change can be reported. It is well understood that the observed and expected warming is related to sea level rise. In a recent seminar at Lawrence Berkeley National Laboratory, James Hansen (Director of the Institute for Space Studies, National Aeronautics and Space Administration) stressed that a 1.25 Wm{sup -2} increase in radiative forcing will lead to an increase in the near surface air temperature by 1 C. This small increase in temperature from 2000 levels is enough to cause very significant impacts to coasts. Maury Roos (Chief Hydrologist, California Department of Water Resources) has shown that a 0.3 m rise in sea level shifts the San Francisco Bay 100-year storm surge flood event to a 10-year event. Related coastal protection costs for California based on sea level rise are shown. In addition to rising sea level, snowmelt-related streamflow represents a particular problem in California. Model studies have indicated that there will be approximately a 50% decrease in snow pack by 2100. This potential deficit must be fully recognized and plans need to be put in place well in advance. In addition, the warmer atmosphere can hold more water vapor and result in more intense warm winter-time precipitation events that result in flooding. During anticipated high flow, reservoirs need to release water to maintain their structural integrity. California is at risk of water shortages, floods, and related ecosystem stresses. More research

  7. Operational aspects of asynchronous filtering for improved flood forecasting

    NASA Astrophysics Data System (ADS)

    Rakovec, Oldrich; Weerts, Albrecht; Sumihar, Julius; Uijlenhoet, Remko

    2014-05-01

    and assimilation and is suitable to be connected to any kind of environmental model. This setup is embedded in the Delft Flood Early Warning System (Delft-FEWS, Werner et al., 2013) for making all simulations and forecast runs and handling of all hydrological and meteorological data. References: Evensen, G. (2009), Data Assimilation: The Ensemble Kalman Filter, Springer, doi:10.1007/978-3-642-03711-5. OpenDA (2013), The OpenDA data-assimilation toolbox, www.openda.org, (last access: 1 November 2013). OpenStreams (2013), OpenStreams, www.openstreams.nl, (last access: 1 November 2013). Sakov, P., G. Evensen, and L. Bertino (2010), Asynchronous data assimilation with the EnKF, Tellus, Series A: Dynamic Meteorology and Oceanography, 62(1), 24-29, doi:10.1111/j.1600-0870.2009.00417.x. Werner, M., J. Schellekens, P. Gijsbers, M. van Dijk, O. van den Akker, and K. Heynert (2013), The Delft-FEWS flow forecasting system, Environ. Mod. & Soft., 40(0), 65-77, doi: http://dx.doi.org/10.1016/j.envsoft.2012.07.010.

  8. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season

    PubMed Central

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D.; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-01-01

    ABSTRACT Environment and Climate Change Canada’s FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2–July 15, and August 15–31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of –7.3 µg m−3 and 3.1 µg m−3), it showed better forecast skill than the RAQDPS (MB of –11.7 µg m−3 and –5.8 µg m−3) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m−3 also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR

  9. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season.

    PubMed

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-09-01

    Environment and Climate Change Canada's FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2-July 15, and August 15-31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of -7.3 µg m(-3) and 3.1 µg m(-3)), it showed better forecast skill than the RAQDPS (MB of -11.7 µg m(-3) and -5.8 µg m(-3)) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m(-3) also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR). Smoke from wildfires

  10. Reduction of the uncertainties in the water level-discharge relation of a 1D hydraulic model in the context of operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Habert, J.; Ricci, S.; Le Pape, E.; Thual, O.; Piacentini, A.; Goutal, N.; Jonville, G.; Rochoux, M.

    2016-01-01

    This paper presents a data-driven hydrodynamic simulator based on the 1-D hydraulic solver dedicated to flood forecasting with lead time of an hour up to 24 h. The goal of the study is to reduce uncertainties in the hydraulic model and thus provide more reliable simulations and forecasts in real time for operational use by the national hydrometeorological flood forecasting center in France. Previous studies have shown that sequential assimilation of water level or discharge data allows to adjust the inflows to the hydraulic network resulting in a significant improvement of the discharge while leaving the water level state imperfect. Two strategies are proposed here to improve the water level-discharge relation in the model. At first, a modeling strategy consists in improving the description of the river bed geometry using topographic and bathymetric measurements. Secondly, an inverse modeling strategy proposes to locally correct friction coefficients in the river bed and the flood plain through the assimilation of in situ water level measurements. This approach is based on an Extended Kalman filter algorithm that sequentially assimilates data to infer the upstream and lateral inflows at first and then the friction coefficients. It provides a time varying correction of the hydrological boundary conditions and hydraulic parameters. The merits of both strategies are demonstrated on the Marne catchment in France for eight validation flood events and the January 2004 flood event is used as an illustrative example throughout the paper. The Nash-Sutcliffe criterion for water level is improved from 0.135 to 0.832 for a 12-h forecast lead time with the data assimilation strategy. These developments have been implemented at the SAMA SPC (local flood forecasting service in the Haute-Marne French department) and used for operational forecast since 2013. They were shown to provide an efficient tool for evaluating flood risk and to improve the flood early warning system

  11. An Evaluation of Real-time Air Quality Forecasts and their Urban Emissions over Eastern Texas During the Summer of 2006 Second Texas Air Quality Study Field Study

    EPA Science Inventory

    Forecasts of ozone (O3) and particulate matter (diameter less than 2.5 µm, PM2.5) from seven air quality forecast models (AQFMs) are statistically evaluated against observations collected during August and September of 2006 (49 days) through the AIRNow netwo...

  12. An Evaluation of Real-time Air Quality Forecasts and their Urban Emissions over Eastern Texas During the Summer of 2006 Second Texas Air Quality Study Field Study

    EPA Science Inventory

    Forecasts of ozone (O3) and particulate matter (diameter less than 2.5 µm, PM2.5) from seven air quality forecast models (AQFMs) are statistically evaluated against observations collected during August and September of 2006 (49 days) through the AIRNow netwo...

  13. Does a more skilful meteorological input lead to a more skilful flood forecast at seasonal timescales?

    NASA Astrophysics Data System (ADS)

    Neumann, Jessica; Arnal, Louise; Magnusson, Linus; Cloke, Hannah

    2017-04-01

    Seasonal river flow forecasts are important for many aspects of the water sector including flood forecasting, water supply, hydropower generation and navigation. In addition to short term predictions, seasonal forecasts have the potential to realise higher benefits through more optimal and consistent decisions. Their operational use however, remains a challenge due to uncertainties posed by the initial hydrologic conditions (e.g. soil moisture, groundwater levels) and seasonal climate forcings (mainly forecasts of precipitation and temperature), leading to a decrease in skill with increasing lead times. Here we present a stakeholder-led case study for the Thames catchment (UK), currently being undertaken as part of the H2020 IMPREX project. The winter of 2013-14 was the wettest on record in the UK; d