Science.gov

Sample records for real-time holographic interferometry

  1. Application of high-speed real-time holographic interferometry to dynamic testing

    NASA Astrophysics Data System (ADS)

    Li, Yulin; Ji, Zhongying; Wang, Zhengrong; Kong, Yue; Liu, Gaixia

    1989-06-01

    Results of an application experiment of high-speed real-time holographic interferometry in dynamic nondestructive testing are discussed. Appropriate laser equipment, holographic interferometry, and high speed camera were combined to form a complete photographic recording system for changing speed and spatial distribution of the optical path-length difference of dynamic events. The principle of real-time holographic interference and criterion of interference fringes are analyzed. Exposure time, photographic frequency and image amplification and appropriate camera are selected based on the analysis. The experimental equipments and results analysis includes the combustion of gunpowder and priming powder, and electric arc welding.

  2. A simplified holographic-interferometry technique for real-time flow visualization and analysis

    NASA Technical Reports Server (NTRS)

    Long, S. A.; Spencer, R. C.

    1974-01-01

    A holographic-interferometry technique for flow visualization and analysis that produces real-time moire fringes is described from both experimental and application considerations. It has three chief advantages: real-time data for continuous observation and photography, ease of optical adjustment, and capability of using ordinary-glass test-section windows without affecting the results. A theoretical discussion is presented describing the formation of the fringes in holographic terms and then comparing this result to that which is obtained from a conventional moire approach. A discussion on obtaining density information from the fringe pattern is also included.

  3. Coupling for capturing an displaying hologram systems for real-time digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Porras-Aguilar, Rosario; Zaperty, Weronika; Kujawinska, Malgorzata

    2013-11-01

    Conventional (analog) holographic interferometry (HI) has been used as a powerful technique in optical metrology since sixties of XX century. However, its practical applications have been constrained because of the cumbersome procedures required for holographic material development. Digital holography has brought significant simplifications due to digital capture of holograms and their further numerical reconstruction and manipulation of reconstructed phases and amplitudes. These features are the fundamentals of double exposure digital holographic interferometry which nowadays is used in such applications as industrial inspection, medical imaging, microscopy and metrology. However another very popular HI technique, namely real time holographic interferometry has not been demonstrated in its digital version. In this paper we propose the experimental-numerical method which allows for real-time DHI implementation. In the first stage a set of digital phase shifted holograms of an object in an initial condition is captured and the phase of an object wavefront in the hologram plane is calculated. This phase is used to address a spatial light modulator, which generates the initial object wavefront. This wavefront (after proper SLM calibration) propagates toward an object and interfere with an actual object wavefront giving real-time interference fringes. The procedure works correctly in the case when CCD camera and SLM LCOS pixel sizes are the same. Usually it is not the case. Therefore we had proposed two different methods which allow the overcome of this mismatch pixel problem. The first one compensates for lateral magnification and the second one is based on re-sampling of a captured phase. The methods are compared through numerical simulations and with experimental data. Finally, the implications of setting up the experiment with the object reference phase compensated by the two approaches are analyzed and the changes in an object are monitored in real time by DHI.

  4. Phase control during reconstruction of holographically recorded flow fields using real-time holographic interferometry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Goad, W. K.

    1981-01-01

    A technique of phase control during reconstruction of holographic interferograms is demonstrated in which the recorded scene beam with disturbance present is made to interfere with the real-time scene beam after the disturbance is removed. The reference phase is adjusted during reconstruction by manipulating either the scene or reference beams. Comparisons are made between the present technique and the two-reference-beam and two-plate techniques, more commonly used for phase control during reconstruction of holographic interferograms for flow visualization.

  5. The Quantitative Measurement Of Temperature Distribution In 3-D Thermal Field With High-Speed Real-Time Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Ji-zong, Wu; Wei-qiao, Fu; Qin, Wu

    1989-06-01

    The theory of using high-speed real-time holographic interferometry to measure quantitatively 3-D thermal field is discussed in thispaper. An experimental arrangement, and the holographic interference fringes of thermal field formed by the electrAc heating coil wires which were taken by the high-speed camera are given. With CONCEPT 32/2725 computer system and corresponding programms the distribution of 3-D thermal field is calculated and plotted Finally, the problems required to be improved and solved for the method of measuring quantitatively 3-D thermal field are discussed.

  6. Phase-shifting real-time holographic interferometry applied load transmission evaluation in dried human skull

    NASA Astrophysics Data System (ADS)

    Gesualdi, M. R. R.; Mori, M.; Muramatsu, M.; Liberti, E. A.; Munin, E.

    2006-02-01

    This work reports a study of load transmission, evaluation and tension dissipation on dried human skull under loading simulation of isolated contraction (SIC) of some masticatories muscles by the phase-shifting real-time holography using photorefractive Bi 12SiO 20 crystal. The four-frames phase-shifting technique and the unwrapping branch-cut technique were used to obtain the phase map and quantitative results.

  7. Temporal averaging of phase measurements in the presence of spurious phase drift - Application to phase-stepped real-time holographic interferometry

    NASA Technical Reports Server (NTRS)

    Ovryn, B.; Haacke, E. M.

    1993-01-01

    A technique that compensates for low spatial frequency spurious phase changes during an interference experiment is developed; it permits temporal averaging of multiple-phase measurements, made before and after object displacement. The method is tested with phase-stepped real-time holographic interferometry applied to cantilever bending of a piezoelectric bimorph ceramic. Results indicate that temporal averaging of the corrected data significantly reduces the white noise in a phase measurement without incurring systematic errors or sacrificing spatial resolution. White noise is reduced from 3 deg to less than 1 deg using these methods.

  8. Phase-shifting real-time holographic interferometry applied to load transmission evaluation in dried human skull

    NASA Astrophysics Data System (ADS)

    Gesualdi, Marcos R. R.; Mori, Matsuyoshi; Muramatsu, Mikiya; Liberti, Edson A.; Munin, Egberto

    2007-08-01

    Phase-shifting real-time holography with photorefractive Bi12SiO20 crystal as holographic recording medium applied to load transmission evaluation and tension dissipation on a dried human skull under loading is presented. The applied loading stands as a simulation of isolated contraction (SIC) of some masticatories muscles. The four-frames phase-shifting technique and the unwrapping branch-cut technique were used to obtain the phase map. The quantitative results show the feasibility of the employed system in the study of microdisplacements in the skull structure provided by SIC.

  9. Phase-shifting real-time holographic interferometry applied to load transmission evaluation in dried human skull.

    PubMed

    Gesualdi, Marcos R R; Mori, Matsuyoshi; Muramatsu, Mikiya; Liberti, Edson A; Munin, Egberto

    2007-08-01

    Phase-shifting real-time holography with photorefractive Bi(12)SiO(20) crystal as holographic recording medium applied to load transmission evaluation and tension dissipation on a dried human skull under loading is presented. The applied loading stands as a simulation of isolated contraction (SIC) of some masticatories muscles. The four-frames phase-shifting technique and the unwrapping branch-cut technique were used to obtain the phase map. The quantitative results show the feasibility of the employed system in the study of microdisplacements in the skull structure provided by SIC.

  10. Intellectual property in holographic interferometry

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-08-01

    This paper presents an overview of patents and patent applications on holographic interferometry, and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic interferometry were uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, Japanese Patent Office and Korean Patent Office for the time frame from 1971 through May 2006. The patent analysis unveils trends in patent temporal distribution, patent families formation, significant technological coverage within the market of system that employ holographic interferometry and other interesting insights.

  11. Real-time wideband holographic surveillance system

    DOEpatents

    Sheen, David M.; Collins, H. Dale; Hall, Thomas E.; McMakin, Douglas L.; Gribble, R. Parks; Severtsen, Ronald H.; Prince, James M.; Reid, Larry D.

    1996-01-01

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm.

  12. Real-time holographic surveillance system

    DOEpatents

    Collins, H.D.; McMakin, D.L.; Hall, T.E.; Gribble, R.P.

    1995-10-03

    A holographic surveillance system is disclosed including means for generating electromagnetic waves; means for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; means for receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; means for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and means for displaying the processed information to determine nature of the target. The means for processing the electrical signals includes means for converting analog signals to digital signals followed by a computer means to apply a backward wave algorithm. 21 figs.

  13. Real-time wideband holographic surveillance system

    DOEpatents

    Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.

    1996-09-17

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.

  14. Real-time holographic surveillance system

    DOEpatents

    Collins, H. Dale; McMakin, Douglas L.; Hall, Thomas E.; Gribble, R. Parks

    1995-01-01

    A holographic surveillance system including means for generating electromagnetic waves; means for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; means for receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; means for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and means for displaying the processed information to determine nature of the target. The means for processing the electrical signals includes means for converting analog signals to digital signals followed by a computer means to apply a backward wave algorithm.

  15. Real-time and postprocessing holographic effects in dichromated pullulan.

    PubMed

    Savić, Svetlana; Pantelić, Dejan; Jakovijević, Dragica

    2002-08-01

    Experimental results concerning both real-time and postprocessing (after-development) behavior of a novel photosensitive material, dichromate-sensitized pullulan (DCP), are investigated. The exposure mechanism and possibilities for controlling holographic grating properties are discussed. We have shown that it is possible to maximize the diffraction efficiency of interference gratings after development by controlling diffraction efficiency in real time. Stronger real-time effects of DCP compared with those of dichromated gelatin are achieved. PMID:12153075

  16. Real time moving scene holographic camera system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1973-01-01

    A holographic motion picture camera system producing resolution of front surface detail is described. The system utilizes a beam of coherent light and means for dividing the beam into a reference beam for direct transmission to a conventional movie camera and two reflection signal beams for transmission to the movie camera by reflection from the front side of a moving scene. The system is arranged so that critical parts of the system are positioned on the foci of a pair of interrelated, mathematically derived ellipses. The camera has the theoretical capability of producing motion picture holograms of projectiles moving at speeds as high as 900,000 cm/sec (about 21,450 mph).

  17. Method of investigating phenomena in liquids by holographic interferometry

    NASA Astrophysics Data System (ADS)

    Rosu, Nicu; Ralea, Mihai F.; Iova, Iancu

    1996-05-01

    A method based on holographic interferometry in real time with reference fringes for the determination of liquid parameters in cells with one inclined wall is presented. By studying the interferograms one gets a graphical recording of the spatial distribution of the refraction index of the liquid at a given time.

  18. Holograph and Interferometry.

    ERIC Educational Resources Information Center

    Altman, Thomas C.

    1992-01-01

    Describes a method to create holograms for use in different interferometry techniques. Students utilize these techniques in experiments to study the structural integrity of a clarinet reed and the effects of temperature on objects. (MDH)

  19. Diffusion in solids with holographic interferometry

    NASA Astrophysics Data System (ADS)

    Liu, Dingyu

    1996-12-01

    It is of great importance for the formation of p-n junction in semiconductors by penetrating some impurities through the depth near the surface, so it has long been paid attention to control the concentration distribution of impurities during the diffusion process. In recent years, ionic carburizing, and ion bombardment penetration etc. for the treatment of metal surface have also attracted by material sciences. It requires that the diffusion depth and the diffusion time of the impurities should be under precise control. Different methods, such as the method of radioisotopic detection and the method of chemical analysis have been adopted, however, the reports of different workers are very different, especially in the real time measurement, so, finding new method is never ending. In 1984, H. Fenichel have performed experiments on the solutions of table salt and sugar with the method of holographic interferometry. As for metals which are opaque for the visible light, but they become transparent by making them into a very thin film so that, in principle, the diffusion of atoms within a film is capable of measure by holographic interferometry. Alternatively, the electromagnetic waves within 1 - 70 micrometers wavelengths may be utilized, some materials, such as high purified germanium and silicon are good materials for infrared transmission. Some fluorides of alkaline-earth metals have high transmittance in the range of 1 - 8 micrometers , the concentration of impurities in the semiconductor and metal surface treatment are of 1015 - 1020 atoms per cubic cm, which is capable of detection.

  20. 50 years of holographic interferometry

    NASA Astrophysics Data System (ADS)

    Stetson, Karl A.

    2015-01-01

    Fifty years ago, Robert L. Powell and I discovered holographic interferometry while working at the Radar Laboratory of the University of Michigan's Institute of Science and Technology. I have worked in this field for this entire time span, watched it grow from an unexplored technology to become a widespread industrial testing method, and I have contributed to these developments. In this paper, I will trace my history in this field from our discovery to my involvement in its theory and applications. I will conclude with a discussion of digital holography, which is currently replacing photographic holography for most research and industrial applications.

  1. Laser holographic interferometry for investigations of cylindrical transparent tubes

    NASA Astrophysics Data System (ADS)

    Ralea, Mihai F.; Rosu, Nicu; Iova, Iancu

    1996-05-01

    A new double differential refractometer for student laboratories, based on holographic interferometry in real time with reference hologram and reference fringes, is presented. By studying the interferograms one gets a graphical record of the radial, axial, and temporal distribution of the refraction index in cylindrical tubes. This method permits the determination of the experimental parameters for cases when the relationship between these parameters and the refraction index is known. The paper presents experimental results for gas-discharge parameters.

  2. Large holographic displays for real-time applications

    NASA Astrophysics Data System (ADS)

    Schwerdtner, A.; Häussler, R.; Leister, N.

    2008-02-01

    Holography is generally accepted as the ultimate approach to display three-dimensional scenes or objects. Principally, the reconstruction of an object from a perfect hologram would appear indistinguishable from viewing the corresponding real-world object. Up to now two main obstacles have prevented large-screen Computer-Generated Holograms (CGH) from achieving a satisfactory laboratory prototype not to mention a marketable one. The reason is a small cell pitch CGH resulting in a huge number of hologram cells and a very high computational load for encoding the CGH. These seemingly inevitable technological hurdles for a long time have not been cleared limiting the use of holography to special applications, such as optical filtering, interference, beam forming, digital holography for capturing the 3-D shape of objects, and others. SeeReal Technologies has developed a new approach for real-time capable CGH using the socalled Tracked Viewing Windows technology to overcome these problems. The paper will show that today's state of the art reconfigurable Spatial Light Modulators (SLM), especially today's feasible LCD panels are suited for reconstructing large 3-D scenes which can be observed from large viewing angles. For this to achieve the original holographic concept of containing information from the entire scene in each part of the CGH has been abandoned. This substantially reduces the hologram resolution and thus the computational load by several orders of magnitude making thus real-time computation possible. A monochrome real-time prototype measuring 20 inches has been built and demonstrated at last year's SID conference and exhibition 2007 and at several other events.

  3. Polarization interferometry for real-time spectroscopic plasmonic sensing

    NASA Astrophysics Data System (ADS)

    Otto, Lauren M.; Mohr, Daniel A.; Johnson, Timothy W.; Oh, Sang-Hyun; Lindquist, Nathan C.

    2015-02-01

    We present quantitative, spectroscopic polarization interferometry phase measurements on plasmonic surfaces for sensing applications. By adding a liquid crystal variable wave plate in our beam path, we are able to measure phase shifts due to small refractive index changes on the sensor surface. By scanning in a quick sequence, our technique is extended to demonstrate real-time measurements. While this optical technique is applicable to different sensor geometries--e.g., nanoparticles, nanogratings, or nanoapertures--the plasmonic sensors we use here consist of an ultrasmooth gold layer with buried linear gratings. Using these devices and our phase measurement technique, we calculate a figure of merit that shows improvement over measuring only surface plasmon resonance shifts from a reflected intensity spectrum. To demonstrate the general-purpose versatility of our phase-resolved measurements, we also show numerical simulations with another common device architecture: periodic plasmonic slits. Since our technique inherently measures both the intensity and phase of the reflected or transmitted light simultaneously, quantitative sensor device characterization is possible.We present quantitative, spectroscopic polarization interferometry phase measurements on plasmonic surfaces for sensing applications. By adding a liquid crystal variable wave plate in our beam path, we are able to measure phase shifts due to small refractive index changes on the sensor surface. By scanning in a quick sequence, our technique is extended to demonstrate real-time measurements. While this optical technique is applicable to different sensor geometries--e.g., nanoparticles, nanogratings, or nanoapertures--the plasmonic sensors we use here consist of an ultrasmooth gold layer with buried linear gratings. Using these devices and our phase measurement technique, we calculate a figure of merit that shows improvement over measuring only surface plasmon resonance shifts from a reflected intensity

  4. Polarization interferometry for real-time spectroscopic plasmonic sensing

    PubMed Central

    Otto, Lauren M.; Mohr, Daniel A.; Johnson, Timothy W.; Oh, Sang-Hyun

    2015-01-01

    We present quantitative, spectroscopic polarization interferometry phase measurements on plasmonic surfaces for sensing applications. By adding a liquid crystal variable wave plate in our beam path, we are able to measure phase shifts due to small refractive index changes on the sensor surface. By scanning in a quick sequence, our technique is extended to demonstrate real-time measurements. While this optical technique is applicable to different sensor geometries — e.g., nanoparticles, nanogratings, or nanoapertures — the plasmonic sensors we use here consist of an ultrasmooth gold layer with buried linear gratings. Using these devices and our phase measurement technique, we calculate a figure of merit that shows improvement over measuring only surface plasmon resonance shifts from a reflected intensity spectrum. To demonstrate the general-purpose versatility of our phase-resolved measurements, we also show numerical simulations with another common device architecture: periodic plasmonic slits. Since our technique inherently measures both the intensity and phase of the reflected or transmitted light simultaneously, quantitative sensor device characterization is possible. PMID:25672889

  5. Polarization interferometry for real-time spectroscopic plasmonic sensing.

    PubMed

    Otto, Lauren M; Mohr, Daniel A; Johnson, Timothy W; Oh, Sang-Hyun; Lindquist, Nathan C

    2015-03-01

    We present quantitative, spectroscopic polarization interferometry phase measurements on plasmonic surfaces for sensing applications. By adding a liquid crystal variable wave plate in our beam path, we are able to measure phase shifts due to small refractive index changes on the sensor surface. By scanning in a quick sequence, our technique is extended to demonstrate real-time measurements. While this optical technique is applicable to different sensor geometries-e.g., nanoparticles, nanogratings, or nanoapertures-the plasmonic sensors we use here consist of an ultrasmooth gold layer with buried linear gratings. Using these devices and our phase measurement technique, we calculate a figure of merit that shows improvement over measuring only surface plasmon resonance shifts from a reflected intensity spectrum. To demonstrate the general-purpose versatility of our phase-resolved measurements, we also show numerical simulations with another common device architecture: periodic plasmonic slits. Since our technique inherently measures both the intensity and phase of the reflected or transmitted light simultaneously, quantitative sensor device characterization is possible. PMID:25672889

  6. Study of tympanic membrane displacements with digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernández-Montes, María del Socorro; Mendoza-Santoyo, Fernando; Muñoz-Solís, Silvino

    2010-09-01

    The study of the tympanic membrane is fundamental because it is one of the most important components of the middle ear. By finding the membrane's vibration patterns and quantifying the induced displacement, it is possible to characterize and determine its physiological state. Digital Holographic Interferometry (DHI) has proved to be a promising optical non-invasive and quasi-real time method for the investigation of different mechanical parameters of biological tissues. In this paper, we present a digital holographic interferometry setup used to measure the frequency response of the tympanic membrane in post-mortem cats subject to acoustic stimuli in the range of 485 Hz up to 10 kHz. We show the resonant vibration patterns found for this range of frequencies and the corresponding displacement amplitudes induced by the acoustic waves. The results show the potential that this method has to help improve the understanding of the tympanic membrane's working mechanisms.

  7. Holographic interferometry: A user`s guide

    SciTech Connect

    Griggs, D.

    1993-10-01

    This manual describes the procedures and components necessary to produce a holographic interferogram of a flow field in the Sandia National Laboratories hypersonic wind tunnel. In contrast to classical interferometry, holographic interferometry records the amplitude and phase distribution of a lightwave passing through the flow field at some instant of time. This information can then be reconstructed outside the wind tunnel for visual analysis and digital processing, yielding precise characterizations of aerodynamic phenomena. The reconstruction and subsequent hologram image storage process is discussed, with particular attention paid to the digital image processor and the data reduction technique.

  8. Breast cancer detection by holographic interferometry

    NASA Astrophysics Data System (ADS)

    Woisetschlaeger, Jakob; Sheffer, Daniel B.; Mikati, H.; Somasundaram, Kavitha; Loughry, C. William; Chawla, Surendra K.; Wesolowski, Piotr J.

    1993-02-01

    The overall breast cancer mortality rate has remained unchanged the last 50 years. The most significant factor in the treatment is its early detection which will alter the mortality rate. In this investigation, the feasibility of holographic interferometry for the purpose of detecting breast cancer was examined. Optical setups were developed to enable the collection of holographic interferograms in vivo of asymptomatic breasts and those containing cancerous lesions. Different stressing concepts of holographic nondestructive testing and their applicability for the detection of breast cancer were tested.

  9. A near-real-time full-parallax holographic display for remote operations

    NASA Technical Reports Server (NTRS)

    Iavecchia, Helene P.; Huff, Lloyd; Marzwell, Neville I.

    1991-01-01

    A near real-time, full parallax holographic display system was developed that has the potential to provide a 3-D display for remote handling operations in hazardous environments. The major components of the system consist of a stack of three spatial light modulators which serves as the object source of the hologram; a near real-time holographic recording material (such as thermoplastic and photopolymer); and an optical system for relaying SLM images to the holographic recording material and to the observer for viewing.

  10. Real-time wideband cylindrical holographic surveillance system

    DOEpatents

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.; Severtsen, Ronald H.

    1999-01-01

    A wideband holographic cylindrical surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image.

  11. Real-time wideband cylindrical holographic surveillance system

    DOEpatents

    Sheen, D.M.; McMakin, D.L.; Hall, T.E.; Severtsen, R.H.

    1999-01-12

    A wideband holographic cylindrical surveillance system is disclosed including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image. 13 figs.

  12. Real-time optical holographic tracking of multiple objects

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1989-01-01

    A coherent optical correlation technique for real-time simultaneous tracking of several different objects making independent movements is described, and experimental results are presented. An evaluation of this system compared with digital computing systems is made. The real-time processing capability is obtained through the use of a liquid crystal television spatial light modulator and a dichromated gelatin multifocus hololens. A coded reference beam is utilized in the separation of the output correlation plane associated with each input target so that independent tracking can be achieved.

  13. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Weber, David C.

    1995-01-01

    Holographic interferometry is a primary candidate for determining temperature and concentration in crystal growth experiments designed for space. The method measures refractive index changes within the fluid of an experimental test cell resulting from temperature and/or concentration changes. When the refractive index changes are caused by simultaneous temperature and concentration changes, the contributions of the two effects cannot be separated by single wavelength interferometry. By using two wavelengths, however, two independent interferograms can provide the additional independent equation required to determine the two unknowns. There is no other technique available that provides this type of information. The primary objectives of this effort were to experimentally verify the mathematical theory of two color holographic interferometry (TCHI) and to determine the practical value of this technique for space application. In the foregoing study, the theory of TCHI has been tested experimentally over a range of interest for materials processing in space where measurements of temperature and concentration in a solution are required. New techniques were developed and applied to stretch the limits beyond what could be done with existing procedures. The study resulted in the production of one of the most advanced, enhanced sensitivity holographic interferometers in existence. The interferometric measurements made at MSFC represent what is believed to be the most accurate holographic interferometric measurements made in a fluid to date. The tests have provided an understanding of the limitations of the technique in practical use.

  14. Real-time optical image subtraction by a holographic shear lens

    NASA Astrophysics Data System (ADS)

    Rao, V. Venkateswara; Joenathan, C.; Sirohi, R. S.

    1985-08-01

    A new optical method of image subtraction by employing a holographic shear lens is proposed. The principle underlying this technique is that of optical interference between two sheared fields produced by the holographic shear lens (HSL). Two dissimilar inputs with some common characters are subtracted in real time while keeping the HSL at the Fourier plane of a well corrected lens. The difference is detectable only when zero fringe is obtained in the interferogram. Experimental verification is presented with the results. The basic advantages of this technique are the simplicity in aligning the input transparencies and the real time operation.

  15. Holographic Interferometry Applications In External Osteosynthesis

    NASA Astrophysics Data System (ADS)

    Jacquot, P.; Rastogi, P. K.; Pflug, L.

    1985-08-01

    In order to maintain fragments of fractured bones in a state of immobilization, the use of an external rigid frame has proved to be very advantageous. Confronted by contradictory requirements, the conception of external fixation has, however, been a difficult task. The present paper aims to show, through three examples of varied bearings, the interest of holographic interferometry in external osteosynthesis. The first example deals with the mechanical behavior of a key element of the fixation device the ball joint submitted to realistic loads. The last two examples compare two models of ball joints as to their characteristics of rigidity and of resistance to slipping. Whereas in the former case holographic interferometry primarily fulfills the function of a prelude to the modelization work, in the latter cases it serves to formulate an engineering diagnostic. The findings relate to the remarkable elastic behavior of the ball joint, to the effectiveness of a lightened bowl design, and to the fact that cousin models may behave quite differently as to their resistance to slipping rotations of the bar. In comparison with other experimental methods, holographic interferometry appears to be very competitive and result-oriented and, as such, is expected to multiply applications in similar evaluation tasks.

  16. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1993-01-01

    Holographic interferometry is a primary candidate for the measurement of temperature and concentration in various crystal growth experiments destined for space. The method measures refractive index changes in the experiment test cell. A refractive index change can be caused by concentration changes, temperature changes, or a combination of temperature and concentration changes. If the refractive index changes are caused by temperature and concentration changes occurring simultaneously in the experiment test cell, the contributions by the two effects cannot be separated by conventional measurement methods. By using two wavelengths, two independent interferograms can be produced from the reconstruction of the hologram. The two interferograms will be different due to dispersion properties of fluid materials. These differences provide the additional information that allows the separation of simultaneously occurring temperature and concentration gradients. There is no other technique available that can provide this type of information. The primary objectives of this effort are to experimentally verify the mathematical theory of two color holographic interferometry and to determine the practical value of this technique for space application. To achieve these objectives, the accuracy and sensitivity of the technique must be determined for geometry's and materials that are relevant to the Materials Processing in the Space program of NASA. This will be achieved through the use of a specially designed two-color holographic interferometry breadboard optical system. In addition to experiments to achieve the primary goals, the breadboard will also provide inputs to the design of an optimum space flight system.

  17. The Compact and Inexpensive "Arrowhead" Setup for Holographic Interferometry

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo

    2011-01-01

    Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that…

  18. Hydroxyl density measurements with resonant holographic interferometry

    SciTech Connect

    Trolinger, J.D.; Hess, C.F.; Yip, B.; Battles, B.; Hanson, R.K. Stanford University, CA )

    1992-01-01

    This paper describes experimentation with a new type of flow diagnostics referred to as Resonant Holographic Interferometry Spectroscopy (RHIS). This technique combines the power of holography with the species selectivity of spectroscopy to provide three-dimensional images of the density profile of selected species in complex flows. The technique is particularly suitable to study mixing processes as well as to measure minor species in combustion processes. The method would allow the measurement of minor species in the presence of major species, as well as major species in a heterogeneous low pressure environment. Both experiments and modeling are being conducted to establish the feasibility of RHIS in measuring the hydroxyl concentrations in combustion processes. It is expected that in addition to the species concentration, the resonant holographic technique has the potential of providing temperature, pressure, and flow velocity. 28 refs.

  19. Transonic flow visualization using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Bryanston-Cross, Peter J.

    1987-01-01

    An account is made of some of the applications of holographic interferometry to the visualization of transonic flows. In the case of the compressor shock visualization, the method is used regularly and has moved from being a research department invention to a design test tool. With the implementation of automatic processing and simple digitization systems, holographic vibrational analysis has also moved into routine nondestructive testing. The code verification interferograms were instructive, but the main turbomachinery interest is now in 3 dimensional flows. A major data interpretation effort will be required to compute tomographically the 3 dimensional flow around the leading or the trailing edges of a rotating blade row. The bolt on approach shows the potential application to current unsteady flows of interest. In particular that of the rotor passing and vortex interaction effects is experienced by the new generation of unducted fans. The turbocharger tests presents a new area for the application of holography.

  20. Status of holographic interferometry at Wright Patterson Air Force Base

    NASA Technical Reports Server (NTRS)

    Seibert, George

    1987-01-01

    At Wright Patterson AFB, holographic interferometry has been used for nearly 15 years in a variety of supersonic and hypersonic wind tunnels. Specifically, holographic interferometry was used to study boundary layers, shock boundary layer interaction, and general flow diagnostics. Although a considerable amount of quantitative work was done, the difficulty of reducing data severely restricted this. In the future, it is of interest to use holographic interferometry in conjunction with laser Doppler velocimetry to do more complete diagnostics. Also, there is an interest to do particle field diagnostics in the combustion research facility. Finally, there are efforts in nondestructive testing where automated fringe readout and analysis would be extremely helpful.

  1. Study on basic problems in real-time 3D holographic display

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Liu, Juan; Wang, Yongtian; Pan, Yijie; Li, Xin

    2013-05-01

    In recent years, real-time three-dimensional (3D) holographic display has attracted more and more attentions. Since a holographic display can entirely reconstruct the wavefront of an actual 3D scene, it can provide all the depth cues for human eye's observation and perception, and it is believed to be the most promising technology for future 3D display. However, there are several unsolved basic problems for realizing large-size real-time 3D holographic display with a wide field of view. For examples, commercial pixelated spatial light modulators (SLM) always lead to zero-order intensity distortion; 3D holographic display needs a huge number of sampling points for the actual objects or scenes, resulting in enormous computational time; The size and the viewing zone of the reconstructed 3D optical image are limited by the space bandwidth product of the SLM; Noise from the coherent light source as well as from the system severely degrades the quality of the 3D image; and so on. Our work is focused on these basic problems, and some initial results are presented, including a technique derived theoretically and verified experimentally to eliminate the zero-order beam caused by a pixelated phase-only SLM; a method to enlarge the reconstructed 3D image and shorten the reconstruction distance using a concave reflecting mirror; and several algorithms to speed up the calculation of computer generated holograms (CGH) for the display.

  2. Real-time digital holographic microscopy using the graphic processing unit.

    PubMed

    Shimobaba, Tomoyoshi; Sato, Yoshikuni; Miura, Junya; Takenouchi, Mai; Ito, Tomoyoshi

    2008-08-01

    Digital holographic microscopy (DHM) is a well-known powerful method allowing both the amplitude and phase of a specimen to be simultaneously observed. In order to obtain a reconstructed image from a hologram, numerous calculations for the Fresnel diffraction are required. The Fresnel diffraction can be accelerated by the FFT (Fast Fourier Transform) algorithm. However, real-time reconstruction from a hologram is difficult even if we use a recent central processing unit (CPU) to calculate the Fresnel diffraction by the FFT algorithm. In this paper, we describe a real-time DHM system using a graphic processing unit (GPU) with many stream processors, which allows use as a highly parallel processor. The computational speed of the Fresnel diffraction using the GPU is faster than that of recent CPUs. The real-time DHM system can obtain reconstructed images from holograms whose size is 512 x 512 grids in 24 frames per second.

  3. Practical aspects of laser holographic interferometry in wind tunnels

    NASA Technical Reports Server (NTRS)

    Licursi, J.; Lee, G.

    1985-01-01

    Practical aspects of using laser holographic interferometry in some NASA Ames wind tunnels are presented. These aspects include the development of techniques for dual-plate interferometry, optics alignment, and laser alignment. In addition, methods to alleviate problems associated with vibration, photographic processing, photographic drying, and photographic reconstruction are discussed.

  4. Real-time contrast-enhanced holographic imaging using phase coherent photorefractive quantum wells.

    PubMed

    Dongol, A; Thompson, J; Schmitzer, H; Tierney, D; Wagner, H P

    2015-05-18

    We demonstrate wide-field real-time and depth-resolved contrast enhanced holographic imaging (CEHI) using the all-optical phase coherent photorefractive effect in ZnSe quantum wells. Moving objects are imaged at large depth-of-field by the local enhancement of a static reference hologram. The high refresh rate of the holographic films enables direct-to-video monitoring of floating glass beads and of living Paramecium and Euglena cells moving in water. Depth resolution is achieved by tilting the incident laser beam with respect to the normal of the cuvette. This creates double images of the objects, which are analyzed geometrically and with Fresnel diffraction theory. A two-color CEHI set-up further enables the visualization of a concealed 95 µm thick wire behind a thin layer of chicken skin. PMID:26074534

  5. Real-time contrast-enhanced holographic imaging using phase coherent photorefractive quantum wells.

    PubMed

    Dongol, A; Thompson, J; Schmitzer, H; Tierney, D; Wagner, H P

    2015-05-18

    We demonstrate wide-field real-time and depth-resolved contrast enhanced holographic imaging (CEHI) using the all-optical phase coherent photorefractive effect in ZnSe quantum wells. Moving objects are imaged at large depth-of-field by the local enhancement of a static reference hologram. The high refresh rate of the holographic films enables direct-to-video monitoring of floating glass beads and of living Paramecium and Euglena cells moving in water. Depth resolution is achieved by tilting the incident laser beam with respect to the normal of the cuvette. This creates double images of the objects, which are analyzed geometrically and with Fresnel diffraction theory. A two-color CEHI set-up further enables the visualization of a concealed 95 µm thick wire behind a thin layer of chicken skin.

  6. Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Huang, K. S.; Diep, J.

    1993-01-01

    Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. the proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photofractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feedforward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.

  7. Speckle reference beam holographic and speckle photographic interferometry in non-destructive test systems

    NASA Technical Reports Server (NTRS)

    Liu, H. K.

    1976-01-01

    The techniques of speckle beam holographic interferometry and speckle photographic interferometry are described. In particular, their practical limitations and their applications to the existing holographic nondestructive test system are discussed.

  8. Real-time heterodyne speckle pattern interferometry using the correlation image sensor.

    PubMed

    Kimachi, Akira

    2010-12-10

    A real-time method for heterodyne speckle pattern interferometry using the correlation image sensor (CIS) is proposed. The CIS demodulates the interference phase of heterodyned speckle wavefronts pixelwise at an ordinary video frame rate. The proposed method neither suffers loss of spatial resolution nor requires a high frame rate. Interferometers for out-of-plane and in-plane deformation are developed with a 200 × 200 pixel CIS camera. Experimental results confirm that the proposed method realizes real-time imaging of a rough-surfaced object under deformation. The average standard deviations of demodulated phase-difference images for the out-of-plane and in-plane interferometers are 0.33 and 0.13 rad, respectively.

  9. Holographic entropy and real-time dynamics of quarkonium dissociation in non-Abelian plasma

    DOE PAGESBeta

    Iatrakis, Ioannis; Kharzeev, Dmitri E.

    2016-04-26

    The peak of the heavy quark pair entropy at the deconfinement transition, observed in lattice QCD, suggests that the transition is effectively driven by the increase of the entropy of bound states. The growth of the entropy with the interquark distance leads to the emergent entropic force that induces dissociation of quarkonium states. Since the quark-gluon plasma around the transition point is a strongly coupled system, we use the gauge-gravity duality to study the entropy of heavy quarkonium and the real-time dynamics of its dissociation. In particular, we employ the improved holographic QCD model as a dual description of largemore » Nc Yang-Mills theory. Studying the dynamics of the fundamental string between the quarks placed on the boundary, we find that the entropy peaks at the transition point. We also study the real-time dynamics of the system by considering the holographic string falling in the black hole horizon where it equilibrates. As a result, in the vicinity of the deconfinement transition, the dissociation time is found to be less than a fermi, suggesting that the entropic destruction is the dominant dissociation mechanism in this temperature region.« less

  10. Holographic entropy and real-time dynamics of quarkonium dissociation in non-Abelian plasma

    NASA Astrophysics Data System (ADS)

    Iatrakis, Ioannis; Kharzeev, Dmitri E.

    2016-04-01

    The peak of the heavy quark pair entropy at the deconfinement transition, observed in lattice QCD, suggests that the transition is effectively driven by the increase of the entropy of bound states. The growth of the entropy with the interquark distance leads to the emergent entropic force that induces dissociation of quarkonium states. Since the quark-gluon plasma around the transition point is a strongly coupled system, we use the gauge-gravity duality to study the entropy of heavy quarkonium and the real-time dynamics of its dissociation. In particular, we employ the improved holographic QCD model as a dual description of large Nc Yang-Mills theory. Studying the dynamics of the fundamental string between the quarks placed on the boundary, we find that the entropy peaks at the transition point. We also study the real-time dynamics of the system by considering the holographic string falling in the black hole horizon where it equilibrates. In the vicinity of the deconfinement transition, the dissociation time is found to be less than a fermi, suggesting that the entropic destruction is the dominant dissociation mechanism in this temperature region.

  11. Demonstration of a real-time implementation of the ICVision holographic stereogram display

    NASA Astrophysics Data System (ADS)

    Kulick, Jeffrey H.; Jones, Michael W.; Nordin, Gregory P.; Lindquist, Robert G.; Kowel, Stephen T.; Thomsen, Axel

    1995-07-01

    There is increasing interest in real-time autostereoscopic 3D displays. Such systems allow 3D objects or scenes to be viewed by one or more observers with correct motion parallax without the need for glasses or other viewing aids. Potential applications of such systems include mechanical design, training and simulation, medical imaging, virtual reality, and architectural design. One approach to the development of real-time autostereoscopic display systems has been to develop real-time holographic display systems. The approach taken by most of the systems is to compute and display a number of holographic lines at one time, and then use a scanning system to replicate the images throughout the display region. The approach taken in the ICVision system being developed at the University of Alabama in Huntsville is very different. In the ICVision display, a set of discrete viewing regions called virtual viewing slits are created by the display. Each pixel is required fill every viewing slit with different image data. When the images presented in two virtual viewing slits separated by an interoccular distance are filled with stereoscopic pair images, the observer sees a 3D image. The images are computed so that a different stereo pair is presented each time the viewer moves 1 eye pupil diameter (approximately mm), thus providing a series of stereo views. Each pixel is subdivided into smaller regions, called partial pixels. Each partial pixel is filled with a diffraction grating that is just that required to fill an individual virtual viewing slit. The sum of all the partial pixels in a pixel then fill all the virtual viewing slits. The final version of the ICVision system will form diffraction gratings in a liquid crystal layer on the surface of VLSI chips in real time. Processors embedded in the VLSI chips will compute the display in real- time. In the current version of the system, a commercial AMLCD is sandwiched with a diffraction grating array. This paper will discuss

  12. Application of the holographic interferometry in transport phenomena studies

    NASA Astrophysics Data System (ADS)

    Hartmann, A.; Lucic, A.

    This article provides an overview of all the experimental research studies in the field of heat and mass transfer by means of the holographic interferometry which were performed under the supervision of Professor Franz Mayinger during his professorship. The principle objective of this paper is to contribute to the knowledge base of the heat and mass transfer processes in various fields as well as to illustrate the capabilities of the holographic interferometry. Investigations of the heat transfer pattern in grooved channels and in various geometries of compact heat exchangers, drying processes of a dispersed, water-based varnish on paper, mixed convection in bent ducts, the growth and condensation of vapor bubbles in subcooled boiling and the simultaneous heat and mass transfer are presented. The results of all these studies demonstrate the successful application of the holographic interferometry and Professor Mayinger's highly valuable contribution in this area.

  13. Determination of Young's modulus of silica aerogels using holographic interferometry

    NASA Astrophysics Data System (ADS)

    Chikode, Prashant P.; Sabale, Sandip R.; Vhatkar, Rajiv S.

    2016-05-01

    Digital holographic interferometry technique is used to determine elastic modulus of silica aerogels. Tetramethoxysilane precursor based Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The alcogels were prepared by keeping the molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1:0.6:4 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 12 to 18. Holograms of translucent aerogel samples have been successfully recorded using the digital holographic interferometry technique. Stimulated digital interferograms gives localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and Young's modulus (Y) of the aerogels.

  14. Instrument Development of Real Time Holographic Water Drop Size Measurement System

    SciTech Connect

    Springston, Stephen

    2007-02-09

    BNL participated with multiple correspondences with Physical Optics Corporation (POC) on the design considerations of an airbome instrument. A pod for extemal deployment ofthe POC unit on the DOE Research Aircraft Facility (RAF), an instrumented, Grumman G-1 aircraft was loaned to POC. BNL proposed evaluation flight tests between the POC unit and the BNL Cloud Aerosol Probe Spectrometer (CAPS) as a reference method. BNL's involvement is described in the semi-annual report ofPOC to DOE. Because of unanticipated technical and engineering difficulties, POC was unable to fit their instrument into an aircraft pod. As a result they are now focusing on a ground-based version first. A prototype laboratory version of the Real-Time Holographic Water Drop Size Measurement (WDSM) System has been constructed.

  15. Real-time, auto-focusing digital holographic microscope using graphics processors.

    PubMed

    Doğar, Mert; İlhan, Hazar A; Özcan, Meriç

    2013-08-01

    The most significant advantage of holographic imaging is that one does not need to do focusing alignment for the scene or objects while capturing their images. To focus on a particular object recorded in a digital hologram, a post-processing on the recorded image must be performed. This post-processing, so called the reconstruction, is essentially the calculation of wave propagation in free space. If the object's optical distance to the recording plane is not known a priori, focusing methods are used to estimate this distance. However, these operations can be quite time consuming as the hologram sizes increase. When there is a time constraint on these procedures and the image resolution is high, traditional central processing units (CPUs) can no longer satisfy the desired reconstruction speeds. Then, especially for real-time operations, additional hardware accelerators are required for reconstructing high resolution holograms. To this extend, today's commercial graphic cards offer a viable solution, as the holograms can be reconstructed tens of times faster with a graphics processing unit than with the state-of-the-art CPUs. Here we present an auto-focusing megapixel-resolution digital holographic microscope (DHM) that uses a graphics processing unit (GPU) as the calculation engine. The computational power of the GPU allows the DHM to work in real-time such that the reconstruction distance is estimated unsupervised, and the post-processing of the holograms are made completely transparent to the user. We compare DHM with GPU and CPU and present experimental results showing a maximum of 70 focused reconstructions per second (frps) with 1024 × 1024 pixel holograms. PMID:24007070

  16. Real-time, auto-focusing digital holographic microscope using graphics processors

    NASA Astrophysics Data System (ADS)

    Doğar, Mert; İlhan, Hazar A.; Özcan, Meriç

    2013-08-01

    The most significant advantage of holographic imaging is that one does not need to do focusing alignment for the scene or objects while capturing their images. To focus on a particular object recorded in a digital hologram, a post-processing on the recorded image must be performed. This post-processing, so called the reconstruction, is essentially the calculation of wave propagation in free space. If the object's optical distance to the recording plane is not known a priori, focusing methods are used to estimate this distance. However, these operations can be quite time consuming as the hologram sizes increase. When there is a time constraint on these procedures and the image resolution is high, traditional central processing units (CPUs) can no longer satisfy the desired reconstruction speeds. Then, especially for real-time operations, additional hardware accelerators are required for reconstructing high resolution holograms. To this extend, today's commercial graphic cards offer a viable solution, as the holograms can be reconstructed tens of times faster with a graphics processing unit than with the state-of-the-art CPUs. Here we present an auto-focusing megapixel-resolution digital holographic microscope (DHM) that uses a graphics processing unit (GPU) as the calculation engine. The computational power of the GPU allows the DHM to work in real-time such that the reconstruction distance is estimated unsupervised, and the post-processing of the holograms are made completely transparent to the user. We compare DHM with GPU and CPU and present experimental results showing a maximum of 70 focused reconstructions per second (frps) with 1024 × 1024 pixel holograms.

  17. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications.

    PubMed

    Chen, J-S; Chu, D P

    2015-07-13

    Layer-based method has been proposed as an efficient approach to calculate holograms for holographic image display. This paper further improves its calculation speed and depth cues quality by introducing three different techniques, an improved coding scheme, a multilayer depth- fused 3D method and a fraction method. As a result the total computation time is reduced more than 4 times, and holographic images with accommodation cue are calculated in real time to interactions with the displayed image in a proof-of-concept setting of head-mounted holographic displays.

  18. A Phase Locked High Speed Real-Time Interferometry System for Large Amplitude Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Squires, D. D.; Wilder, M. C.; Carr, L. W.; Kutler, Paul (Technical Monitor)

    1994-01-01

    A high speed phase locked interferometry system has been designed and developed for real-time measurements of the dynamic stall flow over a pitching airfoil. Point diffraction interferograms of incipient flow separation over a sinusoidally oscillating airfoil have been obtained at rates of up to 20 KHz and for free stream Mach numbers of 0.3 and 0.45. The images were recorded on ASA 125 and ASA 400 film using a drum camera. Special electronic timing and synchronizing circuits were developed to trigger the laser light source from the camera, and to initiate acquisition of the interferogram sequence from any desired phase angle of oscillation. The airfoil instantaneous angle of attack data provided by an optical encoder was recorded via a FIFO and in EPROM into a microcomputer. The interferograms have been analyzed using software developed in-house to get quantitative flow density and pressure distributions.

  19. An application of holographic interferometry for dynamic vibration analysis of a jet engine turbine compressor rotor

    NASA Astrophysics Data System (ADS)

    Fein, Howard

    2003-09-01

    Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under dynamic stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of jet engine turbine, rotor, vane, and compressor structures has always required advanced instrumentation for data collection in either simulated flight operation test or computer-based modeling and simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data in a noninvasive, noncontact environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced jet engine turbine and compressor rotor structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy of mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of turbine rotor and compressor structures for high stress applications. Aircraft engine applications in particular most consider operational environments where extremes in vibration and impulsive as well as continuous mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of turbine rotor components. Holographic techniques are nondestructive, real-time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the

  20. Holographic interferometry applied to the case of large deformations.

    PubMed

    Schumann, W

    1989-11-01

    This investigation in holographic interferometry concerns an approach to a systematic quasi-compensation by appropriate optical modifications at the reconstruction in order that the fringes of interference become visible in the case of large unknown object deformations. The relevant relations are established by using the aberration theory for the image formation in combination with elementary intrinsic differential geometry.

  1. Application Of Holographic Interferometry To Shock Wave Research

    NASA Astrophysics Data System (ADS)

    Takayama, K.

    1983-10-01

    Paper reports a successful application of holographic interferometry to the shock wave research. Four topics are discussed; i) transonic flow over an aerofoil, ii) shock wave propagation and diffraction past a circular cross-sectional 90° bend and two-dimensional straight or curved wedges, iii) stability of converging cylindrical shock waves and iv) propagation and focusing of underwater shock waves. Experiments were conducted on shock tubes equipped with a double exposure holographic interferometer. In each case isopycnics around shock waves were determined and three-dimensional shock wave interactions were also observed. Results are not only bringing forth new interesting findings to the shock wave research but also showing a further potentiality of holographic interferometry to the high speed gasdynamic study.

  2. Holographic Interferometry--A Laboratory Experiment.

    ERIC Educational Resources Information Center

    de Frutos, A. M.; de la Rosa, M. I.

    1988-01-01

    Explains the problem of analyzing a phase object, separating the contribution due to thickness variations and that due to refractive index variations. Discusses the design of an interferometer and some applications. Provides diagrams and pictures of holographic images. (YP)

  3. Deformation Measurement Of Lumbar Vertebra By Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toshiro; Kojima, Arata; Ogawa, Ryoukei; Iwata, Koichi; Nagata, Ryo

    1988-01-01

    The mechanical properties of normal lumbar vertebra and one with the interarticular part cut off to simulate hemi-spondylolysis were measured by the double exposure holographic interferometry. In the normal lumbar vertebra, displacement due to the load applied to the inferior articular process was greater than that of superior articular process under the same load. The interarticular part was subjected to the high stress. From these points, one of the valuable data to consider the cause of spondylolysis was obtained.

  4. Stabilization technique for real-time high-resolution vascular ultrasound using frequency domain interferometry.

    PubMed

    Taki, Hirofumi; Taki, Kousuke; Yamakawa, Makoto; Shiina, Tsuyoshi; Kudo, Motoi; Sato, Toru

    2014-01-01

    We have proposed an ultrasound imaging method based on frequency domain interferometry (FDI) with an adaptive beamforming technique to depict real-time high-resolution images of human carotid artery. Our previous study has investigated the performance of the proposed imaging method under an ideal condition with a high signal-to-noise ratio (SNR). In the present study, we propose a technique that has the potential to improve accuracy in estimating echo intensity using the FDI imaging method. We investigated the performance of the proposed technique in a simulation study that two flat interfaces were located at depths of 15.0 and 15.2 mm and white noise was added. Because the -6 dB bandwidth of the signal used in this simulation study is 2.6 MHz, the conventional B-mode imaging method failed to depict the two interfaces. Both the conventional and proposed FDI imaging methods succeeded to depict the two interfaces when the SNR ranged from 15 to 30 dB. However, the average error of the estimated echo intensity at the interfaces using the conventional FDI imaging method ranged from 7.2 to 10.5 dB. In contrast, that using the FDI imaging method with the proposed technique ranged from 2.0 to 2.2 dB. The present study demonstrates the potential of the FDI imaging method in depicting robust and high-range-resolution ultrasound images of arterial wall, indicating the possibility to improve the diagnosis of atherosclerosis in early stages.

  5. Development of real time digital holographic microscope for cell flow interactions using a High Performance Computing (HPC) cluster

    NASA Astrophysics Data System (ADS)

    Hojjati, Avesta; Molaei, Mehdi; Sheng, Jian

    2013-11-01

    Real-time imaging and analysis of 3D cell migration and locomotion is crucial to understand the underlying physics of cell environment interactions. In addition, such a microscopy would provide vital diagnostic capability in cell detection, particle sorting and drug screening with large throughput. However, 3D holographic imaging and subsequent analysis are computational intensive and up-to-date prohibitive for real-time applications. With the advances in high performance computing, we are developing a real-time digital holographic microscope (DHM) that includes an in-line DHM, a large format CCD camera, and a 24-node windows-based HPC cluster. The cluster is organized as the master-slave parallel computing paradigm with Message Passing Interface (MPI) as its communication protocol. The holograms are recorded, streamed and analyzed by the HPC cluster in real time, the 3D distributions and in focus images are rendered back on the data acquisition computer. The system will be applied to study marine protest interacting with oil droplets. Supports from GoMRI are acknowledged.

  6. Simple Image Processing Techniques For The Contrast Enhancement Of Real-Time Digital Speckle Pattern Interferometry Fringes

    NASA Astrophysics Data System (ADS)

    Ganesan, A. R.; Kothiyal, M. P.; Sirohi, Rajpal S.

    1989-09-01

    Some simple image processing techniques are suggested that can be used for enhancing the contrast of real-time digital speckle pattern interferometry fringes. The techniques have been developed for the commercial Intellect 100 image processing system interfaced to a PDP-1 1 /23+ microcomputer, but they can be adapted to any commercial image processing system with slight modifications, if necessary, depending on the hardware configuration of the system.

  7. Magnetostriction Measured by Holographic Interferometry with the Simple and Inexpensive "Arrowhead" Setup

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo; Contreras, Johnny H.

    2012-01-01

    Double-exposure holographic interferometry is applied to measure the "linear" or "longitudinal" magnetostriction constant of a soft-ferrite rod. This high-accuracy measurement is done indirectly, by measuring the small rotations of a lever in contact with the rod using double-exposure holographic interferometry implemented with a robust…

  8. Insect wing deformation measurements using high speed digital holographic interferometry.

    PubMed

    Aguayo, Daniel D; Mendoza Santoyo, Fernando; De la Torre-I, Manuel H; Salas-Araiza, Manuel D; Caloca-Mendez, Cristian; Gutierrez Hernandez, David Asael

    2010-03-15

    An out-of-plane digital holographic interferometry system is used to detect and measure insect's wing micro deformations. The in-vivo phenomenon of the flapping is registered using a high power cw laser and a high speed camera. A series of digital holograms with the deformation encoded are obtained. Full field deformation maps are presented for an eastern tiger swallowtail butterfly (Pterourus multicaudata). Results show no uniform or symmetrical deformations between wings. These deformations are in the order of hundreds of nanometers over the entire surface. Out-of-plane deformation maps are presented using the unwrapped phase maps. PMID:20389581

  9. High speed digital holographic interferometry for hypersonic flow visualization

    NASA Astrophysics Data System (ADS)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  10. Computational hologram synthesis and representation on spatial light modulators for real-time 3D holographic imaging

    NASA Astrophysics Data System (ADS)

    Reichelt, Stephan; Leister, Norbert

    2013-02-01

    In dynamic computer-generated holography that utilizes spatial light modulators, both hologram synthesis and hologram representation are essential in terms of fast computation and high reconstruction quality. For hologram synthesis, i.e. the computation step, Fresnel transform based or point-source based raytracing methods can be applied. In the encoding step, the complex wave-field has to be optimally represented by the SLM with its given modulation capability. For proper hologram reconstruction that implies a simultaneous and independent amplitude and phase modulation of the input wave-field by the SLM. In this paper, we discuss full complex hologram representation methods on SLMs by considering inherent SLM parameter such as modulation type and bit depth on their reconstruction performance such as diffraction efficiency and SNR. We review the three implementation schemes of Burckhardt amplitude-only representation, phase-only macro-pixel representation, and two-phase interference representation. Besides the optical performance we address their hardware complexity and required computational load. Finally, we experimentally demonstrate holographic reconstructions of different representation schemes as obtained by functional prototypes utilizing SeeReal's viewing-window holographic display technology. The proposed hardware implementations enable a fast encoding of complex-valued hologram data and thus will pave the way for commercial real-time holographic 3D imaging in the near future.

  11. Fundamental study of photoresist dissolution with real time spectroscopic ellipsometry and interferometry

    NASA Astrophysics Data System (ADS)

    Burns, Sean D.; Schmid, Gerard M.; Trinque, Brian C.; Willson, James; Wunderlich, Jennifer; Tsiartas, Pavlos C.; Taylor, James C.; Burns, Ryan L.; Wilson, C. Grant

    2003-06-01

    The use of in situ spectroscopic ellipsometry (SE) is demonstrated as a technique for studying photoresist dissolution. Experiments carried out using a J.A.Woollam M-2000 ellipsometer and a custom built cell designed for in situ film measurements show that bulk dissolution rate measurements using the SE technique agree with dissolution rate data obtained using multiwavelength interferometry. SE is also demonstrated as a method for measuring thin film dissolution rates, water sorption, and films that swell. An additional focus of this work was the topic of interfacial "gel" layer formation during photoresist dissolution. Ellipsometry and interferometry were used to test several photoresist resins, with an emphasis on phenolic polymers. Single and multiple layer models were used to analyze the data, and were compared to model calculations predicting formation of a gel layer. For the materials studied, interfacial gel layer formation in low molecular weight phenolic polymers was not detected, within the resolution of the experimental techniques (< 15 nm).

  12. Real-time electron-holographic interference microscopy with a liquid-crystal spatial light modulator.

    PubMed

    Chen, J; Hirayama, T; Lai, G; Tanji, T; Ishizuka, K; Tonomura, A

    1993-11-15

    An electron-holographic interference microscope that produces a time-sequential interference micrograph at a TV rate is developed. In this system, the electron off-axis hologram detected with a TV camera is transferred to a liquid-crystal spatial light modulator as a video signal. The liquid-crystal spatial light modulator can function as a thin amplitude hologram or a thin phase hologram. Time-sequential interference micrograph is obtained at a TV rate by superimposition of a plane reference wave onto the reconstructed object wave. Experimental results for observing a dynamic domain-wall motion in thin Permalloy film are demonstrated.

  13. Digital holographic metrology based on multi-angle interferometry.

    PubMed

    Dong, Jun; Jiang, Chao; Jia, Shuhai

    2016-09-15

    We propose a multi-angle interferometry method for digital holographic metrology. In an application of three-dimensional (3D) reconstruction, the hologram corresponding to a different illumination angle is recorded as the illumination angle with a single wavelength tilted at regular intervals by an electronically controlled rotating stage. A Fourier-transform-based axial depth scanning algorithm formed by the reconstructed phase is used to obtain the height point by point over the whole field of view. Hence, the 3D reconstruction can be obtained effectively; even the object has large depth discontinuities resulting from the difficulty of the phase unwrapping. Due to a monochrome source only being used, the method is available for objects with wavelength-dependent reflectivity and those that are free of chromatic aberration caused by the different wavelengths. PMID:27628382

  14. Real-time characterization of the neuronal response to osmotic shock by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Gomariz, Maria; Garcia, Isabel; Soto-Sánchez, Cristina; Martínez-Navarrete, Gema; Fernández, Eduardo; Fimia, Antonio

    2015-05-01

    Digital holographic microscopy has numerous applications in biology for visualizing living cells and 3D tissues. This technique allows for the direct visualization of biological structures avoiding invasive and phototoxic procedures such as fixation and dying processing. In this study we have characterized the morphometry changes of neurons subject to osmolarity changes. For this purpose, we have measured the variations of the amplitude and the oscillation frequency of the plasmatic membrane, as well as the volume changes of the cells before the osmotic shock. There was a relation between the neural culture ageing and its behavioral changes. "Long-term" cultures that had not previously been studied were used to analyze the behavioral changes in aged cells.

  15. Measurements of the tympanic membrane with digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Muñoz Solís, S.; Mendoza Santoyo, F.; Del Socorro Hernández-Montes, M.

    2011-08-01

    In this paper a digital holographic interferometry (DHI) system with three object-illumination beams is used for the first time to detect and measure micrometer deformations on the surface of a tympanic membrane. Using this optical setup allows all three object displacement components x, y, and z, to be independently calculated. The corresponding deformations are registered using a cw laser in stroboscopic mode and a CCD camera synchronized to the excitation acoustic wave that produces a resonant vibration mode on the tympanic membrane surface. A series of digital holographic interferograms record the displacements undergone by the tympanic membrane and from them full field deformation phase maps are obtained. From the latter it is possible to observe the displacement of the tympanic membrane in response to the sound pressure. The study was performed on the tympanic membrane taken from a post-mortem cat. The results show the feasibility to apply a similar optomechanical arrangement for the study in humans, representing an alternative technique for the study of pathologies in the tympanic membrane.

  16. Dynamic measurement of deformation using Fourier transform digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Gao, Xinya; Wu, Sijin; Yang, Lianxiang

    2013-10-01

    Digital holographic interferometry (DHI) is a well-established optical technique for measurement of nano-scale deformations. It has become more and more important due to the rapid development of applications in aerospace engineering and biomedicine. Traditionally, phase shift technique is used to quantitatively measure the deformations in DHI. However, it cannot be applied in dynamic measurement. Fourier transform phase extraction method, which can determine the phase distribution from only a single hologram, becomes a promising method to extract transient phases in DHI. This paper introduces a digital holographic interferometric system based on 2D Fourier transform phase extraction method, with which deformations of objects can be measured quickly. In the optical setup, the object beam strikes a CCD via a lens and aperture, and the reference beam is projected on the CCD through a single-mode fiber. A small inclination angle between the diverging reference beam and optical axial is introduced in order to physically separate the Fourier components in frequency domain. Phase maps are then obtained by the utilization of Fourier transform and windowed inverse Fourier transform. The capability of the Fourier transform DHI is discussed by theoretical discussion as well as experiments.

  17. Real-time slope mapping and defect detection in bent plates using Talbot interferometry

    SciTech Connect

    Trivedi, Satya Prakash; Prakash, Shashi; Rana, Santosh; Sasaki, Osami

    2010-02-10

    We demonstrate a simple method for obtaining slope contours of bent plates using Talbot interferometry. The technique has been used to map slope contours of polymethyl methacrylate specimens of different shapes. The Talbot image of a coarse grating is projected onto a specimen such that the self-image is backreflected onto the same grating again. As a Talbot interferometer is basically a grating shearing interferometer, it results in the generation of characteristic slope maps of the specimen under test. Results of the investigation match well with other slope-mapping techniques. Validation of experimental results with theoretical predictions in the case of a cantilever beam specimen has been undertaken. Accuracy of about 4.7% with respect to theoretical predictions is obtained.

  18. Diffusion dynamics of small molecules from mesoporous silicon films by real-time optical interferometry

    SciTech Connect

    Mares, Jeremy W.; Weiss, Sharon M.

    2011-09-20

    Time-dependent laser reflectometry measurements are presented as a means to rigorously characterize analyte diffusion dynamics of small molecules from mesoporous silicon (PSi) films for drug delivery and membrane physics applications. Calculations based on inclusion of a spatially and temporally dependent solute concentration profile in a one-dimensional Fickian diffusion flow model are performed to determine the diffusion coefficients for the selected prototypical polar species, sucrose (340 Da), exiting from PSi films. The diffusion properties of the molecules depend on both PSi pore size and film thickness. For films with average pore diameters between 10-30 nm and film thicknesses between 300-900 nm, the sucrose diffusion coefficient can be tuned between approximately 100 and 550 {mu}m{sup 2}/s. Extensions of the real-time measurement and modeling approach for determining the diffusivity of small molecules that strongly interact with and corrode the internal surfaces of PSi films are also discussed.

  19. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    PubMed

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA. PMID:27587174

  20. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    PubMed

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA.

  1. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Brandi, F.; Giammanco, F.; Conti, F.; Sylla, F.; Lambert, G.; Gizzi, L. A.

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 1019 cm-3 range well suited for LWFA.

  2. A real-time interferometer technique for compressible flow research

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1984-01-01

    Strengths and shortcomings in the application of interferometric techniques to transonic flow fields are examined and an improved method is elaborated. Such applications have demonstrated the value of interferometry in obtaining data for compressible flow research. With holographic techniques, interferometry may be applied in large scale facilities without the use of expensive optics or elaborate vibration isolation equipment. Results obtained using holographic interferometry and other methods demonstrate that reliable qualitative and quantitative data can be acquired. Nevertheless, the conventional method can be difficult to set up and apply, and it cannot produce real-time data. A new interferometry technique is investigated that promises to be easier to apply and can provide real-time information. This single-beam technique has the necessary insensitivity to vibration for large scale wind tunnel operations. Capabilities of the method and preliminary tests on some laboratory scale flow fluids are described.

  3. Digital holographic interferometry as a tool to obtain shapes

    NASA Astrophysics Data System (ADS)

    Uribe López, Ubaldo; Hernández-Montes, María. del Socorro; Muñoz-Solís, Silvino

    2015-08-01

    This work describes a new method to obtain shapes on surfaces based on digital holographic interferometry (DHI). Research has been reported with different methods, such as fringe projection. DHI, being a full-field technique, decreases the number of images to capture and the processing time, besides having a high resolution. Our proposed method consists in obtaining the shape of the object and a reference plane using an out-of-plane interferometer. The phase difference of the recorded holograms is achieved by means of the Fourier transform method. This resulting phase has a tilt produced by the angle of the object beam relative to the optical axis, which is removed by subtracting the phase difference from the reference plane. The method was tested in two cylinders, one with dimensions of 17.5x23.4mm reconstructed with a height sensitivity of 4.1mm, and another with two levels: one half with dimensions of 16.08x12.75mm, and the other half of 19.07x12.75mm; the result was a successfully reconstructed shape, with a height sensitivity of 2.7mm.

  4. Signal tracking approach for phase estimation in digital holographic interferometry.

    PubMed

    Waghmare, Rahul G; Mishra, Deepak; Sai Subrahmanyam, G R K; Banoth, Earu; Gorthi, Sai Siva

    2014-07-01

    In this research work, we introduce a novel approach for phase estimation from noisy reconstructed interference fields in digital holographic interferometry using an unscented Kalman filter. Unlike conventionally used unwrapping algorithms and piecewise polynomial approximation approaches, this paper proposes, for the first time to the best of our knowledge, a signal tracking approach for phase estimation. The state space model derived in this approach is inspired from the Taylor series expansion of the phase function as the process model, and polar to Cartesian conversion as the measurement model. We have characterized our approach by simulations and validated the performance on experimental data (holograms) recorded under various practical conditions. Our study reveals that the proposed approach, when compared with various phase estimation methods available in the literature, outperforms at lower SNR values (i.e., especially in the range 0-20 dB). It is demonstrated with experimental data as well that the proposed approach is a better choice for estimating rapidly varying phase with high dynamic range and noise. PMID:25089973

  5. Feasibility study of three-dimensional holographic interferometry for aerodynamics

    NASA Technical Reports Server (NTRS)

    Craig, J. E.

    1983-01-01

    Laser holographic interferometry was tried as a nonintrusive diagnostic tool for studying unsteady two dimensional flows. A NACA 0012 airfoil was tested, while undergoing dynamic stall, over a range of Mach numbers of 0.3 to 0.5, Reynolds number of 0.5 x 10 to the 6th power to 2 x 10 to the 6th power, and at reduced frequencies of 0.015 to 0.15. It was found that both quantitative and qualitative data could be obtained by the technique. Surface pressures on the airfoil can be measured to within 1% of those measured with orifices and pressure transducers when the flow is attached. Velocity profiles were measured near the wake region, and they compared very well with laser velocimeter data for attached flows. For separated flows with large scale vortices, densities can be measured, but pressures and velocities cannot be deduced with the assumption of constant pressure gradient in the normal direction. The sensitivity of the interferograms was good at a Mach number of 0.4 and a Reynolds number of 4 x 10 to the 6th power/ft; the sensitivity worsened at smaller Mach numbers and Reynolds numbers, and improved at larger ones.

  6. Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity.

    PubMed

    Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen

    2012-05-01

    The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.

  7. Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction.

    PubMed

    Dorrer, C; de Beauvoir, B; Le Blanc, C; Ranc, S; Rousseau, J P; Rousseau, P; Chambaret, J P; Salin, F

    1999-11-15

    We characterize chirped-pulse amplification systems by using spectral phase interferometry for direct electric-field reconstruction. For the first time to the authors' knowledge, single-shot real-time operation has been obtained for this technique, leading to a fast and accurate optimization of these systems.

  8. Welding arc and plasma studies using real time, multipass holographic interferometry

    NASA Technical Reports Server (NTRS)

    Deason, Vance

    1987-01-01

    Flow visualization of the plasma process in a welding arc is being studied with a multipass Argon ion interferometer. High speed movies at 10,000 frames per/sec are taken. The multipass interferometer and several interferograms of the plasma near the electrode of the welding are given. Digitization of the fringes is currently done by hand.

  9. Modulated photoactivation of composite restoration: measurement of cuspal movement using holographic interferometry.

    PubMed

    Blažić, Larisa; Pantelić, Dejan; Savić-Šević, Svetlana; Murić, Branka; Belić, Ilija; Panić, Bratimir

    2011-03-01

    The purpose of this research was to investigate the influence of modulated photoactivation on cuspal movement. Eight class II MOD composite restorations were analyzed under various photoactivation protocols in a real-time manner using holographic interferometry. During the first photoactivation protocol, the composite restoration was illuminated for 200 s continuously. In the second protocol, the polymerization lamp was first turned on for 5 s, then turned off for 120 s, and again turned on for a final 195 s. In both protocols, radiant exposure was the same. A significant decrease (p < 0.05) in cuspal deflection was found for two-step irradiation (average value of total cuspal deflection was 5.03 ± 0.62 µm) compared to continuous irradiation (average value of total cuspal deflection was 5.95 ± 0.65 µm). The two-step photoactivation protocol was found preferable, since it resulted in a significantly lower cuspal deflection (11% lower, compared to the continuous illumination).

  10. Digital holographic interferometry applied to the study of tympanic membrane displacements

    NASA Astrophysics Data System (ADS)

    Hernández-Montes, María del Socorro; Mendoza Santoyo, Fernando; Pérez López, Carlos; Muñoz Solís, Silvino; Esquivel, Jesús

    2011-06-01

    Quantitative studies of the mechanical properties of tympanic membrane (TM) are needed for better understanding of its role in detailed clinical evaluation, its research being of extreme importance because it is one of the most important structures of the middle ear. By finding the membrane's vibration patterns and quantifying the induced displacement it is possible to characterize and determine its physiological status. Digital holographic interferometry (DHI) has proved to be a reliable optical non-invasive and full-field-of-view technique for the investigation of different mechanical parameters of biological tissues, i.e., DHI has demonstrated an ability to detect displacement changes in quasi-real time and without the need to contact the sample's surface under study providing relevant information, such as clinical and mechanical sample properties. In this research fresh tympanic membrane specimens taken from post-mortem cats are subjected to acoustic stimuli in the audible frequency range producing resonant vibration patterns on the membrane, a feature that results in an ideal application for DHI. An important feature of this approach over other techniques previously used to study the tympanic membrane vibrations is that it only requires two images and less hardware to carry out the measurements, making of DHI a simpler and faster technique as compared to other proposed approaches. The results found show a very good agreement between the present and past measurements from previous research work, showing that DHI is a technique that no doubt will help to improve the understanding of the tympanic membrane's working mechanisms.

  11. Quantitative measurement of displacement in photopolymer layers during holographic recording using phase shifting electronic speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Moothanchery, Mohesh; Bavigadda, Viswanath; Upputuri, Paul Kumar; Pramanik, Manojit; Toal, Vincent; Naydenova, Izabela

    2016-03-01

    The aim of this study is to determine the displacement profile due to shrinkage in acrylamide-based photopolymer layer during holographic recording. Using phase shifting electronic speckle pattern interferometry the displacement at each pixel in the image of the object is measured by phase shifting technique so that a complete displacement profile of the object can be obtained. It was observed that the displacement profile is Gaussian and resembles to the profile of the recording beam. We observed an increase in shrinkage from 2 μm at 20 seconds of recording to 7.5 μm after 120 seconds of recording. The technique allows for real time measurement of the shrinkage profile.

  12. Measurement of fluid properties using rapid-double-exposure and time-average holographic interferometry

    NASA Astrophysics Data System (ADS)

    Decker, A. J.

    1984-06-01

    The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed.

  13. Measurement of fluid properties using rapid-double-exposure and time-average holographic interferometry

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1984-01-01

    The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed.

  14. Measurement of fluid properties using rapid-double-exposure and time-average holographic interferometry

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1984-01-01

    The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three-dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed. Previously announced in STAR as N84-21849

  15. Real-time heterodyne imaging interferometry: focal-plane amplitude and phase demodulation using a three-phase correlation image sensor.

    PubMed

    Kimachi, Akira

    2007-01-01

    A method of real-time heterodyne imaging interferometry using a three-phase correlation image sensor (3PCIS) is proposed. It simultaneously demodulates the amplitude and phase images of an incident interference pattern at an ordinary frame rate with good accuracy, thus overcoming the trade-off among measurement time, spatial resolution, and demodulation accuracy suffered in conventional interferometry. An experimental system is constructed with a 64x64 3PCIS camera operated at 30 frames/s and a two-frequency He-Ne laser with a beat frequency of 25 kHz. The results obtained for a scanning mirror and heated silicone oil confirm the proposed method.

  16. Holographic And Speckle Interferometry In The UK A Review Of Recent Developments

    NASA Astrophysics Data System (ADS)

    Robinson, D. W.

    1987-02-01

    From its inception, the technique of holographic interferometry has been continuously developed within the UK. Non-destructive testing (NDT) and metrological applications of holography have grown over the last 20 years, with major contributions coming from NPL, Loughborough University, Rolls Royce Advanced Research Laboratory and many others. More recently the technique of Electronic Speckle Pattern Interferometry (Electro-Optic Holography) has added to the list of available methods and given a spur to holographic metrology in industry. This paper will review recent developments within the UK, in optical systems and data analysis techniques (for both holographic and speckle interferometry). These are promising to provide the mechanical engineer with commercial products based on automated non-contacting optical measurement systems, for applications in industrial design and testing. Important developments include the use of fibre optics, CCD cameras, speckle averaging, heterodyning, 3-D deformation and strain measurement, together with a range of fringe analysis techniques. These will be discussed within the context of typical applications of holographic interferometry in the UK. Finally a view to the future will be given.

  17. Holographic and speckle interferometry in the UK - A review of recent developments

    NASA Astrophysics Data System (ADS)

    Robinson, D. W.

    Advances in metrological and NDT applications of holographic and speckle technology in the UK during the period 1982-1987 are reviewed and illustrated with sample images. Topics discussed include vibrational studies of turbine blades, laser holography with fiber-optic beam paths, studies of heat transfer in film-cooled gas turbines, holographic strain measurement, electronic speckle interferometry for vibration analysis in the automotive industry, and direct observation of in-plane strain in high-speed rotating components. Consideration is given to data-analysis methods based on intensity patterns, phase measurements (using three or more interferograms), and pseudophase measurements (using one interferogram and Fourier transforms).

  18. Mechanical Reaction Of Human Skull Bones To External Load Examined By Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Podbielska, Halina; von Bally, Gert; Kasprzak, Henryk

    1988-01-01

    Holographic interferometry was used to study the mechanical properties of human calvaria samples taken from macerated skulls. Deformations caused by static loading as well as their derivative functions are calculated from the recorded holographic interferograms. Elliptically shaped interference fringe patterns indicate the.generation of a shallow funnel around the point of force introduction. The lowest point of this impression is shifted sagittally in anterior direction with increased load. The load deformation curve is nonlinear before entering a linear range, demonstrating that in this experiment the calvaria can be regarded as a so called Kelvin body.

  19. [Holographic analysis of displacement of the bovine cornea after disruption of intact structures].

    PubMed

    Förster, W; Kasprzak, H; von Bally, G; Busse, H

    1992-12-01

    Displacement of the surface of the cornea of bovine eyes after disruption of intact structures was investigated by means of holographic interferometry. Double-T-incisions of different depths were made with a diamond knife. Starting at about 80% of the incision depth there is a change in the central holographic interference fringe pattern. These effects can be clearly demonstrated by means of double-exposure holographic interferometry and real-time holographic interferometry. The stability of an existing corneal scar was analyzed by double-exposure holographic interferometry. The region of the scar showed a higher density of holographic interference fringes compared with the non-affected corneal areas, indicating a higher degree of elasticity. All eyes were investigated at an intraocular pressure of 1340 Pa (about 10 mmHg) and an intraocular pressure change of 10 Pa and 20 Pa. Further potential ophthalmic applications of holographic interferometry are discussed.

  20. Characterization of drying paint coatings by dynamic speckle and holographic interferometry measurements.

    PubMed

    Budini, N; Mulone, C; Balducci, N; Vincitorio, F M; López, A J; Ramil, A

    2016-06-10

    In this work we implemented dynamic speckle and holographic interferometry techniques to characterize the drying process of solvent-based paint coatings. We propose a simple way to estimate drying time by measuring speckle activity and incrementally fitting experimental data through standard regression algorithms. This allowed us to predict drying time after about 20-30 min of paint application, which is fast compared to usual times required to reach the so-called tack-free state (≈2  h). In turn, we used holographic interferometry to map small thickness variations in the coating surface during drying. We also demonstrate that results obtained from both techniques correlate with each other, which allows us to improve the accuracy of the drying time estimation. PMID:27409029

  1. Temperature measurement of an axisymmetric flame using phase shift holographic interferometry with fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Tieng, S. M.; Lai, W. Z.

    Because of the importance of the temperature scalar measurements in combination diagonostics, application of phase shift holographic interferometry to temperature measurement of an axisymmetrically premixed flame was experimentally investigated. The test apparatus is an axisymmetric Bunsen burner. Propane of 99 percent purity is used as the gaseous fuel. A fast Fourier transform, a more efficient and accurate approach for Abel inversion, is used for reconstructed the axisymmetric temperature field from the interferometric data. The temperature distribution is compared with the thermocouple-measured values. The comparison shows that the proposed technique is satisfactory. The result errors are analyzed in detail. It is shown that this technique overcomes most of the earlier problems and limitations detrimental to the conventional holographic interferometry.

  2. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection.

    PubMed

    Zhang, Jiwei; Di, Jianglei; Li, Ying; Xi, Teli; Zhao, Jianlin

    2015-10-19

    We present a method for dynamically measuring the refractive index distribution in a large range based on the combination of digital holographic interferometry and total internal reflection. A series of holograms, carrying the index information of mixed liquids adhered on a total reflection prism surface, are recorded with CCD during the diffusion process. Phase shift differences of the reflected light are reconstructed exploiting the principle of double-exposure holographic interferometry. According to the relationship between the reflection phase shift difference and the liquid index, two dimensional index distributions can be directly figured out, assuming that the index of air near the prism surface is constant. The proposed method can also be applied to measure the index of solid media and monitor the index variation during some chemical reaction processes. PMID:26480394

  3. A comparison of electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry for flow measurements

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Stricker, J.

    1985-01-01

    Electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry are compared as methods for the accurate measurement of refractive index and density change distributions of phase objects. Experimental results are presented to show that the two methods have comparable accuracy for measuring the first derivative of the interferometric fringe shift. The phase object for the measurements is a large crystal of KD*P, whose refractive index distribution can be changed accurately and repeatably for the comparison. Although the refractive index change causes only about one interferometric fringe shift over the entire crystal, the derivative shows considerable detail for the comparison. As electronic phase measurement methods, both methods are very accurate and are intrinsically compatible with computer controlled readout and data processing. Heterodyne moire is relatively inexpensive and has high variable sensitivity. Heterodyne holographic interferometry is better developed, and can be used with poor quality optical access to the experiment.

  4. Dynamic measurement by digital holographic interferometry based on complex phasor method

    NASA Astrophysics Data System (ADS)

    Tay, C. J.; Quan, C.; Chen, W.

    2009-03-01

    In this paper, complex phasor (CP) method is employed in digital holographic interferometry. Unlike commonly used digital phase subtraction (DPS), the proposed technique processes a CP instead of phase. It is shown that the results obtained by directly filtering the phase produce large errors. It is demonstrated that the phase is not a signal but rather a property of a signal. In addition, the results obtained by the CP method are also compared with those obtained by conventional sine/cosine transformation method.

  5. Combined implementation of holographic and speckle interferometry for comparative local stress analysis at different vibration modes

    NASA Astrophysics Data System (ADS)

    Novikov, Sergey A.; Pisarev, Vladimir S.; Dzuba, Alexander S.; Grigoriev, Vladimir D.

    1998-09-01

    New capability of combined application of time-averaged holographic interferometry and defocused speckle photography, allowing us a comparative analysis of local stresses corresponding to different vibration modes, is considered. The main aspects of the technique developed are illustrated by using as an example bending oscillations of thin square plate with a large central circular hole. Experimental results are compared with corresponding numerical data obtained by means of the MSC/NASTRAN software.

  6. Measurement technique for determining the temperature distribution in a transparent solid using holographic interferometry.

    PubMed

    Ito, A; Kashiwagi, T

    1987-03-01

    Temperature distributions in transparent solids have been determined by measurements of changes in the refractive index of the sample using a holographic interferometry technique. The steady-state temperature distributions within two samples, fused silica and polymethyl methacrylate (PMMA), were measured to demonstrate the technique. Various errors in the measured temperature distribution caused by refraction and heat losses from the sample are discussed and estimated.

  7. Measurement of a three-dimensional hypersonic density field using holographic interferometry

    NASA Astrophysics Data System (ADS)

    Doerr, Stephen Eugene

    1990-08-01

    The objective of this work was to develop a holographic interferometry system to measure and analyze density distributions about a generic maneuvering reentry vehicle in a hypersonic wind tunnel. This data is needed to understand the flow physics better so that accurate models of the processes that govern the dynamics and thermodynamics of the flow can be developed and validated. A dual-plate holographic interferometry system, providing full-field, non-intrusive measurements, was developed to acquire data at a given projection angle. The phase of the modulated laser wave was determined from the interferograms using a digital phase shifting method with a measurement resolution of 100 microns. Cross sectional distributions were then recovered from the phase measurements using an algebraic reconstruction technique. The data base obtained consisted of a series of density distributions at axial locations of interest. The interferometric data was supplemented with surface measurements, schlieren and oil flow photographs. Analysis of the data showed an extensive region of separated flow around the control surfaces, resulting in loss of control effectiveness and severe localized heating, which could not be modeled by the computational solution used for comparison. Holographic interferometry was shown to be a viable measurement technique for obtaining accurate, 3D density distributions in a hypersonic wind tunnel.

  8. Holographic interferometry and tomography at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, G.

    1982-01-01

    A YAG laser holographic interferometer system and reconstruction laboratory for the Ames 2- by 2-Foot Transonic Wind Tunnel are discussed. This system provides dual plate and double pulse holography for quantitative and qualitative measurements, respectively. Interferometric measurements of two-dimensional airfoils and three-dimensional bodies of revolution for a tomography feasibility study were made. The two-dimensional work included supercritical airfoils, an oscillating airfoil undergoing dynamic stall, and a circulation control airfoil. The tomography experiments centered around hemispherical nose and tangent ogive models. In addition, the tomography work covered the development of a Fourier transform code for the retrieval of the three dimensional density distributions from the interferograms.

  9. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  10. Double-exposure phase calculation method in electronic speckle pattern interferometry based on holographic object illumination

    NASA Astrophysics Data System (ADS)

    Séfel, Richárd; Kornis, János

    2011-08-01

    Multiple-exposure phase calculation procedures are widely used in electronic speckle pattern interferometry to calculate phase maps of displacements. We developed a double-exposure process based on holographic illumination of the object and the idea of the spatial carrier phase-shifting method to examine transient displacements. In our work, computer-generated holograms and a spatial light modulator were used to generate proper coherent illuminating masks. In this adjustment all phase-shifted states were at our disposal from one recorded speckle image for phase calculation. This technique can be used in the large scale of transient measurements. In this paper we illustrate the principle through several examples.

  11. Multiple phase estimation in digital holographic interferometry using product cubic phase function

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2013-10-01

    Digital holographic interferometry (DHI) involves multi-directional illumination of an object to measure the in-plane and out-of plane displacements simultaneously. This results in multiple interference phases which have to be reliably estimated. The paper proposes a method where the interference field is represented as sum of multicomponent quadratic phase signal. Subsequently, product cubic phase function (PCPF) is used to estimate the quadratic coefficients. Using these coefficients multiple interference phases are estimated. The applicability of this method in DHI is demonstrated with simulation results.

  12. Holographic Interferometry Applied To External Osteosynthesis : Comparative Analysis Of The Performances Of External Fixation Prototypes

    NASA Astrophysics Data System (ADS)

    Jacquot, Pierre; Rastogi, Pramod K.; Pflug, Leopold

    1983-10-01

    The use of external osteosynthesis in the healing and the management of fractured bones is in rapid progression. The method employs an external rigid frame which is mounted to keep the fractured bones in state of immobilisation by means of percutaneous transfixing pins traversing the bones. In this paper, holographic interferometry is used to investigate the mechanical behaviour of the ball-joint - a central element in the fixation frame - sub-jected to realistic loads. Besides, the work has permitted to compare several models of this piece (of comparable handiness) as to their characteristics of rigidity and of resistance to slipping.

  13. Real-time high-resolution vascular ultrasound using frequency domain interferometry with the ROI-division process.

    PubMed

    Taki, Hirofumi; Sakamoto, Takuya; Taki, Kousuke; Yamakawa, Makoto; Shiina, Tsuyoshi; Kudo, Motoi; Sato, Toru

    2013-01-01

    We have proposed a high-range-resolution ultrasound imaging method for human carotid artery using an adaptive beamforming technique based on frequency domain interferometry (FDI). The method assumes that the received signal consists of multiple echoes of targets and noise, where the waveform of each echo is similar to that of the reference signal. In this study, we examine the dependence of the echo waveform on the target depth, and investigate the proper measurement-range for the FDI imaging method using a reference signal. Furthermore, we propose a ROI-division process, where each sub-ROI has a proper measurement-range for the application of the FDI imaging method. Simulation and experimental results show the efficiency of the ROI-division process in improving the image quality of human carotid artery acquired using the FDI imaging method. We believe that the modified FDI imaging method with the ROI-division process has the potential to facilitate significant progress in the detection of vessel stenosis and in the assessment of cardiovascular disease risk.

  14. Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry

    SciTech Connect

    Wu, Bingjing; Zhao, Jianlin Wang, Jun; Di, Jianglei; Chen, Xin; Liu, Junjiang

    2013-11-21

    We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipation performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.

  15. Real-Time Detection and Tracking of Vital Signs with an Ambulatory Subject Using Millimeter-Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Mikhelson, Ilya V.

    Finding a subject's heart rate from a distance without any contact is a difficult and very practical problem. This kind of technology would allow more comfortable patient monitoring in hospitals or in home settings. It would also allow another level of security screening, as a person's heart rate increases in stressful situations, such as when lying or hiding malicious intent. In addition, the fact that the heart rate is obtained remotely means that the subject would not have to know he/she is being monitored at all, adding to the efficacy of the measurement. Using millimeter-wave interferometry, a signal can be obtained that contains composite chest wall motion made up of component motions due to cardiac activity, respiration, and interference. To be of use, these components have to be separated from each other by signal processing. To do this, the quadrature and in-phase components of the received signal are analyzed to get a displacement waveform. After that, processing can be done on that waveform in either the time or frequency domains to find the individual heartbeats. The first method is to find the power spectrum of the displacement waveform and to look for peaks corresponding to heartbeats and respiration. Another approach is to examine the signal in the time domain using wavelets for multiresolution analysis. One more method involves studying the statistics of the wavelet-processed signal. The final method uses a heartbeat model along with probabilistic processing to find heartbeats. For any of the above methods to work, the millimeter-wave sensor has to be accurately pointed at the subject's chest. However, even small subject motions can render the rest of the gathered data useless as the antenna may have lost its aim. To combat this, a color and a depth camera are used with a servo-pan/tilt base. My program finds a face in the image and subsequently tracks that face through upcoming frames. The pan/tilt base adjusts the aim of the antenna depending on

  16. The use of holographic interferometry for measurements of temperature in a rectangular heat pipe. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Marn, Jure

    1989-01-01

    Holographic interferometry is a nonintrusive method and as such possesses considerable advantages such as not disturbing the velocity and temperature field by creating obstacles which would alter the flow field. These optical methods have disadvantages as well. Holography, as one of the interferometry methods, retains the accuracy of older methods, and at the same time eliminates the system error of participating components. The holographic interferometry consists of comparing the objective beam with the reference beam and observing the difference in lengths of optical paths, which can be observed during the propagation of the light through a medium with locally varying refractive index. Thus, change in refractive index can be observed as a family of nonintersecting surfaces in space (wave fronts). The object of the investigation was a rectangular heat pipe. The goal was to measure temperatures in the heat pipe, which yields data for computer code or model assessment. The results were obtained by calculating the temperatures by means of finite fringes.

  17. An experimental investigation of circulation control flow fields using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1982-01-01

    Experiments are presented which were conducted on flow fields produced by a circulation control airfoil utilizing the Coanda effect at the trailing edge. The application of holographic interferometry to obtain both visualization and quantitative data on the flow field about a circulation control airfoil at transonic flow speed is covered. A brief description of the flow model and measurement techniques is given. The data reduction procedure, results, and interpretation are presented. The results have provided a good deal of information on the character of the flow field, particularly in the neighborhood of the trailing edge. As to the airfoil design, it is apparent that improved performance can be achieved if jet detachment is delayed. Another design improvement would involve the development of an optimum trailing-edge shape for the expected operating Mach and Reynolds number ranges.

  18. On the digital holographic interferometry of fibrous material, I: Optical properties of polymer and optical fibers

    NASA Astrophysics Data System (ADS)

    Yassien, K. M.; Agour, M.; von Kopylow, C.; El-Dessouky, H. M.

    2010-05-01

    Digital holographic interferometry (DHI) was utilized for investigating the optical properties of polymer and optical fibers. The samples investigated here were polyvinylidene fluoride (PVDF) polymer fiber and graded-index (GRIN) optical fiber. The phase shifting Mach-Zehnder interferometer was used to obtain five phase-shifted holograms, in which the phase difference between two successive holograms is π/2, for each fiber sample. These holograms were recorded using a CCD camera and were combined to gain the complex wavefield, which was numerically reconstructed using the convolution approach into amplitude and phase distributions. The reconstructed phase distribution was used to determine the refractive index, birefringence and refractive index profile of the studied samples. The mean refractive index has been measured with an accuracy up to 4×10 -4. The main advantage of DHI is to overcome the manual focusing limitations by means of the numerical focusing. The results showed accurate measurements of the optical properties of fibers.

  19. Visualization of marginal integrity of resin-enamel interface by holographic interferometry.

    PubMed

    Panduric, Vlatko; Demoli, Nazif; Tarle, Zrinka; Sariri, Kristina; Mandic, Visnja Negovetic; Knezevic, Alena; Sutalo, Jozo

    2007-01-01

    This study determined whether it was possible to detect deformations and fractures in dental hard tissues or in composite material from internal stresses using double-exposure holographic interferometry. On the proximal side of eight intact human permanent premolars, a direct Class II cavity was prepared and restored with a self-etching adhesive (Clearfil SE Bond) and Tetric Ceram, a resin composite. In five of the specimens, Tetric Flow was used as an elastic layer. The samples were illuminated using a helium-neon laser beam, and the holograms of samples were recorded using Agfa 10E75 photographic plates. Hologram reconstructions were captured with an 8-bit monochrome CCD camera and qualitatively analyzed. Deformations and fractures appeared as fringe patterns on all interferograms, where the distribution of fringes provided location information, while the density of fringes gave the amplitude information. Greater fringe densities were observed in samples treated without a flowable composite. PMID:17555178

  20. Measurement of temperature and temperature distribution in gaseous flames by digital speckle pattern shearing interferometry using holographic optical element

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Shakher, Chandra

    2015-10-01

    Digital speckle pattern lateral shear interferometry (DSPSI) based on volume phase holographic grating for the measurement of temperature and temperature distribution in candle flames is presented. The DSPSI setup uses the volume phase holographic grating combined with ground glass to shear the wavefronts. The shear of the two wavefronts is controlled by the distance between volume phase holographic grating and the ground glass. The sheared wavefronts on the ground glass are imaged onto the CMOS detector by an imaging lens. Two specklegrams are recorded corresponding to the absence of the flame and the presence of the flame. The fringe pattern is observed by subtracting these two specklegrams. A single fringe pattern was used to extract phase by the application of Riesz transform and the monogenic signal. The measured values of the temperature of the candle flame by DSPSI is compared with that of R-type Platinum-Platinum Rhodium thermocouple and the results are well within experimental limits.

  1. Modal analysis by holographic interferometry of a turbine blade for aircraft engines

    NASA Astrophysics Data System (ADS)

    Caponero, Michele A.; De Angelis, Alberto; Filetti, V. R.; Gammella, S.

    1994-11-01

    Within the planning stage devoted to realize an innovative turbine for an aircraft engine, an experimental prototype has been made. Several measurements have been carried out to experimentally verify the expected structural and dynamic features of such a prototype. Expected properties were worked out by finite elements method, using the well-known Nastran software package. Natural frequencies and vibration modes of the designed prototype were computed assuming the turbine being in both `dynamic condition' (rotating turbine at running speed and temperature), and in `static condition' (still turbine at room temperature). We present the experimental modal analysis carried out by time average holographic interferometry, being the prototype in `static condition;' results show the modal behavior of the prototype. Experimental and computed modal features are compared to evaluate the reliability of the finite elements model of the turbine used for computation by the Nastran package; reliability of the finite elements model must be checked to validate results computed assuming the turbine blade is in hostile environments, such as `dynamic condition,' which could hardly be tested by experimental measurements. A piezoelectric transducer was used to excite the turbine blade by sine variable pressure. To better estimate the natural vibration modes, two holographic interferograms have been made for each identified natural frequency, being the sensitivity vector directions of the two interferograms perpendicular to each other. The first ten lower natural frequencies and vibration modes of the blade have been analyzed; experimental and computed results are compared and discussed. Experimental and computed values of natural frequencies are in good agrement between each other. Several differences are present between experimental and computed modal patterns; a possible cause of such discrepancies is identified in wrong structural constraints imposed at nodes of the finite elements

  2. Determination of curvature and twist of deformed object by digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Quan, C.; Chen, W.; Tay, C. J.

    2008-11-01

    This paper describes a feasibility study of digital holographic interferometry for the measurement of curvature and twist of a deformed object. Measurement of curvature and twist is an important aspect in experimental mechanics. Numerous methods have been proposed to determine the curvature and twist by using digital shearography. We proposed a novel method to determine curvature and twist based on digital holography (DH) and complex phasor (CP). In the conventional methods, phase difference between the first and second states is obtained directly by digital phase subtraction (DPS) and Fourier transform is then employed to extract phase maps. In this study, CP method is proposed to improve the quality of phase maps corresponding to second-order derivatives. Subsequently, sine/cosine transformation and short time Fourier transform (STFT) are employed to process the wrapped phase maps. An experiment is conducted on a clamped circular plate under a point load at centre. The experimental results show that the proposed method is valid and able to obtain high quality phase maps corresponding to curvature and twist of a deformed object.

  3. Z-pinch equilibrium and instability analysis with digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Ross, M. P.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Hughes, M. C.; Claveau, E. L.; Weed, J. R.; Forbes, E. G.; Doty, S. A.; Kim, B.

    2015-11-01

    The ZaP-HD Flow Z-Pinch project generates flow shear stabilized Z-pinches, providing a platform to explore how such plasmas could scale to HEDP and fusion reactor conditions. To scale up the plasma's density and temperature, it must be compressed to a smaller size making measurements more difficult. Digital holographic interferometry (DHI) employing a pulsed Nd:YAG laser and consumer DSLR camera can spatially resolve the plasma's electron density. The Fresnel reconstruction method allows expedient numerical data reconstruction. Obtaining electron density radial profiles relies on applying an Abel inversion to convert measured line-integrated density, and the inversion process provides an independent measure of plasma symmetry. Entire Z-pinch equilibria (n, P, T, and B profiles) can be computed by applying physical models to the density data. Tracking the time evolution of pressure and density can reveal the presence of non-adiabatic heating mechanisms. Imaging the size scales of instabilities enables relative measures of viscosity at different positions and times. Error estimation of measured density profiles is presented along with observed asymmetric instabilities. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  4. Comparison of digital holographic interferometry and constant temperature anemometry for measurement of temperature field in fluid

    NASA Astrophysics Data System (ADS)

    Doleček, Roman; Psota, Pavel; Lédl, Vít.; Vít, Tomáś; Dančová, Petra; Kopecký, Václav

    2015-05-01

    The presented paper shows possibility of using digital holographic interferometry (DHI) for temperature field measurement in moving fluids. This method uses a modified Twymann-Green setup having double sensitivity instead of commonly used Mach-Zehnder type of interferometer in order to obtain sufficient phases change of the field. On the other hand this setup is not light efficient as Mach-Zehnder interferometer. For measurement of the fast periodical phenomenon is not necessary to use always the high speed camera. One can consider this field to coherent phenomenon. With employing one digital camera synchronized to periodic field and external triggered one can capture whole period of the phenomenon. However the projections form one viewing direction of asymmetrical temperature field maybe misguided. Hence for sufficient examination of the asymmetrical field one should capture a large number of the phenomenon's projections from different viewing directions. This projections are later used for 3D tomographic reconstruction of the whole temperature field and its time evolution. One of the commonly used method for temperature field measurement in moving fluids is hot wire method - constant temperature anemometry (CTA). In contrast to whole field measurement of DHI it is an invasive point temperature measurement method. One of the limiting factor of using CTA in moving fluids is frequency of temperature changes. This changes should not exceed 1 kHz. This limitation could be overcome by using of optical methods such as DHI. The results of temperature field measurement achieved by both method are compared in the paper.

  5. Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis

    2015-08-01

    In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.

  6. Optomechatronic prototype based on digital holographic interferometry aimed to the study of biological tissues

    NASA Astrophysics Data System (ADS)

    Alcaráz Gutiérrez, Alejandro; Del Socorro Hernández-Montes, María; Mendoza Santoyo, Fernando; Muñoz, Silvino

    2011-08-01

    This paper presents the preliminary stages of the development of a compact optomechatronic prototype for the characterization and study of biological tissues in full field of view. The system is based on the optical non invasive technique known as digital holographic interferometry (DHI), which allows displacement measurements in the micrometer range, a key feature for the study of biological tissues. An ad-hoc optomechanical design contemplates a sturdy system yet compact that renders high quality images able to generate new data about the biological tissues under study. These data contain quantitative and qualitative information of tissue mechanical parameters. The DHI results are presented as fringe phase maps related to tissue surface displacements, showing that the proposed prototype provides non invasive information pertaining to the mechanical characteristics of the tissue which can be used later to diagnose certain tissue pathologies. The use of this prototype in the biomedical area may be thought of as a new and complementary tool for the study and research in full field of view that may even be used in conditions outside the laboratory.

  7. Holographic interferometry as a method to detect welding failures on ribbed iron structures

    NASA Astrophysics Data System (ADS)

    Vincitorio, F. M.; Budini, N.; Mulone, C.; Freyre, C.; Spector, M.; López Díaz, A. J.; Ramil Rego, A.; Yañez Casal, A.

    2013-11-01

    Metallic structures made of ribbed iron bars (ADN-420) are of common use in sheds and supporting structures. Usually, trusses are constructed with many pieces of ribbed iron bars, combined together through a welding process. Although ribbed iron manufacturers do not recommend this type of structure it is still frequently used. The main weakness of these trusses is the welding point because ribbed iron is not a material suitable for welding. This work presents results obtained from an analysis of welding points between ribbed iron bars extracted from a collapsed truss, by means of conventional (optical) and digital holographic interferometry (HI and DHI, respectively). The experiments were divided in two different series of studies. The first series were performed by HI on metallographic samples while the second series were done by DHI on different welding points. These results were complemented by metallographic analysis made in an external laboratory. DHI indicated that the bars did not have important failures but evidenced defects in one of the welding points under analysis. This information together with metallographic results allowed inferring that the collapse was probably due to an error in the design of the structure, since the iron bars were out of standard compliance.

  8. 3D digital holographic interferometry as a tool to measure the tympanic membrane motion

    NASA Astrophysics Data System (ADS)

    del Socorro Hernández-Montes, M.; Muñoz Solis, S.; Mendoza Santoyo, F.

    2012-10-01

    Most of the current optical non-invasive methodologies used to characterize the tympanic membrane (TM) motion generate data in the z direction only, i.e., employ an out-of-plane sensitive configuration. In this paper, 3-D digital holographic interferometry (3-D DHI), is used to measure micrometer displacements from the TM surface. The proposed optical configuration provides information from three sensitivity vectors that separate the contributions from x, y and z displacement components. In order to achieve high accuracy of the sensitivity vector and to obtain the complete determination of the 3-D TM displacements, its surface contour is obtained by moving only two object illumination sources chosen from any pair within the DHI optical setup. Results are presented from measurements corresponding to individual displacements maps for the three orthogonal displacements components x, y and z combined with the TM shape from an ex-vivo cat. These results will no doubt contribute to enhance the understanding and determinate the mechanical properties of this complex tissue.

  9. Experimental Study of Heat Transfer of Parallel Louvered Fins through Laser Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yasuo; Kashiwagi, Takao; Kobayashi, Hiroki; Uzuhashi, Hideo; Tang, Xue-Zhong

    The objectives of this paper are experimentally to study the detail of heat transfer in louver-array and to propose the preferable geometrical arrangement of louver from the point of view of improving the performance of heat exchanger. Our approach toward that goal was made via the following steps. The first step in the present study is optically to visualize the temperature field around louvers by employing the primitive heated flat louver model consisting of thin bakelite plate and thin Nichrome foil as a heater, and to measure the heat transfer coefficients of the louvers. Our experiment achieved to visualize the isotherms through the Laser holographic interferometry. The clear isotherms for various louver arrangements were successfully obtained. The thermal boundary layer and wake generated by an upstream louver were clearly observed to extend toward downstream ones ; the heat transfer coefficients obtained by the experiment were virtually affected by those boundary layers and wakes. The second step is to examine the plausible arrangement of louver for enhancing heat transfer. The slight position shift of downstream louvers toward the direction avoiding the influence of heated air wake was proposed from both the observation of isotherms and the measurement of heat transfer coefficients in staggered louver array ; its effectiveness was varified by the experiment. The improvement of the performance of heat exchanger is expected by applying the proposed minor rearrangement of louver array for enhanced fins.

  10. Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry.

    PubMed

    Kumar, Manoj; Shakher, Chandra

    2016-02-10

    In this paper, an application of digital holography for the measurement of surface deformations and the strain field to understand the shrinkage behavior of wood during convective drying is presented. Moisture absorption and desorption induce the dimensional changes and deformations in wood that leads to failure of certain components made of wood. The knowledge of the dimensional changes in wood, deformations, strain distribution and their causes are important for the best utilization of wood. For the study, lensless Fourier transform digital holographic interferometry is used to measure moisture- induced deformation, strain distribution, and the coefficient of hygroscopic shrinkage in different samples of wood. The technique is highly sensitive and enables the observation of deformation and strain distribution during the variations of moisture content in the wood. The wet wood sample was exposed to convective drying, which leads to changes in the moisture content and the associated deformations. The deformation/strain in each step of drying process is used to evaluate the coefficient of hygroscopic shrinkage in different wood samples. The experiments were repeated for differently treated woods. The experimental results show that the strain and coefficient of hygroscopic shrinkage can be minimized if the wood is dried in the presence of the proper moisture content. PMID:26906359

  11. Laser optical interferometry for electric gas discharge diagnosis

    NASA Astrophysics Data System (ADS)

    Ralea, Mihai F.; Rosu, Nicu; Popescu, Ion M.; Iova, Iancu; Paraschiv, R.; Mircea, D.

    1995-03-01

    A new double-differential method based on holographic interferometry in real time with references fringes for the determination of gas parameters in cylindrical tubes is presented. By studying the interferograms one gets a graphical recording of the radial distribution of the refraction index of the gas in any region of the tube at a given time, as well as their axial distribution.

  12. A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang

    2015-04-01

    A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.

  13. Spatio-temporal experiments of volume elastic objects with high speed digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Pérez López, C.; Hernández Montes, M. S.; Mendoza Santoyo, F.; Gutiérrez Hernandez, D. A.

    2011-08-01

    The optical non-destructive digital holographic interferometry (DHI) technique has proven to be a powerful tool in measuring vibration phenomena with a spatial resolution ranging from a few hundreds of nanometers to tens of micrometers. With the aid of high speed digital cameras it is possible to achieve simultaneously spatial and temporal resolution, and thus capable of measuring the entire object mechanical oscillation trajectory from one to several cycles. It is important to mention that due to faster computers with large data storage capacity there is an increasing interest in applying numerical simulation methods to mimic different real life objects for example, in the field of modern elastic materials and biological systems. The complex algorithms involved cannot render significant results mainly due to the rather large number of variables. In order to test these numerical simulations some experiments using optical techniques have been designed and reported. This is very important for example in measurements of the dynamic elastic properties of materials. In this work we present some preliminary results from experiments that use DHI to measure vibrations of an elastic spherical object subject to a mechanical excitation that induces resonant vibration modes in its volume. We report on the spatial and temporal effects that by their nature have a non-linear mechanical response. The use of a high speed CMOS camera in DHI assures the measurement of this nonlinear behavior as a sum of linear effects that happen during very short time lapses and with very small displacement amplitudes. We conclude by stating that complex numerical models may be compared to results using DHI, thus proposing an alternative method to prove and verify the mathematical models vs. real measurements on volumetric elastic objects.

  14. Experimental research on thermocapillary migration of drops by using digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, Shuoting; Duan, Li; Kang, Qi

    2016-07-01

    The thermocapillary migration of drops in a rectangular cell, with a heated top wall and a cooled bottom wall, was investigated experimentally on the ground. The rectangular test cell was 70 mm high, with a horizontal cross section of 40 mm × 40 mm. In the present experiment, 30 cSt silicon oil was used as the continuous phase, and a water-ethanol mixture was used as the drop phase, respectively. The drops ranged in size from 1.87 to 6.94 mm in diameter and were injected into the continuous phase, where the temperature gradients ranged from 0.193 to 0.484 °C mm-1. In order to measure the temperature distribution of the liquid, a digital holographic interferometry was used, which was non-contact, full-field, and in-situ. The holograms were recorded, and then the corresponding wrapped phase distributions images were numerically reconstructed. The temperature distribution of the continuous phase liquid in the cell had been obtained following the unwrapping. Also, through an algebra layer analysis, the temperature distribution around the drop during the thermocapillary migration was obtained. As a result, the drop was colder than the continuous phase liquid, and a thermal wake existed behind the drop. The influence of convective transport on the drop migration was also investigated for the Marangoni number in the range of 7-174. With the increasing of the Marangoni number, the dimensionless interface temperature difference decreased, which was caused by the convective transport enhanced results in the drop thermocapillary migration velocity becoming decreased. The data were compared with previous space experiments to explain the phenomena of the drop migration. Finally, with the increasing Marangoni numbers, the length of the thermal wake region increased, and the thermal wake region became extended.

  15. SU-E-T-196: Heat Diffusion Modeling for Digital Holographic Interferometry Dosimetry

    SciTech Connect

    Cavan, A; Meyer, J

    2014-06-01

    Purpose: We have previously demonstrated that with Digital Holographic Interferometry (DHI) 2D spatial calorimetric measurements of high dose rate radiation sources can be obtained. The impact of heat transfer must be considered when undertaking any form of calorimetric measurement, as the radiation induced temperature distributions are subject to degradation due to heat diffusion. Unaccounted for, this limits the accuracy of the approach especially for long delivery times. Methods: 3D modelling of the heat diffusion in water was undertaken, and two different approaches developed to account for this effect. The mathematical framework to describe heat diffusion in 3D was applied, with the differential equations solved numerically using an implicit method. The first approach involved the comparison of the DHI measurements to an independent dose model of the source. The model was forward modeled to account for the heat diffusion during irradiation, allowing a direct comparison to validate the measured results. The second approach involved the correction of the measured data directly, by comparing the temperature distribution of two instances and subtracting the effects of heat diffusion of the first distribution from the second instance. This required the use of the Abel transform to approximate the 3D dose distribution from the 2D DHI results, thus limiting the approach to radiation applications possessing cylindrical symmetry. Results: The first approach resulted in higher accuracy and was more straightforward, but has a major limitation in that the measured results are only able to be utilized in comparison with an independent dose model. The applicability of the second approach is affected by noise in the measurement data and introduces higher uncertainties, but results in higher usability of the final data. Conclusion: Both approaches were implemented, and if used in conjunction would provide the most utility for the interpretation and use of DHI measurements.

  16. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry

    SciTech Connect

    Cavan, Alicia; Meyer, Juergen

    2014-02-15

    Purpose: To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. Methods: The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. Results: The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ±3.45 Gy (corresponding to an uncertainty in the temperature value of ±8.3 × 10{sup −4} K). The relative dose fall off was in agreement with treatment planning system modeled data. Conclusions: First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10{sup −5} m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  17. Comparison of the results of refractometric measurements in the process of diffusion, obtained by means of the backgroundoriented schlieren method and the holographic interferometry method

    NASA Astrophysics Data System (ADS)

    Kraiskii, A. V.; Mironova, T. V.

    2015-08-01

    The results of the study of interdiffusion of two liquids, obtained using the holographic recording scheme with a nonstationary reference wave with the frequency linearly varying in space and time are compared with the results of correlation processing of digital photographs, made with a random background screen. The spatio-temporal behaviour of the signal in four basic representations ('space - temporal frequency', 'space - time', 'spatial frequency - temporal frequency' and 'spatial frequency - time') is found in the holographic experiment and calculated (in the appropriate coordinates) based on the background-oriented schlieren method. Practical coincidence of the results of the correlation analysis and the holographic double-exposure interferometry is demonstrated.

  18. NDT testing by holographic interferometry applied to the structural diagnostic of artwork conservations by means of sound wave excitation

    NASA Astrophysics Data System (ADS)

    Vincitorio, Fabio; Ramil, Alberto; López, Ana J.; Saavedra, Emilio; Yáñez, Armando

    2008-06-01

    Techniques based on holographic interferometry have achieved a mature state of non destructive testing applications in industry and nowadays they are rising as interesting and promising tools in the field of conservation practices; giving information about the condition of structural integration of artworks. In the practice of these techniques it is necessary to generate a relative deformation in the object under study. Depending of the characteristics of the artwork, different methods may be used to achieve the desired displacement; being thermal excitation by means of filament lamps and wave sounds generated by speakers the most common. By applying these methods the deformation process usually involves a large area of the object, which limits the information obtained of a finite region. However, the use of a wave sound emitter of small dimensions, like a low power monotone buzzer, allows to decrease the affected area and to obtain information about the structural integrity of localized points of the surface. In the present study conventional double exposure double way holographic technique based on holographic films was used to obtain an out of plain deformation pattern caused by a sound emitter in an oil painting which has suffered heavy structural damage. Optimization of the excitation sound wave characteristics (frequency and amplitude) and the adjustment and calibration of the experimental set up, in order to obtain precise information about the physical and mechanical integrity of localized points of the painting are reported.

  19. Real-Time Moire Holography

    NASA Astrophysics Data System (ADS)

    Soares, O. D. D.; Lage, A. I. V. S.

    1986-08-01

    Interferometric techniques including hologrametry, both classical and electronic, present high sensitivity making difficult its practical use in real-time. The introduction of the differencial concept as moire evaluation techniques permits to use with advantage an arbitrary reference pattern within the correlation range. The carrier spatial spectrum can be directly the interferogram fringe pattern instead of the original interference pattern of wavelength dimensional scale. A moire techniques is in itself an optical processing method reducing evaluation time which is advantageous when real-time response is desired from hybrid metrological systems. The moire evaluation is performed via a dynamical digital memory that executes arithmetic operations on two frames temporally in sequence, at TV rate. These characteristics of the moire evaluation techniques can be implemented on a real-time holographic (or speckle based) hybrid system with great practical advantage for dynamical studies.

  20. Application of holographic interferometric studies of underwater shock-wave focusing to medicine

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi; Nagoya, H.; Obara, Tetsuro; Kuwahara, M.

    1993-01-01

    Holographic interferometric flow visualization was successfully applied to underwater shock wave focusing and its application to extracorporeal shock wave lithotripsy (ESWL). Real time diffuse holograms revealed the shock wave focusing process in an ellipsoidal reflector made from PMMA and double exposure holographic interferometry also clarified quantitatively the shock focusing process. Disintegration of urinary tract stones and gallbladder stones was observed by high speed photogrammetry. Tissue damage associated with the ESWL treatment is discussed in some detail.

  1. Digital holographic Michelson interferometer for nanometrology

    NASA Astrophysics Data System (ADS)

    Sevrygin, Alexander A.; Korotkov, V. I.; Pulkin, S. A.; Tursunov, I. M.; Venediktov, D. V.; Venediktov, V. Yu.; Volkov, O. V.

    2014-11-01

    The paper considers the dynamic holographic interferometry schemes with amplification (multiplication) of holographic fringes and with correction for distortions, imposed by the interferometer scheme elements. The use of digital microscope and of the matrix light modulator with direct addressing provides the completely digital closed-loop performance of the overall system for real-time evaluation of nano-scale objects size. Considered schemes were verified in the laboratory experiment, using the Michelson micro-interferometer, equipped by the USB-microscope and digital holography stage, equipped by the Holoeye spatial light modulator.

  2. Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions.

    PubMed

    Swann, Marcus J; Peel, Louise L; Carrington, Simon; Freeman, Neville J

    2004-06-15

    The study of solution-phase interactions between small molecules and immobilized proteins is of intense interest, especially to the pharmaceutical industry. An optical sensing technique, dual polarization interferometry, has been employed for the detailed study of a model protein system, namely, d-biotin interactions with streptavidin immobilized on a solid surface. Changes in thickness and density of an immobilized streptavidin layer as a result of the binding of d-biotin have been directly measured in solution and in real time. The results obtained from this approach are in excellent agreement with X-ray crystallographic data for the structural changes expected in the streptavidin-D-biotin system. The mass changes measured on binding d-biotin also agree closely with anticipated binding capacity values. Determination of the density changes occurring in the protein adlayer provides a means for differentiation between specific and nonspecific interactions. PMID:15158477

  3. On-line surveillance of a dynamic process by a moving system based on pulsed digital holographic interferometry.

    PubMed

    Pedrini, Giancarlo; Alexeenko, Igor; Osten, Wolfgang; Schnars, Ulf

    2006-02-10

    A method based on pulsed digital holographic interferometry for the measurement of dynamic deformations of a surface by using a moving system is presented. The measuring system may move with a speed of several meters per minute and can measure deformation of the surface with an accuracy of better than 50 nm. The deformation is obtained by comparison of the wavefronts recorded at different times with different laser pulses produced by a Nd:YAG laser. The effect due to the movement of the measuring system is compensated for by digital processing of the different holograms. The system is well suited for on-line surveillance of a dynamic process such as laser welding and friction stir welding. Experimental results are presented, and the advantages of the method are discussed.

  4. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry.

    PubMed

    Di, Jianglei; Li, Ying; Xie, Min; Zhang, Jiwei; Ma, Chaojie; Xi, Teli; Li, Enpu; Zhao, Jianlin

    2016-09-10

    A dual-wavelength common-path digital holographic microscopy based on a single parallel glass plate is presented to achieve quantitative phase imaging, which combines the dual-wavelength technique with lateral shearing interferometry. Two illumination laser beams with different wavelengths (λ1=532  nm and λ2=632.8  nm) are reflected by the front and back surfaces of the parallel glass plate to create the lateral shear and form the digital hologram, and then the hologram is reconstructed to obtain the phase distribution with a synthetic wavelength Λ=3339.8  nm. The experimental configuration is very compact, with the advantages of vibration resistance and measurement range extension. The experimental results of the laser-ablated pit, groove, and staircase specimens show the feasibility of the proposed configuration. PMID:27661364

  5. Evaluation of the uncertainty of phase-difference measurements in (quasi-)Fourier transform digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Doval, Ángel F.; Trillo, Cristina; López Vázquez, José Carlos; Fernández, José L.

    2015-08-01

    Estimation of the uncertainty is an essential requisite for high-end measurement systems. In this communication we derive an expression to evaluate the standard uncertainty of the phase-difference measurements resulting from Fourier and quasi-Fourier transform digital holographic interferometry. We apply the law of propagation of uncertainty, as defined in the "Guide to the expression of uncertainty in measurement" (GUM), to the digital reconstruction of two holograms by Fourier transformation and to the subsequent calculation of the phase change between the holographic reconstructions. The resulting expression allows the evaluation of the uncertainty of the phase difference at every pixel in the reconstruction plane in terms of the measured hologram brightness values and their uncertainty at the whole of the pixels of the original digital holograms. This expression is simplified by assuming a linear dependence between the uncertainty and the local value of the original holograms; in that case, the local uncertainty of the phase difference can be evaluated from the local complex values of the reconstructed holograms. We assess the behavior of the method by comparing the predicted standard uncertainty with the sample variance obtained from experiments conducted under repeatability conditions, and found a good correlation between both quantities. This experimental procedure can be also used to calibrate the parameters of the linear function relating the uncertainty with the local value of the digital holograms, for a given set of operational conditions of the acquisition device.

  6. Operating manual holographic interferometry system for 2 x 2 foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Craig, J. E.

    1981-01-01

    A holographic interferometer system was installed in a 2X2 foot transonic wind tunnel. The system incorporates a modern, 10 pps, Nd:YAG pulsed laser which provides reliable operation and is easy to align. The spatial filtering requirements of the unstable resonator beam are described as well as the integration of the system into the existing Schieren system. A two plate holographic interferometer is used to reconstruct flow field data. For static wind tunnel models the single exposure holograms are recorded in the usual manner; however, for dynamic models such as oscillating airfoils, synchronous laser hologram recording is used.

  7. Holographic interferometry of a plasma with frequency conversion of radiation passing through the plasma

    SciTech Connect

    Alum, K.; Koval'chuk, Y.; Ostrovskaya, G.

    1981-08-01

    The possibility of obtaining holographic interferograms of a plasma with frequency doubling of the object wave is investigated. Experimental results are presented which demonstrate the doubling of the phase advance introduced into the initial wave as it passes through a phase inhomogeneity.

  8. Interferometry

    NASA Technical Reports Server (NTRS)

    Ridgway, Stephen; Wilson, Robert W.; Begelman, Mitchell C.; Bender, Peter; Burke, Bernard F.; Cornwell, Tim; Drever, Ronald; Dyck, H. Melvin; Johnston, Kenneth J.; Kibblewhite, Edward

    1991-01-01

    The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed.

  9. Dynamic measurement for the solution concentration variation using digital holographic interferometry and discussion for the measuring accuracy

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Zhang, Yanyan; Jiang, Hongzhen; Di, Jianglei

    2013-06-01

    Based on digital holographic interferometry (DHI), a method for dynamically measuring the solution concentration variation is introduced. Firstly, a series of digital holograms containing the information of the solution concentration variation is recorded by CCD. Then, according to the relationship between the phase change of the reconstructed object wave and the solution concentration, the two-dimensional (2D) solution concentration distributions in different time are figured out. Taking the measurement of the solution concentration in crystallization process as a sample, the experimental results turn out that it is feasible to in situ, full-field and dynamically monitor the solution concentration variation with the proposed method. We also discuss how to assure the measurement accuracy in following aspects: (1) implementation of the phase correction to eliminate the influence of the environment for the measurement process; (2) determination of the phase calibration base in the space-domain phase unwrapping process according to the time-domain phase unwrapping result of the arbitrary point in solution; (3) the experimental approaches and analysis for improving the measurement accuracy.

  10. Measurement of dynamical paths from elastic objects at the entrainment frequencies using high speed digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    López, Carlos Pérez; Santoyo, Fernando Mendoza

    2012-06-01

    Digital holographic interferometry (DHI) is a powerful tool to study the mechanical evolution of vibrating objects. Data obtained from interferometric fringe patterns render results with high spatial resolution amplitudes of the order of few micrometers to sub micrometers. Modern cameras with high speed frame acquisition enable the measurement of several samples of the evolving amplitude within a complete mechanical oscillation period, allowing the study of the temporal mechanical evolution as well. An interesting phenomenon which may be observed and studied with DHI is that of frequency entrainment, a feature that appears in some elastic objects. If a periodic mechanical force of frequency ω is applied to a flat rectangular elastic membrane clamped at its edges, produces a resonant frequency ωR that has a limit cycle, but as the difference between the two frequencies decreases the object frequency falls in synchronicity with the forcing frequency within a certain band of frequencies. In this paper we describe the full field of view experiments to measure these dynamical paths that are forced to oscillate near the resonant frequency where the entrainment is reached. We also discuss the possibility of using these paths as a form of generating spatio-temporal patterns for mathematical biological models simulations, a key subject in the biomedical area.

  11. Investigating the density structure of the ZaP-HD Flow Z-Pinch with digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Ross, Michael; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Hughes, Michal; Forbes, Eleanor; Paliwoda, Matt

    2014-10-01

    The ZaP-HD Flow Z-Pinch experiment investigates how flow shear stabilized Z-pinches scale to higher densities and temperatures. Determining how such plasmas scale up may reveal their utility as test beds for HEDP physics. Scaling towards HEDP conditions requires compressing the plasma to a smaller size with increased plasma current. Measuring the internal structure of a smaller, hotter plasma requires high-resolution diagnostics. To measure electron density profiles, the ZaP-HD team uses holographic interferometry with 30 micron resolution. A new Nd:YAG laser is employed in concert with a consumer digital camera to record holograms, which are numerically reconstructed to obtain the phase shift caused by the interaction of the laser with the plasma. The numerical reconstruction provides a two-dimensional map of chord-integrated electron density, which can be inverted to radial profiles under the assumption of axisymmetry. Measurements of Z-pinch density structure are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  12. Strain, curvature, and twist measurements in digital holographic interferometry using pseudo-Wigner-Ville distribution based method

    SciTech Connect

    Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod

    2009-09-15

    Measurement of strain, curvature, and twist of a deformed object play an important role in deformation analysis. Strain depends on the first order displacement derivative, whereas curvature and twist are determined by second order displacement derivatives. This paper proposes a pseudo-Wigner-Ville distribution based method for measurement of strain, curvature, and twist in digital holographic interferometry where the object deformation or displacement is encoded as interference phase. In the proposed method, the phase derivative is estimated by peak detection of pseudo-Wigner-Ville distribution evaluated along each row/column of the reconstructed interference field. A complex exponential signal with unit amplitude and the phase derivative estimate as the argument is then generated and the pseudo-Wigner-Ville distribution along each row/column of this signal is evaluated. The curvature is estimated by using peak tracking strategy for the new distribution. For estimation of twist, the pseudo-Wigner-Ville distribution is evaluated along each column/row (i.e., in alternate direction with respect to the previous one) for the generated complex exponential signal and the corresponding peak detection gives the twist estimate.

  13. Strain determination in bone sections with simultaneous 3D digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Alvarez, Araceli Sánchez; De la Torre Ibarra, Manuel H.; Santoyo, Fernando Mendoza; Anaya, Tonatiuh-Saucedo

    2014-06-01

    A 3D digital holographic interferometer was used to measure the surface strain components in two different bovine's bone sections. The applied force on the sample was induced by a precisely controlled lateral micro compression. The simultaneous acquisition capability of the system helps to record a fast sequence of images, each one containing three independent holograms that result in three orthogonal displacement components u, v and w from which the surface strain components ɛx, ɛy and γxy over the bone's field of view were calculated. This research study was carried out in two different bone sections: the cortical bone and the medullary cavity/yellow marrow section. The resulting strain concentrators are of great importance to better understand the mechanical response of complex biological structures such as this bovine femoral bone.

  14. The use of holographic interferometry for turbomachinery fan evaluation during rotating tests

    NASA Astrophysics Data System (ADS)

    Parker, R. J.; Jones, D. G.

    1988-07-01

    Holography has been developed by Rolls-Royce as a technique for routine use in the evaluation of fan designs for aeroengines. It is used to investigate both aerodynamic and mechanical behavior of the rotating fan. Holographic flow visualization provides clear, three-dimensional images of the transonic flow region between the fan blades. Flow features such as shocks, shock/boundary layer interaction, and over-tip leakage vortices can be observed and measured. Holograms taken through an optical derotator allow vibration modes of the rotating fan to be mapped during resonance or flutter. Examples are given of the use of both techniques at rotational speeds up to and in excess of 10,000 rpm. Holography has provided valuable information used to verify and improve numerical modeling of the fan behavior and has been successful in evaluating the achievement of design intent.

  15. Digital holographic interferometry employing Fresnel transform reconstruction for the study of flow shear stabilized Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Ross, M. P.; Shumlak, U.

    2016-10-01

    The ZaP-HD flow Z-pinch project provides a platform to explore how shear flow stabilized Z-pinches could scale to high-energy-density plasma (plasma with pressures exceeding 1 Mbar) and fusion reactor conditions. The Z-pinch is a linear plasma confinement geometry in which the plasma carries axial electric current and is confined by its self-induced magnetic field. ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching 60 μs. The goal of the project is to increase the plasma density and temperature compared to the previous ZaP project by compressing the plasma to smaller radii (≈1 mm). Radial and axial plasma electron density structure is measured using digital holographic interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD's DHI system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to produce holograms recorded by a Nikon D3200 digital camera. The holograms are numerically reconstructed with the Fresnel transform reconstruction method to obtain the phase shift caused by the interaction of the laser beam with the plasma. This provides a two-dimensional map of line-integrated electron density, which can be Abel inverted to determine the local number density. The DHI resolves line-integrated densities down to 3 × 1020 m-2 with spatial resolution near 10 μm. This paper presents the first application of Fresnel transform reconstruction as an analysis technique for a plasma diagnostic, and it analyzes the method's accuracy through study of synthetic data. It then presents an Abel inversion procedure that utilizes data on both sides of a Z-pinch local number density profile to maximize profile symmetry. Error estimation and Abel inversion are applied to the measured data.

  16. Optical phase analysis in drilled cortical porcine bones using digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Tavera R., César G.; De la Torre I., Manuel H.; Flores M., J. Mauricio; Luna H., Juan M.; Briones R., Manuel de J.; Mendoza S., Fernando

    2016-03-01

    A study in porcine femoral bones with and without the presence of cortical drilling is presented. An out of plane digital holographic interferometer is used to retrieve the optical phase during the controlled compression tests. These tests try to simulate physiological deformations in postmortem healthy bones and compare their mechanical response with those having a cortical hole. The cortical drilling technique is widely used in medical procedures to fix plaques and metallic frames to a bone recovering from a fracture. Several materials and drilling techniques are used for this purpose. In this work we analyze the superficial variations of the bone when different drilling diameters are used. By means of the optical phase it is possible to recover the superficial deformation of the tissue during a controlled deformation with high resolution. This information could give a better understand about the micro structural variations of the bone instead of a bulk response. As proof of principle, several tests were performed to register the modes and ranges of the displacements for compressive loads. From these tests notorious differences are observed between both groups of bones, having less structural stiffness the drilled ones as expected. However, the bone's characteristic to absorb and adjust itself due the load is also highly affected according to the number of holes. Results from different kind of samples (undrilled and drilled) are presented and discussed in this work.

  17. Optical interferometry in fluid dynamics research

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1985-01-01

    Optical interferometry techniques have been applied to the investigation of transonic airfoil flow fields in large-scale wind tunnels. Holographic interferometry techniques were used in the study of two-dimensional symmetric NACA 64A010 and Douglas Aircraft Company DSMA671 supercritical airfoil performance in the NASA Ames 2 ft x 2 ft transonic wind tunnel. Quantitative data obtained from the interferograms were compared to the surface pressure data. The excellent agreement obtained verified the accuracy of the flow visualization and demonstrated the potential for acquiring quantitative scalar results. Measurements of the inviscid flow speed and the boundary layer and wake velocity profiles were extracted from the interferograms and compared to laser Doppler velocimeter measurements. These results were also in good agreement. A method for acquiring real-time interferometric data in large-scale facilities was developed. This method, based on the point diffraction interferometer, was successfully tested in the Ames 2 ft x 2 ft transonic wind tunnel. The holographic and real-time interferometry methods were applied to the investigations of circulation control airfoils utilizing the Coanda effect. These results revealed the details of the jet interaction with the trailing edge boundary layer and the other parameters affecting the lift augmentation.

  18. Optical interferometry in fluid dynamics research

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1987-01-01

    Optical interferometry techniques were applied to the investigation of transonic airfoil flow fields in large wind tunnels. Holographic interferometry techniques were used to study 2 dimensional symmetric NACA 64A010 and Douglas Aircraft Co. DSMA671 supercritical airfoil performance in the NASA Ames 2 x 2 ft transonic wind tunnel. Quantitative data obtained from the interferograms were compared to the surface pressure data. The agreement obtained verified the accuracy of the flow visualization and demonstrated the potential for acquiring quantitative scalar results. Measurements of the inviscid flow speed and the boundary layer and wake velocity profiles were extracted from the interferograms and compared to laser Doppler velocimeter measurements. These results were also in good agreement. A method for acquiring real time interferometric data in large scale facilities was developed. This method, based on the point diffraction interferometer, was successfully tested in the 2 x 2 ft transonic wind tunnel. The holographic and real time interferometry methods were applied to the investigations of circulation control airfoils utilizing the Coanda effect. These results reveals the details of the jet interacting with the trailing edge boundary layer and the other parameters affecting the lift augmentation.

  19. Real-Time Gauge/Gravity Duality

    SciTech Connect

    Skenderis, Kostas; Rees, Balt C. van

    2008-08-22

    We present a general prescription for the holographic computation of real-time n-point functions in nontrivial states. In quantum field theory such real-time computations involve a choice of a time contour in the complex time plane. The holographic prescription amounts to 'filling in' this contour with bulk solutions: real segments of the contour are filled in with Lorentzian solutions while imaginary segments are filled in with Riemannian solutions and appropriate matching conditions are imposed at the corners of the contour. We illustrate the general discussion by computing the 2-point function of a scalar operator using this prescription and by showing that this leads to an unambiguous answer with the correct i{epsilon} insertions.

  20. Temperature measurement of axi- symmetric butane diffusion flame under the influence of upward decreasing gradient magnetic field using digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Kumar, Varun; Kumar, Manoj; Shakher, Chandra

    2015-08-01

    In this paper, digital holographic interferometry (DHI) is implemented to investigate the effect of upward decreasing gradient magnetic field on the temperature and temperature profile of diffusion flame created by butane torch burner. In the experiment double exposure digital holographic interferometry is used to calculate the temperature distribution inside the flame. First a digital hologram is recorded in the absence of flame and second hologram is recorded in the presence of flame. Phases in two different states of air (i.e. in absence of flame and presence of flame) are reconstructed individually by numerical method. The phase difference map is obtained by subtracting the reconstructed phase of air in presence and absence of flame. Refractive index inside the flame is obtained from the axi-symmetric phase difference data using the Abel inversion integral. Temperature distribution inside the flame is calculated from the refractive index data using Lorentz - Lorentz equation. Experiment is conducted on a diffusion flame created by butane torch burner in the absence of magnetic field and in presence of upward decreasing gradient magnetic field. Experimental investigations reveal that the maximum temperature inside the flame increases under the influence of upward decreasing magnetic field.

  1. Real-time radiography

    SciTech Connect

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  2. Real-time sonography

    SciTech Connect

    Fleischey, A.C.; James, A.E. Jr.

    1984-01-01

    This textbook acquaints the reader with normal and pathologic anatomy as depicted on dynamic or real-time scanning. Chapters are organized by specialty, such as abdominal, urologic, or pediatric. The text is illustrated with still-frame images and line drawings. The drawings show important areas of interest and provide graphic notation as to where and in what orientation the scan was obtained.

  3. Interferometer real time control development for SIM

    NASA Astrophysics Data System (ADS)

    Bell, Charles E.

    2003-02-01

    Real Time Control (RTC) for the Space Interferometry Mission will build on the real time core interferometer control technology under development at JPL since the mid 1990s, with heritage from the ground based MKII and Palomar Testbed Interferometer projects developed in the late '80s and early '90s. The core software and electronics technology for SIM interferometer real time control is successfully operating on several SIM technology demonstration testbeds, including the Real-time Interferometer Control System Testbed, System Testbed-3, and the Microarcsecond Metrology testbed. This paper provides an overview of the architecture, design, integration, and test of the SIM flight interferometer real time control to meet challenging flight system requirements for the high processor throughput, low-latency interconnect, and precise synchronization to support microarcsecond-level astrometric measurements for greater than five years at 1 AU in Earth-trailing orbit. The electronics and software architecture of the interferometer real time control core and its adaptation to a flight design concept are described. Control loops for pointing and pathlength control within each of four flight interferometers and for coordination of control and data across interferometers are illustrated. The nature of onboard data processing to fit average downlink rates while retaining post-processed astrometric measurement precision and accuracy is also addressed. Interferometer flight software will be developed using a software simulation environment incorporating models of the metrology and starlight sensors and actuators to close the real time control loops. RTC flight software and instrument flight electronics will in turn be integrated utilizing the same simulation architecture for metrology and starlight component models to close real time control loops and verify RTC functionality and performance prior to delivery to flight interferometer system integration at Lockheed Martin

  4. Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Evrard, A.; Boulle, N.; Lutfalla, G. S.

    Over the past few years there has been a considerable development of DNA amplification by polymerase chain reaction (PCR), and real-time PCR has now superseded conventional PCR techniques in many areas, e.g., the quantification of nucleic acids and genotyping. This new approach is based on the detection and quantification of a fluorescent signal proportional to the amount of amplicons generated by PCR. Real-time detection is achieved by coupling a thermocycler with a fluorimeter. This chapter discusses the general principles of quantitative real-time PCR, the different steps involved in implementing the technique, and some examples of applications in medicine. The polymerase chain reaction (PCR) provides a way of obtaining a large number of copies of a double-stranded DNA fragment of known sequence. This DNA amplification technique, developed in 1985 by K. Mullis (Cetus Corporation), saw a spectacular development over the space of a few years, revolutionising the methods used up to then in molecular biology. Indeed, PCR has many applications, such as the detection of small amounts of DNA, cloning, and quantitative analysis (assaying), each of which will be discussed further below.

  5. One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry.

    PubMed

    Yu, Yeh-Wei; Xiao, Shuai; Cheng, Chih-Yuan; Sun, Ching-Cherng

    2016-05-16

    A simple method to decode the stored phase signal of volume holographic data storage with adequate wave aberration tolerance is highly demanded. We proposed and demonstrated a one-shot scheme to decode a binary-phase encoding signal through double-frequency-grating based shearing interferometry (DFGSI). The lateral shearing amount is dependent on the focal length of the collimated lens and the frequency difference between the gratings. Diffracted waves with phase encoding were successfully decoded through experimentation. An optical model for the DFGSI was built to analyze phase-error induction and phase-difference control by shifting the double-frequency grating longitudinally and laterally, respectively. The optical model was demonstrated experimentally. Finally, a high aberration tolerance of the DFGSI was demonstrated using the optical model. PMID:27409865

  6. Combination of temporal phase unwrapping and long-wave infrared digital holographic interferometry for metrology of mosaic detector under space simulated conditions

    NASA Astrophysics Data System (ADS)

    Vandenrijt, Jean-François; Thizy, Cédric; Beaumont, Florent; Garcia, José; Martin, Laurent; Fabron, Christophe; Prieto, Eric; Maciaszek, Thierry; Georges, Marc P.

    2015-08-01

    We present digital holographic interferometry (DHI) in the long-wave infrared for monitoring the deformation under cryogenic conditions of a segmented focal plane array to be used in a space mission. The long wavelength was chosen for its ability to allow measurement of displacements 20 times larger than DHI in the visible and which were foreseen with the test object under such temperature changes. The specimen consists of 4x4 mosaic of detectors assembled on a frame. It was required to assess the global deformation of the ensemble, the deformation of each detector, and piston movements of each of them with respect to their neighbors. For that reason we incorporated the temporal phase unwrapping by capturing a sufficiently high number of holograms between which the phase does not suffer strong variations. At last since the specimen exhibit specular reflectivity at that wavelength, it is illuminated through a reflective diffuser.

  7. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  8. Real time SAR processing

    NASA Technical Reports Server (NTRS)

    Premkumar, A. B.; Purviance, J. E.

    1990-01-01

    A simplified model for the SAR imaging problem is presented. The model is based on the geometry of the SAR system. Using this model an expression for the entire phase history of the received SAR signal is formulated. From the phase history, it is shown that the range and the azimuth coordinates for a point target image can be obtained by processing the phase information during the intrapulse and interpulse periods respectively. An architecture for a VLSI implementation for the SAR signal processor is presented which generates images in real time. The architecture uses a small number of chips, a new correlation processor, and an efficient azimuth correlation process.

  9. Real-Time Revolution?

    PubMed

    Berlin, Joey

    2016-03-01

    Austin Regional Clinic (ARC) physicians and officials know patient feedback is important, but getting patients to provide it can be a challenge. A pilot program of a new, real-time feedback system provided ARC patients a high-tech convenience previous attempts lacked and produced participation numbers dwarfing those past efforts. ARC's initial results with the system, in which patients answer five to seven questions on a computer tablet and can leave free-text comments, were so successful the clinic is already planning to expand it to all of its locations by the end of June.

  10. Real-Time Optical Correlator Based On GaAs

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi; Cheng, Li-Jen

    1992-01-01

    Apparatus performs correlation between input image and reference image in real time by means of degenerate four-wave mixing in photorefractive crystal, which serves as real-time holographic medium. Gallium arsenide chosen to be photorefractive material in this application because at frame rate and level of illumination used in experiments, offers adequate diffraction efficiency. Frame rates as high as 1,000 s to negative 1st power achievable.

  11. Real Time Estimation Of Object Spectrocolorimettic Features

    NASA Astrophysics Data System (ADS)

    Petrov, Peter V.; Lukarsky, Christo D.; Christov, Victor V.; Grancharov, Parashkev A.; Arshinkova, Iren I.

    1989-03-01

    The results obtained in the development of a laboratory prototype of intelligent spectrometric system with real time digital signal processing are shown in this paper. The system is acombination of visible range spectrophotometer and focussing holographic grid with photodiode linear structure, i.e.the sensor, real time digital signal processing controller and display processor for gray level visualization, together with PC/XT controlLing computer. The twodimesional adaptive differential pulse code modulator with simultaneous correction of sensor dark current introduced into the real time controller allows the registration of measurments with resolution of 10 bit/el and real time data compression 2.5 times. During computation of colorimetric estimations or wideband photo-metric compression the possibilities for express analysis increase together with the enhancement of the signal-to-noise ratio. The system control and the visualization of spectral and colorimetric features in the data flux is made with personal computer together with display processor with resolution 512x512x8 and interactive software. It may be used for ground-based and onboard complexes.

  12. Real time automated inspection

    DOEpatents

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  13. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  14. Holographic methods for quality monitoring and stress visualization in biological and mechanical prosthetic heart valves

    NASA Astrophysics Data System (ADS)

    Zarubin, Alexander M.; von Bally, Gert; Deiwick, M.; Geiger, A. W.; Scheld, H. H.

    1996-01-01

    A new application of holographic interferometry in biomedicine and bioengineering is presented. Holographic interferometry techniques for non-destructive testing and biomechanical evaluation of prosthetic heart valves are developed, and experimental results obtained with tissue and mechanical values are demonstrated.

  15. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects. PMID:23518739

  16. Experimental investigation of solid hydrogen pellet ablation in high-temperature plasmas using holographic interferometry and other diagnostics

    SciTech Connect

    Thomas, Jr., C. E.

    1981-03-01

    The technology currently most favored for the refueling of fusion reactors is the high-velocity injection of solid hydrogen pellets. Design details are presented for a holographic interferometer/shadowgraph used to study the microscopic characteristics of a solid hydrogen pellet ablating in an approx. 1-keV plasma. Experimental data are presented for two sets of experiments in which the interferometer/shadowgraph was used to study approx. 1-mm-diam solid hydrogen pellets injected into the Impurity Study Experiment (ISX-B) tokamak at Oak Ridge National Laboratory (ORNL) at velocities of 1000 m/s. In addition to the use of the holographic interferometer, the pellet ablation process is diagnosed by studying the emission of Balmer-alpha photons and by using the available tokamak diagnostics (Thomson scattering, microwave/far-infrared interferometer, pyroelectric radiometer, hard x-ray detector).

  17. Real-Time Benchmark Suite

    1992-01-17

    This software provides a portable benchmark suite for real time kernels. It tests the performance of many of the system calls, as well as the interrupt response time and task response time to interrupts. These numbers provide a baseline for comparing various real-time kernels and hardware platforms.

  18. Simplest holographic technique: unsurpassed features very friendly to practical applications

    NASA Astrophysics Data System (ADS)

    Petrov, Valery

    1996-12-01

    Holography and holographic interferometry in spite of their attractive features are rather rarely used for industrial inspections of products and components or in medical practice due to relative complexity, costs, lengthy multi- stage procedures, need of dark rooms and vibration insulation. But the most of these drawbacks might be avoided if momental holography on silver halide (SH) media is involved. Momental technique simplifies drastically the holographic process and ensures quasi real time or real time (in situ) bright reconstructions from holograms, real time or double exposure holographic interferograms. This technique permits the user to avoid dark rooms and to work with standard office or industrial illumination of 0.5 klx or even much more. Moreover, very bright holograms and holographic interferograms might be obtained also in the street in a diffused daylight or even under strong direct sunlight illumination. High quality off-axis and reflection holograms, interferograms, HOE were obtained utilizing ruby, semiconductor, He-Ne and Ar laser sources. Agfa-Gevaert 8 E 75 HD films and plates, Russian PFG-03 and PFG-03 C (color) plates were used as recording media. Different levels of external polychromatic illumination were applied to holograms and holographic interferograms during production. Extremely high levels (more than 50 klx) were also tested. Bright holographic reconstructions were obtained even in such unpromising environment. Photographic images from such holograms are presented. One of the holograms was momentally photoprocessed in the light of projector (a few klx) during presentation of this paper at the conference 'Holographic and Diffractive Techniques' in Berlin. Another unique feature of the technique: extremely long-term storage of holographic data on SH media in latent form is shown. It relates both to holograms recorded with cw lasers and to those recorded with pulsed laser sources. The latter case is the most interesting because it was

  19. Single-shot digital holographic interferometry using a high power pulsed laser for full field measurement of traveling waves

    NASA Astrophysics Data System (ADS)

    De Greef, Daniël; Dirckx, Joris J. J.

    2012-06-01

    In the past, interferometric holographic techniques have been used extensively to perform full-field, yet timeaveraged analysis of vibrational patterns. When time-resolved information was needed, optical scanning single-point measurement techniques, such as heterodyne interferometric vibrometry, were available. Recently, stroboscopically illuminated digital holography has proven to yield both full-field and time-resolved information of vibrations with nanometer range amplitudes. In this technique, short laser pulses, synchronized to the vibration phase, are recorded. Good results have been achieved for high-frequency vibrations. However, due to the low energy in a single pulse, acquisition time increases for decreasing vibration frequency in order to receive enough energy on the camera, introducing problems such as artifacts due to slow movements of the object or electronic read-out noise. In this work, stroboscopic holography is combined with a high power, frequency doubled pulsed Nd:YAG laser, which produces enough energy in a single pulse to perform single-shot holographic recordings. This new setup allows imaging vibrations ranging from quasi-static deformations to high-frequency vibrations (1 - 20000 Hz), while avoiding the earlier mentioned acquisition issues. The additional challenge is to synchronize the lasers flash tube and Q-switch to the image acquisition and the vibration phase of the measured object. Results of measurements on a stretched circular latex membrane will be presented. The out-of-plane displacement of the membrane is visualized over the entire surface as a function of time, thus providing true four-dimensional information. Extracting the vibration phase map is useful, for instance to reveal travelling waves, which are invisible on time averaged images.

  20. Real-time flutter identification

    NASA Technical Reports Server (NTRS)

    Roy, R.; Walker, R.

    1985-01-01

    The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.

  1. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2007-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  2. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2006-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  3. Holographic Interferometry (HI), Infrared Vision and X-Ray Fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach

    NASA Astrophysics Data System (ADS)

    Sfarra, Stefano; Ibarra-Castanedo, Clemente; Ridolfi, Stefano; Cerichelli, Giorgio; Ambrosini, Dario; Paoletti, Domenica; Maldague, Xavier

    2014-06-01

    Wood has been routinely employed in decorative arts, as well as in sculptures and paintings (support) during the Middle Ages, because of its unique aesthetic virtues. It may safely be assumed that wood, as a material for monumental sculpture, was much more commonly employed in the mediaeval period than existing examples would seem to indicate (Bulletin of the metropolitan Museum of Art, 2013). Wood is easily obtainable; it could be carved and put in place with less difficulty than stone, it is chemically stable when dry, and its surface offers a compatible substrate for paint application. However, the use of wood is not without pitfalls, and requires an understanding of its anisotropic and hygroscopic nature. It is also dimensionally unstable and subject to deterioration by fungi and insects. Moisture-related dimensional changes are certainly among the most challenging problems in painting conservation. With the purpose of preventing important damages, the use of non-or microdestructive testing (NDT) techniques is undoubtedly of paramount interest for painted wooden statues of great value. This work has a threefold purpose: (1) to validate the effectiveness of an integrated approach using near-infrared (NIR) reflectography, square pulse thermography (SPT), and holographic interferometry (HI) techniques for discovering old repairs and/or inclusions of foreign materials in a wooden structure, (2) to confirm and approximately date the restoration carried out by x-ray fluorescence (XRF) spectroscopy and energy-dispersive x-ray spectroscopy (EDS) (that is assembled with a scanning electron microscopy—SEM) techniques, and (3) to combine into a multidisciplinary approach two quantitative NDT results coming from optical and thermographic methods. The subject of the present study was a statue named "Virgin with her Child" (XIV century), whose origins are mysterious and not properly documented.

  4. Holography and the virtual patient: the holographic medical image

    NASA Astrophysics Data System (ADS)

    Ko, Kathryn; Erickson, Ronald R.; Webster, John M.

    1996-12-01

    Practical holographic systems utilizing the pulsed laser are finding potential applications in medicine. Exploiting both the hologram's true 3D image and holographic interferometry these techniques enhance the physician's vision beyond the 2D radiological imaging of even the best CT and MRI. The authors describe the use of pulsed laser holography as applied to the morphological specialties: anatomy, pathology, and surgery. The authors report on the Holographic Brain Anatomy Atlas for medical education; pathologic documentation with holography, and the use of holographic interferometry in surgical planning. The techniques are outlined and a discussion on the interpretation of holographic interferometry with living subjects is provided.

  5. Real-time vision systems

    SciTech Connect

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  6. Digital Holographic Logic

    NASA Technical Reports Server (NTRS)

    Preston, K., Jr.

    1972-01-01

    The characteristics of the holographic logic computer are discussed. The holographic operation is reviewed from the Fourier transform viewpoint, and the formation of holograms for use in performing digital logic are described. The operation of the computer with an experiment in which the binary identity function is calculated is discussed along with devices for achieving real-time performance. An application in pattern recognition using neighborhood logic is presented.

  7. Real Time Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  8. Speckle interferometry

    NASA Astrophysics Data System (ADS)

    Sirohi, Rajpal S.

    2002-03-01

    Illumination of a rough surface by a coherent monochromatic wave creates a grainy structure in space termed a speckle pattern. It was considered a special kind of noise and was the bane of holographers. However, its information-carrying property was soon discovered and the phenomenon was used for metrological applications. The realization that a speckle pattern carried information led to a new measurement technique known as speckle interferometry (SI). Although the speckle phenomenon in itself is a consequence of interference among numerous randomly dephased waves, a reference wave is required in SI. Further, it employs an imaging geometry. Initially SI was performed mostly by using silver emulsions as the recording media. The double-exposure specklegram was filtered to extract the desired information. Since SI can be configured so as to be sensitive to the in-plane displacement component, the out-of-plane displacement component or their derivatives, the interferograms corresponding to these were extracted from the specklegram for further analysis. Since the speckle size can be controlled by the F number of the imaging lens, it was soon realized that SI could be performed with electronic detection, thereby increasing its accuracy and speed of measurement. Furthermore, a phase-shifting technique can also be incorporated. This technique came to be known as electronic speckle pattern interferometry (ESPI). It employed the same experimental configurations as SI. ESPI found many industrial applications as it supplements holographic interferometry. We present three examples covering diverse areas. In one application it has been used to measure residual stress in a blank recordable compact disk. In another application, microscopic ESPI has been used to study the influence of relative humidity on paint-coated figurines and also the effect of a conservation agent applied on top of this. The final application is to find the defects in pipes. These diverse applications

  9. Real time psychrometric data collection

    SciTech Connect

    McDaniel, K.H.

    1996-12-31

    Eight Mine Weather Stations (MWS) installed at the Waste Isolation Pilot Plant (WIPP) to monitor the underground ventilation system are helping to simulate real-time ventilation scenarios. Seasonal weather extremes can result in variations of Natural Ventilation Pressure (NVP) which can significantly effect the ventilation system. The eight MWS(s) (which previously collected and stored temperature, barometric pressure and relative humidity data for subsequent NVP calculations) were upgraded to provide continuous real-time data to the site wide Central monitoring System. This data can now be utilized by the ventilation engineer to create realtime ventilation simulations and trends which assist in the prediction and mitigation of NVP and psychrometric related events.

  10. Real-time tritium imaging

    SciTech Connect

    Malinowski, M.E.

    1981-09-15

    A real-time image of a tritium-containing titanium film has been made by detecting the secondary electrons produced by tritium ..beta.. decay with a simple two-element electrostatic lens and microchannel plate image intensifier. The obtained image indicates that a resolution of better than 100 ..mu..m is currently obtainable and suggests that image magnification to enhance resolution should be possible.

  11. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  12. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  13. Real-time exploitation system

    NASA Astrophysics Data System (ADS)

    Riedel, Richard D.

    1998-11-01

    The proliferation and technology advances of digital sensors for reconnaissance imaging require a commensurate increase in the productivity of ground-based exploitation system to process the increased volume of remotely-sensed data. Systems to support this level of production, themselves, must have significantly reduced development and life-cycle costs from previously installed systems. For cost, growth, and integration advantages, reconnaissance exploitation systems should be designed to maximize Commercial-Off-The-Shelf (COTS) hardware and software. As an example, the Real-Time Exploitation System is a state-of-the-art system for photo interpretation and exploitation of real-time digital reconnaissance imagery. Using COTS hardware, the system is able to receive imagery at rates greater than 80 Mpixels/sec; perform detailed interpretation, exploitation and report generation, and; disseminate reports to intelligence users over secure networks. New technologies have been applied in workflow management, database management, and user interfaces to provide the image analyst with superior analysis tools and access to other intelligence data sources. Photogrammetric functions are also provided for monoscopic and stereoscopic imagery. These functions provide greater geographic accuracy than is achievable in most reconnaissance exploitation systems. The Real-Time Exploitation System significantly reduces timelines for the analysis and report generation process, and significantly increases the quality and accuracy of reports.

  14. Biomechanical model produced from light-activated dental composite resins: a holographic analysis

    NASA Astrophysics Data System (ADS)

    Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana; Murić, Branka; Nikolić, Marko

    2013-11-01

    Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.

  15. Real-time flutter analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  16. Real-time streamflow conditions

    USGS Publications Warehouse

    Graczyk, David J.; Gebert, Warren A.

    1996-01-01

    Would you like to know streamflow conditions before you go fishing in Wisconsin or in more distant locations? Real-time streamflow data throughout Wisconsin and the United States are available on the Internet from the U.S. Geological Survey. You can see if the stream you are interested in fishing is high due to recent rain or low because of an extended dry spell. Flow conditions at more than 100 stream-gaging stations located throughout Wisconsin can be viewed by accessing the Wisconsin District Home Page at: http://wwwdwimdn.er.usgs.gov

  17. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  18. Real-time analysis keratometer

    NASA Technical Reports Server (NTRS)

    Adachi, Iwao P. (Inventor); Adachi, Yoshifumi (Inventor); Frazer, Robert E. (Inventor)

    1987-01-01

    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis.

  19. Real time analysis under EDS

    NASA Astrophysics Data System (ADS)

    Schneberk, D.

    1985-07-01

    The analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL) is described. Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis.

  20. Real-time face tracking

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Wilder, Joseph

    1998-10-01

    A real-time face tracker is presented in this paper. The system has achieved 15 frames/second tracking using a Pentium 200 PC with a Datacube MaxPCI image processing board and a Panasonic RGB color camera. It tracks human faces in the camera's field of view while people move freely. A stochastic model to characterize the skin color distribution of human skin is used to segment the face and other skin areas from the background. Median filtering is then used to clean up the background noise. Geometric constraints are applied to the segmented image to extract the face from the background. To reduce computation and achieve real-time tracking, 1D projections (horizontal and vertical) of the image are analyzed instead of the 2D image. Run-length- encoding and frequency domain analysis algorithms are used to separate faces from other skin-like blobs. The system is robust to illumination intensity variations and different skin colors. It can be applied to many human-computer interaction applications such as sound locating, lip- reading, gaze tracking and face recognition.

  1. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  2. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  3. Real-time flood forecasting

    USGS Publications Warehouse

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  4. Real-time extended dynamic range imaging in shearography

    SciTech Connect

    Groves, Roger M.; Pedrini, Giancarlo; Osten, Wolfgang

    2008-10-20

    Extended dynamic range (EDR) imaging is a postprocessing technique commonly associated with photography. Multiple images of a scene are recorded by the camera using different shutter settings and are merged into a single higher dynamic range image. Speckle interferometry and holography techniques require a well-modulated intensity signal to extract the phase information, and of these techniques shearography is most sensitive to different object surface reflectivities as it uses self-referencing from a sheared image. In this paper the authors demonstrate real-time EDR imaging in shearography and present experimental results from a difficult surface reflectivity sample: a wooden panel painting containing gold and dark earth color paint.

  5. Vibration modal analysis using stroboscopic digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Xizhou; Tan, Yushan

    1991-12-01

    Digital speckle pattern interferometry (DSPI) is a promising optoelectronic testing technique for a wide range of applications. Compared with holographic and speckle interferometry, it has some attractive features such as needlessness of tedious film processing, high measuring accuracy, and satisfactory automaticity. The measuring data can be displayed on the monitor at real time. In this paper, the vibration of a clamped steel plate is tested using stroboscopic digital speckle pattern interferometry. The advantages of stroboscopic technique are that it can give both the amplitude and phase information of a harmonic vibration. This is very useful for the vibration modal analysis of engineering structures. This work is realized on an image processing system based on IBM-PC/AT personal computer. The stroboscopic wavefronts are obtained by chopping a CW He-Ne laser using acousto-optic modulator. The fringe patterns obtained with stroboscopic DSPI are superior to that with time-averaging TV holography (ESPI or DPI). The interpretation of the stroboscopic DSPI fringes and selection of the system parameters are discussed in detail. The measured results are also given.

  6. Real-time scene generator

    NASA Astrophysics Data System (ADS)

    Lord, Eric; Shand, David J.; Cantle, Allan J.

    1996-05-01

    This paper describes the techniques which have been developed for an infra-red (IR) target, countermeasure and background image generation system working in real time for HWIL and Trial Proving applications. Operation is in the 3 to 5 and 8 to 14 micron bands. The system may be used to drive a scene projector (otherwise known as a thermal picture synthesizer) or for direct injection into equipment under test. The provision of realistic IR target and countermeasure trajectories and signatures, within representative backgrounds, enables the full performance envelope of a missile system to be evaluated. It also enables an operational weapon system to be proven in a trials environment without compromising safety. The most significant technique developed has been that of line by line synthesis. This minimizes the processing delays to the equivalent of 1.5 frames from input of target and sightline positions to the completion of an output image scan. Using this technique a scene generator has been produced for full closed loop HWIL performance analysis for the development of an air to air missile system. Performance of the synthesis system is as follows: 256 * 256 pixels per frame; 350 target polygons per frame; 100 Hz frame rate; and Gouraud shading, simple reflections, variable geometry targets and atmospheric scaling. A system using a similar technique has also bee used for direct insertion into the video path of a ground to air weapon system in live firing trials. This has provided realistic targets without degrading the closed loop performance. Delay of the modified video signal has been kept to less than 5 lines. The technique has been developed using a combination of 4 high speed Intel i860 RISC processors in parallel with the 4000 series XILINX field programmable gate arrays (FPGA). Start and end conditions for each line of target pixels are prepared and ordered in the I860. The merging with background pixels and output shading and scaling is then carried out in

  7. Real time cardiac radionuclide imaging

    SciTech Connect

    Jarkewicz, G.G.

    1986-04-29

    A data acquisition system is described for use in radionuclide cardiac imaging of a patient having been administered a myocardium specific radionuclide, comprising: (a) means for monitoring the electrical activity of the heart; (b) first temporary storage means for accumulating respective pages of data corresponding to nuclear events during each cardiac cycle; (c) means, responsive to the means for monitoring, for determining the time duration of each successive cardiac cycle; (d) means for comparing each determined duration of a cardiac cycle with a preselected time duration range; (e) second temporary storage means; and (f) means for conditionally transferring pages of data from the first temporary storage means to the second temporary storage means if the measured duration associated with each page has predetermined correspondence with the preselected duration range, whereby pages of data having the predetermined correspondence may be collated into a quasi-real time study, while pages of data having different correspondence with the preselected time duration range are discarded from the study.

  8. Mobile real time radiography system

    SciTech Connect

    Vigil, J.; Taggart, D.; Betts, S.

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  9. Students Collecting Real time Data

    NASA Astrophysics Data System (ADS)

    Miller, P.

    2006-05-01

    Students Collecting Real-Time Data The Hawaiian Islands Humpback Whale National Marine Sanctuary has created opportunities for middle and high school students to become Student Researchers and to be involved in real-time marine data collection. It is important that we expose students to different fields of science and encourage them to enter scientific fields of study. The Humpback Whale Sanctuary has an education visitor center in Kihei, Maui. Located right on the beach, the site has become a living classroom facility. There is a traditional Hawaiian fishpond fronting the property. The fishpond wall is being restored, using traditional methods. The site has the incredible opportunity of incorporating Hawaiian cultural practices with scientific studies. The Sanctuary offers opportunities for students to get involved in monitoring and data collection studies. Invasive Seaweed Study: Students are collecting data on invasive seaweed for the University of Hawaii. They pull a large net through the shallow waters. Seaweed is sorted, identified and weighed. The invasive seaweeds are removed. The data is recorded and sent to UH. Remote controlled monitoring boats: The sanctuary has 6 boogie board sized remote controlled boats used to monitor reefs. Boats have a camera with lights on the underside. The boats have water quality monitoring devices and GPS units. The video from the underwater camera is transmitted via a wireless transmission. Students are able to monitor the fish, limu and invertebrate populations on the reef and collect water quality data via television monitors or computers. The boat can also pull a small plankton tow net. Data is being compiled into data bases. Artificial Reef Modules: The Sanctuary has a scientific permit from the state to build and deploy artificial reef modules. High school students are designing and building modules. These are deployed out in the Fishpond fronting the Sanctuary site and students are monitoring them on a weekly basis

  10. Real-Time Data Display

    NASA Technical Reports Server (NTRS)

    Pedings, Marc

    2007-01-01

    RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.

  11. The goldstone real-time connected element interferometer

    NASA Technical Reports Server (NTRS)

    Edwards, C., Jr.; Rogstad, D.; Fort, D.; White, L.; Iijima, B.

    1992-01-01

    Connected element interferometry (CEI) is a technique of observing a celestial radio source at two spatially separated antennas and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. This article describes a recently developed connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, California, tracking complex. Fiber-optic links are used to transmit the data to a common site for processing. The system incorporates a real-time correlator to process these data in real time. The architecture of the system is described, and observational data are presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline.

  12. Real-Time Finite-Temperature Holography and its Applications

    NASA Astrophysics Data System (ADS)

    Wu, Chaolun

    This dissertation begins with a brief review of basic concepts of holography (AdS/CFT correspondence, Chapter 1). A complete prescription for computing real-time correlators in strongly-coupled conformal field theories at finite-temperature using holography is proposed and checked, and all scalar real-time 3-point correlators of the relativistic conformal field theory are computed at the tree level of dual gravity theory (Chapter 2). The causal 3-point correlators are found to have a simple structure which can be easily generalized to higher n-point correlators and higher spin operators. Then the same prescription is applied to non-relativistic holography (Chapter 3). All scalar real-time 2-point correlators and time-ordered and causal 3-point correlators of finite-temperature Schrödinger field theory are computed there. In the last two chapters, the prescription for relativistic real-time finite-temperature holography and in particular the causal 3-point correlators derived earlier, are used to study various properties of a strongly-coupled plasma, specifically that of N = 4 supersymmetric Yang-Mills field theory. By computing causal energy-stress tensor 3-point correlators analytically in the hydrodynamic regime and matching them with the holographic result, and through the use of newly developed second order Kubo formulae, all five second order transport coefficients of the relativistic conformal hydrodynamics are systematically and consistently computed (Chapter 4). Jet quenching in a strongly-coupled plasma at finite-temperature and finite-chemical potential is also studied by an analytic computation of causal R-current 3-point correlators in large momentum regime. A more detailed and comprehensive picture than previously known emerges (Chapter 5). The dependence of typical jet stopping distance on its initial energy has an exponent 1/4, rather than the 1/3 which was widely known, and the jet quenching is enhanced by introducing a chemical potential to the

  13. Research in Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  14. Holographic non-destructive testing for composite materials used in aerospace

    NASA Astrophysics Data System (ADS)

    de Smet, M.-A.

    1986-01-01

    An analysis and comparisons are presented for the holographic interferometry and ultrasonic methods' results concerning the function of the application of external fields to a composite material test specimen. Holographic interferometry is judged capable of yielding systematic process control data; it is noted that a slight temperature elevation allows such defects as composite fiber breaks, delaminations and disbonds to be visualized.

  15. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Liu, H. K.

    1984-01-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  16. Holographic Interferometry based on photorefractive crystal to measure 3D thermo-elastic distortion of composite structures and comparison with finite element models

    NASA Astrophysics Data System (ADS)

    Thizy, C.; Eliot, F.; Ballhause, D.; Olympio, K. R.; Kluge, R.; Shannon, A.; Laduree, G.; Logut, D.; Georges, M. P.

    2013-04-01

    Thermo-elastic distortions of composite structures have been measured by a holographic camera using a BSO photorefractive crystal as the recording medium. The first test campaign (Phase 1) was performed on CFRP struts with titanium end-fittings glued to the tips of the strut. The samples were placed in a vacuum chamber. The holographic camera was located outside the chamber and configured with two illuminations to measure the relative out-of-plane and in-plane (in one direction) displacements. The second test campaign (Phase 2) was performed on a structure composed of a large Silicon Carbide base plate supported by 3 GFRP struts with glued Titanium end-fittings. Thermo-elastic distortions have been measured with the same holographic camera used in phase 1, but four illuminations, instead of two, have been used to provide the three components of displacement. This technique was specially developed and validated during the phase 2 in CSL laboratory. The system has been designed to measure an object size of typically 250x250 mm2; the measurement range is such that the sum of the largest relative displacements in the three measurement directions is maximum 20 μm. The validation of the four-illuminations technique led to measurement uncertainties of 120 nm for the relative in-plane and out-of-plane displacements, 230 nm for the absolute in-plane displacement and 400 nm for the absolute out-of-plane displacement. For both campaigns, the test results have been compared to the predictions obtained by finite element analyses and the correlation of these results was good.

  17. Real time programming environment for Windows

    SciTech Connect

    LaBelle, D.R.

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  18. Holographic Investigation Of Different Types Of Surgical Fixing Devices

    NASA Astrophysics Data System (ADS)

    Podbielska, Halina; Kasprzak, Henryk; von Bally, Gert

    1989-01-01

    The method of double-exposure holographic interferometry was applied to study the behavior of lower leg bones supported with different fixing devices. The torsion and bending was examined for both types of fixators: an external one (Orthofix type 10000) and an internal one (osteosynthesis AO plate, Howmedica). The influence of the fixation on the mechanical response to the external load of the supported tibial shaft is discussed. The advantages of holographic interferometry in the above investigation are pointed out.

  19. Research of real-time communication software

    NASA Astrophysics Data System (ADS)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  20. The ALMA Real Time Control System

    NASA Astrophysics Data System (ADS)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  1. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  2. Real time sensor for therapeutic radiation delivery

    DOEpatents

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  3. Real-time monitoring of landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Baum, Rex L.; Kean, Jason W.; Schulz, William H.; Highland, Lynn M.

    2012-01-01

    Landslides cause fatalities and property damage throughout the Nation. To reduce the impact from hazardous landslides, the U.S. Geological Survey develops and uses real-time and near-real-time landslide monitoring systems. Monitoring can detect when hillslopes are primed for sliding and can provide early indications of rapid, catastrophic movement. Continuous information from up-to-the-minute or real-time monitoring provides prompt notification of landslide activity, advances our understanding of landslide behavior, and enables more effective engineering and planning efforts.

  4. Real-time medical applications and telecommunications.

    PubMed

    Stravs, M

    1999-01-01

    Telecommunications play an important role in telemedicine. Many forms of telecommunication services based on different telecommunication technologies are developed for various needs. The paper deals with complex real-time applications which demand high telecommunication requirements. At the beginning, medical applications are categorised and real-time applications qualified as multimedia applications. Requirements for multimedia elements are listed separately. Later on, short introduction of related telecommunication protocols is given. Real-time medical applications can show their ability in case of guaranteed quality of services delivered by telecommunication network as it is explained in the end.

  5. Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes

    NASA Astrophysics Data System (ADS)

    Del Socorro Hernández-Montes, Maria; Furlong, Cosme; Rosowski, John J.; Hulli, Nesim; Harrington, Ellery; Cheng, Jeffrey Tao; Ravicz, Michael E.; Santoyo, Fernando Mendoza

    2009-05-01

    Current methodologies for characterizing tympanic membrane (TM) motion are usually limited to either average acoustic estimates (admittance or reflectance) or single-point mobility measurements, neither of which suffices to characterize the detailed mechanical response of the TM to sound. Furthermore, while acoustic and single-point measurements may aid in diagnosing some middle-ear disorders, they are not always useful. Measurements of the motion of the entire TM surface can provide more information than these other techniques and may be superior for diagnosing pathology. We present advances in our development of a new compact optoelectronic holographic otoscope (OEHO) system for full field-of-view characterization of nanometer-scale sound-induced displacements of the TM surface at video rates. The OEHO system consists of a fiber optic subsystem, a compact otoscope head, and a high-speed image processing computer with advanced software for recording and processing holographic images coupled to a computer-controlled sound-stimulation and recording system. A prototype OEHO system is in use in a medical research environment to address basic science questions regarding TM function. The prototype provides real-time observation of sound-induced TM displacement patterns over a broad frequency range. Representative time-averaged and stroboscopic holographic interferometry results in animals and human cadaver samples are shown, and their potential utility is discussed.

  6. Real-time smart fluorescence sensor platform

    NASA Astrophysics Data System (ADS)

    Dickens, Jason E.; Vaughn, Mike S.; Taylor, Mervin; Ponstingl, Mike

    2011-06-01

    A novel compact LED array based light induced fluorescence (LIF) sensor has been developed for real-time in-line monitoring of intrinsic fluorophores in the solid and liquid state. The sensor is essential for on-the-spot, routine, and cost effective real-time analysis. The sensor is designed to provide real-time emission response along with various smart sensing parameters to ensure real-time measurement quality that is required for regulated GMP process monitoring applications. This work describes a LIF sensor tailored for solid-phase fluorometry. Fundamental figures of merit, excitation overexposure and smart sensing features required for modern process monitoring and control are discussed within the context of pharmaceutical solid-phase manufacturing and similar applications.

  7. The LAA real-time benchmarks

    SciTech Connect

    Block, R.K.; Krischer, W.; Lone, S.

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  8. Real-time scheduling using minimum search

    NASA Technical Reports Server (NTRS)

    Tadepalli, Prasad; Joshi, Varad

    1992-01-01

    In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it sppears that reasonably good schedules can be produced with a relatively shallow search.

  9. Processing PCM Data in Real Time

    NASA Technical Reports Server (NTRS)

    Wissink, T. L.

    1982-01-01

    Novel hardware configuration makes it possible for Space Shuttle launch processing system to monitor pulse-code-modulated data in real time. Using two microprogramable "option planes," incoming PCM data are monitored for changes at rate of one frame of data (80 16-bit words) every 10 milliseconds. Real-time PCM processor utilizes CPU in mini-computer and CPU's in two option planes.

  10. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  11. VLBI-Art: VLBI analysis in real-time

    NASA Astrophysics Data System (ADS)

    Karbon, M.; Nilsson, T.; Tierno Ros, C.; Heinkelmann, R.; Schuh, H.

    2013-08-01

    Geodetic Very Long Baseline Interferometry (VLBI) is one of the primary space geodetic techniques providing the full set of Earth Orientation Parameters (EOP) and it is unique for observing long term Universal Time (UT1). Accurate and continuous EOP obtained in near real-time are essential for satellite-based navigation and positioning, enable the precise tracking of interplanetary spacecraft and thus are the aim of the VGOS (VLBI2010 Global Observing System). With this next generation VLBI system and network, the International VLBI Service for Geodesy and Astrometry (IVS) increased its efforts to reduce the time span between the collection of VLBI observations and the availability of the final results. Project VLBI-Art contributes to these objectives by considerably accelerating the VLBI analysis procedure by implementing an elaborate Kalman filter, which represents a perfect tool for analyzing VLBI data in quasi real-time. The Kalman filter will be embedded in the Vienna VLBI Software (VieVS) as a completely automated tool, i.e. with no need of human interaction.

  12. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  13. Monitoring and measuring corrosion under coating by optical interferometry

    SciTech Connect

    Habib, K.; Al-Sabti, F.

    1996-10-01

    In a previous study, a mathematical model relating surface and bulk behaviors of metals in aqueous solution has been developed. The model was established based on principles of holographic interferometry for measuring microsurface dissolution, i.e. mass loss, and on those of electrochemistry for measuring the bulk electronic current, i.e. corrosion current. In the present work, an optical corrosion-meter was built based on the above model. The corrosion meter consists of an electrochemical cell in which coated metallic samples are tested in aqueous solutions. Furthermore, the corrosion meter has a holographic camera with a thermoplastic film for in situ processing holograms in order to obtain real time-holographic interferograms of the sample in the electrochemical cell. During experiments, the samples remain in aqueous solution without any physical contact. In the meantime, corrosion data can be obtained from the interpretation of the interferograms of the sample as a function of the elapsed time of the experiments. Also, the open circuit potential of the sample is measured with respect to the interferometric data. Consequently, corrosion current density of epoxy coated aluminum, stainless steel, and low carbon steel in 1M KCl, 1M NaCl, and 1M NaOH solutions were obtained by using the optical corrosion-meter. A comparison between the corrosion data of the different alloys showed that the corrosion current density of the coated stainless steel in 1 M NaCi is nearly three fold higher than that of the coated carbon steel in 1 M NaOH. In contrast, the coated aluminum sample shows no sign of corrosion in 1M KCl.

  14. Characterization of real-time computers

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.

    1984-01-01

    A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.

  15. Visualization of Real-Time Data

    NASA Technical Reports Server (NTRS)

    Stansifer, Ryan; Engrand, Peter

    1996-01-01

    In this project we explored various approaches to presenting real-time data from the numerous systems monitored on the space shuttle to computer users. We examined the approach that several projects at the Kennedy Space Center (KSC) used to accomplish this. We undertook to build a prototype system to demonstrate that the Internet and the Java programming language could be used to present the real-time data conveniently. Several Java programs were developed that presented real-time data in different forms including one form that emulated the display screens of the PC GOAL system which is familiar to many at KSC. Also, we developed several communications programs to supply the data continuously. Furthermore, a framework was created using the World Wide Web (WWW) to organize the collection and presentation of the real-time data. We believe our demonstration project shows the great flexibility of the approach. We had no particular use of the data in mind, instead we wanted the most general and the least complex framework possible. People who wish to view data need only know how to use a WWW browser and the address (the URL). People wanting to build WWW documents containing real-time data need only know the values of a few parameters, they do not need to program in Java or any other language. These are stunning advantages over more monolithic systems.

  16. Real-time enhanced vision system

    NASA Astrophysics Data System (ADS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-05-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  17. Real-time Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-Ur; Jobson, Daniel J.; Woodell, Glenn A.; Harrah, Steven D.

    2005-01-01

    Flying in poor visibility conditions, such as rain, snow, fog or haze, is inherently dangerous. However these conditions can occur at nearly any location, so inevitably pilots must successfully navigate through them. At NASA Langley Research Center (LaRC), under support of the Aviation Safety and Security Program Office and the Systems Engineering Directorate, we are developing an Enhanced Vision System (EVS) that combines image enhancement and synthetic vision elements to assist pilots flying through adverse weather conditions. This system uses a combination of forward-looking infrared and visible sensors for data acquisition. A core function of the system is to enhance and fuse the sensor data in order to increase the information content and quality of the captured imagery. These operations must be performed in real-time for the pilot to use while flying. For image enhancement, we are using the LaRC patented Retinex algorithm since it performs exceptionally well for improving low-contrast range imagery typically seen during poor visibility conditions. In general, real-time operation of the Retinex requires specialized hardware. To date, we have successfully implemented a single-sensor real-time version of the Retinex on several different Digital Signal Processor (DSP) platforms. In this paper we give an overview of the EVS and its performance requirements for real-time enhancement and fusion and we discuss our current real-time Retinex implementations on DSPs.

  18. Crack detection in constructions using pulsed holographic and speckle techniques

    NASA Astrophysics Data System (ADS)

    Christnacher, Frank; Smigielski, Paul; Matwyschuk, A.; Fusco, D.; Guillard, Y.

    1999-08-01

    Holographic interferometry and speckle interferometry are currently used in the field of non-destructive testing. More particularly, they permit to detect defects in structures by analysis of their behavior under stresses. In this work we have studied the possibility of using these techniques for the detection of cracks in reinforced concrete structures. We present some results with classical double-pulse holography and with the double reference technique. We also present some results with speckle interferometry on CCD camera.

  19. Really computing nonperturbative real time correlation functions

    NASA Astrophysics Data System (ADS)

    Bödeker, Dietrich; McLerran, Larry; Smilga, Andrei

    1995-10-01

    It has been argued by Grigoriev and Rubakov that one can simulate real time processes involving baryon number nonconservation at high temperature using real time evolution of classical equations, and summing over initial conditions with a classical thermal weight. It is known that such a naive algorithm is plagued by ultraviolet divergences. In quantum theory the divergences are regularized, but the corresponding graphs involve the contributions from the hard momentum region and also the new scale ~gT comes into play. We propose a modified algorithm which involves solving the classical equations of motion for the effective hard thermal loop Hamiltonian with an ultraviolet cutoff μ>>gT and integrating over initial conditions with a proper thermal weight. Such an algorithm should provide a determination of the infrared behavior of the real time correlation function T determining the baryon violation rate. Hopefully, the results obtained in this modified algorithm will be cutoff independent.

  20. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  1. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  2. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  3. Durham adaptive optics real-time controller.

    PubMed

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems.

  4. Real-time DNA microarray analysis

    PubMed Central

    Hassibi, Arjang; Vikalo, Haris; Riechmann, José Luis; Hassibi, Babak

    2009-01-01

    We present a quantification method for affinity-based DNA microarrays which is based on the real-time measurements of hybridization kinetics. This method, i.e. real-time DNA microarrays, enhances the detection dynamic range of conventional systems by being impervious to probe saturation in the capturing spots, washing artifacts, microarray spot-to-spot variations, and other signal amplitude-affecting non-idealities. We demonstrate in both theory and practice that the time-constant of target capturing in microarrays, similar to all affinity-based biosensors, is inversely proportional to the concentration of the target analyte, which we subsequently use as the fundamental parameter to estimate the concentration of the analytes. Furthermore, to empirically validate the capabilities of this method in practical applications, we present a FRET-based assay which enables the real-time detection in gene expression DNA microarrays. PMID:19723688

  5. Real-time DNA microarray analysis.

    PubMed

    Hassibi, Arjang; Vikalo, Haris; Riechmann, José Luis; Hassibi, Babak

    2009-11-01

    We present a quantification method for affinity-based DNA microarrays which is based on the real-time measurements of hybridization kinetics. This method, i.e. real-time DNA microarrays, enhances the detection dynamic range of conventional systems by being impervious to probe saturation in the capturing spots, washing artifacts, microarray spot-to-spot variations, and other signal amplitude-affecting non-idealities. We demonstrate in both theory and practice that the time-constant of target capturing in microarrays, similar to all affinity-based biosensors, is inversely proportional to the concentration of the target analyte, which we subsequently use as the fundamental parameter to estimate the concentration of the analytes. Furthermore, to empirically validate the capabilities of this method in practical applications, we present a FRET-based assay which enables the real-time detection in gene expression DNA microarrays. PMID:19723688

  6. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  7. The real-time Neutron Monitor database

    NASA Astrophysics Data System (ADS)

    Klein, K.-L.; Steigies, C.; Nmdb Team

    2009-04-01

    In January 2007 the Real time database for high-resolution neutron monitor measurements (NMDB) project, which is supported by the 7th framework program of the European Commission, commenced. One year after the project start we have several neutron monitor stations that are sending their data in real-time to a publicly available prototype database in a common format. We have developed applications that make use of the real-time cosmic ray measurements for example for space weather applications and dose calculations at airplane altitudes. We are also in the process of establishing a public outreach site and a training site with material for university students and researchers and engineers who want to get familiar with cosmic rays and neutron monitor measurements. An overview of the project status as well as instructions on how to use the available data will be given. Possible future developments will be briefly discussed.

  8. Real-time inspection by submarine images

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Zingaretti, Primo; Conte, Giuseppe

    1996-10-01

    A real-time application of computer vision concerning tracking and inspection of a submarine pipeline is described. The objective is to develop automatic procedures for supporting human operators in the real-time analysis of images acquired by means of cameras mounted on underwater remotely operated vehicles (ROV) Implementation of such procedures gives rise to a human-machine system for underwater pipeline inspection that can automatically detect and signal the presence of the pipe, of its structural or accessory elements, and of dangerous or alien objects in its neighborhood. The possibility of modifying the image acquisition rate in the simulations performed on video- recorded images is used to prove that the system performs all necessary processing with an acceptable robustness working in real-time up to a speed of about 2.5 kn, widely greater than that the actual ROVs and the security features allow.

  9. Quantitative Real-Time PCR: Recent Advances.

    PubMed

    Singh, Charanjeet; Roy-Chowdhuri, Sinchita

    2016-01-01

    Quantitative real-time polymerase chain reaction is a technique for simultaneous amplification and product quantification of a target DNA as the process takes place in real time in a "closed-tube" system. Although this technique can provide an absolute quantification of the initial template copy number, quantification relative to a control sample or second sequence is typically adequate. The quantification process employs melting curve analysis and/or fluorescent detection systems and can provide amplification and genotyping in a relatively short time. Here we describe the properties and uses of various fluorescent detection systems used for quantification. PMID:26843055

  10. Imaging of living cells in real time

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.; Nikandrov, Serguei L.

    1996-12-01

    Parameters of intrinsic cell motility is one of the cell activity characteristics which can be measured in real-time. For evaluation of certain organelles velocity we propose to use high sensitivity of computer-aided phase microscope airyscan to local phase changes connected with refractive index. This method is based on periodical scanning of cell profile in direction perpendicular to organelles movement. Analysis of the obtained 2-dimensional time-coordinate matrix allows us to define organelle velocity in quasi-real time and areas of cell activity. The experiments with onion cells confirm the method applicability for cell activity investigation.

  11. Software Package For Real-Time Graphics

    NASA Technical Reports Server (NTRS)

    Malone, Jacqueline C.; Moore, Archie L.

    1991-01-01

    Software package for master graphics interactive console (MAGIC) at Western Aeronautical Test Range (WATR) of NASA Ames Research Center provides general-purpose graphical display system for real-time and post-real-time analysis of data. Written in C language and intended for use on workstation of interactive raster imaging system (IRIS) equipped with level-V Unix operating system. Enables flight researchers to create their own displays on basis of individual requirements. Applicable to monitoring of complicated processes in chemical industry.

  12. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  13. Real-Time Occupancy Change Analyzer

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector tomore » the detected change, it provides the actual x,y position of the change.« less

  14. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  15. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  16. Real-time evaporimeter/hygrometer

    NASA Astrophysics Data System (ADS)

    Knopp, Jerome; Smiglewski, Leonard T.

    1998-07-01

    Laboratory measurements of microscopic level changes in a water tank were shown to have good correlation with the evaporation rate predicted using Dalton's Law. Submicron level changes in the tank were measured in real-time using an interferometer interfaced to a PC. The methodology developed offers a way to build an instrument that can be used as a standard for an evaporimeter or a hygrometer. The real-time measurement capability provides a tool for determining refined dynamic correlations of evaporation with fast changes in meteorological variables such as wind and solar radiation.

  17. Quantitative Real-Time PCR: Recent Advances.

    PubMed

    Singh, Charanjeet; Roy-Chowdhuri, Sinchita

    2016-01-01

    Quantitative real-time polymerase chain reaction is a technique for simultaneous amplification and product quantification of a target DNA as the process takes place in real time in a "closed-tube" system. Although this technique can provide an absolute quantification of the initial template copy number, quantification relative to a control sample or second sequence is typically adequate. The quantification process employs melting curve analysis and/or fluorescent detection systems and can provide amplification and genotyping in a relatively short time. Here we describe the properties and uses of various fluorescent detection systems used for quantification.

  18. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  19. Real-time electron density measurements from Cotton-Mouton effect in JET machine

    SciTech Connect

    Brombin, M.; Boboc, A.; Zabeo, L.

    2008-10-15

    Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements for a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.

  20. Real-Time Blackboards For Sensor Fusions

    NASA Astrophysics Data System (ADS)

    Johnson, Donald H.; Shaw, Scott W.; Reynolds, Steven; Himayat, Nageen

    1989-09-01

    Multi-sensor fusion, at the most basic level, can be cast into a concise, elegant model. Reality demands, however, that this model be modified and augmented. These modifications often result in software systems that are confusing in function and difficult to debug. This problem can be ameliorated by adopting an object-oriented, data-flow programming style. For real-time applications, this approach simplifies data communications and storage management. The concept of object-oriented, data-flow programming is conveniently embodied in the black-board style of software architecture. Blackboard systems allow diverse programs access to a central data base. When the blackboard is described as an object, it can be distributed over multiple processors for real-time applications. Choosing the appropriate parallel architecture is the subject of ongoing research. A prototype blackboard has been constructed to fuse optical image regions and Doppler radar events. The system maintains tracks of simulated targets in real time. The results of this simulation have been used to direct further research on real-time blackboard systems.

  1. Real-time cleaning performance feedback

    SciTech Connect

    Meltzer, M.

    1994-12-01

    Monitoring contamination levels on parts during cleaning operations will provide feedback that can be useful in reducing waste generation and air emissions caused by over- or under-cleaning. Such real-time process controls can help eliminate pollution in a wide variety of industries, including aerospace, electronics, and metal finishing.

  2. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  3. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  4. Real Time Grid Reliability Management 2005

    SciTech Connect

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  5. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  6. Feedback as Real-Time Constructions

    ERIC Educational Resources Information Center

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  7. Real-time PCR detection chemistry.

    PubMed

    Navarro, E; Serrano-Heras, G; Castaño, M J; Solera, J

    2015-01-15

    Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review.

  8. Holographic characterization of protein aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhong, Xiao; Ruffner, David; Stutt, Alexandra; Philips, Laura; Ward, Michael; Grier, David

    Holographic characterization directly measures the size distribution of subvisible protein aggregates in suspension and offers insights into their morphology. Based on holographic video microscopy, this analytical technique records and interprets holograms of individual aggregates in protein solutions as they flow down a microfluidic channel, without requiring labeling or other exceptional sample preparation. The hologram of an individual protein aggregate is analyzed in real time with the Lorenz-Mie theory of light scattering to measure that aggregate's size and optical properties. Detecting, counting and characterizing subvisible aggregates proceeds fast enough for time-resolved studies, and lends itself to tracking trends in protein aggregation arising from changing environmental factors. No other analytical technique provides such a wealth of particle-resolved characterization data in situ. Holographic characterization promises accelerated development of therapeutic protein formulations, improved process control during manufacturing, and streamlined quality assurance during storage and at the point of use. Mrsec and MRI program of the NSF, Spheryx Inc.

  9. Organic Materials for Holographic Applications

    NASA Astrophysics Data System (ADS)

    Chen, Alan Gengsheng

    Volume holography plays an important role in modern optical technology. This research explores organic materials for holographic applications in optical systems. A novel medium composed of azo dye molecules (methyl red sodium salt) and liquid crystals (PCB) was developed for holographic applications. A conformation change of azo dye molecules in cis-trans isomerization reorients liquid crystal molecules. Reversible polarization holograms are recorded dynamically with a threshold intensity as low as 3.0 mW/cm^2 and a response time from 1 ms to 100 ms depending on the recording spatial frequencies. Surface anchoring forces play a key role in holographic storage. We investigated these forces with differently treated substrates. Optical surface memory effects are described experimentally. We also seek novel materials for dynamic volume holography. Liquid crystal molecules (EBBA and MBBA) have been dispersed in polymer matrices for volume holographic storage. Dynamic holographic effects due to thermal and optically driven anisotropies are observed. A programmable multilayer holographic storage device using a stack of polarization sensitive polymer films and liquid crystals is developed. The parallel access time is about 10 ms. This device is useful for real-time holographic displays, optical interconnections, and high -density optical data storage. In addition, holography has been employed for spectral filtering. Filtering by a thick hologram can manipulate the amplitude and phase of the spectral components of an optical pulse. A camphorquinone doped polymer resin is used as a volume holographic element. Pulses from a CPM laser are filtered into two or three different frequency components, which beat in the time domain to generate a sub-picosecond pulse with very different shape. The device will find applications in optical communications and time-resolved spectroscopy.

  10. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  11. Real-Time Seismology in Portugal

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Marreiros, C.; Carvalho, S.; Vales, D.; Lima, V.; Carrilho, F.

    2012-12-01

    Portugal is located next to the plate boundary between Eurasia (Iberia) and Africa (Nubia). The country has been repeatedly affected by some of the largest earthquakes, both onshore and offshore, in the historical European record, including the largest historical European earthquake, the great Lisbon earthquake of 1755 (~M8.5). The Portuguese territory has suffered directly the consequences of strong ground shaking (collapse of buildings, etc) and also some of the most destructive consequences of earthquakes (e.g. tsunamis, fires, etc). However, the rate of tectonic deformation in the Portuguese territory is low (the Eurasian-African plates converge at a rate of ~ 5 mm/yr), which results in long recurrence intervals between earthquakes. This low to moderate rate of seismic activity has two major negative effects: 1) it is difficult to study the regional seismo-tectonics with traditional passive methods; 2) the population is little aware of earthquake risk and unprepared to react in case of disaster. In this scenario, real-time seismology is key to monitoring earthquake crisis in real-time, providing early warnings about potentially destructive events, and assisting in the channeling of recovery efforts in case of disaster. In this paper we will present the real-time algorithms implemented at Instituto de Meteorologia (IM), the institution responsible for seismic monitoring in Portugal. In particular, we will focus on the following aspects: 1) Data collection and real-time transmission to the headquarters. Broadband seismological stations are owned and operated by five different institutions. The last years have witnessed an effort for integration, and presently most data arrives at IM lab in real-time. 2) Earthquake location and local magnitude determination. Data is automatically analyzed in order to obtain a first earthquake hypocenter and ML. While this process is mostly automatic, it still requires the revision by an operator, who is available 24h. 3

  12. VLBI real-time analysis by Kalman Filtering

    NASA Astrophysics Data System (ADS)

    Karbon, M.; Nilsson, T.; Soja, B.; Heinkelmann, R.; Raposo-Pulido, V.; Schuh, H.

    2013-12-01

    Geodetic Very Long Baseline Interferometry (VLBI) is one of the primary space geodetic techniques providing the full set of Earth Orientation Parameter (EOP) and is unique for observing long term Universal Time (UT1) and precession/nutation. Accurate and continuous EOP obtained in near real-time are essential for satellite based navigation and positioning and for enabling the precise tracking of interplanetary spacecrafts. To meet this necessity the International VLBI Service for Geodesy and Astrometry (IVS) increased its efforts to reduce the time span between the VLBI observations and the availability of the final results. Currently the timeliness is about two weeks, but the goal is to reduce it to less than one day with the future VGOS (VLBI2010 Global Observing System) network. The FWF project VLBI-ART contributes to this new generation VLBI system by considerably accelerating the VLBI analysis procedure through the implementation of an elaborate Kalman filter. This true real-time Kalman filter will be embedded in the Vienna VLBI Software (VieVS) as a completely automated tool with no need of human interaction. This filter also allows the prediction and combination of EOP from various space geodetic techniques by implementing stochastic models to statistically account for unpredictable changes in EOP. Additionally, atmospheric angular momenta calculated from numerical weather prediction models are introduced to support the short-term EOP prediction. To optimize the performance of the new software various investigations with real as well as simulated data are foreseen. The results are compared to the ones obtained by conventional VLBI parameter estimation methods (e.g. least squares method) and to corresponding parameter series from other techniques, such as from the Global Navigation Satellite Systems (GNSS).

  13. Real-time imaging of quantum entanglement.

    PubMed

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  14. Real Time Radiation Exposure And Health Risks

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  15. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark; Gosnell, Tom B.; Ham, Cheryl; Perkins, Dwight; Wong, James

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  16. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  17. Real time radiography of Titan 4 booster

    NASA Astrophysics Data System (ADS)

    Lachapell, M.; Turner, D.; Dolan, K.; Perkins, D.; Costerus, B.

    1993-04-01

    Lawrence Livermore National Laboratory successfully completed a real-time radiography of the Titan 4 booster motor in February 1993. The success of this project depended on the quick response to Air Force criteria and securing a multi-disciplinary team addressing the numerous technical challenges. The team's challenges included the following: large area imager design and fabrication problems; vibrating mitigation obstacles; sound mitigation dilemmas; high levels of fail safe confidence; and operating a fragile, transportable x-ray linear accelerator. The data was viewed in real-time and stored utilizing standard video hardware. The data from the test is presently being analyzed. The multi-disciplinary team was presented with many serious technical challenges that needed to be addressed expeditiously. The purpose of this paper is to examine some of the technical issues and how they were executed.

  18. Real time animation of space plasma phenomena

    NASA Technical Reports Server (NTRS)

    Jordan, K. F.; Greenstadt, E. W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images.

  19. Visualizations for Real-time Pricing Demonstration

    SciTech Connect

    Marinovici, Maria C.; Hammerstrom, Janelle L.; Widergren, Steven E.; Dayley, Greg K.

    2014-10-13

    In this paper, the visualization tools created for monitoring the operations of a real-time pricing demonstration system that runs at a distribution feeder level are presented. The information these tools provide gives insights into demand behavior from automated price responsive devices, distribution feeder characteristics, impact of weather on system’s development, and other significant dynamics. Given the large number of devices that bid into a feeder-level real-time electricity market, new techniques are explored to summarize the present state of the system and contrast that with previous trends as well as future projections. To better understand the system behavior and correctly inform decision-making procedures, effective visualization of the data is imperative.

  20. AMON: Transition to real-time operations

    NASA Astrophysics Data System (ADS)

    Cowen, D. F.; Keivani, A.; Tešić, G.

    2016-04-01

    The Astrophysical Multimessenger Observatory Network (AMON) will link the world's leading high-energy neutrino, cosmic-ray, gamma-ray and gravitational wave observatories by performing real-time coincidence searches for multimessenger sources from observatories' subthreshold data streams. The resulting coincidences will be distributed to interested parties in the form of electronic alerts for real-time follow-up observation. We will present the science case, design elements, current and projected partner observatories, status of the AMON project, and an initial AMON-enabled analysis. The prototype of the AMON server has been online since August 2014 and processing archival data. Currently, we are deploying new high-uptime servers and will be ready to start issuing alerts as early as winter 2015/16.

  1. System Equivalent for Real Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Lin, Xi

    2011-07-01

    The purpose of this research is to develop a method of making system equivalents for the Real Time Digital Simulator (RTDS), which should enhance its capability of simulating large power systems. The proposed equivalent combines a Frequency Dependent Network Equivalent (FDNE) for the high frequency electromagnetic transients and a Transient Stability Analysis (TSA) type simulation block for the electromechanical transients. The frequency dependent characteristic for FDNE is obtained by curve-fitting frequency domain admittance characteristics using the Vector Fitting method. An approach for approximating the frequency dependent characteristic of large power networks from readily available typical power-flow data is also introduced. A new scheme of incorporating TSA solution in RTDS is proposed. This report shows how the TSA algorithm can be adapted to a real time platform. The validity of this method is confirmed with examples, including the study of a multi in-feed HVDC system based network.

  2. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  3. CRTF Real-Time Aperture Flux system

    SciTech Connect

    Davis, D.B.

    1980-01-01

    The Real-Time Aperture Flux system (TRAF) is a test measurement system designed to determine the input power/unit area (flux density) during solar experiments conducted at the Central Receiver Test Facility, Sandia National Laboratories, Albuquerque, New Mexico. The RTAF is capable of using both thermal sensors and photon sensors to determine the flux densities in the RTAF measuring plane. These data are manipulated in various ways to derive input power and flux density distribution to solar experiments.

  4. Thermal imaging with real time picture presentation.

    PubMed

    Borg, S B

    1968-09-01

    The accomplishment of thermal imaging with real-time picture presentation represents a significant advance in nondestructive testing. Described here is the AGA Thermovision, capable of producing such imaging. Operating principles, basic features, and recording techniques are reviewed, and a survey is made of the range of applications. Examples include electrical power distribution elements, a turbine blade, and a missile model in a wind tunnel.

  5. Real-Time Clinical Monitoring of Biomolecules

    NASA Astrophysics Data System (ADS)

    Rogers, Michelle L.; Boutelle, Martyn G.

    2013-06-01

    Continuous monitoring of clinical biomarkers offers the exciting possibility of new therapies that use biomarker levels to guide treatment in real time. This review explores recent progress toward this goal. We initially consider measurements in body fluids by a range of analytical methods. We then discuss direct tissue measurements performed by implanted sensors; sampling techniques, including microdialysis and ultrafiltration; and noninvasive methods. A future directions section considers analytical methods at the cusp of clinical use.

  6. Real-Time X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Bulthuis, Ronald V.

    1988-01-01

    X-ray imaging instrument adapted to continuous scanning. Modern version of fluoroscope enables rapid x-ray inspection of parts. Developed for detection of buckling in insulated ducts. Uses radiation from radioactive gadolinium or thallium source. Instrument weighs only 6 1/2 lb. Quickly scanned by hand along duct surface, providing real-time image. Based on Lixiscope, developed at Goddard Space Flight Center.

  7. Real-time interactive treatment planning.

    PubMed

    Otto, Karl

    2014-09-01

    The goal of this work is to develop an interactive treatment planning platform that permits real-time manipulation of dose distributions including DVHs and other dose metrics. The hypothesis underlying the approach proposed here is that the process of evaluating potential dose distribution options and deciding on the best clinical trade-offs may be separated from the derivation of the actual delivery parameters used for the patient's treatment. For this purpose a novel algorithm for deriving an Achievable Dose Estimate (ADE) was developed. The ADE algorithm is computationally efficient so as to update dose distributions in effectively real-time while accurately incorporating the limits of what can be achieved in practice. The resulting system is a software environment for interactive real-time manipulation of dose that permits the clinician to rapidly develop a fully customized 3D dose distribution. Graphical navigation of dose distributions is achieved by a sophisticated method of identifying contributing fluence elements, modifying those elements and re-computing the entire dose distribution. 3D dose distributions are calculated in ~2-20 ms. Including graphics processing overhead, clinicians may visually interact with the dose distribution (e.g. 'drag' a DVH) and display updates of the dose distribution at a rate of more than 20 times per second. Preliminary testing on various sites shows that interactive planning may be completed in ~1-5 min, depending on the complexity of the case (number of targets and OARs). Final DVHs are derived through a separate plan optimization step using a conventional VMAT planning system and were shown to be achievable within 2% and 4% in high and low dose regions respectively. With real-time interactive planning trade-offs between Target(s) and OARs may be evaluated efficiently providing a better understanding of the dosimetric options available to each patient in static or adaptive RT.

  8. Real-time retrieval of precipitable water vapor from GPS and BeiDou observations

    NASA Astrophysics Data System (ADS)

    Lu, Cuixian; Li, Xingxing; Nilsson, Tobias; Ning, Tong; Heinkelmann, Robert; Ge, Maorong; Glaser, Susanne; Schuh, Harald

    2015-09-01

    The rapid development of the Chinese BeiDou Navigation Satellite System (BDS) brings a promising prospect for the real-time retrieval of zenith tropospheric delays (ZTD) and precipitable water vapor (PWV), which is of great benefit for supporting the time-critical meteorological applications such as nowcasting or severe weather event monitoring. In this study, we develop a real-time ZTD/PWV processing method based on Global Positioning System (GPS) and BDS observations. The performance of ZTD and PWV derived from BDS observations using real-time precise point positioning (PPP) technique is carefully investigated. The contribution of combining BDS and GPS for ZTD/PWV retrieving is evaluated as well. GPS and BDS observations of a half-year period for 40 globally distributed stations from the International GNSS Service Multi-GNSS Experiment and BeiDou Experiment Tracking Network are processed. The results show that the real-time BDS-only ZTD series agree well with the GPS-only ZTD series in general: the RMS values are about 11-16 mm (about 2-3 mm in PWV). Furthermore, the real-time ZTD derived from GPS-only, BDS-only, and GPS/BDS combined solutions are compared with those derived from the Very Long Baseline Interferometry. The comparisons show that the BDS can contribute to real-time meteorological applications, slightly less accurately than GPS. More accurate and reliable water vapor estimates, about 1.3-1.8 mm in PWV, can be obtained if the BDS observations are combined with the GPS observations in the real-time PPP data processing. The PWV comparisons with radiosondes further confirm the performance of BDS-derived real-time PWV and the benefit of adding BDS to standard GPS processing.

  9. Software Analyzes Complex Systems in Real Time

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.

  10. Real-time monitoring system for microfluidics

    NASA Astrophysics Data System (ADS)

    Sapuppo, F.; Cantelli, G.; Fortuna, L.; Arena, P.; Bucolo, M.

    2007-05-01

    A new non-invasive real-time system for the monitoring and control of microfluidodynamic phenomena is proposed. The general purpose design of such system is suitable for in vitro and in vivo experimental setup and therefore for microfluidic application in the biomedical field such as lab-on-chip and for research studies in the field of microcirculation. The system consists of an ad hoc optical setup for image magnification providing images suitable for image acquisition and processing. The optic system was designed and developed using discrete opto-mechanic components mounted on a breadboard in order to provide an optic path accessible at any point where the information needs to be acquired. The optic sensing, acquisition, and processing were performed using an integrated vision system based on the Cellular Nonlinear Networks (CNNs) analogic technology called Focal Plane Processor (FPP, Eye-RIS, Anafocus) and inserted in the optic path. Ad hoc algorithms were implemented for the real-time analysis and extraction of fluido-dynamic parameters in micro-channels. They were tested on images recorded during in vivo microcirculation experiments on hamsters and then they were applied on images optically acquired and processed in real-time during in vitro experiments on a continuous microfluidic device (serpentine mixer, ThinXXS) with a two-phase fluid.

  11. Turning movement estimation in real time

    SciTech Connect

    Martin, P.T.

    1997-08-01

    Fast processors offer exciting opportunities for real-time traffic monitoring. Conventional transportation planning models that assume stable and predictable travel patterns do not lend themselves to on-line traffic forecasting. This paper describes how a new traffic flow inference model has the potential to determine comprehensive flow information in real time. Its philosophical basis is borrowed from the field of operational research, where it has been used for optimizing water and electricity flows. This paper shows how road traffic turning movement flows can be estimated from link detected flows at small recurrent intervals, in real time. The paper details the formulation of the problem, outlines the structure of the data set that provides the detector data for the model input and observed turning flows for the model evaluation. The theoretical principles that define the model are described briefly. Turning movement flow estimates, at 5-min intervals, from two independent surveys are presented and analyzed. The results show an overall mean coefficient of determination (r{sup 2}) of 79--82% between observed and modeled turning movement flows.

  12. Steering a mobile robot in real time

    NASA Astrophysics Data System (ADS)

    Chuah, Mei C.; Fennema, Claude L., Jr.

    1994-10-01

    Using computer vision for mobile robot navigation has been of interest since the 1960s. This interest is evident in even the earliest robot projects: at SRI International (`Shakey') and at the Stanford University (`Stanford Cart'). These pioneering projects provided a foundation for late work but fell far short of providing real time solutions. Since the mid 1980s, the ARPA sponsored ALV and UGV projects have established a need for real time navigation. To achieve the necessary speed, some researchers have focused on building faster hardware; others have turned to the use of new computational architectures, such as neural nets. The work described in this paper uses another approach that has become known as `perceptual servoing.' Previously reported results show that perceptual servoing is both fast and accurate when used to steer vehicles equipped with precise odometers. When the instrumentation on the vehicle does not give precise measurements of distance traveled, as could be the case for a vehicle traveling on ice or mud, new techniques are required to accommodate the reduced ability to make accurate predictions about motion and control. This paper presents a method that computes estimates of distance traveled using landmarks and path information. The new method continues to perform in real time using modest computational facilities, and results demonstrate the effects of the new implementation on steering accuracy.

  13. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  14. Beam shaping for holographic techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2014-09-01

    Uniform intensity of laser radiation is very important in holographic and interferometry technologies, therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) is an actual technical task, it is solved by applying beam shaping optics. Holography and interferometry have specific requirements to a uniform laser beam, most important of them are flatness of phase front and extended depth of field. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. We suggest applying refractive field mapping beam shapers piShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. This approach is used in SLM-based technologies of Computer Generated Holography, Dot-Matrix mastering of security holograms, holographic data storage, holographic projection, lithography, interferometric recording of Volume Bragg Gratings. High optical quality of resulting flat-top beam allows applying additional optical components to vary beam size and shape, thus adapting an optical system to requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.

  15. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  16. Exploring Earthquakes in Real-Time

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  17. Prototype COBRA near-real-time processor

    NASA Astrophysics Data System (ADS)

    Earp, Samuel L.; Marshall, J. W.; Anthony, E. R.

    1996-05-01

    The U.S. Marine Corps COBRA countermine surveillance program has developed, as a risk- reduction alternative, a near real-time processor for the output of the COBRA multispectral camera. This processor has been tested using approximately 13.5 hours of video data from the COBRA DT-0 developmental test, representing approximately 243,000 frames of multispectral data. The results have been very encouraging--the system is robust and the minefield detection performance has met the goals of the COBRA program. The MITRE COBRA prototype processor is built from commercial-off-the-shelf VME bus technology. Video capture is provided by a Transtech TDM 435 capture/display VME card. Control is performed on a GMSV64 Super Sparc card that resides in two VME slots. The compute engine consists of two Pentek 4270 Quad TMS320C40 digital signal processing boards. There are two additional 6U VME boards to provide fast SCSI IO. The system is capable of capturing, digitizing and processing the COBRA data stream at between one-eighth and one-half real-time, depending on processing options. The nominal compute power of the system is 2.2 GOPS, 450 MFLOPS. The system is easily upgradeable due to the open architecture--one proposed upgrade will be to increase the number of available TMS320C40 processors to sixteen, providing real-time performance without compromising the current investment in software and hardware. The software for the system is primarily written in C, with hand-optimized assembler code for portions of the compute kernel. The algorithm that is implemented is based on the MITRE minefield detection algorithm detailed at AeroSense '95. The system development required a registration algorithm--this was the only algorithm development that was performed, the rest of the algorithms coming from previous MITRE effort on the COBRA program. Lessons learned from the development and upgrade/test plans will be presented.

  18. Real-time structured light depth extraction

    NASA Astrophysics Data System (ADS)

    Keller, Kurtis; Ackerman, Jeremy D.

    2000-03-01

    Gathering depth data using structured light has been a procedure for many different environments and uses. Many of these system are utilized instead of laser line scanning because of their quickness. However, to utilize depth extraction for some applications, in our case laparoscopic surgery, the depth extraction must be in real time. We have developed an apparatus that speeds up the raw image display and grabbing in structured light depth extraction from 30 frames per second to 60 and 180 frames per second. This results in an updated depth and texture map of about 15 times per second versus about 3. This increased update rate allows for real time depth extraction for use in augmented medical/surgical applications. Our miniature, fist-sized projector utilizes an internal ferro-reflective LCD display that is illuminated with cold light from a flex light pipe. The miniature projector, attachable to a laparoscope, displays inverted pairs of structured light into the body where these images are then viewed by a high-speed camera set slightly off axis from the projector that grabs images synchronously. The images from the camera are ported to a graphics-processing card where six frames are worked on simultaneously to extract depth and create mapped textures from these images. This information is then sent to the host computer with 3D coordinate information of the projector/camera and the associated textures. The surgeon is then able to view body images in real time from different locations without physically moving the laparoscope imager/projector, thereby, reducing the trauma of moving laparoscopes in the patient.

  19. Real-time failure control (SAFD)

    NASA Technical Reports Server (NTRS)

    Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.

    1990-01-01

    The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.

  20. Open Source Real Time Operating Systems Overview

    SciTech Connect

    Straumann, Till

    2001-12-11

    Modern control systems applications are often built on top of a real time operating system (RTOS) which provides the necessary hardware abstraction as well as scheduling, networking and other services. Several open source RTOS solutions are publicly available, which is very attractive, both from an economic (no licensing fees) as well as from a technical (control over the source code) point of view. This contribution gives an overview of the RTLinux and RTEMS systems (architecture, development environment, API etc.). Both systems feature most popular CPUs, several APIs (including Posix), networking, portability and optional commercial support. Some performance figures are presented, focusing on interrupt latency and context switching delay.

  1. Systems Analyze Water Quality in Real Time

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  2. Real-time teleteaching in medical physics.

    PubMed

    Woo, M; Ng, Kh

    2008-01-01

    Medical physics is a relatively small professional community, usually with a scarcity of expertise that could greatly benefit students entering the field. However, the reach of the profession can span great geographical distances, making the training of students a difficult task. In addition to the requirement of training new students, the evolving field of medical physics, with its many emerging advanced techniques and technologies, could benefit greatly from ongoing continuing education as well as consultation with experts.Many continuing education courses and workshops are constantly being offered, including many web-based study courses and virtual libraries. However, one mode of education and communication that has not been widely used is the real-time interactive process. Video-based conferencing systems do exist, but these usually require a substantial amount of effort and cost to set up.The authors have been working on promoting the ever-expanding capability of the Internet to facilitate the education of medical physics to students entering the field. A pilot project has been carried out for six years and reported previously. The project is a collaboration between the Department of Medical Physics at the Toronto Odette Cancer Centre in Canada and the Department of Biomedical Imaging at the University of Malaya in Malaysia. Since 2001, medical physics graduate students at the University of Malaya have been taught by lecturers from Toronto every year, using the Internet as the main tool of communication.The pilot study explored the different methods that can be used to provide real-time interactive remote education, and delivered traditional classroom lectures as well as hands-on workshops.Another similar project was started in 2007 to offer real-time teaching to a class of medical physics students at Wuhan University in Hubei, China. There are new challenges as well as new opportunities associated with this project. By building an inventory of tools and

  3. General purpose computers in real time

    SciTech Connect

    Biel, J.R.

    1989-09-18

    I see three main trends in the use of general purpose computers in real time. The first is more processing power. The second is the use of higher speed interconnects between computers (allowing more data to be delivered to the processors). The third is the use of larger programs running in the computers. Although there is still work that needs to be done, I believe that all indications are that the online need for general purpose computers should be available for the SCC and LHC machines. 2 figs.

  4. Real-Time Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Cameron, Kelly B.; Owsley, Patrick A.

    1994-01-01

    Generic Reed-Solomon decoder fast enough to correct errors in real time in practical applications designed to be implemented in fewer and smaller very-large-scale integrated, VLSI, circuit chips. Configured to operate in pipelined manner. One outstanding aspect of decoder design is that Euclid multiplier and divider modules contain Galoisfield multipliers configured as combinational-logic cells. Operates at speeds greater than older multipliers. Cellular configuration highly regular and requires little interconnection area, making it ideal for implementation in extraordinarily dense VLSI circuitry. Flight electronics single chip version of this technology implemented and available.

  5. Object detection in real-time

    NASA Astrophysics Data System (ADS)

    Solder, Ulrich; Graefe, Volker

    1991-03-01

    An algorithm working on monocular gray-scale image sequences for object detection combined with a road tracker is presented. This algorithm appropriate for the real-time demands of an autonomous car driving with speeds over 40 km/h may be used for triggering obstacle avoidance maneuvers such as coming to a safe stop automatically in front of an obstacle or following another car. Moving and static objects have been detected in real-world experiments on various types of roads even under unfavorable weather conditions. . Morgenthaler and

  6. [Development of real-time CT fluoroscopy].

    PubMed

    Katada, K; Anno, H; Takeshita, G; Ogura, Y; Koga, S; Ida, Y; Nonomura, K; Kanno, T; Ohashi, A; Sata, S

    1994-10-25

    A new CT system that permits real-time monitoring of CT images was developed. Phantom and volunteer studies revealed that the images were displayed at a rate of six per second with a delay time of 0.83 second with clinically sufficient resolution (256 x 256) using the newly developed fast image processor and partial-reconstruction algorithm. The clinical trial of stereotactic aspiration of intracerebral hematoma was successful. The initial trial with CT fluoroscopy revealed potential usefulness of the system in biopsy and other CT-guided interventions. PMID:9261196

  7. Near real time data processing system

    NASA Astrophysics Data System (ADS)

    Mousessian, Ardvas; Vuu, Christina

    2008-08-01

    Raytheon recently developed and implemented a Near Real Time (NRT) data processing subsystem for Earth Observing System (EOS) Microwave Limb Sounder (MLS3) instrument on NASA Aura spacecraft. The NRT can be viewed as a customized Science Information Processing System (SIPS) where the measurements and information provided by the instrument are expeditiously processed, packaged, and delivered. The purpose of the MLS NRT is to process Level 0 data up through Level 2, and distribute standard data products to the customer within 3-5 hours of the first set of data arrival.

  8. Real time analysis of voiced sounds

    NASA Technical Reports Server (NTRS)

    Hong, J. P. (Inventor)

    1976-01-01

    A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.

  9. Real-Time Optical Monitoring of GRBs

    NASA Astrophysics Data System (ADS)

    Hudec, René; Křížek, Miroslav

    2006-05-01

    Even the fastest alert robotic follow-up telescope is unable to cover the times just after (within first 10 seconds) and before GRB triggers. This time domain is accessible by optical monitors only. We report on analyses of GRB positions on images taken by optical photographic monitors (now operated remotely) within the European meteor network EN. This system is able to provide real-time and pre-burst optical data for GRBs with limiting magnitudes up to 12 in the best cases. The image database is searchable by special software for coincidences with GRBs and the particular images are then scanned and evaluated by computer.

  10. The application of holography as a real-time three-dimensional motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    A historical introduction to holography is presented, as well as a basic description of sideband holography for stationary objects. A brief theoretical development of both time-dependent and time-independent holography is also provided, along with an analytical and intuitive discussion of a unique holographic arrangement which allows the resolution of front surface detail from an object moving at high speeds. As an application of such a system, a real-time three-dimensional motion picture camera system is discussed and the results of a recent demonstration of the world's first true three-dimensional motion picture are given.

  11. Real-time virtual room acoustic simulation

    NASA Astrophysics Data System (ADS)

    Carneal, James P.; Johnson, Jan; Johnson, Troge; Johnson, Marty

    2003-10-01

    A realistic virtual room acoustic simulation has been implemented on a PC-based computer in near real-time. Room acoustics are calculated by the image source method using realistic absorption coefficients for a variety of realistic surfaces and programmed in MATLAB. The resulting impulse response filters are then applied in near real-time using fast convolution DSP techniques using data being read from a CD-ROM. The system was implemented in a virtual acoustic room facility. Optimizations have been performed to retain the realistic virtual room effect while minimizing computations through limited psycho-acoustic testing. In general, realistic anechoic to reverberant virtual rooms have been re-created with six 8192 coefficient filters. To provide realistic simulations, special care must be taken to accurately reproduce the low frequency acoustics. Since the virtual room acoustic facility was not totally anechoic (as are most anechoic chambers), inverse filters were applied to compensate for over-amplified acoustics at frequencies below 350 Hz.

  12. Real-time applications of neural nets

    SciTech Connect

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  13. Residential Real-time Price Response Simulation

    SciTech Connect

    Widergren, Steven E.; Subbarao, Krishnappa; Chassin, David P.; Fuller, Jason C.; Pratt, Robert G.

    2011-10-10

    The electric industry is gaining experience with innovative price responsive demand pilots and limited roll-outs to customers. One of these pilots is investigating real-time pricing signals to engage end-use systems and local distributed generation and storage in a distributed optimization process. Attractive aspects about the approach include strong scalability characteristics, simplified interfaces between automation devices, and the adaptability to integrate a wide variety of devices and systems. Experience in this nascent field is revealing a rich array of for engineering decisions and the application of complexity theory. To test the decisions, computer simulations are used to reveal insights about design, demand elasticity, and the limits of response (including consumer fatigue). Agent-based approaches lend themselves well in the simulation to modeling the participation and interaction of each piece of equipment on a distribution feeder. This paper discusses rate design and simulation experiences at the distribution feeder level where consumers and their HVAC systems and water heaters on a feeder receive real-time pricing signals.

  14. Real-time adaptive video image enhancement

    NASA Astrophysics Data System (ADS)

    Garside, John R.; Harrison, Chris G.

    1999-07-01

    As part of a continuing collaboration between the University of Manchester and British Aerospace, a signal processing array has been constructed to demonstrate that it is feasible to compensate a video signal for the degradation caused by atmospheric haze in real-time. Previously reported work has shown good agreement between a simple physical model of light scattering by atmospheric haze and the observed loss of contrast. This model predicts a characteristic relationship between contrast loss in the image and the range from the camera to the scene. For an airborne camera, the slant-range to a point on the ground may be estimated from the airplane's pose, as reported by the inertial navigation system, and the contrast may be obtained from the camera's output. Fusing data from these two streams provides a means of estimating model parameters such as the visibility and the overall illumination of the scene. This knowledge allows the same model to be applied in reverse, thus restoring the contrast lost to atmospheric haze. An efficient approximation of range is vital for a real-time implementation of the method. Preliminary results show that an adaptive approach to fitting the model's parameters, exploiting the temporal correlation between video frames, leads to a robust implementation with a significantly accelerated throughput.

  15. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  16. Real Time Simulation of Power Grid Disruptions

    SciTech Connect

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  17. Neutron monitor database in real time

    NASA Astrophysics Data System (ADS)

    Kozlov, Valery; Kudela, Karel; Starodubtsev, Sergei; Turpanov, Alexey; Usoskin, Ilya; Yanke, Victor

    2003-09-01

    A first distributed Real Time Cosmic Ray Database using measurements of several neutron monitors is presented. The aim of the project is to develop a unified database with data from different neutron monitors collected together, in unified format and to provide a user with several commonly used data access methods. The database contains original cosmic ray as well as all housekeeping and technical data necessary for scientific data analysis. Currently the database includes Lomnicky Stit, Moscow, Oulu, Tixie Bay, Yakutsk stations and it is opened for other neutron monitors. The main database server is located in IKFIA SB RAS (Yakutsk) but there will be several mirrors of the database. The datbase and all its mirrors are updated on the nearly real-time (1 hour) basis. The data access software includes WWW-interface, Perl scipts and C library, which may be linked to a user program. Most of frequently used functions are implemented to make it operable to users without SQL language knowledge. A draft of the data representation standard is suggested, based on common practice of neutron monitor community. The database engine is freely distributed open-sourced PostgreSQL server coupled with a set of replication tools developed at Bioengineering division of the IRCCS E. Medea, Italy.

  18. Near-real-time Jason-1 Images

    NASA Astrophysics Data System (ADS)

    Rigor, E. M.; Bingham, A.; Case, K.

    2002-12-01

    The Jason-1 satellite mission provides sea surface height measurements in near-real-time (NRT). These operational data can be used for a variety of scientific and commercial applications, including marine meteorology, ship routing, and climate prediction. The Physical Oceanography Distributed Active Archive Center (PO.DAAC), NASA's primary data center for archiving and distributing oceanographic data, is supporting the JASON-1 mission by capturing NRT data from Jason Ground System (JGS) and distributing the data to operational users. In addition, PO.DAAC will be processing the data to create value-added NRT browse images, which will be made available, along with their associated binary data, through the Near-Real-Time Image Distribution Server (NEREIDS). Two NRT data products will be processed by JGS and captured by PO.DAAC: Operational Sensor Data Records (OSDRs) and Interim Geophysical Data Records (IGDRs). OSDRs have a latency of three hours from data collection and an orbit accuracy of 30 cm; IGDRs are available seventy-two hours after collection and have an accuracy of 2.5 cm. After capturing these data, PO.DAAC will automatically create significant wave height, wind speed, and water vapor content browse images from the OSDR data. Additional parameters will be provided from the IGDR data product, such as the sea surface height anomaly, among others. In this poster, we describe the functionality of NEREIDS and demonstrate the usefulness of operational altimetric data for scientific applications.

  19. Real-time design with peer tasks

    NASA Technical Reports Server (NTRS)

    Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.

    1995-01-01

    We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.

  20. 3D MR imaging in real time

    NASA Astrophysics Data System (ADS)

    Guttman, Michael A.; McVeigh, Elliot R.

    2001-05-01

    A system has been developed to produce live 3D volume renderings from an MR scanner. Whereas real-time 2D MR imaging has been demonstrated by several groups, 3D volumes are currently rendered off-line to gain greater understanding of anatomical structures. For example, surgical planning is sometimes performed by viewing 2D images or 3D renderings from previously acquired image data. A disadvantage of this approach is misregistration which could occur if the anatomy changes due to normal muscle contractions or surgical manipulation. The ability to produce volume renderings in real-time and present them in the magnet room could eliminate this problem, and enable or benefit other types of interventional procedures. The system uses the data stream generated by a fast 2D multi- slice pulse sequence to update a volume rendering immediately after a new slice is available. We demonstrate some basic types of user interaction with the rendering during imaging at a rate of up to 20 frames per second.

  1. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  2. Holographic art

    NASA Astrophysics Data System (ADS)

    Bryskin, V. Z.; Prostev, A.

    1991-02-01

    The authors of the present paper have been working together in the field of holographic art during the last three years. Our holographic works of art are based on the use of the Denisyuk reflection holograms. These holograms make it possible to creat an art image with the help of the completely new means of representation. The increase of the reflection holograms size could widen the possibilites of art holography. For example , the high quality holograms C size 60x80 cm ) are produced in the USSR. Assembled into large-sized panels, they can be used both in advertisments, interior decoration and in creating unique works of art. They can also be used for decoration of Christian cathedrals and churches, where such art holographic compositions would produce great impressin on people. Here we'd like to discuss the problem of an aesthetic perception of a holographic image.

  3. Holographic thinking

    NASA Astrophysics Data System (ADS)

    Meulien-Ohlmann, Odile

    2000-10-01

    Holographic thinking is everywhere although we do not realize it. Turn on your TV and you will see many representations of holographic images. It is in many science fiction movies, as well as in books and the news. Now, start your computer and search the Web. What do you see, a screen with plenty of little boxes or frames, each one containing information. You can choose to go deeper by clicking here and there, but ultimately all the little boxes are related to each other. What do you have? A holographic principle where each point stands by itself, containing the whole entity while composing part of it at the same time. The following paragraphs, discussing and evaluating the characteristics of holographic thinking can be read in any order you wish. Each paragraph contributes an understanding of just one aspect of all the ideas which cannot be limited to this paper alone.

  4. Real-time, face recognition technology

    SciTech Connect

    Brady, S.

    1995-11-01

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory recently developed the real-time, face recognition technology KEN. KEN uses novel imaging devices such as silicon retinas developed at Caltech or off-the-shelf CCD cameras to acquire images of a face and to compare them to a database of known faces in a robust fashion. The KEN-Online project makes that recognition technology accessible through the World Wide Web (WWW), an internet service that has recently seen explosive growth. A WWW client can submit face images, add them to the database of known faces and submit other pictures that the system tries to recognize. KEN-Online serves to evaluate the recognition technology and grow a large face database. KEN-Online includes the use of public domain tools such as mSQL for its name-database and perl scripts to assist the uploading of images.

  5. Wi-Fi real time location systems

    NASA Astrophysics Data System (ADS)

    Doll, Benjamin A.

    This thesis objective was to determine the viability of utilizing an untrained Wi-Fi. real time location system as a GPS alternative for indoor environments. Background. research showed that GPS is rarely able to penetrate buildings to provide reliable. location data. The benefit of having location information in a facility and how they might. be used for disaster or emergency relief personnel and their resources motivated this. research. A building was selected with a well-deployed Wi-Fi infrastructure and its. untrained location feature was used to determine the distance between the specified. test points and the system identified location. It was found that the average distance. from the test point throughout the facility was 14.3 feet 80% of the time. This fell within. the defined viable range and supported that an untrained Wi-Fi RTLS system could be a. viable solution for GPS's lack of availability indoors.

  6. Real time software tools and methodologies

    NASA Technical Reports Server (NTRS)

    Christofferson, M. J.

    1981-01-01

    Real time systems are characterized by high speed processing and throughput as well as asynchronous event processing requirements. These requirements give rise to particular implementations of parallel or pipeline multitasking structures, of intertask or interprocess communications mechanisms, and finally of message (buffer) routing or switching mechanisms. These mechanisms or structures, along with the data structue, describe the essential character of the system. These common structural elements and mechanisms are identified, their implementation in the form of routines, tasks or macros - in other words, tools are formalized. The tools developed support or make available the following: reentrant task creation, generalized message routing techniques, generalized task structures/task families, standardized intertask communications mechanisms, and pipeline and parallel processing architectures in a multitasking environment. Tools development raise some interesting prospects in the areas of software instrumentation and software portability. These issues are discussed following the description of the tools themselves.

  7. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Cao, Ying (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  8. Real time speech formant analyzer and display

    DOEpatents

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  9. Real time speech formant analyzer and display

    DOEpatents

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  10. In-line real time air monitor

    DOEpatents

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  11. In-line real time air monitor

    DOEpatents

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  12. Filming protein fibrillogenesis in real time

    NASA Astrophysics Data System (ADS)

    Bella, Angelo; Shaw, Michael; Ray, Santanu; Ryadnov, Maxim G.

    2014-12-01

    Protein fibrillogenesis is a universal tool of nano-to-micro scale construction supporting different forms of biological function. Its exploitable potential in nanoscience and technology is substantial, but the direct observation of homogeneous fibre growth able to underpin a kinetic-based rationale for building customized nanostructures in situ is lacking. Here we introduce a kinetic model of de novo protein fibrillogenesis which we imaged at the nanoscale and in real time, filmed. The model helped to reveal that, in contrast to heterogeneous amyloid assemblies, homogeneous protein recruitment is principally characterized by uniform rates of cooperative growth at both ends of growing fibers, bi-directional growth, with lateral growth arrested at a post-seeding stage. The model provides a foundation for in situ engineering of sequence-prescribed fibrous architectures.

  13. PCs stir reliability, real-time concerns

    SciTech Connect

    Strothman, J.

    1994-11-01

    While pre-Christmas price wars regularly boost personal computer sales this time of year, price cuts alone won`t cause process control systems designers to open their wallets and buy PCs. User studies and user feedback to process control equipment suppliers show several other issues continue to rank higher than price including: (1) Hardware and software reliability; (2) easy-to-use user interfaces; (3) ability to do multitasking; (4) need for real-time updates. These and several other non-price issues - including open versus proprietary systems, slower scan rates from PCs compared to programmable controllers, and assurances that the PC will work in an industrial environment - scored high in a study authored earlier this year by Jesse Yoder, owner of Idea Network, Clinton, NJ. The report, titled {open_quotes}The World Market for Process Control Equipment,{close_quotes} was written for FIND/SVP, a New York City market research firm.

  14. A Flexible Real-Time Architecture

    SciTech Connect

    WICKSTROM,GREGORY L.

    2000-08-17

    Assuring hard real-time characteristics of I/O associated with embedded software is often a difficult task. Input-Output related statements are often intermixed with the computational code, resulting in I/O timing that is dependent on the execution path and computational load. One way to mitigate this problem is through the use of interrupts. However, the non-determinism that is introduced by interrupt driven I/O may be so difficult to analyze that it is prohibited in some high consequence systems. This paper describes a balanced hardware/software solution to obtain consistent interrupt-free I/O timing, and results in software that is much more amenable to analysis.

  15. Terrestrial Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  16. Real-time slicing of data space

    SciTech Connect

    Crawfis, R.A.

    1996-07-01

    Real-time rendering of iso-contour surfaces is problematic for large complex data sets. In this paper, an algorithm is presented that allows very rapid representation of an interval set surrounding a iso-contour surface. The algorithm draws upon three main ideas. A fast indexing scheme is used to select only those data points near the contour surface. Hardware assisted splatting is then employed on these data points to produce a volume rendering of the interval set. Finally, by shifting a small window through the indexing scheme or data space, animated volumes are produced showing the changing contour values. In addition to allowing fast selection and rendering of the data, the indexing scheme allows a much compressed representation of the data by eliminating ``noise`` data points.

  17. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect

    BROCK CT

    2011-01-13

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  18. Real-time snapshot hyperspectral imaging endoscope.

    PubMed

    Kester, Robert T; Bedard, Noah; Gao, Liang; Tkaczyk, Tomasz S

    2011-05-01

    Hyperspectral imaging has tremendous potential to detect important molecular biomarkers of early cancer based on their unique spectral signatures. Several drawbacks have limited its use for in vivo screening applications: most notably the poor temporal and spatial resolution, high expense, and low optical throughput of existing hyperspectral imagers. We present the development of a new real-time hyperspectral endoscope (called the image mapping spectroscopy endoscope) based on an image mapping technique capable of addressing these challenges. The parallel high throughput nature of this technique enables the device to operate at frame rates of 5.2 frames per second while collecting a (x, y, λ) datacube of 350 × 350 × 48. We have successfully imaged tissue in vivo, resolving a vasculature pattern of the lower lip while simultaneously detecting oxy-hemoglobin. PMID:21639573

  19. Identifying financial crises in real time

    NASA Astrophysics Data System (ADS)

    da Fonseca, Eder Lucio; Ferreira, Fernando F.; Muruganandam, Paulsamy; Cerdeira, Hilda A.

    2013-03-01

    Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities.

  20. Real Time Correction of Aircraft Flight Fonfiguration

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.

  1. Real-time forecasts of dengue epidemics

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Shaman, J. L.

    2015-12-01

    Dengue is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas with endemic dengue, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission is a significant public health challenge. Here we present a model of dengue transmission and a framework for optimizing model simulations with real-time observational data of dengue cases and environmental variables in order to generate ensemble-based forecasts of the timing and severity of disease outbreaks. The model-inference system is validated using synthetic data and dengue outbreak records. Retrospective forecasts are generated for a number of locations and the accuracy of these forecasts is quantified.

  2. Cerebral Autoregulation Real-Time Monitoring

    PubMed Central

    Tsalach, Adi; Ratner, Eliahu; Lokshin, Stas; Silman, Zmira; Breskin, Ilan; Budin, Nahum; Kamar, Moshe

    2016-01-01

    Cerebral autoregulation is a mechanism which maintains constant cerebral blood flow (CBF) despite changes in mean arterial pressure (MAP). Assessing whether this mechanism is intact or impaired and determining its boundaries is important in many clinical settings, where primary or secondary injuries to the brain may occur. Herein we describe the development of a new ultrasound tagged near infra red light monitor which tracks CBF trends, in parallel, it continuously measures blood pressure and correlates them to produce a real time autoregulation index. Its performance is validated in both in-vitro experiment and a pre-clinical case study. Results suggest that using such a tool, autoregulation boundaries as well as its impairment or functioning can be identified and assessed. It may therefore assist in individualized MAP management to ensure adequate organ perfusion and reduce the risk of postoperative complications, and might play an important role in patient care. PMID:27571474

  3. Intraoperative, real-time, functional MRI.

    PubMed

    Gering, D T; Weber, D M

    1998-01-01

    Functional MRI (fMRI) methods have been demonstrated to noninvasively identify motor-sensory, visual, and other areas of eloquent cortex for guiding surgical intervention. Typically, fMRI data are acquired preoperatively during a conventional surgical planning MRI examination. Unlike direct cortical stimulation at the time of surgery, however, preoperative fMRI methods do not account for the potential movement of tissues (relative to the time of functional imaging) that may occur in the surgical suite as a direct result of the intervention. Recently, an MRI device has been demonstrated for use in the surgical suite that has the potential to reduce the extent of cortical exposure required for the intervention. However, the invasive requirements of cortical mapping may supersede the invasive requirements of the surgical intervention itself. Consequently, we demonstrate here a modification to the intraoperative MRI device that facilitates a noninvasive, real-time, functional MR examination in the surgical suite.

  4. Near Real-Time Solar Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Yang, G.; Denker, C.; Wang, H.

    2001-05-01

    We use a Linux Beowulf cluster to build a system for near real-time solar image reconstruction with the goal to obtain diffraction limited solar images at a cadence of one minute. This gives us immediate access to high-level data products and enables direct visualization of dynamic processes on the Sun. Space weather warnings and flare forecasting will benefit from this project. The image processing algorithms are based on the speckle masking method combined with frame selection. The parallel programs use explicit message passing via Parallel Virtual Machine (PVM). The preliminary results are very promising. Now, we can construct a 256 by 256 pixel image out of 50 short-exposure images within one minute on a Beowulf cluster with four 500~MHz CPUs. In addition, we want to explore the possibility of applying parallel computing on Beowulf clusters to other complex data reduction and analysis problems that we encounter, e.g., in multi-dimensional spectro-polarimetry.

  5. Near real-time stereo vision system

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  6. Near real-time stereo vision system

    NASA Astrophysics Data System (ADS)

    Matthies, Larry H.; Anderson, Charles H.

    1991-12-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  7. Real time visualization of quantum walk

    SciTech Connect

    Miyazaki, Akihide; Hamada, Shinji; Sekino, Hideo

    2014-02-20

    Time evolution of quantum particles like electrons is described by time-dependent Schrödinger equation (TDSE). The TDSE is regarded as the diffusion equation of electrons with imaginary diffusion coefficients. And the TDSE is solved by quantum walk (QW) which is regarded as a quantum version of a classical random walk. The diffusion equation is solved in discretized space/time as in the case of classical random walk with additional unitary transformation of internal degree of freedom typical for quantum particles. We call the QW for solution of the TDSE a Schrödinger walk (SW). For observation of one quantum particle evolution under a given potential in atto-second scale, we attempt a successive computation and visualization of the SW. Using Pure Data programming, we observe the correct behavior of a probability distribution under the given potential in real time for observers of atto-second scale.

  8. Real-time value-driven diagnosis

    NASA Technical Reports Server (NTRS)

    Dambrosio, Bruce

    1995-01-01

    Diagnosis is often thought of as an isolated task in theoretical reasoning (reasoning with the goal of updating our beliefs about the world). We present a decision-theoretic interpretation of diagnosis as a task in practical reasoning (reasoning with the goal of acting in the world), and sketch components of our approach to this task. These components include an abstract problem description, a decision-theoretic model of the basic task, a set of inference methods suitable for evaluating the decision representation in real-time, and a control architecture to provide the needed continuing coordination between the agent and its environment. A principal contribution of this work is the representation and inference methods we have developed, which extend previously available probabilistic inference methods and narrow, somewhat, the gap between probabilistic and logical models of diagnosis.

  9. Real-time visualization of joint cavitation.

    PubMed

    Kawchuk, Gregory N; Fryer, Jerome; Jaremko, Jacob L; Zeng, Hongbo; Rowe, Lindsay; Thompson, Richard

    2015-01-01

    Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking.

  10. Real-Time Visualization of Joint Cavitation

    PubMed Central

    Rowe, Lindsay

    2015-01-01

    Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking. PMID:25875374

  11. A real-time pulsed photon dosimeter

    NASA Astrophysics Data System (ADS)

    Brown, David; Olsher, Richard H.; Eisen, Yosef; Rodriguez, Joseph F.

    1996-02-01

    Radiation sources producing short pulses of photon radiation are now widespread. Such sources include electron and proton linear accelerators, betatrons, synchrotrons, and field-emission impulse generators. It is often desirable to measure leakage and skyshine radiation from such sources in real time, on a single-pulse basis as low as 8.7 nGy (1 μR) per pulse. This paper describes the design and performance of a prototype, real-time, pulsed photon dosimeter (PPD) capable of single-pulse dose measurements over the range from 3.5 nGy to 3.5 μGy (0.4 to 400 μR). The PPD may also be operated in a multiple-pulse mode that integrates the dose from a train of radiation pulses over a 3-s period. A pulse repetition rate of up to 300 Hz is accommodated. The design is eminently suitable for packaging as a lightweight, portable, survey meter. The PPD uses a CdWO 4 scintillator optically coupled to a photodiode to generate a charge at the diode output. A pulse amplifier converts the charge to a voltage pulse. A digitizer circuit generates a burst of logic pulses whose number is proportional to the peak value of the voltage pulse. The digitizer output is recorded by a pulse counter and suitably displayed. A prototype PPD was built for testing and evaluation purposes. The performance of the PPD was evaluated with a variety of pulsed photon sources. The dynamic range, energy response, and response to multiple pulses were characterized. The experimental data confirm the viability of the PPD for pulsed photon dosimetry.

  12. Towards real time speckle controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf

    2016-03-01

    Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.

  13. Detection of deoxynivalenol using biolayer interferometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biolayer interferometry allows for the real time monitoring of the interactions between molecules without the need for reagents with enzymatic, fluorescent, or radioactive labels. The technology is based upon the changes in interference pattern of light reflected from the surface of an optical fiber...

  14. Real-Time Ellipsometry-Based Transmission Ultrasound Imaging

    SciTech Connect

    Kallman, J S; Poco, J F; Ashby, A E

    2007-02-14

    Ultrasonic imaging is a valuable tool for non-destructive evaluation and medical diagnosis. Reflection mode is exclusively used for medical imaging, and is most frequently used for nondestructive evaluation (NDE) because of the relative speed of acquisition. Reflection mode imaging is qualitative, yielding little information about material properties, and usually only about material interfaces. Transmission imaging can be used in 3D reconstructions to yield quantitative information: sound speed and attenuation. Unfortunately, traditional scanning methods of acquiring transmission data are very slow, requiring on the order of 20 minutes per image. The sensing of acoustic pressure fields as optical images can significantly speed data acquisition. An entire 2D acoustic pressure field can be acquired in under a second. The speed of data acquisition for a 2D view makes it feasible to obtain multiple views of an object. With multiple views, 3D reconstruction becomes possible. A fast, compact (no big magnets or accelerators), inexpensive, 3D imaging technology that uses no ionizing radiation could be a boon to the NDE and medical communities. 2D transmission images could be examined in real time to give the ultrasonic equivalent of a fluoroscope, or accumulated in such a way as to acquire phase and amplitude data over multiple views for 3D reconstruction (for breast cancer imaging, for example). Composite panels produced for the aircraft and automobile industries could be inspected in near real time, and inspection of attenuating materials such as ceramics and high explosives would be possible. There are currently three optical-readout imaging transmission ultrasound technologies available. One is based on frustrated total internal reflection (FTIR) [1,2], one on Fabry-Perot interferometry [3], and another on critical angle modulation [4]. Each of these techniques has its problems. The FTIR based system cannot currently be scaled to large aperture sizes, the Fabry

  15. Holographic Optical Data Storage

    NASA Technical Reports Server (NTRS)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Although the basic idea may be traced back to the earlier X-ray diffraction studies of Sir W. L. Bragg, the holographic method as we know it was invented by D. Gabor in 1948 as a two-step lensless imaging technique to enhance the resolution of electron microscopy, for which he received the 1971 Nobel Prize in physics. The distinctive feature of holography is the recording of the object phase variations that carry the depth information, which is lost in conventional photography where only the intensity (= squared amplitude) distribution of an object is captured. Since all photosensitive media necessarily respond to the intensity incident upon them, an ingenious way had to be found to convert object phase into intensity variations, and Gabor achieved this by introducing a coherent reference wave along with the object wave during exposure. Gabor's in-line recording scheme, however, required the object in question to be largely transmissive, and could provide only marginal image quality due to unwanted terms simultaneously reconstructed along with the desired wavefront. Further handicapped by the lack of a strong coherent light source, optical holography thus seemed fated to remain just another scientific curiosity, until the field was revolutionized in the early 1960s by some major breakthroughs: the proposition and demonstration of the laser principle, the introduction of off-axis holography, and the invention of volume holography. Consequently, the remainder of that decade saw an exponential growth in research on theory, practice, and applications of holography. Today, holography not only boasts a wide variety of scientific and technical applications (e.g., holographic interferometry for strain, vibration, and flow analysis, microscopy and high-resolution imagery, imaging through distorting media, optical interconnects, holographic optical elements, optical neural networks, three-dimensional displays, data storage, etc.), but has become a prominent am advertising

  16. A tool for modeling concurrent real-time computation

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.

    1990-01-01

    Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.

  17. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    PubMed

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays.

  18. The multispectral advanced volumetric real-time imaging compositor for real-time distributed scene generation

    NASA Astrophysics Data System (ADS)

    Morris, Joseph W.; Ballard, Gary H.; Bunfield, Dennis H.; Peddycoart, Thomas E.; Trimble, Darian E.

    2011-06-01

    AMRDEC has developed the Multi-spectral Advanced Volumetric Real-time Imaging Compositor (MAVRIC) prototype for distributed real-time hardware-in-the-loop (HWIL) scene generation. MAVRIC is a dynamic object-based energy conserved scene compositor that can seamlessly convolve distributed scene elements into temporally aligned physicsbased scenes for enhancing existing AMRDEC scene generation codes. The volumetric compositing process accepts input independent of depth order. This real-time compositor framework is built around AMRDEC's ContinuumCore API which provides the common messaging interface leveraging the Neutral Messaging Language (NML) for local, shared memory, reflective memory, network, and remote direct memory access (RDMA) communications and the Joint Signature Image Generator (JSIG) that provides energy conserved scene component interface at each render node. This structure allows for a highly scalable real-time environment capable of rendering individual objects at high fidelity while being considerate of real-time hardware-in-the-loop concerns, such as latency. As such, this system can be scaled to handle highly complex detailed scenes such as urban environments. This architecture provides the basis for common scene generation as it provides disparate scene elements to be calculated by various phenomenology codes and integrated seamlessly into a unified composited environment. This advanced capability is the gateway to higher fidelity scene generation such as ray-tracing. The high speed interconnects using PCI Express and InfiniBand were examined to support distributed scene generation whereby the scene graph, associated phenomenology, and the scene elements can be dynamically distributed across multiple high performance computing assets to maximize system performance.

  19. Clinical experience with real-time ultrasound

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Wolfman, Neil T.; Covitz, Wesley

    1995-05-01

    After testing the extended multimedia interface (EMMI) product which is an asynchronous transmission mode (ATM) user to network interface (UNI) of AT&T at the Society for Computer Applications in Radiology conference in Winston-Salem, the Department of Radiology together with AT&T are implementing a tele-ultrasound system to combine real- time ultrasound with the static imaging features of more traditional digital ultrasound systems. Our current ultrasound system archives digital images to an optical disk system. Static images are sent using our digital radiology systems. This could be transferring images from one digital imaging and communications (DICOM)-compliant machine to another, or the current image transfer methodologies. The prototype of a live ultrasound system using the EMMI demonstrated the feasibility of doing live ultrasound. We now are developing the scenarios using a mix of the two methodologies. Utilizing EMMI technology, radiologists at the BGSM review at a workstation both static images and real-time scanning done by a technologist on patients at a remote site in order to render on-line primary diagnosis. Our goal is to test the feasibility of operating an ultrasound laboratory at a remote site utilizing a trained technologist without the necessity of having a full-time radiologist at that site. Initial plans are for a radiologist to review an initial set of static images on a patient taken by the technologist. If further scanning is required, the EMMI is used to transmit real-time imaging and audio using the audio input of a standard microphone system and the National Television Standards Committee (NTSC) output of the ultrasound equipment from the remote site to the radiologist in the department review station. The EMMI digitally encodes this data and places it in an ATM format. This ATM data stream goes to the GCNS2000 and then to the other EMMI where the ATM data stream is decoded into the live studies and voice communication which are then

  20. Real Time Earthquake Information System in Japan

    NASA Astrophysics Data System (ADS)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  1. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    NASA Technical Reports Server (NTRS)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  2. Interferometry concepts

    NASA Astrophysics Data System (ADS)

    Millour, F.

    2014-09-01

    This paper serves as an introduction to the current book. It provides the basic notions of long-baseline optical/infrared interferometry prior to reading all the subsequent chapters, and is not an extended introduction to the field.

  3. Real-time reconfigurable subthreshold CMOS perceptron.

    PubMed

    Aunet, S; Oelmann, B; Norseng, P A; Berg, Y

    2008-04-01

    In this paper, a new, real-time reconfigurable perceptron circuit element is presented. A six-transistor version used as a threshold gate, having a fan-in of three, producing adequate outputs for threshold of T =1, 2 and 3 is demonstrated by chip measurements. Subthreshold operation for supply voltages in the range of 100-350 mV is shown. The circuit performs competitively with a standard static complimentary metal-oxide-semiconductor (CMOS) implementation when maximum speed and energy delay product are taken into account, when used in a ring oscillator. Functionality per transistor is, to our knowledge, the highest reported for a variety of comparable circuits not based on floating gate techniques. Statistical simulations predict probabilities for making working circuits under mismatch and process variations. The simulations, in 120-nm CMOS, also support discussions regarding lower limits to supply voltage and redundancy. A brief discussion on how the circuit may be exploited as a basic building block for future defect tolerant mixed signal circuits, as well as neural networks, exploiting redundancy, is included.

  4. Real-Time Principal-Component Analysis

    NASA Technical Reports Server (NTRS)

    Duong, Vu; Duong, Tuan

    2005-01-01

    A recently written computer program implements dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN), which was described in Method of Real-Time Principal-Component Analysis (NPO-40034) NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 59. To recapitulate: DOGEDYN is a method of sequential principal-component analysis (PCA) suitable for such applications as data compression and extraction of features from sets of data. In DOGEDYN, input data are represented as a sequence of vectors acquired at sampling times. The learning algorithm in DOGEDYN involves sequential extraction of principal vectors by means of a gradient descent in which only the dominant element is used at each iteration. Each iteration includes updating of elements of a weight matrix by amounts proportional to a dynamic initial learning rate chosen to increase the rate of convergence by compensating for the energy lost through the previous extraction of principal components. In comparison with a prior method of gradient-descent-based sequential PCA, DOGEDYN involves less computation and offers a greater rate of learning convergence. The sequential DOGEDYN computations require less memory than would parallel computations for the same purpose. The DOGEDYN software can be executed on a personal computer.

  5. Real-Time 3D Visualization

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  6. Correction of deformed images in real time

    NASA Astrophysics Data System (ADS)

    Van der Jeught, Sam; Buytaert, Jan A. N.; Dirckx, Joris J. J.

    2011-09-01

    Optical lens systems generally contain non-linear distortion artifacts that impose important limitations on the direct interpretation of the images. Image processing can be used to correct for these artifacts, but due to the calculation-intensive nature of the required distortion correction process, this is usually performed offline. This is not an option in image-based applications that operate interactively, however, where the real-time display of distortion corrected images can be vital. To this end, we propose a new technique to correct for arbitrary geometric lens distortion that uses the parallel processing power of a commercial graphics processing unit (GPU). By offloading the distortion correction process to the GPU, we can relieve the central processing unit (CPU) of doing this computationally very demanding task. We successfully implemented the full distortion correction algorithm on the GPU, thereby achieving a display rate of over 30 frames/sec for fully processed images of size 1024 × 768 pixels without the need for any additional digital image processing hardware.

  7. Real time radiation measurements in space

    NASA Astrophysics Data System (ADS)

    Thomson, I.; Mackay, G.

    Radiation composed of energetic electrons, protons, photons, and galactic cosmic rays will be experienced by all space missions and may have effects on radiation sensitive electronic components and biological specimens. Radiation issues of interest to microgravity and biological experiments are discussed and the design of a new direct reading electronic radiation monitoring system is described. The proposed system consists of a radiation sensitive metal oxide semiconductor field effect transistor (MOSFET) specially designed to respond to ionizing radiation. On exposure to radiation, a permanent charge is stored in the MOSFET's insulating oxide, altering the device's electrical characteristics in a manner directly proportional to the dose exposed. A simple circuit reads the MOSFET's cumulative dose, making it possible to obtain real-time measurements and store the data or transfer the data to an earth station. Tests have shown that the MOSFET dosimeter shows a linear response up to at least 30,000 centiGray at a resolution of 0.1 centiGray. The MOSFET dosimetry system will be installed on the European Space Agency's ARTEP satellite scheduled for launch in November 1991.

  8. Extrasolar Giant Impacts in Real Time

    NASA Astrophysics Data System (ADS)

    Rieke, George; Meng, Huan; Su, Kate

    2013-10-01

    Spitzer observations in the previous cycles have revealed 3.6 and 4.5 um variability and periodicity in extreme debris disks on timescales of weeks or even shorter. Such disks typically have warm temperatures and strong crystalline silicate emission, indicative of very fine dust particles in the terrestrial planet zone and below the blowout sizes of the stars. Many of the disks are around solar-like stars in the age range of 30 - 100+ Myr, the expected time for the final buildup of terrestrial planets through massive collisions. These young extrasolar systems are probably going through this phase with series of violent collisions, or possible analogs of the Moon-forming impact, providing rare opportunities to investigate terrestrial planet formation and collision in real time, and put our own Solar System in context. Here we propose to continue the monitoring of three such systems with daily sampling cadence. The observations will provide insight into the physical and dynamical processes of the planet-forming disks.

  9. Optimizing near real time accountability for reprocessing.

    SciTech Connect

    Cipiti, Benjamin B.

    2010-06-01

    Near Real Time Accountability (NRTA) of actinides at high precision in reprocessing plants has been a long sought-after goal in the safeguards community. Achieving this goal is hampered by the difficulty of making precision measurements in the reprocessing environment, equipment cost, and impact to plant operations. Thus the design of future reprocessing plants requires an optimization of different approaches. The Separations and Safeguards Performance Model, developed at Sandia National Laboratories, was used to evaluate a number of NRTA strategies in a UREX+ reprocessing plant. Strategies examined include the incorporation of additional actinide measurements of internal plant vessels, more use of process monitoring data, and the option of periodic draining of inventory to key tanks. Preliminary results show that the addition of measurement technologies can increase the overall measurement uncertainty due to additional error propagation, so care must be taken when designing an advanced system. Initial results also show that relying on a combination of different NRTA techniques will likely be the best option. The model provides a platform for integrating all the data. The modeling results for the different NRTA options under various material loss conditions will be presented.

  10. High sensitivity real-time NVR monitor

    NASA Technical Reports Server (NTRS)

    Bowers, William D. (Inventor); Chuan, Raymond L. (Inventor)

    1997-01-01

    A real time non-volatile residue (NVR) monitor, which utilizes surface acoustic wave (SAW) resonators to detect molecular contamination in a given environment. The SAW resonators operate at a resonant frequency of approximately 200 MHz-2,000 MHz which enables the NVR monitor to detect molecular contamination on the order of 10.sup.-11 g-cm.sup.-2 to 10.sup.-13 g-cm.sup.2. The NVR monitor utilizes active temperature control of (SAW) resonators to achieve a stable resonant frequency. The temperature control system of the NVR monitor is able to directly heat and cool the SAW resonators utilizing a thermoelectric element to maintain the resonators at a present temperature independent of the environmental conditions. In order to enable the direct heating and cooling of the SAW resonators, the SAW resonators are operatively mounted to a heat sink. In one embodiment, the heat sink is located in between the SAW resonators and an electronic circuit board which contains at least a portion of the SAW control electronics. The electrical leads of the SAW resonators are connected through the heat sink to the circuit board via an electronic path which prevents inaccurate frequency measurement.

  11. Real-time scheduling of software tasks

    SciTech Connect

    Hoff, L.T.

    1995-12-01

    When designing real-time systems, it is often desirable to schedule execution of software tasks based on the occurrence of events. The events may be clock ticks, interrupts from a hardware device, or software signals from other software tasks. If the nature of the events, is well understood, this scheduling is normally a static part of the system design. If the nature of the events is not completely understood, or is expected to change over time, it may be necessary to provide a mechanism for adjusting the scheduling of the software tasks. RHIC front-end computers (FECs) provide such a mechanism. The goals in designing this mechanism were to be as independent as possible of the underlying operating system, to allow for future expansion of the mechanism to handle new types of events, and to allow easy configuration. Some considerations which steered the design were programming paradigm (object oriented vs. procedural), programming language, and whether events are merely interesting moments in time, or whether they intrinsically have data associated with them. The design also needed to address performance and robustness tradeoffs involving shared task contexts, task priorities, and use of interrupt service routine (ISR) contexts vs. task contexts. This paper will explore these considerations and tradeoffs.

  12. Real-time video watermarking technique

    NASA Astrophysics Data System (ADS)

    Lee, Han H.; Chae, Jong J.; Choi, Jong U.

    2002-04-01

    Most previous video watermarking algorithms cannot be supported by real-time processing. Our algorithm proposed the specific embedding method in the spatial domain directly rather than the frequency domain. Also the algorithm supports the robustness from the video attacking skills. In the paper, for example, watermark is inserted immediately into the output frame of Digital Video (DV) camcorder. We select the Y component from the DV signal, and then the watermark information is inserted in all of the Y frames. The watermarked video frames put in the video MPEG encoder. We consider embedding information to the high quality video streams, such as a DVD, HDTV. Our experimental results show the high quality of the video even if compressed. Therefore, the robustness from compression is tested by MPEG-2 of 6Mbits/sec of 720x480 frame size and the invisibility is proved by measurement of PSNR. The results also show the robustness from several video editing methods, such as a cut-and-splice and cut-insert-splice, and video conversions, letterboxing, pan & span, and wide screen of media.

  13. Real-time optoacoustic monitoring of stroke

    NASA Astrophysics Data System (ADS)

    Kneipp, Moritz; Turner, Jake; Hambauer, Sebastian; Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-03-01

    Characterizing disease progression and identifying possible therapeutic interventions in stroke is greatly aided by the use of longitudinal function imaging studies. In this study, we investigate the applicability of real-time multispectral optoacoustic tomography (MSOT) as a tool for non-invasive monitoring of the progression of stroke in the whole brain. The middle cerebral artery occlusion (MCAO) method was used to induce stroke. Mice were imaged under isoflurane anesthesia preoperatively and at several time points during and after the 60-minute occlusion. The animals were sacrificed after 24 hours and their excised brains frozen at -80°C for sectioning. The cryosection were stained using H&E staining to identify the ischemic lesion. Major vessels are readily identifiable in the whole mouse head in the in vivo optoacoustic scans. During ischemia, a reduction in cerebral blood volume is detectable in the cortex. Post ischemia, spectral unmixing of the optoacoustic signals shows an asymmetry of the deoxygenated hemoglobin in the hemisphere affected by MCAO. This hypoxic area was mainly located around the boundary of the ischemic lesion and was therefore identified as the ischemic penumbra. Non-invasive functional MSOT imaging is able to visualize the hypoxic penumbra in brains affected by stroke. Stopping the spread of the infarct area and revitalizing the penumbra is central in stroke research, this new imaging technique may therefore prove to be a valuable tool in the monitoring and developing new treatments.

  14. Recommendations for Real-Time Speech MRI

    PubMed Central

    Lingala, Sajan Goud; Sutton, Brad P.; Miquel, Marc E.; Nayak, Krishna S.

    2016-01-01

    Real-time magnetic resonance imaging (RT-MRI) is being increasingly used for speech and vocal production research studies. Several imaging protocols have emerged based on advances in RT-MRI acquisition, reconstruction, and audio-processing methods. This review summarizes the state-of-the-art, discusses technical considerations, and provides specific guidance for new groups entering this field. We provide recommendations for performing RT-MRI of the upper airway. This is a consensus statement stemming from the ISMRM-endorsed Speech MRI summit held in Los Angeles, February 2014. A major unmet need identified at the summit was the need for consensus on protocols that can be easily adapted by researchers equipped with conventional MRI systems. To this end, we provide a discussion of tradeoffs in RT-MRI in terms of acquisition requirements, a priori assumptions, artifacts, computational load, and performance for different speech tasks. We provide four recommended protocols and identify appropriate acquisition and reconstruction tools. We list pointers to open-source software that facilitate implementation. We conclude by discussing current open challenges in the methodological aspects of RT-MRI of speech. PMID:26174802

  15. Real-time information management environment (RIME)

    NASA Astrophysics Data System (ADS)

    DeCleene, Brian T.; Griffin, Sean; Matchett, Garry; Niejadlik, Richard

    2000-08-01

    Whereas data mining and exploitation improve the quality and quantity of information available to the user, there remains a mission requirement to assist the end-user in managing the access to this information and ensuring that the appropriate information is delivered to the right user in time to make decisions and take action. This paper discusses TASC's federated architecture to next- generation information management, contrasts the approach against emerging technologies, and quantifies the performance gains. This architecture and implementation, known as Real-time Information Management Environment (RIME), is based on two key concepts: information utility and content-based channelization. The introduction of utility allows users to express the importance and delivery requirements of their information needs in the context of their mission. Rather than competing for resources on a first-come/first-served basis, the infrastructure employs these utility functions to dynamically react to unanticipated loading by optimizing the delivered information utility. Furthermore, commander's resource policies shape these functions to ensure that resources are allocated according to military doctrine. Using information about the desired content, channelization identifies opportunities to aggregate users onto shared channels reducing redundant transmissions. Hence, channelization increases the information throughput of the system and balances sender/receiver processing load.

  16. Real time visual servoing using controlled illumination

    NASA Astrophysics Data System (ADS)

    Urban, J. P.; Motyl, G.; Gallice, J.

    1994-02-01

    A real-time visual servoing approach is applied to robotics tasks consisting of the positioning of the end effector with respect to a priori known polyhedral objects. The vision apparatus is consituted by a compact CCD camera rigidly coupled with two laser stripes mounted on the wrist of a robot manipulator. The objective is to servo the robot and effector at a constant position and orientation with respect to a known object in three- dimensional space in the field of view of the sensory system. The approach is expressed in terms of sensor-based control applied to visual servoing. In the case of camera-light stripe coupling, the elementary visual signals used for visual servoing are the points of discontinuity in the light stripes. The feasibility of the approach is demonstrated in a factory automation task consisting of the positioning of the end-effector tool over a vehicle battery. Both simulation and experimentation results are presented, proving the robustness and stability of the algorithm.

  17. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2016-07-12

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  18. Ames Lab 101: Real-Time 3D Imaging

    SciTech Connect

    Zhang, Song

    2010-01-01

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  19. Golographic interferometry of physical processes

    NASA Astrophysics Data System (ADS)

    Ostrovskaya, G. V.

    2016-06-01

    This paper is devoted to the contribution of Yuri Ostrovsky to holographic interferometry, one of the fundamental scientific and practical applications of holography. The title of this paper is the same as the title of his doctoral thesis that he defended in 1974, and, as it seems to me, reflects most of the specific features of the majority of his scientific publications, viz., an inseparable link of the methods developed by him with the results obtained with the help of these methods in a wide range of investigations of physical processes and phenomena.

  20. Vibration analysis using moire interferometry

    NASA Astrophysics Data System (ADS)

    Asundi, A.; Cheung, M. T.

    The present use of moire interferometry for low amplitude vibration and analysis demonstrates the possibility of obtaining out-of-plane displacement contours whose sensitivity is comparable to that of holographic methods. A major advantage of the present system, is the obviation of prior knowledge of resonant frequencies, as called for in time-average holography. The experimental apparatus employed encompasses a laser beam, a parabolic mirror, a high frequency (600 line/mm) grating, and a camera, in addition to the test model.

  1. Measurement of volume resistivity/conductivity of metallic alloy in inhibited seawater by optical interferometry techniques

    SciTech Connect

    Habib, K.

    2011-03-15

    Optical interferometry techniques were used for the first time to measure the volume resistivity/conductivity of carbon steel samples in seawater with different concentrations of a corrosion inhibitor. In this investigation, the real-time holographic interferometry was carried out to measure the thickness of anodic dissolved layer or the total thickness, U{sub total}, of formed oxide layer of carbon steel samples during the alternating current (ac) impedance of the samples in blank seawater and in 5-20 ppm TROS C-70 inhibited seawater, respectively. In addition, a mathematical model was derived in order to correlate between the ac impedance (resistance) and the surface (orthogonal) displacement of the surface of the samples in solutions. In other words, a proportionality constant [resistivity ({rho}) or conductivity ({sigma})= 1/{rho}] between the determined ac impedance [by electrochemical impedance spectroscopy (EIS) technique] and the orthogonal displacement (by the optical interferometry techniques) was obtained. The value of the resistivity of the carbon steel sample in the blank seawater was found similar to the value of the resistivity of the carbon steel sample air, around 1 x 10{sup -5}{Omega} cm. On the contrary, the measured values of the resistivity of the carbon steel samples were 1.85 x 10{sup 7}, 3.35 x 10{sup 7}, and 1.7 x 10{sup 7}{Omega} cm in 5, 10, and 20 ppm TROS C-70 inhibited seawater solutions, respectively. Furthermore, the determined value range of {rho} of the formed oxide layers, from 1.7 x 10{sup 7} to 3.35 x 10{sup 7}{Omega} cm, is found in a reasonable agreement with the one found in literature for the Fe oxide-hydroxides, i.e., goethite ({alpha}-FeOOH) and for the lepidocrocite ({gamma}-FeOOH), 1 x 10{sup 9}{Omega} cm. The {rho} value of the Fe oxide-hydroxides, 1 x 10{sup 9}{Omega} cm, was found slightly higher than the {rho} value range of the formed oxide layer of the present study. This is because the former value was determined

  2. Applications of whole field interferometry in mechanics and acoustics

    NASA Astrophysics Data System (ADS)

    Molin, Nils-Erik

    1999-07-01

    A description is given of fringe formation in holographic interferometry, in electronic speckle pattern interferometry, in electro-optic or TV holography and for a newly developed system for pulsed TV-holography. A numerical example, which simulates the equations describing the different techniques, is included. A strain measuring system using defocused digital speckle photography is described. Experiments showing mode shapes of musical instruments, transient bending wave propagation in beams and plates as well as sound pressure fields in air are included.

  3. Real-time support for high performance aircraft operation

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1989-01-01

    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown.

  4. Apparatus Characterizes Transient Voltages in Real Time

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    is received, a volatile memory is filled with data for a total time of 200 ms. After the data are transferred to nonvolatile memory, the recorder rearms itself within 400 ms to enable recording of subsequent transients. Unfortunately, the recorded data must be retrieved through a serial communication link. Depending on the amount of data recorded, the memory can be filled before retrieval is completed. Although large amounts of data are recorded and retrieved, only a small part of the information (the selected parameters) is usually required. The present transient-voltage recorder provides the required information, without incurring the overhead associated with the recording, storage, and retrieval of complete transient-waveform data. In operation, this apparatus processes transient voltage waveforms in real time to extract and record the selected parameters. An analog-to-digital converter that operates at a speed of as much as 100 mega-samples per second is used to sample a transient waveform. A real-time comparator and peak detector are implemented by use of fast field-programmable gate arrays.

  5. Public Science with Real-Time Experiments

    NASA Astrophysics Data System (ADS)

    Lenardic, A.

    2013-12-01

    One of the best ways for professional scientists to engage in public outreach is to get outside of the university and/or lab walls and go out into the public. That is, go to public spaces to do some science experiments with the public - this includes students of all ages that constitute that public. Technological advance in portable measurement gear now allow one to do real, or near real, time experiments in outdoor, public spaces. We have been running a meta-experiment of this sort, aimed at the public display of science, for about a year now in Houston TX at the Lee and Joe Jamail Skatepark. The project goes under the title of Sk8Lab Houston and has introduced students of all ages to the power of scientific experimentation. We bring a portable science pack with us to the park. The pack has a range of wireless measurement gear that allow experiments to be done on the spot. Some of the experiments are designed by us but many are designed on by whoever suggests them to us that day. Over time the Sk8Lab scientists have built up a level of "trust" with the people who frequent the park (no one feels like we are gonna grade them at the park and they know that the learning is not on some regimented clock). This has broken down some learning walls and allowed for a more informal mode of exploration and a more genuine mode of experimentation (as compared to what often happens in class labs when students feel like they are just being forced to reproduce some known result). We will describe some of the test case experiments we have run and also discuss some of the trials, tribulations, and happy successes (many unplanned) along the way.

  6. Real-Time Feature Tracking Using Homography

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel S.; Cheng, Yang; Ansar, Adnan I.; Trotz, David C.; Padgett, Curtis W.

    2010-01-01

    This software finds feature point correspondences in sequences of images. It is designed for feature matching in aerial imagery. Feature matching is a fundamental step in a number of important image processing operations: calibrating the cameras in a camera array, stabilizing images in aerial movies, geo-registration of images, and generating high-fidelity surface maps from aerial movies. The method uses a Shi-Tomasi corner detector and normalized cross-correlation. This process is likely to result in the production of some mismatches. The feature set is cleaned up using the assumption that there is a large planar patch visible in both images. At high altitude, this assumption is often reasonable. A mathematical transformation, called an homography, is developed that allows us to predict the position in image 2 of any point on the plane in image 1. Any feature pair that is inconsistent with the homography is thrown out. The output of the process is a set of feature pairs, and the homography. The algorithms in this innovation are well known, but the new implementation improves the process in several ways. It runs in real-time at 2 Hz on 64-megapixel imagery. The new Shi-Tomasi corner detector tries to produce the requested number of features by automatically adjusting the minimum distance between found features. The homography-finding code now uses an implementation of the RANSAC algorithm that adjusts the number of iterations automatically to achieve a pre-set probability of missing a set of inliers. The new interface allows the caller to pass in a set of predetermined points in one of the images. This allows the ability to track the same set of points through multiple frames.

  7. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  8. Real time monitoring of electroless nickel plating

    NASA Astrophysics Data System (ADS)

    Rains, Aaron E.; Kline, Ronald A.

    2013-01-01

    This work deals with the design and manufacturing of the heat and chemical resistant transducer case required for on-line immersion testing, experimental design, data acquisition and signal processing. Results are presented for several depositions with an accuracy of two ten-thousandths of an inch in coating thickness obtained. Monitoring the deposition rate of Electroless Nickel (EN) plating in-situ will provide measurement of the accurate dimensions of the component being plated, in real time. EN is used as for corrosion and wear protection for automotive an - Electroless Nickel (EN) plating is commonly used for corrosion and wear protection for automotive and aerospace components. It plates evenly and symmetrically, theoretically allowing the part to be plated to its final dimension. Currently the standard approach to monitoring the thickness of the deposited nickel is to remove the component from the plating bath and physically measure the part. This can lead to plating problems such as pitting, non-adhesion of the deposit and contamination of the plating solution. The goal of this research effort is to demonstrate that plating thickness can be rapidly and accurately measured using ultrasonic testing. Here a special housing is designed to allow immersion of the ultrasonic transducers directly into the plating bath. An FFT based signal processing algorithm was developed to resolve closely spaced echoes for precise thickness determination. The technique in this research effort was found to be capable of measuring plating thicknesses to within 0.0002 inches. It is expected that this approach will lead to cost savings in many EN plating operations.

  9. A real-time prediction of UTC

    NASA Technical Reports Server (NTRS)

    Thomas, Claudine; Allan, David W.

    1994-01-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  10. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  11. Practical Real-Time Imaging Stereo Matcher

    NASA Astrophysics Data System (ADS)

    Nishihara, H. K.

    1984-10-01

    A binocular-stereo-matching algorithm for making rapid visual range measurements in noisy images is described. This technique is developed for application to problems in robotics where noise tolerance, reliability, and speed are predominant issues. A high speed pipelined convolver for preprocessing images and an unstructured light technique for improving signal quality are introduced to help enhance performance to meet the demands of this task domain. These optimizations, however, are not sufficient. A closer examination of the problems encountered suggests that broader interpretations of both the objective of binocular stereo and of the zero-crossing theory of Marr and Poggio [Proc. R. Soc. Lond. B 204, 301 (1979)] are required. In this paper, we restrict ourselves to the problem of making a single primitive surface measurement for example, to determine whether or not a specified volume of space is occupied, to measure the range to a surface at an indicated image location, or to determine the elevation gradient at that position. In this framework we make a subtle but important shift from the explicit use of zero-crossing contours (in bandpass-filtered images) as the elements matched between left and right images, to the use of the signs between zero crossings. With this change, we obtain a simpler algorithm with a reduced sensitivity to noise and a more predictable behavior. The practical real-time imaging stereo matcher (PRISM) system incorporates this algorithm with the unstructured light technique and a high speed digital convolver. It has been used successfully by others as a sensor in a path-planning system and a bin-picking system.

  12. Resonant holographic measurements of laser ablation plume expansion in vacuum and argon gas backgrounds

    SciTech Connect

    Lindley, R.A.

    1993-10-01

    This thesis discusses the following on resonant holographic measurements of laser ablation plume expansion: Introduction to laser ablation; applications of laser ablation; The study of plume expansion; holographic interferometry; resonant holographic interferometry; accounting for finite laser bandwidth; The solution for doppler broadening and finite bandwidth; the main optical table; the lumonics laser spot shape; developing and reconstructing the holograms; plume expansion in RF/Plasma Environments; Determining {lambda}{sub o}; resonant refraction effects; fringe shift interpretation; shot-to-shot consistency; laser ablation in vacuum and low pressure, inert, background gas; theoretically modeling plume expansion in vacuum and low pressure, inert, background gas; and laser ablation in higher pressure, inert, background gas.

  13. Recent advances in photorefractivity of poly(4-diphenylaminostyrene) composites: Wavelength dependence and dynamic holographic images

    NASA Astrophysics Data System (ADS)

    Tsujimura, Sho; Kinashi, Kenji; Sakai, Wataru; Tsutsumi, Naoto

    2014-08-01

    To expand upon our previous report [Appl. Phys. Express 5, 064101 (2012) 064101], we provide here the modified poly(4-diphenylaminostyrene) (PDAS)-based photorefractive (PR) device on the basis of wavelength dependency, and demonstrate dynamic holographic images by using the PDAS-based PR device under the obtained appropriate conditions. The PR devices containing the triphenylamine unit have potential application to dynamic holographic images, which will be useful for real-time holographic displays.

  14. Satellite clock corrections estimation to accomplish real time ppp: experiments for brazilian real time network

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo; Monico, João; Aquino, Marcio; Melo, Weyller

    2014-05-01

    The real time PPP method requires the availability of real time precise orbits and satellites clocks corrections. Currently, it is possible to apply the solutions of clocks and orbits available by BKG within the context of IGS Pilot project or by using the operational predicted IGU ephemeris. The accuracy of the satellite position available in the IGU is enough for several applications requiring good quality. However, the satellites clocks corrections do not provide enough accuracy (3 ns ~ 0.9 m) to accomplish real time PPP with the same level of accuracy. Therefore, for real time PPP application it is necessary to further research and develop appropriated methodologies for estimating the satellite clock corrections in real time with better accuracy. Currently, it is possible to apply the real time solutions of clocks and orbits available by Federal Agency for Cartography and Geodesy (BKG) within the context of IGS Pilot project. The BKG corrections are disseminated by a new proposed format of the RTCM 3.x and can be applied in the broadcasted orbits and clocks. Some investigations have been proposed for the estimation of the satellite clock corrections using GNSS code and phase observable at the double difference level between satellites and epochs (MERVAT, DOUSA, 2007). Another possibility consists of applying a Kalman Filter in the PPP network mode (HAUSCHILD, 2010) and it is also possible the integration of both methods, using network PPP and observables at double difference level in specific time intervals (ZHANG; LI; GUO, 2010). For this work the methodology adopted consists in the estimation of the satellite clock corrections based on the data adjustment in the PPP mode, but for a network of GNSS stations. The clock solution can be solved by using two types of observables: code smoothed by carrier phase or undifferenced code together with carrier phase. In the former, we estimate receiver clock error; satellite clock correction and troposphere, considering

  15. Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.

    PubMed

    Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José

    2015-12-14

    We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme.

  16. Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.

    PubMed

    Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José

    2015-12-14

    We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme. PMID:26699041

  17. Instrumentation development for real time brainwave monitoring.

    SciTech Connect

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could capture, analyze, and communicate

  18. Real Time Wide Area Radiation Surveillance System

    NASA Astrophysics Data System (ADS)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  19. Real-time Forensic Disaster Analysis

    NASA Astrophysics Data System (ADS)

    Wenzel, F.; Daniell, J.; Khazai, B.; Mühr, B.; Kunz-Plapp, T.; Markus, M.; Vervaeck, A.

    2012-04-01

    The Center for Disaster Management and Risk Reduction Technology (CEDIM, www.cedim.de) - an interdisciplinary research center founded by the German Research Centre for Geoscience (GFZ) and Karlsruhe Institute of Technology (KIT) - has embarked on a new style of disaster research known as Forensic Disaster Analysis. The notion has been coined by the Integrated Research on Disaster Risk initiative (IRDR, www.irdrinternational.org) launched by ICSU in 2010. It has been defined as an approach to studying natural disasters that aims at uncovering the root causes of disasters through in-depth investigations that go beyond the reconnaissance reports and case studies typically conducted after disasters. In adopting this comprehensive understanding of disasters CEDIM adds a real-time component to the assessment and evaluation process. By comprehensive we mean that most if not all relevant aspects of disasters are considered and jointly analysed. This includes the impact (human, economy, and infrastructure), comparisons with recent historic events, social vulnerability, reconstruction and long-term impacts on livelihood issues. The forensic disaster analysis research mode is thus best characterized as "event-based research" through systematic investigation of critical issues arising after a disaster across various inter-related areas. The forensic approach requires (a) availability of global data bases regarding previous earthquake losses, socio-economic parameters, building stock information, etc.; (b) leveraging platforms such as the EERI clearing house, relief-web, and the many sources of local and international sources where information is organized; and (c) rapid access to critical information (e.g., crowd sourcing techniques) to improve our understanding of the complex dynamics of disasters. The main scientific questions being addressed are: What are critical factors that control loss of life, of infrastructure, and for economy? What are the critical interactions

  20. Holographic Reticle

    NASA Technical Reports Server (NTRS)

    Henn, Edward A.; Scribner, Marc M.

    1990-01-01

    Holographic reticle proposed for use in nondestructive evaluation of surface irregularities. Extends inspection capability to include measurements of depth. Surfaces inspected without contamination, damage, or costly disassembly. Provides valuable information difficult to obtain. For example, surface defects as corrosion and porosity, as well as propagation of cracks, measured accurately. Roughness, wear, and plating thickness also measured. Also used to determine quality of microcircuits.

  1. Real time UAV autonomy through offline calculations

    NASA Astrophysics Data System (ADS)

    Jung, Sunghun

    . Once one or several targets are detected, UAVs near the target are manipulated to approach to the target. If the number of detected targets is more than one, UAVs are evenly grouped to track targets. After a specific period of time, UAVs hand off and continue their original tasks. Thirdly, Emergency algorithm is generated to avoid losses of UAVs when UAVs have system failures. If one UAV is out of fuel or control during the mission, the Emergency algorithm brings the malfunctioning UAV to the point of departure and let the rest UAVs to continue an aerial reconnaissance. An UAV which finishes its task the earliest will continue to search a region which the failed UAV is supposed to search. In addition, Emergency algorithm prevents UAVs colliding into each other by using emergency altitude. Overall, the framework developed here facilitates the solution of several mission planning problems. The robustness built into our discretization of space and time permits feedback corrections on real-time to vehicle trajectories. The library of off-line solutions proposed and developed here minimizes computational overhead during operations.

  2. Real Time Flux Control in PM Motors

    SciTech Connect

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

  3. Real-Time Wireless Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non

  4. PONDER - A Real time software backend for pulsar and IPS observations at the Ooty Radio Telescope

    NASA Astrophysics Data System (ADS)

    Naidu, Arun; Joshi, Bhal Chandra; Manoharan, P. K.; Krishnakumar, M. A.

    2015-06-01

    This paper describes a new real-time versatile backend, the Pulsar Ooty Radio Telescope New Digital Efficient Receiver (PONDER), which has been designed to operate along with the legacy analog system of the Ooty Radio Telescope (ORT). PONDER makes use of the current state of the art computing hardware, a Graphical Processing Unit (GPU) and sufficiently large disk storage to support high time resolution real-time data of pulsar observations, obtained by coherent dedispersion over a bandpass of 16 MHz. Four different modes for pulsar observations are implemented in PONDER to provide standard reduced data products, such as time-stamped integrated profiles and dedispersed time series, allowing faster avenues to scientific results for a variety of pulsar studies. Additionally, PONDER also supports general modes of interplanetary scintillation (IPS) measurements and very long baseline interferometry data recording. The IPS mode yields a single polarisation correlated time series of solar wind scintillation over a bandwidth of about four times larger (16 MHz) than that of the legacy system as well as its fluctuation spectrum with high temporal and frequency resolutions. The key point is that all the above modes operate in real time. This paper presents the design aspects of PONDER and outlines the design methodology for future similar backends. It also explains the principal operations of PONDER, illustrates its capabilities for a variety of pulsar and IPS observations and demonstrates its usefulness for a variety of astrophysical studies using the high sensitivity of the ORT.

  5. Easy and hard testbeds for real-time search algorithms

    SciTech Connect

    Koenig, S.; Simmons, R.G.

    1996-12-31

    Although researchers have studied which factors influence the behavior of traditional search algorithms, currently not much is known about how domain properties influence the performance of real-time search algorithms. In this paper we demonstrate, both theoretically and experimentally, that Eulerian state spaces (a super set of undirected state spaces) are very easy for some existing real-time search algorithms to solve: even real-time search algorithms that can be intractable, in general, are efficient for Eulerian state spaces. Because traditional real-time search testbeds (such as the eight puzzle and gridworlds) are Eulerian, they cannot be used to distinguish between efficient and inefficient real-time search algorithms. It follows that one has to use non-Eulerian domains to demonstrate the general superiority of a given algorithm. To this end, we present two classes of hard-to-search state spaces and demonstrate the performance of various real-time search algorithms on them.

  6. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1993-01-01

    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.

  7. Methods for real-time speech processing on Unix

    SciTech Connect

    Romberger, A.

    1982-01-01

    The author discusses computer programming done at the University of California, Berkeley, in support of research work in the area of speech analysis and synthesis. The purpose of this programming is to set up a system for doing real-time speech sampling using the Unix operating system. Two alternative approaches to real time work on Unix are discussed. The first approach is to do the real-time input/output on a secondary (satellite) machine that is not running Unix. The second approach is to do the real-time input/output on the main machine with the aid of special hardware.

  8. Holographic vitrification

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Anous, Tarek; Denef, Frederik; Peeters, Lucas

    2015-04-01

    We establish the existence of stable and metastable stationary black hole bound states at finite temperature and chemical potentials in global and planar four-dimensional asymptotically anti-de Sitter space. We determine a number of features of their holographic duals and argue they represent structural glasses. We map out their thermodynamic landscape in the probe approximation, and show their relaxation dynamics exhibits logarithmic aging, with aging rates determined by the distribution of barriers.

  9. Holographic Spacetime

    NASA Astrophysics Data System (ADS)

    Banks, Tom

    2012-10-01

    The theory of holographic spacetime (HST) generalizes both string theory and quantum field theory (QFT). It provides a geometric rationale for supersymmetry (SUSY) and a formalism in which super-Poincare invariance follows from Poincare invariance. HST unifies particles and black holes, realizing both as excitations of noncommutative geometrical variables on a holographic screen. Compact extra dimensions are interpreted as finite-dimensional unitary representations of super-algebras, and have no moduli. Full field theoretic Fock spaces, and continuous moduli are both emergent phenomena of super-Poincare invariant limits in which the number of holographic degrees of freedom goes to infinity. Finite radius de Sitter (dS) spaces have no moduli, and break SUSY with a gravitino mass scaling like Λ1/4. In regimes where the Covariant Entropy Bound is saturated, QFT is not a good description in HST, and inflation is such a regime. Following ideas of Jacobson, the gravitational and inflaton fields are emergent classical variables, describing the geometry of an underlying HST model, rather than "fields associated with a microscopic string theory". The phrase in quotes is meaningless in the HST formalism, except in asymptotically flat and AdS spacetimes, and some relatives of these.

  10. Holographic flow visualization at the Langley Expansion Tube

    NASA Technical Reports Server (NTRS)

    Goad, W. K.; Burner, A. W.

    1981-01-01

    A holographic system used for flow visualization at the Langley Expansion Tube is described. A ruby laser which can be singly or doubly pulsed during the short run time of less than 300 microns is used as the light source. With holography, sensitivity adjustments can be optimized after a run instead of before a run as with conventional flow visualization techniques. This results in an increased reliability of the flow visualization available for the study of real-gas effects on flow about models. Holographic techniques such as single-plate schlieren and shadowgraph, two plate interferometry, double pulse interferometry for perfect infinite-fringe interferograms, and double-pulse interferometry used to examine changes in the flow over a short time period are described and examples presented.

  11. High-precision broadband measurement of refractive index by picosecond real-time interferometry.

    PubMed

    Tan, Zheng Jie; Jin, Dafei; Fang, Nicholas X

    2016-08-20

    The refractive index is one of the most important quantities that characterize a material's optical properties. However, it is hard to measure this value over a wide range of wavelengths. Here, we demonstrate a new technique to achieve a spectrally broad refractive index measurement. When a broadband pulse passes through a sample, different wavelengths experience different delays. By comparing the delayed pulse to a reference pulse, the zero path difference position for each wavelength can be obtained and the material's dispersion can be retrieved. Our technique is highly robust and accurate, and can be miniaturized in a straightforward manner. PMID:27556980

  12. Real-Time Optical Detection of Single Nanoparticles and Viruses Using Heterodyne Interferometry

    NASA Astrophysics Data System (ADS)

    Mitra, Anirban; Novotny, Lukas

    Nanoparticles play a significant role in various fields such as biomedical imaging and diagnostics [1-4], process control in semiconductor manufacturing [5], explosives [6], environmental monitoring and climate change [7, 8], and various other fields. Inhalation of ultrafine particulates in air has been shown to have adverse effects, such as inflammation of lungs or pulmonary and cardiovascular diseases [9, 10]. Nano-sized biological agents and pathogens such as viruses are known to be responsible for a wide variety of human diseases such as flu, AIDS and herpes, and have been used as biowarfare agents [11, 12].

  13. High-precision broadband measurement of refractive index by picosecond real-time interferometry.

    PubMed

    Tan, Zheng Jie; Jin, Dafei; Fang, Nicholas X

    2016-08-20

    The refractive index is one of the most important quantities that characterize a material's optical properties. However, it is hard to measure this value over a wide range of wavelengths. Here, we demonstrate a new technique to achieve a spectrally broad refractive index measurement. When a broadband pulse passes through a sample, different wavelengths experience different delays. By comparing the delayed pulse to a reference pulse, the zero path difference position for each wavelength can be obtained and the material's dispersion can be retrieved. Our technique is highly robust and accurate, and can be miniaturized in a straightforward manner.

  14. 76 FR 42536 - Real-Time System Management Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... System Management Information Program on November 8, 2010, at 75 FR 68418. The final rule document also... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... available and share traffic and travel conditions information via real-time information programs as...

  15. REAL-TIME ENVIRONMENTAL MONITORING: APPLICATIONS FOR HOMELAND SECURITY

    EPA Science Inventory

    Real-time monitoring technology developed as part of the EMPACT program has a variety of potential applications. These tools can measure a variety of potential contaminants in the air, water, in buildings, or in the soil. Real-time monitoring technology allows these detection sys...

  16. "Real-Time" Case Studies in Organizational Communication

    ERIC Educational Resources Information Center

    Long, Shawn D.

    2005-01-01

    This article presents an activity that integrates theory and application by examining the multiple communication events affecting a single organization in "real time" over the course of an academic term. The "real-time" case study (RTCS) avails students of the opportunity to examine organizational communication events as they are occurring in…

  17. Real-time hyperspectral imaging for food safety applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  18. Real-Time MENTAT programming language and architecture

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  19. A real-time simulator of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1989-01-01

    A real-time digital simulator of a Pratt and Whitney F100 engine has been developed for real-time code verification and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation program show that the simulator is a valuable tool for real-time code verification and as a real-time actuator simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.

  20. Hardware for a real-time multiprocessor simulator

    NASA Technical Reports Server (NTRS)

    Blech, R. A.; Arpasi, D. J.

    1984-01-01

    The hardware for a real time multiprocessor simulator (RTMPS) developed at the NASA Lewis Research Center is described. The RTMPS is a multiple microprocessor system used to investigate the application of parallel processing concepts to real time simulation. It is designed to provide flexible data exchange paths between processors by using off the shelf microcomputer boards and minimal customized interfacing. A dedicated operator interface allows easy setup of the simulator and quick interpreting of simulation data. Simulations for the RTMPS are coded in a NASA designed real time multiprocessor language (RTMPL). This language is high level and geared to the multiprocessor environment. A real time multiprocessor operating system (RTMPOS) has also been developed that provides a user friendly operator interface. The RTMPS and supporting software are currently operational and are being evaluated at Lewis. The results of this evaluation will be used to specify the design of an optimized parallel processing system for real time simulation of dynamic systems.

  1. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  2. Real-time visualization and analysis of airflow field by use of digital holography

    NASA Astrophysics Data System (ADS)

    Di, Jianglei; Wu, Bingjing; Chen, Xin; Liu, Junjiang; Wang, Jun; Zhao, Jianlin

    2013-04-01

    The measurement and analysis of airflow field is very important in fluid dynamics. For airflow, smoke particles can be added to visually observe the turbulence phenomena by particle tracking technology, but the effect of smoke particles to follow the high speed airflow will reduce the measurement accuracy. In recent years, with the advantage of non-contact, nondestructive, fast and full-field measurement, digital holography has been widely applied in many fields, such as deformation and vibration analysis, particle characterization, refractive index measurement, and so on. In this paper, we present a method to measure the airflow field by use of digital holography. A small wind tunnel model made of acrylic glass is built to control the velocity and direction of airflow. Different shapes of samples such as aircraft wing and cylinder are placed in the wind tunnel model to produce different forms of flow field. With a Mach-Zehnder interferometer setup, a series of digital holograms carrying the information of airflow filed distributions in different states are recorded by CCD camera and corresponding holographic images are numerically reconstructed from the holograms by computer. Then we can conveniently obtain the velocity or pressure information of the airflow deduced from the quantitative phase information of holographic images and visually display the airflow filed and its evolution in the form of a movie. The theory and experiment results show that digital holography is a robust and feasible approach for real-time visualization and analysis of airflow field.

  3. Holographic microscopy.

    PubMed

    Briones, R A; Heflinger, L O; Wuerker, R F

    1978-03-15

    An off-axis transmission holographic scheme, in which a 1:1 lens and a hologram are treated as a single rigid entity, is found to reconstruct a 3-D diffraction-limited image when reconstructed, with a reference beam reversed back through the original lens-hologram unit. Reconstruction can be performed with wavelengths other than the recording wavelength, provided achromatic lenses are used, and the reference beam angle is properly changed for reconstruction. Comparisons are made between He-Ne and ruby laser holograms. Two-micron resolution of the combustion of solid rocket propellants at high pressures is achieved at a working distance of 6 cm.

  4. Holographic turbulence.

    PubMed

    Adams, Allan; Chesler, Paul M; Liu, Hong

    2014-04-18

    We construct turbulent black holes in asymptotically AdS4 spacetime by numerically solving Einstein's equations. Using the AdS/CFT correspondence we find that both the dual holographic fluid and bulk geometry display signatures of an inverse cascade with the bulk geometry being well approximated by the fluid-gravity gradient expansion. We argue that statistically steady-state black holes dual to d dimensional turbulent flows have horizons whose area growth has a fractal-like structure with fractal dimension D=d+4/3.

  5. Reviewing real-time performance of nuclear reactor safety systems

    SciTech Connect

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  6. High-resolution micromechanical measurement in real time of forces exerted by living cells

    PubMed Central

    Swierczewski, Robert; Hedley, John; Redfern, Chris P. F.

    2016-01-01

    ABSTRACT The aim of this study was to compare uniaxial traction forces exerted by different cell types using a novel sensor design and to test the dependence of measured forces on cytoskeletal integrity. The sensor design detects forces generated between 2 contact points by cells spanning a gap. The magnitude of these forces varied according to cell type and were dependent on cytoskeletal integrity. The response time for drug-induced cytoskeletal disruption also varied between cell types: dermal fibroblasts exerted the greatest forces and had the slowest drug response times; EBV-transformed epithelial cells also had slow cytoskeletal depolymerisation times but exerted the lowest forces overall. Conversely, lung epithelial tumor cells exerted low forces but had the fastest depolymerisation drug response. These results provide proof of principle for a new design of force-measurement sensor based on optical interferometry, an approach that can be used to study cytoskeletal dynamics in real time. PMID:26645140

  7. A novel near real-time laser scanning device for geometrical determination of pleural cavity surface

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Zhu, Timothy C.

    2013-03-01

    During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.

  8. Real-time two-dimensional beam steering with gate-tunable materials: a theoretical investigation.

    PubMed

    Cheng, Jierong; Jafar-Zanjani, Samad; Mosallaei, Hossein

    2016-08-01

    A leaky-wave antenna is proposed that furnishes two-dimensional (2-D) beam scanning in both elevation and azimuth planes via electrical control in real time, and at a single frequency. The structure consists of a graphene sheet on a metal-backed substrate. The 2-D beam-scanning performance is achieved through the proper biasing configuration of graphene. Traditional pixel-by-pixel electrical control makes the biasing network a huge challenge for chip-scale designs in the terahertz regime and beyond. The method presented here enables dynamic control by applying two groups of one-dimensional biasing on the sides of the sheet. They are orthogonal and decoupled, with one group offering monotonic impedance variation along one direction, and the other sinusoidal impedance modulation along the other direction. The conductivity profile of the graphene sheet for a certain radiation angle, realized by applying proper voltage to each pad underneath the sheet, is determined by a holographic technique and can be reconfigured electronically and desirably. Such innovative biasing design makes real-time control of the beam direction and beamwidth simple and highly integrated. The concept is not limited to graphene-based structures, and can be generalized to any available gate-tunable material system. PMID:27505400

  9. Holographic Aquaculture

    NASA Astrophysics Data System (ADS)

    Ian, Richard; King, Elisabeth

    1988-01-01

    Proposed is an exploratory study to verify the feasibility of an inexpensive micro-climate control system for both marine and freshwater pond and tank aquaculture, offering good control over water temperature, incident light flux, and bandwidth, combined with good energy efficiency. The proposed control system utilizes some familiar components of passive solar design, together with a new holographic glazing system which is currently being developed by, and proprietary to Advanced Environmental Research Group (AERG). The use of solar algae ponds and tanks to warm and purify water for fish and attached macroscopic marine algae culture is an ancient and effective technique, but limited seasonally and geographically by the availability of sunlight. Holographic Diffracting Structures (HDSs) can be made which passively track, accept and/or reject sunlight from a wide range of altitude and azimuth angles, and redirect and distribute light energy as desired (either directly or indirectly over water surface in an enclosed, insulated structure), effectively increasing insolation values by accepting sunlight which would not otherwise enter the structure.

  10. Holographic movies

    NASA Astrophysics Data System (ADS)

    Palais, Joseph C.; Miller, Mark E.

    1996-09-01

    A unique method for the construction and display of a 3D holographic movie is developed. An animated film is produced by rotating a 3D object in steps between successive holographic exposures. Strip holograms were made on 70-mm AGFA 8E75 Holotest roll film. Each hologram was about 11-mm high and 55-mm high and 55-mm wide. The object was rotated 2 deg between successive exposures. A complete cycle of the object motion was recorded on 180 holograms using the lensless Fourier transform construction. The ends of the developed film were spliced together to produce a continuous loop. Although the film moves continuously on playback and there is not shutter, there is no flicker or image displacement because of the Fourier transform hologram construction, as predicted by the theoretical analysis. The movie can be viewed for an unlimited time because the object motion is cyclical and the film is continuous. The film is wide enough such that comfortable viewing with both eyes is possible, enhancing the 3D effect. Viewers can stand comfortably away from the film since no viewing slit or aperture is necessary. Several people can simultaneously view the movie.

  11. Method for Real-Time Model Based Structural Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Smith, Timothy A. (Inventor); Urnes, James M., Sr. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  12. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  13. Information display and interaction in real-time environments

    NASA Technical Reports Server (NTRS)

    Bocast, A. K.

    1983-01-01

    The available information bandwidth as a funcion of system's complexity and time constraints in a real time control environment were examined. Modern interactive graphics techniques provide very high bandwidth data displays. In real time control environments, effective information interaction rates are a function not only of machine data technologies but of human information processing capabilities and the four dimensional resolution of available interaction techniques. The available information bandwidth as a function of system's complexity and time constraints in a real time control environment were examined.

  14. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  15. Real-time SAR processing for search and rescue

    NASA Astrophysics Data System (ADS)

    Mansfield, Arthur W.; Rogers, George W.; Rais, Houra

    1998-09-01

    The most important parameter in Search and Rescue is the time it takes to locate the downed aircraft and rescue the survivors. The resulting requirement for wide-area coverage, fine resolution, and day-night all-weather operation dictates the use of a SAR sensor. The time urgency dictates a real-time or near real-time SAR processor. This paper presents alternative real-time architectures and gives the results of feasibility studies of the enabling technologies, including new work by the authors in the area of SAR data compression.

  16. Real-time Avatar Animation from a Single Image

    PubMed Central

    Saragih, Jason M.; Lucey, Simon; Cohn, Jeffrey F.

    2014-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user’s facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters. PMID:24598812

  17. Sensor for real-time determining the polarization state distribution in the object images

    NASA Astrophysics Data System (ADS)

    Kilosanidze, Barbara; Kakauridze, George; Kvernadze, Teimuraz; Kurkhuli, Georgi

    2015-10-01

    An innovative real-time polarimetric method is presented based on the integral polarization-holographic diffraction element developed by us. This element is suggested to be used for real time analysis of the polarization state of light, to help highlight military equipment in a scene. In the process of diffraction, the element decomposes light incoming on them onto orthogonal circular and linear basis. The simultaneous measurement of the intensities of four diffracted beams by means of photodetectors and the appropriate software enable the polarization state of an analyzable light (all the four Stokes parameters) and its change to be obtained in real time. The element with photodetectors and software is a sensor of the polarization state. Such a sensor allows the point-by-point distribution of the polarization state in the images of objects to be determined. The spectral working range of such an element is 530 - 1600 nm. This sensor is compact, lightweight and relatively cheap, and it can be easily installed on any space and airborne platforms. It has no mechanically moving or electronically controlled elements. The speed of its operation is limited only by computer processing. Such a sensor is proposed to be use for the determination of the characteristics of the surface of objects at optical remote sensing by means of the determination of the distribution of the polarization state of light in the image of recognizable object and the dispersion of this distribution, which provides additional information while identifying an object. The possibility of detection of a useful signal of the predetermined polarization on a background of statistically random noise of an underlying surface is also possible. The application of the sensor is also considered for the nondestructive determination of the distribution of stressed state in different constructions based on the determination of the distribution of the polarization state of light reflected from the object under

  18. Cluster Computing for Embedded/Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Katz, D.; Kepner, J.

    1999-01-01

    Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.

  19. Decision graphs: a tool for developing real-time software

    SciTech Connect

    Kozubal, A.J.

    1981-01-01

    The use of decision graphs in the preparation of, in particular, real-time software is briefly described. The usefulness of decision graphs in software design, testing, and maintenance is pointed out. 2 figures. (RWR)

  20. Distributed real-time model-based diagnosis

    NASA Technical Reports Server (NTRS)

    Barrett, A. C.; Chung, S. H.

    2003-01-01

    This paper presents an approach to onboard anomaly diagnosis that combines the simplicity and real-time guarantee of a rule-based diagnosis system with the specification ease and coverage guarantees of a model-based diagnosis system.

  1. Application of real time PCR for diagnosis of Swine Dysentery.

    PubMed

    Akase, Satoru; Uchitani, Yumi; Sohmura, Yoshiko; Tatsuta, Keikichi; Sadamasu, Kenji; Adachi, Yoshikazu

    2009-03-01

    Evaluation of a genetic diagnostic technique using real time PCR of Swine Dysentery (SD) was performed using nox primers. Culture, ordinary PCR and real time PCR were compared in this experiment. Sixty-seven specimens from pigs with clinical signs of SD brought to a slaughterhouse in Shibaura, Tokyo, were used. B. hyodysenteriae was isolated from 49 of the pigs, was detected by ordinary PCR in 49 of the pigs and was detected by real time PCR in 54 of the pigs. Furthermore, we were able to determine the numbers of B. hyodysenteriae cells in all positive specimens by real time PCR. The rapid diagnostic technique established in this experiment was useful for detection of B. hyodysenteriae because it was more effective than ordinary PCR and culture.

  2. Faster and cleaner real-time pure shift NMR experiments

    NASA Astrophysics Data System (ADS)

    Mauhart, Johannes; Glanzer, Simon; Sakhaii, Peyman; Bermel, Wolfgang; Zangger, Klaus

    2015-10-01

    Real-time pure shift experiments provide highly resolved proton NMR spectra which do not require any special processing. Although being more sensitive than their pseudo 2D counterparts, their signal intensities per unit time are still far below regular NMR spectra. In addition, scalar coupling evolution during the individual data chunks produces decoupling sidebands. Here we show that faster and cleaner real-time pure shift spectra can be obtained through the implementation of two parameter alterations. Variation of the FID chunk lengths between individual transients significantly suppresses decoupling sidebands for any kind of real-time pure shift spectra and thus allows for example the analysis of minor components in compound mixtures. Shifting the excitation frequency between individual scans of real-time slice-selective pure shift spectra increases their sensitivity obtainable in unit time by allowing faster repetitions of acquisitions.

  3. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  4. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  5. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1999-01-01

    A method for real-time estimation of parameters in a linear dynamic state space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight for indirect adaptive or reconfigurable control. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle HARV) were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than 1 cycle of the dominant dynamic mode natural frequencies, using control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements, and could be implemented aboard an aircraft in real time.

  6. Real-time two-dimensional temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2009-01-01

    We present a system for real-time 2D imaging of temperature change in tissue media using pulse-echo ultrasound. The frontend of the system is a SonixRP ultrasound scanner with a research interface giving us the capability of controlling the beam sequence and accessing radio frequency (RF) data in real-time. The beamformed RF data is streamlined to the backend of the system, where the data is processed using a two-dimensional temperature estimation algorithm running in the graphics processing unit (GPU). The estimated temperature is displayed in real-time providing feedback that can be used for real-time control of the heating source. Currently we have verified our system with elastography tissue mimicking phantom and in vitro porcine heart tissue, excellent repeatability and sensitivity were demonstrated.

  7. Real-time interactive speech technology at Threshold Technology, Incorporated

    NASA Technical Reports Server (NTRS)

    Herscher, Marvin B.

    1977-01-01

    Basic real-time isolated-word recognition techniques are reviewed. Industrial applications of voice technology are described in chronological order of their development. Future research efforts are also discussed.

  8. Real-time logo detection and tracking in video

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Rahman, M.; Carlsohn, M.

    2010-05-01

    This paper presents a real-time implementation of a logo detection and tracking algorithm in video. The motivation of this work stems from applications on smart phones that require the detection of logos in real-time. For example, one application involves detecting company logos so that customers can easily get special offers in real-time. This algorithm uses a hybrid approach by initially running the Scale Invariant Feature Transform (SIFT) algorithm on the first frame in order to obtain the logo location and then by using an online calibration of color within the SIFT detected area in order to detect and track the logo in subsequent frames in a time efficient manner. The results obtained indicate that this hybrid approach allows robust logo detection and tracking to be achieved in real-time.

  9. Estimating correlation for a real-time measure of connectivity.

    PubMed

    Arunkumar, Akhil; Panday, Ashish; Joshi, Bharat; Ravindran, Arun; Zaveri, Hitten P

    2012-01-01

    There has recently been considerable interest in connectivity analysis of fMRI and scalp and intracranial EEG time-series. The computational requirements of the pair-wise correlation (PWC), the core time-series measure used to estimate connectivity, presents a challenge to the real-time estimation of the PWC between all pairs of multiple time-series. We describe a parallel algorithm for computing PWC in real-time for streaming data from multiple channels. The algorithm was implemented on the Intel Xeon™ and IBM Cell Broadband Engine™ platforms. We evaluated time to estimate correlation for signals recorded with different acquisition parameters as a comparison to real-time constraints. We demonstrate that the execution time of these efficient implementations meet real-time constraints in most instances.

  10. The Effects of Real-Time Interactive Multimedia Teleradiology System

    PubMed Central

    Al-Safadi, Lilac

    2016-01-01

    This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists' reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care. PMID:27294118

  11. Real-time video codec using reversible wavelets

    NASA Astrophysics Data System (ADS)

    Huang, Gen Dow; Chiang, David J.; Huang, Yi-En; Cheng, Allen

    2003-04-01

    This paper describes the hardware implementation of a real-time video codec using reversible Wavelets. The TechSoft (TS) real-time video system employs the Wavelet differencing for the inter-frame compression based on the independent Embedded Block Coding with Optimized Truncation (EBCOT) of the embedded bit stream. This high performance scalable image compression using EBCOT has been selected as part of the ISO new image compression standard, JPEG2000. The TS real-time video system can process up to 30 frames per second (fps) of the DVD format. In addition, audio signals are also processed by the same design for the cost reduction. Reversible Wavelets are used not only for the cost reduction, but also for the lossless applications. Design and implementation issues of the TS real-time video system are discussed.

  12. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  13. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary J. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1990-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  14. Challenges of AVHRR Vegetation Data for Real Time Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly

    2008-01-01

    Remote sensing data has long been used to monitor global ecosystems for floods and droughts and AVHRR data, as one of the first product, has many users interested in receiving the data within hours of acquisition. With the introduction of a new series of sensors in 2000 (the AVHRR/3 series), the quality of the NDVI datasets available for real time environmental monitoring has declined. This paper provides evidence of problems of cloud contamination, calibration and noise in the real time data which are not present in the historical AVHRR NDVIg dataset. These differences introduce significant uncertainty in the use of the real time data, degrading their utility for detecting climate variations in near real time.

  15. Vector processing enhancements for real-time image analysis.

    SciTech Connect

    Shoaf, S.; APS Engineering Support Division

    2008-01-01

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  16. High speed, real-time, camera bandwidth converter

    DOEpatents

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  17. Real-time transesophageal echocardiography facilitates antegrade balloon aortic valvuloplasty

    PubMed Central

    Ito, Kazato; Yano, Kentaro; Tanaka, Chiharu; Nakashoji, Tomohiro; Tonomura, Daisuke; Takehara, Kosuke; Kino, Naoto; Yoshida, Masataka; Kurotobi, Toshiya; Tsuchida, Takao; Fukumoto, Hitoshi

    2016-01-01

    We report two cases of severe aortic stenosis (AS) where antegrade balloon aortic valvuloplasty (BAV) was performed under real-time transesophageal echocardiography (TEE) guidance. Real-time TEE can provide useful information for evaluating the aortic valve response to valvuloplasty during the procedure. It was led with the intentional wire-bias technique in order to compress the severely calcified leaflet, and consequently allowed the balloon to reach the largest possible size and achieve full expansion of the aortic annulus. PMID:27054107

  18. Real time simulator with Ti floating point digital signal processor

    SciTech Connect

    Razazian, K.; Bobis, J.P.; Dieckman, S.L.; Raptis, A.C.

    1994-08-01

    This paper describes the design and operation of a Real Time Simulator using Texas Instruments TMS320C30 digital signal processor. This system operates with two banks of memory which provide the input data to digital signal processor chip. This feature enables the TMS320C30 to be utilized in variety of applications for which external connections to acquire input data is not needed. In addition, some practical applications of this Real Time Simulator are discussed.

  19. Hybrid interconnection structures for real-time parallel processing

    NASA Technical Reports Server (NTRS)

    Kim, K. H.; Samson, John R., Jr.

    1989-01-01

    The use of hybrid interconnection structures that combine link connections and bus connections for real-time parallel processing is discussed. Idealistic parallel computation models for two real-time computing applications are described with attention given to a tightly coupled network model for object tracking and a network model for image processing. Consideration is given to the following different interconnection structures: the crossbar, the hypercube, the circular linked array, and the bus array.

  20. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  1. Real-time flight test data distribution and display

    NASA Technical Reports Server (NTRS)

    Nesel, Michael C.; Hammons, Kevin R.

    1988-01-01

    Enhancements to the real-time processing and display systems of the NASA Western Aeronautical Test Range are described. Display processing has been moved out of the telemetry and radar acquisition processing systems super-minicomputers into user/client interactive graphic workstations. Real-time data is provided to the workstations by way of Ethernet. Future enhancement plans include use of fiber optic cable to replace the Ethernet.

  2. Head movement compensation in real-time magnetoencephalographic recordings.

    PubMed

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.

  3. Ground-based real-time tracking and traverse recovery of China's first lunar rover

    NASA Astrophysics Data System (ADS)

    Zhou, Huan; Li, Haitao; Xu, Dezhen; Dong, Guangliang

    2016-02-01

    The Chang'E-3 unmanned lunar exploration mission forms an important stage in China's Lunar Exploration Program. China's first lunar rover "Yutu" is a sub-probe of the Chang'E-3 mission. Its main science objectives cover the investigations of the lunar soil and crust structure, explorations of mineral resources, and analyses of matter compositions. Some of these tasks require accurate real-time and continuous position tracking of the rover. To achieve these goals with the scale-limited Chinese observation network, this study proposed a ground-based real-time very long baseline interferometry phase referencing tracking method. We choose the Chang'E-3 lander as the phase reference source, and the accurate location of the rover is updated every 10 s using its radio-image sequences with the help of a priori information. The detailed movements of the Yutu rover have been captured with a sensitivity of several centimeters, and its traverse across the lunar surface during the first few days after its separation from the Chang'E-3 lander has been recovered. Comparisons and analysis show that the position tracking accuracy reaches a 1-m level.

  4. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    NASA Astrophysics Data System (ADS)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  5. High sensitivity LPG Mach-Zehnder sensor for real-time fuel conformity analysis

    NASA Astrophysics Data System (ADS)

    Osório, Jonas H.; Mosquera, L.; Gouveia, Carlos J.; Biazoli, Claudecir R.; Hayashi, Juliano G.; Jorge, Pedro A. S.; Cordeiro, Cristiano M. B.

    2013-01-01

    A high sensitivity refractive index sensor based on the combination of mechanically induced long period gratings (LPG) and fiber tapers was developed for real-time fuel quality analysis. The sensor was built in a Mach-Zehnder configuration by employing a pair of in-series gratings. In order to enhance sensor sensitivity, the region between both LPGs was tapered down from 125 to 10 µm. The system was tested by measuring water concentration in ethanol and ethanol concentration in commercial gasoline. The tapered sensor has shown an average sensitivity of 930 nm/RIU, 18 times higher than the non-tapered version. The resolution limit of the system using spectral interrogation was estimated to be 0.06% of ethanol dissolved in gasoline. For the purpose of real-time monitoring, an interrogation system based on white light interferometry (WLI) and virtual instrumentation was employed to evaluate ethanol evaporation in water, avoiding the use of spectral analysis. The WLI system, using phase tracking techniques, enabled us to record the evolution of the ethanol concentration in water with a resolution of 0.005% (v/v).

  6. Analysis of holographic interferograms of aerodynamic models in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Perry, R. L.

    1985-01-01

    Holographic interferometry provides a non-invasive technique for estimating variations in the air density distribution around aerodynamic models in wind tunnels. The testing of this technique has been underway for some time and has been reported previously for a two dimensional aerodynamic model. Results obtained from tests using three dimensional aerodynamic models are summarized. Holograms were made of aerodynamic models in a wind tunnel. Interferograms were made from these holograms. The interference fringes in these holographic interferograms were digitized and this information was entered into the HOLOFT program. The HOLOFT program successfully calculated the known stagnation air density at the nose of a model and the known air density distribution across the cross section passing through the stagnation point for the axisymmetrical case of this model at a Mach number of 0.8. Thus the technique of holographic interferometry does work.The HOLOFT program stands for HOLOgraphic Inversion by 2-D Fourier Transform.

  7. Real-time dynamic simulation of the Cassini spacecraft using DARTS. Part 2: Parallel/vectorized real-time implementation

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Roberts, J. A.; Jain, A.; Man, G. K.

    1993-01-01

    Part 1 of this paper presented the requirements for the real-time simulation of Cassini spacecraft along with some discussion of the DARTS algorithm. Here, in Part 2 we discuss the development and implementation of parallel/vectorized DARTS algorithm and architecture for real-time simulation. Development of the fast algorithms and architecture for real-time hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it represents a hard real-time problem, in the sense that the correctness of the simulation depends on both the numerical accuracy and the exact timing of the computation. For a given model fidelity, the computation should be computed within a predefined time period. Further reduction in computation time allows increasing the fidelity of the model (i.e., inclusion of more flexible modes) and the integration routine.

  8. Rapid initial dimensional changes in wooden panel paintings due to simulated climate-induced alterations monitored by digital coherent out-of-plane interferometry

    NASA Astrophysics Data System (ADS)

    Bernikola, E.; Nevin, A.; Tornari, V.

    2009-05-01

    Climate and environmental change may provoke constant microscopic dimensional alterations to organically composed works of art. The complexity of alterations obstructs the classification of destructive effects and sustainable strategies for preservation, and systematic investigation of change requires safe inspection tools, repeatable procedures and non-perturbing approaches. In this paper, a state-of-the-art description on the dimensional monitoring tools for the assessment of the effects of climate fluctuations in paintings is given. Rapid initial start-up reactions of alteration processes that may simulate endangered conditions, which may be encountered during transportation of works of art, are studied. The case of wooden panel paintings is considered here as panels are representative models of inhomogeneous organic construction. The effect of the surface movement of panel painting surfaces due to simulated changes in temperature and relative humidity is characteristic of structural deterioration and as such these effects are primarily monitored in the start-up of the reaction process. The environmentally-provoked spatial alteration is recorded in full-field surface coordinates using optical coherent out-of-plane digital interferometry in a geometry utilizing holographic speckle patterns. Results demonstrate the suitability of the method to follow the start-up simulated process in real time directly from the work of art and to follow the rate of reaction towards equilibrium. The effectiveness of the full surface assessment provided in real time is presented and provides significant advantages compared to alternative techniques which are based on fragmented solutions.

  9. Evaluation of Open-Source Hard Real Time Software Packages

    NASA Technical Reports Server (NTRS)

    Mattei, Nicholas S.

    2004-01-01

    Reliable software is, at times, hard to find. No piece of software can be guaranteed to work in every situation that may arise during its use here at Glenn Research Center or in space. The job of the Software Assurance (SA) group in the Risk Management Office is to rigorously test the software in an effort to ensure it matches the contract specifications. In some cases the SA team also researches new alternatives for selected software packages. This testing and research is an integral part of the department of Safety and Mission Assurance. Real Time operation in reference to a computer system is a particular style of handing the timing and manner with which inputs and outputs are handled. A real time system executes these commands and appropriate processing within a defined timing constraint. Within this definition there are two other classifications of real time systems: hard and soft. A soft real time system is one in which if the particular timing constraints are not rigidly met there will be no critical results. On the other hand, a hard real time system is one in which if the timing constraints are not met the results could be catastrophic. An example of a soft real time system is a DVD decoder. If the particular piece of data from the input is not decoded and displayed to the screen at exactly the correct moment nothing critical will become of it, the user may not even notice it. However, a hard real time system is needed to control the timing of fuel injections or steering on the Space Shuttle; a delay of even a fraction of a second could be catastrophic in such a complex system. The current real time system employed by most NASA projects is Wind River's VxWorks operating system. This is a proprietary operating system that can be configured to work with many of NASA s needs and it provides very accurate and reliable hard real time performance. The down side is that since it is a proprietary operating system it is also costly to implement. The prospect of

  10. Real-time NASBA detection of SARS-associated coronavirus and comparison with real-time reverse transcription-PCR.

    PubMed

    Keightley, Maria Cristina; Sillekens, Peter; Schippers, Wim; Rinaldo, Charles; George, Kirsten St

    2005-12-01

    Severe acute respiratory syndrome (SARS) exhibits a high mortality rate and the potential for rapid epidemic spread. Additionally, it has a poorly defined clinical presentation, and no known treatment or prevention methods. Collectively, these factors underscore the need for early diagnosis. Molecular tests have been developed to detect SARS coronavirus (SARS-CoV) RNA using real time reverse transcription polymerase chain reaction (RT-PCR) with varying levels of sensitivity. However, RNA amplification methods have been demonstrated to be more sensitive for the detection of some RNA viruses. We therefore developed a real-time nucleic acid sequence-based amplification (NASBA) test for SARS-CoV. A number of primer/beacon sets were designed to target different regions of the SARS-CoV genome, and were tested for sensitivity and specificity. The performance of the assays was compared with RT-PCR assays. A multi-target real-time NASBA application was developed for detection of SARS-CoV polymerase (Pol) and nucleocapsid (N) genes. The N targets were found to be consistently more sensitive than the Pol targets, and the real-time NASBA assay demonstrates equivalent sensitivity when compared to testing by real-time RT-PCR. A multi-target real-time NASBA assay has been successfully developed for the sensitive detection of SARS-CoV.

  11. Real-time airborne hyperspectral imaging of land mines

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Steve; McFee, John E.; Anger, Cliff; Young, Jane

    2007-04-01

    DRDC Suffeld and Itres Research have jointly investigated the use of visible and infrared hyperspectral imaging (HSI) for surface and buried land mine detection since 1989. These studies have demonstrated reliable passive HSI detection of surface-laid mines, based on their reflectance spectra, from airborne and ground-based platforms. Commercial HSI instruments collect and store image data at aircraft speeds, but the data are analysed off- line. This is useful for humanitarian demining, but unacceptable for military countermine operations. We have developed a hardware and software system with algorithms that can process the raw hyperspectral data in real time to detect mines. The custom algorithms perform radiometric correction of the raw data, then classify pixels of the corrected data, referencing a spectral signature library. The classification results are stored and displayed in real time, that is, within a few frame times of the data acquisition. Such real-time mine detection was demonstrated for the first time from a slowly moving land vehicle in March 2000. This paper describes an improved system which can achieve real-time detection of mines from an airborne platform, with its commensurately higher data rates. The system is presently compatible with the Itres family of visible/near infrared, short wave infrared and thermal infrared pushbroom hyperspectral imagers and its broadband thermal infrared pushbroom imager. Experiments to detect mines from an airborne platform in real time were conducted at DRDC Suffield in November 2006. Surface-laid land mines were detected in real time from a slowly moving helicopter with generally good detection rates and low false alarm rates. To the authors' knowledge, this is the first time that land mines have been detected from an airborne platform in real time using hyperspectral imaging.

  12. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  13. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to

  14. Real-Time Tropospheric Delay Estimation using IGS Products

    NASA Astrophysics Data System (ADS)

    Stürze, Andrea; Liu, Sha; Söhne, Wolfgang

    2014-05-01

    The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it

  15. The improved broadband Real-Time Seismic Network in Romania

    NASA Astrophysics Data System (ADS)

    Neagoe, C.; Ionescu, C.

    2009-04-01

    Starting with 2002 the National Institute for Earth Physics (NIEP) has developed its real-time digital seismic network. This network consists of 96 seismic stations of which 48 broad band and short period stations and two seismic arrays are transmitted in real-time. The real time seismic stations are equipped with Quanterra Q330 and K2 digitizers, broadband seismometers (STS2, CMG40T, CMG 3ESP, CMG3T) and strong motions sensors Kinemetrics episensors (+/- 2g). SeedLink and AntelopeTM (installed on MARMOT) program packages are used for real-time (RT) data acquisition and exchange. The communication from digital seismic stations to the National Data Center in Bucharest is assured by 5 providers (GPRS, VPN, satellite communication, radio lease line and internet), which will assure the back-up communications lines. The processing centre runs BRTT's AntelopeTM 4.10 data acquisition and processing software on 2 workstations for real-time processing and post processing. The Antelope Real-Time System is also providing automatic event detection, arrival picking, event location and magnitude calculation. It provides graphical display and reporting within near-real-time after a local or regional event occurred. Also at the data center was implemented a system to collect macroseismic information using the internet on which macro seismic intensity maps are generated. In the near future at the data center will be install Seiscomp 3 data acquisition processing software on a workstation. The software will run in parallel with Antelope software as a back-up. The present network will be expanded in the near future. In the first half of 2009 NIEP will install 8 additional broad band stations in Romanian territory, which also will be transmitted to the data center in real time. The Romanian Seismic Network is permanently exchanging real -time waveform data with IRIS, ORFEUS and different European countries through internet. In Romania, magnitude and location of an earthquake are now

  16. Real-time simulation of thermal shadows with EMIT

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.

  17. Real-time multispectral imaging application for poultry safety inspection

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Snead, Matthew P.

    2006-02-01

    The ARS imaging research group in Athens, Georgia has developed a real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses for poultry industry. The industrial scale system includes a common aperture camera with three visible wavelength optical trim filters. This paper demonstrates calibration of common aperture multispectral imaging hardware and real-time image processing software. The software design, especially the Unified Modeling Language (UML) design approach was used to develop real-time image processing software for on-line application. The UML models including class, object, activity, sequence, and collaboration diagram were presented. Both hardware and software for a real-time fecal and ingesta contaminant detection were tested at the pilot-scale poultry processing line. The test results of industrial sacle real-time system showed that the multispectral imaging technique performed well for detecting fecal contaminants with a commercial processing speed (currently 140 birds per minute). The accuracy for the detection of fecal and ingesta contaminates was approximately 96%.

  18. Real-Time Data Use for Operational Space Weather Products

    NASA Astrophysics Data System (ADS)

    Quigley, S.; Nobis, T. E.

    2010-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Division of the Space and Missile Systems Center (AFSPC SYAG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command’s (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products were developed to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems in real/near-real time. This real-time attribute is the primary factor in allowing for actual operational product output, but it’s also responsible for a variety of detrimental effects that need to be considered, researched, mitigated, or otherwise eliminated in future/upgrade product applications. This presentation will provide brief overviews of the SEEFS products, along with information and recommendations concerned with their near/real-time data acquisition and use, to include: input data requirements, inputs/outputs ownership, observation cadence, transmission/receipt links and cadence, data latency, quality control, error propagation and associated confidence level applications, and ensemble model run potentials. Validation issues related to real-time data will also be addressed, along with recommendations for new real-time data archiving that should prove operationally beneficial.

  19. Real-time operating systems at higher control

    SciTech Connect

    Jensen, E.D.

    1995-01-01

    Although virtually all development of real-time operating systems focuses on the lowest of the three traditional control levels, sheet economics demands higher level real-time OSs. Meeting this demand requires a major change in the mindset of the people who have been focusing on the lowest level of control. {open_quotes}These people are trying to deal with an elephant`s tail, but they don`t realize that there is an elephant attached to it.{close_quotes} For more than three decades, the historical real-time mindset, concepts and techniques have been driven by a particular pair of contexts. First is the application context, which can be characterized as {open_quotes}small, simple, centralized, static subsystems for low-level, sampled data, monitoring and first-order control.{close_quotes} Second is the hardware context, characterized by a scarcity of hardware resources due to size, weight, power and cost considerations. Both of these contexts are changing dramatically in ways that {open_quotes}have a significant impact on the concepts and techniques of real-time computing.{close_quotes} Hardware now offers much higher performance and the real-time domain is expanding upward in the application control hierarchy.

  20. A Practical Approach to Implementing Real-Time Semantics

    NASA Technical Reports Server (NTRS)

    Luettgen, Gerald; Bhat, Girish; Cleaveland, Rance

    1999-01-01

    This paper investigates implementations of process algebras which are suitable for modeling concurrent real-time systems. It suggests an approach for efficiently implementing real-time semantics using dynamic priorities. For this purpose a proces algebra with dynamic priority is defined, whose semantics corresponds one-to-one to traditional real-time semantics. The advantage of the dynamic-priority approach is that it drastically reduces the state-space sizes of the systems in question while preserving all properties of their functional and real-time behavior. The utility of the technique is demonstrated by a case study which deals with the formal modeling and verification of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North Carolina, an automated verification tool in which the process algebra with dynamic priority is implemented. It turns out that the state space of the bus-protocol model is about an order of magnitude smaller than the one resulting from real-time semantics. The accuracy of the model is proved by applying model checking for verifying several mandatory properties of the bus protocol.

  1. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Schmidt, James L.; Kao, Simon M.; Read, Jackson Y.; Weitzenkamp, Scott M.; Laffey, Thomas J.

    1988-01-01

    A multitasking architecture for performing real-time monitoring and analysis using knowledge-based problem solving techniques is described. To handle asynchronous inputs and perform in real time, the system consists of three or more distributed processes which run concurrently and communicate via a message passing scheme. The Data Management Process acquires, compresses, and routes the incoming sensor data to other processes. The Inference Process consists of a high performance inference engine that performs a real-time analysis on the state and health of the physical system. The I/O Process receives sensor data from the Data Management Process and status messages and recommendations from the Inference Process, updates its graphical displays in real time, and acts as the interface to the console operator. The distributed architecture has been interfaced to an actual spacecraft (NASA's Hubble Space Telescope) and is able to process the incoming telemetry in real-time (i.e., several hundred data changes per second). The system is being used in two locations for different purposes: (1) in Sunnyville, California at the Space Telescope Test Control Center it is used in the preflight testing of the vehicle; and (2) in Greenbelt, Maryland at NASA/Goddard it is being used on an experimental basis in flight operations for health and safety monitoring.

  2. Lightweight distributed computing for intraoperative real-time image guidance

    NASA Astrophysics Data System (ADS)

    Suwelack, Stefan; Katic, Darko; Wagner, Simon; Spengler, Patrick; Bodenstedt, Sebastian; Röhl, Sebastian; Dillmann, Rüdiger; Speidel, Stefanie

    2012-02-01

    In order to provide real-time intraoperative guidance, computer assisted surgery (CAS) systems often rely on computationally expensive algorithms. The real-time constraint is especially challenging if several components such as intraoperative image processing, soft tissue registration or context aware visualization are combined in a single system. In this paper, we present a lightweight approach to distribute the workload over several workstations based on the OpenIGTLink protocol. We use XML-based message passing for remote procedure calls and native types for transferring data such as images, meshes or point coordinates. Two different, but typical scenarios are considered in order to evaluate the performance of the new system. First, we analyze a real-time soft tissue registration algorithm based on a finite element (FE) model. Here, we use the proposed approach to distribute the computational workload between a primary workstation that handles sensor data processing and visualization and a dedicated workstation that runs the real-time FE algorithm. We show that the additional overhead that is introduced by the technique is small compared to the total execution time. Furthermore, the approach is used to speed up a context aware augmented reality based navigation system for dental implant surgery. In this scenario, the additional delay for running the computationally expensive reasoning server on a separate workstation is less than a millisecond. The results show that the presented approach is a promising strategy to speed up real-time CAS systems.

  3. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  4. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  5. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  6. Speckle Interferometry

    NASA Astrophysics Data System (ADS)

    Chiang, F. P.; Jin, F.; Wang, Q.; Zhu, N.

    Before the milestone work of Leedertz in 1970 coherent speckles generated from a laser illuminated object are considered noise to be eliminated or minimized. Leedertz shows that coherent speckles are actually information carriers. Since then the speckle technique has found many applications to fields of mechanics, metrology, nondestructive evaluation and material sciences. Speckles need not be coherent. Artificially created socalled white light speckles can also be used as information carriers. In this paper we present two recent developments of speckle technique with applications to micromechanics problems using SIEM (Speckle Interferometry with Electron Microscopy), to nondestructive evaluation of crevice corrosion and composite disbond and vibration of large structures using TADS (Time-Average Digital Specklegraphy).

  7. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2016-07-12

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  8. Utilizing real-time and near real-time data in the iNtegrated Space Weather Analysis System

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Mullinix, R. E.; Rastaetter, L.; Pulkkinen, A.; Zheng, Y.; Berrios, D.; Hesse, M.; Kuznetsova, M. M.; Taktakishvili, A.; Chulaki, A.; Shim, J.; Bakshi, S. S.; Patel, K. D.; Jain, P.

    2010-12-01

    Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Desk at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 250 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities and also discuss some of the challenges and lessons-learned in dealing with diverse real-time and near-real time space

  9. Intelligent data management for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  10. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  11. Real-time Experiment Interface for Biological Control Applications

    PubMed Central

    Lin, Risa J.; Bettencourt, Jonathan; White, John A.; Christini, David J.; Butera, Robert J.

    2013-01-01

    The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org). PMID:21096883

  12. Real-time simulation of large-scale floods

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  13. Rainfall-based real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Bertoni, Juan Carlos; Tucci, Carlos Eduardo; Clarke, Robin Thomas

    1992-02-01

    The use of conceptual rainfall-runoff models in real-time flood forecasting still presents problems, some of which relate to the updating of the mathematical model and to uncertainties associated with future rainfall. Both topics are approached in this study, in which a conceptual rainfall-runoff model (IPH-II) for real-time flood forecasting and a simplified stochastic model to determine the value of including quantitative rainfall forecasts were used. The methods were tested using data from a small watershed (the River Ray at Grendon Underwood, UK), for which 17 years of records were available. The results show that a simple method used to forecast rain falling during the next few hours, may help to improve real-time discharge estimates.

  14. Real time capable infrared thermography for ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  15. Real time capable infrared thermography for ASDEX Upgrade.

    PubMed

    Sieglin, B; Faitsch, M; Herrmann, A; Brucker, B; Eich, T; Kammerloher, L; Martinov, S

    2015-11-01

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today's fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  16. A real-time VLC to UART protocol conversion system

    NASA Astrophysics Data System (ADS)

    Deng, Jian-zhi; Yao, Meng; Cheng, Xiao-hui; Deng, Zhuo-hong

    2016-07-01

    A real-time visible light communication (VLC) to universal asynchronous receiver/transmitter (UART) conversion system is made up of a transmitter with a light emitting diode (LED) and a receiver with a photodiode (PD), by which a VLC system is connected to traditional communication modes, and the data are transferred by wireless visible light. UART packets are converted to light packets by the modulation of a 10 kHz on-off-keying (OOK) light signal, and the data losses in the transportation are avoided by the protection of a data buffer mechanism. The experimental results reveal that the real-time VLC to UART conversion system can provide a real-time VLC transmission way for two UART devices in not less than 10 m at a baud rate not less than 19 200 Bd with stable ambient lighting at the same time.

  17. Real-time measurement of mental workload: A feasibility study

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur; Humphrey, Darryl; Sirevaag, Erik; Mecklinger, Axel

    1990-01-01

    The primary goal of the study was to explore the utility of event-related brain potentials (ERP) as real-time measures of workload. To this end, subjects performed two different tasks both separately and together. One task required that subjects monitor a bank of constantly changing gauges and detect critical deviations. Difficulty was varied by changing the predictability of the gauges. The second task was mental arithmetic. Difficulty was varied by requiring subjects to perform operations on either two or three columns of numbers. Two conditions that could easily be distinguished on the basis of performance measures were selected for the real-time evaluation of ERPs. A bootstrapping approach was adopted in which one thousand samples of n trials (n = 1, 3, 5 ...65) were classified using several measures of P300 and Slow Wave amplitude. Classification accuracies of 85 percent were achieved with 25 trials. Results are discussed in terms of potential enhancements for real-time recording.

  18. Explaining How to Play Real-Time Strategy Games

    NASA Astrophysics Data System (ADS)

    Metoyer, Ronald; Stumpf, Simone; Neumann, Christoph; Dodge, Jonathan; Cao, Jill; Schnabel, Aaron

    Real-time strategy games share many aspects with real situations in domains such as battle planning, air traffic control, and emergency response team management which makes them appealing test-beds for Artificial Intelligence (AI) and machine learning. End user annotations could help to provide supplemental information for learning algorithms, especially when training data is sparse. This paper presents a formative study to uncover how experienced users explain game play in real-time strategy games. We report the results of our analysis of explanations and discuss their characteristics that could support the design of systems for use by experienced real-time strategy game users in specifying or annotating strategy-oriented behavior.

  19. Building flexible real-time systems using the Flex language

    NASA Technical Reports Server (NTRS)

    Kenny, Kevin B.; Lin, Kwei-Jay

    1991-01-01

    The design and implementation of a real-time programming language called Flex, which is a derivative of C++, are presented. It is shown how different types of timing requirements might be expressed and enforced in Flex, how they might be fulfilled in a flexible way using different program models, and how the programming environment can help in making binding and scheduling decisions. The timing constraint primitives in Flex are easy to use yet powerful enough to define both independent and relative timing constraints. Program models like imprecise computation and performance polymorphism can carry out flexible real-time programs. In addition, programmers can use a performance measurement tool that produces statistically correct timing models to predict the expected execution time of a program and to help make binding decisions. A real-time programming environment is also presented.

  20. Designing a fuzzy scheduler for hard real-time systems

    NASA Technical Reports Server (NTRS)

    Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami

    1992-01-01

    In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.