Building occupancy simulation and data assimilation using a graph-based agent-oriented model
NASA Astrophysics Data System (ADS)
Rai, Sanish; Hu, Xiaolin
2018-07-01
Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.
Method for Real-Time Model Based Structural Anomaly Detection
NASA Technical Reports Server (NTRS)
Urnes, James M., Sr. (Inventor); Smith, Timothy A. (Inventor); Reichenbach, Eric Y. (Inventor)
2015-01-01
A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.
The Priority Inversion Problem and Real-Time Symbolic Model Checking
1993-04-23
real time systems unpredictable in subtle ways. This makes it more difficult to implement and debug such systems. Our work discusses this problem and presents one possible solution. The solution is formalized and verified using temporal logic model checking techniques. In order to perform the verification, the BDD-based symbolic model checking algorithm given in previous works was extended to handle real-time properties using the bounded until operator. We believe that this algorithm, which is based on discrete time, is able to handle many real-time properties
Real-time GIS data model and sensor web service platform for environmental data management.
Gong, Jianya; Geng, Jing; Chen, Zeqiang
2015-01-09
Effective environmental data management is meaningful for human health. In the past, environmental data management involved developing a specific environmental data management system, but this method often lacks real-time data retrieving and sharing/interoperating capability. With the development of information technology, a Geospatial Service Web method is proposed that can be employed for environmental data management. The purpose of this study is to determine a method to realize environmental data management under the Geospatial Service Web framework. A real-time GIS (Geographic Information System) data model and a Sensor Web service platform to realize environmental data management under the Geospatial Service Web framework are proposed in this study. The real-time GIS data model manages real-time data. The Sensor Web service platform is applied to support the realization of the real-time GIS data model based on the Sensor Web technologies. To support the realization of the proposed real-time GIS data model, a Sensor Web service platform is implemented. Real-time environmental data, such as meteorological data, air quality data, soil moisture data, soil temperature data, and landslide data, are managed in the Sensor Web service platform. In addition, two use cases of real-time air quality monitoring and real-time soil moisture monitoring based on the real-time GIS data model in the Sensor Web service platform are realized and demonstrated. The total time efficiency of the two experiments is 3.7 s and 9.2 s. The experimental results show that the method integrating real-time GIS data model and Sensor Web Service Platform is an effective way to manage environmental data under the Geospatial Service Web framework.
NASA Astrophysics Data System (ADS)
Boakye-Boateng, Nasir Abdulai
The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.
Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim
Modenese, L.; Lloyd, D.G.
2017-01-01
Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time. PMID:27723992
Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.
Pizzolato, C; Reggiani, M; Modenese, L; Lloyd, D G
2017-03-01
Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5 ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time.
Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei
2015-02-01
It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.
Real Time Data Management for Estimating Probabilities of Incidents and Near Misses
NASA Astrophysics Data System (ADS)
Stanitsas, P. D.; Stephanedes, Y. J.
2011-08-01
Advances in real-time data collection, data storage and computational systems have led to development of algorithms for transport administrators and engineers that improve traffic safety and reduce cost of road operations. Despite these advances, problems in effectively integrating real-time data acquisition, processing, modelling and road-use strategies at complex intersections and motorways remain. These are related to increasing system performance in identification, analysis, detection and prediction of traffic state in real time. This research develops dynamic models to estimate the probability of road incidents, such as crashes and conflicts, and incident-prone conditions based on real-time data. The models support integration of anticipatory information and fee-based road use strategies in traveller information and management. Development includes macroscopic/microscopic probabilistic models, neural networks, and vector autoregressions tested via machine vision at EU and US sites.
A tool for modeling concurrent real-time computation
NASA Technical Reports Server (NTRS)
Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.
1990-01-01
Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.
Estimating Real-Time Zenith Tropospheric Delay over Africa Using IGS-RTS Products
NASA Astrophysics Data System (ADS)
Abdelazeem, M.
2017-12-01
Zenith Tropospheric Delay (ZTD) is a crucial parameter for atmospheric modeling, severe weather monitoring and forecasting applications. Currently, the international global navigation satellite system (GNSS) real-time service (IGS-RTS) products are used extensively in real-time atmospheric modeling applications. The objective of this study is to develop a real time zenith tropospheric delay estimation model over Africa using the IGS-RTS products. The real-time ZTDs are estimated based on the real-time precise point positioning (PPP) solution. GNSS observations from a number of reference stations are processed over a period of 7 days. Then, the estimated real-time ZTDs are compared with the IGS tropospheric products counterparts. The findings indicate that the estimated real-time ZTDs have millimeter level accuracy in comparison with the IGS counterparts.
A real-time ionospheric model based on GNSS Precise Point Positioning
NASA Astrophysics Data System (ADS)
Tu, Rui; Zhang, Hongping; Ge, Maorong; Huang, Guanwen
2013-09-01
This paper proposes a method of real-time monitoring and modeling the ionospheric Total Electron Content (TEC) by Precise Point Positioning (PPP). Firstly, the ionospheric TEC and receiver’s Differential Code Biases (DCB) are estimated with the undifferenced raw observation in real-time, then the ionospheric TEC model is established based on the Single Layer Model (SLM) assumption and the recovered ionospheric TEC. In this study, phase observations with high precision are directly used instead of phase smoothed code observations. In addition, the DCB estimation is separated from the establishment of the ionospheric model which will limit the impacts of the SLM assumption impacts. The ionospheric model is established at every epoch for real time application. The method is validated with three different GNSS networks on a local, regional, and global basis. The results show that the method is feasible and effective, the real-time ionosphere and DCB results are very consistent with the IGS final products, with a bias of 1-2 TECU and 0.4 ns respectively.
Statistical tools for transgene copy number estimation based on real-time PCR.
Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal
2007-11-01
As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation to be more reliable and precise with a proper statistical estimation. Proper confidence intervals are necessary for unambiguous prediction of trangene copy number. The four different statistical methods are compared for their advantages and disadvantages. Moreover, the statistical methods can also be applied for other real-time PCR-based quantification assays including transfection efficiency analysis and pathogen quantification.
Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data
Minson, Sarah E.; Murray, Jessica R.; Langbein, John O.; Gomberg, Joan S.
2015-01-01
We present an inversion strategy capable of using real-time high-rate GPS data to simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can solve this complex inversion problem (including calculating the uncertainties on our results) in real time. Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time, the time required to obtain a source model of the earthquake does not depend on the computational cost. Instead, the time required is controlled by the duration of the rupture and the time required for information to propagate from the source to the receivers. We apply our modeling approach, called Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases, the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time series are the best data to use for determining the moment magnitude of the event, but slightly smoothing the raw time series helps stabilize the inversion for fault geometry.
Real-time simulation of large-scale floods
NASA Astrophysics Data System (ADS)
Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.
2016-08-01
According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.
NASA Astrophysics Data System (ADS)
Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.
2014-12-01
It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the origin of ambient exposure to hazardous air pollutants in an industrial fence line community near the Houston Ship Channel. Preliminary results derived from analysis of MARC observations during the BEE-TEX experiment will be presented.
The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four report volumes. Moreover, the tests are generally applicable to other model evaluation problem...
"It's about Improving My Practice": The Learner Experience of Real-Time Coaching
ERIC Educational Resources Information Center
Sharplin, Erica J.; Stahl, Garth; Kehrwald, Ben
2016-01-01
This article reports on pre-service teachers' experience of the Real-Time Coaching model, an innovative technology-based approach to teacher training. The Real-Time Coaching model uses multiple feedback cycles via wireless technology to develop within pre-service teachers the specific skills and mindset toward continual improvement. Results of…
Real-time visual simulation of APT system based on RTW and Vega
NASA Astrophysics Data System (ADS)
Xiong, Shuai; Fu, Chengyu; Tang, Tao
2012-10-01
The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.
Xu, Haiyang; Wang, Ping
2016-01-01
In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system.
Xu, Haiyang; Wang, Ping
2016-01-01
In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system. PMID:27918594
Safety analytics for integrating crash frequency and real-time risk modeling for expressways.
Wang, Ling; Abdel-Aty, Mohamed; Lee, Jaeyoung
2017-07-01
To find crash contributing factors, there have been numerous crash frequency and real-time safety studies, but such studies have been conducted independently. Until this point, no researcher has simultaneously analyzed crash frequency and real-time crash risk to test whether integrating them could better explain crash occurrence. Therefore, this study aims at integrating crash frequency and real-time safety analyses using expressway data. A Bayesian integrated model and a non-integrated model were built: the integrated model linked the crash frequency and the real-time models by adding the logarithm of the estimated expected crash frequency in the real-time model; the non-integrated model independently estimated the crash frequency and the real-time crash risk. The results showed that the integrated model outperformed the non-integrated model, as it provided much better model results for both the crash frequency and the real-time models. This result indicated that the added component, the logarithm of the expected crash frequency, successfully linked and provided useful information to the two models. This study uncovered few variables that are not typically included in the crash frequency analysis. For example, the average daily standard deviation of speed, which was aggregated based on speed at 1-min intervals, had a positive effect on crash frequency. In conclusion, this study suggested a methodology to improve the crash frequency and real-time models by integrating them, and it might inspire future researchers to understand crash mechanisms better. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kong, Zehui; Liu, Teng
2017-01-01
To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control. PMID:28671967
Kong, Zehui; Zou, Yuan; Liu, Teng
2017-01-01
To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.
NASA Technical Reports Server (NTRS)
Nieten, Joseph L.; Seraphine, Kathleen M.
1991-01-01
Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.
Distribution Locational Real-Time Pricing Based Smart Building Control and Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen
This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reductionmore » and energy saving, as well as working productivity improvements, can be achieved.« less
The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four volumes. Moreover, the tests are generally applicable to other model evaluation problems. Volu...
The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four volumes. Moreover, the tests are generally applicable to other model evaluation problems. Volu...
Reasoning about real-time systems with temporal interval logic constraints on multi-state automata
NASA Technical Reports Server (NTRS)
Gabrielian, Armen
1991-01-01
Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.
Real-time pricing strategy of micro-grid energy centre considering price-based demand response
NASA Astrophysics Data System (ADS)
Xu, Zhiheng; Zhang, Yongjun; Wang, Gan
2017-07-01
With the development of energy conversion technology such as power to gas (P2G), fuel cell and so on, the coupling between energy sources becomes more and more closely. Centralized dispatch among electricity, natural gas and heat will become a trend. With the goal of maximizing the system revenue, this paper establishes the model of micro-grid energy centre based on energy hub. According to the proposed model, the real-time pricing strategy taking into account price-based demand response of load is developed. And the influence of real-time pricing strategy on the peak load shifting is discussed. In addition, the impact of wind power predicted inaccuracy on real-time pricing strategy is analysed.
Niroomandi, S; Alfaro, I; Cueto, E; Chinesta, F
2012-01-01
Model reduction techniques have shown to constitute a valuable tool for real-time simulation in surgical environments and other fields. However, some limitations, imposed by real-time constraints, have not yet been overcome. One of such limitations is the severe limitation in time (established in 500Hz of frequency for the resolution) that precludes the employ of Newton-like schemes for solving non-linear models as the ones usually employed for modeling biological tissues. In this work we present a technique able to deal with geometrically non-linear models, based on the employ of model reduction techniques, together with an efficient non-linear solver. Examples of the performance of the technique over some examples will be given. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Verus: A Tool for Quantitative Analysis of Finite-State Real-Time Systems.
1996-08-12
Symbolic model checking is a technique for verifying finite-state concurrent systems that has been extended to handle real - time systems . Models with...up to 10(exp 30) states can often be verified in minutes. In this paper, we present a new tool to analyze real - time systems , based on this technique...We have designed a language, called Verus, for the description of real - time systems . Such a description is compiled into a state-transition graph and
A Tree Based Broadcast Scheme for (m, k)-firm Real-Time Stream in Wireless Sensor Networks.
Park, HoSung; Kim, Beom-Su; Kim, Kyong Hoon; Shah, Babar; Kim, Ki-Il
2017-11-09
Recently, various unicast routing protocols have been proposed to deliver measured data from the sensor node to the sink node within the predetermined deadline in wireless sensor networks. In parallel with their approaches, some applications demand the specific service, which is based on broadcast to all nodes within the deadline, the feasible real-time traffic model and improvements in energy efficiency. However, current protocols based on either flooding or one-to-one unicast cannot meet the above requirements entirely. Moreover, as far as the authors know, there is no study for the real-time broadcast protocol to support the application-specific traffic model in WSN yet. Based on the above analysis, in this paper, we propose a new ( m , k )-firm-based Real-time Broadcast Protocol (FRBP) by constructing a broadcast tree to satisfy the ( m , k )-firm, which is applicable to the real-time model in resource-constrained WSNs. The broadcast tree in FRBP is constructed by the distance-based priority scheme, whereas energy efficiency is improved by selecting as few as nodes on a tree possible. To overcome the unstable network environment, the recovery scheme invokes rapid partial tree reconstruction in order to designate another node as the parent on a tree according to the measured ( m , k )-firm real-time condition and local states monitoring. Finally, simulation results are given to demonstrate the superiority of FRBP compared to the existing schemes in terms of average deadline missing ratio, average throughput and energy consumption.
Strategies for Near Real Time Estimates of Precipitable Water Vapor from GPS Ground Receivers
NASA Technical Reports Server (NTRS)
Y., Bar-Sever; Runge, T.; Kroger, P.
1995-01-01
GPS-based estimates of precipitable water vapor (PWV) may be useful in numerical weather models to improve short-term weather predictions. To be effective in numerical weather prediction models, GPS PWV estimates must be produced with sufficient accuracy in near real time. Several estimation strategies for the near real time processing of GPS data are investigated.
On Real-Time Systems Using Local Area Networks.
1987-07-01
87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in
Road Risk Modeling and Cloud-Aided Safety-Based Route Planning.
Li, Zhaojian; Kolmanovsky, Ilya; Atkins, Ella; Lu, Jianbo; Filev, Dimitar P; Michelini, John
2016-11-01
This paper presents a safety-based route planner that exploits vehicle-to-cloud-to-vehicle (V2C2V) connectivity. Time and road risk index (RRI) are considered as metrics to be balanced based on user preference. To evaluate road segment risk, a road and accident database from the highway safety information system is mined with a hybrid neural network model to predict RRI. Real-time factors such as time of day, day of the week, and weather are included as correction factors to the static RRI prediction. With real-time RRI and expected travel time, route planning is formulated as a multiobjective network flow problem and further reduced to a mixed-integer programming problem. A V2C2V implementation of our safety-based route planning approach is proposed to facilitate access to real-time information and computing resources. A real-world case study, route planning through the city of Columbus, Ohio, is presented. Several scenarios illustrate how the "best" route can be adjusted to favor time versus safety metrics.
Adaptive Automation Design and Implementation
2015-09-17
Study : Space Navigator This section demonstrates the player modeling paradigm, focusing specifically on the response generation section of the player ...human-machine system, a real-time player modeling framework for imitating a specific person’s task performance, and the Adaptive Automation System...Model . . . . . . . . . . . . . . . . . . . . . . . 13 Clustering-Based Real-Time Player Modeling . . . . . . . . . . . . . . . . . . . . . . 15 An
A high fidelity real-time simulation of a small turboshaft engine
NASA Technical Reports Server (NTRS)
Ballin, Mark G.
1988-01-01
A high-fidelity component-type model and real-time digital simulation of the General Electric T700-GE-700 turboshaft engine were developed for use with current generation real-time blade-element rotor helicopter simulations. A control system model based on the specification fuel control system used in the UH-60A Black Hawk helicopter is also presented. The modeling assumptions and real-time digital implementation methods particular to the simulation of small turboshaft engines are described. The validity of the simulation is demonstrated by comparison with analysis-oriented simulations developed by the manufacturer, available test data, and flight-test time histories.
Application of troposphere model from NWP and GNSS data into real-time precise positioning
NASA Astrophysics Data System (ADS)
Wilgan, Karina; Hadas, Tomasz; Kazmierski, Kamil; Rohm, Witold; Bosy, Jaroslaw
2016-04-01
The tropospheric delay empirical models are usually functions of meteorological parameters (temperature, pressure and humidity). The application of standard atmosphere parameters or global models, such as GPT (global pressure/temperature) model or UNB3 (University of New Brunswick, version 3) model, may not be sufficient, especially for positioning in non-standard weather conditions. The possible solution is to use regional troposphere models based on real-time or near-real time measurements. We implement a regional troposphere model into the PPP (Precise Point Positioning) software GNSS-WARP (Wroclaw Algorithms for Real-time Positioning) developed at Wroclaw University of Environmental and Life Sciences. The software is capable of processing static and kinematic multi-GNSS data in real-time and post-processing mode and takes advantage of final IGS (International GNSS Service) products as well as IGS RTS (Real-Time Service) products. A shortcoming of PPP technique is the time required for the solution to converge. One of the reasons is the high correlation among the estimated parameters: troposphere delay, receiver clock offset and receiver height. To efficiently decorrelate these parameters, a significant change in satellite geometry is required. Alternative solution is to introduce the external high-quality regional troposphere delay model to constrain troposphere estimates. The proposed model consists of zenith total delays (ZTD) and mapping functions calculated from meteorological parameters from Numerical Weather Prediction model WRF (Weather Research and Forecasting) and ZTDs from ground-based GNSS stations using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zurich.
Lee, Da-Sheng
2010-01-01
Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.
Research on Modeling of Propeller in a Turboprop Engine
NASA Astrophysics Data System (ADS)
Huang, Jiaqin; Huang, Xianghua; Zhang, Tianhong
2015-05-01
In the simulation of engine-propeller integrated control system for a turboprop aircraft, a real-time propeller model with high-accuracy is required. A study is conducted to compare the real-time and precision performance of propeller models based on strip theory and lifting surface theory. The emphasis in modeling by strip theory is focused on three points as follows: First, FLUENT is adopted to calculate the lift and drag coefficients of the propeller. Next, a method to calculate the induced velocity which occurs in the ground rig test is presented. Finally, an approximate method is proposed to obtain the downwash angle of the propeller when the conventional algorithm has no solution. An advanced approximation of the velocities induced by helical horseshoe vortices is applied in the model based on lifting surface theory. This approximate method will reduce computing time and remain good accuracy. Comparison between the two modeling techniques shows that the model based on strip theory which owns more advantage on both real-time and high-accuracy can meet the requirement.
Attention focussing and anomaly detection in real-time systems monitoring
NASA Technical Reports Server (NTRS)
Doyle, Richard J.; Chien, Steve A.; Fayyad, Usama M.; Porta, Harry J.
1993-01-01
In real-time monitoring situations, more information is not necessarily better. When faced with complex emergency situations, operators can experience information overload and a compromising of their ability to react quickly and correctly. We describe an approach to focusing operator attention in real-time systems monitoring based on a set of empirical and model-based measures for determining the relative importance of sensor data.
A Tree Based Broadcast Scheme for (m, k)-firm Real-Time Stream in Wireless Sensor Networks
Park, HoSung; Kim, Beom-Su; Kim, Kyong Hoon; Shah, Babar; Kim, Ki-Il
2017-01-01
Recently, various unicast routing protocols have been proposed to deliver measured data from the sensor node to the sink node within the predetermined deadline in wireless sensor networks. In parallel with their approaches, some applications demand the specific service, which is based on broadcast to all nodes within the deadline, the feasible real-time traffic model and improvements in energy efficiency. However, current protocols based on either flooding or one-to-one unicast cannot meet the above requirements entirely. Moreover, as far as the authors know, there is no study for the real-time broadcast protocol to support the application-specific traffic model in WSN yet. Based on the above analysis, in this paper, we propose a new (m, k)-firm-based Real-time Broadcast Protocol (FRBP) by constructing a broadcast tree to satisfy the (m, k)-firm, which is applicable to the real-time model in resource-constrained WSNs. The broadcast tree in FRBP is constructed by the distance-based priority scheme, whereas energy efficiency is improved by selecting as few as nodes on a tree possible. To overcome the unstable network environment, the recovery scheme invokes rapid partial tree reconstruction in order to designate another node as the parent on a tree according to the measured (m, k)-firm real-time condition and local states monitoring. Finally, simulation results are given to demonstrate the superiority of FRBP compared to the existing schemes in terms of average deadline missing ratio, average throughput and energy consumption. PMID:29120404
NASA Technical Reports Server (NTRS)
Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian
2014-01-01
A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50 deg. N - 50 deg. S at relatively high spatial (approximately 12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is approximately 0.9 and the false alarm ratio is approximately 0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30 deg. S - 30 deg. N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Huan; Adler, Robert F.; Tian, Yudong
2014-03-01
A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50°N–50°S at relatively high spatial (~12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS,more » the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30°S–30°N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. Finally, there were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.« less
Development of a model-based flood emergency management system in Yujiang River Basin, South China
NASA Astrophysics Data System (ADS)
Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu
2014-06-01
Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.
Optimizing Tsunami Forecast Model Accuracy
NASA Astrophysics Data System (ADS)
Whitmore, P.; Nyland, D. L.; Huang, P. Y.
2015-12-01
Recent tsunamis provide a means to determine the accuracy that can be expected of real-time tsunami forecast models. Forecast accuracy using two different tsunami forecast models are compared for seven events since 2006 based on both real-time application and optimized, after-the-fact "forecasts". Lessons learned by comparing the forecast accuracy determined during an event to modified applications of the models after-the-fact provide improved methods for real-time forecasting for future events. Variables such as source definition, data assimilation, and model scaling factors are examined to optimize forecast accuracy. Forecast accuracy is also compared for direct forward modeling based on earthquake source parameters versus accuracy obtained by assimilating sea level data into the forecast model. Results show that including assimilated sea level data into the models increases accuracy by approximately 15% for the events examined.
Near real time determination of the magnetopause and bow shock shape and position
NASA Astrophysics Data System (ADS)
Kartalev, M. D.; Keremidarska, V. I.; Grigorov, K. G.; Romanov, D. K.
2002-03-01
We present a web based near real time (once in 90 minutes) automated running of our 3D magnetosheath gasdynamic numerical model. (http://geospace.nat.bg). The determination of the shape and position of the bow shock and the magnetopause is a part of the solution. This approach of the model is utilizing the realistic semi-empirical Tsyganenko magnetosphere model T96-01 for ensuring the pressure balance at the magnetopause. In this realization, we use a real time ACE data, averaged over a 6 minutes time interval.
USDA-ARS?s Scientific Manuscript database
Real-time rainfall accumulation estimates at the global scale is useful for many applications. However, the real-time versions of satellite-based rainfall products are known to contain errors relative to real rainfall observed in situ. Recent studies have demonstrated how information about rainfall ...
Utilization of DIRSIG in support of real-time infrared scene generation
NASA Astrophysics Data System (ADS)
Sanders, Jeffrey S.; Brown, Scott D.
2000-07-01
Real-time infrared scene generation for hardware-in-the-loop has been a traditionally difficult challenge. Infrared scenes are usually generated using commercial hardware that was not designed to properly handle the thermal and environmental physics involved. Real-time infrared scenes typically lack details that are included in scenes rendered in no-real- time by ray-tracing programs such as the Digital Imaging and Remote Sensing Scene Generation (DIRSIG) program. However, executing DIRSIG in real-time while retaining all the physics is beyond current computational capabilities for many applications. DIRSIG is a first principles-based synthetic image generation model that produces multi- or hyper-spectral images in the 0.3 to 20 micron region of the electromagnetic spectrum. The DIRSIG model is an integrated collection of independent first principles based on sub-models, each of which works in conjunction to produce radiance field images with high radiometric fidelity. DIRSIG uses the MODTRAN radiation propagation model for exo-atmospheric irradiance, emitted and scattered radiances (upwelled and downwelled) and path transmission predictions. This radiometry submodel utilizes bidirectional reflectance data, accounts for specular and diffuse background contributions, and features path length dependent extinction and emission for transmissive bodies (plumes, clouds, etc.) which may be present in any target, background or solar path. This detailed environmental modeling greatly enhances the number of rendered features and hence, the fidelity of a rendered scene. While DIRSIG itself cannot currently be executed in real-time, its outputs can be used to provide scene inputs for real-time scene generators. These inputs can incorporate significant features such as target to background thermal interactions, static background object thermal shadowing, and partially transmissive countermeasures. All of these features represent significant improvements over the current state of the art in real-time IR scene generation.
A Method for Generating Reduced Order Linear Models of Supersonic Inlets
NASA Technical Reports Server (NTRS)
Chicatelli, Amy; Hartley, Tom T.
1997-01-01
For the modeling of high speed propulsion systems, there are at least two major categories of models. One is based on computational fluid dynamics (CFD), and the other is based on design and analysis of control systems. CFD is accurate and gives a complete view of the internal flow field, but it typically has many states and runs much slower dm real-time. Models based on control design typically run near real-time but do not always capture the fundamental dynamics. To provide improved control models, methods are needed that are based on CFD techniques but yield models that are small enough for control analysis and design.
A meshless EFG-based algorithm for 3D deformable modeling of soft tissue in real-time.
Abdi, Elahe; Farahmand, Farzam; Durali, Mohammad
2012-01-01
The meshless element-free Galerkin method was generalized and an algorithm was developed for 3D dynamic modeling of deformable bodies in real time. The efficacy of the algorithm was investigated in a 3D linear viscoelastic model of human spleen subjected to a time-varying compressive force exerted by a surgical grasper. The model remained stable in spite of the considerably large deformations occurred. There was a good agreement between the results and those of an equivalent finite element model. The computational cost, however, was much lower, enabling the proposed algorithm to be effectively used in real-time applications.
NASA Astrophysics Data System (ADS)
Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang
2018-01-01
Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm for BeiDou GEO satellites. The real-time positioning results prove that the GPS + BeiDou + Galileo RT-PPP comparing to GPS-only can effectively accelerate convergence time by about 60%, improve the positioning accuracy by about 30% and obtain averaged RMS 4 cm in horizontal and 6 cm in vertical; additionally RT-SPP accuracy in the prototype system can realize positioning accuracy with about averaged RMS 1 m in horizontal and 1.5-2 m in vertical, which are improved by 60% and 70% to SPP based on broadcast ephemeris, respectively.
The design of real time infrared image generation software based on Creator and Vega
NASA Astrophysics Data System (ADS)
Wang, Rui-feng; Wu, Wei-dong; Huo, Jun-xiu
2013-09-01
Considering the requirement of high reality and real-time quality dynamic infrared image of an infrared image simulation, a method to design real-time infrared image simulation application on the platform of VC++ is proposed. This is based on visual simulation software Creator and Vega. The functions of Creator are introduced simply, and the main features of Vega developing environment are analyzed. The methods of infrared modeling and background are offered, the designing flow chart of the developing process of IR image real-time generation software and the functions of TMM Tool and MAT Tool and sensor module are explained, at the same time, the real-time of software is designed.
Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi
2011-11-01
Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.
Real-time video quality monitoring
NASA Astrophysics Data System (ADS)
Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey
2011-12-01
The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.
A real-time biomimetic acoustic localizing system using time-shared architecture
NASA Astrophysics Data System (ADS)
Nourzad Karl, Marianne; Karl, Christian; Hubbard, Allyn
2008-04-01
In this paper a real-time sound source localizing system is proposed, which is based on previously developed mammalian auditory models. Traditionally, following the models, which use interaural time delay (ITD) estimates, the amount of parallel computations needed by a system to achieve real-time sound source localization is a limiting factor and a design challenge for hardware implementations. Therefore a new approach using a time-shared architecture implementation is introduced. The proposed architecture is a purely sample-base-driven digital system, and it follows closely the continuous-time approach described in the models. Rather than having dedicated hardware on a per frequency channel basis, a specialized core channel, shared for all frequency bands is used. Having an optimized execution time, which is much less than the system's sample rate, the proposed time-shared solution allows the same number of virtual channels to be processed as the dedicated channels in the traditional approach. Hence, the time-shared approach achieves a highly economical and flexible implementation using minimal silicon area. These aspects are particularly important in efficient hardware implementation of a real time biomimetic sound source localization system.
Diagnosis of delay-deadline failures in real time discrete event models.
Biswas, Santosh; Sarkar, Dipankar; Bhowal, Prodip; Mukhopadhyay, Siddhartha
2007-10-01
In this paper a method for fault detection and diagnosis (FDD) of real time systems has been developed. A modeling framework termed as real time discrete event system (RTDES) model is presented and a mechanism for FDD of the same has been developed. The use of RTDES framework for FDD is an extension of the works reported in the discrete event system (DES) literature, which are based on finite state machines (FSM). FDD of RTDES models are suited for real time systems because of their capability of representing timing faults leading to failures in terms of erroneous delays and deadlines, which FSM-based ones cannot address. The concept of measurement restriction of variables is introduced for RTDES and the consequent equivalence of states and indistinguishability of transitions have been characterized. Faults are modeled in terms of an unmeasurable condition variable in the state map. Diagnosability is defined and the procedure of constructing a diagnoser is provided. A checkable property of the diagnoser is shown to be a necessary and sufficient condition for diagnosability. The methodology is illustrated with an example of a hydraulic cylinder.
NASA Astrophysics Data System (ADS)
Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath
2016-04-01
Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling
Real-time visual tracking of less textured three-dimensional objects on mobile platforms
NASA Astrophysics Data System (ADS)
Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il
2012-12-01
Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.
CHIMERA II - A real-time multiprocessing environment for sensor-based robot control
NASA Technical Reports Server (NTRS)
Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.
1989-01-01
A multiprocessing environment for a wide variety of sensor-based robot system, providing the flexibility, performance, and UNIX-compatible interface needed for fast development of real-time code is addressed. The requirements imposed on the design of a programming environment for sensor-based robotic control is outlined. The details of the current hardware configuration are presented, along with the details of the CHIMERA II software. Emphasis is placed on the kernel, low-level interboard communication, user interface, extended file system, user-definable and dynamically selectable real-time schedulers, remote process synchronization, and generalized interprocess communication. A possible implementation of a hierarchical control model, the NASA/NBS standard reference model for telerobot control system is demonstrated.
Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆
Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W. Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank
2013-01-01
Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks. PMID:23668967
Programming Models for Concurrency and Real-Time
NASA Astrophysics Data System (ADS)
Vitek, Jan
Modern real-time applications are increasingly large, complex and concurrent systems which must meet stringent performance and predictability requirements. Programming those systems require fundamental advances in programming languages and runtime systems. This talk presents our work on Flexotasks, a programming model for concurrent, real-time systems inspired by stream-processing and concurrent active objects. Some of the key innovations in Flexotasks are that it support both real-time garbage collection and region-based memory with an ownership type system for static safety. Communication between tasks is performed by channels with a linear type discipline to avoid copying messages, and by a non-blocking transactional memory facility. We have evaluated our model empirically within two distinct implementations, one based on Purdue’s Ovm research virtual machine framework and the other on Websphere, IBM’s production real-time virtual machine. We have written a number of small programs, as well as a 30 KLOC avionics collision detector application. We show that Flexotasks are capable of executing periodic threads at 10 KHz with a standard deviation of 1.2us and have performance competitive with hand coded C programs.
Lee, Da-Sheng
2010-01-01
Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design. PMID:22315563
Graph-based real-time fault diagnostics
NASA Technical Reports Server (NTRS)
Padalkar, S.; Karsai, G.; Sztipanovits, J.
1988-01-01
A real-time fault detection and diagnosis capability is absolutely crucial in the design of large-scale space systems. Some of the existing AI-based fault diagnostic techniques like expert systems and qualitative modelling are frequently ill-suited for this purpose. Expert systems are often inadequately structured, difficult to validate and suffer from knowledge acquisition bottlenecks. Qualitative modelling techniques sometimes generate a large number of failure source alternatives, thus hampering speedy diagnosis. In this paper we present a graph-based technique which is well suited for real-time fault diagnosis, structured knowledge representation and acquisition and testing and validation. A Hierarchical Fault Model of the system to be diagnosed is developed. At each level of hierarchy, there exist fault propagation digraphs denoting causal relations between failure modes of subsystems. The edges of such a digraph are weighted with fault propagation time intervals. Efficient and restartable graph algorithms are used for on-line speedy identification of failure source components.
Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes
Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian
2015-01-01
Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. PMID:26294903
Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes.
Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian
2015-01-01
Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.
Nonlinear multi-analysis of agent-based financial market dynamics by epidemic system
NASA Astrophysics Data System (ADS)
Lu, Yunfan; Wang, Jun; Niu, Hongli
2015-10-01
Based on the epidemic dynamical system, we construct a new agent-based financial time series model. In order to check and testify its rationality, we compare the statistical properties of the time series model with the real stock market indices, Shanghai Stock Exchange Composite Index and Shenzhen Stock Exchange Component Index. For analyzing the statistical properties, we combine the multi-parameter analysis with the tail distribution analysis, the modified rescaled range analysis, and the multifractal detrended fluctuation analysis. For a better perspective, the three-dimensional diagrams are used to present the analysis results. The empirical research in this paper indicates that the long-range dependence property and the multifractal phenomenon exist in the real returns and the proposed model. Therefore, the new agent-based financial model can recurrence some important features of real stock markets.
Crowd evacuation model based on bacterial foraging algorithm
NASA Astrophysics Data System (ADS)
Shibiao, Mu; Zhijun, Chen
To understand crowd evacuation, a model based on a bacterial foraging algorithm (BFA) is proposed in this paper. Considering dynamic and static factors, the probability of pedestrian movement is established using cellular automata. In addition, given walking and queue times, a target optimization function is built. At the same time, a BFA is used to optimize the objective function. Finally, through real and simulation experiments, the relationship between the parameters of evacuation time, exit width, pedestrian density, and average evacuation speed is analyzed. The results show that the model can effectively describe a real evacuation.
An Infrastructure for UML-Based Code Generation Tools
NASA Astrophysics Data System (ADS)
Wehrmeister, Marco A.; Freitas, Edison P.; Pereira, Carlos E.
The use of Model-Driven Engineering (MDE) techniques in the domain of distributed embedded real-time systems are gain importance in order to cope with the increasing design complexity of such systems. This paper discusses an infrastructure created to build GenERTiCA, a flexible tool that supports a MDE approach, which uses aspect-oriented concepts to handle non-functional requirements from embedded and real-time systems domain. GenERTiCA generates source code from UML models, and also performs weaving of aspects, which have been specified within the UML model. Additionally, this paper discusses the Distributed Embedded Real-Time Compact Specification (DERCS), a PIM created to support UML-based code generation tools. Some heuristics to transform UML models into DERCS, which have been implemented in GenERTiCA, are also discussed.
Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation
NASA Astrophysics Data System (ADS)
Zhao, T.; Cai, X.; Yang, D.
2010-12-01
Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, DPSF, and ESF. Schematic diagram of the increase in forecast uncertainty with forecast lead-time and the dynamic updating property of real-time streamflow forecast
A Sarsa(λ)-based control model for real-time traffic light coordination.
Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.
Wang, Ling; Abdel-Aty, Mohamed; Wang, Xuesong; Yu, Rongjie
2018-02-01
There have been plenty of traffic safety studies based on average daily traffic (ADT), average hourly traffic (AHT), or microscopic traffic at 5 min intervals. Nevertheless, not enough research has compared the performance of these three types of safety studies, and seldom of previous studies have intended to find whether the results of one type of study is transferable to the other two studies. First, this study built three models: a Bayesian Poisson-lognormal model to estimate the daily crash frequency using ADT, a Bayesian Poisson-lognormal model to estimate the hourly crash frequency using AHT, and a Bayesian logistic regression model for the real-time safety analysis using microscopic traffic. The model results showed that the crash contributing factors found by different models were comparable but not the same. Four variables, i.e., the logarithm of volume, the standard deviation of speed, the logarithm of segment length, and the existence of diverge segment, were positively significant in the three models. Additionally, weaving segments experienced higher daily and hourly crash frequencies than merge and basic segments. Then, each of the ADT-based, AHT-based, and real-time models was used to estimate safety conditions at different levels: daily and hourly, meanwhile, the real-time model was also used in 5 min intervals. The results uncovered that the ADT- and AHT-based safety models performed similar in predicting daily and hourly crash frequencies, and the real-time safety model was able to provide hourly crash frequency. Copyright © 2017 Elsevier Ltd. All rights reserved.
A multi-GPU real-time dose simulation software framework for lung radiotherapy.
Santhanam, A P; Min, Y; Neelakkantan, H; Papp, N; Meeks, S L; Kupelian, P A
2012-09-01
Medical simulation frameworks facilitate both the preoperative and postoperative analysis of the patient's pathophysical condition. Of particular importance is the simulation of radiation dose delivery for real-time radiotherapy monitoring and retrospective analyses of the patient's treatment. In this paper, a software framework tailored for the development of simulation-based real-time radiation dose monitoring medical applications is discussed. A multi-GPU-based computational framework coupled with inter-process communication methods is introduced for simulating the radiation dose delivery on a deformable 3D volumetric lung model and its real-time visualization. The model deformation and the corresponding dose calculation are allocated among the GPUs in a task-specific manner and is performed in a pipelined manner. Radiation dose calculations are computed on two different GPU hardware architectures. The integration of this computational framework with a front-end software layer and back-end patient database repository is also discussed. Real-time simulation of the dose delivered is achieved at once every 120 ms using the proposed framework. With a linear increase in the number of GPU cores, the computational time of the simulation was linearly decreased. The inter-process communication time also improved with an increase in the hardware memory. Variations in the delivered dose and computational speedup for variations in the data dimensions are investigated using D70 and D90 as well as gEUD as metrics for a set of 14 patients. Computational speed-up increased with an increase in the beam dimensions when compared with a CPU-based commercial software while the error in the dose calculation was <1%. Our analyses show that the framework applied to deformable lung model-based radiotherapy is an effective tool for performing both real-time and retrospective analyses.
NASA Astrophysics Data System (ADS)
Lee, Jae Young; Park, Younggeun; Pun, San; Lee, Sung Sik; Lo, Joe F.; Lee, Luke P.
2015-06-01
Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy.Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02390d
A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model
NASA Astrophysics Data System (ADS)
Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge
2016-12-01
A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.
A New Design Method of Automotive Electronic Real-time Control System
NASA Astrophysics Data System (ADS)
Zuo, Wenying; Li, Yinguo; Wang, Fengjuan; Hou, Xiaobo
Structure and functionality of automotive electronic control system is becoming more and more complex. The traditional manual programming development mode to realize automotive electronic control system can't satisfy development needs. So, in order to meet diversity and speedability of development of real-time control system, combining model-based design approach and auto code generation technology, this paper proposed a new design method of automotive electronic control system based on Simulink/RTW. Fristly, design algorithms and build a control system model in Matlab/Simulink. Then generate embedded code automatically by RTW and achieve automotive real-time control system development in OSEK/VDX operating system environment. The new development mode can significantly shorten the development cycle of automotive electronic control system, improve program's portability, reusability and scalability and had certain practical value for the development of real-time control system.
Martínez-Martínez, F; Rupérez-Moreno, M J; Martínez-Sober, M; Solves-Llorens, J A; Lorente, D; Serrano-López, A J; Martínez-Sanchis, S; Monserrat, C; Martín-Guerrero, J D
2017-11-01
This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (<0.2 s). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Dan; Christakos, George; Ding, Xinxin; Wu, Jiaping
2018-01-01
Spatial rainfall data is an essential input to Distributed Hydrological Models (DHM), and a significant contributor to hydrological model uncertainty. Model uncertainty is higher when rain gauges are sparse, as is often the case in practice. Currently, satellite-based precipitation products increasingly provide an alternative means to ground-based rainfall estimates, in which case a rigorous product assessment is required before implementation. Accordingly, the twofold objective of this work paper was the real-world assessment of both (a) the Tropical Rainfall Measuring Mission (TRMM) rainfall product using gauge data, and (b) the TRMM product's role in forcing data for hydrologic simulations in the area of the Tiaoxi catchment (Taihu lake basin, China). The TRMM rainfall products used in this study are the Version-7 real-time 3B42RT and the post-real-time 3B42. It was found that the TRMM rainfall data showed a superior performance at the monthly and annual scales, fitting well with surface observation-based frequency rainfall distributions. The Nash-Sutcliffe Coefficient of Efficiency (NSCE) and the relative bias ratio (BIAS) were used to evaluate hydrologic model performance. The satisfactory performance of the monthly runoff simulations in the Tiaoxi study supports the view that the implementation of real-time 3B42RT allows considerable room for improvement. At the same time, post-real-time 3B42 can be a valuable tool of hydrologic modeling, water balance analysis, and basin water resource management, especially in developing countries or at remote locations in which rainfall gauges are scarce.
HRT-UML: a design method for hard real-time systems based on the UML notation
NASA Astrophysics Data System (ADS)
D'Alessandro, Massimo; Mazzini, Silvia; di Natale, Marco; Lipari, Giuseppe
2002-07-01
The Hard Real-Time-Unified Modelling Language (HRT-UML) method aims at providing a comprehensive solution to the modeling of Hard Real Time systems. The experience shows that the design of Hard Real-Time systems needs methodologies suitable for the modeling and analysis of aspects related to time, schedulability and performance. In the context of the European Aerospace community a reference method for design is Hierarchical Object Oriented Design (HOOD) and in particular its extension for the modeling of hard real time systems, Hard Real-Time-Hierarchical Object Oriented Design (HRT-HOOD), recommended by the European Space Agency (ESA) for the development of on-board systems. On the other hand in recent years the Unified Modelling Language (UML) has been gaining a very large acceptance in a wide range of domains, all over the world, becoming a de-facto international standard. Tool vendors are very active in this potentially big market. In the Aerospace domain the common opinion is that UML, as a general notation, is not suitable for Hard Real Time systems, even if its importance is recognized as a standard and as a technological trend in the near future. These considerations suggest the possibility of replacing the HRT-HOOD method with a customized version of UML, that incorporates the advantages of both standards and complements the weak points. This approach has the clear advantage of making HRT-HOOD converge on a more powerful and expressive modeling notation. The paper identifies a mapping of the HRT-HOOD semantics into the UML one, and proposes a UML extension profile, that we call HRT-UML, based on the UML standard extension mechanisms, to fully represent HRT-HOOD design concepts. Finally it discusses the relationships between our profile and the UML profile for schedulability, performance and time, adopted by OMG in November 2001.
Wang, Junhua; Sun, Shuaiyi; Fang, Shouen; Fu, Ting; Stipancic, Joshua
2017-02-01
This paper aims to both identify the factors affecting driver drowsiness and to develop a real-time drowsy driving probability model based on virtual Location-Based Services (LBS) data obtained using a driving simulator. A driving simulation experiment was designed and conducted using 32 participant drivers. Collected data included the continuous driving time before detection of drowsiness and virtual LBS data related to temperature, time of day, lane width, average travel speed, driving time in heavy traffic, and driving time on different roadway types. Demographic information, such as nap habit, age, gender, and driving experience was also collected through questionnaires distributed to the participants. An Accelerated Failure Time (AFT) model was developed to estimate the driving time before detection of drowsiness. The results of the AFT model showed driving time before drowsiness was longer during the day than at night, and was longer at lower temperatures. Additionally, drivers who identified as having a nap habit were more vulnerable to drowsiness. Generally, higher average travel speeds were correlated to a higher risk of drowsy driving, as were longer periods of low-speed driving in traffic jam conditions. Considering different road types, drivers felt drowsy more quickly on freeways compared to other facilities. The proposed model provides a better understanding of how driver drowsiness is influenced by different environmental and demographic factors. The model can be used to provide real-time data for the LBS-based drowsy driving warning system, improving past methods based only on a fixed driving. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study on Amortization Time and Rationality in Real Estate Investment
NASA Astrophysics Data System (ADS)
Li, Yancang; Zhou, Shujing; Suo, Juanjuan
Amortization time and rationality has been discussed a lot in real estate investment research. As the price of real estate is driven by Geometric Brown Motion (GBM), whether the mortgagors should amortize in advance has become a key issue in amortization time research. This paper presents a new method to solve the problem by using the optimal stopping time theory and option pricing theory models. We discuss the option value in amortizing decision based on this model. A simulation method is used to test this method.
De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S.
2012-01-01
Background While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. Methods In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. Results We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. Conclusions A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal Interactive Simulation) for general use. PMID:22629108
Dynamic, physical-based landslide susceptibility modelling based on real-time weather data
NASA Astrophysics Data System (ADS)
Canli, Ekrem; Glade, Thomas
2016-04-01
By now there seem to be a broad consensus that due to human-induced global change the frequency and magnitude of precipitation intensities within extensive rainstorm events is expected to increase in certain parts of the world. Given the fact, that rainfall serves as one of the most common triggers for landslide initiation, also an increased landside activity might be expected. Landslide occurrence is a globally spread phenomenon that clearly needs to be handled by a variety of concepts, methods, and models. However, most of the research done with respect to landslides deals with retrospect cases, thus classical back-analysis approaches do not incorporate real-time data. This is remarkable, as most destructive landslides are related to immediate events due to external triggering factors. Only few works so far addressed real-time dynamic components for spatial landslide susceptibility and hazard assessment. Here we present an approach for integrating real-time web-based rainfall data from different sources into an automated workflow. Rain gauge measurements are interpolated into a continuous raster which in return is directly utilized in a dynamic, physical-based model. We use the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis (TRIGRS) model that was modified in a way that it is automatically updated with the most recent rainfall raster for producing hourly landslide susceptibility maps on a regional scale. To account for the uncertainties involved in spatial modelling, the model was further adjusted by not only applying single values for given geotechnical parameters, but ranges instead. The values are determined randomly between user-defined thresholds defining the parameter ranges. Consequently, a slope failure probability from a larger number of model runs is computed rather than just the distributed factor of safety. This will ultimately allow a near-real time spatial landslide alert for a given region.
Efficient Probabilistic Diagnostics for Electrical Power Systems
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar
2008-01-01
We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.
NASA Astrophysics Data System (ADS)
Zhengang, Lu; Hongyang, Yu; Xi, Yang
2017-05-01
The Modular Multilevel Converter (MMC) is one of the most attractive topologies in recent years for medium or high voltage industrial applications, such as high voltage dc transmission (HVDC) and medium voltage varying speed motor drive. The wide adoption of MMCs in industry is mainly due to its flexible expandability, transformer-less configuration, common dc bus, high reliability from redundancy, and so on. But, when the sub module number of MMC is more, the test of MMC controller will cost more time and effort. Hardware in the loop test based on real time simulator will save a lot of time and money caused by the MMC test. And due to the flexible of HIL, it becomes more and more popular in the industry area. The MMC modelling method remains an important issue for the MMC HIL test. Specifically, the VSC model should realistically reflect the nonlinear device switching characteristics, switching and conduction losses, tailing current, and diode reverse recovery behaviour of a realistic converter. In this paper, an IGBT switching characteristic curve embedded half-bridge MMC modelling method is proposed. This method is based on the switching curve referring and sample circuit calculation, and it is sample for implementation. Based on the proposed method, a FPGA real time simulation is carried out with 200ns sample time. The real time simulation results show the proposed method is correct.
Forecast and Specification of Radiation Belt Electrons Based on Solar Wind Measurements
NASA Astrophysics Data System (ADS)
Li, X.; Barker, A.; Burin Des Roziers, E.
2003-12-01
Relativistic electrons in the Earth's magnetosphere are of considerable practical importance because of their effect on spacecraft and because of their radiation hazard to astronauts who perform extravehicular activity. The good correlation between solar wind velocity and MeV electron fluxes at geosynchronous orbit has long been established. We have developed a radial diffusion model, using solar wind parameters as the only input, to reproduce the variation of the MeV electrons at geosynchronous orbit. Based on this model, we have constructed a real-time model that forecasts one to two days in advance the daily averaged >2 MeV electron flux at geosynchronous orbit using real-time solar wind data from ACE. The forecasts from this model are available on the web in real time. A natural extension of our current model is to create a system for making quantitative forecasts and specifications of radiation belt electrons at different radial distances and different local times based on the solar wind conditions. The successes and obstacles associated with this extension will be discussed in this presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qifang; Wang, Fei; Hodge, Bri-Mathias
A real-time price (RTP)-based automatic demand response (ADR) strategy for PV-assisted electric vehicle (EV) Charging Station (PVCS) without vehicle to grid is proposed. The charging process is modeled as a dynamic linear program instead of the normal day-ahead and real-time regulation strategy, to capture the advantages of both global and real-time optimization. Different from conventional price forecasting algorithms, a dynamic price vector formation model is proposed based on a clustering algorithm to form an RTP vector for a particular day. A dynamic feasible energy demand region (DFEDR) model considering grid voltage profiles is designed to calculate the lower and uppermore » bounds. A deduction method is proposed to deal with the unknown information of future intervals, such as the actual stochastic arrival and departure times of EVs, which make the DFEDR model suitable for global optimization. Finally, both the comparative cases articulate the advantages of the developed methods and the validity in reducing electricity costs, mitigating peak charging demand, and improving PV self-consumption of the proposed strategy are verified through simulation scenarios.« less
Real-time monitoring of capacity loss for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Wei, Zhongbao; Bhattarai, Arjun; Zou, Changfu; Meng, Shujuan; Lim, Tuti Mariana; Skyllas-Kazacos, Maria
2018-06-01
The long-term operation of the vanadium redox flow battery is accompanied by ion diffusion across the separator and side reactions, which can lead to electrolyte imbalance and capacity loss. The accurate online monitoring of capacity loss is therefore valuable for the reliable and efficient operation of vanadium redox flow battery system. In this paper, a model-based online monitoring method is proposed to detect capacity loss in the vanadium redox flow battery in real time. A first-order equivalent circuit model is built to capture the dynamics of the vanadium redox flow battery. The model parameters are online identified from the onboard measureable signals with the recursive least squares, in seeking to keep a high modeling accuracy and robustness under a wide range of working scenarios. Based on the online adapted model, an observer is designed with the extended Kalman Filter to keep tracking both the capacity and state of charge of the battery in real time. Experiments are conducted on a lab-scale battery system. Results suggest that the online adapted model is able to simulate the battery behavior with high accuracy. The capacity loss as well as the state of charge can be estimated accurately in a real-time manner.
Real-time remote scientific model validation
NASA Technical Reports Server (NTRS)
Frainier, Richard; Groleau, Nicolas
1994-01-01
This paper describes flight results from the use of a CLIPS-based validation facility to compare analyzed data from a space life sciences (SLS) experiment to an investigator's preflight model. The comparison, performed in real-time, either confirms or refutes the model and its predictions. This result then becomes the basis for continuing or modifying the investigator's experiment protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator team are able to react to their experiment data in real time. This facility, part of a larger science advisor system called Principal Investigator in a Box, was flown on the space shuttle in October, 1993. The software system aided the conduct of a human vestibular physiology experiment and was able to outperform humans in the tasks of data integrity assurance, data analysis, and scientific model validation. Of twelve preflight hypotheses associated with investigator's model, seven were confirmed and five were rejected or compromised.
Forecasting Hourly Water Demands With Seasonal Autoregressive Models for Real-Time Application
NASA Astrophysics Data System (ADS)
Chen, Jinduan; Boccelli, Dominic L.
2018-02-01
Consumer water demands are not typically measured at temporal or spatial scales adequate to support real-time decision making, and recent approaches for estimating unobserved demands using observed hydraulic measurements are generally not capable of forecasting demands and uncertainty information. While time series modeling has shown promise for representing total system demands, these models have generally not been evaluated at spatial scales appropriate for representative real-time modeling. This study investigates the use of a double-seasonal time series model to capture daily and weekly autocorrelations to both total system demands and regional aggregated demands at a scale that would capture demand variability across a distribution system. Emphasis was placed on the ability to forecast demands and quantify uncertainties with results compared to traditional time series pattern-based demand models as well as nonseasonal and single-seasonal time series models. Additional research included the implementation of an adaptive-parameter estimation scheme to update the time series model when unobserved changes occurred in the system. For two case studies, results showed that (1) for the smaller-scale aggregated water demands, the log-transformed time series model resulted in improved forecasts, (2) the double-seasonal model outperformed other models in terms of forecasting errors, and (3) the adaptive adjustment of parameters during forecasting improved the accuracy of the generated prediction intervals. These results illustrate the capabilities of time series modeling to forecast both water demands and uncertainty estimates at spatial scales commensurate for real-time modeling applications and provide a foundation for developing a real-time integrated demand-hydraulic model.
Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Morelli, Eugene A.
2014-01-01
Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.
A bootstrap based space-time surveillance model with an application to crime occurrences
NASA Astrophysics Data System (ADS)
Kim, Youngho; O'Kelly, Morton
2008-06-01
This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.
Real time markerless motion tracking using linked kinematic chains
Luck, Jason P [Arvada, CO; Small, Daniel E [Albuquerque, NM
2007-08-14
A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.
A video-based real-time adaptive vehicle-counting system for urban roads.
Liu, Fei; Zeng, Zhiyuan; Jiang, Rong
2017-01-01
In developing nations, many expanding cities are facing challenges that result from the overwhelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic flow information is crucial for urban traffic management. The main purpose of this paper is to develop an adaptive model that can assess the real-time vehicle counts on urban roads using computer vision technologies. This paper proposes an automatic real-time background update algorithm for vehicle detection and an adaptive pattern for vehicle counting based on the virtual loop and detection line methods. In addition, a new robust detection method is introduced to monitor the real-time traffic congestion state of road section. A prototype system has been developed and installed on an urban road for testing. The results show that the system is robust, with a real-time counting accuracy exceeding 99% in most field scenarios.
A video-based real-time adaptive vehicle-counting system for urban roads
2017-01-01
In developing nations, many expanding cities are facing challenges that result from the overwhelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic flow information is crucial for urban traffic management. The main purpose of this paper is to develop an adaptive model that can assess the real-time vehicle counts on urban roads using computer vision technologies. This paper proposes an automatic real-time background update algorithm for vehicle detection and an adaptive pattern for vehicle counting based on the virtual loop and detection line methods. In addition, a new robust detection method is introduced to monitor the real-time traffic congestion state of road section. A prototype system has been developed and installed on an urban road for testing. The results show that the system is robust, with a real-time counting accuracy exceeding 99% in most field scenarios. PMID:29135984
Integration of Dynamic Models in Range Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.
Documentation Driven Development for Complex Real-Time Systems
2004-12-01
This paper presents a novel approach for development of complex real - time systems , called the documentation-driven development (DDD) approach. This... time systems . DDD will also support automated software generation based on a computational model and some relevant techniques. DDD includes two main...stakeholders to be easily involved in development processes and, therefore, significantly improve the agility of software development for complex real
Real-time scheduling using minimum search
NASA Technical Reports Server (NTRS)
Tadepalli, Prasad; Joshi, Varad
1992-01-01
In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it sppears that reasonably good schedules can be produced with a relatively shallow search.
ERIC Educational Resources Information Center
Nordmark, Staffan
1984-01-01
This report contains a theoretical model for describing the motion of a passenger car. The simulation program based on this model is used in conjunction with an advanced driving simulator and run in real time. The mathematical model is complete in the sense that the dynamics of the engine, transmission and steering system is described in some…
A Sarsa(λ)-Based Control Model for Real-Time Traffic Light Coordination
Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183
Real-Time Tropospheric Product Establishment and Accuracy Assessment in China
NASA Astrophysics Data System (ADS)
Chen, M.; Guo, J.; Wu, J.; Song, W.; Zhang, D.
2018-04-01
Tropospheric delay has always been an important issue in Global Navigation Satellite System (GNSS) processing. Empirical tropospheric delay models are difficult to simulate complex and volatile atmospheric environments, resulting in poor accuracy of the empirical model and difficulty in meeting precise positioning demand. In recent years, some scholars proposed to establish real-time tropospheric product by using real-time or near-real-time GNSS observations in a small region, and achieved some good results. This paper uses real-time observing data of 210 Chinese national GNSS reference stations to estimate the tropospheric delay, and establishes ZWD grid model in the country wide. In order to analyze the influence of tropospheric grid product on wide-area real-time PPP, this paper compares the method of taking ZWD grid product as a constraint with the model correction method. The results show that the ZWD grid product estimated based on the national reference stations can improve PPP accuracy and convergence speed. The accuracy in the north (N), east (E) and up (U) direction increase by 31.8 %,15.6 % and 38.3 %, respectively. As with the convergence speed, the accuracy of U direction experiences the most improvement.
Automated real time constant-specificity surveillance for disease outbreaks.
Wieland, Shannon C; Brownstein, John S; Berger, Bonnie; Mandl, Kenneth D
2007-06-13
For real time surveillance, detection of abnormal disease patterns is based on a difference between patterns observed, and those predicted by models of historical data. The usefulness of outbreak detection strategies depends on their specificity; the false alarm rate affects the interpretation of alarms. We evaluate the specificity of five traditional models: autoregressive, Serfling, trimmed seasonal, wavelet-based, and generalized linear. We apply each to 12 years of emergency department visits for respiratory infection syndromes at a pediatric hospital, finding that the specificity of the five models was almost always a non-constant function of the day of the week, month, and year of the study (p < 0.05). We develop an outbreak detection method, called the expectation-variance model, based on generalized additive modeling to achieve a constant specificity by accounting for not only the expected number of visits, but also the variance of the number of visits. The expectation-variance model achieves constant specificity on all three time scales, as well as earlier detection and improved sensitivity compared to traditional methods in most circumstances. Modeling the variance of visit patterns enables real-time detection with known, constant specificity at all times. With constant specificity, public health practitioners can better interpret the alarms and better evaluate the cost-effectiveness of surveillance systems.
Catelani, Tiago A; Santos, João Rodrigo; Páscoa, Ricardo N M J; Pezza, Leonardo; Pezza, Helena R; Lopes, João A
2018-03-01
This work proposes the use of near infrared (NIR) spectroscopy in diffuse reflectance mode and multivariate statistical process control (MSPC) based on principal component analysis (PCA) for real-time monitoring of the coffee roasting process. The main objective was the development of a MSPC methodology able to early detect disturbances to the roasting process resourcing to real-time acquisition of NIR spectra. A total of fifteen roasting batches were defined according to an experimental design to develop the MSPC models. This methodology was tested on a set of five batches where disturbances of different nature were imposed to simulate real faulty situations. Some of these batches were used to optimize the model while the remaining was used to test the methodology. A modelling strategy based on a time sliding window provided the best results in terms of distinguishing batches with and without disturbances, resourcing to typical MSPC charts: Hotelling's T 2 and squared predicted error statistics. A PCA model encompassing a time window of four minutes with three principal components was able to efficiently detect all disturbances assayed. NIR spectroscopy combined with the MSPC approach proved to be an adequate auxiliary tool for coffee roasters to detect faults in a conventional roasting process in real-time. Copyright © 2017 Elsevier B.V. All rights reserved.
Nishiura, Hiroshi
2011-02-16
Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance.
Comparative study of predicted and experimentally detected interplanetary shocks
NASA Astrophysics Data System (ADS)
Kartalev, M. D.; Grigorov, K. G.; Smith, Z.; Dryer, M.; Fry, C. D.; Sun, Wei; Deehr, C. S.
2002-03-01
We compare the real time space weather prediction shock arrival times at 1 AU made by the USAF/NOAA Shock Time of Arrival (STOA) and Interplanetary Shock Propagation Model (ISPM) models, and the Exploration Physics International/University of Alaska Hakamada-Akasofu-Fry Solar Wind Model (HAF-v2) to a real time analysis analysis of plasma and field ACE data. The comparison is made using an algorithm that was developed on the basis of wavelet data analysis and MHD identification procedure. The shock parameters are estimated for selected "candidate events". An appropriate automatically performing Web-based interface periodically utilizes solar wind observations made by the ACE at L1. Near real time results as well an archive of the registered interesting events are available on a specially developed web site. A number of events are considered. These studies are essential for the validation of real time space weather forecasts made from solar data.
Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future
NASA Technical Reports Server (NTRS)
Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha
2008-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.
Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert
2009-01-01
The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuejun; Tang, Qiuhong; Liu, Xingcai
Real-time monitoring and predicting drought development with several months in advance is of critical importance for drought risk adaptation and mitigation. In this paper, we present a drought monitoring and seasonal forecasting framework based on the Variable Infiltration Capacity (VIC) hydrologic model over Southwest China (SW). The satellite precipitation data are used to force VIC model for near real-time estimate of land surface hydrologic conditions. As initialized with satellite-aided monitoring, the climate model-based forecast (CFSv2_VIC) and ensemble streamflow prediction (ESP)-based forecast (ESP_VIC) are both performed and evaluated through their ability in reproducing the evolution of the 2009/2010 severe drought overmore » SW. The results show that the satellite-aided monitoring is able to provide reasonable estimate of forecast initial conditions (ICs) in a real-time manner. Both of CFSv2_VIC and ESP_VIC exhibit comparable performance against the observation-based estimates for the first month, whereas the predictive skill largely drops beyond 1-month. Compared to ESP_VIC, CFSv2_VIC shows better performance as indicated by the smaller ensemble range. This study highlights the value of this operational framework in generating near real-time ICs and giving a reliable prediction with 1-month ahead, which has great implications for drought risk assessment, preparation and relief.« less
NASA Technical Reports Server (NTRS)
Rosenstein, H.; Mcveigh, M. A.; Mollenkof, P. A.
1973-01-01
A mathematical model for a real time simulation of a tilt rotor aircraft was developed. The mathematical model is used for evaluating aircraft performance and handling qualities. The model is based on an eleven degree of freedom total force representation. The rotor is treated as a point source of forces and moments with appropriate response time lags and actuator dynamics. The aerodynamics of the wing, tail, rotors, landing gear, and fuselage are included.
NASA Astrophysics Data System (ADS)
Yang, Shuangming; Deng, Bin; Wang, Jiang; Li, Huiyan; Liu, Chen; Fietkiewicz, Chris; Loparo, Kenneth A.
2017-01-01
Real-time estimation of dynamical characteristics of thalamocortical cells, such as dynamics of ion channels and membrane potentials, is useful and essential in the study of the thalamus in Parkinsonian state. However, measuring the dynamical properties of ion channels is extremely challenging experimentally and even impossible in clinical applications. This paper presents and evaluates a real-time estimation system for thalamocortical hidden properties. For the sake of efficiency, we use a field programmable gate array for strictly hardware-based computation and algorithm optimization. In the proposed system, the FPGA-based unscented Kalman filter is implemented into a conductance-based TC neuron model. Since the complexity of TC neuron model restrains its hardware implementation in parallel structure, a cost efficient model is proposed to reduce the resource cost while retaining the relevant ionic dynamics. Experimental results demonstrate the real-time capability to estimate thalamocortical hidden properties with high precision under both normal and Parkinsonian states. While it is applied to estimate the hidden properties of the thalamus and explore the mechanism of the Parkinsonian state, the proposed method can be useful in the dynamic clamp technique of the electrophysiological experiments, the neural control engineering and brain-machine interface studies.
Real-time monitoring of a microbial electrolysis cell using an electrical equivalent circuit model.
Hussain, S A; Perrier, M; Tartakovsky, B
2018-04-01
Efforts in developing microbial electrolysis cells (MECs) resulted in several novel approaches for wastewater treatment and bioelectrosynthesis. Practical implementation of these approaches necessitates the development of an adequate system for real-time (on-line) monitoring and diagnostics of MEC performance. This study describes a simple MEC equivalent electrical circuit (EEC) model and a parameter estimation procedure, which enable such real-time monitoring. The proposed approach involves MEC voltage and current measurements during its operation with periodic power supply connection/disconnection (on/off operation) followed by parameter estimation using either numerical or analytical solution of the model. The proposed monitoring approach is demonstrated using a membraneless MEC with flow-through porous electrodes. Laboratory tests showed that changes in the influent carbon source concentration and composition significantly affect MEC total internal resistance and capacitance estimated by the model. Fast response of these EEC model parameters to changes in operating conditions enables the development of a model-based approach for real-time monitoring and fault detection.
Operational Space Weather Models: Trials, Tribulations and Rewards
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Thompson, D. C.; Zhu, L.
2009-12-01
There are many empirical, physics-based, and data assimilation models that can probably be used for space weather applications and the models cover the entire domain from the surface of the Sun to the Earth’s surface. At Utah State University we developed two physics-based data assimilation models of the terrestrial ionosphere as part of a program called Global Assimilation of Ionospheric Measurements (GAIM). One of the data assimilation models is now in operational use at the Air Force Weather Agency (AFWA) in Omaha, Nebraska. This model is a Gauss-Markov Kalman Filter (GAIM-GM) model, and it uses a physics-based model of the ionosphere and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. The physics-based model is the Ionosphere Forecast Model (IFM), which is global and covers the E-region, F-region, and topside ionosphere from 90 to 1400 km. It takes account of five ion species (NO+, O2+, N2+, O+, H+), but the main output of the model is a 3-dimensional electron density distribution at user specified times. The second data assimilation model uses a physics-based Ionosphere-Plasmasphere Model (IPM) and an ensemble Kalman filter technique as a basis for assimilating a diverse set of real-time (or near real-time) measurements. This Full Physics model (GAIM-FP) is global, covers the altitude range from 90 to 30,000 km, includes six ions (NO+, O2+, N2+, O+, H+, He+), and calculates the self-consistent ionospheric drivers (electric fields and neutral winds). The GAIM-FP model is scheduled for delivery in 2012. Both of these GAIM models assimilate bottom-side Ne profiles from a variable number of ionosondes, slant TEC from a variable number of ground GPS/TEC stations, in situ Ne from four DMSP satellites, line-of-sight UV emissions measured by satellites, and occultation data. Quality control algorithms for all of the data types are provided as an integral part of the GAIM models and these models take account of latent data (up to 3 hours). The trials, tribulations and rewards of constructing and maintaining operational data assimilation models will be discussed.
Functional Fault Modeling Conventions and Practices for Real-Time Fault Isolation
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara
2010-01-01
The purpose of this paper is to present the conventions, best practices, and processes that were established based on the prototype development of a Functional Fault Model (FFM) for a Cryogenic System that would be used for real-time Fault Isolation in a Fault Detection, Isolation, and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using a suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FFMs were created offline but would eventually be used by a real-time reasoner to isolate faults in a Cryogenic System. Through their development and review, a set of modeling conventions and best practices were established. The prototype FFM development also provided a pathfinder for future FFM development processes. This paper documents the rationale and considerations for robust FFMs that can easily be transitioned to a real-time operating environment.
Toward a comprehensive model of antisocial development: a dynamic systems approach.
Granic, Isabela; Patterson, Gerald R
2006-01-01
The purpose of this article is to develop a preliminary comprehensive model of antisocial development based on dynamic systems principles. The model is built on the foundations of behavioral research on coercion theory. First, the authors focus on the principles of multistability, feedback, and nonlinear causality to reconceptualize real-time parent-child and peer processes. Second, they model the mechanisms by which these real-time processes give rise to negative developmental outcomes, which in turn feed back to determine real-time interactions. Third, they examine mechanisms of change and stability in early- and late-onset antisocial trajectories. Finally, novel clinical designs and predictions are introduced. The authors highlight new predictions and present studies that have tested aspects of the model
CD-SEM real time bias correction using reference metrology based modeling
NASA Astrophysics Data System (ADS)
Ukraintsev, V.; Banke, W.; Zagorodnev, G.; Archie, C.; Rana, N.; Pavlovsky, V.; Smirnov, V.; Briginas, I.; Katnani, A.; Vaid, A.
2018-03-01
Accuracy of patterning impacts yield, IC performance and technology time to market. Accuracy of patterning relies on optical proximity correction (OPC) models built using CD-SEM inputs and intra die critical dimension (CD) control based on CD-SEM. Sub-nanometer measurement uncertainty (MU) of CD-SEM is required for current technologies. Reported design and process related bias variation of CD-SEM is in the range of several nanometers. Reference metrology and numerical modeling are used to correct SEM. Both methods are slow to be used for real time bias correction. We report on real time CD-SEM bias correction using empirical models based on reference metrology (RM) data. Significant amount of currently untapped information (sidewall angle, corner rounding, etc.) is obtainable from SEM waveforms. Using additional RM information provided for specific technology (design rules, materials, processes) CD extraction algorithms can be pre-built and then used in real time for accurate CD extraction from regular CD-SEM images. The art and challenge of SEM modeling is in finding robust correlation between SEM waveform features and bias of CD-SEM as well as in minimizing RM inputs needed to create accurate (within the design and process space) model. The new approach was applied to improve CD-SEM accuracy of 45 nm GATE and 32 nm MET1 OPC 1D models. In both cases MU of the state of the art CD-SEM has been improved by 3x and reduced to a nanometer level. Similar approach can be applied to 2D (end of line, contours, etc.) and 3D (sidewall angle, corner rounding, etc.) cases.
Real-time diagnostics of the reusable rocket engine using on-line system identification
NASA Technical Reports Server (NTRS)
Guo, T.-H.; Merrill, W.; Duyar, A.
1990-01-01
A model-based failure diagnosis system has been proposed for real-time diagnosis of SSME failures. Actuation, sensor, and system degradation failure modes are all considered by the proposed system. In the case of SSME actuation failures, it was shown that real-time identification can effectively be used for failure diagnosis purposes. It is a direct approach since it reduces the detection, isolation, and the estimation of the extent of the failures to the comparison of parameter values before and after the failure. As with any model-based failure detection system, the proposed approach requires a fault model that embodies the essential characteristics of the failure process. The proposed diagnosis approach has the added advantage that it can be used as part of an intelligent control system for failure accommodation purposes.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2013-01-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun
2012-08-01
The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.
2015-03-13
A. Lee. “A Programming Model for Time - Synchronized Distributed Real- Time Systems”. In: Proceedings of Real Time and Em- bedded Technology and Applications Symposium. 2007, pp. 259–268. ...From MetroII to Metronomy, Designing Contract-based Function-Architecture Co-simulation Framework for Timing Verification of Cyber-Physical Systems...the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
Real-Time MENTAT programming language and architecture
NASA Technical Reports Server (NTRS)
Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.
1989-01-01
Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.
NASA Astrophysics Data System (ADS)
Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Zhu, L.
2006-11-01
The Utah State University Gauss-Markov Kalman Filter (GMKF) was developed as part of the Global Assimilation of Ionospheric Measurements (GAIM) program. The GMKF uses a physics-based model of the ionosphere and a Gauss-Markov Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) observations. The physics-based model is the Ionospheric Forecast Model (IFM), which accounts for five ion species and covers the E region, F region, and the topside from 90 to 1400 km altitude. Within the GMKF, the IFM derived ionospheric densities constitute a background density field on which perturbations are superimposed based on the available data and their errors. In the current configuration, the GMKF assimilates slant total electron content (TEC) from a variable number of global positioning satellite (GPS) ground sites, bottomside electron density (Ne) profiles from a variable number of ionosondes, in situ Ne from four Defense Meteorological Satellite Program (DMSP) satellites, and nighttime line-of-sight ultraviolet (UV) radiances measured by satellites. To test the GMKF for real-time operations and to validate its ionospheric density specifications, we have tested the model performance for a variety of geophysical conditions. During these model runs various combination of data types and data quantities were assimilated. To simulate real-time operations, the model ran continuously and automatically and produced three-dimensional global electron density distributions in 15 min increments. In this paper we will describe the Gauss-Markov Kalman filter model and present results of our validation study, with an emphasis on comparisons with independent observations.
NASA Astrophysics Data System (ADS)
Amsallem, David; Tezaur, Radek; Farhat, Charbel
2016-12-01
A comprehensive approach for real-time computations using a database of parametric, linear, projection-based reduced-order models (ROMs) based on arbitrary underlying meshes is proposed. In the offline phase of this approach, the parameter space is sampled and linear ROMs defined by linear reduced operators are pre-computed at the sampled parameter points and stored. Then, these operators and associated ROMs are transformed into counterparts that satisfy a certain notion of consistency. In the online phase of this approach, a linear ROM is constructed in real-time at a queried but unsampled parameter point by interpolating the pre-computed linear reduced operators on matrix manifolds and therefore computing an interpolated linear ROM. The proposed overall model reduction framework is illustrated with two applications: a parametric inverse acoustic scattering problem associated with a mockup submarine, and a parametric flutter prediction problem associated with a wing-tank system. The second application is implemented on a mobile device, illustrating the capability of the proposed computational framework to operate in real-time.
Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok; ...
2016-01-01
Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok
Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less
Real-time plasma control in a dual-frequency, confined plasma etcher
NASA Astrophysics Data System (ADS)
Milosavljević, V.; Ellingboe, A. R.; Gaman, C.; Ringwood, J. V.
2008-04-01
The physics issues of developing model-based control of plasma etching are presented. A novel methodology for incorporating real-time model-based control of plasma processing systems is developed. The methodology is developed for control of two dependent variables (ion flux and chemical densities) by two independent controls (27 MHz power and O2 flow). A phenomenological physics model of the nonlinear coupling between the independent controls and the dependent variables of the plasma is presented. By using a design of experiment, the functional dependencies of the response surface are determined. In conjunction with the physical model, the dependencies are used to deconvolve the sensor signals onto the control inputs, allowing compensation of the interaction between control paths. The compensated sensor signals and compensated set-points are then used as inputs to proportional-integral-derivative controllers to adjust radio frequency power and oxygen flow to yield the desired ion flux and chemical density. To illustrate the methodology, model-based real-time control is realized in a commercial semiconductor dielectric etch chamber. The two radio frequency symmetric diode operates with typical commercial fluorocarbon feed-gas mixtures (Ar/O2/C4F8). Key parameters for dielectric etching are known to include ion flux to the surface and surface flux of oxygen containing species. Control is demonstrated using diagnostics of electrode-surface ion current, and chemical densities of O, O2, and CO measured by optical emission spectrometry and/or mass spectrometry. Using our model-based real-time control, the set-point tracking accuracy to changes in chemical species density and ion flux is enhanced.
Real time wind farm emulation using SimWindFarm toolbox
NASA Astrophysics Data System (ADS)
Topor, Marcel
2016-06-01
This paper presents a wind farm emulation solution using an open source Matlab/Simulink toolbox and the National Instruments cRIO platform. This work is based on the Aeolus SimWindFarm (SWF) toolbox models developed at Aalborg university, Denmark. Using the Matlab Simulink models developed in SWF, the modeling code can be exported to a real time model using the NI Veristand model framework and the resulting code is integrated as a hardware in the loop control on the NI 9068 platform.
NASA Astrophysics Data System (ADS)
Liu, Teng; Zhang, Baocheng; Yuan, Yunbin; Li, Min
2018-01-01
Precise Point Positioning (PPP) is an absolute positioning technology mainly used in post data processing. With the continuously increasing demand for real-time high-precision applications in positioning, timing, retrieval of atmospheric parameters, etc., Real-Time PPP (RTPPP) and its applications have drawn more and more research attention in recent years. This study focuses on the models, algorithms and ionospheric applications of RTPPP on the basis of raw observations, in which high-precision slant ionospheric delays are estimated among others in real time. For this purpose, a robust processing strategy for multi-station RTPPP with raw observations has been proposed and realized, in which real-time data streams and State-Space-Representative (SSR) satellite orbit and clock corrections are used. With the RTPPP-derived slant ionospheric delays from a regional network, a real-time regional ionospheric Vertical Total Electron Content (VTEC) modeling method is proposed based on Adjusted Spherical Harmonic Functions and a Moving-Window Filter. SSR satellite orbit and clock corrections from different IGS analysis centers are evaluated. Ten globally distributed real-time stations are used to evaluate the positioning performances of the proposed RTPPP algorithms in both static and kinematic modes. RMS values of positioning errors in static/kinematic mode are 5.2/15.5, 4.7/17.4 and 12.8/46.6 mm, for north, east and up components, respectively. Real-time slant ionospheric delays from RTPPP are compared with those from the traditional Carrier-to-Code Leveling (CCL) method, in terms of function model, formal precision and between-receiver differences of short baseline. Results show that slant ionospheric delays from RTPPP are more precise and have a much better convergence performance than those from the CCL method in real-time processing. 30 real-time stations from the Asia-Pacific Reference Frame network are used to model the ionospheric VTECs over Australia in real time, with slant ionospheric delays from both RTPPP and CCL methods for comparison. RMS of the VTEC differences between RTPPP/CCL method and CODE final products is 0.91/1.09 TECU, and RMS of the VTEC differences between RTPPP and CCL methods is 0.67 TECU. Slant Total Electron Contents retrieved from different VTEC models are also validated with epoch-differenced Geometry-Free combinations of dual-frequency phase observations, and mean RMS values are 2.14, 2.33 and 2.07 TECU for RTPPP method, CCL method and CODE final products, respectively. This shows the superiority of RTPPP-derived slant ionospheric delays in real-time ionospheric VTEC modeling.
NASA Astrophysics Data System (ADS)
Huang, Y.; Jiang, J.; Stacy, M.; Ricciuto, D. M.; Hanson, P. J.; Sundi, N.; Luo, Y.
2016-12-01
Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our Ecological Platform for Assimilation of Data (EcoPAD) facilitates the integration of current best knowledge from models, manipulative experimentations, observations and other modern techniques and provides both near real-time and long-term forecasting of ecosystem dynamics. As a case study, the web-based EcoPAD platform synchronizes real- or near real-time field measurements from the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment experiment, assimilates multiple data streams into process based models, enhances timely feedback between modelers and experimenters, and ultimately improves ecosystem forecasting and makes best utilization of current knowledge. In addition to enable users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, and (v) conduct ecological forecasting, EcoPAD-SPRUCE automated the workflow from real-time data acquisition, model simulation to result visualization. EcoPAD-SPRUCE promotes seamless feedback between modelers and experimenters, hand in hand to make better forecasting of future changes. The framework of EcoPAD-SPRUCE (with flexible API, Application Programming Interface) is easily portable and will benefit scientific communities, policy makers as well as the general public.
An AD100 implementation of a real-time STOVL aircraft propulsion system
NASA Technical Reports Server (NTRS)
Ouzts, Peter J.; Drummond, Colin K.
1990-01-01
A real-time dynamic model of the propulsion system for a Short Take-Off and Vertical Landing (STOVL) aircraft was developed for the AD100 simulation environment. The dynamic model was adapted from a FORTRAN based simulation using the dynamic programming capabilities of the AD100 ADSIM simulation language. The dynamic model includes an aerothermal representation of a turbofan jet engine, actuator and sensor models, and a multivariable control system. The AD100 model was tested for agreement with the FORTRAN model and real-time execution performance. The propulsion system model was also linked to an airframe dynamic model to provide an overall STOVL aircraft simulation for the purposes of integrated flight and propulsion control studies. An evaluation of the AD100 system for use as an aircraft simulation environment is included.
BEM-based simulation of lung respiratory deformation for CT-guided biopsy.
Chen, Dong; Chen, Weisheng; Huang, Lipeng; Feng, Xuegang; Peters, Terry; Gu, Lixu
2017-09-01
Accurate and real-time prediction of the lung and lung tumor deformation during respiration are important considerations when performing a peripheral biopsy procedure. However, most existing work focused on offline whole lung simulation using 4D image data, which is not applicable in real-time image-guided biopsy with limited image resources. In this paper, we propose a patient-specific biomechanical model based on the boundary element method (BEM) computed from CT images to estimate the respiration motion of local target lesion region, vessel tree and lung surface for the real-time biopsy guidance. This approach applies pre-computation of various BEM parameters to facilitate the requirement for real-time lung motion simulation. The resulting boundary condition at end inspiratory phase is obtained using a nonparametric discrete registration with convex optimization, and the simulation of the internal tissue is achieved by applying a tetrahedron-based interpolation method depend on expert-determined feature points on the vessel tree model. A reference needle is tracked to update the simulated lung motion during biopsy guidance. We evaluate the model by applying it for respiratory motion estimations of ten patients. The average symmetric surface distance (ASSD) and the mean target registration error (TRE) are employed to evaluate the proposed model. Results reveal that it is possible to predict the lung motion with ASSD of [Formula: see text] mm and a mean TRE of [Formula: see text] mm at largest over the entire respiratory cycle. In the CT-/electromagnetic-guided biopsy experiment, the whole process was assisted by our BEM model and final puncture errors in two studies were 3.1 and 2.0 mm, respectively. The experiment results reveal that both the accuracy of simulation and real-time performance meet the demands of clinical biopsy guidance.
2011-01-01
Background Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. Methods A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. Results The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Conclusions Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance. PMID:21324153
Real-time stylistic prediction for whole-body human motions.
Matsubara, Takamitsu; Hyon, Sang-Ho; Morimoto, Jun
2012-01-01
The ability to predict human motion is crucial in several contexts such as human tracking by computer vision and the synthesis of human-like computer graphics. Previous work has focused on off-line processes with well-segmented data; however, many applications such as robotics require real-time control with efficient computation. In this paper, we propose a novel approach called real-time stylistic prediction for whole-body human motions to satisfy these requirements. This approach uses a novel generative model to represent a whole-body human motion including rhythmic motion (e.g., walking) and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase) dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles in humans. A real-time adaptation algorithm was derived to estimate both state variables and style parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple modification, the algorithm allows real-time adaptation even from incomplete (partial) observations. Based on the estimated state and style, a future motion sequence can be accurately predicted. In our implementation, it takes less than 15 ms for both adaptation and prediction at each observation. Our real-time stylistic prediction was evaluated for human walking, running, and jumping behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.
An automatic detection method for the boiler pipe header based on real-time image acquisition
NASA Astrophysics Data System (ADS)
Long, Yi; Liu, YunLong; Qin, Yongliang; Yang, XiangWei; Li, DengKe; Shen, DingJie
2017-06-01
Generally, an endoscope is used to test the inner part of the thermal power plants boiler pipe header. However, since the endoscope hose manual operation, the length and angle of the inserted probe cannot be controlled. Additionally, it has a big blind spot observation subject to the length of the endoscope wire. To solve these problems, an automatic detection method for the boiler pipe header based on real-time image acquisition and simulation comparison techniques was proposed. The magnetic crawler with permanent magnet wheel could carry the real-time image acquisition device to complete the crawling work and collect the real-time scene image. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3-D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.
Real-time traffic sign recognition based on a general purpose GPU and deep-learning.
Lim, Kwangyong; Hong, Yongwon; Choi, Yeongwoo; Byun, Hyeran
2017-01-01
We present a General Purpose Graphics Processing Unit (GPGPU) based real-time traffic sign detection and recognition method that is robust against illumination changes. There have been many approaches to traffic sign recognition in various research fields; however, previous approaches faced several limitations when under low illumination or wide variance of light conditions. To overcome these drawbacks and improve processing speeds, we propose a method that 1) is robust against illumination changes, 2) uses GPGPU-based real-time traffic sign detection, and 3) performs region detecting and recognition using a hierarchical model. This method produces stable results in low illumination environments. Both detection and hierarchical recognition are performed in real-time, and the proposed method achieves 0.97 F1-score on our collective dataset, which uses the Vienna convention traffic rules (Germany and South Korea).
Abdelnour, A. Farras; Huppert, Theodore
2009-01-01
Near-infrared spectroscopy is a non-invasive neuroimaging method which uses light to measure changes in cerebral blood oxygenation associated with brain activity. In this work, we demonstrate the ability to record and analyze images of brain activity in real-time using a 16-channel continuous wave optical NIRS system. We propose a novel real-time analysis framework using an adaptive Kalman filter and a state–space model based on a canonical general linear model of brain activity. We show that our adaptive model has the ability to estimate single-trial brain activity events as we apply this method to track and classify experimental data acquired during an alternating bilateral self-paced finger tapping task. PMID:19457389
Real-time physics-based 3D biped character animation using an inverted pendulum model.
Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee
2010-01-01
We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.
Learning and Teaching Mathematics through Real Life Models
ERIC Educational Resources Information Center
Takaci, Djurdjica; Budinski, Natalija
2011-01-01
This paper proposes modelling based learning as a tool for learning and teaching mathematics in high school. We report on an example of modelling real world problems in two high schools in Serbia where students were introduced for the first time to the basic concepts of modelling. Student use of computers and educational software, GeoGebra, was…
Logic Model Checking of Time-Periodic Real-Time Systems
NASA Technical Reports Server (NTRS)
Florian, Mihai; Gamble, Ed; Holzmann, Gerard
2012-01-01
In this paper we report on the work we performed to extend the logic model checker SPIN with built-in support for the verification of periodic, real-time embedded software systems, as commonly used in aircraft, automobiles, and spacecraft. We first extended the SPIN verification algorithms to model priority based scheduling policies. Next, we added a library to support the modeling of periodic tasks. This library was used in a recent application of the SPIN model checker to verify the engine control software of an automobile, to study the feasibility of software triggers for unintended acceleration events.
NASA Astrophysics Data System (ADS)
Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong
2016-11-01
In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.
A study on the real-time reliability of on-board equipment of train control system
NASA Astrophysics Data System (ADS)
Zhang, Yong; Li, Shiwei
2018-05-01
Real-time reliability evaluation is conducive to establishing a condition based maintenance system for the purpose of guaranteeing continuous train operation. According to the inherent characteristics of the on-board equipment, the connotation of reliability evaluation of on-board equipment is defined and the evaluation index of real-time reliability is provided in this paper. From the perspective of methodology and practical application, the real-time reliability of the on-board equipment is discussed in detail, and the method of evaluating the realtime reliability of on-board equipment at component level based on Hidden Markov Model (HMM) is proposed. In this method the performance degradation data is used directly to realize the accurate perception of the hidden state transition process of on-board equipment, which can achieve a better description of the real-time reliability of the equipment.
An SSME High Pressure Oxidizer Turbopump diagnostic system using G2 real-time expert system
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
1991-01-01
An expert system which diagnoses various seal leakage faults in the High Pressure Oxidizer Turbopump of the SSME was developed using G2 real-time expert system. Three major functions of the software were implemented: model-based data generation, real-time expert system reasoning, and real-time input/output communication. This system is proposed as one module of a complete diagnostic system for the SSME. Diagnosis of a fault is defined as the determination of its type, severity, and likelihood. Since fault diagnosis is often accomplished through the use of heuristic human knowledge, an expert system based approach has been adopted as a paradigm to develop this diagnostic system. To implement this approach, a software shell which can be easily programmed to emulate the human decision process, the G2 Real-Time Expert System, was selected. Lessons learned from this implementation are discussed.
An SSME high pressure oxidizer turbopump diagnostic system using G2(TM) real-time expert system
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
1991-01-01
An expert system which diagnoses various seal leakage faults in the High Pressure Oxidizer Turbopump of the SSME was developed using G2(TM) real-time expert system. Three major functions of the software were implemented: model-based data generation, real-time expert system reasoning, and real-time input/output communication. This system is proposed as one module of a complete diagnostic system for Space Shuttle Main Engine. Diagnosis of a fault is defined as the determination of its type, severity, and likelihood. Since fault diagnosis is often accomplished through the use of heuristic human knowledge, an expert system based approach was adopted as a paradigm to develop this diagnostic system. To implement this approach, a software shell which can be easily programmed to emulate the human decision process, the G2 Real-Time Expert System, was selected. Lessons learned from this implementation are discussed.
Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops.
Zhang, Cunji; Yao, Xifan; Zhang, Jianming
2015-12-03
Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi(®) Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops.
Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops
Zhang, Cunji; Yao, Xifan; Zhang, Jianming
2015-01-01
Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi® Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops. PMID:26633418
Key technology research of HILS based on real-time operating system
NASA Astrophysics Data System (ADS)
Wang, Fankai; Lu, Huiming; Liu, Che
2018-03-01
In order to solve the problems that the long development cycle of traditional simulation and digital simulation doesn't have the characteristics of real time, this paper designed a HILS(Hardware In the Loop Simulation) system based on the real-time operating platform xPC. This system solved the communication problems between HMI and Simulink models through the MATLAB engine interface, and realized the functions of system setting, offline simulation, model compiling and downloading, etc. Using xPC application interface and integrating the TeeChart ActiveX chart component to realize the monitoring function of real-time target application; Each functional block in the system is encapsulated in the form of DLL, and the data interaction between modules was realized by MySQL database technology. When the HILS system runs, search the address of the online xPC target by means of the Ping command, to establish the Tcp/IP communication between the two machines. The technical effectiveness of the developed system is verified through the typical power station control system.
Real-Time Model and Simulation Architecture for Half- and Full-Bridge Modular Multilevel Converters
NASA Astrophysics Data System (ADS)
Ashourloo, Mojtaba
This work presents an equivalent model and simulation architecture for real-time electromagnetic transient analysis of either half-bridge or full-bridge modular multilevel converter (MMC) with 400 sub-modules (SMs) per arm. The proposed CPU/FPGA-based architecture is optimized for the parallel implementation of the presented MMC model on the FPGA and is beneficiary of a high-throughput floating-point computational engine. The developed real-time simulation architecture is capable of simulating MMCs with 400 SMs per arm at 825 nanoseconds. To address the difficulties of the sorting process implementation, a modified Odd-Even Bubble sorting is presented in this work. The comparison of the results under various test scenarios reveals that the proposed real-time simulator is representing the system responses in the same way of its corresponding off-line counterpart obtained from the PSCAD/EMTDC program.
Real-time modeling of heat distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, Hendrik F.; Li, Hongfei; Yarlanki, Srinivas
Techniques for real-time modeling temperature distributions based on streaming sensor data are provided. In one aspect, a method for creating a three-dimensional temperature distribution model for a room having a floor and a ceiling is provided. The method includes the following steps. A ceiling temperature distribution in the room is determined. A floor temperature distribution in the room is determined. An interpolation between the ceiling temperature distribution and the floor temperature distribution is used to obtain the three-dimensional temperature distribution model for the room.
NASA Astrophysics Data System (ADS)
da Silva, Roberto; Vainstein, Mendeli H.; Gonçalves, Sebastián; Paula, Felipe S. F.
2013-08-01
Statistics of soccer tournament scores based on the double round robin system of several countries are studied. Exploring the dynamics of team scoring during tournament seasons from recent years we find evidences of superdiffusion. A mean-field analysis results in a drift velocity equal to that of real data but in a different diffusion coefficient. Along with the analysis of real data we present the results of simulations of soccer tournaments obtained by an agent-based model which successfully describes the final scoring distribution [da Silva , Comput. Phys. Commun.CPHCBZ0010-465510.1016/j.cpc.2012.10.030 184, 661 (2013)]. Such model yields random walks of scores over time with the same anomalous diffusion as observed in real data.
NASA Astrophysics Data System (ADS)
Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Raptis, Panagiotis I.; Keramitsoglou, Iphigenia; Kiranoudis, Chris; Bais, Alkiviadis F.
2018-02-01
This study focuses on the assessment of surface solar radiation (SSR) based on operational neural network (NN) and multi-regression function (MRF) modelling techniques that produce instantaneous (in less than 1 min) outputs. Using real-time cloud and aerosol optical properties inputs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite and the Copernicus Atmosphere Monitoring Service (CAMS), respectively, these models are capable of calculating SSR in high resolution (1 nm, 0.05°, 15 min) that can be used for spectrally integrated irradiance maps, databases and various applications related to energy exploitation. The real-time models are validated against ground-based measurements of the Baseline Surface Radiation Network (BSRN) in a temporal range varying from 15 min to monthly means, while a sensitivity analysis of the cloud and aerosol effects on SSR is performed to ensure reliability under different sky and climatological conditions. The simulated outputs, compared to their common training dataset created by the radiative transfer model (RTM) libRadtran, showed median error values in the range -15 to 15 % for the NN that produces spectral irradiances (NNS), 5-6 % underestimation for the integrated NN and close to zero errors for the MRF technique. The verification against BSRN revealed that the real-time calculation uncertainty ranges from -100 to 40 and -20 to 20 W m-2, for the 15 min and monthly mean global horizontal irradiance (GHI) averages, respectively, while the accuracy of the input parameters, in terms of aerosol and cloud optical thickness (AOD and COT), and their impact on GHI, was of the order of 10 % as compared to the ground-based measurements. The proposed system aims to be utilized through studies and real-time applications which are related to solar energy production planning and use.
Vision-Based Real-Time Traversable Region Detection for Mobile Robot in the Outdoors.
Deng, Fucheng; Zhu, Xiaorui; He, Chao
2017-09-13
Environment perception is essential for autonomous mobile robots in human-robot coexisting outdoor environments. One of the important tasks for such intelligent robots is to autonomously detect the traversable region in an unstructured 3D real world. The main drawback of most existing methods is that of high computational complexity. Hence, this paper proposes a binocular vision-based, real-time solution for detecting traversable region in the outdoors. In the proposed method, an appearance model based on multivariate Gaussian is quickly constructed from a sample region in the left image adaptively determined by the vanishing point and dominant borders. Then, a fast, self-supervised segmentation scheme is proposed to classify the traversable and non-traversable regions. The proposed method is evaluated on public datasets as well as a real mobile robot. Implementation on the mobile robot has shown its ability in the real-time navigation applications.
A Real-Time Interactive System for Facial Makeup of Peking Opera
NASA Astrophysics Data System (ADS)
Cai, Feilong; Yu, Jinhui
In this paper we present a real-time interactive system for making facial makeup of Peking Opera. First, we analyze the process of drawing facial makeup and characteristics of the patterns used in it, and then construct a SVG pattern bank based on local features like eye, nose, mouth, etc. Next, we pick up some SVG patterns from the pattern bank and composed them to make a new facial makeup. We offer a vector-based free form deformation (FFD) tool to edit patterns and, based on editing, our system creates automatically texture maps for a template head model. Finally, the facial makeup is rendered on the 3D head model in real time. Our system offers flexibility in designing and synthesizing various 3D facial makeup. Potential applications of the system include decoration design, digital museum exhibition and education of Peking Opera.
Adaptive Proactive Inhibitory Control for Embedded Real-Time Applications
Yang, Shufan; McGinnity, T. Martin; Wong-Lin, KongFatt
2012-01-01
Psychologists have studied the inhibitory control of voluntary movement for many years. In particular, the countermanding of an impending action has been extensively studied. In this work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type model based on current findings in animal electrophysiological and human psychophysical experiments. We then implement this model on a field-programmable gate array (FPGA) prototyping system, using dedicated real-time hardware circuitry. Our results show that the FPGA-based implementation can run in real-time while achieving behavioral performance qualitatively suggestive of the animal experiments. Implementing such biological inhibitory control in an embedded device can lead to the development of control systems that may be used in more realistic cognitive robotics or in neural prosthetic systems aiding human movement control. PMID:22701420
Real-time modeling of primitive environments through wavelet sensors and Hebbian learning
NASA Astrophysics Data System (ADS)
Vaccaro, James M.; Yaworsky, Paul S.
1999-06-01
Modeling the world through sensory input necessarily provides a unique perspective for the observer. Given a limited perspective, objects and events cannot always be encoded precisely but must involve crude, quick approximations to deal with sensory information in a real- time manner. As an example, when avoiding an oncoming car, a pedestrian needs to identify the fact that a car is approaching before ascertaining the model or color of the vehicle. In our methodology, we use wavelet-based sensors with self-organized learning to encode basic sensory information in real-time. The wavelet-based sensors provide necessary transformations while a rank-based Hebbian learning scheme encodes a self-organized environment through translation, scale and orientation invariant sensors. Such a self-organized environment is made possible by combining wavelet sets which are orthonormal, log-scale with linear orientation and have automatically generated membership functions. In earlier work we used Gabor wavelet filters, rank-based Hebbian learning and an exponential modulation function to encode textural information from images. Many different types of modulation are possible, but based on biological findings the exponential modulation function provided a good approximation of first spike coding of `integrate and fire' neurons. These types of Hebbian encoding schemes (e.g., exponential modulation, etc.) are useful for quick response and learning, provide several advantages over contemporary neural network learning approaches, and have been found to quantize data nonlinearly. By combining wavelets with Hebbian learning we can provide a real-time front-end for modeling an intelligent process, such as the autonomous control of agents in a simulated environment.
NASA Astrophysics Data System (ADS)
Stockert, Sven; Wehr, Matthias; Lohmar, Johannes; Abel, Dirk; Hirt, Gerhard
2017-10-01
In the electrical and medical industries the trend towards further miniaturization of devices is accompanied by the demand for smaller manufacturing tolerances. Such industries use a plentitude of small and narrow cold rolled metal strips with high thickness accuracy. Conventional rolling mills can hardly achieve further improvement of these tolerances. However, a model-based controller in combination with an additional piezoelectric actuator for high dynamic roll adjustment is expected to enable the production of the required metal strips with a thickness tolerance of +/-1 µm. The model-based controller has to be based on a rolling theory which can describe the rolling process very accurately. Additionally, the required computing time has to be low in order to predict the rolling process in real-time. In this work, four rolling theories from literature with different levels of complexity are tested for their suitability for the predictive controller. Rolling theories of von Kármán, Siebel, Bland & Ford and Alexander are implemented in Matlab and afterwards transferred to the real-time computer used for the controller. The prediction accuracy of these theories is validated using rolling trials with different thickness reduction and a comparison to the calculated results. Furthermore, the required computing time on the real-time computer is measured. Adequate results according the prediction accuracy can be achieved with the rolling theories developed by Bland & Ford and Alexander. A comparison of the computing time of those two theories reveals that Alexander's theory exceeds the sample rate of 1 kHz of the real-time computer.
Rapid Quantitative Detection of Lactobacillus sakei in Meat and Fermented Sausages by Real-Time PCR
Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa
2006-01-01
A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages. PMID:16957227
Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR.
Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa
2006-09-01
A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages.
NASA Astrophysics Data System (ADS)
Salloum, Ahmed
Constraint relaxation by definition means that certain security, operational, or financial constraints are allowed to be violated in the energy market model for a predetermined penalty price. System operators utilize this mechanism in an effort to impose a price-cap on shadow prices throughout the market. In addition, constraint relaxations can serve as corrective approximations that help in reducing the occurrence of infeasible or extreme solutions in the day-ahead markets. This work aims to capture the impact constraint relaxations have on system operational security. Moreover, this analysis also provides a better understanding of the correlation between DC market models and AC real-time systems and analyzes how relaxations in market models propagate to real-time systems. This information can be used not only to assess the criticality of constraint relaxations, but also as a basis for determining penalty prices more accurately. Constraint relaxations practice was replicated in this work using a test case and a real-life large-scale system, while capturing both energy market aspects and AC real-time system performance. System performance investigation included static and dynamic security analysis for base-case and post-contingency operating conditions. PJM peak hour loads were dynamically modeled in order to capture delayed voltage recovery and sustained depressed voltage profiles as a result of reactive power deficiency caused by constraint relaxations. Moreover, impacts of constraint relaxations on operational system security were investigated when risk based penalty prices are used. Transmission lines in the PJM system were categorized according to their risk index and each category was as-signed a different penalty price accordingly in order to avoid real-time overloads on high risk lines. This work also extends the investigation of constraint relaxations to post-contingency relaxations, where emergency limits are allowed to be relaxed in energy market models. Various scenarios were investigated to capture and compare between the impacts of base-case and post-contingency relaxations on real-time system performance, including the presence of both relaxations simultaneously. The effect of penalty prices on the number and magnitude of relaxations was investigated as well.
Jensen, Morten Hasselstrøm; Christensen, Toke Folke; Tarnow, Lise; Seto, Edmund; Dencker Johansen, Mette; Hejlesen, Ole Kristian
2013-07-01
Hypoglycemia is a potentially fatal condition. Continuous glucose monitoring (CGM) has the potential to detect hypoglycemia in real time and thereby reduce time in hypoglycemia and avoid any further decline in blood glucose level. However, CGM is inaccurate and shows a substantial number of cases in which the hypoglycemic event is not detected by the CGM. The aim of this study was to develop a pattern classification model to optimize real-time hypoglycemia detection. Features such as time since last insulin injection and linear regression, kurtosis, and skewness of the CGM signal in different time intervals were extracted from data of 10 male subjects experiencing 17 insulin-induced hypoglycemic events in an experimental setting. Nondiscriminative features were eliminated with SEPCOR and forward selection. The feature combinations were used in a Support Vector Machine model and the performance assessed by sample-based sensitivity and specificity and event-based sensitivity and number of false-positives. The best model was composed by using seven features and was able to detect 17 of 17 hypoglycemic events with one false-positive compared with 12 of 17 hypoglycemic events with zero false-positives for the CGM alone. Lead-time was 14 min and 0 min for the model and the CGM alone, respectively. This optimized real-time hypoglycemia detection provides a unique approach for the diabetes patient to reduce time in hypoglycemia and learn about patterns in glucose excursions. Although these results are promising, the model needs to be validated on CGM data from patients with spontaneous hypoglycemic events.
Analytical model for real time, noninvasive estimation of blood glucose level.
Adhyapak, Anoop; Sidley, Matthew; Venkataraman, Jayanti
2014-01-01
The paper presents an analytical model to estimate blood glucose level from measurements made non-invasively and in real time by an antenna strapped to a patient's wrist. Some promising success has been shown by the RIT ETA Lab research group that an antenna's resonant frequency can track, in real time, changes in glucose concentration. Based on an in-vitro study of blood samples of diabetic patients, the paper presents a modified Cole-Cole model that incorporates a factor to represent the change in glucose level. A calibration technique using the input impedance technique is discussed and the results show a good estimation as compared to the glucose meter readings. An alternate calibration methodology has been developed that is based on the shift in the antenna resonant frequency using an equivalent circuit model containing a shunt capacitor to represent the shift in resonant frequency with changing glucose levels. Work under progress is the optimization of the technique with a larger sample of patients.
Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models.
Fortmeier, Dirk; Wilms, Matthias; Mastmeyer, Andre; Handels, Heinz
2015-01-01
This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion. Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-08-18
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-01-01
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node’s role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network’s lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively. PMID:26295238
Real-time logic modelling on SpaceWire
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Ma, Yunpeng; Fei, Haidong; Wang, Xingyou
2017-04-01
A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. However, it cannot meet the deterministic requirement for safety/time critical application in spacecraft, where the delay of real-time (RT) message streams must be guaranteed. Therefore, SpaceWire-D is developed that provides deterministic delivery over a SpaceWire network. Formal analysis and verification of real-time systems is critical to their development and safe implementation, and is a prerequisite for obtaining their safety certification. Failure to meet specified timing constraints such as deadlines in hard real-time systems may lead to catastrophic results. In this paper, a formal verification method, Real-Time Logic (RTL), has been proposed to specify and verify timing properties of SpaceWire-D network. Based on the principal of SpaceWire-D protocol, we firstly analyze the timing properties of fundamental transactions, such as RMAP WRITE, and RMAP READ. After that, the RMAP WRITE transaction structure is modeled in Real-Time Logic (RTL) and Presburger Arithmetic representations. And then, the associated constraint graph and safety analysis is provided. Finally, it is suggested that RTL method can be useful for the protocol evaluation and provision of recommendation for further protocol evolutions.
D Model Visualization Enhancements in Real-Time Game Engines
NASA Astrophysics Data System (ADS)
Merlo, A.; Sánchez Belenguer, C.; Vendrell Vidal, E.; Fantini, F.; Aliperta, A.
2013-02-01
This paper describes two procedures used to disseminate tangible cultural heritage through real-time 3D simulations providing accurate-scientific representations. The main idea is to create simple geometries (with low-poly count) and apply two different texture maps to them: a normal map and a displacement map. There are two ways to achieve models that fit with normal or displacement maps: with the former (normal maps), the number of polygons in the reality-based model may be dramatically reduced by decimation algorithms and then normals may be calculated by rendering them to texture solutions (baking). With the latter, a LOD model is needed; its topology has to be quad-dominant for it to be converted to a good quality subdivision surface (with consistent tangency and curvature all over). The subdivision surface is constructed using methodologies for the construction of assets borrowed from character animation: these techniques have been recently implemented in many entertainment applications known as "retopology". The normal map is used as usual, in order to shade the surface of the model in a realistic way. The displacement map is used to finish, in real-time, the flat faces of the object, by adding the geometric detail missing in the low-poly models. The accuracy of the resulting geometry is progressively refined based on the distance from the viewing point, so the result is like a continuous level of detail, the only difference being that there is no need to create different 3D models for one and the same object. All geometric detail is calculated in real-time according to the displacement map. This approach can be used in Unity, a real-time 3D engine originally designed for developing computer games. It provides a powerful rendering engine, fully integrated with a complete set of intuitive tools and rapid workflows that allow users to easily create interactive 3D contents. With the release of Unity 4.0, new rendering features have been added, including DirectX 11 support. Real-time tessellation is a technique that can be applied by using such technology. Since the displacement and the resulting geometry are calculated by the GPU, the time-based execution cost of this technique is very low.
Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.
Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis
2015-01-01
Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration. © 2015 American Institute of Chemical Engineers.
Virtual sensor models for real-time applications
NASA Astrophysics Data System (ADS)
Hirsenkorn, Nils; Hanke, Timo; Rauch, Andreas; Dehlink, Bernhard; Rasshofer, Ralph; Biebl, Erwin
2016-09-01
Increased complexity and severity of future driver assistance systems demand extensive testing and validation. As supplement to road tests, driving simulations offer various benefits. For driver assistance functions the perception of the sensors is crucial. Therefore, sensors also have to be modeled. In this contribution, a statistical data-driven sensor-model, is described. The state-space based method is capable of modeling various types behavior. In this contribution, the modeling of the position estimation of an automotive radar system, including autocorrelations, is presented. For rendering real-time capability, an efficient implementation is presented.
Real-time traffic sign recognition based on a general purpose GPU and deep-learning
Hong, Yongwon; Choi, Yeongwoo; Byun, Hyeran
2017-01-01
We present a General Purpose Graphics Processing Unit (GPGPU) based real-time traffic sign detection and recognition method that is robust against illumination changes. There have been many approaches to traffic sign recognition in various research fields; however, previous approaches faced several limitations when under low illumination or wide variance of light conditions. To overcome these drawbacks and improve processing speeds, we propose a method that 1) is robust against illumination changes, 2) uses GPGPU-based real-time traffic sign detection, and 3) performs region detecting and recognition using a hierarchical model. This method produces stable results in low illumination environments. Both detection and hierarchical recognition are performed in real-time, and the proposed method achieves 0.97 F1-score on our collective dataset, which uses the Vienna convention traffic rules (Germany and South Korea). PMID:28264011
NASA Technical Reports Server (NTRS)
Goldstein, David
1991-01-01
Extensions to an architecture for real-time, distributed (parallel) knowledge-based systems called the Parallel Real-time Artificial Intelligence System (PRAIS) are discussed. PRAIS strives for transparently parallelizing production (rule-based) systems, even under real-time constraints. PRAIS accomplished these goals (presented at the first annual C Language Integrated Production System (CLIPS) conference) by incorporating a dynamic task scheduler, operating system extensions for fact handling, and message-passing among multiple copies of CLIPS executing on a virtual blackboard. This distributed knowledge-based system tool uses the portability of CLIPS and common message-passing protocols to operate over a heterogeneous network of processors. Results using the original PRAIS architecture over a network of Sun 3's, Sun 4's and VAX's are presented. Mechanisms using the producer-consumer model to extend the architecture for fault-tolerance and distributed truth maintenance initiation are also discussed.
NASA Astrophysics Data System (ADS)
Zheng, Fu; Lou, Yidong; Gu, Shengfeng; Gong, Xiaopeng; Shi, Chuang
2017-10-01
During past decades, precise point positioning (PPP) has been proven to be a well-known positioning technique for centimeter or decimeter level accuracy. However, it needs long convergence time to get high-accuracy positioning, which limits the prospects of PPP, especially in real-time applications. It is expected that the PPP convergence time can be reduced by introducing high-quality external information, such as ionospheric or tropospheric corrections. In this study, several methods for tropospheric wet delays modeling over wide areas are investigated. A new, improved model is developed, applicable in real-time applications in China. Based on the GPT2w model, a modified parameter of zenith wet delay exponential decay wrt. height is introduced in the modeling of the real-time tropospheric delay. The accuracy of this tropospheric model and GPT2w model in different seasons is evaluated with cross-validation, the root mean square of the zenith troposphere delay (ZTD) is 1.2 and 3.6 cm on average, respectively. On the other hand, this new model proves to be better than the tropospheric modeling based on water-vapor scale height; it can accurately express tropospheric delays up to 10 km altitude, which potentially has benefits in many real-time applications. With the high-accuracy ZTD model, the augmented PPP convergence performance for BeiDou navigation satellite system (BDS) and GPS is evaluated. It shows that the contribution of the high-quality ZTD model on PPP convergence performance has relation with the constellation geometry. As BDS constellation geometry is poorer than GPS, the improvement for BDS PPP is more significant than that for GPS PPP. Compared with standard real-time PPP, the convergence time is reduced by 2-7 and 20-50% for the augmented BDS PPP, while GPS PPP only improves about 6 and 18% (on average), in horizontal and vertical directions, respectively. When GPS and BDS are combined, the geometry is greatly improved, which is good enough to get a reliable PPP solution, the augmentation PPP improves insignificantly comparing with standard PPP.
Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania
2015-04-15
In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.
MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.
Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram
2015-11-01
We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.
Pre-Results of the Real-Time ODIN Validation on MARTe Using Plasma Linearized Model in FTU Tokamak
NASA Astrophysics Data System (ADS)
Sadeghi, Yahya; Boncagni, Luca
2012-06-01
MARTe is a modular framework for real-time control aspects. At present time there are several MARTe systems under development at Frascati Tokamak Upgrade (Boncagni et al. in First steps in the FTU migration towards a modular and distributed real time control architecture based on MARTe and RTNet, 2010) such as the LH power percentage system, the gas puffing control system, the real-time ODIN plasma equilibrium reconstruction system and the position/current feedback control system (in a design phase) (Boncagni et al. in J Fusion Eng Design). The real-time reconstruction of magnetic flux in FTU tokamak is an important issue to estimate some quantities that can be use to control the plasma. This paper addresses the validation of real-time implementation of that task on MARTe.
The GFZ real-time GNSS precise positioning service system and its adaption for COMPASS
NASA Astrophysics Data System (ADS)
Li, Xingxing; Ge, Maorong; Zhang, Hongping; Nischan, Thomas; Wickert, Jens
2013-03-01
Motivated by the IGS real-time Pilot Project, GFZ has been developing its own real-time precise positioning service for various applications. An operational system at GFZ is now broadcasting real-time orbits, clocks, global ionospheric model, uncalibrated phase delays and regional atmospheric corrections for standard PPP, PPP with ambiguity fixing, single-frequency PPP and regional augmented PPP. To avoid developing various algorithms for different applications, we proposed a uniform algorithm and implemented it into our real-time software. In the new processing scheme, we employed un-differenced raw observations with atmospheric delays as parameters, which are properly constrained by real-time derived global ionospheric model or regional atmospheric corrections and by the empirical characteristics of the atmospheric delay variation in time and space. The positioning performance in terms of convergence time and ambiguity fixing depends mainly on the quality of the received atmospheric information and the spatial and temporal constraints. The un-differenced raw observation model can not only integrate PPP and NRTK into a seamless positioning service, but also syncretize these two techniques into a unique model and algorithm. Furthermore, it is suitable for both dual-frequency and sing-frequency receivers. Based on the real-time data streams from IGS, EUREF and SAPOS reference networks, we can provide services of global precise point positioning (PPP) with 5-10 cm accuracy, PPP with ambiguity-fixing of 2-5 cm accuracy, PPP using single-frequency receiver with accuracy of better than 50 cm and PPP with regional augmentation for instantaneous ambiguity resolution of 1-3 cm accuracy. We adapted the system for current COMPASS to provide PPP service. COMPASS observations from a regional network of nine stations are used for precise orbit determination and clock estimation in simulated real-time mode, the orbit and clock products are applied for real-time precise point positioning. The simulated real-time PPP service confirms that real-time positioning services of accuracy at dm-level and even cm-level is achievable with COMPASS only.
NASA Astrophysics Data System (ADS)
Miner, Nadine Elizabeth
1998-09-01
This dissertation presents a new wavelet-based method for synthesizing perceptually convincing, dynamic sounds using parameterized sound models. The sound synthesis method is applicable to a variety of applications including Virtual Reality (VR), multi-media, entertainment, and the World Wide Web (WWW). A unique contribution of this research is the modeling of the stochastic, or non-pitched, sound components. This stochastic-based modeling approach leads to perceptually compelling sound synthesis. Two preliminary studies conducted provide data on multi-sensory interaction and audio-visual synchronization timing. These results contributed to the design of the new sound synthesis method. The method uses a four-phase development process, including analysis, parameterization, synthesis and validation, to create the wavelet-based sound models. A patent is pending for this dynamic sound synthesis method, which provides perceptually-realistic, real-time sound generation. This dissertation also presents a battery of perceptual experiments developed to verify the sound synthesis results. These experiments are applicable for validation of any sound synthesis technique.
Real-time three-dimensional soft tissue reconstruction for laparoscopic surgery.
Kowalczuk, Jędrzej; Meyer, Avishai; Carlson, Jay; Psota, Eric T; Buettner, Shelby; Pérez, Lance C; Farritor, Shane M; Oleynikov, Dmitry
2012-12-01
Accurate real-time 3D models of the operating field have the potential to enable augmented reality for endoscopic surgery. A new system is proposed to create real-time 3D models of the operating field that uses a custom miniaturized stereoscopic video camera attached to a laparoscope and an image-based reconstruction algorithm implemented on a graphics processing unit (GPU). The proposed system was evaluated in a porcine model that approximates the viewing conditions of in vivo surgery. To assess the quality of the models, a synthetic view of the operating field was produced by overlaying a color image on the reconstructed 3D model, and an image rendered from the 3D model was compared with a 2D image captured from the same view. Experiments conducted with an object of known geometry demonstrate that the system produces 3D models accurate to within 1.5 mm. The ability to produce accurate real-time 3D models of the operating field is a significant advancement toward augmented reality in minimally invasive surgery. An imaging system with this capability will potentially transform surgery by helping novice and expert surgeons alike to delineate variance in internal anatomy accurately.
Development of a Real-Time Intelligent Network Environment.
ERIC Educational Resources Information Center
Gordonov, Anatoliy; Kress, Michael; Klibaner, Roberta
This paper presents a model of an intelligent computer network that provides real-time evaluation of students' performance by incorporating intelligence into the application layer protocol. Specially designed drills allow students to independently solve a number of problems based on current lecture material; students are switched to the most…
Zhao, Ming; Rattanatamrong, Prapaporn; DiGiovanna, Jack; Mahmoudi, Babak; Figueiredo, Renato J; Sanchez, Justin C; Príncipe, José C; Fortes, José A B
2008-01-01
Dynamic data-driven brain-machine interfaces (DDDBMI) have great potential to advance the understanding of neural systems and improve the design of brain-inspired rehabilitative systems. This paper presents a novel cyberinfrastructure that couples in vivo neurophysiology experimentation with massive computational resources to provide seamless and efficient support of DDDBMI research. Closed-loop experiments can be conducted with in vivo data acquisition, reliable network transfer, parallel model computation, and real-time robot control. Behavioral experiments with live animals are supported with real-time guarantees. Offline studies can be performed with various configurations for extensive analysis and training. A Web-based portal is also provided to allow users to conveniently interact with the cyberinfrastructure, conducting both experimentation and analysis. New motor control models are developed based on this approach, which include recursive least square based (RLS) and reinforcement learning based (RLBMI) algorithms. The results from an online RLBMI experiment shows that the cyberinfrastructure can successfully support DDDBMI experiments and meet the desired real-time requirements.
ERIC Educational Resources Information Center
Fazio, C.; Guastella, I.; Tarantino, G.
2007-01-01
In this paper, we describe a pedagogical approach to elastic body movement based on measurements of the contact times between a metallic rod and small bodies colliding with it and on modelling of the experimental results by using a microcomputer-based laboratory and simulation tools. The experiments and modelling activities have been built in the…
NASA Astrophysics Data System (ADS)
Gajda, Janusz; Wyłomańska, Agnieszka; Zimroz, Radosław
2016-12-01
Many real data exhibit behavior adequate to subdiffusion processes. Very often it is manifested by so-called ;trapping events;. The visible evidence of subdiffusion we observe not only in financial time series but also in technical data. In this paper we propose a model which can be used for description of such kind of data. The model is based on the continuous time autoregressive time series with stable noise delayed by the infinitely divisible inverse subordinator. The proposed system can be applied to real datasets with short-time dependence, visible jumps and mentioned periods of stagnation. In this paper we extend the theoretical considerations in analysis of subordinated processes and propose a new model that exhibits mentioned properties. We concentrate on the main characteristics of the examined subordinated process expressed mainly in the language of the measures of dependence which are main tools used in statistical investigation of real data. We present also the simulation procedure of the considered system and indicate how to estimate its parameters. The theoretical results we illustrate by the analysis of real technical data.
Risk assessment by dynamic representation of vulnerability, exploitation, and impact
NASA Astrophysics Data System (ADS)
Cam, Hasan
2015-05-01
Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.
Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning
NASA Astrophysics Data System (ADS)
Talei, Amin; Chua, Lloyd Hock Chye; Quek, Chai; Jansson, Per-Erik
2013-04-01
SummaryA study using local learning Neuro-Fuzzy System (NFS) was undertaken for a rainfall-runoff modeling application. The local learning model was first tested on three different catchments: an outdoor experimental catchment measuring 25 m2 (Catchment 1), a small urban catchment 5.6 km2 in size (Catchment 2), and a large rural watershed with area of 241.3 km2 (Catchment 3). The results obtained from the local learning model were comparable or better than results obtained from physically-based, i.e. Kinematic Wave Model (KWM), Storm Water Management Model (SWMM), and Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The local learning algorithm also required a shorter training time compared to a global learning NFS model. The local learning model was next tested in real-time mode, where the model was continuously adapted when presented with current information in real time. The real-time implementation of the local learning model gave better results, without the need for retraining, when compared to a batch NFS model, where it was found that the batch model had to be retrained periodically in order to achieve similar results.
NASA Astrophysics Data System (ADS)
Schlechtingen, Meik; Ferreira Santos, Ilmar
2011-07-01
This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal behavior model is compared to two artificial neural network based approaches, which are a full signal reconstruction and an autoregressive normal behavior model. Based on a real time series containing two generator bearing damages the capabilities of identifying the incipient fault prior to the actual failure are investigated. The period after the first bearing damage is used to develop the three normal behavior models. The developed or trained models are used to investigate how the second damage manifests in the prediction error. Furthermore the full signal reconstruction and the autoregressive approach are applied to further real time series containing gearbox bearing damages and stator temperature anomalies. The comparison revealed all three models being capable of detecting incipient faults. However, they differ in the effort required for model development and the remaining operational time after first indication of damage. The general nonlinear neural network approaches outperform the regression model. The remaining seasonality in the regression model prediction error makes it difficult to detect abnormality and leads to increased alarm levels and thus a shorter remaining operational period. For the bearing damages and the stator anomalies under investigation the full signal reconstruction neural network gave the best fault visibility and thus led to the highest confidence level.
Real-time computing platform for spiking neurons (RT-spike).
Ros, Eduardo; Ortigosa, Eva M; Agís, Rodrigo; Carrillo, Richard; Arnold, Michael
2006-07-01
A computing platform is described for simulating arbitrary networks of spiking neurons in real time. A hybrid computing scheme is adopted that uses both software and hardware components to manage the tradeoff between flexibility and computational power; the neuron model is implemented in hardware and the network model and the learning are implemented in software. The incremental transition of the software components into hardware is supported. We focus on a spike response model (SRM) for a neuron where the synapses are modeled as input-driven conductances. The temporal dynamics of the synaptic integration process are modeled with a synaptic time constant that results in a gradual injection of charge. This type of model is computationally expensive and is not easily amenable to existing software-based event-driven approaches. As an alternative we have designed an efficient time-based computing architecture in hardware, where the different stages of the neuron model are processed in parallel. Further improvements occur by computing multiple neurons in parallel using multiple processing units. This design is tested using reconfigurable hardware and its scalability and performance evaluated. Our overall goal is to investigate biologically realistic models for the real-time control of robots operating within closed action-perception loops, and so we evaluate the performance of the system on simulating a model of the cerebellum where the emulation of the temporal dynamics of the synaptic integration process is important.
Zhou, Y; Murata, T; Defanti, T A
2000-01-01
Despite their attractive properties, networked virtual environments (net-VEs) are notoriously difficult to design, implement, and test due to the concurrency, real-time and networking features in these systems. Net-VEs demand high quality-of-service (QoS) requirements on the network to maintain natural and real-time interactions among users. The current practice for net-VE design is basically trial and error, empirical, and totally lacks formal methods. This paper proposes to apply a Petri net formal modeling technique to a net-VE-NICE (narrative immersive constructionist/collaborative environment), predict the net-VE performance based on simulation, and improve the net-VE performance. NICE is essentially a network of collaborative virtual reality systems called the CAVE-(CAVE automatic virtual environment). First, we introduce extended fuzzy-timing Petri net (EFTN) modeling and analysis techniques. Then, we present EFTN models of the CAVE, NICE, and transport layer protocol used in NICE: transmission control protocol (TCP). We show the possibility analysis based on the EFTN model for the CAVE. Then, by using these models and design/CPN as the simulation tool, we conducted various simulations to study real-time behavior, network effects and performance (latencies and jitters) of NICE. Our simulation results are consistent with experimental data.
Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.
2009-01-01
Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.
Real-time image annotation by manifold-based biased Fisher discriminant analysis
NASA Astrophysics Data System (ADS)
Ji, Rongrong; Yao, Hongxun; Wang, Jicheng; Sun, Xiaoshuai; Liu, Xianming
2008-01-01
Automatic Linguistic Annotation is a promising solution to bridge the semantic gap in content-based image retrieval. However, two crucial issues are not well addressed in state-of-art annotation algorithms: 1. The Small Sample Size (3S) problem in keyword classifier/model learning; 2. Most of annotation algorithms can not extend to real-time online usage due to their low computational efficiencies. This paper presents a novel Manifold-based Biased Fisher Discriminant Analysis (MBFDA) algorithm to address these two issues by transductive semantic learning and keyword filtering. To address the 3S problem, Co-Training based Manifold learning is adopted for keyword model construction. To achieve real-time annotation, a Bias Fisher Discriminant Analysis (BFDA) based semantic feature reduction algorithm is presented for keyword confidence discrimination and semantic feature reduction. Different from all existing annotation methods, MBFDA views image annotation from a novel Eigen semantic feature (which corresponds to keywords) selection aspect. As demonstrated in experiments, our manifold-based biased Fisher discriminant analysis annotation algorithm outperforms classical and state-of-art annotation methods (1.K-NN Expansion; 2.One-to-All SVM; 3.PWC-SVM) in both computational time and annotation accuracy with a large margin.
Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm.
Tizzoni, Michele; Bajardi, Paolo; Poletto, Chiara; Ramasco, José J; Balcan, Duygu; Gonçalves, Bruno; Perra, Nicola; Colizza, Vittoria; Vespignani, Alessandro
2012-12-13
Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches. We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability. Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model. Our results show that large-scale models can be used to provide valuable real-time forecasts of influenza spreading, but they require high-performance computing. The quality of the forecast depends on the level of data integration, thus stressing the need for high-quality data in population-based models, and of progressive updates of validated available empirical knowledge to inform these models.
NASA Astrophysics Data System (ADS)
Li, X.; Temerin, M. A.; Monk, S.; Baker, D. N.; Reeves, G. D.
2002-05-01
The MeV electrons, also known as `killer electrons', have a deleterious impact on satellites through deep dielectric charging and the bodies of astronauts through radiation damage during extravehicular activity. Using a recently developed model based on the standard radial diffusion equation [Li et al., 2001], we show that the intensity of these MeV electrons at geosynchronous orbit can be quantitatively predicted 1-2 days in advance given knowledge of the solar wind. Our current model is operating in real-time, using real-time data from ACE and GOES-10, to make forecast of >2 MeV eletrons at geosynchronous orbit up to 48 hours in advance, the results are available on the web, currently updated every two hours (http://lasp.colorado.edu/~monk/xlf2.html).
An architecture for the development of real-time fault diagnosis systems using model-based reasoning
NASA Technical Reports Server (NTRS)
Hall, Gardiner A.; Schuetzle, James; Lavallee, David; Gupta, Uday
1992-01-01
Presented here is an architecture for implementing real-time telemetry based diagnostic systems using model-based reasoning. First, we describe Paragon, a knowledge acquisition tool for offline entry and validation of physical system models. Paragon provides domain experts with a structured editing capability to capture the physical component's structure, behavior, and causal relationships. We next describe the architecture of the run time diagnostic system. The diagnostic system, written entirely in Ada, uses the behavioral model developed offline by Paragon to simulate expected component states as reflected in the telemetry stream. The diagnostic algorithm traces causal relationships contained within the model to isolate system faults. Since the diagnostic process relies exclusively on the behavioral model and is implemented without the use of heuristic rules, it can be used to isolate unpredicted faults in a wide variety of systems. Finally, we discuss the implementation of a prototype system constructed using this technique for diagnosing faults in a science instrument. The prototype demonstrates the use of model-based reasoning to develop maintainable systems with greater diagnostic capabilities at a lower cost.
In-flight thrust determination on a real-time basis
NASA Technical Reports Server (NTRS)
Ray, R. J.; Carpenter, T.; Sandlin, T.
1984-01-01
A real time computer program was implemented on a F-15 jet fighter to monitor in-flight engine performance of a Digital Electronic Engine Controlled (DEES) F-100 engine. The application of two gas generator methods to calculate in-flight thrust real time is described. A comparison was made between the actual results and those predicted by an engine model simulation. The percent difference between the two methods was compared to the predicted uncertainty based on instrumentation and model uncertainty and agreed closely with the results found during altitude facility testing. Data was obtained from acceleration runs of various altitudes at maximum power settings with and without afterburner. Real time in-flight thrust measurement was a major advancement to flight test productivity and was accomplished with no loss in accuracy over previous post flight methods.
Fuzzy model-based fault detection and diagnosis for a pilot heat exchanger
NASA Astrophysics Data System (ADS)
Habbi, Hacene; Kidouche, Madjid; Kinnaert, Michel; Zelmat, Mimoun
2011-04-01
This article addresses the design and real-time implementation of a fuzzy model-based fault detection and diagnosis (FDD) system for a pilot co-current heat exchanger. The design method is based on a three-step procedure which involves the identification of data-driven fuzzy rule-based models, the design of a fuzzy residual generator and the evaluation of the residuals for fault diagnosis using statistical tests. The fuzzy FDD mechanism has been implemented and validated on the real co-current heat exchanger, and has been proven to be efficient in detecting and isolating process, sensor and actuator faults.
Real-time volcano monitoring using GNSS single-frequency receivers
NASA Astrophysics Data System (ADS)
Lee, Seung-Woo; Yun, Sung-Hyo; Kim, Do Hyeong; Lee, Dukkee; Lee, Young J.; Schutz, Bob E.
2015-12-01
We present a real-time volcano monitoring strategy that uses the Global Navigation Satellite System (GNSS), and we examine the performance of the strategy by processing simulated and real data and comparing the results with published solutions. The cost of implementing the strategy is reduced greatly by using single-frequency GNSS receivers except for one dual-frequency receiver that serves as a base receiver. Positions of the single-frequency receivers are computed relative to the base receiver on an epoch-by-epoch basis using the high-rate double-difference (DD) GNSS technique, while the position of the base station is fixed to the values obtained with a deferred-time precise point positioning technique and updated on a regular basis. Since the performance of the single-frequency high-rate DD technique depends on the conditions of the ionosphere over the monitoring area, the ionospheric total electron content is monitored using the dual-frequency data from the base receiver. The surface deformation obtained with the high-rate DD technique is eventually processed by a real-time inversion filter based on the Mogi point source model. The performance of the real-time volcano monitoring strategy is assessed through a set of tests and case studies, in which the data recorded during the 2007 eruption of Kilauea and the 2005 eruption of Augustine are processed in a simulated real-time mode. The case studies show that the displacement time series obtained with the strategy seem to agree with those obtained with deferred-time, dual-frequency approaches at the level of 10-15 mm. Differences in the estimated volume change of the Mogi source between the real-time inversion filter and previously reported works were in the range of 11 to 13% of the maximum volume changes of the cases examined.
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele
2014-04-01
A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.
Robust Real-Time Wide-Area Differential GPS Navigation
NASA Technical Reports Server (NTRS)
Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)
1998-01-01
The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.
NASA Technical Reports Server (NTRS)
Aquilina, Rudolph A.
2015-01-01
The SMART-NAS Testbed for Safe Trajectory Based Operations Project will deliver an evaluation capability, critical to the ATM community, allowing full NextGen and beyond-NextGen concepts to be assessed and developed. To meet this objective a strong focus will be placed on concept integration and validation to enable a gate-to-gate trajectory-based system capability that satisfies a full vision for NextGen. The SMART-NAS for Safe TBO Project consists of six sub-projects. Three of the sub-projects are focused on exploring and developing technologies, concepts and models for evolving and transforming air traffic management operations in the ATM+2 time horizon, while the remaining three sub-projects are focused on developing the tools and capabilities needed for testing these advanced concepts. Function Allocation, Networked Air Traffic Management and Trajectory Based Operations are developing concepts and models. SMART-NAS Test-bed, System Assurance Technologies and Real-time Safety Modeling are developing the tools and capabilities to test these concepts. Simulation and modeling capabilities will include the ability to assess multiple operational scenarios of the national airspace system, accept data feeds, allowing shadowing of actual operations in either real-time, fast-time and/or hybrid modes of operations in distributed environments, and enable integrated examinations of concepts, algorithms, technologies, and NAS architectures. An important focus within this project is to enable the development of a real-time, system-wide safety assurance system. The basis of such a system is a continuum of information acquisition, analysis, and assessment that enables awareness and corrective action to detect and mitigate potential threats to continuous system-wide safety at all levels. This process, which currently can only be done post operations, will be driven towards "real-time" assessments in the 2035 time frame.
Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models
NASA Astrophysics Data System (ADS)
Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.
2017-12-01
While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API interface to our Enhanced Magnetic Model (EMM).
NASA Astrophysics Data System (ADS)
Kulchitsky, A.; Maurits, S.; Watkins, B.
2006-12-01
With the widespread availability of the Internet today, many people can monitor various scientific research activities. It is important to accommodate this interest providing on-line access to dynamic and illustrative Web-resources, which could demonstrate different aspects of ongoing research. It is especially important to explain and these research activities for high school and undergraduate students, thereby providing more information for making decisions concerning their future studies. Such Web resources are also important to clarify scientific research for the general public, in order to achieve better awareness of research progress in various fields. Particularly rewarding is dissemination of information about ongoing projects within Universities and research centers to their local communities. The benefits of this type of scientific outreach are mutual, since development of Web-based automatic systems is prerequisite for many research projects targeting real-time monitoring and/or modeling of natural conditions. Continuous operation of such systems provide ongoing research opportunities for the statistically massive validation of the models, as well. We have developed a Web-based system to run the University of Alaska Fairbanks Polar Ionospheric Model in real-time. This model makes use of networking and computational resources at the Arctic Region Supercomputing Center. This system was designed to be portable among various operating systems and computational resources. Its components can be installed across different computers, separating Web servers and computational engines. The core of the system is a Real-Time Management module (RMM) written Python, which facilitates interactions of remote input data transfers, the ionospheric model runs, MySQL database filling, and PHP scripts for the Web-page preparations. The RMM downloads current geophysical inputs as soon as they become available at different on-line depositories. This information is processed to provide inputs for the next ionospheic model time step and then stored in a MySQL database as the first part of the time-specific record. The RMM then performs synchronization of the input times with the current model time, prepares a decision on initialization for the next model time step, and monitors its execution. Then, as soon as the model completes computations for the next time step, RMM visualizes the current model output into various short-term (about 1-2 hours) forecasting products and compares prior results with available ionospheric measurements. The RMM places prepared images into the MySQL database, which can be located on a different computer node, and then proceeds to the next time interval continuing the time-loop. The upper-level interface of this real-time system is the a PHP-based Web site (http://www.arsc.edu/SpaceWeather/new). This site provides general information about the Earth polar and adjacent mid-latitude ionosphere, allows for monitoring of the current developments and short-term forecasts, and facilitates access to the comparisons archive stored in the database.
Swensen, James S.; Xiao, Yi; Ferguson, Brian S.; Lubin, Arica A.; Lai, Rebecca Y.; Heeger, Alan J.; Plaxco, Kevin W.; Soh, H. Tom.
2009-01-01
The development of a biosensor system capable of continuous, real-time measurement of small-molecule analytes directly in complex, unprocessed aqueous samples has been a significant challenge, and successful implementation has been achieved for only a limited number of targets. Towards a general solution to this problem, we report here the Microfluidic Electrochemical Aptamer-based Sensor (MECAS) chip wherein we integrate target-specific DNA aptamers that fold, and thus generate an electrochemical signal, in response to the analyte with a microfluidic detection system. As a model, we demonstrate the continuous, real-time (~1 minute time resolution) detection of the small molecule drug cocaine at near physiological, low micromolar concentrations directly in undiluted, otherwise unmodified blood serum. We believe our approach of integrating folding-based electrochemical sensors with miniaturized detection systems may lay the ground work for the real-time, point-of-care detection of a wide variety of molecular targets. PMID:19271708
Lee, Giljae; Matsunaga, Andréa; Dura-Bernal, Salvador; Zhang, Wenjie; Lytton, William W; Francis, Joseph T; Fortes, José Ab
2014-11-01
Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One approach is to utilize brain biomimetic models (BMMs) to develop and instantiate these algorithms. These then must be connected as hybrid systems in order to interface the BMM with in vivo data acquisition devices and prosthetic devices. The combined system then provides a test bed for neuroprosthetic rehabilitative solutions and medical devices for the repair and enhancement of damaged brain. We propose here a computer network-based design for this purpose, detailing its internal modules and data flows. We describe a prototype implementation of the design, enabling interaction between the Plexon Multichannel Acquisition Processor (MAP) server, a commercial tool to collect signals from microelectrodes implanted in a live subject and a BMM, a NEURON-based model of sensorimotor cortex capable of controlling a virtual arm. The prototype implementation supports an online mode for real-time simulations, as well as an offline mode for data analysis and simulations without real-time constraints, and provides binning operations to discretize continuous input to the BMM and filtering operations for dealing with noise. Evaluation demonstrated that the implementation successfully delivered monkey spiking activity to the BMM through LAN environments, respecting real-time constraints.
Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.
Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry
2015-07-01
This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Real Time Fire Reconnaissance Satellite Monitoring System Failure Model
NASA Astrophysics Data System (ADS)
Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique
2013-09-01
In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.
Estimation and enhancement of real-time software reliability through mutation analysis
NASA Technical Reports Server (NTRS)
Geist, Robert; Offutt, A. J.; Harris, Frederick C., Jr.
1992-01-01
A simulation-based technique for obtaining numerical estimates of the reliability of N-version, real-time software is presented. An extended stochastic Petri net is employed to represent the synchronization structure of N versions of the software, where dependencies among versions are modeled through correlated sampling of module execution times. Test results utilizing specifications for NASA's planetary lander control software indicate that mutation-based testing could hold greater potential for enhancing reliability than the desirable but perhaps unachievable goal of independence among N versions.
Real-time Adaptive Control Using Neural Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Haley, Pam; Soloway, Don; Gold, Brian
1999-01-01
The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.
Real-Time Robust Adaptive Modeling and Scheduling for an Electronic Commerce Server
NASA Astrophysics Data System (ADS)
Du, Bing; Ruan, Chun
With the increasing importance and pervasiveness of Internet services, it is becoming a challenge for the proliferation of electronic commerce services to provide performance guarantees under extreme overload. This paper describes a real-time optimization modeling and scheduling approach for performance guarantee of electronic commerce servers. We show that an electronic commerce server may be simulated as a multi-tank system. A robust adaptive server model is subject to unknown additive load disturbances and uncertain model matching. Overload control techniques are based on adaptive admission control to achieve timing guarantees. We evaluate the performance of the model using a complex simulation that is subjected to varying model parameters and massive overload.
1996-04-01
time systems . The focus is on the study of ’building-blocks’ for the construction of reliable and efficient systems. Our works falls into three...Members of MIT’s Theory of Distributed Systems group have continued their work on modelling, designing, verifying and analyzing distributed and real
NASA Astrophysics Data System (ADS)
Manconi, A.; Giordan, D.
2015-02-01
We investigate the use of landslide failure forecast models by exploiting near-real-time monitoring data. Starting from the inverse velocity theory, we analyze landslide surface displacements on different temporal windows, and apply straightforward statistical methods to obtain confidence intervals on the estimated time of failure. Here we describe the main concepts of our method, and show an example of application to a real emergency scenario, the La Saxe rockslide, Aosta Valley region, northern Italy. Based on the herein presented case study, we identify operational thresholds based on the reliability of the forecast models, in order to support the management of early warning systems in the most critical phases of the landslide emergency.
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-01-01
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions. PMID:28029145
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles.
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-12-25
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.
NASA Astrophysics Data System (ADS)
He, X.; Kidmose, J.; Madsen, H.; Zheng, C.; Refsgaard, J. C.
2017-12-01
Climate adaptation strategies have nowadays been used more and more frequently in European cities, such as low impact development to increase infiltration and thus reduce the risk of urban flooding. An alternative approach to cope with the increased precipitation under the future climate condition is by using real-time management techniques to operate the drainage system. In the present study, we developed a real-time hydrological modeling system which can forecast both surface water and groundwater in the city of Silkeborg, Denmark. The model is based on MIKE SHE code, and operates on 50 × 50 m grid cell with hourly time step. Real-time observation data, i.e. groundwater head data from 35 wells and 4 stream flow gauging stations, are used in a data assimilation (DA) framework in order to correct bias in each calculation cell. The DA framework is based on ensemble Kalman filter (EnKF) where uncertainties from forcing data, model parameters as well as observations are taken into consideration. A case study has been carried out where the DA enabled MIKE SHE model was executed in conjunction with the rainfall products from the Danish Meteorological Institute: short term weather forecast coming from HIRLAM model with temporal resolution of 10 minutes and 8 hours lead time, and longer term forecast coming from HARMONIE model with temporal resolution of 1 hour and 48 hour lead time. The results show that DA can visibly increase the model performance for both groundwater head and stream discharge simulations. Even for the short period when observation data are not available (June 2016), the DA based model can still outperform the model without DA. In the forecasting mode, the simulated stream discharge is much more responsive to the increase of rainfall than groundwater as expected. The predicted and observed groundwater head in some areas only varies in the magnitude of a few centimeters, which does not have so much practical meaning in reality, whereas in other areas it could be as high as 1 m depending on the underlying geology.
Data-adaptive Harmonic Decomposition and Real-time Prediction of Arctic Sea Ice Extent
NASA Astrophysics Data System (ADS)
Kondrashov, Dmitri; Chekroun, Mickael; Ghil, Michael
2017-04-01
Decline in the Arctic sea ice extent (SIE) has profound socio-economic implications and is a focus of active scientific research. Of particular interest is prediction of SIE on subseasonal time scales, i.e. from early summer into fall, when sea ice coverage in Arctic reaches its minimum. However, subseasonal forecasting of SIE is very challenging due to the high variability of ocean and atmosphere over Arctic in summer, as well as shortness of observational data and inadequacies of the physics-based models to simulate sea-ice dynamics. The Sea Ice Outlook (SIO) by Sea Ice Prediction Network (SIPN, http://www.arcus.org/sipn) is a collaborative effort to facilitate and improve subseasonal prediction of September SIE by physics-based and data-driven statistical models. Data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) techniques [Chekroun and Kondrashov, 2017], have been successfully applied to the nonlinear stochastic modeling, as well as retrospective and real-time forecasting of Multisensor Analyzed Sea Ice Extent (MASIE) dataset in key four Arctic regions. In particular, DAH-MSLM predictions outperformed most statistical models and physics-based models in real-time 2016 SIO submissions. The key success factors are associated with DAH ability to disentangle complex regional dynamics of MASIE by data-adaptive harmonic spatio-temporal patterns that reduce the data-driven modeling effort to elemental MSLMs stacked per frequency with fixed and small number of model coefficients to estimate.
Li, Linlin; Ding, Steven X; Qiu, Jianbin; Yang, Ying
2017-02-01
This paper is concerned with a real-time observer-based fault detection (FD) approach for a general type of nonlinear systems in the presence of external disturbances. To this end, in the first part of this paper, we deal with the definition and the design condition for an L ∞ / L 2 type of nonlinear observer-based FD systems. This analytical framework is fundamental for the development of real-time nonlinear FD systems with the aid of some well-established techniques. In the second part, we address the integrated design of the L ∞ / L 2 observer-based FD systems by applying Takagi-Sugeno (T-S) fuzzy dynamic modeling technique as the solution tool. This fuzzy observer-based FD approach is developed via piecewise Lyapunov functions, and can be applied to the case that the premise variables of the FD system is nonsynchronous with the premise variables of the fuzzy model of the plant. In the end, a case study on the laboratory setup of three-tank system is given to show the efficiency of the proposed results.
NASA Astrophysics Data System (ADS)
Han, Yingying; Gong, Pu; Zhou, Xiang
2016-02-01
In this paper, we apply time varying Gaussian and SJC copula models to study the correlations and risk contagion between mixed assets: financial (stock), real estate and commodity (gold) assets in China firstly. Then we study the dynamic mixed-asset portfolio risk through VaR measurement based on the correlations computed by the time varying copulas. This dynamic VaR-copula measurement analysis has never been used on mixed-asset portfolios. The results show the time varying estimations fit much better than the static models, not only for the correlations and risk contagion based on time varying copulas, but also for the VaR-copula measurement. The time varying VaR-SJC copula models are more accurate than VaR-Gaussian copula models when measuring more risky portfolios with higher confidence levels. The major findings suggest that real estate and gold play a role on portfolio risk diversification and there exist risk contagion and flight to quality between mixed-assets when extreme cases happen, but if we take different mixed-asset portfolio strategies with the varying of time and environment, the portfolio risk will be reduced.
Research on classified real-time flood forecasting framework based on K-means cluster and rough set.
Xu, Wei; Peng, Yong
2015-01-01
This research presents a new classified real-time flood forecasting framework. In this framework, historical floods are classified by a K-means cluster according to the spatial and temporal distribution of precipitation, the time variance of precipitation intensity and other hydrological factors. Based on the classified results, a rough set is used to extract the identification rules for real-time flood forecasting. Then, the parameters of different categories within the conceptual hydrological model are calibrated using a genetic algorithm. In real-time forecasting, the corresponding category of parameters is selected for flood forecasting according to the obtained flood information. This research tests the new classified framework on Guanyinge Reservoir and compares the framework with the traditional flood forecasting method. It finds that the performance of the new classified framework is significantly better in terms of accuracy. Furthermore, the framework can be considered in a catchment with fewer historical floods.
A real-time spike sorting method based on the embedded GPU.
Zelan Yang; Kedi Xu; Xiang Tian; Shaomin Zhang; Xiaoxiang Zheng
2017-07-01
Microelectrode arrays with hundreds of channels have been widely used to acquire neuron population signals in neuroscience studies. Online spike sorting is becoming one of the most important challenges for high-throughput neural signal acquisition systems. Graphic processing unit (GPU) with high parallel computing capability might provide an alternative solution for increasing real-time computational demands on spike sorting. This study reported a method of real-time spike sorting through computing unified device architecture (CUDA) which was implemented on an embedded GPU (NVIDIA JETSON Tegra K1, TK1). The sorting approach is based on the principal component analysis (PCA) and K-means. By analyzing the parallelism of each process, the method was further optimized in the thread memory model of GPU. Our results showed that the GPU-based classifier on TK1 is 37.92 times faster than the MATLAB-based classifier on PC while their accuracies were the same with each other. The high-performance computing features of embedded GPU demonstrated in our studies suggested that the embedded GPU provide a promising platform for the real-time neural signal processing.
Model for Correlating Real-Time Survey Results to Contaminant Concentrations - 12183
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Stuart A.
2012-07-01
The U.S. Environmental Protection Agency (EPA) Superfund program is developing a new Counts Per Minute (CPM) calculator to correlate real-time survey results, which are often expressed as counts per minute, to contaminant concentrations that are more typically provided in risk assessments or for cleanup levels, usually expressed in pCi/g or pCi/m{sup 2}. Currently there is no EPA guidance for Superfund sites on correlating count per minute field survey readings back to risk, dose, or other ARAR based concentrations. The CPM calculator is a web-based model that estimates a gamma detector response for a given level of contamination. The intent ofmore » the CPM calculator is to facilitate more real-time measurements within a Superfund response framework. The draft of the CPM calculator is still undergoing internal EPA review. This will be followed by external peer review. It is expected that the CPM calculator will at least be in peer review by the time of WM2012 and possibly finalized at that time. The CPM calculator should facilitate greater use of real-time measurement at Superfund sites. The CPM calculator may also standardize the process of converting lab data to real time measurements. It will thus lessen the amount of lab sampling that is needed for site characterization and confirmation surveys, but it will not remove the need for sampling. (authors)« less
2011-01-01
Background A real-time clinical decision support system (RTCDSS) with interactive diagrams enables clinicians to instantly and efficiently track patients' clinical records (PCRs) and improve their quality of clinical care. We propose a RTCDSS to process online clinical informatics from multiple databases for clinical decision making in the treatment of prostate cancer based on Web Model-View-Controller (MVC) architecture, by which the system can easily be adapted to different diseases and applications. Methods We designed a framework upon the Web MVC-based architecture in which the reusable and extractable models can be conveniently adapted to other hospital information systems and which allows for efficient database integration. Then, we determined the clinical variables of the prostate cancer treatment based on participating clinicians' opinions and developed a computational model to determine the pretreatment parameters. Furthermore, the components of the RTCDSS integrated PCRs and decision factors for real-time analysis to provide evidence-based diagrams upon the clinician-oriented interface for visualization of treatment guidance and health risk assessment. Results The resulting system can improve quality of clinical treatment by allowing clinicians to concurrently analyze and evaluate the clinical markers of prostate cancer patients with instantaneous clinical data and evidence-based diagrams which can automatically identify pretreatment parameters. Moreover, the proposed RTCDSS can aid interactions between patients and clinicians. Conclusions Our proposed framework supports online clinical informatics, evaluates treatment risks, offers interactive guidance, and provides real-time reference for decision making in the treatment of prostate cancer. The developed clinician-oriented interface can assist clinicians in conveniently presenting evidence-based information to patients and can be readily adapted to an existing hospital information system and be easily applied in other chronic diseases. PMID:21385459
Lin, Hsueh-Chun; Wu, Hsi-Chin; Chang, Chih-Hung; Li, Tsai-Chung; Liang, Wen-Miin; Wang, Jong-Yi Wang
2011-03-08
A real-time clinical decision support system (RTCDSS) with interactive diagrams enables clinicians to instantly and efficiently track patients' clinical records (PCRs) and improve their quality of clinical care. We propose a RTCDSS to process online clinical informatics from multiple databases for clinical decision making in the treatment of prostate cancer based on Web Model-View-Controller (MVC) architecture, by which the system can easily be adapted to different diseases and applications. We designed a framework upon the Web MVC-based architecture in which the reusable and extractable models can be conveniently adapted to other hospital information systems and which allows for efficient database integration. Then, we determined the clinical variables of the prostate cancer treatment based on participating clinicians' opinions and developed a computational model to determine the pretreatment parameters. Furthermore, the components of the RTCDSS integrated PCRs and decision factors for real-time analysis to provide evidence-based diagrams upon the clinician-oriented interface for visualization of treatment guidance and health risk assessment. The resulting system can improve quality of clinical treatment by allowing clinicians to concurrently analyze and evaluate the clinical markers of prostate cancer patients with instantaneous clinical data and evidence-based diagrams which can automatically identify pretreatment parameters. Moreover, the proposed RTCDSS can aid interactions between patients and clinicians. Our proposed framework supports online clinical informatics, evaluates treatment risks, offers interactive guidance, and provides real-time reference for decision making in the treatment of prostate cancer. The developed clinician-oriented interface can assist clinicians in conveniently presenting evidence-based information to patients and can be readily adapted to an existing hospital information system and be easily applied in other chronic diseases.
Real-time realizations of the Bayesian Infrasonic Source Localization Method
NASA Astrophysics Data System (ADS)
Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.
2015-12-01
The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.
Regional TEC dynamic modeling based on Slepian functions
NASA Astrophysics Data System (ADS)
Sharifi, Mohammad Ali; Farzaneh, Saeed
2015-09-01
In this work, the three-dimensional state of the ionosphere has been estimated by integrating the spherical Slepian harmonic function and Kalman filter. The spherical Slepian harmonic functions have been used to establish the observation equations because of their properties in local modeling. Spherical harmonics are poor choices to represent or analyze geophysical processes without perfect global coverage but the Slepian functions afford spatial and spectral selectivity. The Kalman filter has been utilized to perform the parameter estimation due to its suitable properties in processing the GPS measurements in the real-time mode. The proposed model has been applied to the real data obtained from the ground-based GPS observations across some portion of the IGS network in Europe. Results have been compared with the estimated TECs by the CODE, ESA, IGS centers and IRI-2012 model. The results indicated that the proposed model which takes advantage of the Slepian basis and Kalman filter is efficient and allows for the generation of the near-real-time regional TEC map.
A coupled duration-focused architecture for real-time music-to-score alignment.
Cont, Arshia
2010-06-01
The capacity for real-time synchronization and coordination is a common ability among trained musicians performing a music score that presents an interesting challenge for machine intelligence. Compared to speech recognition, which has influenced many music information retrieval systems, music's temporal dynamics and complexity pose challenging problems to common approximations regarding time modeling of data streams. In this paper, we propose a design for a real-time music-to-score alignment system. Given a live recording of a musician playing a music score, the system is capable of following the musician in real time within the score and decoding the tempo (or pace) of its performance. The proposed design features two coupled audio and tempo agents within a unique probabilistic inference framework that adaptively updates its parameters based on the real-time context. Online decoding is achieved through the collaboration of the coupled agents in a Hidden Hybrid Markov/semi-Markov framework, where prediction feedback of one agent affects the behavior of the other. We perform evaluations for both real-time alignment and the proposed temporal model. An implementation of the presented system has been widely used in real concert situations worldwide and the readers are encouraged to access the actual system and experiment the results.
NASA Astrophysics Data System (ADS)
Romano, M.; Mays, M. L.; Taktakishvili, A.; MacNeice, P. J.; Zheng, Y.; Pulkkinen, A. A.; Kuznetsova, M. M.; Odstrcil, D.
2013-12-01
Modeling coronal mass ejections (CMEs) is of great interest to the space weather research and forecasting communities. We present recent validation work of real-time CME arrival time predictions at different satellites using the WSA-ENLIL+Cone three-dimensional MHD heliospheric model available at the Community Coordinated Modeling Center (CCMC) and performed by the Space Weather Research Center (SWRC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. The quality of model operation is evaluated by comparing its output to a measurable parameter of interest such as the CME arrival time and geomagnetic storm strength. The Kp index is calculated from the relation given in Newell et al. (2007), using solar wind parameters predicted by the WSA-ENLIL+Cone model at Earth. The CME arrival time error is defined as the difference between the predicted arrival time and the observed in-situ CME shock arrival time at the ACE, STEREO A, or STEREO B spacecraft. This study includes all real-time WSA-ENLIL+Cone model simulations performed between June 2011-2013 (over 400 runs) at the CCMC/SWRC. We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we show the average absolute CME arrival time error, and the dependence of this error on CME input parameters such as speed, width, and direction. We also present the predicted geomagnetic storm strength (using the Kp index) error for Earth-directed CMEs.
Iris unwrapping using the Bresenham circle algorithm for real-time iris recognition
NASA Astrophysics Data System (ADS)
Carothers, Matthew T.; Ngo, Hau T.; Rakvic, Ryan N.; Broussard, Randy P.
2015-02-01
An efficient parallel architecture design for the iris unwrapping process in a real-time iris recognition system using the Bresenham Circle Algorithm is presented in this paper. Based on the characteristics of the model parameters this algorithm was chosen over the widely used polar conversion technique as the iris unwrapping model. The architecture design is parallelized to increase the throughput of the system and is suitable for processing an inputted image size of 320 × 240 pixels in real-time using Field Programmable Gate Array (FPGA) technology. Quartus software is used to implement, verify, and analyze the design's performance using the VHSIC Hardware Description Language. The system's predicted processing time is faster than the modern iris unwrapping technique used today∗.
Sequentially Executed Model Evaluation Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-20
Provides a message passing framework between generic input, model and output drivers, and specifies an API for developing such drivers. Also provides batch and real-time controllers which step the model and I/O through the time domain (or other discrete domain), and sample I/O drivers. This is a library framework, and does not, itself, solve any problems or execute any modeling. The SeMe framework aids in development of models which operate on sequential information, such as time-series, where evaluation is based on prior results combined with new data for this iteration. Has applications in quality monitoring, and was developed as partmore » of the CANARY-EDS software, where real-time water quality data is being analyzed for anomalies.« less
NASA Astrophysics Data System (ADS)
Liemohn, M. W.; Welling, D. T.; De Zeeuw, D.; Kuznetsova, M. M.; Rastaetter, L.; Ganushkina, N. Y.; Ilie, R.; Toth, G.; Gombosi, T. I.; van der Holst, B.
2016-12-01
The ground-based magnetometer index Dst is a decent measure of the near-Earth current systems, in particular those in the storm-time inner magnetosphere. The ability of a large-scale, physics-based model to reproduce, or even predict, this index is therefore a tangible measure of the overall validity of the code for space weather research and space weather operational usage. Experimental real-time simulations of the Space Weather Modeling Framework (SWMF) are conducted at the Community Coordinated Modeling Center (CCMC), with results available there (http://ccmc.gsfc.nasa.gov/realtime.php), through the CCMC Integrated Space Weather Analysis (iSWA) site (http://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/), and the Michigan SWMF site (http://csem.engin.umich.edu/realtime). Presently, two configurations of the SWMF are running in real time at CCMC, both focusing on the geospace modules, using the BATS-R-US magnetohydrodynamic model, the Ridley Ionosphere Model, and with and without the Rice Convection Model for inner magnetospheric drift physics. While both have been running for several years, nearly continuous results are available since July 2015. Dst from the model output is compared against the Kyoto real-time Dst. Various quantitative measures are presented to assess the goodness of fit between the models and observations. In particular, correlation coefficients, RMSE and prediction efficiency are calculated and discussed. In addition, contingency tables are presented, demonstrating the ability of the model to predict "disturbed times" as defined by Dst values below some critical threshold. It is shown that the SWMF run with the inner magnetosphere model is significantly better at reproducing storm-time values, with prediction efficiencies above 0.25 and Heidke skill scores above 0.5. This work was funded by NASA and NSF grants, and the European Union's Horizon 2020 research and innovation programme under grant agreement 637302 PROGRESS.
Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review
Misra, Sarthak; Ramesh, K. T.; Okamura, Allison M.
2009-01-01
Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in robot-assisted surgery for pre- and intra-operative planning. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in the development of high-fidelity surgical simulators. Researchers have attempted to model tool-tissue interactions in a wide variety of ways, which can be broadly classified as (1) linear elasticity-based, (2) nonlinear (hyperelastic) elasticity-based finite element (FE) methods, and (3) other techniques that not based on FE methods or continuum mechanics. Realistic modeling of organ deformation requires populating the model with real tissue data (which are difficult to acquire in vivo) and simulating organ response in real time (which is computationally expensive). Further, it is challenging to account for connective tissue supporting the organ, friction, and topological changes resulting from tool-tissue interactions during invasive surgical procedures. Overcoming such obstacles will not only help us to model tool-tissue interactions in real time, but also enable realistic force feedback to the user during surgical simulation. This review paper classifies the existing research on tool-tissue interactions for surgical simulators specifically based on the modeling techniques employed and the kind of surgical operation being simulated, in order to inform and motivate future research on improved tool-tissue interaction models. PMID:20119508
Real-Time MRI-Guided Cardiac Cryo-Ablation: A Feasibility Study.
Kholmovski, Eugene G; Coulombe, Nicolas; Silvernagel, Joshua; Angel, Nathan; Parker, Dennis; Macleod, Rob; Marrouche, Nassir; Ranjan, Ravi
2016-05-01
MRI-based ablation provides an attractive capability of seeing ablation-related tissue changes in real time. Here we describe a real-time MRI-based cardiac cryo-ablation system. Studies were performed in canine model (n = 4) using MR-compatible cryo-ablation devices built for animal use: focal cryo-catheter with 8 mm tip and 28 mm diameter cryo-balloon. The main steps of MRI-guided cardiac cryo-ablation procedure (real-time navigation, confirmation of tip-tissue contact, confirmation of vessel occlusion, real-time monitoring of a freeze zone formation, and intra-procedural assessment of lesions) were validated in a 3 Tesla clinical MRI scanner. The MRI compatible cryo-devices were advanced to the right atrium (RA) and right ventricle (RV) and their position was confirmed by real-time MRI. Specifically, contact between catheter tip and myocardium and occlusion of superior vena cava (SVC) by the balloon was visually validated. Focal cryo-lesions were created in the RV septum. Circumferential ablation of SVC-RA junction with no gaps was achieved using the cryo-balloon. Real-time visualization of freeze zone formation was achieved in all studies when lesions were successfully created. The ablations and presence of collateral damage were confirmed by T1-weighted and late gadolinium enhancement MRI and gross pathological examination. This study confirms the feasibility of a MRI-based cryo-ablation system in performing cardiac ablation procedures. The system allows real-time catheter navigation, confirmation of catheter tip-tissue contact, validation of vessel occlusion by cryo-balloon, real-time monitoring of a freeze zone formation, and intra-procedural assessment of ablations including collateral damage. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Liao, H. Y.; Lin, Y. J.; Chang, H. K.; Shang, R. K.; Kuo, H. C.; Lai, J. S.; Tan, Y. C.
2017-12-01
Taiwan encounters heavy rainfalls frequently. There are three to four typhoons striking Taiwan every year. To provide lead time for reducing flood damage, this study attempt to build a flood early-warning system (FEWS) in Tanshui River using time series correction techniques. The predicted rainfall is used as the input for the rainfall-runoff model. Then, the discharges calculated by the rainfall-runoff model is converted to the 1-D river routing model. The 1-D river routing model will output the simulating water stages in 487 cross sections for the future 48-hr. The downstream water stage at the estuary in 1-D river routing model is provided by storm surge simulation. Next, the water stages of 487 cross sections are corrected by time series model such as autoregressive (AR) model using real-time water stage measurements to improve the predicted accuracy. The results of simulated water stages are displayed on a web-based platform. In addition, the models can be performed remotely by any users with web browsers through a user interface. The on-line video surveillance images, real-time monitoring water stages, and rainfalls can also be shown on this platform. If the simulated water stage exceeds the embankments of Tanshui River, the alerting lights of FEWS will be flashing on the screen. This platform runs periodically and automatically to generate the simulation graphic data of flood water stages for flood disaster prevention and decision making.
Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)
1998-01-01
The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Sanderson, A. C.
1994-01-01
Robot coordination and control systems for remote teleoperation applications are by necessity implemented on distributed computers. Modeling and performance analysis of these distributed robotic systems is difficult, but important for economic system design. Performance analysis methods originally developed for conventional distributed computer systems are often unsatisfactory for evaluating real-time systems. The paper introduces a formal model of distributed robotic control systems; and a performance analysis method, based on scheduling theory, which can handle concurrent hard-real-time response specifications. Use of the method is illustrated by a case of remote teleoperation which assesses the effect of communication delays and the allocation of robot control functions on control system hardware requirements.
Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric
2016-01-01
This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.
Intelligent system of coordination and control for manufacturing
NASA Astrophysics Data System (ADS)
Ciortea, E. M.
2016-08-01
This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.
Real-time Simulation of Turboprop Engine Control System
NASA Astrophysics Data System (ADS)
Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi
2017-05-01
On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.
Real-time processing of radar return on a parallel computer
NASA Technical Reports Server (NTRS)
Aalfs, David D.
1992-01-01
NASA is working with the FAA to demonstrate the feasibility of pulse Doppler radar as a candidate airborne sensor to detect low altitude windshears. The need to provide the pilot with timely information about possible hazards has motivated a demand for real-time processing of a radar return. Investigated here is parallel processing as a means of accommodating the high data rates required. A PC based parallel computer, called the transputer, is used to investigate issues in real time concurrent processing of radar signals. A transputer network is made up of an array of single instruction stream processors that can be networked in a variety of ways. They are easily reconfigured and software development is largely independent of the particular network topology. The performance of the transputer is evaluated in light of the computational requirements. A number of algorithms have been implemented on the transputers in OCCAM, a language specially designed for parallel processing. These include signal processing algorithms such as the Fast Fourier Transform (FFT), pulse-pair, and autoregressive modelling, as well as routing software to support concurrency. The most computationally intensive task is estimating the spectrum. Two approaches have been taken on this problem, the first and most conventional of which is to use the FFT. By using table look-ups for the basis function and other optimizing techniques, an algorithm has been developed that is sufficient for real time. The other approach is to model the signal as an autoregressive process and estimate the spectrum based on the model coefficients. This technique is attractive because it does not suffer from the spectral leakage problem inherent in the FFT. Benchmark tests indicate that autoregressive modeling is feasible in real time.
MicROS-drt: supporting real-time and scalable data distribution in distributed robotic systems.
Ding, Bo; Wang, Huaimin; Fan, Zedong; Zhang, Pengfei; Liu, Hui
A primary requirement in distributed robotic software systems is the dissemination of data to all interested collaborative entities in a timely and scalable manner. However, providing such a service in a highly dynamic and resource-limited robotic environment is a challenging task, and existing robot software infrastructure has limitations in this aspect. This paper presents a novel robot software infrastructure, micROS-drt, which supports real-time and scalable data distribution. The solution is based on a loosely coupled data publish-subscribe model with the ability to support various time-related constraints. And to realize this model, a mature data distribution standard, the data distribution service for real-time systems (DDS), is adopted as the foundation of the transport layer of this software infrastructure. By elaborately adapting and encapsulating the capability of the underlying DDS middleware, micROS-drt can meet the requirement of real-time and scalable data distribution in distributed robotic systems. Evaluation results in terms of scalability, latency jitter and transport priority as well as the experiment on real robots validate the effectiveness of this work.
Model Checking Real Time Java Using Java PathFinder
NASA Technical Reports Server (NTRS)
Lindstrom, Gary; Mehlitz, Peter C.; Visser, Willem
2005-01-01
The Real Time Specification for Java (RTSJ) is an augmentation of Java for real time applications of various degrees of hardness. The central features of RTSJ are real time threads; user defined schedulers; asynchronous events, handlers, and control transfers; a priority inheritance based default scheduler; non-heap memory areas such as immortal and scoped, and non-heap real time threads whose execution is not impeded by garbage collection. The Robust Software Systems group at NASA Ames Research Center has JAVA PATHFINDER (JPF) under development, a Java model checker. JPF at its core is a state exploring JVM which can examine alternative paths in a Java program (e.g., via backtracking) by trying all nondeterministic choices, including thread scheduling order. This paper describes our implementation of an RTSJ profile (subset) in JPF, including requirements, design decisions, and current implementation status. Two examples are analyzed: jobs on a multiprogramming operating system, and a complex resource contention example involving autonomous vehicles crossing an intersection. The utility of JPF in finding logic and timing errors is illustrated, and the remaining challenges in supporting all of RTSJ are assessed.
Emergent Auditory Feature Tuning in a Real-Time Neuromorphic VLSI System.
Sheik, Sadique; Coath, Martin; Indiveri, Giacomo; Denham, Susan L; Wennekers, Thomas; Chicca, Elisabetta
2012-01-01
Many sounds of ecological importance, such as communication calls, are characterized by time-varying spectra. However, most neuromorphic auditory models to date have focused on distinguishing mainly static patterns, under the assumption that dynamic patterns can be learned as sequences of static ones. In contrast, the emergence of dynamic feature sensitivity through exposure to formative stimuli has been recently modeled in a network of spiking neurons based on the thalamo-cortical architecture. The proposed network models the effect of lateral and recurrent connections between cortical layers, distance-dependent axonal transmission delays, and learning in the form of Spike Timing Dependent Plasticity (STDP), which effects stimulus-driven changes in the pattern of network connectivity. In this paper we demonstrate how these principles can be efficiently implemented in neuromorphic hardware. In doing so we address two principle problems in the design of neuromorphic systems: real-time event-based asynchronous communication in multi-chip systems, and the realization in hybrid analog/digital VLSI technology of neural computational principles that we propose underlie plasticity in neural processing of dynamic stimuli. The result is a hardware neural network that learns in real-time and shows preferential responses, after exposure, to stimuli exhibiting particular spectro-temporal patterns. The availability of hardware on which the model can be implemented, makes this a significant step toward the development of adaptive, neurobiologically plausible, spike-based, artificial sensory systems.
Emergent Auditory Feature Tuning in a Real-Time Neuromorphic VLSI System
Sheik, Sadique; Coath, Martin; Indiveri, Giacomo; Denham, Susan L.; Wennekers, Thomas; Chicca, Elisabetta
2011-01-01
Many sounds of ecological importance, such as communication calls, are characterized by time-varying spectra. However, most neuromorphic auditory models to date have focused on distinguishing mainly static patterns, under the assumption that dynamic patterns can be learned as sequences of static ones. In contrast, the emergence of dynamic feature sensitivity through exposure to formative stimuli has been recently modeled in a network of spiking neurons based on the thalamo-cortical architecture. The proposed network models the effect of lateral and recurrent connections between cortical layers, distance-dependent axonal transmission delays, and learning in the form of Spike Timing Dependent Plasticity (STDP), which effects stimulus-driven changes in the pattern of network connectivity. In this paper we demonstrate how these principles can be efficiently implemented in neuromorphic hardware. In doing so we address two principle problems in the design of neuromorphic systems: real-time event-based asynchronous communication in multi-chip systems, and the realization in hybrid analog/digital VLSI technology of neural computational principles that we propose underlie plasticity in neural processing of dynamic stimuli. The result is a hardware neural network that learns in real-time and shows preferential responses, after exposure, to stimuli exhibiting particular spectro-temporal patterns. The availability of hardware on which the model can be implemented, makes this a significant step toward the development of adaptive, neurobiologically plausible, spike-based, artificial sensory systems. PMID:22347163
Dynamic modeling of parallel robots for computed-torque control implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Codourey, A.
1998-12-01
In recent years, increased interest in parallel robots has been observed. Their control with modern theory, such as the computed-torque method, has, however, been restrained, essentially due to the difficulty in establishing a simple dynamic model that can be calculated in real time. In this paper, a simple method based on the virtual work principle is proposed for modeling parallel robots. The mass matrix of the robot, needed for decoupling control strategies, does not explicitly appear in the formulation; however, it can be computed separately, based on kinetic energy considerations. The method is applied to the DELTA parallel robot, leadingmore » to a very efficient model that has been implemented in a real-time computed-torque control algorithm.« less
A real-time prediction model for post-irradiation malignant cervical lymph nodes.
Lo, W-C; Cheng, P-W; Shueng, P-W; Hsieh, C-H; Chang, Y-L; Liao, L-J
2018-04-01
To establish a real-time predictive scoring model based on sonographic characteristics for identifying malignant cervical lymph nodes (LNs) in cancer patients after neck irradiation. One-hundred forty-four irradiation-treated patients underwent ultrasonography and ultrasound-guided fine-needle aspirations (USgFNAs), and the resultant data were used to construct a real-time and computerised predictive scoring model. This scoring system was further compared with our previously proposed prediction model. A predictive scoring model, 1.35 × (L axis) + 2.03 × (S axis) + 2.27 × (margin) + 1.48 × (echogenic hilum) + 3.7, was generated by stepwise multivariate logistic regression analysis. Neck LNs were considered to be malignant when the score was ≥ 7, corresponding to a sensitivity of 85.5%, specificity of 79.4%, positive predictive value (PPV) of 82.3%, negative predictive value (NPV) of 83.1%, and overall accuracy of 82.6%. When this new model and the original model were compared, the areas under the receiver operating characteristic curve (c-statistic) were 0.89 and 0.81, respectively (P < .05). A real-time sonographic predictive scoring model was constructed to provide prompt and reliable guidance for USgFNA biopsies to manage cervical LNs after neck irradiation. © 2017 John Wiley & Sons Ltd.
A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.
Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B
2013-09-01
To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.
Metallurgical Plant Optimization Through the use of Flowsheet Simulation Modelling
NASA Astrophysics Data System (ADS)
Kennedy, Mark William
Modern metallurgical plants typically have complex flowsheets and operate on a continuous basis. Real time interactions within such processes can be complex and the impacts of streams such as recycles on process efficiency and stability can be highly unexpected prior to actual operation. Current desktop computing power, combined with state-of-the-art flowsheet simulation software like Metsim, allow for thorough analysis of designs to explore the interaction between operating rate, heat and mass balances and in particular the potential negative impact of recycles. Using plant information systems, it is possible to combine real plant data with simple steady state models, using dynamic data exchange links to allow for near real time de-bottlenecking of operations. Accurate analytical results can also be combined with detailed unit operations models to allow for feed-forward model-based-control. This paper will explore some examples of the application of Metsim to real world engineering and plant operational issues.
NASA Astrophysics Data System (ADS)
Strano, Salvatore; Terzo, Mario
2018-05-01
The dynamics of the railway vehicles is strongly influenced by the interaction between the wheel and the rail. This kind of contact is affected by several conditioning factors such as vehicle speed, wear, adhesion level and, moreover, it is nonlinear. As a consequence, the modelling and the observation of this kind of phenomenon are complex tasks but, at the same time, they constitute a fundamental step for the estimation of the adhesion level or for the vehicle condition monitoring. This paper presents a novel technique for the real time estimation of the wheel-rail contact forces based on an estimator design model that takes into account the nonlinearities of the interaction by means of a fitting model functional to reproduce the contact mechanics in a wide range of slip and to be easily integrated in a complete model based estimator for railway vehicle.
Soukhanovskii, V. A.; Kaita, R.; Stratton, B.
2016-08-04
Here, a radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T e estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPhersonmore » Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T e-dependent signal within a characteristic divertor detachment equilibration time of ~10–15 ms is expected.« less
Uncertainty evaluation of a regional real-time system for rain-induced landslides
NASA Astrophysics Data System (ADS)
Kirschbaum, Dalia; Stanley, Thomas; Yatheendradas, Soni
2015-04-01
A new prototype regional model and evaluation framework has been developed over Central America and the Caribbean region using satellite-based information including precipitation estimates, modeled soil moisture, topography, soils, as well as regionally available datasets such as road networks and distance to fault zones. The algorithm framework incorporates three static variables: a susceptibility map; a 24-hr rainfall triggering threshold; and an antecedent soil moisture variable threshold, which have been calibrated using historic landslide events. The thresholds are regionally heterogeneous and are based on the percentile distribution of the rainfall or antecedent moisture time series. A simple decision tree algorithm framework integrates all three variables with the rainfall and soil moisture time series and generates a landslide nowcast in real-time based on the previous 24 hours over this region. This system has been evaluated using several available landslide inventories over the Central America and Caribbean region. Spatiotemporal uncertainty and evaluation metrics of the model are presented here based on available landslides reports. This work also presents a probabilistic representation of potential landslide activity over the region which can be used to further refine and improve the real-time landslide hazard assessment system as well as better identify and characterize the uncertainties inherent in this type of regional approach. The landslide algorithm provides a flexible framework to improve hazard estimation and reduce uncertainty at any spatial and temporal scale.
Póvoa, P; Oehmen, A; Inocêncio, P; Matos, J S; Frazão, A
2017-05-01
The main objective of this paper is to demonstrate the importance of applying dynamic modelling and real energy prices on a full scale water resource recovery facility (WRRF) for the evaluation of control strategies in terms of energy costs with aeration. The Activated Sludge Model No. 1 (ASM1) was coupled with real energy pricing and a power consumption model and applied as a dynamic simulation case study. The model calibration is based on the STOWA protocol. The case study investigates the importance of providing real energy pricing comparing (i) real energy pricing, (ii) weighted arithmetic mean energy pricing and (iii) arithmetic mean energy pricing. The operational strategies evaluated were (i) old versus new air diffusers, (ii) different DO set-points and (iii) implementation of a carbon removal controller based on nitrate sensor readings. The application in a full scale WRRF of the ASM1 model coupled with real energy costs was successful. Dynamic modelling with real energy pricing instead of constant energy pricing enables the wastewater utility to optimize energy consumption according to the real energy price structure. Specific energy cost allows the identification of time periods with potential for linking WRRF with the electric grid to optimize the treatment costs, satisfying operational goals.
Change Semantic Constrained Online Data Cleaning Method for Real-Time Observational Data Stream
NASA Astrophysics Data System (ADS)
Ding, Yulin; Lin, Hui; Li, Rongrong
2016-06-01
Recent breakthroughs in sensor networks have made it possible to collect and assemble increasing amounts of real-time observational data by observing dynamic phenomena at previously impossible time and space scales. Real-time observational data streams present potentially profound opportunities for real-time applications in disaster mitigation and emergency response, by providing accurate and timeliness estimates of environment's status. However, the data are always subject to inevitable anomalies (including errors and anomalous changes/events) caused by various effects produced by the environment they are monitoring. The "big but dirty" real-time observational data streams can rarely achieve their full potential in the following real-time models or applications due to the low data quality. Therefore, timely and meaningful online data cleaning is a necessary pre-requisite step to ensure the quality, reliability, and timeliness of the real-time observational data. In general, a straightforward streaming data cleaning approach, is to define various types of models/classifiers representing normal behavior of sensor data streams and then declare any deviation from this model as normal or erroneous data. The effectiveness of these models is affected by dynamic changes of deployed environments. Due to the changing nature of the complicated process being observed, real-time observational data is characterized by diversity and dynamic, showing a typical Big (Geo) Data characters. Dynamics and diversity is not only reflected in the data values, but also reflected in the complicated changing patterns of the data distributions. This means the pattern of the real-time observational data distribution is not stationary or static but changing and dynamic. After the data pattern changed, it is necessary to adapt the model over time to cope with the changing patterns of real-time data streams. Otherwise, the model will not fit the following observational data streams, which may led to large estimation error. In order to achieve the best generalization error, it is an important challenge for the data cleaning methodology to be able to characterize the behavior of data stream distributions and adaptively update a model to include new information and remove old information. However, the complicated data changing property invalidates traditional data cleaning methods, which rely on the assumption of a stationary data distribution, and drives the need for more dynamic and adaptive online data cleaning methods. To overcome these shortcomings, this paper presents a change semantics constrained online filtering method for real-time observational data. Based on the principle that the filter parameter should vary in accordance to the data change patterns, this paper embeds semantic description, which quantitatively depicts the change patterns in the data distribution to self-adapt the filter parameter automatically. Real-time observational water level data streams of different precipitation scenarios are selected for testing. Experimental results prove that by means of this method, more accurate and reliable water level information can be available, which is prior to scientific and prompt flood assessment and decision-making.
Vukovic, Vladimir; Tabares-Velasco, Paulo Cesar; Srebric, Jelena
2010-09-01
A growing interest in security and occupant exposure to contaminants revealed a need for fast and reliable identification of contaminant sources during incidental situations. To determine potential contaminant source positions in outdoor environments, current state-of-the-art modeling methods use computational fluid dynamic simulations on parallel processors. In indoor environments, current tools match accidental contaminant distributions with cases from precomputed databases of possible concentration distributions. These methods require intensive computations in pre- and postprocessing. On the other hand, neural networks emerged as a tool for rapid concentration forecasting of outdoor environmental contaminants such as nitrogen oxides or sulfur dioxide. All of these modeling methods depend on the type of sensors used for real-time measurements of contaminant concentrations. A review of the existing sensor technologies revealed that no perfect sensor exists, but intensity of work in this area provides promising results in the near future. The main goal of the presented research study was to extend neural network modeling from the outdoor to the indoor identification of source positions, making this technology applicable to building indoor environments. The developed neural network Locator of Contaminant Sources was also used to optimize number and allocation of contaminant concentration sensors for real-time prediction of indoor contaminant source positions. Such prediction should take place within seconds after receiving real-time contaminant concentration sensor data. For the purpose of neural network training, a multizone program provided distributions of contaminant concentrations for known source positions throughout a test building. Trained networks had an output indicating contaminant source positions based on measured concentrations in different building zones. A validation case based on a real building layout and experimental data demonstrated the ability of this method to identify contaminant source positions. Future research intentions are focused on integration with real sensor networks and model improvements for much more complicated contamination scenarios.
A Method for Generating Reduced-Order Linear Models of Multidimensional Supersonic Inlets
NASA Technical Reports Server (NTRS)
Chicatelli, Amy; Hartley, Tom T.
1998-01-01
Simulation of high speed propulsion systems may be divided into two categories, nonlinear and linear. The nonlinear simulations are usually based on multidimensional computational fluid dynamics (CFD) methodologies and tend to provide high resolution results that show the fine detail of the flow. Consequently, these simulations are large, numerically intensive, and run much slower than real-time. ne linear simulations are usually based on large lumping techniques that are linearized about a steady-state operating condition. These simplistic models often run at or near real-time but do not always capture the detailed dynamics of the plant. Under a grant sponsored by the NASA Lewis Research Center, Cleveland, Ohio, a new method has been developed that can be used to generate improved linear models for control design from multidimensional steady-state CFD results. This CFD-based linear modeling technique provides a small perturbation model that can be used for control applications and real-time simulations. It is important to note the utility of the modeling procedure; all that is needed to obtain a linear model of the propulsion system is the geometry and steady-state operating conditions from a multidimensional CFD simulation or experiment. This research represents a beginning step in establishing a bridge between the controls discipline and the CFD discipline so that the control engineer is able to effectively use multidimensional CFD results in control system design and analysis.
Real time polymer nanocomposites-based physical nanosensors: theory and modeling.
Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri
2017-09-01
Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.
Real time polymer nanocomposites-based physical nanosensors: theory and modeling
NASA Astrophysics Data System (ADS)
Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri
2017-09-01
Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.
Zhou, Jianyong; Luo, Zu; Li, Chunquan; Deng, Mi
2018-01-01
When the meshless method is used to establish the mathematical-mechanical model of human soft tissues, it is necessary to define the space occupied by human tissues as the problem domain and the boundary of the domain as the surface of those tissues. Nodes should be distributed in both the problem domain and on the boundaries. Under external force, the displacement of the node is computed by the meshless method to represent the deformation of biological soft tissues. However, computation by the meshless method consumes too much time, which will affect the simulation of real-time deformation of human tissues in virtual surgery. In this article, the Marquardt's Algorithm is proposed to fit the nodal displacement at the problem domain's boundary and obtain the relationship between surface deformation and force. When different external forces are applied, the deformation of soft tissues can be quickly obtained based on this relationship. The analysis and discussion show that the improved model equations with Marquardt's Algorithm not only can simulate the deformation in real-time but also preserve the authenticity of the deformation model's physical properties. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Manconi, A.; Giordan, D.
2015-07-01
We apply failure forecast models by exploiting near-real-time monitoring data for the La Saxe rockslide, a large unstable slope threatening Aosta Valley in northern Italy. Starting from the inverse velocity theory, we analyze landslide surface displacements automatically and in near real time on different temporal windows and apply straightforward statistical methods to obtain confidence intervals on the estimated time of failure. Here, we present the result obtained for the La Saxe rockslide, a large unstable slope located in Aosta Valley, northern Italy. Based on this case study, we identify operational thresholds that are established on the reliability of the forecast models. Our approach is aimed at supporting the management of early warning systems in the most critical phases of the landslide emergency.
Research on rapid agile metrology for manufacturing based on real-time multitask operating system
NASA Astrophysics Data System (ADS)
Chen, Jihong; Song, Zhen; Yang, Daoshan; Zhou, Ji; Buckley, Shawn
1996-10-01
Rapid agile metrology for manufacturing (RAMM) using multiple non-contact sensors is likely to remain a growing trend in manufacturing. High speed inspecting systems for manufacturing is characterized by multitasks implemented in parallel and real-time events which occur simultaneously. In this paper, we introduce a real-time operating system into RAMM research. A general task model of a class-based object- oriented technology is proposed. A general multitask frame of a typical RAMM system using OPNet is discussed. Finally, an application example of a machine which inspects parts held on a carrier strip is described. With RTOS and OPNet, this machine can measure two dimensions of the contacts at 300 parts/second.
An embedded multi-core parallel model for real-time stereo imaging
NASA Astrophysics Data System (ADS)
He, Wenjing; Hu, Jian; Niu, Jingyu; Li, Chuanrong; Liu, Guangyu
2018-04-01
The real-time processing based on embedded system will enhance the application capability of stereo imaging for LiDAR and hyperspectral sensor. The task partitioning and scheduling strategies for embedded multiprocessor system starts relatively late, compared with that for PC computer. In this paper, aimed at embedded multi-core processing platform, a parallel model for stereo imaging is studied and verified. After analyzing the computing amount, throughout capacity and buffering requirements, a two-stage pipeline parallel model based on message transmission is established. This model can be applied to fast stereo imaging for airborne sensors with various characteristics. To demonstrate the feasibility and effectiveness of the parallel model, a parallel software was designed using test flight data, based on the 8-core DSP processor TMS320C6678. The results indicate that the design performed well in workload distribution and had a speed-up ratio up to 6.4.
Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection
Hedberg, Thomas; Lubell, Joshua; Fischer, Lyle; Maggiano, Larry; Feeney, Allison Barnard
2016-01-01
A number of manufacturing companies have reported anecdotal evidence describing the benefits of Model-Based Enterprise (MBE). Based on this evidence, major players in industry have embraced a vision to deploy MBE. In our view, the best chance of realizing this vision is the creation of a single “digital thread.” Under MBE, there exists a Model-Based Definition (MBD), created by the Engineering function, that downstream functions reuse to complete Model-Based Manufacturing and Model-Based Inspection activities. The ensemble of data that enables the combination of model-based definition, manufacturing, and inspection defines this digital thread. Such a digital thread would enable real-time design and analysis, collaborative process-flow development, automated artifact creation, and full-process traceability in a seamless real-time collaborative development among project participants. This paper documents the strengths and weaknesses in the current, industry strategies for implementing MBE. It also identifies gaps in the transition and/or exchange of data between various manufacturing processes. Lastly, this paper presents measured results from a study of model-based processes compared to drawing-based processes and provides evidence to support the anecdotal evidence and vision made by industry. PMID:27325911
Modeling Interdependent and Periodic Real-World Action Sequences
Kurashima, Takeshi; Althoff, Tim; Leskovec, Jure
2018-01-01
Mobile health applications, including those that track activities such as exercise, sleep, and diet, are becoming widely used. Accurately predicting human actions in the real world is essential for targeted recommendations that could improve our health and for personalization of these applications. However, making such predictions is extremely difficult due to the complexities of human behavior, which consists of a large number of potential actions that vary over time, depend on each other, and are periodic. Previous work has not jointly modeled these dynamics and has largely focused on item consumption patterns instead of broader types of behaviors such as eating, commuting or exercising. In this work, we develop a novel statistical model, called TIPAS, for Time-varying, Interdependent, and Periodic Action Sequences. Our approach is based on personalized, multivariate temporal point processes that model time-varying action propensities through a mixture of Gaussian intensities. Our model captures short-term and long-term periodic interdependencies between actions through Hawkes process-based self-excitations. We evaluate our approach on two activity logging datasets comprising 12 million real-world actions (e.g., eating, sleep, and exercise) taken by 20 thousand users over 17 months. We demonstrate that our approach allows us to make successful predictions of future user actions and their timing. Specifically, TIPAS improves predictions of actions, and their timing, over existing methods across multiple datasets by up to 156%, and up to 37%, respectively. Performance improvements are particularly large for relatively rare and periodic actions such as walking and biking, improving over baselines by up to 256%. This demonstrates that explicit modeling of dependencies and periodicities in real-world behavior enables successful predictions of future actions, with implications for modeling human behavior, app personalization, and targeting of health interventions. PMID:29780977
Eberle, Claudia; Ament, Christoph
2012-01-01
Background With continuous glucose sensors (CGSs), it is possible to obtain a dynamical signal of the patient’s subcutaneous glucose concentration in real time. How could that information be exploited? We suggest a model-based diagnosis system with a twofold objective: real-time state estimation and long-term model parameter identification. Methods To obtain a dynamical model, Bergman’s nonlinear minimal model (considering plasma glucose G, insulin I, and interstitial insulin X) is extended by two states describing first and second insulin response. Furthermore, compartments for oral glucose and subcutaneous insulin inputs as well as for subcutaneous glucose measurement are added. The observability of states and external inputs as well as the identifiability of model parameters are assessed using the empirical observability Gramian. Signals are estimated for different nondiabetic and diabetic scenarios by unscented Kalman filter. Results (1) Observability of different state subsets is evaluated, e.g., from CGSs, {G, I} or {G, X} can be observed and the set {G, I, X} cannot. (2) Model parameters are included, e.g., it is possible to estimate the second-phase insulin response gain kG2 additionally. This can be used for model adaptation and as a diagnostic parameter that is almost zero for diabetes patients. (3) External inputs are considered, e.g., oral glucose is theoretically observable for nondiabetic patients, but estimation scenarios show that the time delay of 1 h limits application. Conclusions A real-time estimation of states (such as plasma insulin I) and parameters (such as kG2) is possible, which allows an improved real-time state prediction and a personalized model. PMID:23063042
Novel Real-Time Facial Wound Recovery Synthesis Using Subsurface Scattering
Chin, Seongah
2014-01-01
We propose a wound recovery synthesis model that illustrates the appearance of a wound healing on a 3-dimensional (3D) face. The H3 model is used to determine the size of the recovering wound. Furthermore, we present our subsurface scattering model that is designed to take the multilayered skin structure of the wound into consideration to represent its color transformation. We also propose a novel real-time rendering method based on the results of an analysis of the characteristics of translucent materials. Finally, we validate the proposed methods with 3D wound-simulation experiments using shading models. PMID:25197721
A quantitative risk-based model for reasoning over critical system properties
NASA Technical Reports Server (NTRS)
Feather, M. S.
2002-01-01
This position paper suggests the use of a quantitative risk-based model to help support reeasoning and decision making that spans many of the critical properties such as security, safety, survivability, fault tolerance, and real-time.
Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery.
Haouchine, Nazim; Cotin, Stephane; Peterlik, Igor; Dequidt, Jeremie; Lopez, Mario Sanz; Kerrien, Erwan; Berger, Marie-Odile
2015-05-01
This paper presents a method for real-time augmented reality of internal liver structures during minimally invasive hepatic surgery. Vessels and tumors computed from pre-operative CT scans can be overlaid onto the laparoscopic view for surgery guidance. Compared to current methods, our method is able to locate the in-depth positions of the tumors based on partial three-dimensional liver tissue motion using a real-time biomechanical model. This model permits to properly handle the motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many anatomical structures. Experimentations conducted on phantom liver permits to measure the accuracy of the augmentation while real-time augmentation on in vivo human liver during real surgery shows the benefits of such an approach for minimally invasive surgery.
Real Time Updating Genetic Network Programming for Adapting to the Change of Stock Prices
NASA Astrophysics Data System (ADS)
Chen, Yan; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro
The key in stock trading model is to take the right actions for trading at the right time, primarily based on the accurate forecast of future stock trends. Since an effective trading with given information of stock prices needs an intelligent strategy for the decision making, we applied Genetic Network Programming (GNP) to creating a stock trading model. In this paper, we propose a new method called Real Time Updating Genetic Network Programming (RTU-GNP) for adapting to the change of stock prices. There are three important points in this paper: First, the RTU-GNP method makes a stock trading decision considering both the recommendable information of technical indices and the candlestick charts according to the real time stock prices. Second, we combine RTU-GNP with a Sarsa learning algorithm to create the programs efficiently. Also, sub-nodes are introduced in each judgment and processing node to determine appropriate actions (buying/selling) and to select appropriate stock price information depending on the situation. Third, a Real Time Updating system has been firstly introduced in our paper considering the change of the trend of stock prices. The experimental results on the Japanese stock market show that the trading model with the proposed RTU-GNP method outperforms other models without real time updating. We also compared the experimental results using the proposed method with Buy&Hold method to confirm its effectiveness, and it is clarified that the proposed trading model can obtain much higher profits than Buy&Hold method.
Development of an irrigation scheduling software based on model predicted crop water stress
USDA-ARS?s Scientific Manuscript database
Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...
Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models.
Yu, Kezi; Quirk, J Gerald; Djurić, Petar M
2017-01-01
In this paper, we propose an application of non-parametric Bayesian (NPB) models for classification of fetal heart rate (FHR) recordings. More specifically, we propose models that are used to differentiate between FHR recordings that are from fetuses with or without adverse outcomes. In our work, we rely on models based on hierarchical Dirichlet processes (HDP) and the Chinese restaurant process with finite capacity (CRFC). Two mixture models were inferred from real recordings, one that represents healthy and another, non-healthy fetuses. The models were then used to classify new recordings and provide the probability of the fetus being healthy. First, we compared the classification performance of the HDP models with that of support vector machines on real data and concluded that the HDP models achieved better performance. Then we demonstrated the use of mixture models based on CRFC for dynamic classification of the performance of (FHR) recordings in a real-time setting.
Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models
Yu, Kezi; Quirk, J. Gerald
2017-01-01
In this paper, we propose an application of non-parametric Bayesian (NPB) models for classification of fetal heart rate (FHR) recordings. More specifically, we propose models that are used to differentiate between FHR recordings that are from fetuses with or without adverse outcomes. In our work, we rely on models based on hierarchical Dirichlet processes (HDP) and the Chinese restaurant process with finite capacity (CRFC). Two mixture models were inferred from real recordings, one that represents healthy and another, non-healthy fetuses. The models were then used to classify new recordings and provide the probability of the fetus being healthy. First, we compared the classification performance of the HDP models with that of support vector machines on real data and concluded that the HDP models achieved better performance. Then we demonstrated the use of mixture models based on CRFC for dynamic classification of the performance of (FHR) recordings in a real-time setting. PMID:28953927
Variable Generation Power Forecasting as a Big Data Problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupt, Sue Ellen; Kosovic, Branko
To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less
Variable Generation Power Forecasting as a Big Data Problem
Haupt, Sue Ellen; Kosovic, Branko
2016-10-10
To blend growing amounts of power from renewable resources into utility operations requires accurate forecasts. For both day ahead planning and real-time operations, the power from the wind and solar resources must be predicted based on real-time observations and a series of models that span the temporal and spatial scales of the problem, using the physical and dynamical knowledge as well as computational intelligence. Accurate prediction is a Big Data problem that requires disparate data, multiple models that are each applicable for a specific time frame, and application of computational intelligence techniques to successfully blend all of the model andmore » observational information in real-time and deliver it to the decision makers at utilities and grid operators. This paper describes an example system that has been used for utility applications and how it has been configured to meet utility needs while addressing the Big Data issues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Renke; Jin, Shuangshuang; Chen, Yousu
This paper presents a faster-than-real-time dynamic simulation software package that is designed for large-size power system dynamic simulation. It was developed on the GridPACKTM high-performance computing (HPC) framework. The key features of the developed software package include (1) faster-than-real-time dynamic simulation for a WECC system (17,000 buses) with different types of detailed generator, controller, and relay dynamic models, (2) a decoupled parallel dynamic simulation algorithm with optimized computation architecture to better leverage HPC resources and technologies, (3) options for HPC-based linear and iterative solvers, (4) hidden HPC details, such as data communication and distribution, to enable development centered on mathematicalmore » models and algorithms rather than on computational details for power system researchers, and (5) easy integration of new dynamic models and related algorithms into the software package.« less
Data Centric Sensor Stream Reduction for Real-Time Applications in Wireless Sensor Networks
Aquino, Andre Luiz Lins; Nakamura, Eduardo Freire
2009-01-01
This work presents a data-centric strategy to meet deadlines in soft real-time applications in wireless sensor networks. This strategy considers three main aspects: (i) The design of real-time application to obtain the minimum deadlines; (ii) An analytic model to estimate the ideal sample size used by data-reduction algorithms; and (iii) Two data-centric stream-based sampling algorithms to perform data reduction whenever necessary. Simulation results show that our data-centric strategies meet deadlines without loosing data representativeness. PMID:22303145
A new ChainMail approach for real-time soft tissue simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2016-07-03
This paper presents a new ChainMail method for real-time soft tissue simulation. This method enables the use of different material properties for chain elements to accommodate various materials. Based on the ChainMail bounding region, a new time-saving scheme is developed to improve computational efficiency for isotropic materials. The proposed method also conserves volume and strain energy. Experimental results demonstrate that the proposed ChainMail method can not only accommodate isotropic, anisotropic and heterogeneous materials but also model incompressibility and relaxation behaviors of soft tissues. Further, the proposed method can achieve real-time computational performance.
Portals for Real-Time Earthquake Data and Forecasting: Challenge and Promise (Invited)
NASA Astrophysics Data System (ADS)
Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Feltstykket, R.; Donnellan, A.; Glasscoe, M. T.
2013-12-01
Earthquake forecasts have been computed by a variety of countries world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. However, recent events clearly demonstrate that mitigating personal risk is becoming the responsibility of individual members of the public. Open access to a variety of web-based forecasts, tools, utilities and information is therefore required. Portals for data and forecasts present particular challenges, and require the development of both apps and the client/server architecture to deliver the basic information in real time. The basic forecast model we consider is the Natural Time Weibull (NTW) method (JBR et al., Phys. Rev. E, 86, 021106, 2012). This model uses small earthquakes (';seismicity-based models') to forecast the occurrence of large earthquakes, via data-mining algorithms combined with the ANSS earthquake catalog. This method computes large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Localizing these forecasts in space so that global forecasts can be computed in real time presents special algorithmic challenges, which we describe in this talk. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we compute real-time global forecasts at a grid scale of 0.1o. We analyze and monitor the performance of these models using the standard tests, which include the Reliability/Attributes and Receiver Operating Characteristic (ROC) tests. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges of serving up these datasets over the web on web-based platforms such as those at www.quakesim.org , www.e-decider.org , and www.openhazards.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan
A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less
Magari, Robert T
2002-03-01
The effect of different lot-to-lot variability levels on the prediction of stability are studied based on two statistical models for estimating degradation in real time and accelerated stability tests. Lot-to-lot variability is considered as random in both models, and is attributed to two sources-variability at time zero, and variability of degradation rate. Real-time stability tests are modeled as a function of time while accelerated stability tests as a function of time and temperatures. Several data sets were simulated, and a maximum likelihood approach was used for estimation. The 95% confidence intervals for the degradation rate depend on the amount of lot-to-lot variability. When lot-to-lot degradation rate variability is relatively large (CV > or = 8%) the estimated confidence intervals do not represent the trend for individual lots. In such cases it is recommended to analyze each lot individually. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91: 893-899, 2002
A comparison of moving object detection methods for real-time moving object detection
NASA Astrophysics Data System (ADS)
Roshan, Aditya; Zhang, Yun
2014-06-01
Moving object detection has a wide variety of applications from traffic monitoring, site monitoring, automatic theft identification, face detection to military surveillance. Many methods have been developed across the globe for moving object detection, but it is very difficult to find one which can work globally in all situations and with different types of videos. The purpose of this paper is to evaluate existing moving object detection methods which can be implemented in software on a desktop or laptop, for real time object detection. There are several moving object detection methods noted in the literature, but few of them are suitable for real time moving object detection. Most of the methods which provide for real time movement are further limited by the number of objects and the scene complexity. This paper evaluates the four most commonly used moving object detection methods as background subtraction technique, Gaussian mixture model, wavelet based and optical flow based methods. The work is based on evaluation of these four moving object detection methods using two (2) different sets of cameras and two (2) different scenes. The moving object detection methods have been implemented using MatLab and results are compared based on completeness of detected objects, noise, light change sensitivity, processing time etc. After comparison, it is observed that optical flow based method took least processing time and successfully detected boundary of moving objects which also implies that it can be implemented for real-time moving object detection.
Real time implementation and control validation of the wind energy conversion system
NASA Astrophysics Data System (ADS)
Sattar, Adnan
The purpose of the thesis is to analyze dynamic and transient characteristics of wind energy conversion systems including the stability issues in real time environment using the Real Time Digital Simulator (RTDS). There are different power system simulation tools available in the market. Real time digital simulator (RTDS) is one of the powerful tools among those. RTDS simulator has a Graphical User Interface called RSCAD which contains detail component model library for both power system and control relevant analysis. The hardware is based upon the digital signal processors mounted in the racks. RTDS simulator has the advantage of interfacing the real world signals from the external devices, hence used to test the protection and control system equipments. Dynamic and transient characteristics of the fixed and variable speed wind turbine generating systems (WTGSs) are analyzed, in this thesis. Static Synchronous Compensator (STATCOM) as a flexible ac transmission system (FACTS) device is used to enhance the fault ride through (FRT) capability of the fixed speed wind farm. Two level voltage source converter based STATCOM is modeled in both VSC small time-step and VSC large time-step of RTDS. The simulation results of the RTDS model system are compared with the off-line EMTP software i.e. PSCAD/EMTDC. A new operational scheme for a MW class grid-connected variable speed wind turbine driven permanent magnet synchronous generator (VSWT-PMSG) is developed. VSWT-PMSG uses fully controlled frequency converters for the grid interfacing and thus have the ability to control the real and reactive powers simultaneously. Frequency converters are modeled in the VSC small time-step of the RTDS and three phase realistic grid is adopted with RSCAD simulation through the use of optical analogue digital converter (OADC) card of the RTDS. Steady state and LVRT characteristics are carried out to validate the proposed operational scheme. Simulation results show good agreement with real time simulation software and thus can be used to validate the controllers for the real time operation. Integration of the Battery Energy Storage System (BESS) with wind farm can smoothen its intermittent power fluctuations. The work also focuses on the real time implementation of the Sodium Sulfur (NaS) type BESS. BESS is integrated with the STATCOM. The main advantage of this system is that it can also provide the reactive power support to the system along with the real power exchange from BESS unit. BESS integrated with STATCOM is modeled in the VSC small time-step of the RTDS. The cascaded vector control scheme is used for the control of the STATCOM and suitable control is developed to control the charging/discharging of the NaS type BESS. Results are compared with Laboratory standard power system software PSCAD/EMTDC and the advantages of using RTDS in dynamic and transient characteristics analyses of wind farm are also demonstrated clearly.
Automated Urban Travel Interpretation: A Bottom-up Approach for Trajectory Segmentation.
Das, Rahul Deb; Winter, Stephan
2016-11-23
Understanding travel behavior is critical for an effective urban planning as well as for enabling various context-aware service provisions to support mobility as a service (MaaS). Both applications rely on the sensor traces generated by travellers' smartphones. These traces can be used to interpret travel modes, both for generating automated travel diaries as well as for real-time travel mode detection. Current approaches segment a trajectory by certain criteria, e.g., drop in speed. However, these criteria are heuristic, and, thus, existing approaches are subjective and involve significant vagueness and uncertainty in activity transitions in space and time. Also, segmentation approaches are not suited for real time interpretation of open-ended segments, and cannot cope with the frequent gaps in the location traces. In order to address all these challenges a novel, state based bottom-up approach is proposed. This approach assumes a fixed atomic segment of a homogeneous state, instead of an event-based segment, and a progressive iteration until a new state is found. The research investigates how an atomic state-based approach can be developed in such a way that can work in real time, near-real time and offline mode and in different environmental conditions with their varying quality of sensor traces. The results show the proposed bottom-up model outperforms the existing event-based segmentation models in terms of adaptivity, flexibility, accuracy and richness in information delivery pertinent to automated travel behavior interpretation.
Automated Urban Travel Interpretation: A Bottom-up Approach for Trajectory Segmentation
Das, Rahul Deb; Winter, Stephan
2016-01-01
Understanding travel behavior is critical for an effective urban planning as well as for enabling various context-aware service provisions to support mobility as a service (MaaS). Both applications rely on the sensor traces generated by travellers’ smartphones. These traces can be used to interpret travel modes, both for generating automated travel diaries as well as for real-time travel mode detection. Current approaches segment a trajectory by certain criteria, e.g., drop in speed. However, these criteria are heuristic, and, thus, existing approaches are subjective and involve significant vagueness and uncertainty in activity transitions in space and time. Also, segmentation approaches are not suited for real time interpretation of open-ended segments, and cannot cope with the frequent gaps in the location traces. In order to address all these challenges a novel, state based bottom-up approach is proposed. This approach assumes a fixed atomic segment of a homogeneous state, instead of an event-based segment, and a progressive iteration until a new state is found. The research investigates how an atomic state-based approach can be developed in such a way that can work in real time, near-real time and offline mode and in different environmental conditions with their varying quality of sensor traces. The results show the proposed bottom-up model outperforms the existing event-based segmentation models in terms of adaptivity, flexibility, accuracy and richness in information delivery pertinent to automated travel behavior interpretation. PMID:27886053
NASA Astrophysics Data System (ADS)
Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki
2018-03-01
A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.
A Lyapunov Function Based Remedial Action Screening Tool Using Real-Time Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Joydeep; Ben-Idris, Mohammed; Faruque, Omar
This report summarizes the outcome of a research project that comprised the development of a Lyapunov function based remedial action screening tool using real-time data (L-RAS). The L-RAS is an advanced computational tool that is intended to assist system operators in making real-time redispatch decisions to preserve power grid stability. The tool relies on screening contingencies using a homotopy method based on Lyapunov functions to avoid, to the extent possible, the use of time domain simulations. This enables transient stability evaluation at real-time speed without the use of massively parallel computational resources. The project combined the following components. 1. Developmentmore » of a methodology for contingency screening using a homotopy method based on Lyapunov functions and real-time data. 2. Development of a methodology for recommending remedial actions based on the screening results. 3. Development of a visualization and operator interaction interface. 4. Testing of screening tool, validation of control actions, and demonstration of project outcomes on a representative real system simulated on a Real-Time Digital Simulator (RTDS) cluster. The project was led by Michigan State University (MSU), where the theoretical models including homotopy-based screening, trajectory correction using real-time data, and remedial action were developed and implemented in the form of research-grade software. Los Alamos National Laboratory (LANL) contributed to the development of energy margin sensitivity dynamics, which constituted a part of the remedial action portfolio. Florida State University (FSU) and Southern California Edison (SCE) developed a model of the SCE system that was implemented on FSU's RTDS cluster to simulate real-time data that was streamed over the internet to MSU where the L-RAS tool was executed and remedial actions were communicated back to FSU to execute stabilizing controls on the simulated system. LCG Consulting developed the visualization and operator interaction interface, based on specifications provided by MSU. The project was performed from October 2012 to December 2016, at the end of which the L-RAS tool, as described above, was completed and demonstrated. The project resulted in the following innovations and contributions: (a) the L-RAS software prototype, tested on a simulated system, vetted by utility personnel, and potentially ready for wider testing and commercialization; (b) an RTDS-based test bed that can be used for future research in the field; (c) a suite of breakthrough theoretical contributions to the field of power system stability and control; and (d) a new tool for visualization of power system stability margins. While detailed descriptions of the development and implementation of the various project components have been provided in the quarterly reports, this final report provides an overview of the complete project, and is demonstrated using public domain test systems commonly used in the literature. The SCE system, and demonstrations thereon, are not included in this report due to Critical Energy Infrastructure Information (CEII) restrictions.« less
A New Real - Time Fault Detection Methodology for Systems Under Test. Phase 1
NASA Technical Reports Server (NTRS)
Johnson, Roger W.; Jayaram, Sanjay; Hull, Richard A.
1998-01-01
The purpose of this research is focussed on the identification/demonstration of critical technology innovations that will be applied to various applications viz. Detection of automated machine Health Monitoring (BM, real-time data analysis and control of Systems Under Test (SUT). This new innovation using a High Fidelity Dynamic Model-based Simulation (BFDMS) approach will be used to implement a real-time monitoring, Test and Evaluation (T&E) methodology including the transient behavior of the system under test. The unique element of this process control technique is the use of high fidelity, computer generated dynamic models to replicate the behavior of actual Systems Under Test (SUT). It will provide a dynamic simulation capability that becomes the reference truth model, from which comparisons are made with the actual raw/conditioned data from the test elements.
Graphic analysis and multifractal on percolation-based return interval series
NASA Astrophysics Data System (ADS)
Pei, A. Q.; Wang, J.
2015-05-01
A financial time series model is developed and investigated by the oriented percolation system (one of the statistical physics systems). The nonlinear and statistical behaviors of the return interval time series are studied for the proposed model and the real stock market by applying visibility graph (VG) and multifractal detrended fluctuation analysis (MF-DFA). We investigate the fluctuation behaviors of return intervals of the model for different parameter settings, and also comparatively study these fluctuation patterns with those of the real financial data for different threshold values. The empirical research of this work exhibits the multifractal features for the corresponding financial time series. Further, the VGs deviated from both of the simulated data and the real data show the behaviors of small-world, hierarchy, high clustering and power-law tail for the degree distributions.
Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
Borbély, Bence J; Szolgay, Péter
2017-01-17
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
Real-Time Tropospheric Delay Estimation using IGS Products
NASA Astrophysics Data System (ADS)
Stürze, Andrea; Liu, Sha; Söhne, Wolfgang
2014-05-01
The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it opens the possibility to evaluate the potential of troposphere parameter determination in real-time and its effect to Precise Point Positioning. Starting with an offline investigation of the influence of different RTS products and a priori troposphere models the configuration delivering the best results is used for a real-time processing of the GREF (German Geodetic Reference) network over a suitable period of time. The evaluation of the derived ZTD parameters and station heights is done with respect to well proven GREF, EUREF, IGS, and E-GVAP analysis results. Keywords: GNSS, Zenith Tropospheric Delay, Real-time Precise Point Positioning
Tensor body: real-time reconstruction of the human body and avatar synthesis from RGB-D.
Barmpoutis, Angelos
2013-10-01
Real-time 3-D reconstruction of the human body has many applications in anthropometry, telecommunications, gaming, fashion, and other areas of human-computer interaction. In this paper, a novel framework is presented for reconstructing the 3-D model of the human body from a sequence of RGB-D frames. The reconstruction is performed in real time while the human subject moves arbitrarily in front of the camera. The method employs a novel parameterization of cylindrical-type objects using Cartesian tensor and b-spline bases along the radial and longitudinal dimension respectively. The proposed model, dubbed tensor body, is fitted to the input data using a multistep framework that involves segmentation of the different body regions, robust filtering of the data via a dynamic histogram, and energy-based optimization with positive-definite constraints. A Riemannian metric on the space of positive-definite tensor splines is analytically defined and employed in this framework. The efficacy of the presented methods is demonstrated in several real-data experiments using the Microsoft Kinect sensor.
Performability modeling based on real data: A case study
NASA Technical Reports Server (NTRS)
Hsueh, M. C.; Iyer, R. K.; Trivedi, K. S.
1988-01-01
Described is a measurement-based performability model based on error and resource usage data collected on a multiprocessor system. A method for identifying the model structure is introduced and the resulting model is validated against real data. Model development from the collection of raw data to the estimation of the expected reward is described. Both normal and error behavior of the system are characterized. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of apparent types of errors.
Performability modeling based on real data: A casestudy
NASA Technical Reports Server (NTRS)
Hsueh, M. C.; Iyer, R. K.; Trivedi, K. S.
1987-01-01
Described is a measurement-based performability model based on error and resource usage data collected on a multiprocessor system. A method for identifying the model structure is introduced and the resulting model is validated against real data. Model development from the collection of raw data to the estimation of the expected reward is described. Both normal and error behavior of the system are characterized. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A reward function, based on the service rate and the error rate in each state, is then defined in order to estimate the performability of the system and to depict the cost of different types of errors.
Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.
NASA Astrophysics Data System (ADS)
Hawary, A. F.; Razak, N. A.
2018-05-01
Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.
NASA Technical Reports Server (NTRS)
Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.
1992-01-01
In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.
A method of real-time fault diagnosis for power transformers based on vibration analysis
NASA Astrophysics Data System (ADS)
Hong, Kaixing; Huang, Hai; Zhou, Jianping; Shen, Yimin; Li, Yujie
2015-11-01
In this paper, a novel probability-based classification model is proposed for real-time fault detection of power transformers. First, the transformer vibration principle is introduced, and two effective feature extraction techniques are presented. Next, the details of the classification model based on support vector machine (SVM) are shown. The model also includes a binary decision tree (BDT) which divides transformers into different classes according to health state. The trained model produces posterior probabilities of membership to each predefined class for a tested vibration sample. During the experiments, the vibrations of transformers under different conditions are acquired, and the corresponding feature vectors are used to train the SVM classifiers. The effectiveness of this model is illustrated experimentally on typical in-service transformers. The consistency between the results of the proposed model and the actual condition of the test transformers indicates that the model can be used as a reliable method for transformer fault detection.
Development of a real time activity monitoring Android application utilizing SmartStep.
Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward
2016-08-01
Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.
NASA Technical Reports Server (NTRS)
Volponi, Al; Simon, Donald L. (Technical Monitor)
2008-01-01
A key technological concept for producing reliable engine diagnostics and prognostics exploits the benefits of fusing sensor data, information, and/or processing algorithms. This report describes the development of a hybrid engine model for a propulsion gas turbine engine, which is the result of fusing two diverse modeling methodologies: a physics-based model approach and an empirical model approach. The report describes the process and methods involved in deriving and implementing a hybrid model configuration for a commercial turbofan engine. Among the intended uses for such a model is to enable real-time, on-board tracking of engine module performance changes and engine parameter synthesis for fault detection and accommodation.
Li, Meng; Li, Gang; Gonenc, Berk; Duan, Xingguang; Iordachita, Iulian
2017-06-01
Accurate needle placement into soft tissue is essential to percutaneous prostate cancer diagnosis and treatment procedures. This paper discusses the steering of a 20 gauge (G) FBG-integrated needle with three sets of Fiber Bragg Grating (FBG) sensors. A fourth-order polynomial shape reconstruction method is introduced and compared with previous approaches. To control the needle, a bicycle model based navigation method is developed to provide visual guidance lines for clinicians. A real-time model updating method is proposed for needle steering inside inhomogeneous tissue. A series of experiments were performed to evaluate the proposed needle shape reconstruction, visual guidance and real-time model updating methods. Targeting experiments were performed in soft plastic phantoms and in vitro tissues with insertion depths ranging between 90 and 120 mm. Average targeting errors calculated based upon the acquired camera images were 0.40 ± 0.35 mm in homogeneous plastic phantoms, 0.61 ± 0.45 mm in multilayer plastic phantoms and 0.69 ± 0.25 mm in ex vivo tissue. Results endorse the feasibility and accuracy of the needle shape reconstruction and visual guidance methods developed in this work. The approach implemented for the multilayer phantom study could facilitate accurate needle placement efforts in real inhomogeneous tissues. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Mirus, B. B.; Baum, R. L.; Stark, B.; Smith, J. B.; Michel, A.
2015-12-01
Previous USGS research on landslide potential in hillside areas and coastal bluffs around Puget Sound, WA, has identified rainfall thresholds and antecedent moisture conditions that correlate with heightened probability of shallow landslides. However, physically based assessments of temporal and spatial variability in landslide potential require improved quantitative characterization of the hydrologic controls on landslide initiation in heterogeneous geologic materials. Here we present preliminary steps towards integrating monitoring of hydrologic response with physically based numerical modeling to inform the development of a landslide warning system for a railway corridor along the eastern shore of Puget Sound. We instrumented two sites along the steep coastal bluffs - one active landslide and one currently stable slope with the potential for failure - to monitor rainfall, soil-moisture, and pore-pressure dynamics in near-real time. We applied a distributed model of variably saturated subsurface flow for each site, with heterogeneous hydraulic-property distributions based on our detailed site characterization of the surficial colluvium and the underlying glacial-lacustrine deposits that form the bluffs. We calibrated the model with observed volumetric water content and matric potential time series, then used simulated pore pressures from the calibrated model to calculate the suction stress and the corresponding distribution of the factor of safety against landsliding with the infinite slope approximation. Although the utility of the model is limited by uncertainty in the deeper groundwater flow system, the continuous simulation of near-surface hydrologic response can help to quantify the temporal variations in the potential for shallow slope failures at the two sites. Thus the integration of near-real time monitoring and physically based modeling contributes a useful tool towards mitigating hazards along the Puget Sound railway corridor.
Applying MDA to SDR for Space to Model Real-time Issues
NASA Technical Reports Server (NTRS)
Blaser, Tammy M.
2007-01-01
NASA space communications systems have the challenge of designing SDRs with highly-constrained Size, Weight and Power (SWaP) resources. A study is being conducted to assess the effectiveness of applying the MDA Platform-Independent Model (PIM) and one or more Platform-Specific Models (PSM) specifically to address NASA space domain real-time issues. This paper will summarize our experiences with applying MDA to SDR for Space to model real-time issues. Real-time issues to be examined, measured, and analyzed are: meeting waveform timing requirements and efficiently applying Real-time Operating System (RTOS) scheduling algorithms, applying safety control measures, and SWaP verification. Real-time waveform algorithms benchmarked with the worst case environment conditions under the heaviest workload will drive the SDR for Space real-time PSM design.
Smart EV Energy Management System to Support Grid Services
NASA Astrophysics Data System (ADS)
Wang, Bin
Under smart grid scenarios, the advanced sensing and metering technologies have been applied to the legacy power grid to improve the system observability and the real-time situational awareness. Meanwhile, there is increasing amount of distributed energy resources (DERs), such as renewable generations, electric vehicles (EVs) and battery energy storage system (BESS), etc., being integrated into the power system. However, the integration of EVs, which can be modeled as controllable mobile energy devices, brings both challenges and opportunities to the grid planning and energy management, due to the intermittency of renewable generation, uncertainties of EV driver behaviors, etc. This dissertation aims to solve the real-time EV energy management problem in order to improve the overall grid efficiency, reliability and economics, using online and predictive optimization strategies. Most of the previous research on EV energy management strategies and algorithms are based on simplified models with unrealistic assumptions that the EV charging behaviors are perfectly known or following known distributions, such as the arriving time, leaving time and energy consumption values, etc. These approaches fail to obtain the optimal solutions in real-time because of the system uncertainties. Moreover, there is lack of data-driven strategy that performs online and predictive scheduling for EV charging behaviors under microgrid scenarios. Therefore, we develop an online predictive EV scheduling framework, considering uncertainties of renewable generation, building load and EV driver behaviors, etc., based on real-world data. A kernel-based estimator is developed to predict the charging session parameters in real-time with improved estimation accuracy. The efficacy of various optimization strategies that are supported by this framework, including valley-filling, cost reduction, event-based control, etc., has been demonstrated. In addition, the existing simulation-based approaches do not consider a variety of practical concerns of implementing such a smart EV energy management system, including the driver preferences, communication protocols, data models, and customized integration of existing standards to provide grid services. Therefore, this dissertation also solves these issues by designing and implementing a scalable system architecture to capture the user preferences, enable multi-layer communication and control, and finally improve the system reliability and interoperability.
NASA Technical Reports Server (NTRS)
Ligomenides, Panos A.
1989-01-01
A sensory world modeling system, congruent with a human expert's perception, is proposed. The Experiential Knowledge Base (EKB) system can provide a highly intelligible communication interface for telemonitoring and telecontrol of a real time robotic system operating in space. Paradigmatic acquisition of empirical perceptual knowledge, and real time experiential pattern recognition and knowledge integration are reviewed. The cellular architecture and operation of the EKB system are also examined.
Real-time speech encoding based on Code-Excited Linear Prediction (CELP)
NASA Technical Reports Server (NTRS)
Leblanc, Wilfrid P.; Mahmoud, S. A.
1988-01-01
This paper reports on the work proceeding with regard to the development of a real-time voice codec for the terrestrial and satellite mobile radio environments. The codec is based on a complexity reduced version of code-excited linear prediction (CELP). The codebook search complexity was reduced to only 0.5 million floating point operations per second (MFLOPS) while maintaining excellent speech quality. Novel methods to quantize the residual and the long and short term model filters are presented.
NASA-Langley Web-Based Operational Real-time Cloud Retrieval Products from Geostationary Satellites
NASA Technical Reports Server (NTRS)
Palikonda, Rabindra; Minnis, Patrick; Spangenberg, Douglas A.; Khaiyer, Mandana M.; Nordeen, Michele L.; Ayers, Jeffrey K.; Nguyen, Louis; Yi, Yuhong; Chan, P. K.; Trepte, Qing Z.;
2006-01-01
At NASA Langley Research Center (LaRC), radiances from multiple satellites are analyzed in near real-time to produce cloud products over many regions on the globe. These data are valuable for many applications such as diagnosing aircraft icing conditions and model validation and assimilation. This paper presents an overview of the multiple products available, summarizes the content of the online database, and details web-based satellite browsers and tools to access satellite imagery and products.
Symbolic discrete event system specification
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.; Chi, Sungdo
1992-01-01
Extending discrete event modeling formalisms to facilitate greater symbol manipulation capabilities is important to further their use in intelligent control and design of high autonomy systems. An extension to the DEVS formalism that facilitates symbolic expression of event times by extending the time base from the real numbers to the field of linear polynomials over the reals is defined. A simulation algorithm is developed to generate the branching trajectories resulting from the underlying nondeterminism. To efficiently manage symbolic constraints, a consistency checking algorithm for linear polynomial constraints based on feasibility checking algorithms borrowed from linear programming has been developed. The extended formalism offers a convenient means to conduct multiple, simultaneous explorations of model behaviors. Examples of application are given with concentration on fault model analysis.
Damage evaluation by a guided wave-hidden Markov model based method
NASA Astrophysics Data System (ADS)
Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin
2016-02-01
Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.
Gianfranceschi, Monica Virginia; Rodriguez-Lazaro, David; Hernandez, Marta; González-García, Patricia; Comin, Damiano; Gattuso, Antonietta; Delibato, Elisabetta; Sonnessa, Michele; Pasquali, Frederique; Prencipe, Vincenza; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Kozačinski, Lidija; Tomic, Danijela Horvatek; Zdolec, Nevijo; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John Elmerdahl; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Paiusco, Antonella; De Cesare, Alessandra; Manfreda, Gerardo; De Medici, Dario
2014-08-01
The classical microbiological method for detection of Listeria monocytogenes requires around 7 days for final confirmation, and due to perishable nature of RTE food products, there is a clear need for an alternative methodology for detection of this pathogen. This study presents an international (at European level) ISO 16140-based validation trial of a non-proprietary real-time PCR-based methodology that can generate final results in the following day of the analysis. This methodology is based on an ISO compatible enrichment coupled to a bacterial DNA extraction and a consolidated real-time PCR assay. Twelve laboratories from six European countries participated in this trial, and soft cheese was selected as food model since it can represent a difficult matrix for the bacterial DNA extraction and real-time PCR amplification. The limit of detection observed was down to 10 CFU per 25 of sample, showing excellent concordance and accordance values between samples and laboratories (>75%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (82.75%, 96.70% and 97.62%, respectively) when the results obtained for the real-time PCR-based methods were compared to those of the ISO 11290-1 standard method. An interesting observation was that the L. monocytogenes detection by the real-time PCR method was less affected in the presence of Listeria innocua in the contaminated samples, proving therefore to be more reliable than the reference method. The results of this international trial demonstrate that the evaluated real-time PCR-based method represents an excellent alterative to the ISO standard since it shows a higher performance as well as reduce the extent of the analytical process, and can be easily implemented routinely by the competent authorities and food industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.
One-Centimeter Orbits in Near-Real Time: The GPS Experience on OSTM/JASON-2
NASA Technical Reports Server (NTRS)
Haines, Bruce; Armatys, Michael; Bar-Sever, Yoaz; Bertiger, Willy; Desai, Shailen; Dorsey, Angela; Lane, Christopher; Weiss, Jan
2010-01-01
The advances in Precise Orbit Determination (POD) over the past three decades have been driven in large measure by the increasing demands of satellite altimetry missions. Since the launch of Seasat in 1978, both tracking-system technologies and orbit modeling capabilities have evolved considerably. The latest in a series of precise (TOPEX-class) altimeter missions is the Ocean Surface Topography Mission (OSTM, also Jason-2). GPS-based orbit solutions for this mission are accurate to 1-cm (radial RMS) within 3-5 hrs of real time. These GPS-based orbit products provide the basis for a near-real time sea-surface height product that supports increasingly diverse applications of operational oceanography and climate forecasting.
Interactive brain shift compensation using GPU based programming
NASA Astrophysics Data System (ADS)
van der Steen, Sander; Noordmans, Herke Jan; Verdaasdonk, Rudolf
2009-02-01
Processing large images files or real-time video streams requires intense computational power. Driven by the gaming industry, the processing power of graphic process units (GPUs) has increased significantly. With the pixel shader model 4.0 the GPU can be used for image processing 10x faster than the CPU. Dedicated software was developed to deform 3D MR and CT image sets for real-time brain shift correction during navigated neurosurgery using landmarks or cortical surface traces defined by the navigation pointer. Feedback was given using orthogonal slices and an interactively raytraced 3D brain image. GPU based programming enables real-time processing of high definition image datasets and various applications can be developed in medicine, optics and image sciences.
Reachability analysis of real-time systems using time Petri nets.
Wang, J; Deng, Y; Xu, G
2000-01-01
Time Petri nets (TPNs) are a popular Petri net model for specification and verification of real-time systems. A fundamental and most widely applied method for analyzing Petri nets is reachability analysis. The existing technique for reachability analysis of TPNs, however, is not suitable for timing property verification because one cannot derive end-to-end delay in task execution, an important issue for time-critical systems, from the reachability tree constructed using the technique. In this paper, we present a new reachability based analysis technique for TPNs for timing property analysis and verification that effectively addresses the problem. Our technique is based on a concept called clock-stamped state class (CS-class). With the reachability tree generated based on CS-classes, we can directly compute the end-to-end time delay in task execution. Moreover, a CS-class can be uniquely mapped to a traditional state class based on which the conventional reachability tree is constructed. Therefore, our CS-class-based analysis technique is more general than the existing technique. We show how to apply this technique to timing property verification of the TPN model of a command and control (C2) system.
NASA Astrophysics Data System (ADS)
Johanson, I. A.; Grapenthin, R.; Allen, R. M.
2014-12-01
Recently, progress has been made to demonstrate feasibility and benefits of including real-time GPS (rtGPS) in earthquake early warning and rapid response systems. While most concepts have yet to be integrated into operational environments, the Berkeley Seismological Laboratory is currently running an rtGPS based finite fault inversion scheme in true real-time, which is triggered by the seismic-based ShakeAlert system and then sends updated earthquake alerts to a test receiver. The Geodetic Alarm System (G-larmS) was online and responded to the 2014 Mw6.0 South Napa earthquake in California. We review G-larmS' performance during this event and for 13 aftershocks, and we present rtGPS observations and real-time modeling results for the main shock. The first distributed slip model and a magnitude estimate of Mw5.5 were available 24 s after the event origin time, which could be reduced to 14 s after a bug fix (~8 s S-wave travel time, ~6 s data latency). The system continued to re-estimate the magnitude once every second: it increased to Mw5.9 3 s after the first alert and stabilized at Mw5.8 after 15 s. G-larmS' solutions for the subsequent small magnitude aftershocks demonstrate that Mw~6.0 is the current limit for alert updates to contribute back to the seismic-based early warning system.
NASA Astrophysics Data System (ADS)
Tian, Yuexin; Gao, Kun; Liu, Ying; Han, Lu
2015-08-01
Aiming at the nonlinear and non-Gaussian features of the real infrared scenes, an optimal nonlinear filtering based algorithm for the infrared dim target tracking-before-detecting application is proposed. It uses the nonlinear theory to construct the state and observation models and uses the spectral separation scheme based Wiener chaos expansion method to resolve the stochastic differential equation of the constructed models. In order to improve computation efficiency, the most time-consuming operations independent of observation data are processed on the fore observation stage. The other observation data related rapid computations are implemented subsequently. Simulation results show that the algorithm possesses excellent detection performance and is more suitable for real-time processing.
Big data learning and suggestions in modern apps
NASA Astrophysics Data System (ADS)
Sharma, G.; Nadesh, R. K.; ArivuSelvan, K.
2017-11-01
Among many other tasks involved for emergent location-based applications such as those involved in prescribing touring places and those focused on publicizing based on destination, destination prediction is vital. Dealing with destination prediction involves determining the probability of a location (destination) depending on historical trajectories. In this paper, a destination prediction based on probabilistic model (Machine Learning Model) feed-forward neural networks will be presented, which will work by making the observation of driver’s habits. Some individuals drive to same locations such as work involving same route every day of the working week. Here, streaming of real-time driving data will be sent through Kafka queue in apache storm for real-time processing and finally storing the data in MongoDB.
NASA Astrophysics Data System (ADS)
Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Todini, Ezio
2015-04-01
The negative effects of severe flood events are usually contrasted through structural measures that, however, do not fully eliminate flood risk. Non-structural measures, such as real-time flood forecasting and warning, are also required. Accurate stage/discharge future predictions with appropriate forecast lead-time are sought by decision-makers for implementing strategies to mitigate the adverse effects of floods. Traditionally, flood forecasting has been approached by using rainfall-runoff and/or flood routing modelling. Indeed, both types of forecasts, cannot be considered perfectly representing future outcomes because of lacking of a complete knowledge of involved processes (Todini, 2004). Nonetheless, although aware that model forecasts are not perfectly representing future outcomes, decision makers are de facto implicitly assuming the forecast of water level/discharge/volume, etc. as "deterministic" and coinciding with what is going to occur. Recently the concept of Predictive Uncertainty (PU) was introduced in hydrology (Krzysztofowicz, 1999), and several uncertainty processors were developed (Todini, 2008). PU is defined as the probability of occurrence of the future realization of a predictand (water level/discharge/volume) conditional on: i) prior observations and knowledge, ii) the available information obtained on the future value, typically provided by one or more forecast models. Unfortunately, PU has been frequently interpreted as a measure of lack of accuracy rather than the appropriate tool allowing to take the most appropriate decisions, given a model or several models' forecasts. With the aim to shed light on the benefits for appropriately using PU, a multi-temporal approach based on the MCP approach (Todini, 2008; Coccia and Todini, 2011) is here applied to stage forecasts at sites along the Upper Tiber River. Specifically, the STAge Forecasting-Rating Curve Model Muskingum-based (STAFOM-RCM) (Barbetta et al., 2014) along with the Rating-Curve Model in Real Time (RCM-RT) (Barbetta and Moramarco, 2014) are used to this end. Both models without considering rainfall information explicitly considers, at each time of forecast, the estimate of lateral contribution along the river reach for which the stage forecast is performed at downstream end. The analysis is performed for several reaches using different lead times according to the channel length. Barbetta, S., Moramarco, T., Brocca, L., Franchini, M. and Melone, F. 2014. Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3),729-743. Barbetta, S. and Moramarco, T. 2014. Real-time flood forecasting by relating local stage and remote discharge. Hydrological Sciences Journal, 59(9 ), 1656-1674. Coccia, G. and Todini, E. 2011. Recent developments in predictive uncertainty assessment based on the Model Conditional Processor approach. Hydrology and Earth System Sciences, 15, 3253-3274. doi:10.5194/hess-15-3253-2011. Krzysztofowicz, R. 1999. Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resour. Res., 35, 2739-2750. Todini, E. 2004. Role and treatment of uncertainty in real-time flood forecasting. Hydrological Processes 18(14), 2743_2746. Todini, E. 2008. A model conditional processor to assess predictive uncertainty in flood forecasting. Intl. J. River Basin Management, 6(2): 123-137.
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Mizinski, Bartlomiej; Swierczynska-Chlasciak, Malgorzata
2017-04-01
The HydroProg system, the real-time multimodel hydrologic ensemble system elaborated at the University of Wroclaw (Poland) in frame of the research grant no. 2011/01/D/ST10/04171 financed by National Science Centre of Poland, has been experimentally launched in 2013 in the Nysa Klodzka river basin (southwestern Poland). Since that time the system has been working operationally to provide water level predictions in real time. At present, depending on a hydrologic gauge, up to eight hydrologic models are run. They are data- and physically-based solutions, with the majority of them being the data-based ones. The paper aims to report on the performance of the implementation of the HydroProg system for the basin in question. We focus on several high flows episodes and discuss the skills of the individual models in forecasting them. In addition, we present the performance of the multimodel ensemble solution. We also introduce a new prognosis which is determined in the following way: for a given lead time we select the most skillful prediction (from the set of all individual models running at a given gauge and their multimodel ensemble) using the performance statistics computed operationally in real time as a function of lead time.
Water quality real-time monitoring system via biological detection based on video analysis
NASA Astrophysics Data System (ADS)
Xin, Chen; Fei, Yuan
2017-11-01
With the development of society, water pollution has become the most serious problem in China. Therefore, real-time water quality monitoring is an important part of human activities and water pollution prevention. In this paper, the behavior of zebrafish was monitored by computer vision. Firstly, the moving target was extracted by the method of saliency detection, and tracked by fitting the ellipse model. Then the motion parameters were extracted by optical flow method, and the data were monitored in real time by means of Hinkley warning and threshold warning. We achieved classification warning through a number of dimensions by comprehensive toxicity index. The experimental results show that the system can achieve more accurate real-time monitoring.
Real-Time GNSS Positioning with JPL's new GIPSYx Software
NASA Astrophysics Data System (ADS)
Bar-Sever, Y. E.
2016-12-01
The JPL Global Differential GPS (GDGPS) System is now producing real-time orbit and clock solutions for GPS, GLONASS, BeiDou, and Galileo. The operations are based on JPL's next generation geodetic analysis and data processing software, GIPSYx (also known at RTGx). We will examine the impact of the nascent GNSS constellations on real-time kinematic positioning for earthquake monitoring, and assess the marginal benefits from each constellation. We will discus the options for signal selection, inter-signal bias modeling, and estimation strategies in the context of real-time point positioning. We will provide a brief overview of the key features and attributes of GIPSYx. Finally we will describe the current natural hazard monitoring services from the GDGPS System.
NASA Astrophysics Data System (ADS)
Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł
2017-12-01
Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.
Real-time data and communications services of NCAR's Earth Observing Laboratory
NASA Astrophysics Data System (ADS)
Webster, C. J.; Daniels, M.; Stossmeister, G.
2011-12-01
Near real-time information is critical for mission management of atmospheric observing systems. Advances in satellite communications and Internet distribution have allowed the Earth Observing Laboratory (EOL) of NCAR to provide data, information and imagery to the scientists during evolving weather situations. Real-time data are necessary for updating interactive displays that show products from forecast models and many disparate observation systems (e.g. satellite, soundings, surface radars and aircraft in-situ observations). At the same time, network-based collaborative tools such as chat and web conferencing facilitate interactive participation between remote groups of scientists, engineers, operations centers and the observing platforms. In the recent PREDICT deployment of the NSF/NCAR GV research aircraft, dropsondes were released from the aircraft at 45,000 ft over a 1000 km x 1000 km area to give profiles of pressure, temperature, humidity and wind below the aircraft. Real-time data from the sondes was collected by the aircraft and relayed by satcom into the Global Telecommunications System (GTS) and assimilated into forecast models. The model forecast results were then fed back into ground-based and airborne displays (along with a multitude of observations) for enhanced decision-making and mission guidance. This environment of streaming data in real-time also allows more experts to look at data and compare it with other measurements. One particular benefit is that it alerts instrument operators on the ground and in the air to instrument problems, which can then be addressed very rapidly. The resulting communications and collaborations infrastructure results in unprecedented improvements to our data quality and rapid targeting of mission resources to important weather events. Using several examples, this presentation will provide an overview of current tools and processes in use at EOL, and future needs will be discussed.
Terrain modeling for real-time simulation
NASA Astrophysics Data System (ADS)
Devarajan, Venkat; McArthur, Donald E.
1993-10-01
There are many applications, such as pilot training, mission rehearsal, and hardware-in-the- loop simulation, which require the generation of realistic images of terrain and man-made objects in real-time. One approach to meeting this requirement is to drape photo-texture over a planar polygon model of the terrain. The real time system then computes, for each pixel of the output image, the address in a texture map based on the intersection of the line-of-sight vector with the terrain model. High quality image generation requires that the terrain be modeled with a fine mesh of polygons while hardware costs limit the number of polygons which may be displayed for each scene. The trade-off between these conflicting requirements must be made in real-time because it depends on the changing position and orientation of the pilot's eye point or simulated sensor. The traditional approach is to develop a data base consisting of multiple levels of detail (LOD), and then selecting for display LODs as a function of range. This approach could lead to both anomalies in the displayed scene and inefficient use of resources. An approach has been developed in which the terrain is modeled with a set of nested polygons and organized as a tree with each node corresponding to a polygon. This tree is pruned to select the optimum set of nodes for each eye-point position. As the point of view moves, the visibility of some nodes drops below the limit of perception and may be deleted while new points must be added in regions near the eye point. An analytical model has been developed to determine the number of polygons required for display. This model leads to quantitative performance measures of the triangulation algorithm which is useful for optimizing system performance with a limited display capability.
An Integrated Modeling and Simulation Methodology for Intelligent Systems Design and Testing
2002-08-01
simulation and actual execution. KEYWORDS: Model Continuity, Modeling, Simulation, Experimental Frame, Real Time Systems , Intelligent Systems...the methodology for a stand-alone real time system. Then it will scale up to distributed real time systems . For both systems, step-wise simulation...MODEL CONTINUITY Intelligent real time systems monitor, respond to, or control, an external environment. This environment is connected to the digital
da Silva, Thiago Ferreira; Xavier, Guilherme B; Temporão, Guilherme P; von der Weid, Jean Pierre
2012-08-13
By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.
NASA Astrophysics Data System (ADS)
Singhofen, P.
2017-12-01
The National Water Model (NWM) is a remarkable undertaking. The foundation of the NWM is a 1 square kilometer grid which is used for near real-time modeling and flood forecasting of most rivers and streams in the contiguous United States. However, the NWM falls short in highly urbanized areas with complex drainage infrastructure. To overcome these shortcomings, the presenter proposes to leverage existing local hyper-resolution H&H models and adapt the NWM forcing data to them. Gridded near real-time rainfall, short range forecasts (18-hour) and medium range forecasts (10-day) during Hurricane Irma are applied to numerous detailed H&H models in highly urbanized areas of the State of Florida. Coastal and inland models are evaluated. Comparisons of near real-time rainfall data are made with observed gaged data and the ability to predict flooding in advance based on forecast data is evaluated. Preliminary findings indicate that the near real-time rainfall data is consistently and significantly lower than observed data. The forecast data is more promising. For example, the medium range forecast data provides 2 - 3 days advanced notice of peak flood conditions to a reasonable level of accuracy in most cases relative to both timing and magnitude. Short range forecast data provides about 12 - 14 hours advanced notice. Since these are hyper-resolution models, flood forecasts can be made at the street level, providing emergency response teams with valuable information for coordinating and dispatching limited resources.
Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing
2014-09-01
In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Dorval, A D; Christini, D J; White, J A
2001-10-01
We describe a system for real-time control of biological and other experiments. This device, based around the Real-Time Linux operating system, was tested specifically in the context of dynamic clamping, a demanding real-time task in which a computational system mimics the effects of nonlinear membrane conductances in living cells. The system is fast enough to represent dozens of nonlinear conductances in real time at clock rates well above 10 kHz. Conductances can be represented in deterministic form, or more accurately as discrete collections of stochastically gating ion channels. Tests were performed using a variety of complex models of nonlinear membrane mechanisms in excitable cells, including simulations of spatially extended excitable structures, and multiple interacting cells. Only in extreme cases does the computational load interfere with high-speed "hard" real-time processing (i.e., real-time processing that never falters). Freely available on the worldwide web, this experimental control system combines good performance. immense flexibility, low cost, and reasonable ease of use. It is easily adapted to any task involving real-time control, and excels in particular for applications requiring complex control algorithms that must operate at speeds over 1 kHz.
A real-time spiking cerebellum model for learning robot control.
Carrillo, Richard R; Ros, Eduardo; Boucheny, Christian; Coenen, Olivier J-M D
2008-01-01
We describe a neural network model of the cerebellum based on integrate-and-fire spiking neurons with conductance-based synapses. The neuron characteristics are derived from our earlier detailed models of the different cerebellar neurons. We tested the cerebellum model in a real-time control application with a robotic platform. Delays were introduced in the different sensorimotor pathways according to the biological system. The main plasticity in the cerebellar model is a spike-timing dependent plasticity (STDP) at the parallel fiber to Purkinje cell connections. This STDP is driven by the inferior olive (IO) activity, which encodes an error signal using a novel probabilistic low frequency model. We demonstrate the cerebellar model in a robot control system using a target-reaching task. We test whether the system learns to reach different target positions in a non-destructive way, therefore abstracting a general dynamics model. To test the system's ability to self-adapt to different dynamical situations, we present results obtained after changing the dynamics of the robotic platform significantly (its friction and load). The experimental results show that the cerebellar-based system is able to adapt dynamically to different contexts.
Implementing real-time robotic systems using CHIMERA II
NASA Technical Reports Server (NTRS)
Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.
1990-01-01
A description is given of the CHIMERA II programming environment and operating system, which was developed for implementing real-time robotic systems. Sensor-based robotic systems contain both general- and special-purpose hardware, and thus the development of applications tends to be a time-consuming task. The CHIMERA II environment is designed to reduce the development time by providing a convenient software interface between the hardware and the user. CHIMERA II supports flexible hardware configurations which are based on one or more VME-backplanes. All communication across multiple processors is transparent to the user through an extensive set of interprocessor communication primitives. CHIMERA II also provides a high-performance real-time kernel which supports both deadline and highest-priority-first scheduling. The flexibility of CHIMERA II allows hierarchical models for robot control, such as NASREM, to be implemented with minimal programming time and effort.
Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy.
Gray, Steven R; Peretti, Steven W; Lamb, H Henry
2013-06-01
In situ Raman spectroscopy was employed for real-time monitoring of simultaneous saccharification and fermentation (SSF) of corn mash by an industrial strain of Saccharomyces cerevisiae. An accurate univariate calibration model for ethanol was developed based on the very strong 883 cm(-1) C-C stretching band. Multivariate partial least squares (PLS) calibration models for total starch, dextrins, maltotriose, maltose, glucose, and ethanol were developed using data from eight batch fermentations and validated using predictions for a separate batch. The starch, ethanol, and dextrins models showed significant prediction improvement when the calibration data were divided into separate high- and low-concentration sets. Collinearity between the ethanol and starch models was avoided by excluding regions containing strong ethanol peaks from the starch model and, conversely, excluding regions containing strong saccharide peaks from the ethanol model. The two-set calibration models for starch (R(2) = 0.998, percent error = 2.5%) and ethanol (R(2) = 0.999, percent error = 2.1%) provide more accurate predictions than any previously published spectroscopic models. Glucose, maltose, and maltotriose are modeled to accuracy comparable to previous work on less complex fermentation processes. Our results demonstrate that Raman spectroscopy is capable of real time in situ monitoring of a complex industrial biomass fermentation. To our knowledge, this is the first PLS-based chemometric modeling of corn mash fermentation under typical industrial conditions, and the first Raman-based monitoring of a fermentation process with glucose, oligosaccharides and polysaccharides present. Copyright © 2013 Wiley Periodicals, Inc.
Finite-Element Methods for Real-Time Simulation of Surgery
NASA Technical Reports Server (NTRS)
Basdogan, Cagatay
2003-01-01
Two finite-element methods have been developed for mathematical modeling of the time-dependent behaviors of deformable objects and, more specifically, the mechanical responses of soft tissues and organs in contact with surgical tools. These methods may afford the computational efficiency needed to satisfy the requirement to obtain computational results in real time for simulating surgical procedures as described in Simulation System for Training in Laparoscopic Surgery (NPO-21192) on page 31 in this issue of NASA Tech Briefs. Simulation of the behavior of soft tissue in real time is a challenging problem because of the complexity of soft-tissue mechanics. The responses of soft tissues are characterized by nonlinearities and by spatial inhomogeneities and rate and time dependences of material properties. Finite-element methods seem promising for integrating these characteristics of tissues into computational models of organs, but they demand much central-processing-unit (CPU) time and memory, and the demand increases with the number of nodes and degrees of freedom in a given finite-element model. Hence, as finite-element models become more realistic, it becomes more difficult to compute solutions in real time. In both of the present methods, one uses approximate mathematical models trading some accuracy for computational efficiency and thereby increasing the feasibility of attaining real-time up36 NASA Tech Briefs, October 2003 date rates. The first of these methods is based on modal analysis. In this method, one reduces the number of differential equations by selecting only the most significant vibration modes of an object (typically, a suitable number of the lowest-frequency modes) for computing deformations of the object in response to applied forces.
Developing a Near Real-time System for Earthquake Slip Distribution Inversion
NASA Astrophysics Data System (ADS)
Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen
2016-04-01
Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.
Chowdhury, Amor; Sarjaš, Andrej
2016-01-01
The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197
Chowdhury, Amor; Sarjaš, Andrej
2016-09-15
The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.
Characteristics of Operational Space Weather Forecasting: Observations and Models
NASA Astrophysics Data System (ADS)
Berger, Thomas; Viereck, Rodney; Singer, Howard; Onsager, Terry; Biesecker, Doug; Rutledge, Robert; Hill, Steven; Akmaev, Rashid; Milward, George; Fuller-Rowell, Tim
2015-04-01
In contrast to research observations, models and ground support systems, operational systems are characterized by real-time data streams and run schedules, with redundant backup systems for most elements of the system. We review the characteristics of operational space weather forecasting, concentrating on the key aspects of ground- and space-based observations that feed models of the coupled Sun-Earth system at the NOAA/Space Weather Prediction Center (SWPC). Building on the infrastructure of the National Weather Service, SWPC is working toward a fully operational system based on the GOES weather satellite system (constant real-time operation with back-up satellites), the newly launched DSCOVR satellite at L1 (constant real-time data network with AFSCN backup), and operational models of the heliosphere, magnetosphere, and ionosphere/thermosphere/mesophere systems run on the Weather and Climate Operational Super-computing System (WCOSS), one of the worlds largest and fastest operational computer systems that will be upgraded to a dual 2.5 Pflop system in 2016. We review plans for further operational space weather observing platforms being developed in the context of the Space Weather Operations Research and Mitigation (SWORM) task force in the Office of Science and Technology Policy (OSTP) at the White House. We also review the current operational model developments at SWPC, concentrating on the differences between the research codes and the modified real-time versions that must run with zero fault tolerance on the WCOSS systems. Understanding the characteristics and needs of the operational forecasting community is key to producing research into the coupled Sun-Earth system with maximal societal benefit.
Colacino, Francesco Maria; Moscato, Francesco; Piedimonte, Fabio; Danieli, Guido; Nicosia, Salvatore; Arabia, Maurizio
2008-01-01
This article describes an elastance-based mock ventricle able to reproduce the correct ventricular pressure-volume relationship and its correct interaction with the hydraulic circuit connected to it. A real-time control of the mock ventricle was obtained by a new left ventricular mathematical model including resistive and inductive terms added to the classical Suga-Sagawa elastance model throughout the whole cardiac cycle. A valved piston pump was used to mimic the left ventricle. The pressure measured into the pump chamber was fed back into the mathematical model and the calculated reference left ventricular volume was used to drive the piston. Results show that the classical model is very sensitive to pressure disturbances, especially during the filling phase, while the modified model is able to filter out the oscillations thus eliminating their detrimental effects. The presented model is thus suitable to control mock ventricles in real-time, where sudden pressure disturbances represent a key issue and are not negligible. This real-time controlled mock ventricle is able to reproduce the elastance mechanism of a natural ventricle by mimicking its preload (mean atrial pressure) and afterload (mean aortic pressure) sensitivity, i.e., the Starling law. Therefore, it can be used for designing and testing cardiovascular prostheses due to its capability to reproduce the correct ventricle-vascular system interaction.
A knowledge-based flight status monitor for real-time application in digital avionics systems
NASA Technical Reports Server (NTRS)
Duke, E. L.; Disbrow, J. D.; Butler, G. F.
1989-01-01
The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.
Real-time estimation of ionospheric delay using GPS measurements
NASA Astrophysics Data System (ADS)
Lin, Lao-Sheng
1997-12-01
When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is able to estimate the sum of the satellite and receiver L1/L2 differential delay for each tracked GPS satellite. A 'UNSW grid-based algorithm' is proposed to improve the accuracy of real-time ionosphere modelling. The proposed algorithm is similar to the conventional grid-based algorithm. However, two modifications were made to the algorithm: (1) an 'exponential function' is adopted as the weighting function, and (2) the 'grid-based ionosphere model' estimated from the previous day is used to predict the ionospheric delay ratios between the grid point and reference points. (Abstract shortened by UMI.)
Wu, Weiwei; Yang, Huanjia; Chew, David; Hou, Yanhong; Li, Qiming
2014-01-01
Buildings' sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID)-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability. PMID:24831109
Wu, Weiwei; Yang, Huanjia; Chew, David; Hou, Yanhong; Li, Qiming
2014-05-14
Buildings' sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID)-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability.
Mankour, Mohamed; Khiat, Mounir; Ghomri, Leila; Chaker, Abdelkader; Bessalah, Mourad
2018-06-01
This paper presents modeling and study of 12-pulse HVDC (High Voltage Direct Current) based on real time simulation where the HVDC inverter is connected to a weak AC system. In goal to study the dynamic performance of the HVDC link, two serious kind of disturbance are applied at HVDC converters where the first one is the single phase to ground AC fault and the second one is the DC link to ground fault. The study is based on two different mode of analysis, which the first is to test the performance of the DC control and the second is focalized to study the effect of the protection function on the system behavior. This real time simulation considers the strength of the AC system to witch is connected and his relativity with the capacity of the DC link. The results obtained are validated by means of RT-lab platform using digital Real time simulator Hypersim (OP-5600), the results carried out show the effect of the DC control and the influence of the protection function to reduce the probability of commutation failures and also for helping inverter to take out from commutation failure even while the DC control fails to eliminate them. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
GPU-based real-time soft tissue deformation with cutting and haptic feedback.
Courtecuisse, Hadrien; Jung, Hoeryong; Allard, Jérémie; Duriez, Christian; Lee, Doo Yong; Cotin, Stéphane
2010-12-01
This article describes a series of contributions in the field of real-time simulation of soft tissue biomechanics. These contributions address various requirements for interactive simulation of complex surgical procedures. In particular, this article presents results in the areas of soft tissue deformation, contact modelling, simulation of cutting, and haptic rendering, which are all relevant to a variety of medical interventions. The contributions described in this article share a common underlying model of deformation and rely on GPU implementations to significantly improve computation times. This consistency in the modelling technique and computational approach ensures coherent results as well as efficient, robust and flexible solutions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Compositional schedulability analysis of real-time actor-based systems.
Jaghoori, Mohammad Mahdi; de Boer, Frank; Longuet, Delphine; Chothia, Tom; Sirjani, Marjan
2017-01-01
We present an extension of the actor model with real-time, including deadlines associated with messages, and explicit application-level scheduling policies, e.g.,"earliest deadline first" which can be associated with individual actors. Schedulability analysis in this setting amounts to checking whether, given a scheduling policy for each actor, every task is processed within its designated deadline. To check schedulability, we introduce a compositional automata-theoretic approach, based on maximal use of model checking combined with testing. Behavioral interfaces define what an actor expects from the environment, and the deadlines for messages given these assumptions. We use model checking to verify that actors match their behavioral interfaces. We extend timed automata refinement with the notion of deadlines and use it to define compatibility of actor environments with the behavioral interfaces. Model checking of compatibility is computationally hard, so we propose a special testing process. We show that the analyses are decidable and automate the process using the Uppaal model checker.
2006-12-01
based on input statistical parameters , such as the turbulent velocity fluc- tuation and correlation time scale, without the need of an underlying...8217mVr) 2 + (ar, r- ;m Vm) 2 (8) Tr + Tm which is zero if the model and real parameters coincide. The correlation coefficient rmc between the...well correlated with the latter. The parameters estimated from the corrected velocity, Real(top), Model(mid), Corrected(bottom), Tm=1.5, Gm=l 0, Tr
Real-time face and gesture analysis for human-robot interaction
NASA Astrophysics Data System (ADS)
Wallhoff, Frank; Rehrl, Tobias; Mayer, Christoph; Radig, Bernd
2010-05-01
Human communication relies on a large number of different communication mechanisms like spoken language, facial expressions, or gestures. Facial expressions and gestures are one of the main nonverbal communication mechanisms and pass large amounts of information between human dialog partners. Therefore, to allow for intuitive human-machine interaction, a real-time capable processing and recognition of facial expressions, hand and head gestures are of great importance. We present a system that is tackling these challenges. The input features for the dynamic head gestures and facial expressions are obtained from a sophisticated three-dimensional model, which is fitted to the user in a real-time capable manner. Applying this model different kinds of information are extracted from the image data and afterwards handed over to a real-time capable data-transferring framework, the so-called Real-Time DataBase (RTDB). In addition to the head and facial-related features, also low-level image features regarding the human hand - optical flow, Hu-moments are stored into the RTDB for the evaluation process of hand gestures. In general, the input of a single camera is sufficient for the parallel evaluation of the different gestures and facial expressions. The real-time capable recognition of the dynamic hand and head gestures are performed via different Hidden Markov Models, which have proven to be a quick and real-time capable classification method. On the other hand, for the facial expressions classical decision trees or more sophisticated support vector machines are used for the classification process. These obtained results of the classification processes are again handed over to the RTDB, where other processes (like a Dialog Management Unit) can easily access them without any blocking effects. In addition, an adjustable amount of history can be stored by the RTDB buffer unit.
Study on Development of 1D-2D Coupled Real-time Urban Inundation Prediction model
NASA Astrophysics Data System (ADS)
Lee, Seungsoo
2017-04-01
In recent years, we are suffering abnormal weather condition due to climate change around the world. Therefore, countermeasures for flood defense are urgent task. In this research, study on development of 1D-2D coupled real-time urban inundation prediction model using predicted precipitation data based on remote sensing technology is conducted. 1 dimensional (1D) sewerage system analysis model which was introduced by Lee et al. (2015) is used to simulate inlet and overflow phenomena by interacting with surface flown as well as flows in conduits. 2 dimensional (2D) grid mesh refinement method is applied to depict road networks for effective calculation time. 2D surface model is coupled with 1D sewerage analysis model in order to consider bi-directional flow between both. Also parallel computing method, OpenMP, is applied to reduce calculation time. The model is estimated by applying to 25 August 2014 extreme rainfall event which caused severe inundation damages in Busan, Korea. Oncheoncheon basin is selected for study basin and observed radar data are assumed as predicted rainfall data. The model shows acceptable calculation speed with accuracy. Therefore it is expected that the model can be used for real-time urban inundation forecasting system to minimize damages.
Performance Evaluation of a Firm Real-Time DataBase System
1995-01-01
after its deadline has passed. StarBase differs from previous real-time database work in that a) it relies on a real - time operating system which...StarBase, running on a real - time operating system kernel, RT-Mach. We discuss how performance was evaluated in StarBase using the StarBase workload
Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical Model.
Lambrecht, Stefan; Harutyunyan, Anna; Tanghe, Kevin; Afschrift, Maarten; De Schutter, Joris; Jonkers, Ilse
2017-03-24
Real-time detection of multiple stance events, more specifically initial contact (IC), foot flat (FF), heel off (HO), and toe off (TO), could greatly benefit neurorobotic (NR) and neuroprosthetic (NP) control. Three real-time threshold-based algorithms have been developed, detecting the aforementioned events based on kinematic data in combination with a biomechanical model. Data from seven subjects walking at three speeds on an instrumented treadmill were used to validate the presented algorithms, accumulating to a total of 558 steps. The reference for the gait events was obtained using marker and force plate data. All algorithms had excellent precision and no false positives were observed. Timing delays of the presented algorithms were similar to current state-of-the-art algorithms for the detection of IC and TO, whereas smaller delays were achieved for the detection of FF. Our results indicate that, based on their high precision and low delays, these algorithms can be used for the control of an NR/NP, with the exception of the HO event. Kinematic data is used in most NR/NP control schemes and is thus available at no additional cost, resulting in a minimal computational burden. The presented methods can also be applied for screening pathological gait or gait analysis in general in/outside of the laboratory.
Paris, Alan; Atia, George K; Vosoughi, Azadeh; Berman, Stephen A
2017-08-01
A characteristic of neurological signal processing is high levels of noise from subcellular ion channels up to whole-brain processes. In this paper, we propose a new model of electroencephalogram (EEG) background periodograms, based on a family of functions which we call generalized van der Ziel-McWhorter (GVZM) power spectral densities (PSDs). To the best of our knowledge, the GVZM PSD function is the only EEG noise model that has relatively few parameters, matches recorded EEG PSD's with high accuracy from 0 to over 30 Hz, and has approximately 1/f θ behavior in the midfrequencies without infinities. We validate this model using three approaches. First, we show how GVZM PSDs can arise in a population of ion channels at maximum entropy equilibrium. Second, we present a class of mixed autoregressive models, which simulate brain background noise and whose periodograms are asymptotic to the GVZM PSD. Third, we present two real-time estimation algorithms for steady-state visual evoked potential (SSVEP) frequencies, and analyze their performance statistically. In pairwise comparisons, the GVZM-based algorithms showed statistically significant accuracy improvement over two well-known and widely used SSVEP estimators. The GVZM noise model can be a useful and reliable technique for EEG signal processing. Understanding EEG noise is essential for EEG-based neurology and applications such as real-time brain-computer interfaces, which must make accurate control decisions from very short data epochs. The GVZM approach represents a successful new paradigm for understanding and managing this neurological noise.
European validation of Real-Time PCR method for detection of Salmonella spp. in pork meat.
Delibato, Elisabetta; Rodriguez-Lazaro, David; Gianfranceschi, Monica; De Cesare, Alessandra; Comin, Damiano; Gattuso, Antonietta; Hernandez, Marta; Sonnessa, Michele; Pasquali, Frédérique; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Prukner-Radovcic, Estella; Horvatek Tomic, Danijela; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John E; Chemaly, Marianne; Le Gall, Francoise; González-García, Patricia; Lettini, Antonia Anna; Lukac, Maja; Quesne, Segolénè; Zampieron, Claudia; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Proroga, Yolande T R; Capuano, Federico; Manfreda, Gerardo; De Medici, Dario
2014-08-01
The classical microbiological method for detection of Salmonella spp. requires more than five days for final confirmation, and consequently there is a need for an alternative methodology for detection of this pathogen particularly in those food categories with a short shelf-life. This study presents an international (at European level) ISO 16140-based validation study of a non-proprietary Real-Time PCR-based method that can generate final results the day following sample analysis. It is based on an ISO compatible enrichment coupled to an easy and inexpensive DNA extraction and a consolidated Real-Time PCR assay. Thirteen laboratories from seven European Countries participated to this trial, and pork meat was selected as food model. The limit of detection observed was down to 10 CFU per 25 g of sample, showing excellent concordance and accordance values between samples and laboratories (100%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (100%) when the results obtained for the Real-Time PCR-based methods were compared to those of the ISO 6579:2002 standard method. The results of this international trial demonstrate that the evaluated Real-Time PCR-based method represents an excellent alternative to the ISO standard. In fact, it shows an equal and solid performance as well as it reduces dramatically the extent of the analytical process, and can be easily implemented routinely by the Competent Authorities and Food Industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.
A New Hybrid Viscoelastic Soft Tissue Model based on Meshless Method for Haptic Surgical Simulation
Bao, Yidong; Wu, Dongmei; Yan, Zhiyuan; Du, Zhijiang
2013-01-01
This paper proposes a hybrid soft tissue model that consists of a multilayer structure and many spheres for surgical simulation system based on meshless. To improve accuracy of the model, tension is added to the three-parameter viscoelastic structure that connects the two spheres. By using haptic device, the three-parameter viscoelastic model (TPM) produces accurate deformationand also has better stress-strain, stress relaxation and creep properties. Stress relaxation and creep formulas have been obtained by mathematical formula derivation. Comparing with the experimental results of the real pig liver which were reported by Evren et al. and Amy et al., the curve lines of stress-strain, stress relaxation and creep of TPM are close to the experimental data of the real liver. Simulated results show that TPM has better real-time, stability and accuracy. PMID:24339837
A street rubbish detection algorithm based on Sift and RCNN
NASA Astrophysics Data System (ADS)
Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting
2018-02-01
This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).
NASA Astrophysics Data System (ADS)
Huffaker, R.; Munoz-Carpena, R.
2016-12-01
There are increasing calls to audit decision-support models used for environmental policy to ensure that they correspond with the reality facing policy makers. Modelers can establish correspondence by providing empirical evidence of real-world dynamic behavior that their models skillfully simulate. We present a pre-modeling diagnostic framework—based on nonlinear dynamic analysis—for detecting and reconstructing real-world environmental dynamics from observed time-sequenced data. Phenomenological (data-driven) modeling—based on machine learning regression techniques—extracts a set of ordinary differential equations governing empirically-diagnosed system dynamics from a single time series, or from multiple time series on causally-interacting variables. We apply the framework to investigate saltwater intrusion into coastal wetlands in Everglades National Park, Florida, USA. We test the following hypotheses posed in the literature linking regional hydrologic variables with global climatic teleconnections: (1) Sea level in Florida Bay drives well level and well salinity in the coastal Everglades; (2) Atlantic Multidecadal Oscillation (AMO) drives sea level, well level and well salinity; and (3) AMO and (El Niño Southern Oscillation) ENSO bi-causally interact. The thinking is that salt water intrusion links ocean-surface salinity with salinity of inland water sources, and sea level with inland water; that AMO and ENSO share a teleconnective relationship (perhaps through the atmosphere); and that AMO and ENSO both influence inland precipitation and thus well levels. Our results support these hypotheses, and we successfully construct a parsimonious phenomenological model that reproduces diagnosed nonlinear dynamics and system interactions. We propose that reconstructed data dynamics be used, along with other expert information, as a rigorous benchmark to guide specification and testing of hydrologic decision support models corresponding with real-world behavior.
Op den Akker, Harm; Cabrita, Miriam; Op den Akker, Rieks; Jones, Valerie M; Hermens, Hermie J
2015-06-01
This paper presents a comprehensive and practical framework for automatic generation of real-time tailored messages in behavior change applications. Basic aspects of motivational messages are time, intention, content and presentation. Tailoring of messages to the individual user may involve all aspects of communication. A linear modular system is presented for generating such messages. It is explained how properties of user and context are taken into account in each of the modules of the system and how they affect the linguistic presentation of the generated messages. The model of motivational messages presented is based on an analysis of existing literature as well as the analysis of a corpus of motivational messages used in previous studies. The model extends existing 'ontology-based' approaches to message generation for real-time coaching systems found in the literature. Practical examples are given on how simple tailoring rules can be implemented throughout the various stages of the framework. Such examples can guide further research by clarifying what it means to use e.g. user targeting to tailor a message. As primary example we look at the issue of promoting daily physical activity. Future work is pointed out in applying the present model and framework, defining efficient ways of evaluating individual tailoring components, and improving effectiveness through the creation of accurate and complete user- and context models. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jones, M.; Pitts, R.
2017-12-01
For emergency managers, government officials, and others who must respond to rapidly changing natural disasters, timely access to detailed information related to affected terrain, population and infrastructure is critical for planning, response and recovery operations. Accessing, analyzing and disseminating such disparate information in near real-time are critical decision support components. However, finding a way to handle a variety of informative yet complex datasets poses a challenge when preparing for and responding to disasters. Here, we discuss the implementation of a web-based data integration and decision support tool for earthquakes developed by the Federal Emergency Management Agency (FEMA) as a solution to some of these challenges. While earthquakes are among the most well- monitored and measured of natural hazards, the spatially broad impacts of shaking, ground deformation, landslides, liquefaction, and even tsunamis, are extremely difficult to quantify without accelerated access to data, modeling, and analytics. This web-based application, deemed the "Earthquake Incident Journal", provides real-time access to authoritative and event-specific data from external (e.g. US Geological Survey, NASA, state and local governments, etc.) and internal (FEMA) data sources. The journal includes a GIS-based model for exposure analytics, allowing FEMA to assess the severity of an event, estimate impacts to structures and population in near real-time, and then apply planning factors to exposure estimates to answer questions such as: What geographic areas are impacted? Will federal support be needed? What resources are needed to support survivors? And which infrastructure elements or essential facilities are threatened? This presentation reviews the development of the Earthquake Incident Journal, detailing the data integration solutions, the methodology behind the GIS-based automated exposure model, and the planning factors as well as other analytical advances that provide near real-time decision support to the federal government.
Physically-Based Modelling and Real-Time Simulation of Fluids.
NASA Astrophysics Data System (ADS)
Chen, Jim Xiong
1995-01-01
Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.
Zhu, Lingyun; Li, Lianjie; Meng, Chunyan
2014-12-01
There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.
ERIC Educational Resources Information Center
Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.
2003-01-01
Demonstrated, through simulation, that stationary autoregressive moving average (ARMA) models may be fitted readily when T>N, using normal theory raw maximum likelihood structural equation modeling. Also provides some illustrations based on real data. (SLD)
Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K
2016-05-01
We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed.
Programmable logic construction kits for hyper-real-time neuronal modeling.
Guerrero-Rivera, Ruben; Morrison, Abigail; Diesmann, Markus; Pearce, Tim C
2006-11-01
Programmable logic designs are presented that achieve exact integration of leaky integrate-and-fire soma and dynamical synapse neuronal models and incorporate spike-time dependent plasticity and axonal delays. Highly accurate numerical performance has been achieved by modifying simpler forward-Euler-based circuitry requiring minimal circuit allocation, which, as we show, behaves equivalently to exact integration. These designs have been implemented and simulated at the behavioral and physical device levels, demonstrating close agreement with both numerical and analytical results. By exploiting finely grained parallelism and single clock cycle numerical iteration, these designs achieve simulation speeds at least five orders of magnitude faster than the nervous system, termed here hyper-real-time operation, when deployed on commercially available field-programmable gate array (FPGA) devices. Taken together, our designs form a programmable logic construction kit of commonly used neuronal model elements that supports the building of large and complex architectures of spiking neuron networks for real-time neuromorphic implementation, neurophysiological interfacing, or efficient parameter space investigations.
Classification of complex networks based on similarity of topological network features
NASA Astrophysics Data System (ADS)
Attar, Niousha; Aliakbary, Sadegh
2017-09-01
Over the past few decades, networks have been widely used to model real-world phenomena. Real-world networks exhibit nontrivial topological characteristics and therefore, many network models are proposed in the literature for generating graphs that are similar to real networks. Network models reproduce nontrivial properties such as long-tail degree distributions or high clustering coefficients. In this context, we encounter the problem of selecting the network model that best fits a given real-world network. The need for a model selection method reveals the network classification problem, in which a target-network is classified into one of the candidate network models. In this paper, we propose a novel network classification method which is independent of the network size and employs an alignment-free metric of network comparison. The proposed method is based on supervised machine learning algorithms and utilizes the topological similarities of networks for the classification task. The experiments show that the proposed method outperforms state-of-the-art methods with respect to classification accuracy, time efficiency, and robustness to noise.
Marsiglia, Flavio F.; Booth, Jaime M.; Nuño-Gutierrez, Bertha L.; Robbins, Danielle E.
2015-01-01
In the face of rising rates of substance use among Mexican youth and rapidly narrowing gender differences in use, substance use prevention is an increasingly urgent priority for Mexico. Prevention interventions have been implemented in Mexico but few have been rigorously evaluated for effectiveness. This article presents the long term effects of a Mexico-based pilot study to test the feasibility of a linguistically specific (Mexican Spanish) adapted version of keepin’ it REAL, a school-based substance abuse prevention model program. University affiliated researchers from Mexico and the US collaborated on the study design, program implementation, data collection, and analysis. Students and their teachers from two middle schools (secundarias) in Guadalajara participated in this field trial of Mantente REAL (translated to Spanish). The schools were randomly assigned to treatment and control conditions. The sample of 431 students reported last 30 day substance use at three times (one pretest and two posttests). Changes in substance use behaviors over time were examined using growth curve models. Long term desired intervention effects were found for alcohol and marijuana use but not for cigarettes. The intervention effects were greater for girls than for boys in slowing the typical developmental increase over time in alcohol use. Marijuana effects were based on small numbers of users and indicate a need for larger scale studies. These findings suggest that keepin’ it REAL is a promising foundation for cultural program adaptation efforts to create efficacious school-based universal prevention interventions for middle school students in Mexico. PMID:25416154
Real-time simulation of biological soft tissues: a PGD approach.
Niroomandi, S; González, D; Alfaro, I; Bordeu, F; Leygue, A; Cueto, E; Chinesta, F
2013-05-01
We introduce here a novel approach for the numerical simulation of nonlinear, hyperelastic soft tissues at kilohertz feedback rates necessary for haptic rendering. This approach is based upon the use of proper generalized decomposition techniques, a generalization of PODs. Proper generalized decomposition techniques can be considered as a means of a priori model order reduction and provides a physics-based meta-model without the need for prior computer experiments. The suggested strategy is thus composed of an offline phase, in which a general meta-model is computed, and an online evaluation phase in which the results are obtained at real time. Results are provided that show the potential of the proposed technique, together with some benchmark test that shows the accuracy of the method. Copyright © 2013 John Wiley & Sons, Ltd.
Lu, Zhonghua; Arikatla, Venkata S; Han, Zhongqing; Allen, Brian F; De, Suvranu
2014-12-01
High-frequency electricity is used in the majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue. We present a real-time and physically realistic simulation of electrosurgery by modelling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide subfinite-element graphical rendering of vaporized tissue, a dual-mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization. We have demonstrated our physics-based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost. Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization. Copyright © 2013 John Wiley & Sons, Ltd.
Impact of Machine Virtualization on Timing Precision for Performance-critical Tasks
NASA Astrophysics Data System (ADS)
Karpov, Kirill; Fedotova, Irina; Siemens, Eduard
2017-07-01
In this paper we present a measurement study to characterize the impact of hardware virtualization on basic software timing, as well as on precise sleep operations of an operating system. We investigated how timer hardware is shared among heavily CPU-, I/O- and Network-bound tasks on a virtual machine as well as on the host machine. VMware ESXi and QEMU/KVM have been chosen as commonly used examples of hypervisor- and host-based models. Based on statistical parameters of retrieved distributions, our results provide a very good estimation of timing behavior. It is essential for real-time and performance-critical applications such as image processing or real-time control.
NASA Astrophysics Data System (ADS)
Avci, Mesut
A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy is built based on a proposed model that jointly minimizes the total energy consumption and hence, cost of electricity for the user, and the deviation of the inside temperature from the consumer's preference. An algorithm that assigns temperature set-points (reference temperatures) to price ranges based on the consumer's discomfort tolerance index is developed. A practical parameter prediction model is also designed for mapping between the HVAC load and the inside temperature. The prediction model and the produced temperature set-points are integrated as inputs into the MPC controller, which is then used to generate signal actions for the AC unit. To investigate and demonstrate the effectiveness of the proposed approach, a simulation based experimental analysis is presented using real-life pricing data. An actual prototype for the proposed HVAC load control strategy is then built and a series of prototype experiments are conducted similar to the simulation studies. The experiments reveal that the MPC strategy can lead to significant reductions in overall energy consumption and cost savings for the consumer. Results suggest that by providing an efficient response strategy for the consumers, the proposed MPC strategy can enable the utility providers to adopt efficient demand management policies using real-time pricing. Finally, a cost-benefit analysis is performed to display the economic feasibility of implementing such a controller as part of a building energy management system, and the payback period is identified considering cost of prototype build and cost savings to help the adoption of this controller in the building HVAC control industry.
Sarigiannis, Dimosthenis A; Karakitsios, Spyros P; Gotti, Alberto; Papaloukas, Costas L; Kassomenos, Pavlos A; Pilidis, Georgios A
2009-01-01
The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded) determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based Pharmaco-Kinetic (PBPK) risk assessment model was developed in order to calculate the lifetime probability distribution of leukemia to the employees, fed by data obtained by the ANN model. Bayesian algorithm was involved in crucial points of both model sub compartments. The application was evaluated in two filling stations (one urban and one rural). Among several algorithms available for the development of the ANN exposure model, Bayesian regularization provided the best results and seemed to be a promising technique for prediction of the exposure pattern of that occupational population group. On assessing the estimated leukemia risk under the scope of providing a distribution curve based on the exposure levels and the different susceptibility of the population, the Bayesian algorithm was a prerequisite of the Monte Carlo approach, which is integrated in the PBPK-based risk model. In conclusion, the modeling system described herein is capable of exploiting the information collected by the environmental sensors in order to estimate in real time the personal exposure and the resulting health risk for employees of gasoline filling stations.
Sarigiannis, Dimosthenis A.; Karakitsios, Spyros P.; Gotti, Alberto; Papaloukas, Costas L.; Kassomenos, Pavlos A.; Pilidis, Georgios A.
2009-01-01
The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded) determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based Pharmaco-Kinetic (PBPK) risk assessment model was developed in order to calculate the lifetime probability distribution of leukemia to the employees, fed by data obtained by the ANN model. Bayesian algorithm was involved in crucial points of both model sub compartments. The application was evaluated in two filling stations (one urban and one rural). Among several algorithms available for the development of the ANN exposure model, Bayesian regularization provided the best results and seemed to be a promising technique for prediction of the exposure pattern of that occupational population group. On assessing the estimated leukemia risk under the scope of providing a distribution curve based on the exposure levels and the different susceptibility of the population, the Bayesian algorithm was a prerequisite of the Monte Carlo approach, which is integrated in the PBPK-based risk model. In conclusion, the modeling system described herein is capable of exploiting the information collected by the environmental sensors in order to estimate in real time the personal exposure and the resulting health risk for employees of gasoline filling stations. PMID:22399936
Real-time 3-D space numerical shake prediction for earthquake early warning
NASA Astrophysics Data System (ADS)
Wang, Tianyun; Jin, Xing; Huang, Yandan; Wei, Yongxiang
2017-12-01
In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake prediction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.
A Pro-active Real-time Forecasting and Decision Support System for Daily Management of Marine Works
NASA Astrophysics Data System (ADS)
Bollen, Mark; Leyssen, Gert; Smets, Steven; De Wachter, Tom
2016-04-01
Marine Works involving turbidity generating activities (eg. dredging, dredge spoil placement) can generate environmental stress in and around a project area in the form of sediment plumes causing light reduction and sedimentation. If these works are situated near sensitive habitats like sea-grass beds, coral reefs or sensitive human activities eg. aquaculture farms or water intakes, or if contaminants are present in the water soil environmental scrutiny is advised. Environmental Regulations can impose limitations to these activities in the form of turbidity thresholds, spill budgets, contaminant levels. Breaching environmental regulations can result in increased monitoring, adaptation of the works planning and production rates and ultimately in a (temporary) stop of activities all of which entail time and cost impacts for a contractor and/or client. Sediment plume behaviour is governed by the dredging process, soil properties and ambient conditions (currents, water depth) and can be modelled. Usually this is done during the preparatory EIA phase of a project, for estimation of environmental impact based on climatic scenarios. An operational forecasting tool is developed to adapt marine work schedules to the real-time circumstances and thus evade exceedance of critical threshold levels at sensitive areas. The forecasting system is based on a Python-based workflow manager with a MySQL database and a Django frontend web tool for user interaction and visualisation of the model results. The core consists of a numerical hydrodynamic model with sediment transport module (Mike21 from DHI). This model is driven by space and time varying wind fields and wave boundary conditions, and turbidity inputs (suspended sediment source terms) based on marine works production rates and soil properties. The resulting threshold analysis allows the operator to indicate potential impact at the sensitive areas and instigate an adaption of the marine work schedule if needed. In order to use this toolbox in real-time situations and facilitate forecasting of impacts of planned dredge works, the following operational online functionalities are implemented: • Automated fetch and preparation of the input data, including 7 day forecast wind and wave fields and real-time measurements, and user defined the turbidity inputs based on scheduled marine works. • Generate automated forecasts and running user configurable scenarios at the same time in parallel. • Export and convert the model results, time series and maps, into a standardized format (netcdf). • Automatic analysis and processing of model results, including the calculation of indicator turbidity values and the exceedance analysis of threshold levels at the different sensitive areas. Data assimilation with the real time on site turbidity measurements is implemented in this threshold analysis. • Pre-programmed generation of animated sediment plumes, specific charts and pdf reports to allow a rapid interpretation of the model results by the operators and facilitating decision making in the operational planning. The performed marine works, resulting from the marine work schedule proposed by the forecasting system, are evaluated by a threshold analysis on the validated turbidity measurements on the sensitive sites. This machine learning loop allows a check of the system in order to evaluate forecast and model uncertainties.
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung
2018-02-01
Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Fault detection and diagnosis using neural network approaches
NASA Technical Reports Server (NTRS)
Kramer, Mark A.
1992-01-01
Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.
A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.
Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio
2017-11-01
Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force.
Implementation of and Ada real-time executive: A case study
NASA Technical Reports Server (NTRS)
Laird, James D.; Burton, Bruce A.; Koppes, Mary R.
1986-01-01
Current Ada language implementations and runtime environments are immature, unproven and are a key risk area for real-time embedded computer system (ECS). A test-case environment is provided in which the concerns of the real-time, ECS community are addressed. A priority driven executive is selected to be implemented in the Ada programming language. The model selected is representative of real-time executives tailored for embedded systems used missile, spacecraft, and avionics applications. An Ada-based design methodology is utilized, and two designs are considered. The first of these designs requires the use of vendor supplied runtime and tasking support. An alternative high-level design is also considered for an implementation requiring no vendor supplied runtime or tasking support. The former approach is carried through to implementation.
Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Smith, Mark S.
2008-01-01
Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.
Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Smith, Mark S.
2010-01-01
Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors, prediction cases, and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.
Cannavò, Flavio; Camacho, Antonio G; González, Pablo J; Mattia, Mario; Puglisi, Giuseppe; Fernández, José
2015-06-09
Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes.
Cannavò, Flavio; Camacho, Antonio G.; González, Pablo J.; Mattia, Mario; Puglisi, Giuseppe; Fernández, José
2015-01-01
Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes. PMID:26055494
Real-Time Tracking by Double Templates Matching Based on Timed Motion History Image with HSV Feature
Li, Zhiyong; Li, Pengfei; Yu, Xiaoping; Hashem, Mervat
2014-01-01
It is a challenge to represent the target appearance model for moving object tracking under complex environment. This study presents a novel method with appearance model described by double templates based on timed motion history image with HSV color histogram feature (tMHI-HSV). The main components include offline template and online template initialization, tMHI-HSV-based candidate patches feature histograms calculation, double templates matching (DTM) for object location, and templates updating. Firstly, we initialize the target object region and calculate its HSV color histogram feature as offline template and online template. Secondly, the tMHI-HSV is used to segment the motion region and calculate these candidate object patches' color histograms to represent their appearance models. Finally, we utilize the DTM method to trace the target and update the offline template and online template real-timely. The experimental results show that the proposed method can efficiently handle the scale variation and pose change of the rigid and nonrigid objects, even in illumination change and occlusion visual environment. PMID:24592185
Real-time inextensible surgical thread simulation.
Xu, Lang; Liu, Qian
2018-03-27
This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.
Temporal Specification and Verification of Real-Time Systems.
1991-08-30
of concrete real - time systems can be modeled adequately. Specification: We present two conservative extensions of temporal logic that allow for the...logic. We present both model-checking algorithms for the automatic verification of finite-state real - time systems and proof methods for the deductive verification of real - time systems .
Modeling IoT-Based Solutions Using Human-Centric Wireless Sensor Networks
Monares, Álvaro; Ochoa, Sergio F.; Santos, Rodrigo; Orozco, Javier; Meseguer, Roc
2014-01-01
The Internet of Things (IoT) has inspired solutions that are already available for addressing problems in various application scenarios, such as healthcare, security, emergency support and tourism. However, there is no clear approach to modeling these systems and envisioning their capabilities at the design time. Therefore, the process of designing these systems is ad hoc and its real impact is evaluated once the solution is already implemented, which is risky and expensive. This paper proposes a modeling approach that uses human-centric wireless sensor networks to specify and evaluate models of IoT-based systems at the time of design, avoiding the need to spend time and effort on early implementations of immature designs. It allows designers to focus on the system design, leaving the implementation decisions for a next phase. The article illustrates the usefulness of this proposal through a running example, showing the design of an IoT-based solution to support the first responses during medium-sized or large urban incidents. The case study used in the proposal evaluation is based on a real train crash. The proposed modeling approach can be used to design IoT-based systems for other application scenarios, e.g., to support security operatives or monitor chronic patients in their homes. PMID:25157549
Modeling IoT-based solutions using human-centric wireless sensor networks.
Monares, Álvaro; Ochoa, Sergio F; Santos, Rodrigo; Orozco, Javier; Meseguer, Roc
2014-08-25
The Internet of Things (IoT) has inspired solutions that are already available for addressing problems in various application scenarios, such as healthcare, security, emergency support and tourism. However, there is no clear approach to modeling these systems and envisioning their capabilities at the design time. Therefore, the process of designing these systems is ad hoc and its real impact is evaluated once the solution is already implemented, which is risky and expensive. This paper proposes a modeling approach that uses human-centric wireless sensor networks to specify and evaluate models of IoT-based systems at the time of design, avoiding the need to spend time and effort on early implementations of immature designs. It allows designers to focus on the system design, leaving the implementation decisions for a next phase. The article illustrates the usefulness of this proposal through a running example, showing the design of an IoT-based solution to support the first responses during medium-sized or large urban incidents. The case study used in the proposal evaluation is based on a real train crash. The proposed modeling approach can be used to design IoT-based systems for other application scenarios, e.g., to support security operatives or monitor chronic patients in their homes.
Li, Zhan; Guiraud, David; Andreu, David; Benoussaad, Mourad; Fattal, Charles; Hayashibe, Mitsuhiro
2016-06-22
Functional electrical stimulation (FES) is a neuroprosthetic technique for restoring lost motor function of spinal cord injured (SCI) patients and motor-impaired subjects by delivering short electrical pulses to their paralyzed muscles or motor nerves. FES induces action potentials respectively on muscles or nerves so that muscle activity can be characterized by the synchronous recruitment of motor units with its compound electromyography (EMG) signal is called M-wave. The recorded evoked EMG (eEMG) can be employed to predict the resultant joint torque, and modeling of FES-induced joint torque based on eEMG is an essential step to provide necessary prediction of the expected muscle response before achieving accurate joint torque control by FES. Previous works on FES-induced torque tracking issues were mainly based on offline analysis. However, toward personalized clinical rehabilitation applications, real-time FES systems are essentially required considering the subject-specific muscle responses against electrical stimulation. This paper proposes a wireless portable stimulator used for estimating/predicting joint torque based on real time processing of eEMG. Kalman filter and recurrent neural network (RNN) are embedded into the real-time FES system for identification and estimation. Prediction results on 3 able-bodied subjects and 3 SCI patients demonstrate promising performances. As estimators, both Kalman filter and RNN approaches show clinically feasible results on estimation/prediction of joint torque with eEMG signals only, moreover RNN requires less computational requirement. The proposed real-time FES system establishes a platform for estimating and assessing the mechanical output, the electromyographic recordings and associated models. It will contribute to open a new modality for personalized portable neuroprosthetic control toward consolidated personal healthcare for motor-impaired patients.
Transient Turbine Engine Modeling with Hardware-in-the-Loop Power Extraction (PREPRINT)
2008-07-01
Furthermore, it must be compatible with a real - time operating system that is capable of running the simulation. For some models, especially those that use...problem of interfacing the engine/control model to a real - time operating system and associated lab hardware becomes a problem of interfacing these...model in real-time. This requires the use of a real - time operating system and a compatible I/O (input/output) board. Figure 1 illustrates the HIL
Hossain, Moinul; Muromachi, Yasunori
2012-03-01
The concept of measuring the crash risk for a very short time window in near future is gaining more practicality due to the recent advancements in the fields of information systems and traffic sensor technology. Although some real-time crash prediction models have already been proposed, they are still primitive in nature and require substantial improvements to be implemented in real-life. This manuscript investigates the major shortcomings of the existing models and offers solutions to overcome them with an improved framework and modeling method. It employs random multinomial logit model to identify the most important predictors as well as the most suitable detector locations to acquire data to build such a model. Afterwards, it applies Bayesian belief net (BBN) to build the real-time crash prediction model. The model has been constructed using high resolution detector data collected from Shibuya 3 and Shinjuku 4 expressways under the jurisdiction of Tokyo Metropolitan Expressway Company Limited, Japan. It has been specifically built for the basic freeway segments and it predicts the chance of formation of a hazardous traffic condition within the next 4-9 min for a particular 250 meter long road section. The performance evaluation results reflect that at an average threshold value the model is able to successful classify 66% of the future crashes with a false alarm rate less than 20%. Copyright © 2011 Elsevier Ltd. All rights reserved.
A real-time computational model for estimating kinematics of ankle ligaments.
Zhang, Mingming; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Quan
2016-01-01
An accurate assessment of ankle ligament kinematics is crucial in understanding the injury mechanisms and can help to improve the treatment of an injured ankle, especially when used in conjunction with robot-assisted therapy. A number of computational models have been developed and validated for assessing the kinematics of ankle ligaments. However, few of them can do real-time assessment to allow for an input into robotic rehabilitation programs. An ankle computational model was proposed and validated to quantify the kinematics of ankle ligaments as the foot moves in real-time. This model consists of three bone segments with three rotational degrees of freedom (DOFs) and 12 ankle ligaments. This model uses inputs for three position variables that can be measured from sensors in many ankle robotic devices that detect postures within the foot-ankle environment and outputs the kinematics of ankle ligaments. Validation of this model in terms of ligament length and strain was conducted by comparing it with published data on cadaver anatomy and magnetic resonance imaging. The model based on ligament lengths and strains is in concurrence with those from the published studies but is sensitive to ligament attachment positions. This ankle computational model has the potential to be used in robot-assisted therapy for real-time assessment of ligament kinematics. The results provide information regarding the quantification of kinematics associated with ankle ligaments related to the disability level and can be used for optimizing the robotic training trajectory.
Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob
Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less
Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Xu, Yan; Tomsovic, Kevin
In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG and price responsive loads. The microgrid coordinates the energy consumption or production of its components and trades electricity in both the day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total costmore » of operation minus total benefit of demand. This formulation can be solved by mixed integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator, a battery and a responsive load show the advantage of stochastic optimization in addition to robust optimization.« less
Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis
Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob; ...
2017-09-12
Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less
Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
Liu, Guodong; Xu, Yan; Tomsovic, Kevin
2016-01-01
In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG and price responsive loads. The microgrid coordinates the energy consumption or production of its components and trades electricity in both the day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total costmore » of operation minus total benefit of demand. This formulation can be solved by mixed integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator, a battery and a responsive load show the advantage of stochastic optimization in addition to robust optimization.« less
Monte Carlo calculation of dynamical properties of the two-dimensional Hubbard model
NASA Technical Reports Server (NTRS)
White, S. R.; Scalapino, D. J.; Sugar, R. L.; Bickers, N. E.
1989-01-01
A new method is introduced for analytically continuing imaginary-time data from quantum Monte Carlo calculations to the real-frequency axis. The method is based on a least-squares-fitting procedure with constraints of positivity and smoothness on the real-frequency quantities. Results are shown for the single-particle spectral-weight function and density of states for the half-filled, two-dimensional Hubbard model.
Toward transient finite element simulation of thermal deformation of machine tools in real-time
NASA Astrophysics Data System (ADS)
Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg
2018-01-01
Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.
Real-time flutter boundary prediction based on time series models
NASA Astrophysics Data System (ADS)
Gu, Wenjing; Zhou, Li
2018-03-01
For the purpose of predicting the flutter boundary in real time during flutter flight tests, two time series models accompanied with corresponding stability criterion are adopted in this paper. The first method simplifies a long nonstationary response signal as many contiguous intervals and each is considered to be stationary. The traditional AR model is then established to represent each interval of signal sequence. While the second employs a time-varying AR model to characterize actual measured signals in flutter test with progression variable speed (FTPVS). To predict the flutter boundary, stability parameters are formulated by the identified AR coefficients combined with Jury's stability criterion. The behavior of the parameters is examined using both simulated and wind-tunnel experiment data. The results demonstrate that both methods show significant effectiveness in predicting the flutter boundary at lower speed level. A comparison between the two methods is also given in this paper.
Evert, Alison; Trence, Dace; Catton, Sarah; Huynh, Peter
2009-01-01
The purpose of this article is to describe the development and implementation of an educational program for the initiation of real-time continuous glucose monitoring (CGM) technology for personal use, not 3-day CGMS diagnostic studies. The education program was designed to meet the needs of patients managing their diabetes with either diabetes medications or insulin pump therapy in an outpatient diabetes education center using a team-based approach. Observational research, complemented by literature review, was used to develop an educational program model and teaching strategies. Diabetes educators, endocrinologists, CGM manufacturer clinical specialists, and patients with diabetes were also interviewed for their clinical observations and experience. The program follows a progressive educational model. First, patients learn in-depth about real-time CGM technology by attending a group presensor class that provides detailed information about CGM. This presensor class facilitates self-selection among patients concerning their readiness to use real-time CGM. If the patient decides to proceed with real-time CGM use, CGM initiation is scheduled, using a clinic-centered protocol for both start-up and follow-up. Successful use of real-time CGM involves more than just patient enthusiasm or interest in a new technology. Channeling patient interest into a structured educational setting that includes the benefits and limitations of real-time CGM helps to manage patient expectations.
BioNetSim: a Petri net-based modeling tool for simulations of biochemical processes.
Gao, Junhui; Li, Li; Wu, Xiaolin; Wei, Dong-Qing
2012-03-01
BioNetSim, a Petri net-based software for modeling and simulating biochemistry processes, is developed, whose design and implement are presented in this paper, including logic construction, real-time access to KEGG (Kyoto Encyclopedia of Genes and Genomes), and BioModel database. Furthermore, glycolysis is simulated as an example of its application. BioNetSim is a helpful tool for researchers to download data, model biological network, and simulate complicated biochemistry processes. Gene regulatory networks, metabolic pathways, signaling pathways, and kinetics of cell interaction are all available in BioNetSim, which makes modeling more efficient and effective. Similar to other Petri net-based softwares, BioNetSim does well in graphic application and mathematic construction. Moreover, it shows several powerful predominances. (1) It creates models in database. (2) It realizes the real-time access to KEGG and BioModel and transfers data to Petri net. (3) It provides qualitative analysis, such as computation of constants. (4) It generates graphs for tracing the concentration of every molecule during the simulation processes.
Network Reduction Algorithm for Developing Distribution Feeders for Real-Time Simulators: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagarajan, Adarsh; Nelson, Austin; Prabakar, Kumaraguru
As advanced grid-support functions (AGF) become more widely used in grid-connected photovoltaic (PV) inverters, utilities are increasingly interested in their impacts when implemented in the field. These effects can be understood by modeling feeders in real-time systems and testing PV inverters using power hardware-in-the-loop (PHIL) techniques. This paper presents a novel feeder model reduction algorithm using a Monte Carlo method that enables large feeders to be solved and operated on real-time computing platforms. Two Hawaiian Electric feeder models in Synergi Electric's load flow software were converted to reduced order models in OpenDSS, and subsequently implemented in the OPAL-RT real-time digitalmore » testing platform. Smart PV inverters were added to the real-time model with AGF responses modeled after characterizing commercially available hardware inverters. Finally, hardware inverters were tested in conjunction with the real-time model using PHIL techniques so that the effects of AGFs on the choice feeders could be analyzed.« less
Improved Short-Term Clock Prediction Method for Real-Time Positioning.
Lv, Yifei; Dai, Zhiqiang; Zhao, Qile; Yang, Sheng; Zhou, Jinning; Liu, Jingnan
2017-06-06
The application of real-time precise point positioning (PPP) requires real-time precise orbit and clock products that should be predicted within a short time to compensate for the communication delay or data gap. Unlike orbit correction, clock correction is difficult to model and predict. The widely used linear model hardly fits long periodic trends with a small data set and exhibits significant accuracy degradation in real-time prediction when a large data set is used. This study proposes a new prediction model for maintaining short-term satellite clocks to meet the high-precision requirements of real-time clocks and provide clock extrapolation without interrupting the real-time data stream. Fast Fourier transform (FFT) is used to analyze the linear prediction residuals of real-time clocks. The periodic terms obtained through FFT are adopted in the sliding window prediction to achieve a significant improvement in short-term prediction accuracy. This study also analyzes and compares the accuracy of short-term forecasts (less than 3 h) by using different length observations. Experimental results obtained from International GNSS Service (IGS) final products and our own real-time clocks show that the 3-h prediction accuracy is better than 0.85 ns. The new model can replace IGS ultra-rapid products in the application of real-time PPP. It is also found that there is a positive correlation between the prediction accuracy and the short-term stability of on-board clocks. Compared with the accuracy of the traditional linear model, the accuracy of the static PPP using the new model of the 2-h prediction clock in N, E, and U directions is improved by about 50%. Furthermore, the static PPP accuracy of 2-h clock products is better than 0.1 m. When an interruption occurs in the real-time model, the accuracy of the kinematic PPP solution using 1-h clock prediction product is better than 0.2 m, without significant accuracy degradation. This model is of practical significance because it solves the problems of interruption and delay in data broadcast in real-time clock estimation and can meet the requirements of real-time PPP.
NASA Astrophysics Data System (ADS)
Zhao, Kaiguang
LiDAR (Light Detection and Ranging) directly measures canopy vertical structures, and provides an effective remote sensing solution to accurate and spatially-explicit mapping of forest characteristics, such as canopy height and Leaf Area Index. However, many factors, such as large data volume and high costs for data acquisition, precludes the operational and practical use of most currently available LiDARs for frequent and large-scale mapping. At the same time, a growing need is arising for real-time remote sensing platforms, e.g., to provide timely information for urgent applications. This study aims to develop an airborne profiling LiDAR system, featured with on-the-fly data processing, for near real- or real-time forest inventory. The development of such a system involves implementing the on-board data processing and analysis as well as building useful regression-based models to relate LiDAR measurements with forest biophysical parameters. This work established a paradigm for an on-the-fly airborne profiling LiDAR system to inventory regional forest resources in real- or near real-time. The system was developed based on an existing portable airborne laser system (PALS) that has been previously assembled at NASA by Dr. Ross Nelson. Key issues in automating PALS as an on-the-fly system were addressed, including the design of an archetype for the system workflow, the development of efficient and robust algorithms for automatic data processing and analysis, the development of effective regression models to predict forest biophysical parameters from LiDAR measurements, and the implementation of an integrated software package to incorporate all the above development. This work exploited the untouched potential of airborne laser profilers for real-time forest inventory, and therefore, documented an initial step toward developing airborne-laser-based, on-the-fly, real-time, forest inventory systems. Results from this work demonstrated the utility and effectiveness of airborne scanning or profiling laser systems for remotely measuring various forest structural attributes at a range of scales, i.e., from individual tree, plot, stand and up to regional levels. The system not only provides a regional assessment tool, one that can be used to repeatedly, remotely measure hundreds or thousands of square kilometers with little/no analyst interaction or interpretation, but also serves as a paradigm for future efforts in building more advanced airborne laser systems such as real-time laser scanners.
Hardware in-the-Loop Demonstration of Real-Time Orbit Determination in High Earth Orbits
NASA Technical Reports Server (NTRS)
Moreau, Michael; Naasz, Bo; Leitner, Jesse; Carpenter, J. Russell; Gaylor, Dave
2005-01-01
This paper presents results from a study conducted at Goddard Space Flight Center (GSFC) to assess the real-time orbit determination accuracy of GPS-based navigation in a number of different high Earth orbital regimes. Measurements collected from a GPS receiver (connected to a GPS radio frequency (RF) signal simulator) were processed in a navigation filter in real-time, and resulting errors in the estimated states were assessed. For the most challenging orbit simulated, a 12 hour Molniya orbit with an apogee of approximately 39,000 km, mean total position and velocity errors were approximately 7 meters and 3 mm/s respectively. The study also makes direct comparisons between the results from the above hardware in-the-loop tests and results obtained by processing GPS measurements generated from software simulations. Care was taken to use the same models and assumptions in the generation of both the real-time and software simulated measurements, in order that the real-time data could be used to help validate the assumptions and models used in the software simulations. The study makes use of the unique capabilities of the Formation Flying Test Bed at GSFC, which provides a capability to interface with different GPS receivers and to produce real-time, filtered orbit solutions even when less than four satellites are visible. The result is a powerful tool for assessing onboard navigation performance in a wide range of orbital regimes, and a test-bed for developing software and procedures for use in real spacecraft applications.
Nonlinear dynamic macromodeling techniques for audio systems
NASA Astrophysics Data System (ADS)
Ogrodzki, Jan; Bieńkowski, Piotr
2015-09-01
This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.
Automatic pattern identification of rock moisture based on the Staff-RF model
NASA Astrophysics Data System (ADS)
Zheng, Wei; Tao, Kai; Jiang, Wei
2018-04-01
Studies on the moisture and damage state of rocks generally focus on the qualitative description and mechanical information of rocks. This method is not applicable to the real-time safety monitoring of rock mass. In this study, a musical staff computing model is used to quantify the acoustic emission signals of rocks with different moisture patterns. Then, the random forest (RF) method is adopted to form the staff-RF model for the real-time pattern identification of rock moisture. The entire process requires only the computing information of the AE signal and does not require the mechanical conditions of rocks.
NASA Technical Reports Server (NTRS)
Premkumar, A. B.; Purviance, J. E.
1990-01-01
A simplified model for the SAR imaging problem is presented. The model is based on the geometry of the SAR system. Using this model an expression for the entire phase history of the received SAR signal is formulated. From the phase history, it is shown that the range and the azimuth coordinates for a point target image can be obtained by processing the phase information during the intrapulse and interpulse periods respectively. An architecture for a VLSI implementation for the SAR signal processor is presented which generates images in real time. The architecture uses a small number of chips, a new correlation processor, and an efficient azimuth correlation process.
Bjorgan, Asgeir; Randeberg, Lise Lyngsnes
2015-01-01
Processing line-by-line and in real-time can be convenient for some applications of line-scanning hyperspectral imaging technology. Some types of processing, like inverse modeling and spectral analysis, can be sensitive to noise. The MNF (minimum noise fraction) transform provides suitable denoising performance, but requires full image availability for the estimation of image and noise statistics. In this work, a modified algorithm is proposed. Incrementally-updated statistics enables the algorithm to denoise the image line-by-line. The denoising performance has been compared to conventional MNF and found to be equal. With a satisfying denoising performance and real-time implementation, the developed algorithm can denoise line-scanned hyperspectral images in real-time. The elimination of waiting time before denoised data are available is an important step towards real-time visualization of processed hyperspectral data. The source code can be found at http://www.github.com/ntnu-bioopt/mnf. This includes an implementation of conventional MNF denoising. PMID:25654717
Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study
NASA Astrophysics Data System (ADS)
D'Souza, Warren D.; Naqvi, Shahid A.; Yu, Cedric X.
2005-09-01
Significant differences between planned and delivered treatments may occur due to respiration-induced tumour motion, leading to underdosing of parts of the tumour and overdosing of parts of the surrounding critical structures. Existing methods proposed to counter tumour motion include breath-holds, gating and MLC-based tracking. Breath-holds and gating techniques increase treatment time considerably, whereas MLC-based tracking is limited to two dimensions. We present an alternative solution in which a robotic couch moves in real time in response to organ motion. To demonstrate proof-of-principle, we constructed a miniature adaptive couch model consisting of two movable platforms that simulate tumour motion and couch motion, respectively. These platforms were connected via an electronic feedback loop so that the bottom platform responded to the motion of the top platform. We tested our model with a seven-field step-and-shoot delivery case in which we performed three film-based experiments: (1) static geometry, (2) phantom-only motion and (3) phantom motion with simulated couch motion. Our measurements demonstrate that the miniature couch was able to compensate for phantom motion to the extent that the dose distributions were practically indistinguishable from those in static geometry. Motivated by this initial success, we investigated a real-time couch compensation system consisting of a stereoscopic infra-red camera system interfaced to a robotic couch known as the Hexapod™, which responds in real time to any change in position detected by the cameras. Optical reflectors placed on a solid water phantom were used as surrogates for motion. We tested the effectiveness of couch-based motion compensation for fixed fields and a dynamic arc delivery cases. Due to hardware limitations, we performed film-based experiments (1), (2) and (3), with the robotic couch at a phantom motion period and dose rate of 16 s and 100 MU min-1, respectively. Analysis of film measurements showed near-equivalent dose distributions (<=2 mm agreement of corresponding isodose lines) for static geometry and motion-synchronized real-time robotic couch tracking-based radiation delivery.
Real time closed loop control of an Ar and Ar/O2 plasma in an ICP
NASA Astrophysics Data System (ADS)
Faulkner, R.; Soberón, F.; McCarter, A.; Gahan, D.; Karkari, S.; Milosavljevic, V.; Hayden, C.; Islyaikin, A.; Law, V. J.; Hopkins, M. B.; Keville, B.; Iordanov, P.; Doherty, S.; Ringwood, J. V.
2006-10-01
Real time closed loop control for plasma assisted semiconductor manufacturing has been the subject of academic research for over a decade. However, due to process complexity and the lack of suitable real time metrology, progress has been elusive and genuine real time, multi-input, multi-output (MIMO) control of a plasma assisted process has yet to be successfully implemented in an industrial setting. A Splasma parameter control strategy T is required to be adopted whereby process recipes which are defined in terms of plasma properties such as critical species densities as opposed to input variables such as rf power and gas flow rates may be transferable between different chamber types. While PIC simulations and multidimensional fluid models have contributed considerably to the basic understanding of plasmas and the design of process equipment, such models require a large amount of processing time and are hence unsuitable for testing control algorithms. In contrast, linear dynamical empirical models, obtained through system identification techniques are ideal in some respects for control design since their computational requirements are comparatively small and their structure facilitates the application of classical control design techniques. However, such models provide little process insight and are specific to an operating point of a particular machine. An ideal first principles-based, control-oriented model would exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This paper will discuss the development of such a first-principles based, control-oriented model of a laboratory inductively coupled plasma chamber. The model consists of a global model of the chemical kinetics coupled to an analytical model of power deposition. Dynamics of actuators including mass flow controllers and exhaust throttle are included and sensor characteristics are also modelled. The application of this control-oriented model to achieve multivariable closed loop control of specific species e.g. atomic Oxygen and ion density using the actuators rf power, Oxygen and Argon flow rates, and pressure/exhaust flow rate in an Ar/O2 ICP plasma will be presented.
On scientific utility inspired by collecting real-time reports of the aurora
NASA Astrophysics Data System (ADS)
MacDonald, E.; Kosar, B.; Heavner, M.; Case, N.; Michael, C. R.; Edwardson, A.; Patel, K.; Hall, M.
2016-12-01
Aurorasaurus is a new source of global, real-time data on the visibility of the aurora. Citizen science observations have been collected via a website, social media, and apps for over two years during active aurora times. In the data-starved field of space physics thousands of such reports are scientifically useful to test and extend coarse models predicting the extent of aurora. Accuracy improvements to the leading model based on case and statistical studies have been developed and these improvements implemented in better real time tools. Our project also uses Twitter data in novel ways, showing that it can robustly indicate geomagnetic activity in real-time, that locations can be extracted from tweets at significantly higher than usual rates, that the real-time veracity of reports can be verified, and that the efficacy of such a system can be tested. Through the project, enthusiasts and credentialed scientists have collaborated to investigate and make discoveries of rare auroral phenomena as well. We will discuss the scientific results in 5 papers to date, as well as aspects of these results that have similarities to other citizen science projects. We will discuss elements of the project particularly well suited for scientific inquiry as well as those aspects that have presented challenges.
Real-time feedback control of twin-screw wet granulation based on image analysis.
Madarász, Lajos; Nagy, Zsombor Kristóf; Hoffer, István; Szabó, Barnabás; Csontos, István; Pataki, Hajnalka; Démuth, Balázs; Szabó, Bence; Csorba, Kristóf; Marosi, György
2018-06-04
The present paper reports the first dynamic image analysis-based feedback control of continuous twin-screw wet granulation process. Granulation of the blend of lactose and starch was selected as a model process. The size and size distribution of the obtained particles were successfully monitored by a process camera coupled with an image analysis software developed by the authors. The validation of the developed system showed that the particle size analysis tool can determine the size of the granules with an error of less than 5 µm. The next step was to implement real-time feedback control of the process by controlling the liquid feeding rate of the pump through a PC, based on the real-time determined particle size results. After the establishment of the feedback control, the system could correct different real-life disturbances, creating a Process Analytically Controlled Technology (PACT), which guarantees the real-time monitoring and controlling of the quality of the granules. In the event of changes or bad tendencies in the particle size, the system can automatically compensate the effect of disturbances, ensuring proper product quality. This kind of quality assurance approach is especially important in the case of continuous pharmaceutical technologies. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng
2017-10-01
Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.
Using time-dependent density functional theory in real time for calculating electronic transport
NASA Astrophysics Data System (ADS)
Schaffhauser, Philipp; Kümmel, Stephan
2016-01-01
We present a scheme for calculating electronic transport within the propagation approach to time-dependent density functional theory. Our scheme is based on solving the time-dependent Kohn-Sham equations on grids in real space and real time for a finite system. We use absorbing and antiabsorbing boundaries for simulating the coupling to a source and a drain. The boundaries are designed to minimize the effects of quantum-mechanical reflections and electrical polarization build-up, which are the major obstacles when calculating transport by applying an external bias to a finite system. We show that the scheme can readily be applied to real molecules by calculating the current through a conjugated molecule as a function of time. By comparing to literature results for the conjugated molecule and to analytic results for a one-dimensional model system we demonstrate the reliability of the concept.
NASA Astrophysics Data System (ADS)
Tobar, R. J.; von Brand, H.; Araya, M. A.; Juerges, T.
2010-12-01
The ALMA Common Software (ACS) framework lacks of the real-time capabilities to control the antennas’ instrumentation — as has been probed by previous works — which has lead to non-portable workarounds to the problem. Indeed, the time service used in ACS, based in the Container/Component model, presents plenty of results that confirm this statement. This work addresses the problem of design and integrate a real-time service for ACS, providing to the framework an implementation such that the control operations over the different instruments could be done within real-time constraints. This implementation is compared with the current time service, showing the difference between the two systems when subjecting them to common scenarios. Also, the new implementation is done following the POSIX specification, ensuring interoperability and portability through different operating systems.
Web-Based Real Time Earthquake Forecasting and Personal Risk Management
NASA Astrophysics Data System (ADS)
Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.
2012-12-01
Earthquake forecasts have been computed by a variety of countries and economies world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. One example is the Working Group on California Earthquake Probabilities that has been responsible for the official California earthquake forecast since 1988. However, in a time of increasingly severe global financial constraints, we are now moving inexorably towards personal risk management, wherein mitigating risk is becoming the responsibility of individual members of the public. Under these circumstances, open access to a variety of web-based tools, utilities and information is a necessity. Here we describe a web-based system that has been operational since 2009 at www.openhazards.com and www.quakesim.org. Models for earthquake physics and forecasting require input data, along with model parameters. The models we consider are the Natural Time Weibull (NTW) model for regional earthquake forecasting, together with models for activation and quiescence. These models use small earthquakes ('seismicity-based models") to forecast the occurrence of large earthquakes, either through varying rates of small earthquake activity, or via an accumulation of this activity over time. These approaches use data-mining algorithms combined with the ANSS earthquake catalog. The basic idea is to compute large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Each of these approaches has computational challenges associated with computing forecast information in real time. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we show that real-time forecasting is possible at a grid scale of 0.1o. We have analyzed the performance of these models using Reliability/Attributes and standard Receiver Operating Characteristic (ROC) tests. We show how the Reliability and ROC tests allow us to judge data completeness and estimate error. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges and pitfalls in serving up these datasets over the web.
AN/SLQ-32 EW System Model: and Expandable, Object-Oriented, Process- Based Simulation
1992-09-01
CONST threshold = 0.1; timetol = 0.01; orientol = 5.8; VAR rec, recLast :BufferBeamRecType; time,power : REAL; powerl,orientation : REAL; BEGIN NEW...PulseGroup); rec:-ASK BufferBeam Removed; time: =rec. time; orientation: =rec. orientation; OUTPUT ( "ORIENREFI, orientation); recLast :=ASK BufferBeam Last...TO Add(rec); IF (rec= recLast ) EXIT; END IF; rec :=ASK BufferBeam Remove o; ELSE ASK BufferBeam TO Add(rec); IF (rec = recLast ) EXIT; END IF; rec
Segment Fixed Priority Scheduling for Self Suspending Real Time Tasks
2016-08-11
Segment-Fixed Priority Scheduling for Self-Suspending Real -Time Tasks Junsung Kim, Department of Electrical and Computer Engineering, Carnegie...4 2.1 Application of a Multi-Segment Self-Suspending Real -Time Task Model ............................. 5 3 Fixed Priority Scheduling...1 Figure 2: A multi-segment self-suspending real -time task model
Magnetron Sputtered Pulsed Laser Deposition Scale Up
2003-08-14
2:721-726 34 S. J. P. Laube and E. F. Stark, “ Artificial Intellegence in Process Control of Pulsed Laser Deposition”, Proceedings of...The model would be based on mathematical simulation of real process data, neural-networks, or other artificial intelligence methods based on in situ...Laube and E. F. Stark, Proc. Symp. Artificial Intel. Real Time Control, Valencia, Spain, 3-5 Oct. ,1994, p.159-163. International Federation of
The NASA Lewis integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1991-01-01
A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.
Real time non invasive imaging of fatty acid uptake in vivo
Henkin, Amy H.; Cohen, Allison S.; Dubikovskaya, Elena A.; Park, Hyo Min; Nikitin, Gennady F.; Auzias, Mathieu G.; Kazantzis, Melissa; Bertozzi, Carolyn R.; Stahl, Andreas
2012-01-01
Detection and quantification of fatty acid fluxes in animal model systems following physiological, pathological, or pharmacological challenges is key to our understanding of complex metabolic networks as these macronutrients also activate transcription factors and modulate signaling cascades including insulin-sensitivity. To enable non-invasive, real-time, spatiotemporal quantitative imaging of fatty acid fluxes in animals, we created a bioactivatable molecular imaging probe based on long-chain fatty acids conjugated to a reporter molecule (luciferin). We show that this probe faithfully recapitulates cellular fatty acid uptake and can be used in animal systems as a valuable tool to localize and quantitate in real-time lipid fluxes such as intestinal fatty acid absorption and brown adipose tissue activation. This imaging approach should further our understanding of basic metabolic processes and pathological alterations in multiple disease models. PMID:22928772
Renewal processes based on generalized Mittag-Leffler waiting times
NASA Astrophysics Data System (ADS)
Cahoy, Dexter O.; Polito, Federico
2013-03-01
The fractional Poisson process has recently attracted experts from several fields of study. Its natural generalization of the ordinary Poisson process made the model more appealing for real-world applications. In this paper, we generalized the standard and fractional Poisson processes through the waiting time distribution, and showed their relations to an integral operator with a generalized Mittag-Leffler function in the kernel. The waiting times of the proposed renewal processes have the generalized Mittag-Leffler and stretched-squashed Mittag-Leffler distributions. Note that the generalizations naturally provide greater flexibility in modeling real-life renewal processes. Algorithms to simulate sample paths and to estimate the model parameters are derived. Note also that these procedures are necessary to make these models more usable in practice. State probabilities and other qualitative or quantitative features of the models are also discussed.
NASA Astrophysics Data System (ADS)
Serrano, Rafael; González, Luis Carlos; Martín, Francisco Jesús
2009-11-01
Under the project SENSOR-IA which has had financial funding from the Order of Incentives to the Regional Technology Centers of the Counsil of Innovation, Science and Enterprise of Andalusia, an architecture for the optimization of a machining process in real time through rule-based expert system has been developed. The architecture consists of an acquisition system and sensor data processing engine (SATD) from an expert system (SE) rule-based which communicates with the SATD. The SE has been designed as an inference engine with an algorithm for effective action, using a modus ponens rule model of goal-oriented rules.The pilot test demonstrated that it is possible to govern in real time the machining process based on rules contained in a SE. The tests have been done with approximated rules. Future work includes an exhaustive collection of data with different tool materials and geometries in a database to extract more precise rules.
NASA Astrophysics Data System (ADS)
Berni, Nicola; Brocca, Luca; Barbetta, Silvia; Pandolfo, Claudia; Stelluti, Marco; Moramarco, Tommaso
2014-05-01
The Italian national hydro-meteorological early warning system is composed by 21 regional offices (Functional Centres, CF). Umbria Region (central Italy) CF provides early warning for floods and landslides, real-time monitoring and decision support systems (DSS) for the Civil Defence Authorities when significant events occur. The alert system is based on hydrometric and rainfall thresholds with detailed procedures for the management of critical events in which different roles of authorities and institutions involved are defined. The real-time flood forecasting system is based also on different hydrological and hydraulic forecasting models. Among these, the MISDc rainfall-runoff model ("Modello Idrologico SemiDistribuito in continuo"; Brocca et al., 2011) and the flood routing model named STAFOM-RCM (STAge Forecasting Model-Rating Curve Model; Barbetta et al., 2014) are continuously operative in real-time providing discharge and stage forecasts, respectively, with lead-times up to 24 hours (when quantitative precipitation forecasts are used) in several gauged river sections in the Upper-Middle Tiber River basin. Models results are published in real-time in the open source CF web platform: www.cfumbria.it. MISDc provides discharge and soil moisture forecasts for different sub-basins while STAFOM-RCM provides stage forecasts at hydrometric sections. Moreover, through STAFOM-RCM the uncertainty of the forecast stage hydrograph is provided in terms of 95% Confidence Interval (CI) assessed by analyzing the statistical properties of model output in terms of lateral. In the period 10th-12th November 2013, a severe flood event occurred in Umbria mainly affecting the north-eastern area and causing significant economic damages, but fortunately no casualties. The territory was interested by intense and persistent rainfall; the hydro-meteorological monitoring network recorded locally rainfall depth over 400 mm in 72 hours. In the most affected area, the recorded rainfall depths correspond approximately to a return period of 200 years. Most rivers in Umbria have been involved, exceeding hydrometric thresholds and causing flooding (e.g. Chiascio river). The flood event was continuously monitored at the Umbria Region CF and the possible evolution predicted and assessed on the basis of the model forecasts. The predictions provided by MISDc and STAFOM-RCM were found useful to support real-time decision-making addressed to flood risk management. Moreover, the quantification of the uncertainty affecting the deterministic forecast stages was found consistent with the level of confidence selected and had practical utility corroborating the need of coupling deterministic forecast and 'uncertainty' when the model output is used to support decisions about flood management. REFERENCES Barbetta, S., Moramarco, T., Brocca, L., Franchini, M., Melone, F. (2014). Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3), 729-743. Brocca, L., Melone, F., Moramarco, T. (2011). Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting. Hydrological Processes, 25 (18), 2801-2813
Designing a Dynamic Data Driven Application System for Estimating Real-Time Load of DOC in a River
NASA Astrophysics Data System (ADS)
Ouyang, Y.; None
2011-12-01
Understanding the dynamics of naturally occurring dissolved organic carbon (DOC) in a river is central to estimating surface water quality, aquatic carbon cycling, and climate change. Currently, determination of DOC in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 hours. In other words, no effort has been devoted to monitoring real-time variations of DOC in a river due to the lack of suitable and/or cost-effective wireless sensors. However, when considering human health, carbon footprints, and effects of urbanization, industry, and agriculture on water resource supply, timely DOC information may be critical. We have developed here a new paradigm, a dynamic data driven application system (DDDAS), for estimating the real-time load of DOC into a river. This DDDAS consisted of the following four components: (1) a Visual Basic (VB) program for downloading US Geological Survey real-time chlorophyll and discharge data; (2) a STELLA model for evaluating real-time DOC load based on the relationship between chlorophyll a, DOC, and river discharge; (3) a batch file for linking the VB program and STELLA model; and (4) a Microsoft Windows Scheduled Tasks wizard for executing the model and displaying output on a computer screen at selected times. Results show that the real-time load of DOC into the St. Johns River basin near Satsuma, Putnam County, Florida, USA varied over a range from -13,143 to 29,248 kg/h at the selected site in Florida, USA. The negative loads occurred because of the back flow in the estuarine reach of the river. The cumulative load of DOC in the river for the selected site at the end of the simulation (178 hours) was about 1.2 tons. Our results support the utility of the DDDAS developed in this study for estimating the real-time variations of DOC in river ecosystems.
NASA Astrophysics Data System (ADS)
Liu, Yu-Hang; Xu, Yu; Chan, Kim Chuan; Mehta, Kalpesh; Thakor, Nitish; Liao, Lun-De
2017-02-01
Stroke is the second leading cause of death worldwide. Rapid and precise diagnosis is essential to expedite clinical decision and improve functional outcomes in stroke patients; therefore, real-time imaging plays an important role to provide crucial information for post-stroke recovery analysis. In this study, based on the multi-wavelength laser and 18.5 MHz array-based ultrasound platform, a real-time handheld photoacoustic (PA) system was developed to evaluate cerebrovascular functions pre- and post-stroke in rats. Using this system, hemodynamic information such as cerebral blood volume (CBV) can be acquired for assessment. One rat stroke model (i.e., photothrombotic ischemia (PTI)) was employed for evaluating the effect of local ischemia. For achieving better intrinsic PA contrast, Vantage and COMSOL simulations were applied to optimize the light delivery (e.g., interval between two arms) from customized fiber bundle, while phantom experiment was conducted to evaluate the imaging performance of this system. Results of phantom experiment showed that hairs ( 150 μm diameter) and pencil lead (500 μm diameter) can be imaged clearly. On the other hand, results of in vivo experiments also demonstrated that stroke symptoms can be observed in PTI model poststroke. In the near future, with the help of PA specific contrast agent, the system would be able to achieve blood-brain barrier leakage imaging post-stroke. Overall, the real-time handheld PA system holds great potential in disease models involving impairments in cerebrovascular functions.
Efficient scatter model for simulation of ultrasound images from computed tomography data
NASA Astrophysics Data System (ADS)
D'Amato, J. P.; Lo Vercio, L.; Rubi, P.; Fernandez Vera, E.; Barbuzza, R.; Del Fresno, M.; Larrabide, I.
2015-12-01
Background and motivation: Real-time ultrasound simulation refers to the process of computationally creating fully synthetic ultrasound images instantly. Due to the high value of specialized low cost training for healthcare professionals, there is a growing interest in the use of this technology and the development of high fidelity systems that simulate the acquisitions of echographic images. The objective is to create an efficient and reproducible simulator that can run either on notebooks or desktops using low cost devices. Materials and methods: We present an interactive ultrasound simulator based on CT data. This simulator is based on ray-casting and provides real-time interaction capabilities. The simulation of scattering that is coherent with the transducer position in real time is also introduced. Such noise is produced using a simplified model of multiplicative noise and convolution with point spread functions (PSF) tailored for this purpose. Results: The computational efficiency of scattering maps generation was revised with an improved performance. This allowed a more efficient simulation of coherent scattering in the synthetic echographic images while providing highly realistic result. We describe some quality and performance metrics to validate these results, where a performance of up to 55fps was achieved. Conclusion: The proposed technique for real-time scattering modeling provides realistic yet computationally efficient scatter distributions. The error between the original image and the simulated scattering image was compared for the proposed method and the state-of-the-art, showing negligible differences in its distribution.
An enhanced lumped element electrical model of a double barrier memristive device
NASA Astrophysics Data System (ADS)
Solan, Enver; Dirkmann, Sven; Hansen, Mirko; Schroeder, Dietmar; Kohlstedt, Hermann; Ziegler, Martin; Mussenbrock, Thomas; Ochs, Karlheinz
2017-05-01
The massive parallel approach of neuromorphic circuits leads to effective methods for solving complex problems. It has turned out that resistive switching devices with a continuous resistance range are potential candidates for such applications. These devices are memristive systems—nonlinear resistors with memory. They are fabricated in nanotechnology and hence parameter spread during fabrication may aggravate reproducible analyses. This issue makes simulation models of memristive devices worthwhile. Kinetic Monte-Carlo simulations based on a distributed model of the device can be used to understand the underlying physical and chemical phenomena. However, such simulations are very time-consuming and neither convenient for investigations of whole circuits nor for real-time applications, e.g. emulation purposes. Instead, a concentrated model of the device can be used for both fast simulations and real-time applications, respectively. We introduce an enhanced electrical model of a valence change mechanism (VCM) based double barrier memristive device (DBMD) with a continuous resistance range. This device consists of an ultra-thin memristive layer sandwiched between a tunnel barrier and a Schottky-contact. The introduced model leads to very fast simulations by using usual circuit simulation tools while maintaining physically meaningful parameters. Kinetic Monte-Carlo simulations based on a distributed model and experimental data have been utilized as references to verify the concentrated model.
Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²
NASA Astrophysics Data System (ADS)
Goldenson, N. L.
2014-12-01
Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect, reservoirs and flows, albedo feedback, Snowball Earth, climate sensitivity, and model experiment design. Climate calculations are extended to Mars with some modifications to the Earth climate component, and could be used in lessons about the Mars atmosphere, and exploring scenarios of Mars climate history.
StarBase: A Firm Real-Time Database Manager for Time-Critical Applications
1995-01-01
Mellon University [IO]. StarBase differs from previous RT-DBMS work [l, 2, 31 in that a) it relies on a real - time operating system which provides...simulation studies, StarBase uses a real - time operating system to provide basic real-time functionality and deals with issues beyond transaction...re- source scheduling provided by the underlying real - time operating system . Issues of data contention are dealt with by use of a priority
Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions
NASA Technical Reports Server (NTRS)
Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.
2011-01-01
A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.
A New Zenith Tropospheric Delay Grid Product for Real-Time PPP Applications over China.
Lou, Yidong; Huang, Jinfang; Zhang, Weixing; Liang, Hong; Zheng, Fu; Liu, Jingnan
2017-12-27
Tropospheric delay is one of the major factors affecting the accuracy of electromagnetic distance measurements. To provide wide-area real-time high precision zenith tropospheric delay (ZTD), the temporal and spatial variations of ZTD with altitude were analyzed on the bases of the latest meteorological reanalysis product (ERA-Interim) provided by the European Center for Medium-Range Weather Forecasts (ECMWF). An inverse scale height model at given locations taking latitude, longitude and day of year as inputs was then developed and used to convert real-time ZTD at GPS stations in Crustal Movement Observation Network of China (CMONOC) from station height to mean sea level (MSL). The real-time ZTD grid product (RtZTD) over China was then generated with a time interval of 5 min. Compared with ZTD estimated in post-processing mode, the bias and error RMS of ZTD at test GPS stations derived from RtZTD are 0.39 and 1.56 cm, which is significantly more accurate than commonly used empirical models. In addition, simulated real-time kinematic Precise Point Positioning (PPP) tests show that using RtZTD could accelerate the BDS-PPP convergence time by up to 32% and 65% in the horizontal and vertical components (set coordinate error thresholds to 0.4 m), respectively. For GPS-PPP, the convergence time using RtZTD can be accelerated by up to 29% in the vertical component (0.2 m).
The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine
NASA Astrophysics Data System (ADS)
Liu, Yuan; Zhang, Xin; Zhang, Tianhong
2017-11-01
A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.
Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao
2016-07-12
In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved.
An immersive surgery training system with live streaming capability.
Yang, Yang; Guo, Xinqing; Yu, Zhan; Steiner, Karl V; Barner, Kenneth E; Bauer, Thomas L; Yu, Jingyi
2014-01-01
Providing real-time, interactive immersive surgical training has been a key research area in telemedicine. Earlier approaches have mainly adopted videotaped training that can only show imagery from a fixed view point. Recent advances on commodity 3D imaging have enabled a new paradigm for immersive surgical training by acquiring nearly complete 3D reconstructions of actual surgical procedures. However, unlike 2D videotaping that can easily stream data in real-time, by far 3D imaging based solutions require pre-capturing and processing the data; surgical trainings using the data have to be conducted offline after the acquisition. In this paper, we present a new real-time immersive 3D surgical training system. Our solution builds upon the recent multi-Kinect based surgical training system [1] that can acquire and display high delity 3D surgical procedures using only a small number of Microsoft Kinect sensors. We build on top of the system a client-server model for real-time streaming. On the server front, we efficiently fuse multiple Kinect data acquired from different viewpoints and compress and then stream the data to the client. On the client front, we build an interactive space-time navigator to allow remote users (e.g., trainees) to witness the surgical procedure in real-time as if they were present in the room.
Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.
Harris, S C; Walker, D S
2000-09-01
This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.
Research on Parallel Three Phase PWM Converters base on RTDS
NASA Astrophysics Data System (ADS)
Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun
2018-01-01
Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.
Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems
Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui
2015-01-01
This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258
Propulsion IVHM Technology Experiment
NASA Technical Reports Server (NTRS)
Chicatelli, Amy K.; Maul, William A.; Fulton, Christopher E.
2006-01-01
The Propulsion IVHM Technology Experiment (PITEX) successfully demonstrated real-time fault detection and isolation of a virtual reusable launch vehicle (RLV) main propulsion system (MPS). Specifically, the PITEX research project developed and applied a model-based diagnostic system for the MPS of the X-34 RLV, a space-launch technology demonstrator. The demonstration was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real time on flight-like hardware. In an attempt to expose potential performance problems, the PITEX diagnostic system was subjected to numerous realistic effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. In all cases, the PITEX system performed as required. The research demonstrated potential benefits of model-based diagnostics, defined performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.
Zhu, Yun; Lao, Yanwen; Jang, Carey; Lin, Chen-Jen; Xing, Jia; Wang, Shuxiao; Fu, Joshua S; Deng, Shuang; Xie, Junping; Long, Shicheng
2015-01-01
This article describes the development and implementations of a novel software platform that supports real-time, science-based policy making on air quality through a user-friendly interface. The software, RSM-VAT, uses a response surface modeling (RSM) methodology and serves as a visualization and analysis tool (VAT) for three-dimensional air quality data obtained by atmospheric models. The software features a number of powerful and intuitive data visualization functions for illustrating the complex nonlinear relationship between emission reductions and air quality benefits. The case study of contiguous U.S. demonstrates that the enhanced RSM-VAT is capable of reproducing the air quality model results with Normalized Mean Bias <2% and assisting in air quality policy making in near real time. Copyright © 2014. Published by Elsevier B.V.
Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.
2013-01-01
Cheney Reservoir in south-central Kansas is one of the primary sources of water for the city of Wichita. The North Fork Ninnescah River is the largest contributing tributary to Cheney Reservoir. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station since 1998 on the North Fork Ninnescah River. Continuously measured water-quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, and turbidity. Discrete water-quality samples were collected during 1999 through 2009 and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to estimate concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models were published in 2006 that were based on a different dataset collected during 1997 through 2003. This report updates those models using discrete and continuous data collected during January 1999 through December 2009. Models also were developed for five new constituents, including additional nutrient species and indicator bacteria. The water-quality information in this report is important to the city of Wichita because it allows the concentrations of many potential pollutants of interest, including nutrients and sediment, to be estimated in real time and characterized over conditions and time scales that would not be possible otherwise.
The Cell Collective: Toward an open and collaborative approach to systems biology
2012-01-01
Background Despite decades of new discoveries in biomedical research, the overwhelming complexity of cells has been a significant barrier to a fundamental understanding of how cells work as a whole. As such, the holistic study of biochemical pathways requires computer modeling. Due to the complexity of cells, it is not feasible for one person or group to model the cell in its entirety. Results The Cell Collective is a platform that allows the world-wide scientific community to create these models collectively. Its interface enables users to build and use models without specifying any mathematical equations or computer code - addressing one of the major hurdles with computational research. In addition, this platform allows scientists to simulate and analyze the models in real-time on the web, including the ability to simulate loss/gain of function and test what-if scenarios in real time. Conclusions The Cell Collective is a web-based platform that enables laboratory scientists from across the globe to collaboratively build large-scale models of various biological processes, and simulate/analyze them in real time. In this manuscript, we show examples of its application to a large-scale model of signal transduction. PMID:22871178
Real-time Retrieving Atmospheric Parameters from Multi-GNSS Constellations
NASA Astrophysics Data System (ADS)
Li, X.; Zus, F.; Lu, C.; Dick, G.; Ge, M.; Wickert, J.; Schuh, H.
2016-12-01
The multi-constellation GNSS (e.g. GPS, GLONASS, Galileo, and BeiDou) bring great opportunities and challenges for real-time retrieval of atmospheric parameters for supporting numerical weather prediction (NWP) nowcasting or severe weather event monitoring. In this study, the observations from different GNSS are combined together for atmospheric parameter retrieving based on the real-time precise point positioning technique. The atmospheric parameters retrieved from multi-GNSS observations, including zenith total delay (ZTD), integrated water vapor (IWV), horizontal gradient (especially high-resolution gradient estimates) and slant total delay (STD), are carefully analyzed and evaluated by using the VLBI, radiosonde, water vapor radiometer and numerical weather model to independently validate the performance of individual GNSS and also demonstrate the benefits of multi-constellation GNSS for real-time atmospheric monitoring. Numerous results show that the multi-GNSS processing can provide real-time atmospheric products with higher accuracy, stronger reliability and better distribution, which would be beneficial for atmospheric sounding systems, especially for nowcasting of extreme weather.
Real-Time Visualization Tool Integrating STEREO, ACE, SOHO and the SDO
NASA Astrophysics Data System (ADS)
Schroeder, P. C.; Luhmann, J. G.; Marchant, W.
2011-12-01
The STEREO/IMPACT team has developed a new web-based visualization tool for near real-time data from the STEREO instruments, ACE and SOHO as well as relevant models of solar activity. This site integrates images, solar energetic particle, solar wind plasma and magnetic field measurements in an intuitive way using near real-time products from NOAA and other sources to give an overview of recent space weather events. This site enhances the browse tools already available at UC Berkeley, UCLA and Caltech which allow users to visualize similar data from the start of the STEREO mission. Our new near real-time tool utilizes publicly available real-time data products from a number of missions and instruments, including SOHO LASCO C2 images from the SOHO team's NASA site, SDO AIA images from the SDO team's NASA site, STEREO IMPACT SEP data plots and ACE EPAM data plots from the NOAA Space Weather Prediction Center and STEREO spacecraft positions from the STEREO Science Center.
GTRF: a game theory approach for regulating node behavior in real-time wireless sensor networks.
Lin, Chi; Wu, Guowei; Pirozmand, Poria
2015-06-04
The selfish behaviors of nodes (or selfish nodes) cause packet loss, network congestion or even void regions in real-time wireless sensor networks, which greatly decrease the network performance. Previous methods have focused on detecting selfish nodes or avoiding selfish behavior, but little attention has been paid to regulating selfish behavior. In this paper, a Game Theory-based Real-time & Fault-tolerant (GTRF) routing protocol is proposed. GTRF is composed of two stages. In the first stage, a game theory model named VA is developed to regulate nodes' behaviors and meanwhile balance energy cost. In the second stage, a jumping transmission method is adopted, which ensures that real-time packets can be successfully delivered to the sink before a specific deadline. We prove that GTRF theoretically meets real-time requirements with low energy cost. Finally, extensive simulations are conducted to demonstrate the performance of our scheme. Simulation results show that GTRF not only balances the energy cost of the network, but also prolongs network lifetime.
Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A
2010-09-07
In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.
NASA Technical Reports Server (NTRS)
Credeur, Leonard; Houck, Jacob A.; Capron, William R.; Lohr, Gary W.
1990-01-01
A description and results are presented of a study to measure the performance and reaction of airline flight crews, in a full workload DC-9 cockpit, flying in a real-time simulation of an air traffic control (ATC) concept called Traffic Intelligence for the Management of Efficient Runway-scheduling (TIMER). Experimental objectives were to verify earlier fast-time TIMER time-delivery precision results and obtain data for the validation or refinement of existing computer models of pilot/airborne performance. Experimental data indicated a runway threshold, interarrival-time-error standard deviation in the range of 10.4 to 14.1 seconds. Other real-time system performance parameters measured include approach speeds, response time to controller turn instructions, bank angles employed, and ATC controller message delivery-time errors.
Applying Cognitive Fusion to Space Situational Awareness
NASA Astrophysics Data System (ADS)
Ingram, S.; Shaw, M.; Chan, M.
With recent increases in capability and frequency of rocket launches from countries across the world, maintaining a state-of-the-art Space Situational Awareness model is all the more necessary. We propose a fusion of real-time, natural language processing capability provided by IBM cognitive services with ground-based sensor data of positions and trajectories of satellites in all earth orbits. We believe such insight provided by cognitive services could help determine context to missile launches, help predict when a satellite of interest could be in danger, either by accident or by intent, and could alert interested parties to the perceived threat. We seek to implement an improved Space Situational Awareness model by developing a dynamic factor graph model informed by the fusion of ground-based ”structured” sensor data with ”unstructured” data from the public domain, such as news articles, blogs, and social media, in real time. To this end, we employ IBM’s Cognitive services, specifically, Watson Discovery. Watson Discovery allows real-time natural language processing of text including entity extraction, keyword search, taxonomy classification, concept tagging, relation extraction, sentiment analysis, and emotion analysis. We present various scenarios that demonstrate the utility of this new Space Situational Awareness model, each of which combine past structured information with related open source data. We demonstrate that should the model come to estimate a satellite is ”of interest”, it will indicate it as so, based on the most pertinent data, such as a reading from a sensor or by information available online. We present and discuss the most recent iterations of the model for satellites currently available on Space-Track.org.
Application of neural network for real-time measurement of electrical resistivity in cold crucible
NASA Astrophysics Data System (ADS)
Votava, Pavel; Poznyak, Igor
2017-08-01
The article describes use of an Induction furnace with cold crucible as a tool for real-time measurement of a melted material electrical resistivity. The measurement is based on an inverse problem solution of a 2D mathematical model, possibly implementable in a microcontroller or a FPGA in a form of a neural network. The 2D mathematical model results has been provided as a training set for the neural network. At the end, the implementation results are discussed together with uncertainty of measurement, which is done by the neural network implementation itself.
Real-time door detection for indoor autonomous vehicle
NASA Astrophysics Data System (ADS)
He, Zhihao; Zhu, Ming
2017-07-01
Indoor Autonomous Vehicle(IAV) is used in many indoor scenes. Such as hotels and hospitals. Door detection is a key issue to guide the IAV into rooms. In this paper, we consider door detection in the use of indoor navigation of IAV. Since real-time properties are important for real-world IAV, the detection algorithm must be fast enough. Most monocular-camera based door detection model need a perfect detection of the four line segments of the door or the four corners. But in many situations, line segments could be extended or cut off. And there could be many false detected corners. And few of them can distinguish doors from door-like objects with door-like shape effectively. We proposed a 2-D vision model of the door that is made up of line segments. The number of parts detected is used to determine the possibility of a door. Our algorithm is tested on a database of doors.1 The robustness and real-time are verified. The precision is 89.4%. Average time consumed for processing a 640x320 figure is 44.73ms.
Real-Time IRI driven by GIRO data
NASA Astrophysics Data System (ADS)
Galkin, Ivan; Huang, Xueqin; Reinisch, Bodo; Bilitza, Dieter; Vesnin, Artem
Real-time extensions of the empirical International Reference Ionosphere (IRI) model are based on assimilative techniques that preserve the IRI formalism which is optimized for the description of climatological ionospheric features. The Global Ionosphere Radio Observatory (GIRO) team has developed critical parts of an IRI Real Time Assimilative Model (IRTAM) for the global ionospheric plasma distribution using measured data available in real time from ~50 ionosondes of the GIRO network, The current assimilation results present global assimilative maps of foF2 and hmF2 that reproduce available data at the sensor sites and smoothly return to the climatological specifications when and where the data are missing, and are free from artificial sharp gradients and short-lived artifacts when viewed in time progression. Animated real-time maps of foF2 and hmF2 are published with a few minutes latency at http://giro.uml.edu/IRTAM/. Our real-time IRI modeling uses morphing, a technique that transforms the climatological ionospheric specifications to match the observations by iteratively computing corrections to the original coefficients of the diurnal/spatial expansions, used in IRI to map the key ionospheric characteristics, while keeping the IRI expansion basis formalism intact. Computation of the updated coefficient set for a given point in time includes analysis of the latest 24-hour history of observations, which allows the morphing technique to sense evolving ionospheric dynamics even with a sparse sensor network. A Non-linear Error Compensation Technique for Associative Restoration (NECTAR), one of the features in our morphing approach, has been in operation at the Lowell GIRO Data Center since 2013. The cornerstone of NECTAR is a recurrent neural network optimizer that is responsible for smoothing the transitions between the grid cells where observations are available. NECTAR has proved suitable for real-time operations that require the assimilation code to be considerate of data uncertainties (noise) and immune to data errors. Future IRTAM work is directed toward accepting a greater diversity of near-real-time sensor data, and the paper discusses potential new data sources and challenges associated with their assimilation.
Two States Mapping Based Time Series Neural Network Model for Compensation Prediction Residual Error
NASA Astrophysics Data System (ADS)
Jung, Insung; Koo, Lockjo; Wang, Gi-Nam
2008-11-01
The objective of this paper was to design a model of human bio signal data prediction system for decreasing of prediction error using two states mapping based time series neural network BP (back-propagation) model. Normally, a lot of the industry has been applied neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has got a residual error between real value and prediction result. Therefore, we designed two states of neural network model for compensation residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We determined that most of the simulation cases were satisfied by the two states mapping based time series prediction model. In particular, small sample size of times series were more accurate than the standard MLP model.
Real-time acquisition and preprocessing system of transient electromagnetic data based on LabVIEW
NASA Astrophysics Data System (ADS)
Zhao, Huinan; Zhang, Shuang; Gu, Lingjia; Sun, Jian
2014-09-01
Transient electromagnetic method (TEM) is regarded as an everlasting issue for geological exploration. It is widely used in many research fields, such as mineral exploration, hydrogeology survey, engineering exploration and unexploded ordnance detection. The traditional measurement systems are often based on ARM DSP or FPGA, which have not real-time display, data preprocessing and data playback functions. In order to overcome the defects, a real-time data acquisition and preprocessing system based on LabVIEW virtual instrument development platform is proposed in the paper, moreover, a calibration model is established for TEM system based on a conductivity loop. The test results demonstrated that the system can complete real-time data acquisition and system calibration. For Transmit-Loop-Receive (TLR) response, the correlation coefficient between the measured results and the calculated results is 0.987. The measured results are basically consistent with the calculated results. Through the late inversion process for TLR, the signal of underground conductor was obtained. In the complex test environment, abnormal values usually exist in the measured data. In order to solve this problem, the judgment and revision algorithm of abnormal values is proposed in the paper. The test results proved that the proposed algorithm can effectively eliminate serious disturbance signals from the measured transient electromagnetic data.
An improved grey model for the prediction of real-time GPS satellite clock bias
NASA Astrophysics Data System (ADS)
Zheng, Z. Y.; Chen, Y. Q.; Lu, X. S.
2008-07-01
In real-time GPS precise point positioning (PPP), real-time and reliable satellite clock bias (SCB) prediction is a key to implement real-time GPS PPP. It is difficult to hold the nuisance and inenarrable performance of space-borne GPS satellite atomic clock because of its high-frequency, sensitivity and impressionable, it accords with the property of grey model (GM) theory, i. e. we can look on the variable process of SCB as grey system. Firstly, based on limits of quadratic polynomial (QP) and traditional GM to predict SCB, a modified GM (1,1) is put forward to predict GPS SCB in this paper; and then, taking GPS SCB data for example, we analyzed clock bias prediction with different sample interval, the relationship between GM exponent and prediction accuracy, precision comparison of GM to QP, and concluded the general rule of different type SCB and GM exponent; finally, to test the reliability and validation of the modified GM what we put forward, taking IGS clock bias ephemeris product as reference, we analyzed the prediction precision with the modified GM, It is showed that the modified GM is reliable and validation to predict GPS SCB and can offer high precise SCB prediction for real-time GPS PPP.
Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2016-01-01
Flight testing and modeling techniques were developed to accurately identify global nonlinear aerodynamic models for aircraft in real time. The techniques were developed and demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. Prediction testing was used to evaluate the quality of the global models identified in real time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept flight demonstrations.
NASA Astrophysics Data System (ADS)
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung
2018-02-01
Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Fractal markets: Liquidity and investors on different time horizons
NASA Astrophysics Data System (ADS)
Li, Da-Ye; Nishimura, Yusaku; Men, Ming
2014-08-01
In this paper, we propose a new agent-based model to study the source of liquidity and the “emergent” phenomenon in financial market with fractal structure. The model rests on fractal market hypothesis and agents with different time horizons of investments. What is interesting is that though the agent-based model reveals that the interaction between these heterogeneous agents affects the stability and liquidity of the financial market the real world market lacks detailed data to bring it to light since it is difficult to identify and distinguish the investors with different time horizons in the empirical approach. results show that in a relatively short period of time fractal market provides liquidity from investors with different horizons and the market gains stability when the market structure changes from uniformity to diversification. In the real world the fractal structure with the finite of horizons can only stabilize the market within limits. With the finite maximum horizons, the greater diversity of the investors and the fractal structure will not necessarily bring more stability to the market which might come with greater fluctuation in large time scale.
NASA Astrophysics Data System (ADS)
Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.
2017-12-01
Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.
Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft
NASA Technical Reports Server (NTRS)
Davidson, John B.; Lallman, Frederick J.; Bundick, W. Thomas
2001-01-01
Abstract This paper presents the development and application of one approach to the control of aircraft with large numbers of control effectors. This approach, referred to as real-time adaptive control allocation, combines a nonlinear method for control allocation with actuator failure detection and isolation. The control allocator maps moment (or angular acceleration) commands into physical control effector commands as functions of individual control effectiveness and availability. The actuator failure detection and isolation algorithm is a model-based approach that uses models of the actuators to predict actuator behavior and an adaptive decision threshold to achieve acceptable false alarm/missed detection rates. This integrated approach provides control reconfiguration when an aircraft is subjected to actuator failure, thereby improving maneuverability and survivability of the degraded aircraft. This method is demonstrated on a next generation military aircraft Lockheed-Martin Innovative Control Effector) simulation that has been modified to include a novel nonlinear fluid flow control control effector based on passive porosity. Desktop and real-time piloted simulation results demonstrate the performance of this integrated adaptive control allocation approach.
Lin, Hsueh-Chun; Hong, Yao-Ming; Kan, Yao-Chiang
2012-01-01
The groundwater level represents a critical factor to evaluate hillside landslides. A monitoring system upon the real-time prediction platform with online analytical functions is important to forecast the groundwater level due to instantaneously monitored data when the heavy precipitation raises the groundwater level under the hillslope and causes instability. This study is to design the backend of an environmental monitoring system with efficient algorithms for machine learning and knowledge bank for the groundwater level fluctuation prediction. A Web-based platform upon the model-view controller-based architecture is established with technology of Web services and engineering data warehouse to support online analytical process and feedback risk assessment parameters for real-time prediction. The proposed system incorporates models of hydrological computation, machine learning, Web services, and online prediction to satisfy varieties of risk assessment requirements and approaches of hazard prevention. The rainfall data monitored from the potential landslide area at Lu-Shan, Nantou and Li-Shan, Taichung, in Taiwan, are applied to examine the system design.
Resource utilization model for the algorithm to architecture mapping model
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Patel, Rakesh R.
1993-01-01
The analytical model for resource utilization and the variable node time and conditional node model for the enhanced ATAMM model for a real-time data flow architecture are presented in this research. The Algorithm To Architecture Mapping Model, ATAMM, is a Petri net based graph theoretic model developed at Old Dominion University, and is capable of modeling the execution of large-grained algorithms on a real-time data flow architecture. Using the resource utilization model, the resource envelope may be obtained directly from a given graph and, consequently, the maximum number of required resources may be evaluated. The node timing diagram for one iteration period may be obtained using the analytical resource envelope. The variable node time model, which describes the change in resource requirement for the execution of an algorithm under node time variation, is useful to expand the applicability of the ATAMM model to heterogeneous architectures. The model also describes a method of detecting the presence of resource limited mode and its subsequent prevention. Graphs with conditional nodes are shown to be reduced to equivalent graphs with time varying nodes and, subsequently, may be analyzed using the variable node time model to determine resource requirements. Case studies are performed on three graphs for the illustration of applicability of the analytical theories.
An Analysis of Input/Output Paradigms for Real-Time Systems
1990-07-01
timing and concurrency aspects of real - time systems . This paper illustrates how to build a mathematical model of the schedulability of a real-time...various design alternatives. The primary characteristic that distinguishes real-time system from non- real - time systems is the importance of time. The
Model-based framework for multi-axial real-time hybrid simulation testing
NASA Astrophysics Data System (ADS)
Fermandois, Gaston A.; Spencer, Billie F.
2017-10-01
Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six-degrees-of-freedom are controlled at the interface between substructures.
NASA Astrophysics Data System (ADS)
Mbaya, Timmy
Embedded Aerospace Systems have to perform safety and mission critical operations in a real-time environment where timing and functional correctness are extremely important. Guidance, Navigation, and Control (GN&C) systems substantially rely on complex software interfacing with hardware in real-time; any faults in software or hardware, or their interaction could result in fatal consequences. Integrated Software Health Management (ISWHM) provides an approach for detection and diagnosis of software failures while the software is in operation. The ISWHM approach is based on probabilistic modeling of software and hardware sensors using a Bayesian network. To meet memory and timing constraints of real-time embedded execution, the Bayesian network is compiled into an Arithmetic Circuit, which is used for on-line monitoring. This type of system monitoring, using an ISWHM, provides automated reasoning capabilities that compute diagnoses in a timely manner when failures occur. This reasoning capability enables time-critical mitigating decisions and relieves the human agent from the time-consuming and arduous task of foraging through a multitude of isolated---and often contradictory---diagnosis data. For the purpose of demonstrating the relevance of ISWHM, modeling and reasoning is performed on a simple simulated aerospace system running on a real-time operating system emulator, the OSEK/Trampoline platform. Models for a small satellite and an F-16 fighter jet GN&C (Guidance, Navigation, and Control) system have been implemented. Analysis of the ISWHM is then performed by injecting faults and analyzing the ISWHM's diagnoses.
NASA Technical Reports Server (NTRS)
Li,Hui; Faruque, Fazlay; Williams, Worth; Al-Hamdan, Mohammad; Luvall, Jeffrey; Crosson, William; Rickman, Douglas; Limaye, Ashutosh
2008-01-01
Aerosol optical depth (AOD), derived from satellite measurements using Moderate Resolution Imaging Spectrometer (MODIS), offers indirect estimates of particle matter. Research shows a significant positive correlation between satellite-based measurements of AOD and ground-based measurements of particulate matter with aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5). In addition, satellite observations have also shown great promise in improving estimates of PM2.5 air quality surface. Research shows that correlations between AOD and ground PM2.5 are affected by a combination of many factors such as inherent characteristics of satellite observations, terrain, cloud cover, height of the mixing layer, and weather conditions, and thus might vary widely in different regions, different seasons, and even different days in a same location. Analysis of correlating AOD with ground measured PM2.5 on a day-to-day basis suggests the temporal scale, a number of immediate latest days for a given run's day, for their correlations needs to be considered to improve air quality surface estimates, especially when satellite observations are used in a real-time pollution system. The second reason is that correlation coefficients between AOD and ground PM2.5 cannot be predetermined and needs to be calculated for each day's run for a real-time system because the coefficients can vary over space and time. Few studies have been conducted to explore the optimal way to apply AOD data to improve model accuracies of PM2.5 surface estimation in a real-time air quality system. This paper discusses the best temporal scale to calculate the correlation of AOD and ground particle matter data to improve the results of pollution models in real-time system.
LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koller, Josep; Reeves, Geoffrey D; Friedel, Reiner H W
2008-01-01
Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10{sup 5} calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models overmore » more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand physical processes and their effect. Without sufficiently accurate L* values, the interpretation of reanalysis results becomes difficult and uncertain. However, with a method that can calculate accurate L* values orders of magnitude faster, analyzing whole solar cycles worth of data suddenly becomes feasible.« less
NASA Astrophysics Data System (ADS)
Zhang, J.; Reid, J. S.; Benedetti, A.; Christensen, M.; Marquis, J. W.
2016-12-01
Currently, with the improvements in aerosol forecast accuracies through aerosol data assimilation, the community is unavoidably facing a scientific question: is it worth the computational time to insert real-time aerosol analyses into numerical models for weather forecasts? In this study, by analyzing a significant biomass burning aerosol event that occurred in 2015 over the Northern part of the Central US, the impact of aerosol particles on near-surface temperature forecasts is evaluated. The aerosol direct surface cooling efficiency, which links surface temperature changes to aerosol loading, is derived from observational-based data for the first time. The potential of including real-time aerosol analyses into weather forecasting models for near surface temperature forecasts is also investigated.
Nonlinear Estimation of Discrete-Time Signals Under Random Observation Delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero-Aguila, R.; Jimenez-Lopez, J. D.; Hermoso-Carazo, A.
2008-11-06
This paper presents an approximation to the nonlinear least-squares estimation problem of discrete-time stochastic signals using nonlinear observations with additive white noise which can be randomly delayed by one sampling time. The observation delay is modelled by a sequence of independent Bernoulli random variables whose values, zero or one, indicate that the real observation arrives on time or it is delayed and, hence, the available measurement to estimate the signal is not up-to-date. Assuming that the state-space model generating the signal is unknown and only the covariance functions of the processes involved in the observation equation are ready for use,more » a filtering algorithm based on linear approximations of the real observations is proposed.« less
Real-time failure control (SAFD)
NASA Technical Reports Server (NTRS)
Panossian, Hagop V.; Kemp, Victoria R.; Eckerling, Sherry J.
1990-01-01
The Real Time Failure Control program involves development of a failure detection algorithm, referred as System for Failure and Anomaly Detection (SAFD), for the Space Shuttle Main Engine (SSME). This failure detection approach is signal-based and it entails monitoring SSME measurement signals based on predetermined and computed mean values and standard deviations. Twenty four engine measurements are included in the algorithm and provisions are made to add more parameters if needed. Six major sections of research are presented: (1) SAFD algorithm development; (2) SAFD simulations; (3) Digital Transient Model failure simulation; (4) closed-loop simulation; (5) SAFD current limitations; and (6) enhancements planned for.
Fault management for the Space Station Freedom control center
NASA Technical Reports Server (NTRS)
Clark, Colin; Jowers, Steven; Mcnenny, Robert; Culbert, Chris; Kirby, Sarah; Lauritsen, Janet
1992-01-01
This paper describes model based reasoning fault isolation in complex systems using automated digraph analysis. It discusses the use of the digraph representation as the paradigm for modeling physical systems and a method for executing these failure models to provide real-time failure analysis. It also discusses the generality, ease of development and maintenance, complexity management, and susceptibility to verification and validation of digraph failure models. It specifically describes how a NASA-developed digraph evaluation tool and an automated process working with that tool can identify failures in a monitored system when supplied with one or more fault indications. This approach is well suited to commercial applications of real-time failure analysis in complex systems because it is both powerful and cost effective.
Research in Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Mukkamala, R.
1997-01-01
This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.
Knowledge Reasoning with Semantic Data for Real-Time Data Processing in Smart Factory
Wang, Shiyong; Li, Di; Liu, Chengliang
2018-01-01
The application of high-bandwidth networks and cloud computing in manufacturing systems will be followed by mass data. Industrial data analysis plays important roles in condition monitoring, performance optimization, flexibility, and transparency of the manufacturing system. However, the currently existing architectures are mainly for offline data analysis, not suitable for real-time data processing. In this paper, we first define the smart factory as a cloud-assisted and self-organized manufacturing system in which physical entities such as machines, conveyors, and products organize production through intelligent negotiation and the cloud supervises this self-organized process for fault detection and troubleshooting based on data analysis. Then, we propose a scheme to integrate knowledge reasoning and semantic data where the reasoning engine processes the ontology model with real time semantic data coming from the production process. Based on these ideas, we build a benchmarking system for smart candy packing application that supports direct consumer customization and flexible hybrid production, and the data are collected and processed in real time for fault diagnosis and statistical analysis. PMID:29415444
Tronstad, Christian; Staal, Odd M; Saelid, Steinar; Martinsen, Orjan G
2015-08-01
Measurement of electrodermal activity (EDA) has recently made a transition from the laboratory into daily life with the emergence of wearable devices. Movement and nongelled electrodes make these devices more susceptible to noise and artifacts. In addition, real-time interpretation of the measurement is needed for user feedback. The Kalman filter approach may conveniently deal with both these issues. This paper presents a biophysical model for EDA implemented in an extended Kalman filter. Employing the filter on data from Physionet along with simulated noise and artifacts demonstrates noise and artifact suppression while implicitly providing estimates of model states and parameters such as the sudomotor nerve activation.
NASA Astrophysics Data System (ADS)
Ahangaran, Daryoush Kaveh; Yasrebi, Amir Bijan; Wetherelt, Andy; Foster, Patrick
2012-10-01
Application of fully automated systems for truck dispatching plays a major role in decreasing the transportation costs which often represent the majority of costs spent on open pit mining. Consequently, the application of a truck dispatching system has become fundamentally important in most of the world's open pit mines. Recent experiences indicate that by decreasing a truck's travelling time and the associated waiting time of its associated shovel then due to the application of a truck dispatching system the rate of production will be considerably improved. Computer-based truck dispatching systems using algorithms, advanced and accurate software are examples of these innovations. Developing an algorithm of a computer- based program appropriated to a specific mine's conditions is considered as one of the most important activities in connection with computer-based dispatching in open pit mines. In this paper the changing trend of programming and dispatching control algorithms and automation conditions will be discussed. Furthermore, since the transportation fleet of most mines use trucks with different capacities, innovative methods, operational optimisation techniques and the best possible methods for developing the required algorithm for real-time dispatching are selected by conducting research on mathematical-based planning methods. Finally, a real-time dispatching model compatible with the requirement of trucks with different capacities is developed by using two techniques of flow networks and integer programming.
NASA Astrophysics Data System (ADS)
Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.
2016-05-01
wayGoo is a fully functional application whose main functionalities include content geolocation, event scheduling, and indoor navigation. However, significant information about events do not reach users' attention, either because of the size of this information or because some information comes from real - time data sources. The purpose of this work is to facilitate event management operations by prioritizing the presented events, based on users' interests using both, static and real - time data. Through the wayGoo interface, users select conceptual topics that are interesting for them. These topics constitute a browsing behavior vector which is used for learning users' interests implicitly, without being intrusive. Then, the system estimates user preferences and return an events list sorted from the most preferred one to the least. User preferences are modeled via a Naïve Bayesian Network which consists of: a) the `decision' random variable corresponding to users' decision on attending an event, b) the `distance' random variable, modeled by a linear regression that estimates the probability that the distance between a user and each event destination is not discouraging, ` the seat availability' random variable, modeled by a linear regression, which estimates the probability that the seat availability is encouraging d) and the `relevance' random variable, modeled by a clustering - based collaborative filtering, which determines the relevance of each event users' interests. Finally, experimental results show that the proposed system contribute essentially to assisting users in browsing and selecting events to attend.
Indirect rotor position sensing in real time for brushless permanent magnet motor drives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ertugrul, N.; Acarnley, P.P.
1998-07-01
This paper describes a modern solution to real-time rotor position estimation of brushless permanent magnet (PM) motor drives. The position estimation scheme, based on flux linkage and line-current estimation, is implemented in real time by using the abc reference frame, and it is tested dynamically. The position estimation model of the test motor, development of hardware, and basic operation of the digital signal processor (DSP) are discussed. The overall position estimation strategy is accomplished with a fast DSP (TMS320C30). The method is a shaft position sensorless method that is applicable to a wide range of excitation types in brushless PMmore » motors without any restriction on the motor model and the current excitation. Both rectangular and sinewave-excited brushless PM motor drives are examined, and the results are given to demonstrate the effectiveness of the method with dynamic loads in closed estimated position loop.« less
Real-time simulation of contact and cutting of heterogeneous soft-tissues.
Courtecuisse, Hadrien; Allard, Jérémie; Kerfriden, Pierre; Bordas, Stéphane P A; Cotin, Stéphane; Duriez, Christian
2014-02-01
This paper presents a numerical method for interactive (real-time) simulations, which considerably improves the accuracy of the response of heterogeneous soft-tissue models undergoing contact, cutting and other topological changes. We provide an integrated methodology able to deal both with the ill-conditioning issues associated with material heterogeneities, contact boundary conditions which are one of the main sources of inaccuracies, and cutting which is one of the most challenging issues in interactive simulations. Our approach is based on an implicit time integration of a non-linear finite element model. To enable real-time computations, we propose a new preconditioning technique, based on an asynchronous update at low frequency. The preconditioner is not only used to improve the computation of the deformation of the tissues, but also to simulate the contact response of homogeneous and heterogeneous bodies with the same accuracy. We also address the problem of cutting the heterogeneous structures and propose a method to update the preconditioner according to the topological modifications. Finally, we apply our approach to three challenging demonstrators: (i) a simulation of cataract surgery (ii) a simulation of laparoscopic hepatectomy (iii) a brain tumor surgery. Copyright © 2013 Elsevier B.V. All rights reserved.
Hauschild, L; Lovatto, P A; Pomar, J; Pomar, C
2012-07-01
The objective of this study was to develop and evaluate a mathematical model used to estimate the daily amino acid requirements of individual growing-finishing pigs. The model includes empirical and mechanistic model components. The empirical component estimates daily feed intake (DFI), BW, and daily gain (DG) based on individual pig information collected in real time. Based on DFI, BW, and DG estimates, the mechanistic component uses classic factorial equations to estimate the optimal concentration of amino acids that must be offered to each pig to meet its requirements. The model was evaluated with data from a study that investigated the effect of feeding pigs with a 3-phase or daily multiphase system. The DFI and BW values measured in this study were compared with those estimated by the empirical component of the model. The coherence of the values estimated by the mechanistic component was evaluated by analyzing if it followed a normal pattern of requirements. Lastly, the proposed model was evaluated by comparing its estimates with those generated by the existing growth model (InraPorc). The precision of the proposed model and InraPorc in estimating DFI and BW was evaluated through the mean absolute error. The empirical component results indicated that the DFI and BW trajectories of individual pigs fed ad libitum could be predicted 1 d (DFI) or 7 d (BW) ahead with the average mean absolute error of 12.45 and 1.85%, respectively. The average mean absolute error obtained with the InraPorc for the average individual of the population was 14.72% for DFI and 5.38% for BW. Major differences were observed when estimates from InraPorc were compared with individual observations. The proposed model, however, was effective in tracking the change in DFI and BW for each individual pig. The mechanistic model component estimated the optimal standardized ileal digestible Lys to NE ratio with reasonable between animal (average CV = 7%) and overtime (average CV = 14%) variation. Thus, the amino acid requirements estimated by model are animal- and time-dependent and follow, in real time, the individual DFI and BW growth patterns. The proposed model can follow the average feed intake and feed weight trajectory of each individual pig in real time with good accuracy. Based on these trajectories and using classical factorial equations, the model makes it possible to estimate dynamically the AA requirements of each animal, taking into account the intake and growth changes of the animal.
Stable modeling based control methods using a new RBF network.
Beyhan, Selami; Alci, Musa
2010-10-01
This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
A Comparison and Evaluation of Real-Time Software Systems Modeling Languages
NASA Technical Reports Server (NTRS)
Evensen, Kenneth D.; Weiss, Kathryn Anne
2010-01-01
A model-driven approach to real-time software systems development enables the conceptualization of software, fostering a more thorough understanding of its often complex architecture and behavior while promoting the documentation and analysis of concerns common to real-time embedded systems such as scheduling, resource allocation, and performance. Several modeling languages have been developed to assist in the model-driven software engineering effort for real-time systems, and these languages are beginning to gain traction with practitioners throughout the aerospace industry. This paper presents a survey of several real-time software system modeling languages, namely the Architectural Analysis and Design Language (AADL), the Unified Modeling Language (UML), Systems Modeling Language (SysML), the Modeling and Analysis of Real-Time Embedded Systems (MARTE) UML profile, and the AADL for UML profile. Each language has its advantages and disadvantages, and in order to adequately describe a real-time software system's architecture, a complementary use of multiple languages is almost certainly necessary. This paper aims to explore these languages in the context of understanding the value each brings to the model-driven software engineering effort and to determine if it is feasible and practical to combine aspects of the various modeling languages to achieve more complete coverage in architectural descriptions. To this end, each language is evaluated with respect to a set of criteria such as scope, formalisms, and architectural coverage. An example is used to help illustrate the capabilities of the various languages.
Measurement Equivalence of Teachers' Sense of Efficacy Scale Using Latent Growth Methods
ERIC Educational Resources Information Center
Basokçu, T. Oguz; Ögretmen, T.
2016-01-01
This study is based on the application of latent growth modeling, which is one of structural equation models on real data. Teachers' Sense of Efficacy Scale (TSES), which was previously adapted into Turkish was administered to 200 preservice teachers at different time intervals for three times and study data was collected. Measurement equivalence…
Sharif, Behzad; Bresler, Yoram
2013-01-01
Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding (PARADISE) is a dynamic MR imaging scheme that optimally combines parallel imaging and model-based adaptive acquisition. In this work, we propose the application of PARADISE to real-time cardiac MRI. We introduce a physiologically improved version of a realistic four-dimensional cardiac-torso (NCAT) phantom, which incorporates natural beat-to-beat heart rate and motion variations. Cardiac cine imaging using PARADISE is simulated and its performance is analyzed by virtue of the improved phantom. Results verify the effectiveness of PARADISE for high resolution un-gated real-time cardiac MRI and its superiority over conventional acquisition methods. PMID:24398475
Real-time forecasts of dengue epidemics
NASA Astrophysics Data System (ADS)
Yamana, T. K.; Shaman, J. L.
2015-12-01
Dengue is a mosquito-borne viral disease prevalent in the tropics and subtropics, with an estimated 2.5 billion people at risk of transmission. In many areas with endemic dengue, disease transmission is seasonal but prone to high inter-annual variability with occasional severe epidemics. Predicting and preparing for periods of higher than average transmission is a significant public health challenge. Here we present a model of dengue transmission and a framework for optimizing model simulations with real-time observational data of dengue cases and environmental variables in order to generate ensemble-based forecasts of the timing and severity of disease outbreaks. The model-inference system is validated using synthetic data and dengue outbreak records. Retrospective forecasts are generated for a number of locations and the accuracy of these forecasts is quantified.
Rainfall-Runoff Parameters Uncertainity
NASA Astrophysics Data System (ADS)
Heidari, A.; Saghafian, B.; Maknoon, R.
2003-04-01
Karkheh river basin, located in southwest of Iran, drains an area of over 40000 km2 and is considered a flood active basin. A flood forecasting system is under development for the basin, which consists of a rainfall-runoff model, a river routing model, a reservior simulation model, and a real time data gathering and processing module. SCS, Clark synthetic unit hydrograph, and Modclark methods are the main subbasin rainfall-runoff transformation options included in the rainfall-runoff model. Infiltration schemes, such as exponentioal and SCS-CN methods, account for infiltration losses. Simulation of snow melt is based on degree day approach. River flood routing is performed by FLDWAV model based on one-dimensional full dynamic equation. Calibration and validation of the rainfall-runoff model on Karkheh subbasins are ongoing while the river routing model awaits cross section surveys.Real time hydrometeological data are collected by a telemetry network. The telemetry network is equipped with automatic sensors and INMARSAT-C comunication system. A geographic information system (GIS) stores and manages the spatial data while a database holds the hydroclimatological historical and updated time series. Rainfall runoff parameters uncertainty is analyzed by Monte Carlo and GLUE approaches.
Kanai, Masashi; Okamoto, Kazuya; Yamamoto, Yosuke; Yoshioka, Akira; Hiramoto, Shuji; Nozaki, Akira; Nishikawa, Yoshitaka; Yamaguchi, Daisuke; Tomono, Teruko; Nakatsui, Masahiko; Baba, Mika; Morita, Tatsuya; Matsumoto, Shigemi; Kuroda, Tomohiro; Okuno, Yasushi; Muto, Manabu
2017-01-01
Background We aimed to develop an adaptable prognosis prediction model that could be applied at any time point during the treatment course for patients with cancer receiving chemotherapy, by applying time-series real-world big data. Methods Between April 2004 and September 2014, 4,997 patients with cancer who had received systemic chemotherapy were registered in a prospective cohort database at the Kyoto University Hospital. Of these, 2,693 patients with a death record were eligible for inclusion and divided into training (n = 1,341) and test (n = 1,352) cohorts. In total, 3,471,521 laboratory data at 115,738 time points, representing 40 laboratory items [e.g., white blood cell counts and albumin (Alb) levels] that were monitored for 1 year before the death event were applied for constructing prognosis prediction models. All possible prediction models comprising three different items from 40 laboratory items (40C3 = 9,880) were generated in the training cohort, and the model selection was performed in the test cohort. The fitness of the selected models was externally validated in the validation cohort from three independent settings. Results A prognosis prediction model utilizing Alb, lactate dehydrogenase, and neutrophils was selected based on a strong ability to predict death events within 1–6 months and a set of six prediction models corresponding to 1,2, 3, 4, 5, and 6 months was developed. The area under the curve (AUC) ranged from 0.852 for the 1 month model to 0.713 for the 6 month model. External validation supported the performance of these models. Conclusion By applying time-series real-world big data, we successfully developed a set of six adaptable prognosis prediction models for patients with cancer receiving chemotherapy. PMID:28837592
A hybrid algorithm for clustering of time series data based on affinity search technique.
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.
A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A.; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets. PMID:24982966
Key Technology of Real-Time Road Navigation Method Based on Intelligent Data Research
Tang, Haijing; Liang, Yu; Huang, Zhongnan; Wang, Taoyi; He, Lin; Du, Yicong; Ding, Gangyi
2016-01-01
The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction. PMID:27872637
Robust Real-Time Music Transcription with a Compositional Hierarchical Model.
Pesek, Matevž; Leonardis, Aleš; Marolt, Matija
2017-01-01
The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.
Real-time simulation of three-dimensional shoulder girdle and arm dynamics.
Chadwick, Edward K; Blana, Dimitra; Kirsch, Robert F; van den Bogert, Antonie J
2014-07-01
Electrical stimulation is a promising technology for the restoration of arm function in paralyzed individuals. Control of the paralyzed arm under electrical stimulation, however, is a challenging problem that requires advanced controllers and command interfaces for the user. A real-time model describing the complex dynamics of the arm would allow user-in-the-loop type experiments where the command interface and controller could be assessed. Real-time models of the arm previously described have not included the ability to model the independently controlled scapula and clavicle, limiting their utility for clinical applications of this nature. The goal of this study therefore was to evaluate the performance and mechanical behavior of a real-time, dynamic model of the arm and shoulder girdle. The model comprises seven segments linked by eleven degrees of freedom and actuated by 138 muscle elements. Polynomials were generated to describe the muscle lines of action to reduce computation time, and an implicit, first-order Rosenbrock formulation of the equations of motion was used to increase simulation step-size. The model simulated flexion of the arm faster than real time, simulation time being 92% of actual movement time on standard desktop hardware. Modeled maximum isometric torque values agreed well with values from the literature, showing that the model simulates the moment-generating behavior of a real human arm. The speed of the model enables experiments where the user controls the virtual arm and receives visual feedback in real time. The ability to optimize potential solutions in simulation greatly reduces the burden on the user during development.
NASA Astrophysics Data System (ADS)
Mikkili, Suresh; Panda, Anup Kumar; Prattipati, Jayanthi
2015-06-01
Nowadays the researchers want to develop their model in real-time environment. Simulation tools have been widely used for the design and improvement of electrical systems since the mid twentieth century. The evolution of simulation tools has progressed in step with the evolution of computing technologies. In recent years, computing technologies have improved dramatically in performance and become widely available at a steadily decreasing cost. Consequently, simulation tools have also seen dramatic performance gains and steady cost decreases. Researchers and engineers now have the access to affordable, high performance simulation tools that were previously too cost prohibitive, except for the largest manufacturers. This work has introduced a specific class of digital simulator known as a real-time simulator by answering the questions "what is real-time simulation", "why is it needed" and "how it works". The latest trend in real-time simulation consists of exporting simulation models to FPGA. In this article, the Steps involved for implementation of a model from MATLAB to REAL-TIME are provided in detail.
NASA Astrophysics Data System (ADS)
Sugiyanto; Zukhronah, Etik; Nur Aini, Anis
2017-12-01
Several times Indonesia has experienced to face a financial crisis, but the crisis occurred in 1997 had a tremendous impact on the economy and national stability. The impact of the crisis fall the exchange rate of rupiah against the dollar so it is needed the financial crisis detection system. Some data of bank deposits, real exchange rate and terms of trade indicators are used in this paper. Data taken from January 1990 until December 2016 are used to form the models with three state. Combination of volatility and Markov switching models are used to model the data. The result suggests that the appropriate model for bank deposit and terms of trade is SWARCH (3,1), and for real exchange rates is SWARCH (3,2).
Regional early flood warning system: design and implementation
NASA Astrophysics Data System (ADS)
Chang, L. C.; Yang, S. N.; Kuo, C. L.; Wang, Y. F.
2017-12-01
This study proposes a prototype of the regional early flood inundation warning system in Tainan City, Taiwan. The AI technology is used to forecast multi-step-ahead regional flood inundation maps during storm events. The computing time is only few seconds that leads to real-time regional flood inundation forecasting. A database is built to organize data and information for building real-time forecasting models, maintaining the relations of forecasted points, and displaying forecasted results, while real-time data acquisition is another key task where the model requires immediately accessing rain gauge information to provide forecast services. All programs related database are constructed in Microsoft SQL Server by using Visual C# to extracting real-time hydrological data, managing data, storing the forecasted data and providing the information to the visual map-based display. The regional early flood inundation warning system use the up-to-date Web technologies driven by the database and real-time data acquisition to display the on-line forecasting flood inundation depths in the study area. The friendly interface includes on-line sequentially showing inundation area by Google Map, maximum inundation depth and its location, and providing KMZ file download of the results which can be watched on Google Earth. The developed system can provide all the relevant information and on-line forecast results that helps city authorities to make decisions during typhoon events and make actions to mitigate the losses.
Optimal Reservoir Operation using Stochastic Model Predictive Control
NASA Astrophysics Data System (ADS)
Sahu, R.; McLaughlin, D.
2016-12-01
Hydropower operations are typically designed to fulfill contracts negotiated with consumers who need reliable energy supplies, despite uncertainties in reservoir inflows. In addition to providing reliable power the reservoir operator needs to take into account environmental factors such as downstream flooding or compliance with minimum flow requirements. From a dynamical systems perspective, the reservoir operating strategy must cope with conflicting objectives in the presence of random disturbances. In order to achieve optimal performance, the reservoir system needs to continually adapt to disturbances in real time. Model Predictive Control (MPC) is a real-time control technique that adapts by deriving the reservoir release at each decision time from the current state of the system. Here an ensemble-based version of MPC (SMPC) is applied to a generic reservoir to determine both the optimal power contract, considering future inflow uncertainty, and a real-time operating strategy that attempts to satisfy the contract. Contract selection and real-time operation are coupled in an optimization framework that also defines a Pareto trade off between the revenue generated from energy production and the environmental damage resulting from uncontrolled reservoir spills. Further insight is provided by a sensitivity analysis of key parameters specified in the SMPC technique. The results demonstrate that SMPC is suitable for multi-objective planning and associated real-time operation of a wide range of hydropower reservoir systems.
NASA Astrophysics Data System (ADS)
Laban, Shaban; El-Desouky, Aly
2013-04-01
The monitoring of real-time systems is a challenging and complicated process. So, there is a continuous need to improve the monitoring process through the use of new intelligent techniques and algorithms for detecting exceptions, anomalous behaviours and generating the necessary alerts during the workflow monitoring of such systems. The interval-based or period-based theorems have been discussed, analysed, and used by many researches in Artificial Intelligence (AI), philosophy, and linguistics. As explained by Allen, there are 13 relations between any two intervals. Also, there have also been many studies of interval-based temporal reasoning and logics over the past decades. Interval-based theorems can be used for monitoring real-time interval-based data processing. However, increasing the number of processed intervals makes the implementation of such theorems a complex and time consuming process as the relationships between such intervals are increasing exponentially. To overcome the previous problem, this paper presents a Rule-based Interval State Machine Algorithm (RISMA) for processing, monitoring, and analysing the behaviour of interval-based data, received from real-time sensors. The proposed intelligent algorithm uses the Interval State Machine (ISM) approach to model any number of interval-based data into well-defined states as well as inferring them. An interval-based state transition model and methodology are presented to identify the relationships between the different states of the proposed algorithm. By using such model, the unlimited number of relationships between similar large numbers of intervals can be reduced to only 18 direct relationships using the proposed well-defined states. For testing the proposed algorithm, necessary inference rules and code have been designed and applied to the continuous data received in near real-time from the stations of International Monitoring System (IMS) by the International Data Centre (IDC) of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The CLIPS expert system shell has been used as the main rule engine for implementing the algorithm rules. Python programming language and the module "PyCLIPS" are used for building the necessary code for algorithm implementation. More than 1.7 million intervals constitute the Concise List of Frames (CLF) from 20 different seismic stations have been used for evaluating the proposed algorithm and evaluating stations behaviour and performance. The initial results showed that proposed algorithm can help in better understanding of the operation and performance of those stations. Different important information, such as alerts and some station performance parameters, can be derived from the proposed algorithm. For IMS interval-based data and at any period of time it is possible to analyze station behavior, determine the missing data, generate necessary alerts, and to measure some of station performance attributes. The details of the proposed algorithm, methodology, implementation, experimental results, advantages, and limitations of this research are presented. Finally, future directions and recommendations are discussed.
A cloud-based framework for large-scale traditional Chinese medical record retrieval.
Liu, Lijun; Liu, Li; Fu, Xiaodong; Huang, Qingsong; Zhang, Xianwen; Zhang, Yin
2018-01-01
Electronic medical records are increasingly common in medical practice. The secondary use of medical records has become increasingly important. It relies on the ability to retrieve the complete information about desired patient populations. How to effectively and accurately retrieve relevant medical records from large- scale medical big data is becoming a big challenge. Therefore, we propose an efficient and robust framework based on cloud for large-scale Traditional Chinese Medical Records (TCMRs) retrieval. We propose a parallel index building method and build a distributed search cluster, the former is used to improve the performance of index building, and the latter is used to provide high concurrent online TCMRs retrieval. Then, a real-time multi-indexing model is proposed to ensure the latest relevant TCMRs are indexed and retrieved in real-time, and a semantics-based query expansion method and a multi- factor ranking model are proposed to improve retrieval quality. Third, we implement a template-based visualization method for displaying medical reports. The proposed parallel indexing method and distributed search cluster can improve the performance of index building and provide high concurrent online TCMRs retrieval. The multi-indexing model can ensure the latest relevant TCMRs are indexed and retrieved in real-time. The semantics expansion method and the multi-factor ranking model can enhance retrieval quality. The template-based visualization method can enhance the availability and universality, where the medical reports are displayed via friendly web interface. In conclusion, compared with the current medical record retrieval systems, our system provides some advantages that are useful in improving the secondary use of large-scale traditional Chinese medical records in cloud environment. The proposed system is more easily integrated with existing clinical systems and be used in various scenarios. Copyright © 2017. Published by Elsevier Inc.
Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip.
Chung, Pei-Shan; Fan, Yu-Jui; Sheen, Horn-Jiunn; Tian, Wei-Cheng
2015-01-07
An electrokinetic trapping (EKT)-based nanofluidic preconcentration device with the capability of label-free monitoring trapped biomolecules through real-time dual-loop electric current measurement was demonstrated. Universal current-voltage (I-V) curves of EKT-based preconcentration devices, consisting of two microchannels connected by ion-selective channels, are presented for functional validation and optimal operation; universal onset current curves indicating the appearance of the EKT mechanism serve as a confirmation of the concentrating action. The EKT mechanism and the dissimilarity in the current curves related to the volume flow rate (Q), diffusion coefficient (D), and diffusion layer (DL) thickness were explained by a control volume model with a five-stage preconcentration process. Different behaviors of the trapped molecular plug were categorized based on four modes associated with different degrees of electroosmotic instability (EOI). A label-free approach to preconcentrating (bio)molecules and monitoring the multibehavior molecular plug was demonstrated through real-time electric current monitoring, rather than through the use of microscope images.
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Furuya, Keiichiro; Ishizuka, Shinichi
2018-07-01
Model-based controllers with adaptive design variables are often used to control an object with time-dependent characteristics. However, the controller's performance is influenced by many factors such as modeling accuracy and fluctuations in the object's characteristics. One method to overcome these negative factors is to tune model-based controllers. Herein we propose an online tuning method to maintain control performance for an object that exhibits time-dependent variations. The proposed method employs the poles of the controller as design variables because the poles significantly impact performance. Specifically, we use the simultaneous perturbation stochastic approximation (SPSA) to optimize a model-based controller with multiple design variables. Moreover, a vibration control experiment of an object with time-dependent characteristics as the temperature is varied demonstrates that the proposed method allows adaptive control and stably maintains the closed-loop characteristics.
Design and implementation of real-time wireless projection system based on ARM embedded system
NASA Astrophysics Data System (ADS)
Long, Zhaohua; Tang, Hao; Huang, Junhua
2018-04-01
Aiming at the shortage of existing real-time screen sharing system, a real-time wireless projection system is proposed in this paper. Based on the proposed system, a weight-based frame deletion strategy combined sampling time period and data variation is proposed. By implementing the system on the hardware platform, the results show that the system can achieve good results. The weight-based strategy can improve the service quality, reduce the delay and optimize the real-time customer service system [1].
Development of an operational African Drought Monitor prototype
NASA Astrophysics Data System (ADS)
Chaney, N.; Sheffield, J.; Wood, E. F.; Lettenmaier, D. P.
2011-12-01
Droughts have severe economic, environmental, and social impacts. However, timely detection and monitoring can minimize these effects. Based on previous drought monitoring over the continental US, a drought monitor has been developed for Africa. Monitoring drought in data sparse regions such as Africa is difficult due to a lack of historical or real-time observational data at a high spatial and temporal resolution. As a result, a land surface model is used to estimate hydrologic variables, which are used as surrogate observations for monitoring drought. The drought monitoring system consists of two stages: the first is to create long-term historical background simulations against which current conditions can be compared. The second is the real-time estimation of current hydrological conditions that results in an estimated drought index value. For the first step, a hybrid meteorological forcing dataset was created that assimilates reanalysis and observational datasets from 1950 up to real-time. Furthermore, the land surface model (currently the VIC land surface model is being used) was recalibrated against spatially disaggregated runoff fields derived from over 500 GRDC stream gauge measurements over Africa. The final result includes a retrospective database from 1950 to real-time of soil moisture, evapotranspiration, river discharge at the GRDC gauged sites (etc.) at a 1/4 degree spatial resolution, and daily temporal resolution. These observation-forced simulations are analyzed to detect and track historical drought events according to a drought index that is calculated from the soil moisture fields and river discharge relative to their seasonal climatology. The real-time monitoring requires the use of remotely sensed and weather-model analysis estimates of hydrological model forcings. For the current system, NOAA's Global Forecast System (GFS) is used along with remotely sensed precipitation from the NASA TMPA system. The historical archive of these data is evaluated against the data set used to create the background simulations. Real-time adjustments are used to preserve consistency between the historical and real-time data. The drought monitor will be presented together with the web-interface that has been developed for the scientific community to access and retrieve the data products. This system will be deployed for operational use at AGRHYMET in Niamey, Niger before the end of 2011.
NASA Astrophysics Data System (ADS)
Farrara, J. D.; Chao, Y.; Chai, F.; Zhang, H.
2016-02-01
The real-time California coastal ocean nowcast/forecast system is described. The model is based on the Regional Ocean Modeling System (ROMS) and covers the entire California coastal ocean with a horizontal resolution of 3 km and 40 vertical layers. The atmospheric forcing is derived from the operational regional atmospheric model forecasts. The lateral boundary conditions are provided by the operational ocean model forecasts. A multi-scale 3-dimensional variational (3DVAR) data assimilation scheme is used to assimilate both in situ (e.g., vertical profiles of temperature and salinity) and remotely sensed data from both satellite (e.g., sea surface temperature and sea surface height) and land-based platforms (e.g., surface current). The performance of our nowcast/forecast system is evaluated in real-time by a number of metrics that are published as soon as they become available. User tools and products have been developed for both general users and super-users (e.g., NOAA Office of Response and Restoration and USCG). Recent results comparing the 3DVAR with the ensemble Kalman Filter (EnKF) using Data Assimilation Research Testbed (DART) will be presented. Preliminary results coupling the ROMS circulation model with a biogeochemistry/ecosystem model (i.e., CoSiNE) will also discussed. Cloud computing services (e.g., Microsoft, Google) are now being tested to increase the reliability and timeliness in order to be accepted as a truly operational system in the near future.
An Extended EPQ-Based Problem with a Discontinuous Delivery Policy, Scrap Rate, and Random Breakdown
Song, Ming-Syuan; Chen, Hsin-Mei; Chiu, Yuan-Shyi P.
2015-01-01
In real supply chain environments, the discontinuous multidelivery policy is often used when finished products need to be transported to retailers or customers outside the production units. To address this real-life production-shipment situation, this study extends recent work using an economic production quantity- (EPQ-) based inventory model with a continuous inventory issuing policy, defective items, and machine breakdown by incorporating a multiple delivery policy into the model to replace the continuous policy and investigates the effect on the optimal run time decision for this specific EPQ model. Next, we further expand the scope of the problem to combine the retailer's stock holding cost into our study. This enhanced EPQ-based model can be used to reflect the situation found in contemporary manufacturing firms in which finished products are delivered to the producer's own retail stores and stocked there for sale. A second model is developed and studied. With the help of mathematical modeling and optimization techniques, the optimal run times that minimize the expected total system costs comprising costs incurred in production units, transportation, and retail stores are derived, for both models. Numerical examples are provided to demonstrate the applicability of our research results. PMID:25821853
Chiu, Singa Wang; Lin, Hong-Dar; Song, Ming-Syuan; Chen, Hsin-Mei; Chiu, Yuan-Shyi P
2015-01-01
In real supply chain environments, the discontinuous multidelivery policy is often used when finished products need to be transported to retailers or customers outside the production units. To address this real-life production-shipment situation, this study extends recent work using an economic production quantity- (EPQ-) based inventory model with a continuous inventory issuing policy, defective items, and machine breakdown by incorporating a multiple delivery policy into the model to replace the continuous policy and investigates the effect on the optimal run time decision for this specific EPQ model. Next, we further expand the scope of the problem to combine the retailer's stock holding cost into our study. This enhanced EPQ-based model can be used to reflect the situation found in contemporary manufacturing firms in which finished products are delivered to the producer's own retail stores and stocked there for sale. A second model is developed and studied. With the help of mathematical modeling and optimization techniques, the optimal run times that minimize the expected total system costs comprising costs incurred in production units, transportation, and retail stores are derived, for both models. Numerical examples are provided to demonstrate the applicability of our research results.
Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Gregory Francis; Zhang, Jinghe
2014-06-10
Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuitiesmore » caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.« less
Real time lobster posture estimation for behavior research
NASA Astrophysics Data System (ADS)
Yan, Sheng; Alfredsen, Jo Arve
2017-02-01
In animal behavior research, the main task of observing the behavior of an animal is usually done manually. The measurement of the trajectory of an animal and its real-time posture description is often omitted due to the lack of automatic computer vision tools. Even though there are many publications for pose estimation, few are efficient enough to apply in real-time or can be used without the machine learning algorithm to train a classifier from mass samples. In this paper, we propose a novel strategy for the real-time lobster posture estimation to overcome those difficulties. In our proposed algorithm, we use the Gaussian mixture model (GMM) for lobster segmentation. Then the posture estimation is based on the distance transform and skeleton calculated from the segmentation. We tested the algorithm on a serials lobster videos in different size and lighting conditions. The results show that our proposed algorithm is efficient and robust under various conditions.
A simplified real time method to forecast semi-enclosed basins storm surge
NASA Astrophysics Data System (ADS)
Pasquali, D.; Di Risio, M.; De Girolamo, P.
2015-11-01
Semi-enclosed basins are often prone to storm surge events. Indeed, their meteorological exposition, the presence of large continental shelf and their shape can lead to strong sea level set-up. A real time system aimed at forecasting storm surge may be of great help to protect human activities (i.e. to forecast flooding due to storm surge events), to manage ports and to safeguard coasts safety. This paper aims at illustrating a simple method able to forecast storm surge events in semi-enclosed basins in real time. The method is based on a mixed approach in which the results obtained by means of a simplified physics based model with low computational costs are corrected by means of statistical techniques. The proposed method is applied to a point of interest located in the Northern part of the Adriatic Sea. The comparison of forecasted levels against observed values shows the satisfactory reliability of the forecasts.
Niu, Gang; Jiang, Junjie; Youn, Byeng D; Pecht, Michael
2018-01-01
Autonomous vehicles are playing an increasingly importance in support of a wide variety of critical events. This paper presents a novel autonomous health management scheme on rail vehicles driven by permanent magnet synchronous motors (PMSMs). Firstly, the PMSMs are modeled based on first principle to deduce the initial profile of pneumatic braking (p-braking) force, then which is utilized for real-time demagnetization monitoring and degradation prognosis through similarity-based theory and generate prognosis-enhanced p-braking force strategy for final optimal control. A case study is conducted to demonstrate the feasibility and benefit of using the real-time prognostics and health management (PHM) information in vehicle 'drive-brake' control automatically. The results show that accurate demagnetization monitoring, degradation prognosis, and real-time capability for control optimization can be obtained, which can effectively relieve brake shoe wear. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam
2016-05-01
Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations. Published by Elsevier Ltd.
Using the PhysX engine for physics-based virtual surgery with force feedback.
Maciel, Anderson; Halic, Tansel; Lu, Zhonghua; Nedel, Luciana P; De, Suvranu
2009-09-01
The development of modern surgical simulators is highly challenging, as they must support complex simulation environments. The demand for higher realism in such simulators has driven researchers to adopt physics-based models, which are computationally very demanding. This poses a major problem, since real-time interactions must permit graphical updates of 30 Hz and a much higher rate of 1 kHz for force feedback (haptics). Recently several physics engines have been developed which offer multi-physics simulation capabilities, including rigid and deformable bodies, cloth and fluids. While such physics engines provide unique opportunities for the development of surgical simulators, their higher latencies, compared to what is necessary for real-time graphics and haptics, offer significant barriers to their use in interactive simulation environments. In this work, we propose solutions to this problem and demonstrate how a multimodal surgical simulation environment may be developed based on NVIDIA's PhysX physics library. Hence, models that are undergoing relatively low-frequency updates in PhysX can exist in an environment that demands much higher frequency updates for haptics. We use a collision handling layer to interface between the physical response provided by PhysX and the haptic rendering device to provide both real-time tissue response and force feedback. Our simulator integrates a bimanual haptic interface for force feedback and per-pixel shaders for graphics realism in real time. To demonstrate the effectiveness of our approach, we present the simulation of the laparoscopic adjustable gastric banding (LAGB) procedure as a case study. To develop complex and realistic surgical trainers with realistic organ geometries and tissue properties demands stable physics-based deformation methods, which are not always compatible with the interaction level required for such trainers. We have shown that combining different modelling strategies for behaviour, collision and graphics is possible and desirable. Such multimodal environments enable suitable rates to simulate the major steps of the LAGB procedure.
Aurorasaurus: A citizen science platform for viewing and reporting the aurora
NASA Astrophysics Data System (ADS)
MacDonald, E. A.; Case, N. A.; Clayton, J. H.; Hall, M. K.; Heavner, M.; Lalone, N.; Patel, K. G.; Tapia, A.
2015-09-01
A new, citizen science-based, aurora observing and reporting platform has been developed with the primary aim of collecting auroral observations made by the general public to further improve the modeling of the aurora. In addition, the real-time ability of this platform facilitates the combination of citizen science observations with auroral oval models to improve auroral visibility nowcasting. Aurorasaurus provides easily understandable aurora information, basic gamification, and real-time location-based notification of verified aurora activity to engage citizen scientists. The Aurorasaurus project is one of only a handful of space weather citizen science projects and can provide useful results for the space weather and citizen science communities. Early results are promising with over 2000 registered users submitting over 1000 aurora observations and verifying over 1700 aurora sightings posted on Twitter.
Inductive System Health Monitoring
NASA Technical Reports Server (NTRS)
Iverson, David L.
2004-01-01
The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS uses nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. IMS is able to monitor the system by comparing real time operational data with these classes. We present a description of learning and monitoring method used by IMS and summarize some recent IMS results.