Science.gov

Sample records for real-time pcr technique

  1. [Rapid diagnosis of psittacosis using a recently developed real-time PCR technique].

    PubMed

    van der Bruggen, T; Kaan, J A; Heddema, E R; van Hannen, E J; de Jongh, B M

    2008-08-23

    A 37-year-old man was admitted with cough and fever. Three days after admission he was tested using a newly developed real-time PCR technique that detects the DNA of Chlamydophila psittaci. The result was positive; serological investigation was not positive until 14 days later. Psittacosis is a potentially life-threatening infectious disease. Laboratory diagnosis relies mainly on the assessment of paired sera, but this approach has obvious disadvantages in the acute setting. Routine use of the real-time PCR technique led to the rapid diagnosis of psittacosis in 6 other patients. All 7 patients recovered after antibiotic treatment. This PCR technique is a valuable adjuvant to serological testing for the rapid diagnosis of psittacosis.

  2. Preamplification techniques for real-time RT-PCR analyses of endomyocardial biopsies

    PubMed Central

    Noutsias, Michel; Rohde, Maria; Block, Andrea; Klippert, Katrin; Lettau, Olga; Blunert, Katja; Hummel, Michael; Kühl, Uwe; Lehmkuhl, Hans; Hetzer, Roland; Rauch, Ursula; Poller, Wolfgang; Pauschinger, Matthias; Schultheiss, Heinz P; Volk, Hans D; Kotsch, Katja

    2008-01-01

    Background Due to the limited RNA amounts from endomyocardial biopsies (EMBs) and low expression levels of certain genes, gene expression analyses by conventional real-time RT-PCR are restrained in EMBs. We applied two preamplification techniques, the TaqMan® PreAmp Master Mix (T-PreAmp) and a multiplex preamplification following a sequence specific reverse transcription (SSRT-PreAmp). Results T-PreAmp encompassing 92 gene assays with 14 cycles resulted in a mean improvement of 7.24 ± 0.33 Ct values. The coefficients for inter- (1.89 ± 0.48%) and intra-assay variation (0.85 ± 0.45%) were low for all gene assays tested (<4%). The PreAmp uniformity values related to the reference gene CDKN1B for 91 of the investigated gene assays (except for CD56) were -0.38 ± 0.33, without significant differences between self-designed and ABI inventoried Taqman® gene assays. Only two of the tested Taqman® ABI inventoried gene assays (HPRT-ABI and CD56) did not maintain PreAmp uniformity levels between -1.5 and +1.5. In comparison, the SSRT-PreAmp tested on 8 self-designed gene assays yielded higher Ct improvement (9.76 ± 2.45), however was not as robust regarding the maintenance of PreAmp uniformity related to HPRT-CCM (-3.29 ± 2.40; p < 0.0001), and demonstrated comparable intra-assay CVs (1.47 ± 0.74), albeit higher inter-assay CVs (5.38 ± 2.06; p = 0.01). Comparing EMBs from each 10 patients with dilated cardiomyopathy (DCM) and inflammatory cardiomyopathy (DCMi), T-PreAmp real-time RT-PCR analyses revealed differential regulation regarding 27 (30%) of the investigated 90 genes related to both HPRT-CCM and CDKN1B. Ct values of HPRT and CDKN1B did not differ in equal RNA amounts from explanted DCM and donor hearts. Conclusion In comparison to the SSRT-PreAmp, T-PreAmp enables a relatively simple workflow, and results in a robust PreAmp of multiple target genes (at least 92 gene assays as tested here) by a mean Ct improvement around 7 cycles, and in a lower inter

  3. Real-time PCR in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Hansen-Hagge, Thomas; Gärtner, Claudia

    2014-03-01

    A central method in a standard biochemical laboratory is represented by the polymerase chain reaction (PCR), therefore many attempts have been performed so far to implement this technique in lab-on-a-chip (LOC) devices. PCR is an ideal candidate for miniaturization because of a reduction of assay time and decreased costs for expensive bio-chemicals. In case of the "classical" PCR, detection is done by identification of DNA fragments electrophoretically separated in agarose gels. This method is meanwhile frequently replaced by the so-called Real-Time-PCR because here the exponential increase of amplificates can be observed directly by measurement of DNA interacting fluorescent dyes. Two main methods for on-chip PCRs are available: traditional "batch" PCR in chambers on a chip using thermal cycling, requiring about 30 minutes for a typical PCR protocol and continuous-flow PCR, where the liquid is guided over stationary temperature zones. In the latter case, the PCR protocol can be as fast as 5 minutes. In the presented work, a proof of concept is demonstrated for a real-time-detection of PCR products in microfluidic systems.

  4. Comparison of an automated ELFA and two different real-time PCR techniques for Salmonella detection in poultry samples.

    PubMed

    Rohonczy, Kata; Zoller, Linda; Hermann, Zsolt; Fodor, Andrea; Mráz, Balázs; Tabajdi-Pintér, Veronika

    2014-09-01

    The aim of this study was to compare an enzyme-linked fluorescent assay (ELFA)-based and two real-time polymerase chain reaction (PCR) methods with the results of the standard culture-based method EN ISO 6579:2002 (bacteriological standard method used in the European Union) for the detection of Salmonella spp. in raw chicken meat. Our investigations were performed on 141 poultry samples sorted from supermarkets. Relative accuracy, relative specificity and relative sensitivity were determined. According to the ISO 16140:2003 criteria for validation of alternative microbiological methods, the ELFA-based method (VIDAS ICS2 + SLM), and real-time PCR methods (TaqMan, Bax) were comparable to the reference standard method for the detection of Salmonella spp. in chicken meat. The use of these methods provide results within 48 hours with high sensitivity (100%). The TaqMan real-time PCR showed a relative specificity of 98% and both of the real-time PCR methods presented 100%.The VIDAS ICS2 + SLM and the Bax real-time PCR methods showed the highest relative accuracy (100%) and 99% in case of the TaqMan method. In conclusion, both the real-time PCR and the ELFA-based assay can be used as a rapid and user-friendly diagnostic method for detection of Salmonella spp. in chicken meat samples.

  5. Real-time PCR mapping of DNaseI-hypersensitive sites using a novel ligation-mediated amplification technique

    PubMed Central

    Follows, George A.; Janes, Mary E.; Vallier, Ludovic; Green, Anthony R.; Gottgens, Berthold

    2007-01-01

    Mapping sites within the genome that are hypersensitive to digestion with DNaseI is an important method for identifying DNA elements that regulate transcription. The standard approach to locating these DNaseI-hypersensitive sites (DHSs) has been to use Southern blotting techniques, although we, and others, have recently published alternative methods using a range of technologies including high-throughput sequencing and genomic array tiling paths. In this article, we describe a novel protocol to use real-time PCR to map DHS. Advantages of the technique reported here include the small cell numbers required for each analysis, rapid, relatively low-cost experiments with minimal need for specialist equipment. Presented examples include comparative DHS mapping of known TAL1/SCL regulatory elements between human embryonic stem cells and K562 cells. PMID:17389645

  6. Pork detection in binary meat mixtures and some commercial food products using conventional and real-time PCR techniques.

    PubMed

    Al-Kahtani, Hassan A; Ismail, Elsayed A; Asif Ahmed, Mohammed

    2017-03-15

    Pork DNA was detected in meat mixtures using both conventional PCR and real-time PCR (RT-PCR). Thirty meat mixtures containing beef, chicken, camel, rabbit, goat and sheep with varying percentage of pork (0%, 1%, 5%, 10%, and 20%) and 75 commercial food products, were analyzed using conventional and RT-PCR to determine the presence of pork DNA. Pork DNA standard curves and cycle threshold (Ct) values were used for quantification. The detection limits for pork DNA in the mixtures were 0.22, 0.047, 0.048, 0.0000037, 0.015ng/μl respectively. Unlike conventional PCR, RT-PCR detected pork DNA in nine processed food samples [chicken sausages (2), chicken luncheon (2), turkey meat loaf, milk chocolate with soft nougat, jelly, cake, and candies] at pork DNA concentrations of 0.0001ng/μl or less.

  7. Application of a spotting sample preparation technique for the detection of pathogens in woody plants by RT-PCR and real-time PCR (TaqMan).

    PubMed

    Osman, Fatima; Rowhani, Adib

    2006-05-01

    An extraction technique for reverse transcription-PCR (RT-PCR) detection of plant pathogens including viruses, bacteria and phytoplasma is described. The total nucleic acid of these plant pathogens was obtained by direct spotting of crude sap derived from infected leaf, petiole or cambial tissue onto two different types of membranes, positively charged Hybond N(+) Nylon and FTA membranes, and processed for use in PCR. Thirteen different plant viruses, Xylella fastidiosa (causal agent of Pierce's disease) and phytoplasmas were included in the experiment. A thermal treatment (95 degrees C for 10 min) of the Hybond N(+) Nylon discs in a buffered solution improved the detection, but for FTA membrane discs the thermal treatment was not required and the discs were directly placed in the PCR reaction cocktail. Specific amplification of genomic or ribosomal RNA fragments of these pathogens was obtained by one-step RT-PCR except for X. fastidiosa in which a fragment of the genomic DNA was used for amplification. The same sample preparation methods also worked well for real-time RT-PCR (TaqMan). The sample preparation techniques reported here could be used to store samples for future PCR test or for long distance shipment to a detection laboratory.

  8. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    SciTech Connect

    Jothikumar, N. Hill, Vincent R.

    2013-06-28

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forward or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  9. Application of real time PCR for diagnosis of Swine Dysentery.

    PubMed

    Akase, Satoru; Uchitani, Yumi; Sohmura, Yoshiko; Tatsuta, Keikichi; Sadamasu, Kenji; Adachi, Yoshikazu

    2009-03-01

    Evaluation of a genetic diagnostic technique using real time PCR of Swine Dysentery (SD) was performed using nox primers. Culture, ordinary PCR and real time PCR were compared in this experiment. Sixty-seven specimens from pigs with clinical signs of SD brought to a slaughterhouse in Shibaura, Tokyo, were used. B. hyodysenteriae was isolated from 49 of the pigs, was detected by ordinary PCR in 49 of the pigs and was detected by real time PCR in 54 of the pigs. Furthermore, we were able to determine the numbers of B. hyodysenteriae cells in all positive specimens by real time PCR. The rapid diagnostic technique established in this experiment was useful for detection of B. hyodysenteriae because it was more effective than ordinary PCR and culture.

  10. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp.

    PubMed

    Jothikumar, N; Hill, Vincent R

    2013-06-28

    We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3'-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5'-end forms a hairpin structure. A fluorescent dye is attached to 5'-end of either the forward or reverse primer. The presence of guanosine residues at the first and second position of the 3' dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000-0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource-limited environments.

  11. PCR und Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Konrad, Regina; Busch, Ulrich

    Die vielfältigen Anwendungsmöglichkeiten der Polymerasekettenreaktion (polymerase chain reaction, PCR) machen sie zu einer der wichtigsten und am häufigsten eingesetzten Methoden in der molekularbiologischen Forschung und Diagnostik. Für diese Technologie wurde der Erfinder der Methode, Kary Mullis, 1993 mit dem Nobelpreis ausgezeichnet. Die PCR erlaubt einen hochsensitiven und spezifischen in-vitro-Nachweis von Desoxyribonukleinsäuren (DNA), da im Zuge der Reaktion Sequenzabschnitte gezielt vermehrt werden. Innerhalb weniger Stunden können aus einem einzigen Zielmolekül 1012 identische Moleküle entstehen [1].

  12. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  13. Real Time Data Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Silberberg, George G.

    1983-03-01

    By the early 1970s, classical photo-optical range instrumentation technology (as a means of gathering weapons' system performance data) had become a costly and inefficient process. Film costs were increasing due to soaring silver prices. Time required to process, read, and produce optical data was becoming unacceptable as a means of supporting weapon system development programs. NWC investigated the feasibility of utilizing Closed Circuit Television (CCTV) technology as an alternative solution for providing optical data. In 1978 a program entitled Metric Video (measurements from video images) was formulated at the Naval Weapons Center, China Lake, California. The purpose of this program was to provide timely data, to reduce the number of operating personnel, and to lower data acquisition costs. Some of the task elements for this program included a near real-time vector miss-distance system, a weapons scoring system, a velocity measuring system, a time-space position system, and a system to replace film cameras for gathering real-time engineering sequential data. These task elements and the development of special hardware and techniques to achieve real-time data will be discussed briefly in this paper.

  14. [Epidemics of schistosomiasis in military staff assigned to endemic areas: standard diagnostic techniques and the development of real-time PCR techniques].

    PubMed

    Biance-Valero, E; De Laval, F; Delerue, M; Savini, H; Cheinin, S; Leroy, P; Soullié, B

    2013-05-01

    The authors report the results of molecular biology techniques for the early diagnosis of cases (invasion phase) of schistosomiasis during two epidemics occurring during French military projects in the Central African Republic and Madagascar. The use of these techniques in real time for subjects not residing in the endemic area significantly improves the sensitivity of screening. The attack rates of these episodes, according to a case definition that took positive specific PCR results into account, were 59% and 26%. These results are a concrete illustration of the proverb that "yaws begin where the trail stops".

  15. DNA barcoding, species-specific PCR and real-time PCR techniques for the identification of six Tribolium pests of stored products.

    PubMed

    Zhang, Tao; Wang, Yi-Jiao; Guo, Wei; Luo, Dan; Wu, Yi; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun; Li, Zhi-Hong

    2016-06-29

    Flour beetles of the genus Tribolium Macleay (Coleoptera: Tenebrionidae) are important stored product pests in China and worldwide. They are often found or are intercepted in grain depots, flour mills, and entry-exit ports, etc. Traditionally, Tribolium species are identified according to the morphological characteristics of the adult. However, it is almost impossible to rapidly identify adult fragments and non-adult stages based on external morphological characteristics. Molecular techniques for the rapid and accurate identification of Tribolium species are required, particularly for pest monitoring and the quarantine of stored products pests. Here, we establish DNA barcoding, species-specific PCR, and real-time PCR techniques for the identification of six stored-product pest Tribolium species including T. castaneum, T. confusum, T. destructor, T. madens, T. freemani and T. brevicornis. We detected the mitochondrial DNA cytochrome oxidase subunit I (COI) barcodes for Tribolium from 18 geographic populations and 101 individuals, built a Tribolium DNA barcode library, and designed species-specific primers and TaqMan probes for the above six Tribolium species. The three techniques were applied to identify Tribolium collected from stored samples and samples captured from quarantine ports. The results demonstrated that three techniques were all able to identify the six species of Tribolium both rapidly and accurately.

  16. DNA barcoding, species-specific PCR and real-time PCR techniques for the identification of six Tribolium pests of stored products

    PubMed Central

    Zhang, Tao; Wang, Yi-Jiao; Guo, Wei; Luo, Dan; Wu, Yi; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun; Li, Zhi-Hong

    2016-01-01

    Flour beetles of the genus Tribolium Macleay (Coleoptera: Tenebrionidae) are important stored product pests in China and worldwide. They are often found or are intercepted in grain depots, flour mills, and entry-exit ports, etc. Traditionally, Tribolium species are identified according to the morphological characteristics of the adult. However, it is almost impossible to rapidly identify adult fragments and non-adult stages based on external morphological characteristics. Molecular techniques for the rapid and accurate identification of Tribolium species are required, particularly for pest monitoring and the quarantine of stored products pests. Here, we establish DNA barcoding, species-specific PCR, and real-time PCR techniques for the identification of six stored-product pest Tribolium species including T. castaneum, T. confusum, T. destructor, T. madens, T. freemani and T. brevicornis. We detected the mitochondrial DNA cytochrome oxidase subunit I (COI) barcodes for Tribolium from 18 geographic populations and 101 individuals, built a Tribolium DNA barcode library, and designed species-specific primers and TaqMan probes for the above six Tribolium species. The three techniques were applied to identify Tribolium collected from stored samples and samples captured from quarantine ports. The results demonstrated that three techniques were all able to identify the six species of Tribolium both rapidly and accurately. PMID:27352804

  17. Real time PCR in childhood tuberculosis: a valuable diagnostic tool.

    PubMed

    Dayal, Rajeshwar; Kashyap, Haripal; Pounikar, Gajanand; Kamal, Raj; Yadav, Neeraj Kumar; Singh, Manoj Kumar; Chauhan, Devendra Singh; Goyal, Ankur

    2015-02-01

    The present study was conducted to detect and quantitate Mycobacterium tuberculosis from various body fluid specimens of cases of tuberculosis by real time PCR technique and compare results with conventional PCR technique and culture. One hundred fifteen children (<18 y) with tuberculosis (diagnosed as per IAP guidelines) and 32 disease matched controls from the Department of Pediatrics, S.N. Medical College, Agra, were included in the study. Different body fluids (CSF, gastric aspirate, pleural fluid, ascitic fluid and lymph node aspirate) were subjected to culture, conventional PCR targeting insertion sequence 1S6110 and Real time PCR targeting 16srRNA of Mycobacterium tuberculosis. Real time PCR showed significantly better results than culture in all body fluids (p < 0.05). It was superior to conventional PCR in CSF (p < 0.05) but showed comparable results in gastric aspirate, pleural fluid, ascitic fluid and lymph node aspirate (p > 0.05). Hence, real time PCR is a promising diagnostic tool for childhood tuberculosis, particularly tubercular meningitis.

  18. Overcoming inhibition in real-time diagnostic PCR.

    PubMed

    Hedman, Johannes; Rådström, Peter

    2013-01-01

    PCR is an important and powerful tool in several fields, including clinical diagnostics, food analysis, and forensic analysis. In theory, PCR enables the detection of one single cell or DNA molecule. However, the presence of PCR inhibitors in the sample affects the amplification efficiency of PCR, thus lowering the detection limit, as well as the precision of sequence-specific nucleic acid quantification in real-time PCR. In order to overcome the problems caused by PCR inhibitors, all the steps leading up to DNA amplification must be optimized for the sample type in question. Sampling and sample treatment are key steps, but most of the methods currently in use were developed for conventional diagnostic methods and not for PCR. Therefore, there is a need for fast, simple, and robust sample preparation methods that take advantage of the accuracy of PCR. In addition, the thermostable DNA polymerases and buffer systems used in PCR are affected differently by inhibitors. During recent years, real-time PCR has developed considerably and is now widely used as a diagnostic tool. This technique has greatly improved the degree of automation and reduced the analysis time, but has also introduced a new set of PCR inhibitors, namely those affecting the fluorescence signal. The purpose of this chapter is to view the complexity of PCR inhibition from different angles, presenting both molecular explanations and practical ways of dealing with the problem. Although diagnostic PCR brings together scientists from different diagnostic fields, end-users have not fully exploited the potential of learning from each other. Here, we have collected knowledge from archeological analysis, clinical diagnostics, environmental analysis, food analysis, and forensic analysis. The concept of integrating sampling, sample treatment, and the chemistry of PCR, i.e., pre-PCR processing, will be addressed as a general approach to overcoming real-time PCR inhibition and producing samples optimal for PCR

  19. Introducing Undergraduate Students to Real-Time PCR

    ERIC Educational Resources Information Center

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  20. Detection of distribution of avian influenza H5N1 virus by immunohistochemistry, chromogenic in situ hybridization and real-time PCR techniques in experimentally infected chickens.

    PubMed

    Chamnanpood, Chanpen; Sanguansermsri, Donruedee; Pongcharoen, Sutatip; Sanguansermsri, Phanchana

    2011-03-01

    Ten specific pathogen free (SPF) chickens were inoculated intranasally with avian influenza virus subtype H5N1. Evaluation revealed distribution of the virus in twelve organs: liver, intestine, bursa, lung, trachea, thymus, heart, pancreas, brain, spleen, kidney, and esophagus. Immunohistochemistry (IHC), chromogenic in situ hybridization (CISH), and real-time polymerase chain reaction (PCR) were developed and compared for detection of the virus from the organs. The distribution of avian influenza H5N1 in chickens varied by animal and detecting technique. The heart, kidneys, intestines, lungs, and pancreas were positive with all three techniques, while the others varied by techique. The three techniques can be used to detect avian influenza effectively, but the pros and cons of each technique need to be determined. The decision of which technique to use depends on the objective of the examination, budget, type and quality of samples, laboratory facilities and technician skills.

  1. Use of Tissue Culture Techniques for Producing Virus-Free Plant in Garlic and Their Identification through Real-Time PCR

    PubMed Central

    Taşkın, Hatıra; Baktemur, Gökhan; Kurul, Mehmet; Büyükalaca, Saadet

    2013-01-01

    This study was performed for comparison of meristem culture technique with shoot tip culture technique for obtaining virus-free plant, comparison of micropropagation success of two different nutrient media, and determination of effectiveness of real-time PCR assay for the detection of viruses. Two different garlic species (Allium sativum and Allium tuncelianum) and two different nutrient media were used in this experiment. Results showed that Medium 2 was more successful compared to Medium 1 for both A. tuncelianum and A. sativum (Kastamonu garlic clone). In vitro plants obtained via meristem and shoot tip cultures were tested for determination of onion yellow dwarf virus (OYDV) and leek yellow stripe virus (LYSV) through real-time PCR assay. In garlic plants propagated via meristem culture, we could not detect any virus. OYDV and LYSV viruses were detected in plants obtained via shoot tip culture. OYDV virus was observed in amount of 80% and 73% of tested plants for A. tuncelianum and A. sativum, respectively. LYSV virus was found in amount of 67% of tested plants of A. tuncelianum and in amount of 87% of tested plants of A. sativum in this study. PMID:23935432

  2. Use of tissue culture techniques for producing virus-free plant in garlic and their identification through real-time PCR.

    PubMed

    Taşkın, Hatıra; Baktemur, Gökhan; Kurul, Mehmet; Büyükalaca, Saadet

    2013-01-01

    This study was performed for comparison of meristem culture technique with shoot tip culture technique for obtaining virus-free plant, comparison of micropropagation success of two different nutrient media, and determination of effectiveness of real-time PCR assay for the detection of viruses. Two different garlic species (Allium sativum and Allium tuncelianum) and two different nutrient media were used in this experiment. Results showed that Medium 2 was more successful compared to Medium 1 for both A. tuncelianum and A. sativum (Kastamonu garlic clone). In vitro plants obtained via meristem and shoot tip cultures were tested for determination of onion yellow dwarf virus (OYDV) and leek yellow stripe virus (LYSV) through real-time PCR assay. In garlic plants propagated via meristem culture, we could not detect any virus. OYDV and LYSV viruses were detected in plants obtained via shoot tip culture. OYDV virus was observed in amount of 80% and 73% of tested plants for A. tuncelianum and A. sativum, respectively. LYSV virus was found in amount of 67% of tested plants of A. tuncelianum and in amount of 87% of tested plants of A. sativum in this study.

  3. Species identification in meat products using real-time PCR.

    PubMed

    Jonker, K M; Tilburg, J J H C; Hagele, G H; de Boer, E

    2008-05-01

    One of the most convenient methods for the identification of animal species in processed meat products is the examination of DNA sequences. Real-time polymerase chain reaction (qPCR) techniques are particularly suitable because even small fragments of DNA formed during heat processing of the meat can be amplified and identified. A real-time PCR method has been developed and evaluated for the identification of processed meat products. In test mixtures containing beef, pork, horse, mutton, chicken and turkey, it was possible to identify these species down to a level of 0.05%. By adjusting the number of cycles, it was possible to detect levels as low as 0.01% of these species. Cross-reactivity between these species was not found, except for pure horsemeat (250 ng DNA) in the assay for turkey meat. Cross-reactivity of deer, roe, ostrich, kangaroo, goat, domestic duck, mallard, goose, pigeon, guinea fowl, quail and pheasant was also investigated and it was found that amounts as high as 250 ng DNA of these species in the reaction vial did not result in (false) positive signals except for amounts higher than 125 ng deer DNA and higher than 50 ng pigeon DNA in the determination of chicken and beef, respectively. More than 150 meat samples were examined using DNA hybridization and real-time PCR. A comparison of the results showed a better performance of the real-time procedure compared to DNA hybridization.

  4. High-throughput quantitative real-time PCR.

    PubMed

    Arany, Zoltan P

    2008-07-01

    Recent technical advances in quantitative real-time PCR (qRT-PCR) have allowed for extensive miniaturization, thereby rendering the technique amenable to high-throughput assays. Large numbers of different nucleic acids can now rapidly be measured quantitatively. Many investigations can benefit from this approach, including determination of gene expression in hundreds of samples, determination of hundreds of genes in a few samples, or even quantification of nucleic acids other than mRNA. A simple technique is described here to quantify 1880 transcripts of choice from any number of starting RNA samples.

  5. ARMS-PCR for detection of BRAF V600E hotspot mutation in comparison with Real-Time PCR-based techniques.

    PubMed

    Machnicki, Marcin M; Glodkowska-Mrowka, Eliza; Lewandowski, Tomasz; Ploski, Rafał; Wlodarski, Pawel; Stoklosa, Tomasz

    2013-01-01

    BRAF mutation testing is one of the best examples how modern genetic testing may help to effectively use targeted therapies in cancer patients. Since many different genetic techniques are employed to assess BRAF mutation status with no available comparison of their sensitivity and usefulness for different types of samples, we decided to evaluate our own PCR-based assay employing the amplification refractory mutation system (ARMS-PCR) to detect the most common hotspot mutation c. T1799A (p. V600E) by comparing it with two qPCR based assays: a commercially available test with hybridizing probes (TIB MOLBIOL) and high resolution melting (HRM). Positive results were verified with Sanger sequencing. DNA from two cancer cell lines with known mutation status and from tissue samples from melanoma and gastric cancer was used. ARMS-PCR was the most sensitive method with the level of detection of the mutant allele at 2%. Similar sensitivity was observed for the qPCR-based commercial test employing hybridizing probes; however, this test cannot exclude negative results from poor or low quality samples. Another qPCR-based method, HRM, had lower sensitivity with the detection level of approximately 20%. An additional drawback of HRM methodology was the inability to distinguish between wild type and mutant homozygotes in a straightforward assay, probably due to the character of this particular mutation (T\\>A). Sanger sequencing had the sensitivity of the detection of mutant allele similar to HRM, approx. 20%. In conclusion, simple ARMS-PCR may be considered the method of choice for rapid, cost-effective screening for BRAF p. V600E mutation.

  6. Real-time PCR: Advanced technologies and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book brings together contributions from 20 experts in the field of PCR, providing a broad perspective of the applications of quantitative real-time PCR (qPCR). The editors state in the preface that the aim is to provide detailed insight into underlying principles and methods of qPCR to provide ...

  7. Real-time PCR in Food Science: PCR Diagnostics.

    PubMed

    Rodriguez-Lazaro, David; Cook, Nigel; Hernandez, Marta

    2013-01-01

    A principal consumer demand is a guarantee of the safety and quality of food. The presence of foodborne pathogens and their potential hazard, the use of genetically modified organisms (GMOs) in food production, and the correct labelling in foods suitable for vegetarians are among the subjects where society demands total transparency. The application of controls within the quality assessment programmes of the food industry is a way to satisfy these demands, and is necessary to ensure efficient analytical methodologies are possessed and correctly applied by the Food Sector. The use of real-time PCR has become a promising alternative approach in food diagnostics. It possesses a number of advantages over conventional culturing approaches, including rapidity, excellent analytical sensitivity and selectivity, and potential for quantification. However, the use of expensive equipment and reagents, the need for qualified personnel, and the lack of standardized protocols are impairing its practical implementation for food monitoring and control.

  8. Electrochemistry-based real-time PCR on a microchip.

    PubMed

    Yeung, Stephen S W; Lee, Thomas M H; Hsing, I-Ming

    2008-01-15

    The development of handheld instruments for point-of-care DNA analysis can potentially contribute to the medical diagnostics and environmental monitoring for decentralized applications. In this work, we demonstrate the implementation of a recently developed electrochemical real-time polymerase chain reaction (ERT-PCR) technique on a silicon-glass microchip for simultaneous DNA amplification and detection. This on-chip ERT-PCR process requires the extension of an oligonucleotide in both solution and at solid phases and intermittent electrochemical signal measurement in the presence of all the PCR reagents. Several important parameters, related to the surface passivation and electrochemical scanning of working electrodes, were investigated. It was found that the ERT-PCR's onset thermal cycle ( approximately 3-5), where the analytical signal begins to be distinguishable from the background, is much lower than that of the fluorescence-based counterparts for high template DNA situations (3 x 10(6) copies/microL). By carefully controlling the concentrations of the immobilized probe and the enzyme polymerase, improvements have been made in obtaining a meaningful electrochemical signal using a lower initial template concentration. This ERT-PCR technique on a microchip platform holds significant promise for rapid DNA detection for point-of-care testing applications.

  9. Enumeration of Mycobacterium leprae Using Real-Time PCR

    PubMed Central

    Truman, Richard W.; Andrews, P. Kyle; Robbins, Naoko Y.; Adams, Linda B.; Krahenbuhl, James L.; Gillis, Thomas P.

    2008-01-01

    Mycobacterium leprae is not cultivable in axenic media, and direct microscopic enumeration of the bacilli is complex, labor intensive, and suffers from limited sensitivity and specificity. We have developed a real-time PCR assay for quantifying M. leprae DNA in biological samples. Primers were identified to amplify a shared region of the multicopy repeat sequence (RLEP) specific to M. leprae and tested for sensitivity and specificity in the TaqMan format. The assay was specific for M. leprae and able to detect 10 fg of purified M. leprae DNA, or approximately 300 bacteria in infected tissues. We used the RLEP TaqMan PCR to assess the short and long-term growth results of M. leprae in foot pad tissues obtained from conventional mice, a gene knock-out mouse strain, athymic nude mice, as well as from reticuloendothelial tissues of M. leprae–infected nine-banded armadillos. We found excellent correlative results between estimates from RLEP TaqMan PCR and direct microscopic counting (combined r = 0.98). The RLEP TaqMan PCR permitted rapid analysis of batch samples with high reproducibility and is especially valuable for detection of low numbers of bacilli. Molecular enumeration is a rapid, objective and highly reproducible means to estimate the numbers of M. leprae in tissues, and application of the technique can facilitate work with this agent in many laboratories. PMID:18982056

  10. Real-time PCR and PCR-tandem Mass Spectrometry for Biodetection

    DTIC Science & Technology

    2005-10-01

    Real - time PCR and PCR- tandem mass spectrometry for biodetection Alvin Fox, University of South Carolina, School of Medicine Report Documentation...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real - time PCR and PCRtandem mass spectrometry for biodetection 5a. CONTRACT NUMBER 5b...interspace region Bacillus subtilis W23 standard Blank Barn dust House dust Cycle Real - time PCR (16s rRNA) - environmental samples Real - time

  11. Real-time PCR in Food Science: Introduction.

    PubMed

    Rodriguez-Lazaro, David; Hernandez, Marta

    2013-01-01

    Food safety and quality control programmes are increasingly applied throughout the production food chain in order to guarantee added value products as well as to minimize the risk of infection for the consumer. The development of real-time PCR has represented one of the most significant advances in food diagnostics as it provides rapid, reliable and quantitative results. These aspects become increasingly important for the agricultural and food industry. Different strategies for real-time PCR diagnostics have been developed including unspecific detection independent of the target sequence using fluorescent dyes such as SYBR Green, or by sequence-specific fluorescent oligonucleotide probes such as TaqMan probes or molecular beacons.

  12. Citrus stubborn disease incidence determined by quantitative real time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative real-time (q) PCR was developed for detection of Spiroplasma citri, the causal agent of citrus stubborn disease (CSD), using the DNA binding fluorophore SYBR Green I. The primer pair, P58-3f/4r, developed based on sequences from the P58 putative adhesin multigene of the pathogen result...

  13. Real-Time PCR Quantification of Methanobrevibacter oralis in Periodontitis

    PubMed Central

    Bringuier, Amélie; Khelaifia, Saber; Richet, Hervé; Aboudharam, Gérard

    2013-01-01

    A real-time PCR assay developed to quantify Methanobrevibacter oralis indicated that its inoculum significantly correlated with periodontitis severity (P = 0.003), despite a nonsignificant difference in prevalence between controls (3/10) and patients (12/22) (P = 0.2, Fisher test). The M. oralis load can be used as a biomarker for periodontitis. PMID:23254133

  14. Real-time PCR for Strongyloides stercoralis-associated meningitis.

    PubMed

    Nadir, Eyal; Grossman, Tamar; Ciobotaro, Pnina; Attali, Malka; Barkan, Daniel; Bardenstein, Rita; Zimhony, Oren

    2016-03-01

    Four immunocompromised patients, immigrants from Ethiopia, presented with diverse clinical manifestations of meningitis associated with Strongyloides stercoralis dissemination as determined by identification of intestinal larvae. The cerebrospinal fluid of 3 patients was tested by a validated (for stool) real-time PCR for S. stercoralis and was found positive, establishing this association.

  15. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  16. Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and real-time PCR techniques

    NASA Astrophysics Data System (ADS)

    Andronov, E. E.; Petrova, S. N.; Pinaev, A. G.; Pershina, E. V.; Rakhimgalieva, S. Zh.; Akhmedenov, K. M.; Gorobets, A. V.; Sergaliev, N. Kh.

    2012-02-01

    Molecular methods were used to study variation in the taxonomic structure of bacterial, archaeal, and fungal communities in soil samples taken along a salinity gradient from a solonchak in the vicinity of Lake Akkol' (Shingirlau, Kazakhstan). Soils from arable fields located 195 km from the solonchak served as the control. Total DNA was isolated from every sample and analyzed by T-RFLP and real-time PCR. Salinization was found to be the main ecological factor determining the structure of soil microbial community in the study region. The values of Simpson's index characterizing the diversity of this community proved to be similar in all the samples, which, however, significantly differed in the taxonomic composition of microorganisms. A significantly increased content of archaea was revealed in the sample with the highest salinity. The results of this study show that the structure of soil microbial community reflects specific features of a given soil and can be used as an indicator of its ecological state.

  17. Sensitivity of PCR and real-time PCR for the diagnosis of human visceral leishmaniasis using peripheral blood

    PubMed Central

    da Costa Lima, Manoel Sebastião; Zorzenon, Denielly Christina Rodrigues; Dorval, Maria Elizabeth Cavalheiros; Pontes, Elenir Rose Jardim Cury; Oshiro, Elisa Teruya; Cunha, Rodrigo; Andreotti, Renato; Matos, Maria de Fatima Cepa

    2013-01-01

    Objective To evaluate the effectiveness of PCR and real-time PCR for the diagnosis of human visceral leishmaniasis using peripheral blood samples. Methods DNA extraction was performed using Promega Wizard® Genomic kits. PCR employing RV1/RV2 primers yielded 145-bp amplicons. Real-time PCR was performed with the same primers and SYBR Green ROX Plus mix. These techniques were used to analyze 100 peripheral blood samples from patients with clinical signs of the disease. Results The sensitivity and specificity levels were 91,3%% and 29,6%, respectively, for real-time PCR and 97.78% and 61.82%, respectively, for PCR. Conclusions Real-time PCR proved to be a satisfactory method for the diagnosis of human visceral leishmaniasis.

  18. Development of a Low-Cost Stem-Loop Real-Time Quantification PCR Technique for EBV miRNA Expression Analysis.

    PubMed

    Bergallo, Massimiliano; Merlino, Chiara; Montin, Davide; Galliano, Ilaria; Gambarino, Stefano; Mareschi, Katia; Fagioli, Franca; Montanari, Paola; Martino, Silvana; Tovo, Pier-Angelo

    2016-09-01

    MicroRNAs (miRNAs) are short, single stranded, non-coding RNA molecules. They are produced by many different species and are key regulators of several physiological processes. miRNAs are also encoded by the genomes of multiple virus families, such as herpesvirus family. In particular, miRNAs from Epstein Barr virus were found at high concentrations in different associated pathologies, such as Burkitt's lymphoma, Hodgkin disease, and nasopharyngeal carcinoma. Thanks to their stability, these molecules could possibly serve as biomarkers for EBV-associated diseases. In this study, a stem-loop real-time PCR for miR-BART2-5p, miR-BART15, and miR-BART22 EBV miRNAs detection and quantification has been developed. Evaluation of these miRNAs in 31 serum samples (12 from patients affected by primary immunodeficiency, 9 from X-linked agammaglobulinemia and 10 from healthy subjects) has been carried out. The amplification performance showed a wide dynamic range (10(8)-10(2) copies/reaction) and sensibility equal to 10(2) copies/reaction for all the target tested. Serum samples analysis, on the other hand, showed a statistical significant higher level of miR-BART22 in primary immunodeficiency patients (P = 0.0001) compared to other groups and targets. The results confirmed the potential use of this assay as a tool for monitoring EBV-associated disease and for miRNAs expression profile analysis.

  19. Real-Time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei

    DTIC Science & Technology

    2005-10-01

    1 Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei Vipin K. Rastogi1, Tu-chen Cheng1, Lisa Collins1 and Jennifer Bagley2 1...A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B.pseudomallei 5a. CONTRACT NUMBER 5b...risk. There is currently no real - time PCR assay for detection of both of these pathogens. Primers and probes corresponding to specific genomic regions

  20. Detection of Toxoplasma gondii oocysts in water sample concentrates by real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PCR techniques in combination with conventional parasite concentration procedures have potential for sensitive and specific detection of Toxoplasma gondii oocysts in water. Three real-time PCR assays based on the B1 gene and a 529-bp repetitive element were compared for detection of T. gondii tachyz...

  1. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    PubMed

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation.

  2. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  3. Quantitative detection of hazelnut (Corylus avellana) in cookies: ELISA versus real-time PCR.

    PubMed

    Platteau, Céline; De Loose, Marc; De Meulenaer, Bruno; Taverniers, Isabel

    2011-11-09

    Hazelnuts (Corylus avellana) are used widely in the food industry, especially in confectionery, where they are used raw, roasted, or in a processed formulation (e.g., praline paste and hazelnut oil). Hazelnuts contain multiple allergenic proteins, which can induce an allergic reaction associated with symptoms ranging from mild irritation to life-threatening anaphylactic shock. To date, immunochemical (e.g., ELISA or dipstick) and PCR-based analyses are the only methods available that can be applied as routine tests. The aim of this study is to make a comparative evaluation of the effectiveness of ELISA and real-time PCR in detecting and correctly quantifying hazelnut in food model systems. To this end, the performances of two commercial ELISAs were compared to those of two commercial and one in-house-developed real-time PCR assays. The results showed that although ELISA seemed to be more sensitive compared to real-time PCR, both detection techniques suffered from matrix effects and lacked robustness with regard to food processing. As these impacts were highly variable among the different evaluated assays (both ELISA and real-time PCR), no firm conclusion can be made as to which technique is suited best to detect hazelnut in (processed) food products. In this regard, the current lack of appropriate DNA calibrators to quantify an allergenic ingredient by means of real-time PCR is highlighted.

  4. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  5. Multiplex real-time PCR assay for Legionella species.

    PubMed

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies.

  6. Detection and quantitation of HPV DNA replication by Southern blotting and real-time PCR.

    PubMed

    Morgan, Iain M; Taylor, Ewan R

    2005-01-01

    This provides a brief introduction into the mechanism of DNA replication by the E1 and E2 proteins and describes the traditional Southern blotting technique that is used to monitor E1- and E2-mediated DNA replication. It also includes a novel real-time polymerase chain reaction (PCR) approach for monitoring E1- and E2-mediated DNA replication that has enhanced sensitivity and quantitation compared with Southern blotting, and a discussion of when to use the Southern blotting and real-time PCR techniques.

  7. Comparison and evaluation of real-time PCR, real-time nucleic acid sequence-based amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae.

    PubMed

    Templeton, Kate E; Scheltinga, Sitha A; Graffelman, A Willy; Van Schie, Jolanda M; Crielaard, Jantine W; Sillekens, Peter; Van Den Broek, Peterhans J; Goossens, Herman; Beersma, Matthias F C; Claas, Eric C J

    2003-09-01

    Mycoplasma pneumoniae is a common cause of community-acquired pneumonia and lower-respiratory-tract infections. Diagnosis has traditionally been obtained by serological diagnosis, but increasingly, molecular techniques have been applied. However, the number of studies actually comparing these assays is limited. The development of a novel duplex real-time PCR assay for detection of M. pneumoniae in the presence of an internal control real-time PCR is described. In addition, real-time nucleic acid sequence-based amplification (NASBA) on an iCycler apparatus is evaluated. These assays were compared to serology and a conventional PCR assay for 106 clinical samples from patients with lower-respiratory-tract infection. Of the 106 samples, 12 (11.3%) were positive by all the molecular methods whereas serology with acute sample and convalescent samples detected 6 (5.6%) and 9 (8.5%), respectively. Clinical symptoms of the patients with Mycoplasma-positive results were compared to those of the other patients with lower-respiratory-tract infections, and it was found that the results for mean lower age numbers as well as the presence of chills, increased erythrocyte sedimentation rate, and raised C-reactive protein levels showed significant differences. Molecular methods are superior for diagnosis of M. pneumoniae, providing more timely diagnosis. In addition, using real-time methods involves less hands-on time and affords the ability to monitor the reaction in the same tube.

  8. Genus identification of toxic plant by real-time PCR.

    PubMed

    Matsuyama, Shuji; Nishi, Katsuji

    2011-03-01

    Some plants have toxicities that are dangerous for humans. In the case of poisoning by toxic plants, a rapid and easy screening test is required for accurate medical treatment or forensic investigation. In this study, we designed specific primer pairs for identification of toxic plants, such as subgenus Aconitum, genus Ricinus, genus Illicium, and genus Scopolia, by internal transcribed spacer sequences of nuclear ribosomal DNA. Allied species of target plants, foods, and human DNA were not detected, but each primer pair provided a specific PCR product from the target plant using real-time PCR. This method can detect the subgenus Aconitum, genus Ricinus, and genus Scopolia with template DNA of 10 pg, respectively, and genus Illicium with 1 pg. Furthermore, each primer pair provided the exact PCR product from digested target plants in artificial gastric fluid. When a trace unknown plant sample in forensic investigation is collected from stomach contents, this PCR assay may be useful for screening toxic plants.

  9. Near Real Time Quantitative Gas Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Herget, William F.; Tromp, Marianne L.; Anderson, Charles R.

    1985-12-01

    A Fourier transform infrared (FT-IR) - based system has been developed and is undergoing evaluation for near real time multicomponent quantitative analysis of undiluted gaseous automotive exhaust emissions. The total system includes: (1) a gas conditioning system (GCS) for tracer gas injection, gas mixing, and temperature stabilization; and (2) an exhaust gas analyzer (EGA) consisting of a sample cell, an FT-IR system, and a computerized data processing system. Tests have shown that the system can monitor about 20 individual species (concentrations down to the 1-20 ppm range) with a time resolution of one second. Tests have been conducted on a chassis dynamometer system utilizing different autos, different fuels, and different driving cycles. Results were compared with those obtained using a standard constant volume sampling (CVS) system.

  10. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything

    PubMed Central

    Kralik, Petr; Ricchi, Matteo

    2017-01-01

    Real time PCR (quantitative PCR, qPCR) is now a well-established method for the detection, quantification, and typing of different microbial agents in the areas of clinical and veterinary diagnostics and food safety. Although the concept of PCR is relatively simple, there are specific issues in qPCR that developers and users of this technology must bear in mind. These include the use of correct terminology and definitions, understanding of the principle of PCR, difficulties with interpretation and presentation of data, the limitations of qPCR in different areas of microbial diagnostics and parameters important for the description of qPCR performance. It is not our intention in this review to describe every single aspect of qPCR design, optimization, and validation; however, it is our hope that this basic guide will help to orient beginners and users of qPCR in the use of this powerful technique. PMID:28210243

  11. Quantitative assay of photoinduced DNA strand breaks by real-time PCR.

    PubMed

    Wiczk, Justyna; Westphal, Kinga; Rak, Janusz

    2016-09-05

    Real-time PCR (qPCR) - a modern methodology primarily used for studying gene expression has been employed for the quantitative assay of an important class of DNA damage - single strand breaks. These DNA lesions which may lead to highly cytotoxic double strand breaks were quantified in a model system where double stranded DNA was sensitized to UV photons by labeling with 5-bromo-2'-deoxyuridine. The amount of breaks formed due to irradiation with several doses of 320nm photons was assayed by two independent methods: LC-MS and qPCR. A very good agreement between the relative damage measured by the two completely different analytical tools proves the applicability of qPCR for the quantitative analysis of SSBs. Our results suggest that the popularity of the hitherto underestimated though accurate and site-specific technique of real-time PCR may increase in future DNA damage studies.

  12. Real-Time PCR Method for Detection of Zygomycetes ▿

    PubMed Central

    Hata, D. Jane; Buckwalter, Seanne P.; Pritt, Bobbi S.; Roberts, Glenn D.; Wengenack, Nancy L.

    2008-01-01

    Zygomycete infections can be devastating in immunocompromised hosts. Difficulties in the histopathologic differentiation of this class from other filamentous fungi (e.g., Aspergillus spp., Fusarium spp.) may lead to delays in diagnosis and initiation of appropriate treatment, thereby significantly affecting patient outcome. A real-time PCR assay was developed to detect species of the zygomycete genera Absidia, Apophysomyces, Cunninghamella, Mucor, Rhizopus, and Saksenaea in culture and tissue samples. Primers and fluorescence resonance energy transfer hybridization probes were designed to detect a 167-bp conserved region of the multicopy zygomycete cytochrome b gene. A plasmid containing target sequence from Mucor racemosus was constructed as a positive control. The analytical sensitivity of the assay is 10 targets/μl, and a specificity panel consisting of other filamentous fungi, yeasts (Candida spp.), and bacteria demonstrated no cross-reactivity in the assay. The clinical sensitivity and specificity of the assay from culture isolates were 100% (39/39) and 92% (59/64), respectively. Sensitivity and specificity determined using a limited number of fresh tissue specimens were both 100% (2/2). The sensitivity seen with formalin-fixed, paraffin-embedded tissues was 56% (35/62), and the specificity was 100% (19/19). The speed, sensitivity, and specificity of the PCR assay indicate that it is useful for the rapid and accurate detection of zygomycetes. PMID:18480229

  13. Statistical diagnostics emerging from external quality control of real-time PCR.

    PubMed

    Marubini, E; Verderio, P; Raggi, Casini C; Pazzagli, M; Orlando, C

    2004-01-01

    Besides the application of conventional qualitative PCR as a valuable tool to enrich or identify specific sequences of nucleic acids, a new revolutionary technique for quantitative PCR determination has been introduced recently. It is based on real-time detection of PCR products revealed as a homogeneous accumulating signal generated by specific dyes. However, as far as we know, the influence of the variability of this technique on the reliability of the quantitative assay has not been thoroughly investigated. A national program of external quality assurance (EQA) for real-time PCR determination involving 42 Italian laboratories has been developed to assess the analytical performance of real-time PCR procedures. Participants were asked to perform a conventional experiment based on the use of an external reference curve (standard curve) for real-time detection of three cDNA samples with different concentrations of a specific target. In this paper the main analytical features of the standard curve have been investigated in an attempt to produce statistical diagnostics emerging from external quality control. Specific control charts were drawn to help biochemists take technical decisions aimed at improving the performance of their laboratories. Overall, our results indicated a subset of seven laboratories whose performance appeared to be markedly outside the limits for at least one of the standard curve features investigated. Our findings suggest the usefulness of the approach presented here for monitoring the heterogeneity of results produced by different laboratories and for selecting those laboratories that need technical advice on their performance.

  14. Applications of real-time PCR in the screening of platelet concentrates for bacterial contamination.

    PubMed

    Mohammadi, Tamimount; Savelkoul, Paul H M; Pietersz, Ruby N I; Reesink, Henk W

    2006-11-01

    Although there have been major improvements over the past few decades in detection methods for blood-borne infectious agents, platelet concentrates are still responsible for most cases of transfusion-transmitted bacterial infections. To date, real-time PCR is an indispensable tool in diagnostic laboratories to detect pathogens in a variety of biological samples. In this article, the applications of this powerful technique in the screening of platelet concentrates for bacterial contamination are discussed. Next to pathogen-specific (real-time) PCR assays, particular attention is directed to the recently developed 16S rDNA real-time PCR. This assay has been proven as a convenient way to detect bacterial contamination of platelet concentrates. The assay is sensitive and enables rapid detection of low initial numbers of bacteria in platelet concentrates. The short turnaround time of this assay allows high-throughput screening and reduction of the risk of transfusion of bacterially contaminated units. As with every method, real-time PCR has its advantages and disadvantages. These and especially limitations inherent to generation of false-positive or -negative results are emphasized. The universal nature of detection of the assay may be suitable for generalized bacterial screening of other blood components, such as red blood cells and plasma. Therefore, it is necessary to adapt and optimize detection in red blood cells and plasma with real-time PCR. Further sophistication, miniaturization and standardization of extraction and amplification methods should improve the total performance and robustness of the assay. Hence, real-time PCR is an attractive method in development as a more rapid screening test than currently used culture methods to detect bacterial contamination in blood components.

  15. Calibration-free assays on standard real-time PCR devices

    PubMed Central

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-01-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration. PMID:28327545

  16. Calibration-free assays on standard real-time PCR devices

    NASA Astrophysics Data System (ADS)

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-03-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration.

  17. Real-Time PCR Identification of Unique Bacillus anthracis Sequences.

    PubMed

    Cieślik, P; Knap, J; Kolodziej, M; Mirski, T; Joniec, J; Graniak, G; Zakowska, D; Winnicka, I; Bielawska-Drózd, A

    2015-01-01

    Bacillus anthracis is a spore-forming, Gram-positive microorganism. It is a causative agent of anthrax, a highly infectious disease. It belongs to the "Bacillus cereus group", which contains other closely related species, including Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus weihenstephanensis, and Bacillus pseudomycoides. B. anthracis naturally occurs in soil environments. The BA5345 genetic marker was used for highly specific detection of B. anthracis with TaqMan probes. The detection limit of a real-time PCR assay was estimated at the level of 16.9 copies (CI95% - 37.4 to 37.86, SD = 0.2; SE = 0.118). Oligonucleotides designed for the targeted sequences (within the tested locus) revealed 100 % homology to B. anthracis strain reference sequences deposited in the database (NCBI) and high specificity to all tested B. anthracis strains. Additional in silico analysis of plasmid markers pag and cap genes with B. anthracis strains included in the database was carried out. Our study clearly indicates that the BA5345 marker can be used with success as a chromosomal marker in routine identification of B. anthracis; moreover, detection of plasmid markers indicates virulence of the examined strains.

  18. Lab-on-a-chip PCR: real time PCR in miniaturized format for HLA diagnostics

    NASA Astrophysics Data System (ADS)

    Gaertner, Claudia; Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Sewart, René; Frank, Rainer; Willems, Andreas

    2014-05-01

    In case of transplantation or the identification of special metabolic diseases like coeliac disease, HLA typing has to be done fast and reliably with easy-to-handle devices by using limited amount of sample. Against this background a lab-on-a-chip device was realized enabling a fast HLA typing via miniaturized Real-time PCR. Hereby, two main process steps were combined, namely the extraction of DNA from whole blood and the amplification of the target DNA by Real-time PCR giving rise-to a semi-quantitative analysis. For the implementation of both processes on chip, a sample preparation and a real-time module were used. Sample preparation was carried out by using magnetic beads that were stored directly on chip as dry powder, together with all lysis reagents. After purification of the DNA by applying a special buffer regime, the sample DNA was transferred into the PCR module for amplification and detection. Coping with a massively increased surface-to-volume ratio, which results in a higher amount of unspecific binding on the chip surface, special additives needed to be integrated to compensate for this effect. Finally the overall procedure showed a sensitivity comparable to standard Real-time PCR but reduced the duration of analysis to significantly less than one hour. The presented work demonstrates that the combination of lab-on-a-chip PCR with direct optical read-out in a real-time fashion is an extremely promising tool for molecular diagnostics.

  19. Absolute quantification by droplet digital PCR versus analog real-time PCR

    PubMed Central

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  20. Processing of gene expression data generated by quantitative real-time RT-PCR.

    PubMed

    Muller, Patrick Y; Janovjak, Harald; Miserez, André R; Dobbie, Zuzana

    2002-06-01

    Quantitative real-time PCR represents a highly sensitive and powerful technique for the quantitation of nucleic acids. It has a tremendous potential for the high-throughput analysis of gene expression in research and routine diagnostics. However, the major hurdle is not the practical performance of the experiments themselves but rather the efficient evaluation and the mathematical and statistical analysis of the enormous amount of data gained by this technology, as these functions are not included in the software provided by the manufacturers of the detection systems. In this work, we focus on the mathematical evaluation and analysis of the data generated by quantitative real-time PCR, the calculation of the final results, the propagation of experimental variation of the measured values to the final results, and the statistical analysis. We developed a Microsoft Excel-based software application coded in Visual Basic for Applications, called Q-Gene, which addresses these points. Q-Gene manages and expedites the planning, performance, and evaluation of quantitative real-time PCR experiments, as well as the mathematical and statistical analysis, storage, and graphical presentation of the data. The Q-Gene software application is a tool to cope with complex quantitative real-time PCR experiments at a high-throughput scale and considerably expedites and rationalizes the experimental setup, data analysis, and data management while ensuring highest reproducibility.

  1. Quantification and viability assays of Toxoplasma gondii in commercial "Serrano" ham samples using magnetic capture real-time qPCR and bioassay techniques.

    PubMed

    Gomez-Samblas, M; Vílchez, S; Racero, J C; Fuentes, M V; Osuna, A

    2015-04-01

    "Serrano" ham is a typical pork product from the Mediterranean area, highly valued for its flavour. To make Serrano ham, pork undergoes a salting and a subsequent fermentation process known as curing. Certain pigs used for meat production are an important source of Toxoplasma gondii infection in humans. We have developed a method for quantifying and assaying the viability of the T. gondii present in commercial Serrano ham samples. A magnetic capture method for the isolation of T. gondii DNA and a qRT-PCR were used to estimate the T. gondii burden in 475 commercial samples of "Serrano" ham in two presentation formats: ham pieces and sliced ham. The infectivity capacity of T. gondii in positive samples was assayed in mice. The global prevalence of T. gondii was 8.84%, ranging from 32.35% in one of the companies to 0% prevalence in three other companies. The infectivity assays revealed that only 4.84% of the positive samples were infective. To the best of our knowledge this is the first report focussing on the prevalence of T. gondii in commercial "Serrano" ham. The method described here could be useful for producers to guarantee the safety of their products.

  2. Quantitative real-time PCR eliminates false-positives in colony screening PCR.

    PubMed

    Skarratt, Kristen K; Fuller, Stephen J

    2014-01-01

    We report an alternative approach to colony screening using real-time PCR (qPCR) which can be used instead of the traditional end-point PCR to eliminate false-positives and reduce processing times. False-positive transformants can easily be distinguished from true-positives by comparing Ct values derived from qPCR amplification curves. In addition, the use of qPCR allows for more efficient processing since a gel electrophoresis step is not required and the screening process is no longer limited by the capacity of the gel apparatus.

  3. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    PubMed

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens.

  4. Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR.

    PubMed

    Alaei, Hossein; Baeyen, Steve; Maes, Martine; Höfte, Monica; Heungens, Kurt

    2009-02-01

    Puccinia horiana Henn. is a quarantine organism and one of the most important fungal pathogens of Chrysanthemum x morifolium cultivars grown for cut flower or potted plant production (florist's chrysanthemum) in several regions of the world. Highly specific primer pairs were identified for conventional, nested, and real-time PCR detection of P. horiana based on the specific and sensitive PCR amplification of selected regions in the internal transcribed spacers (ITS1 and ITS2) of the nuclear ribosomal DNA (rDNA). Using these different PCR versions, 10 pg, 10 fg, and 5 fg genomic DNA could be detected, respectively. When using cloned target DNA as template, the detection limits were 5000, 50, and 5 target copies, respectively. These detection limits were not affected by a background of chrysanthemum plant DNA. The DNA extraction method was optimized to maximize the recoverability of the pathogen from infected plant tissue. A CTAB extraction protocol or a selection of commercial DNA extraction methods allowed the use of 10 ng total (plant+pathogen) DNA without interference of PCR inhibitors. Due to the specificity of the primers, SYBR Green I technology enabled reliable real time PCR signal detection. However, an efficient TaqMan probe is available. The lowest proportion of infected plant material that could still be detected when mixed with healthy plant material was 0.001%. The real-time PCR assay could detect as few as eight pure P. horiana basidiospores, demonstrating the potential of the technique for aerial detection of the pathogen. The amount of P. horiana DNA in plant tissue was determined at various time points after basidiospore inoculation. Using the real-time PCR protocol, it was possible to detect the pathogen immediately after the inoculation period, even though the accumulation of pathogen DNA was most pronounced near the end of the latent period. The detection system proved to be accurate and sensitive and could help not only in pathogen diagnosis but

  5. Real-Time RT-PCR for the Detection of Lyssavirus Species

    PubMed Central

    Deubelbeiss, A.; Zahno, M.-L.; Zanoni, M.; Bruegger, D.; Zanoni, R.

    2014-01-01

    The causative agents of rabies are single-stranded, negative-sense RNA viruses in the genus Lyssavirus of Rhabdoviridae, consisting of twelve classified and three as yet unclassified species including classical rabies virus (RABV). Highly neurotropic RABV causes rapidly progressive encephalomyelitis with nearly invariable fatal outcome. Rapid and reliable diagnosis of rabies is highly relevant for public and veterinary health. Due to growing variety of the genus Lyssavirus observed, the development of suitable molecular assays for diagnosis and differentiation is challenging. This work focused on the establishment of a suitable real-time RT-PCR technique for rabies diagnosis as a complement to fluorescent antibody test and rabies tissue culture infection test as gold standard for diagnosis and confirmation. The real-time RT-PCR was adapted with the goal to detect the whole spectrum of lyssavirus species, for nine of which synthesized DNA fragments were used. For the detection of species, seven probes were developed. Serial dilutions of the rabies virus strain CVS-11 showed a 100-fold higher sensitivity of real-time PCR compared to heminested RT-PCR. Using a panel of thirty-one lyssaviruses representing four species, the suitability of the protocol could be shown. Phylogenetic analysis of the sequences obtained by heminested PCR allowed correct classification of all viruses used. PMID:26464934

  6. Evaluation of IFN-γ polymorphism+874 T/A in patients with recurrent tonsillitis by PCR real time mismatch amplification mutation assay (MAMA real time PCR).

    PubMed

    Bergallo, Massimiliano; Gambarino, Stefano; Loiacono, Elisa; Vergano, Luca; Galliano, Ilaria; Montanari, Paola; Astegiano, Sara; Tavormina, Paolo; Tovo, Pier-Angelo

    2015-02-01

    Interferon gamma (IFN-γ) is an important cytokine that plays a crucial role in the balance between normal and pathological immune response. Defect of IFN-γ can give a predisposition to infectious disease, autoimmune pathologies and tumours. Different polymorphisms in this gene have been described, in particular the single nucleotide polymorphism (SNP)+874∗T/A that may affect IFN-γ gene expression. Several techniques can be used for the detection of SNPs. In this work two PCR Real Time assays were developed, an Amplification Refractory Mutation System (ARMS) and a Mismatch Amplification Mutation Assay (MAMA). Twenty-seven samples from patients (tonsillectomy) and 85 from donor's blood bank were considered. As a result, 78/85 controls (91.7%) and 25/27 patients (92.6%) were heterozygosis, considering the ARMS-PCR; 55/85 (64.7%) and 14/27 (51.9%) were heterozygosis using MAMA-PCR assay. Fourteen of 85 (16.5%) and 8/27 (29.6%) were homozygosis A, 16/85 (18.8%) and 5/27 (18.5%) presented homozygosis T, taking into account the MAMA-PCR. There are statistically difference between the two assay with p<0.0001 at Chi-square test. Our preliminary data suggest that tonsillectomy patients had a statistical trend to possess the low IFN-γ polymorphism when compared with control subject (p=0.3) but is not statistically significant. In conclusion the Real time MAMA-PCR assay has several advantages over other SNP identification techniques such as rapidity, reliability, easily to perform in one working day and applicable in clinical molecular diagnostic laboratories, although sequencing remains the gold standard.

  7. Proportion of prey consumed can be determined from faecal DNA using real-time PCR.

    PubMed

    Bowles, Ella; Schulte, Patricia M; Tollit, Dominic J; Deagle, Bruce E; Trites, Andrew W

    2011-05-01

    Reconstructing the diets of pinnipeds by visually identifying prey remains recovered in faecal samples is challenging because of differences in digestion and passage rates of hard parts. Analysing the soft-matrix of faecal material using DNA-based techniques is an alternative means to identify prey species consumed, but published techniques are largely nonquantitative, which limits their usefulness for some applications. We further developed and validated a real-time PCR technique using species-specific mitochondrial DNA primers to quantify the proportion of prey in the diets of Steller sea lions (Eumetopias jubatus), a pinniped species thought to be facing significant diet related challenges in the North Pacific. We first demonstrated that the proportions of prey tissue DNA in mixtures of DNA isolated from four prey species could be estimated within a margin of ∼ 12% of the percent in the mix. These prey species included herring Clupea palasii, eulachon Thaleichthyes pacificus, squid Loligo opalescens and rosethorn rockfish Sebastes helvomaculatus. We then applied real-time PCR to DNA extracted from faecal samples obtained from Steller sea lions in captivity that were fed 11 different combinations of herring, eulachon, squid and Pacific ocean perch rockfish (Sebastes alutus), ranging from 7% to 75% contributions per meal (by wet weight). The difference between the average percentage estimated by real-time PCR and the percentage of prey consumed was generally <12% for all diets fed. Our findings indicate that real-time PCR of faecal DNA can detect the approximate relative quantity of prey consumed for complex diets and prey species, including cephalopods and fish.

  8. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes.

    PubMed

    Deepak, Sa; Kottapalli, Kr; Rakwal, R; Oros, G; Rangappa, Ks; Iwahashi, H; Masuo, Y; Agrawal, Gk

    2007-06-01

    Invention of polymerase chain reaction (PCR) technology by Kary Mullis in 1984 gave birth to real-time PCR. Real-time PCR - detection and expression analysis of gene(s) in real-time - has revolutionized the 21(st) century biological science due to its tremendous application in quantitative genotyping, genetic variation of inter and intra organisms, early diagnosis of disease, forensic, to name a few. We comprehensively review various aspects of real-time PCR, including technological refinement and application in all scientific fields ranging from medical to environmental issues, and to plant.

  9. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes

    PubMed Central

    Deepak, SA; Kottapalli, KR; Rakwal, R; Oros, G; Rangappa, KS; Iwahashi, H; Masuo, Y; Agrawal, GK

    2007-01-01

    Invention of polymerase chain reaction (PCR) technology by Kary Mullis in 1984 gave birth to real-time PCR. Real-time PCR — detection and expression analysis of gene(s) in real-time — has revolutionized the 21st century biological science due to its tremendous application in quantitative genotyping, genetic variation of inter and intra organisms, early diagnosis of disease, forensic, to name a few. We comprehensively review various aspects of real-time PCR, including technological refinement and application in all scientific fields ranging from medical to environmental issues, and to plant. PMID:18645596

  10. Broad-range real time PCR and DNA sequencing for the diagnosis of bacterial meningitis.

    PubMed

    Deutch, Susanna; Pedersen, Lisbeth N; Pødenphant, Lone; Olesen, Rikke; Schmidt, Michael B; Møller, Jens K; Ostergaard, Lars

    2006-01-01

    Rapid aetiological diagnosis of bacterial meningitis is crucial for the early targeting of antimicrobial and adjuvant therapy. Broad-range polymerase chain reaction (PCR) targeting the 16S rRNA gene allows aetiological diagnosis of bacterial meningitis when applied to cerebrospinal fluid (CSF). We assessed the additional diagnostic effect of applying a novel broad-range real time PCR and subsequent DNA sequencing to culture, microscopy, and broad-range conventional PCR on CSF in patients with suspected bacterial meningitis. Broad-range conventional PCR and broad-range real time PCR with subsequent DNA sequencing were applied to 206 CSF specimens collected consecutively from 203 patients aged 6 d to 86 y. Patients' charts were reviewed for clinical information. 17 pathogens were identified by PCR and DNA sequencing or culture. Three specimens were negative by culture but positive by broad-range real time PCR. Three specimens were positive by culture but negative by broad-range real time PCR. Compared with culture, the sensitivity of broad-range real time PCR was 86%, and the specificity 98%. Conventional PCR resulted in a sensitivity of 64% and specificity of 98%. Broad-range real time PCR was generally comparable to culture of CSF and may be a useful supplement, particularly when antimicrobial therapy has been administered. Broad-range real time PCR was more sensitive than broad-range conventional PCR and microscopy.

  11. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    PubMed

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  12. Real-time PCR (qPCR) primer design using free online software.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software.

  13. EMA-real-time PCR as a reliable method for detection of viable Salmonella in chicken and eggs.

    PubMed

    Wang, Luxin; Mustapha, Azlin

    2010-04-01

    Culture-based Salmonella detection takes at least 4 d to complete. The use of TaqMan probes allows the real-time PCR technique to be a rapid and sensitive way to detect foodborne pathogens. However, unlike RNA-based PCR, DNA-based PCR techniques cannot differentiate between DNA from live and dead cells. Ethidium bromide monoazide (EMA) is a dye that can bind to DNA of dead cells and prevent its amplification by PCR. An EMA staining step prior to PCR allows for the effective inhibition of false positive results from DNA contamination by dead cells. The aim of this study was to design an accurate detection method that can detect only viable Salmonella cells from poultry products. The sensitivity of EMA staining coupled with real-time PCR was compared to that of an RNA-based reverse transcription (RT)-real-time PCR. To prevent false negative results, an internal amplification control was added to the same reaction mixture as the target Salmonella sequences. With an optimized EMA staining step, the detection range of a subsequent real-time PCR was determined to be 10(3) to 10(9) CFU/mL for pure cultures and 10(5) to 10(9) CFU/mL for food samples, which was a wider detection range than for RT-real-time PCR. After a 12-h enrichment step, EMA staining combined with real-time PCR could detect as low as 10 CFU/mL Salmonella from chicken rinses and egg broth. The use of EMA with a DNA-based real-time PCR can successfully prevent false positive results and represents a simple, yet accurate detection tool for enhancing the safety of food.

  14. Comparison between conventional and real-time PCR assays for diagnosis of visceral leishmaniasis.

    PubMed

    Pereira, Mariana R; Rocha-Silva, Fabiana; Graciele-Melo, Cidiane; Lafuente, Camila R; Magalhães, Telcia; Caligiorne, Rachel B

    2014-01-01

    The diagnosis of visceral leishmaniasis (VL) is a challenging issue and several studies worldwide have evaluated the different tools to reach a diagnostic solution. The polymerase chain reaction (PCR) has proven to be effective in detecting the genome of Leishmania species in different biological samples. In this study, we compared the conventional PCR and real-time PCR using the Sybr Green system and their application in molecular diagnosis of visceral leishmaniasis in peripheral blood as a biological sample. The genus-specific conserved region of kinetoplast DNA (kDNA) was the target of amplification. We studied 30 samples from patients with suspect of visceral leishmaniasis who were treated by the Medical Clinic of Santa Casa de Belo Horizonte Hospital, Brazil. Among the samples studied, 19 had a confirmed diagnosis for VL by serology and/or by clinical findings. Among these 19 samples, 63% (n = 12) presented positive results for serology and 79% (n = 15) positive results in both PCR methodologies. This fact suggests that the PCR technique can assist in the diagnosis of visceral leishmaniasis in patients who do not have detectable antibodies by serology but can present the genome of the parasite circulating in whole blood. Also, it was possible to observe that there was conformity between the results of the techniques of cPCR and qPCR using the Sybr Green system in 100% of samples analyzed. These data suggest that both PCR techniques were equally effective for detection of the genome of the parasite in the patient's blood.

  15. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    PubMed Central

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  16. Comparison of two DNA extractions and nested PCR, real-time PCR, a new commercial PCR assay, and bacterial culture for detection of Mycobacterium avium subsp. paratuberculosis in bovine feces.

    PubMed

    Christopher-Hennings, Jane; Dammen, Matthew A; Weeks, Shelleen R; Epperson, William B; Singh, Shri N; Steinlicht, Gina L; Fang, Ying; Skaare, Jessica L; Larsen, Jill L; Payeur, Janet B; Nelson, Eric A

    2003-03-01

    In this study, 5 combinations of 2 DNA extractions and 3 polymerase chain reaction (PCR) techniques were compared with culture for the detection of Mycobacterium paratuberculosis directly from bovine feces. These combinations included a new commercial extraction technique combined with a commercial PCR/Southern blot technique, nested PCR (nPCR), or real-time PCR, and a university-developed extraction combined with nPCR or real-time PCR. Four of the 5 combinations had statistically similar sensitivities between 93% and 100% and specificity between 95% and 100%, when compared with culture results from 63 bovine fecal samples. These results indicated that using a commercial extraction with a commercial PCR/Southern blot, nPCR, or real-time PCR, or a university-developed extraction with real-time PCR would result in similar sensitivities to culture for the identification of M. paratuberculosis from bovine feces and are valid alternatives to culture.

  17. Detection of selected intestinal helminths and protozoa at Hospital Universiti Sains Malaysia using multiplex real-time PCR.

    PubMed

    Basuni, M; Mohamed, Z; Ahmad, M; Zakaria, N Z; Noordin, R

    2012-09-01

    Intestinal parasites are the causative agents of a number of important human infections in developing countries. The objective of this study was to determine the prevalence of selected helminths and protozoan infections among patients admitted with gastrointestinal disorders at Hospital Universiti Sains Malaysia, Kelantan, Malaysia using multiplex real-time PCR. In addition microscopic examination was also performed following direct smear, zinc sulphate concentration and Kato-Katz thick smear techniques; and the presence of protozoan parasites was confirmed using trichrome and acid-fast stains. Of the 225 faecal samples analysed, 26.2% were positive for intestinal parasites by the multiplex real-time PCR, while 5.3% were positive by microscopy. As compared to microscopy, the multiplex real-time PCR detected 5.8 and 4.5 times more positives for the selected helminth and protozoan infections respectively. Among the selected helminths detected in this study, hookworm was the most prevalent by real-time PCR, while Ascaris lumbricoides was detected the most by microscopy. Meanwhile, among the selected protozoa detected in this study, Entamoeba histolytica was the most prevalent by real-time PCR, however microscopy detected equal number of cases with E. histolytica and Giardia lamblia. This study showed that real-time PCR can be used to obtain a more accurate prevalence data on intestinal helminths and protozoa.

  18. Undergraduate Virology Exercises Demonstrate Conventional and Real-Time PCR Using Commercially Available HIV Primers and Noninfectious Target

    ERIC Educational Resources Information Center

    Sulzinski, Michael A.; Wasilewski, Melissa A.; Farrell, James C.; Glick, David L.

    2009-01-01

    It is an extraordinary challenge to offer an undergraduate laboratory course in virology that teaches hands-on, relevant molecular biology techniques using nonpathogenic models of human virus detection. To our knowledge, there exists no inexpensive kits or reagent sets that are appropriate for demonstrating real-time PCR (RT-PCR) in an…

  19. A real-time interferometer technique for compressible flow research

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1984-01-01

    Strengths and shortcomings in the application of interferometric techniques to transonic flow fields are examined and an improved method is elaborated. Such applications have demonstrated the value of interferometry in obtaining data for compressible flow research. With holographic techniques, interferometry may be applied in large scale facilities without the use of expensive optics or elaborate vibration isolation equipment. Results obtained using holographic interferometry and other methods demonstrate that reliable qualitative and quantitative data can be acquired. Nevertheless, the conventional method can be difficult to set up and apply, and it cannot produce real-time data. A new interferometry technique is investigated that promises to be easier to apply and can provide real-time information. This single-beam technique has the necessary insensitivity to vibration for large scale wind tunnel operations. Capabilities of the method and preliminary tests on some laboratory scale flow fluids are described.

  20. Detection of Leishmania infantum in animals and their ectoparasites by conventional PCR and real time PCR.

    PubMed

    de Morais, Rayana Carla Silva; Gonçalves, Suênia da Cunha; Costa, Pietra Lemos; da Silva, Kamila Gaudêncio; da Silva, Fernando José; Silva, Rômulo Pessoa E; de Brito, Maria Edileuza Felinto; Brandão-Filho, Sinval Pinto; Dantas-Torres, Filipe; de Paiva-Cavalcanti, Milena

    2013-04-01

    Visceral leishmaniosis (VL) is a parasitic disease caused by Leishmania infantum, which is primarily transmitted by phlebotomine sandflies. However, there has been much speculation on the role of other arthropods in the transmission of VL. Thus, the aim of this study was to assess the presence of L. infantum in cats, dogs and their ectoparasites in a VL-endemic area in northeastern Brazil. DNA was extracted from blood samples and ectoparasites, tested by conventional PCR (cPCR) and quantitative real time PCR (qPCR) targeting the L. infantum kinetoplast DNA. A total of 280 blood samples (from five cats and 275 dogs) and 117 ectoparasites from dogs were collected. Animals were apparently healthy and not previously tested by serological or molecular diagnostic methods. Overall, 213 (76.1 %) animals and 51 (43.6 %) ectoparasites were positive to L. infantum, with mean parasite loads of 795.2, 31.9 and 9.1 fg in dogs, cats and ectoparasites, respectively. Concerning the positivity between dogs and their ectoparasites, 32 (15.3 %) positive dogs were parasitized by positive ectoparasites. The overall concordance between the PCR protocols used was 59.2 %, with qPCR being more efficient than cPCR; 34.1 % of all positive samples were exclusively positive by qPCR. The high number of positive animals and ectoparasites also indicates that they could serve as sentinels or indicators of the circulation of L. infantum in risk areas.

  1. Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR).

    PubMed

    Felder, Eva; Mossbrugger, Ilona; Lange, Mirko; Wölfel, Roman

    2012-09-01

    Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR) assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5'-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.

  2. Simplified development of multiplex real-time PCR through master mix augmented by universal fluorogenic reporters.

    PubMed

    Wadle, Simon; Lehnert, Michael; Schuler, Friedrich; Köppel, René; Serr, Annerose; Zengerle, Roland; von Stetten, Felix

    2016-01-01

    Mediator probe (MP) PCR is a real-time PCR approach that uses standardized universal fluorogenic reporter oligonucleotides (UR) in conjunction with label-free sequence-specific probes. To enable multiplex real-time MP PCR, we designed a set of five optimized URs with different fluorescent labels. Performance of the optimized URs was verified in multiplex real-time MP PCR for the detection of a pentaplex food panel and a quadruplex methicillin-resistant Staphylococcus aureus (MRSA) panel. Results were comparable to corresponding multiplex hydrolysis probe (HP) PCR, also designated as TaqMan PCR. Analyses of MRSA DNA standards and DNA extracted from patient swab samples showed improved lower limits of detection (LoDs) by a factor of 2-5 when using quadruplex real-time MP PCR instead of HP PCR. The novel set of standardized URs we present here simplifies development of multiplex real-time PCR assays by requiring only the design of label-free probes. In the future, real-time PCR master mixes could be augmented with up to five standardized fluorogenic URs, each emitting light at a different wavelength.

  3. Novel real-time PCR detection assay for Brucella suis

    PubMed Central

    Hänsel, C.; Mertens, K.; Elschner, M. C.; Melzer, F.

    2015-01-01

    Introduction Brucella suis is the causative agent of brucellosis in suidae and is differentiated into five biovars (bv). Biovars 1 and 3 possess zoonotic potential and can infect humans, whereas biovar 2 represents the main source of brucellosis in feral and domestic pigs in Europe. Both aspects, the zoonotic threat and the economic loss, emphasize the necessity to monitor feral and domestic pig populations. Available serological or PCR based methods lack sensitivity and specificity. Results Here a bioinformatics approach was used to identify a B. suis specific 17 bp repeat on chromosome II (BS1330_II0657 locus). This repeat is common for B. suis bv 1 to 4 and was used to develop a TaqMan probe assay. The average PCR efficiency was determined as 95% and the limit of detection as 12,5 fg/µl of DNA, equally to 3.7 bacterial genomes. This assay has the highest sensitivity of all previously described B. suis specific PCR assays, making it possible to detect 3-4 bacterial genomes per 1 µl of sample. The assay was tested 100% specific for B. suis and negative for other Brucella spp. and closely related non-Brucella species. Conclusions This novel qPCR assay could become a rapid, inexpensive and reliable screening method for large sample pools of B. suis 1 to 4. This method will be applicable for field samples after validation. PMID:26392898

  4. Detection and monitoring of virus infections by real-time PCR.

    PubMed

    Watzinger, F; Ebner, K; Lion, T

    2006-01-01

    The employment of polymerase chain reaction (PCR) techniques for virus detection and quantification offers the advantages of high sensitivity and reproducibility, combined with an extremely broad dynamic range. A number of qualitative and quantitative PCR virus assays have been described, but commercial PCR kits are available for quantitative analysis of a limited number of clinically important viruses only. In addition to permitting the assessment of viral load at a given time point, quantitative PCR tests offer the possibility of determining the dynamics of virus proliferation, monitoring of the response to treatment and, in viruses displaying persistence in defined cell types, distinction between latent and active infection. Moreover, from a technical point of view, the employment of sequential quantitative PCR assays in virus monitoring helps identifying false positive results caused by inadvertent contamination of samples with traces of viral nucleic acids or PCR products. In this review, we provide a survey of the current state-of-the-art in the application of the real-time PCR technology to virus analysis. Advantages and limitations of the RQ-PCR methodology, and quality control issues related to standardization and validation of diagnostic assays are discussed.

  5. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  6. New PCR systems to confirm real-time PCR detection of Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Herthnek, David; Bölske, Göran

    2006-01-01

    Background Johne's disease, a serious chronic form of enteritis in ruminants, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). As the organism is very slow-growing and fastidious, several PCR-based methods for detection have been developed, based mainly on the MAP-specific gene IS900. However, because this gene is similar to genes in other mycobacteria, there is a need for sensitive and reliable methods to confirm the presence of MAP. As described here, two new real-time PCR systems on the IS900 gene and one on the F57 gene were developed and carefully validated on 267 strains and 56 positive clinical faecal samples. Results Our confirmatory PCR systems on IS900 were found sensitive and specific, only yielding weak false positive reactions in one strain for each system. The PCR system on F57 did not elicit any false positives and was only slightly less sensitive than our primary IS900-system. DNA from both naturally infected and spiked faeces that tested positive with our primary system could be confirmed with all new systems, except one low-level infected sample that tested negative with the F57 system. Conclusion We recommend using the newly constructed DH3 PCR system on the F57 gene as the primary confirmatory test for PCR positives, but should it fail due to its lower sensitivity, the DH1 and DH2 PCR systems should be used. PMID:17020599

  7. The workflow of single-cell expression profiling using quantitative real-time PCR

    PubMed Central

    Ståhlberg, Anders; Kubista, Mikael

    2014-01-01

    Biological material is heterogeneous and when exposed to stimuli the various cells present respond differently. Much of the complexity can be eliminated by disintegrating the sample, studying the cells one by one. Single-cell profiling reveals responses that go unnoticed when classical samples are studied. New cell types and cell subtypes may be found and relevant pathways and expression networks can be identified. The most powerful technique for single-cell expression profiling is currently quantitative reverse transcription real-time PCR (RT-qPCR). A robust RT-qPCR workflow for highly sensitive and specific measurements in high-throughput and a reasonable degree of multiplexing has been developed for targeting mRNAs, but also microRNAs, non-coding RNAs and most recently also proteins. We review the current state of the art of single-cell expression profiling and present also the improvements and developments expected in the next 5 years. PMID:24649819

  8. Detection and quantification of Aeromonas salmonicida in fish tissue by real-time PCR.

    PubMed

    Bartkova, S; Kokotovic, B; Skall, H F; Lorenzen, N; Dalsgaard, I

    2017-02-01

    Furunculosis, a septicaemic infection caused by the bacterium Aeromonas salmonicida subsp. salmonicida, currently causes problems in Danish seawater rainbow trout production. Detection has mainly been achieved by bacterial culture, but more rapid and sensitive methods are needed. A previously developed real-time PCR assay targeting the plasmid encoded aopP gene of A. salmonicida was, in parallel with culturing, used for the examination of five organs of 40 fish from Danish freshwater and seawater farms. Real-time PCR showed overall a higher frequency of positives than culturing (65% of positive fish by real-time PCR compared to 30% by a culture approach). Also, no real-time PCR-negative samples were found positive by culturing. A. salmonicida was detected by real-time PCR, though not by culturing, in freshwater fish showing no signs of furunculosis, indicating possible presence of carrier fish. In seawater fish examined after an outbreak and antibiotics treatment, real-time PCR showed the presence of the bacterium in all examined organs (1-482 genomic units mg(-1) ). With a limit of detection of 40 target copies (1-2 genomic units) per reaction, a high reproducibility and an excellent efficiency, the present real-time PCR assay provides a sensitive tool for the detection of A. salmonicida.

  9. A real-time PCR approach for rapid high resolution subtyping of HLA-DRB1*04

    PubMed Central

    Gersuk, Vivian H.; Nepom, Gerald T.

    2007-01-01

    We present a real-time PCR approach for the identification and subtyping of HLA-DR4 alleles. The technique, which uses sequence-specific primers and probes in conjunction with real-time PCR for the detection and differentiation of target alleles, is rapid, involves minimal hands-on time, and is inexpensive compared to existing methods. Further, there is no post-PCR handling, so the risk of contamination is avoided. We have validated the assay using 44 blinded and 56 unblinded samples, which were identified with 100% accuracy, sensitivity, and specificity. We demonstrate the applicability of this assay as an alternative approach to traditional HLA typing methods. PMID:17055527

  10. Comprehensive GMO detection using real-time PCR array: single-laboratory validation.

    PubMed

    Mano, Junichi; Harada, Mioko; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi; Nakamura, Kosuke; Akiyama, Hiroshi; Teshima, Reiko; Noritake, Hiromichi; Hatano, Shuko; Futo, Satoshi; Minegishi, Yasutaka; Iizuka, Tayoshi

    2012-01-01

    We have developed a real-time PCR array method to comprehensively detect genetically modified (GM) organisms. In the method, genomic DNA extracted from an agricultural product is analyzed using various qualitative real-time PCR assays on a 96-well PCR plate, targeting for individual GM events, recombinant DNA (r-DNA) segments, taxon-specific DNAs, and donor organisms of the respective r-DNAs. In this article, we report the single-laboratory validation of both DNA extraction methods and component PCR assays constituting the real-time PCR array. We selected some DNA extraction methods for specified plant matrixes, i.e., maize flour, soybean flour, and ground canola seeds, then evaluated the DNA quantity, DNA fragmentation, and PCR inhibition of the resultant DNA extracts. For the component PCR assays, we evaluated the specificity and LOD. All DNA extraction methods and component PCR assays satisfied the criteria set on the basis of previous reports.

  11. Rapid Detection of Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Using Real-Time PCR

    PubMed Central

    Sahebi, Leyla; Ansarin, Khalil; Monfaredan, Amir; Farajnia, Safar; Nili, Seiran; Khalili, Majid

    2016-01-01

    Background Accurate and rapid detection of drug-resistant Mycobacterium tuberculosis is fundamental for the successful treatment of tuberculosis (TB). Objectives The aim of this study was to determine the frequency of common mutations leading to isoniazid (INH) and rifampicin (RMP) resistance. Patients and Methods In a cross-sectional study carried out in 2014, 90 patients with M. tuberculosis from five border provinces of Iran were selected. After a full clinical history and physical evaluation, real-time polymerase chain reaction (PCR) technique was performed for the detection of mutations in the patients’ katG and rpoB genes. The results were compared with results of a standard proportion method as well as a multiplex allele-specific PCR (MAS-PCR). Results A total of 23 mutations were found in isolates among which, codon katG 315, rpoB P1 (511 - 519 sequence) and rpoB P2 (524-533 sequence) were responsible for seven, nine and seven cases, respectively. The mean (standard deviation (SD)) of melting temperature (Tm) in katG 315 codon, rpoB P1 and P2 sequences in susceptible and mutant isolates was as follows: katG 85.4°C (0.18) and 87.54°C (0.62); rpoΒ P1 84.6°C (0.61) and 82.9°C (0.38); rpoΒ P2 83.4°C (0.18) and 85.3°C (0.19), respectively. In comparison to the standard proportion test, the sensitivity of real-time PCR in detecting INH- and RMP-resistant mutations was 75% and 83.3%, respectively. In comparison to the MAS-PCR test, 100% of katG 315 mutations and 80% of rpoB mutations were determined. Overall, 10% of the patients were diagnosed with a recurrence of TB. Age and previous history of TB treatment increased mutation odds in rpoB sequences (P = 0.046, P = 0.036, respectively). Conclusions Detection of drug resistance associated with mutations through real-time PCR by melting analysis technique showed a high differentiating power. This technique had high concordance with the standard proportion test and MAS-PCR results. PMID:27942356

  12. Identification of Aedes aegypti and its Respective Life Stages by Real-Time PCR

    DTIC Science & Technology

    2004-06-01

    RTO-MP-HFM-108 22 - 1 Identification of Aedes aegypti and its Respective Life Stages by Real - Time PCR James C. McAvin1*; Major David E...Stages by Real - Time PCR 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...grade water Identification of Aedes aegypti and its Respective Life Stages by Real - Time PCR RTO-MP-HFM-108 22 - 3 for no template controls

  13. Polymerase chain reaction and real-time PCR for diagnosing of Leishmania infantum chagasi in dogs.

    PubMed

    Ramos, Rafael Antonio do Nascimento; Ramos, Carlos Alberto do Nascimento; Jusi, Márcia Mariza Gomes; de Araújo, Flábio Ribeiro; Machado, Rosangela Zacarias; Faustino, Maria Aparecida da Glória; Alves, Leucio Câmara

    2012-01-01

    The importance of dogs as a reservoir for Leishmania infantumchagasi in urban environments has stimulated numerous studies assessing diagnostic techniques. When performed properly, such procedures are an important step in preventing leishmaniasis in humans. Molecular methods have become prominent for this purpose. The aim of the present study was to determine the performance of the polymerase chain reaction (PCR) and real-time PCR (qPCR) for diagnosing of canine visceral leishmaniasis (CVL) using different biological samples. For this, 35 dogs from an area endemic for CVL were used. Bone marrow aspirate and lymph node and spleen fragments from these dogs were used for the molecular diagnosis. In the present study, qPCR was able to detect a greater number of positive animals than seen with PCR. Among the different biological samples used, there was no significant difference in L. infantumchagasi DNA detection between PCR and qPCR. However, considering that lymph nodes are easy to acquire, these can be considered to be the best samples for making molecular diagnoses of L. infantum chagasi infection.

  14. Validation of real-time PCR for laboratory diagnosis of Acanthamoeba keratitis.

    PubMed

    Thompson, Paul P; Kowalski, Regis P; Shanks, Robert M Q; Gordon, Y Jerold

    2008-10-01

    Confirmation of Acanthamoeba keratitis by laboratory diagnosis is the first step in the treatment of this vision-threatening disease. Two real-time PCR TaqMan protocols (the Rivière and Qvarnstrom assays) were developed for the detection of genus-specific Acanthamoeba DNA but lacked clinical validation. We have adapted these assays for the Cepheid SmartCycler II system (i) by determining their real-time PCR limits of detection and amplification efficiencies, (ii) by determining their ability to detect trophozoites and cysts, and (iii) by testing a battery of positive and negative samples. We also examined the inhibitory effects of a number of commonly used topical ophthalmic drugs on real-time PCR. The results of the real-time PCR limit of detection and amplification efficiency of the Rivière and Qvarnstrom assays were 11.3 DNA copies/10 microl and 94% and 43.8 DNA copies/10 microl and 92%, respectively. Our extraction protocol enabled us to detect 0.7 Acanthamoeba cysts/10 microl and 2.3 Acanthamoeba trophozoites/10 microl by both real-time PCR assays. The overall agreement between the assays was 97.0%. The clinical sensitivity and specificity of both real-time PCR assays based on culture were 100% (7 of 7) and 100% (37 of 37), respectively. Polyhexamethylene biguanide was the only topical drug that demonstrated PCR inhibition, with a minimal inhibitory dilution of 1/640 and an amplification efficiency of 72.7%. Four clinical samples were Acanthamoeba culture negative and real-time PCR positive. Our results indicate that both real-time PCR assays could be used to diagnose Acanthamoeba keratitis. Polyhexamethylene biguanide can inhibit PCR, and we suggest that specimen collection occur prior to topical treatment to avoid possible false-negative results.

  15. Real time PCR to detect the environmental faecal contamination by Echinococcus multilocularis from red fox stools.

    PubMed

    Knapp, Jenny; Millon, Laurence; Mouzon, Lorane; Umhang, Gérald; Raoul, Francis; Ali, Zeinaba Said; Combes, Benoît; Comte, Sébastien; Gbaguidi-Haore, Houssein; Grenouillet, Frédéric; Giraudoux, Patrick

    2014-03-17

    The oncosphere stage of Echinococcus multilocularis in red fox stools can lead, after ingestion, to the development of alveolar echinococcosis in the intermediate hosts, commonly small mammals and occasionally humans. Monitoring animal infection and environmental contamination is a key issue in public health surveillance. We developed a quantitative real-time PCR technique (qPCR) to detect and quantify E. multilocularis DNA released in fox faeces. A qPCR technique using a hydrolysis probe targeting part of the mitochondrial gene rrnL was assessed on (i) a reference collection of stools from 57 necropsied foxes simultaneously investigated using the segmental sedimentation and counting technique (SSCT) (29 positive for E. multilocularis worms and 28 negative animals for the parasite); (ii) a collection of 114 fox stools sampled in the field: two sets of 50 samples from contrasted endemic regions in France and 14 from an E. multilocularis-free area (Greenland). Of the negative SSCT controls, 26/28 were qPCR-negative and two were weakly positive. Of the positive SSCT foxes, 25/29 samples were found to be positive by qPCR. Of the field samples, qPCR was positive in 21/50 (42%) and 5/48 (10.4%) stools (2 samples inhibited), originating respectively from high and low endemic areas. In faeces, averages of 0.1 pg/μl of DNA in the Jura area and 0.7 pg/μl in the Saône-et-Loire area were detected. All qPCR-positive samples were confirmed by sequencing. The qPCR technique developed here allowed us to quantify environmental E. multilocularis contamination by fox faeces by studying the infectious agent directly. No previous study had performed this test in a one-step reaction.

  16. Comparison between Conventional and Real-Time PCR Assays for Diagnosis of Visceral Leishmaniasis

    PubMed Central

    Pereira, Mariana R.; Rocha-Silva, Fabiana; Graciele-Melo, Cidiane; Lafuente, Camila R.; Magalhães, Telcia; Caligiorne, Rachel B.

    2014-01-01

    The diagnosis of visceral leishmaniasis (VL) is a challenging issue and several studies worldwide have evaluated the different tools to reach a diagnostic solution. The polymerase chain reaction (PCR) has proven to be effective in detecting the genome of Leishmania species in different biological samples. In this study, we compared the conventional PCR and real-time PCR using the Sybr Green system and their application in molecular diagnosis of visceral leishmaniasis in peripheral blood as a biological sample. The genus-specific conserved region of kinetoplast DNA (kDNA) was the target of amplification. We studied 30 samples from patients with suspect of visceral leishmaniasis who were treated by the Medical Clinic of Santa Casa de Belo Horizonte Hospital, Brazil. Among the samples studied, 19 had a confirmed diagnosis for VL by serology and/or by clinical findings. Among these 19 samples, 63% (n = 12) presented positive results for serology and 79% (n = 15) positive results in both PCR methodologies. This fact suggests that the PCR technique can assist in the diagnosis of visceral leishmaniasis in patients who do not have detectable antibodies by serology but can present the genome of the parasite circulating in whole blood. Also, it was possible to observe that there was conformity between the results of the techniques of cPCR and qPCR using the Sybr Green system in 100% of samples analyzed. These data suggest that both PCR techniques were equally effective for detection of the genome of the parasite in the patient's blood. PMID:24689047

  17. Goose Hemorrhagic polyomavirus detection in geese using real-time PCR assay.

    PubMed

    Leon, Olivier; Corrand, Léni; Bich, Tran Ngoc; Le Minor, Odile; Lemaire, Mylène; Guérin, Jean-Luc

    2013-12-01

    Goose hemorrhagic polyomavirus (GHPV) is the viral agent of hemorrhagic nephritis enteritis of geese (HNEG), a lethal disease of goslings. Although death is the most common outcome, geese that recover from HNEG are persistently infected. Here, we present the development of real-time SYBR Green real-time PCR targeted to GHPV and its use to assess the prevalence of GHPV infection in French geese flocks. When compared with classical end-point PCR, real-time PCR revealed a much better sensitivity and equivalent specificity. Real-time PCR could, therefore, be considered a gold standard for the detection of GHPV. Results of field investigations evidenced a very high prevalence of GHPV infections in French geese, largely associated with healthy carriage.

  18. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  19. Avian influenza virus detection and quantitation by real-time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Real-time RT-PCR (rRT-PCR) has been used for avian influenza virus (AIV) detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of rRT-PCR are: high sensitivity, high specificity, rapid time-to-result, scalability, cost, and its inherentl...

  20. Evaluation of Quantitative Real-Time PCR Assays for Detection of Citrus Greening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus huanglongbing (HLB), or citrus greening, is a serious and industry-limiting disease. Preliminary diagnoses can be made through visual symptoms, and greater certainty can be achieved through quantitative real-time PCR (qPCR). Several qPCR procedures are available including those by designed by...

  1. Rapid and sensitive detection of ostreid herpesvirus 1 in oyster samples by real-time PCR.

    PubMed

    Pepin, J F; Riou, A; Renault, T

    2008-05-01

    Herpes and herpes-like virus infections have been reported in various marine mollusc species associated with high mortality rates. Following the characterisation and genome sequencing of ostreid herpesvirus 1 (OsHV-1), specific diagnostic tools have been developed based on conventional PCR techniques or in situ hybridisation. We have now developed a real-time PCR assay for rapid, sensitive and quantitative detection of OsHV-1, and compared it with a conventional PCR technique described previously. The new assay utilised SYBR((R)) Green chemistry with specific primers C(9)/C(10) targeting the C region. The melt curve analysis of OsHV-1 DNA or DNA extracted from infected material showed only one melting temperature peak (75.75+/-0.1 degrees C). The assay had a detection limit of 4 copies/microL of viral genomic DNA and a dynamic range of 5 logs. Using infected oyster samples as template, the assay was about 100-fold more sensitive than single PCR method using C(2)/C(6) primers. The assay was applied successfully for rapid diagnosis (100 min) and quantitation of OsHV-1 in different developmental stages of Crassostrea gigas. Although it already exists a competitive PCR method to quantify OsHV-1 DNA, quantitative data that will emerge in future using the new sensitive and reliable assay will illuminate aspects of pathogenesis, in particular the viral loads in asymptomatic oysters and the kinetics of infection in specific target tissues.

  2. Real-time PCR for the detection of precise transgene copy number in durum wheat.

    PubMed

    Gadaleta, Agata; Giancaspro, Angelica; Cardone, Maria Francesca; Blanco, Antonio

    2011-12-01

    Recent results obtained in various crops indicate that real-time PCR could be a powerful tool for the detection and characterization of transgene locus structures. The determination of transgenic locus number through real-time PCR overcomes the problems linked to phenotypic segregation analysis (i.e. lack of detectable expression even when the transgenes are present) and can analyse hundreds of samples in a day, making it an efficient method for estimating gene copy number. Despite these advantages, many authors speak of "estimating" copy number by real-time PCR, and this is because the detection of a precise number of transgene depends on how well real-time PCR performs.This study was conducted to determine transgene copy number in transgenic wheat lines and to investigate potential variability in sensitivity and resolution of real-time chemistry by TaqMan probes. We have applied real-time PCR to a set of four transgenic durum wheat lines previously obtained. A total of 24 experiments (three experiments for two genes in each transgenic line) were conducted and standard curves were obtained from serial dilutions of the plasmids containing the genes of interest. The correlation coefficients ranged from 0.95 to 0.97. By using TaqMan quantitative real-time PCR we were able to detect 1 to 41 copies of transgenes per haploid genome in the DNA of homozygous T4 transformants. Although a slight variability was observed among PCR experiments, in our study we found real-time PCR to be a fast, sensitive and reliable method for the detection of transgene copy number in durum wheat, and a useful adjunct to Southern blot and FISH analyses to detect the presence of transgenic DNA in plant material.

  3. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  4. [Analytical performances of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine].

    PubMed

    De Monte, Anne; Cannavo, Isabelle; Caramella, Anne; Ollier, Laurence; Giordanengo, Valérie

    2016-01-01

    Congenital cytomegalovirus (CMV) infection is the leading cause of sensoneurinal disability due to infectious congenital disease. The diagnosis of congenital CMV infection is based on the search of CMV in the urine within the first two weeks of life. Viral culture of urine is the gold standard. However, the PCR is highly sensitive and faster. It is becoming an alternative choice. The objective of this study is the validation of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine. Repeatability, reproducibility, detection limit and inter-sample contamination were evaluated. Urine samples from patients (n=141) were collected and analyzed simultaneously in culture and PCR in order to assess the correlation of these two methods. The sensitivity and specificity of PCR were also calculated. The Abbott RealTime CMV PCR in urine is an automated and sensitive method (detection limit 200 UI/mL). Fidelity is very good (standard deviation of repeatability: 0.08 to 0.15 LogUI/mL and reproducibility 0.18 LogUI/mL). We can note a good correlation between culture and Abbott RealTime CMV PCR (kappa 96%). When considering rapid culture as reference, real-time PCR was highly sensitive (100%) and specific (98.2%). The real-time PCR by Abbott RealTime CMV with m2000 is optimal for CMV detection in urine.

  5. High-throughput pooling and real-time PCR-based strategy for malaria detection.

    PubMed

    Taylor, Steve M; Juliano, Jonathan J; Trottman, Paul A; Griffin, Jennifer B; Landis, Sarah H; Kitsa, Paluku; Tshefu, Antoinette K; Meshnick, Steven R

    2010-02-01

    Molecular assays can provide critical information for malaria diagnosis, speciation, and drug resistance, but their cost and resource requirements limit their application to clinical malaria studies. This study describes the application of a resource-conserving testing algorithm employing sample pooling for real-time PCR assays for malaria in a cohort of 182 pregnant women in Kinshasa. A total of 1,268 peripheral blood samples were collected during the study. Using a real-time PCR assay that detects all Plasmodium species, microscopy-positive samples were amplified individually; the microscopy-negative samples were amplified after pooling the genomic DNA (gDNA) of four samples prior to testing. Of 176 microscopy-positive samples, 74 were positive by the real-time PCR assay; the 1,092 microscopy-negative samples were initially amplified in 293 pools, and subsequently, 35 samples were real-time PCR positive (3%). With the real-time PCR result as the referent standard, microscopy was 67.9% sensitive (95% confidence interval [CI], 58.3% to 76.5%) and 91.2% specific (95% CI, 89.4% to 92.8%) for malaria. In total, we detected 109 parasitemias by real-time PCR and, by pooling samples, obviated over 50% of reactions and halved the cost of testing. Our study highlights both substantial discordance between malaria diagnostics and the utility and parsimony of employing a sample pooling strategy for molecular diagnostics in clinical and epidemiologic malaria studies.

  6. A quantitative real-time PCR method for monitoring Clostridium botulinum type A in rice samples.

    PubMed

    Takahashi, Hajime; Takakura, Chikako; Kimura, Bon

    2010-04-01

    A quantitative real-time PCR using SYBR Green dye was developed to target the neurotoxin type A (boNT/A) gene of Clostridium botulinum type A. Primer specificity was confirmed by analyzing 63 strains including 5 strains of C. botulinum type A and 11 of non-type A C. botulinum. The highly similar amplification efficiencies of the real-time PCR assay were observed for 5 strains of C. botulinum type A. The DNA extraction with NucliSENS miniMAG provided sufficient performance to obtain the purified DNA from steamed rice samples and to develop the standard curve for the enumeration of C. botulinum in steamed rice samples. The real-time PCR assay could detect 10 cells per milliliter of 10 x rice homogenate, thus indicating that more than 100 C. botulinum cells per g of rice sample was quantifiable by the real-time PCR assay. The inoculation of aseptic rice samples with low numbers of C. botulinum type A cells revealed that the fate of inoculated C. botulinum type A cells in rice samples could be monitored accurately by the real-time PCR assay. These results indicate that the real-time PCR assay developed in this study provides rapid, effective, and quantitative monitoring of C. botulinum in steamed rice samples.

  7. Simultaneous detection of influenza viruses A and B using real-time quantitative PCR.

    PubMed

    van Elden, L J; Nijhuis, M; Schipper, P; Schuurman, R; van Loon, A M

    2001-01-01

    Since influenza viruses can cause severe illness, timely diagnosis is important for an adequate intervention. The available rapid detection methods either lack sensitivity or require complex laboratory manipulation. This study describes a rapid, sensitive detection method that can be easily applied to routine diagnosis. This method simultaneously detects influenza viruses A and B in specimens of patients with respiratory infections using a TaqMan-based real-time PCR assay. Primers and probes were selected from highly conserved regions of the matrix protein gene of influenza virus A and the hemagglutinin gene segment of influenza virus B. The applicability of this multiplex PCR was evaluated with 27 influenza virus A and 9 influenza virus B reference strains and isolates. In addition, the specificity of the assay was assessed using eight reference strains of other respiratory viruses (parainfluenza viruses 1 to 3, respiratory syncytial virus Long strain, rhinoviruses 1A and 14, and coronaviruses OC43 and 229E) and 30 combined nose and throat swabs from asymptomatic subjects. Electron microscopy-counted stocks of influenza viruses A and B were used to develop a quantitative PCR format. Thirteen copies of viral RNA were detected for influenza virus A, and 11 copies were detected for influenza virus B, equaling 0.02 and 0.006 50% tissue culture infective doses, respectively. The diagnostic efficacy of the multiplex TaqMan-based PCR was determined by testing 98 clinical samples. This real-time PCR technique was found to be more sensitive than the combination of conventional viral culturing and shell vial culturing.

  8. Development of a high-throughput real time PCR based on a hot-start alternative for Pfu mediated by quantum dots

    NASA Astrophysics Data System (ADS)

    Sang, Fuming; Yang, Yang; Yuan, Lin; Ren, Jicun; Zhang, Zhizhou

    2015-09-01

    Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour preincubation at 50 °C before real time PCR. Moreover, the results obtained by QD-based HS PCR were comparable to a commercial Taq antibody DNA polymerase. However, no obvious HS effect of QDs was found in real time PCR using Taq DNA polymerase. The findings of this study demonstrated that a cost-effective high-throughput real time PCR based on QD triggered HS PCR could be established with high consistency, sensitivity and accuracy.Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour

  9. Evaluation of various real-time reverse transcription quantitative PCR assays for norovirus detection.

    PubMed

    Yoo, Ju Eun; Lee, Cheonghoon; Park, SungJun; Ko, GwangPyo

    2017-02-01

    Human noroviruses are widespread and contagious viruses causing nonbacterial gastroenteritis. Real-time reverse transcription quantitative PCR (real-time RT-qPCR) is currently the gold standard for sensitive and accurate detection for these pathogens and serves as a critical tool in outbreak prevention and control. Different surveillance teams, however, may use different assays and variability in specimen conditions may lead to disagreement in results. Furthermore, the norovirus genome is highly variable and continuously evolving. These issues necessitate the re-examination of the real-time RT-qPCR's robustness in the context of accurate detection as well as the investigation of practical strategies to enhance assay performance. Four widely referenced real-time RT-qPCR assays (Assay A-D) were simultaneously performed to evaluate characteristics such as PCR efficiency, detection limit, as well as sensitivity and specificity with RT-PCR, and to assess the most accurate method for detecting norovirus genogroups I and II. Overall, Assay D was evaluated to be the most precise and accurate assay in this study. A Zen internal quencher, which decreases nonspecific fluorescence during the PCR reaction, was added to Assay D's probe which further improved assay performance. This study compared several detection assays for noroviruses and an improvement strategy based on such comparisons provided useful characterizations of a highly optimized real-time RT-qPCR assay for norovirus detection.

  10. A specific real-time PCR assay for the detection of Bordetella pertussis.

    PubMed

    Vincart, Benoit; De Mendonça, Ricardo; Rottiers, Sylvianne; Vermeulen, Françoise; Struelens, Marc J; Denis, Olivier

    2007-07-01

    A novel real-time PCR (RT-PCR) assay was developed for detection of Bordetella pertussis in respiratory specimens by targeting the pertactin gene. In vitro evaluation with reference strains and quality control samples showed analytical sensitivity equivalent to and specificity superior to those of PCR assays which target the IS481 element. The pertactin-based RT-PCR assay offers better discrimination between B. pertussis and other Bordetella species than previously described assays.

  11. A Robust Plant RNA Isolation Method for Affymetrix Genechip® Analysis and Quantitative Real-Time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarray analysis and quantitative real-time RT-PCR are the major high-throughput techniques that are used to study transcript profiles. One of the major limitations in these technologies is the isolation maximum yield of highly-pure RNA from plant tissues rich in complex polysaccharides, polyphen...

  12. Vitality Stains and Real Time PCR Studies to Delineate the Interactions of Pichia anomala and Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to probe the effect of the yeast, P. anomala against A flavus by using real time RT-PCR technique and vitality fluorescent stains. Yeast and fungi were inoculated into a 250 ml-flask containing 50 ml potato dextrose broth (PDB) at yeast to fungus (Y : F) ratios of ...

  13. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    PubMed Central

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design. PMID:22315563

  14. Real-time PCR machine system modeling and a systematic approach for the robust design of a real-time PCR-on-a-chip system.

    PubMed

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  15. New Panfungal Real-Time PCR Assay for Diagnosis of Invasive Fungal Infections.

    PubMed

    Valero, Clara; de la Cruz-Villar, Laura; Zaragoza, Óscar; Buitrago, María José

    2016-12-01

    The diagnosis of invasive fungal infections (IFIs) is usually based on the isolation of the fungus in culture and histopathological techniques. However, these methods have many limitations often delaying the definitive diagnosis. In recent years, molecular diagnostics methods have emerged as a suitable alternative for IFI diagnosis. When there is not a clear suspicion of the fungus involved in the IFI, panfungal real-time PCR assays have been used, allowing amplification of any fungal DNA. However, this approach requires subsequent amplicon sequencing to identify the fungal species involved, increasing response time. In this work, a new panfungal real-time PCR assay using the combination of an intercalating dye and sequence-specific probes was developed. After DNA amplification, a melting curve analysis was also performed. The technique was standardized by using 11 different fungal species and validated in 60 clinical samples from patients with proven and probable IFI. A melting curve database was constructed by collecting those melting curves obtained from fungal species included in the standardization assay. Results showed high reproducibility (coefficient of variation [CV] < 5%; r > 0.95) and specificity (100%). The overall sensitivity of the technique was 83.3%, with the group of fungi involved in the infection detected in 77.8% of the positive samples with IFIs covered by molecular beacon probes. Moreover, sequencing was avoided in 67.8% of these "probe-positive" results, enabling report of a positive result in 24 h. This technique is fast, sensitive, and specific and promises to be useful for improving early diagnosis of IFIs.

  16. Interlaboratory Comparison of Real-time PCR Protocols for Quantification of General Fecal Indicator Bacteria

    EPA Science Inventory

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized proto...

  17. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  18. Molecular-Beacon Multiplex Real-Time PCR Assay for Detection of Vibrio cholerae

    PubMed Central

    Gubala, Aneta J.; Proll, David F.

    2006-01-01

    A multiplex real-time PCR assay was developed using molecular beacons for the detection of Vibrio cholerae by targeting four important virulence and regulatory genes. The specificity and sensitivity of this assay, when tested with pure culture and spiked environmental water samples, were high, surpassing those of currently published PCR assays for the detection of this organism. PMID:16957277

  19. Isolation of Listeria monocytogenes from challenged turkeys using real time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have hypothesized that stress-induced subclinical infection of turkeys with L. monocytogenes (Lm) may be a source of processing plant contamination. The objective of this work was to compare conventional culture methods and Taqman® real time PCR (RTi PCR) for isolation of Lm from joints of challe...

  20. Sequence polymorphism can produce serious artifacts in real-time PCR assays: lessons from Pacific oysters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since it was first described in the mid-1990s, quantitative real time PCR (Q-PCR) has been widely used in many fields of biomedical research and molecular diagnostics. This method is routinely used to validate whole transcriptome analyses such as DNA microarrays, suppressive subtractive hybridizati...

  1. Miniature real time PCR on chip with multi-channel fiber optical fluorescence detection module.

    PubMed

    Xiang, Q; Xu, B; Li, D

    2007-08-01

    This paper presents the design and implementation of a miniature real time PCR system consisting of a disposable reactor chip, a miniature thermal cycler, and a multi-channel fiber optical fluorescence excitation/detection module. The disposable PCR chip is fabricated by using soft photolithography by PDMS (Polydimethylsiloxane) and glass. The miniature thermal cycler has a thin film heater for heating and a fan for rapid cooling. The fiber optical detection module consists of laser, filter cube, photo-detector and 1x4 fiber optical switch. It is capable of four-well real time PCR analysis. Real-time PCR detection of E. coli stx1 has been demonstrated successfully with this system.

  2. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  3. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  4. Development of a real-time PCR method (Taqman) for rapid identification and quantification of Prorocentrum donghaiense

    NASA Astrophysics Data System (ADS)

    Yuan, Jian; Mi, Tiezhu; Zhen, Yu; Yu, Zhigang

    2012-09-01

    Prorocentrum donghaiense is a dinoflagellate that is widely distributed in the East China Sea and has become increasingly involved in Harmful Algal Blooms (HABs). Therefore, it is necessary to study this dinoflagellate to monitor HABs. In this study, 13 pairs of primers specific to P. donghaiense (within its internal transcribed spacer (ITS) regions) were designed for SYBR Green I real-time PCR. As the SYBR Green I real-time PCR could not identify P. donghaiense in a specific manner, a Taqman real-time PCR method was developed by designing a set of specific primers and a Taqman probe. A 10-fold serial dilution of recombinant plasmid containing ITS regions of P. donghaiense was prepared as standard samples and the standard curve was established. Additionally, we quantified the genomic DNA in P. donghaiense cells and utilized this DNA to prepare another 10-fold serial dilution of standard sample and accordingly set up the standard curve. The mathematic correlation between the cell number and its corresponding plasmid copy number was also established. In order to test the efficiency of the real-time PCR method, laboratory samples and P. donghaiense HAB field samples were employed for identification and quantitative analysis. As to laboratory samples, as few as 102 cells of P. donghaiense could be quantified precisely utilizing both centrifugation and filtration techniques. The quantification results from field samples by real-time PCR were highly similar to those by light microscopy. In conclusion, the real-time PCR could be applied to identify and quantify P. donghaiense in HABs.

  5. Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples

    NASA Astrophysics Data System (ADS)

    An, Hey Reoun; Mainelis, Gediminas; White, Lori

    This manuscript describes the coupling of bioaerosol collection and the use of real-time PCR (RT-PCR) to quantify the airborne bacteria. The quantity of collected bacteria determined by RT-PCR is compared with conventional quantification techniques, such as culturing, microscopy and airborne microorganism counting by using optical particle counter (OPC). Our data show that an experimental approach used to develop standard curves for use with RT-PCR is critical for accurate sample quantification. Using universal primers we generated 12 different standard curves which were used to quantify model organism Escherichia coli (Migula) Catellani from air samples. Standard curves prepared using a traditional approach, where serially diluted genomic DNA extracted from pure cultured bacteria were used in PCR reaction as a template DNA yielded significant underestimation of sample quantities compared to airborne microorganism concentration as measured by an OPC. The underestimation was especially pronounced when standard curves were built using colony forming units (CFUs). In contrast, the estimate of cell concentration in an air sample by RT-PCR was more accurate (˜60% compared to the airborne microorganism concentration) when the standard curve was built using aerosolized E. coli. The accuracy improved even further (˜100%) when air samples used to build the standard curves were diluted first, then the DNA extracted from each dilution was amplified by the RT-PCR—to mimic the handling of air samples with unknown and possibly low concentration. Therefore, our data show that standard curves used for quantification by RT-PCR needs to be prepared using the same environmental matrix and procedures as handling of the environmental sample in question. Reliance on the standard curves generated with cultured bacterial suspension (a traditional approach) may lead to substantial underestimation of microorganism quantities in environmental samples.

  6. Detection of stable reference genes for real-time PCR analysis in schizophrenia and bipolar disorder.

    PubMed

    Silberberg, Gilad; Baruch, Kuti; Navon, Ruth

    2009-08-15

    Gene expression studies using postmortem human brain tissue are a common tool for studying the etiology of psychiatric disorders. Quantitative real-time PCR (qPCR) is an accurate and sensitive technique used for gene expression analysis in which the expression level is quantified by normalization to one or more reference genes. Therefore, accurate data normalization is critical for validating results obtained by qPCR. This study aimed to identify genes that may serve as reference in postmortem dorsolateral-prefrontal cortices (Brodmann's area 46) of schizophrenics, bipolar disorder (BPD) patients, and control subjects. In the exploratory stage of the analysis, samples of four BPD patients, two schizophrenics, and two controls were quantified using the TaqMan Low Density Array endogenous control panel, containing assays for 16 commonly used reference genes. In the next stage, six of these genes (TFRC, RPLP0, ACTB, POLR2a, B2M, and GAPDH) were quantified by qPCR in 12 samples of each clinical group. Expressional stability of the genes was determined by GeNorm and NormFinder. TFRC and RPLP0 were the most stably expressed genes, whereas the commonly used 18S, POLR2a, and GAPDH were the least stable. This report stresses the importance of examining expressional stability of candidate reference genes in the specific sample collection to be analyzed.

  7. Application of Real-Time PCR for Determination of Antiviral Drug Susceptibility of Herpes Simplex Virus

    PubMed Central

    Stránská, Růŏzena; van Loon, Anton M.; Polman, Merjo; Schuurman, Rob

    2002-01-01

    A quantitative real-time PCR (TaqMan) assay was developed for determination of antiviral drug susceptibility of herpes simplex virus (HSV). After short-time culture of the virus, the antiviral drug susceptibility of HSV isolates for acyclovir (ACV) was determined by measuring the reduction of the HSV type 1 (HSV-1) DNA levels in culture supernatants using real-time PCR. The 50% inhibitory concentration was reported as the concentration of antiviral drug that reduced the number of HSV-1 DNA copies by 50%. A total of 15 well-characterized ACV-sensitive or -resistant strains and clinical isolates were used for assay evaluation. The new assay with real-time PCR readout permitted rapid (3 days), objective, and reproducible determination of HSV-1 drug susceptibilities with no need for stringent control of initial multiplicity of infection. Furthermore, the real-time PCR assay results showed good correlation (r = 0.86) with those for the plaque reduction assay. In conclusion, the real-time PCR assay described here is a suitable quantitative method for determination of antiviral susceptibility of HSV-1, amenable for use in the routine diagnostic virology laboratory. PMID:12183251

  8. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae.

    PubMed

    Takahashi, Hajime; Saito, Rumi; Miya, Satoko; Tanaka, Yuichiro; Miyamura, Natsumi; Kuda, Takashi; Kimura, Bon

    2017-04-04

    The family Enterobacteriaceae, members of which are widely distributed in the environment, includes many important human pathogens. In this study, a rapid real-time PCR method targeting rplP, coding for L16 protein, a component of the ribosome large subunit, was developed for enumerating Enterobacteriaceae strains, and its efficiency was evaluated using naturally contaminated food products. The rplP-targeted real-time PCR amplified Enterobacteriaceae species with Ct values of 14.0-22.8, whereas the Ct values for non-Enterobacteriaceae species were >30, indicating the specificity of this method for the Enterobacteriaceae. Using a calibration curve of Ct=-3.025 (log CFU/g)+37.35, which was calculated from individual plots of the cell numbers in different concentrations of 5 Enterobacteriaceae species, the rplP-targeted real-time PCR was applied to 51 food samples. A <1log difference between the real-time PCR and culture methods was obtained in a majority of the food samples (81.8%), with good correlation (r(2)=0.8285). This study demonstrated that the rplP-targeted real-time PCR method could detect and enumerate Enterobacteriaceae species in foods rapidly and accurately, and therefore, it can be used for the microbiological risk analysis of foods.

  9. Protein analysis using real-time PCR instrumentation: incorporation in an integrated, inquiry-based project.

    PubMed

    Southard, Jonathan N

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein structure studies possible with a real-time PCR instrument address core topics in biochemistry and have valuable high-throughput applications in the fields of drug discovery and protein engineering. Protein analysis using real-time PCR instrumentation has been incorporated in an undergraduate laboratory project based on previously described projects. Students express, purify, and characterize a protein. Based on literature research and analysis using bioinformatics tools, they select a specific mutation to investigate. They then attempt to express, purify, and characterize their mutated protein. Thermal denaturation using a real-time PCR instrument is the primary tool used to compare the wild-type and mutated proteins. Alternative means for incorporation of protein analysis by real-time PCR instrumentation into laboratory experiences and additional modes of analysis are also described.

  10. Interlaboratory Validation for a Real-Time PCR Salmonella Detection Method Using the ABI 7500 FAST Real-Time PCR System.

    PubMed

    Cheng, Chorng-Ming; Doran, Tara; Lin, Wen; Chen, Kai-Shun; Williams-Hill, Donna; Pamboukian, Ruiqing

    2015-06-01

    Sixteen FERN (Food Emergency Response Network) member laboratories collaborated in this study to verify extension of the real-time PCR Salmonella detection method originally designed for the single-tube Cepheid SmartCycler II and validated against the Salmonella method of the U. S. Food and Drug Administration Bacteriological Analytical Manual to the Applied Biosystems (ABI) 7500 FAST Real-Time PCR system multiwell plate platform. Four foods were selected for this study: chili powder, soft cheese, fish, and tomatoes; these foods represent products that are commonly analyzed for the presence of Salmonella for regulatory purposes. Each food consisted of six uninoculated control samples, six samples inoculated with low Salmonella levels (target 1 to 5 CFU/25 g), and six samples inoculated with high levels (target 10 to 50 CFU/25 g). All samples were tested for Salmonella using the 24-h quantitative PCR (qPCR) method for detecting Salmonella, which utilizes modified buffered peptone water as the sole enrichment medium and an internal control for the qPCR. Each of these 18 samples was individually analyzed for Salmonella by the collaborating laboratories using both the ABI 7500 FAST system (alternative method) and the SmartCycler II system (reference method). Statistical analysis of the data revealed no significant difference (P ≥ 0.05) between these two qPCR platforms except for the chili powder samples. The differences noted with chili powder (P = 0.0455) were attributed to the enhanced sensitivity of the ABI 7500 FAST system compared with the SmartCycler II system. The detection limit of both qPCR methods was 0.02 to 0.15 CFU/g. These results provide a solid basis for extending the 24-h qPCR Salmonella method to the ABI 7500 FAST system for high-throughput detection of Salmonella in foods.

  11. Performance of Bordetella pertussis IS481 real-time PCR in a vaccine trial setting.

    PubMed

    Gullsby, Karolina; Hallander, Hans O; Bondeson, Kåre

    2007-12-01

    A real-time PCR method targeting the Bordetella pertussis IS481 gene fragment was evaluated in a vaccine trial setting in which real-time PCR results could be validated against culture and serology results. Two commonly used DNA extraction methods, Amplicor Respiratory Preparation kit and the QIAamp DNA Mini Kit, were compared. An approximately 50-fold higher sensitivity was achieved using the Amplicor kit. 89 of 276 aspirates analysed with the IS481 real-time PCR were positive. Interestingly, six of these were culture negative and came from serology-negative patients. Defining true positive cases either as culture-positive or as PCR-positive cases that had been confirmed with a serology-positive result or verified with a newly constructed recA PCR, the sensitivity and specificity of the IS481 real-time PCR were 89% and 98%, respectively. This study confirms the specificity and high diagnostic sensitivity of IS481-based PCR methods for diagnosis of B. pertussis.

  12. Application of PCR and real-time PCR for monitoring cyanobacteria, Microcystis spp. and Cylindrospermopsis raciborskii in Macau freshwater reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Weiying; Lou, Inchio; Ung, Wai Kin; Kong, Yijun; Mok, Kai Meng

    2014-06-01

    Freshwater algal blooms have become a growing concern world-wide. They are caused by a high level of cyanobacteria, predominantly Microcystis spp. and Cylindrospermopsis raciborskii, which can produce microcystin and cylindrospermopsin, respectively. Longtime exposure to these cyanotoxins may affect public health, thus reliable detection, quantification, and enumeration of these harmful algae species has become a priority in water quality management. Traditional manual enumeration of algal bloom cells primarily involves microscopic identification which limited by inaccuracy and time-consumption.With the development of molecular techniques and an increasing number of microbial sequences available in the Genbank database, the use of molecular methods can be used for more rapid, reliable, and accurate detection and quantification. In this study, multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) techniques were developed and applied for monitoring cyanobacteria Microcystis spp. and C. raciborskii in the Macau Storage Reservoir (MSR). The results showed that the techniques were successful for identifying and quantifying the species in pure cultures and mixed cultures, and proved to be a potential application for water sampling in MSR. When the target species were above 1 million cells/L, similar cell numbers estimated by microscopic enumeration and qPCR were obtained. Further quantification in water samples indicated that the ratio of the estimated number of cell by microscopy and qPCR was 0.4-12.9 for cyanobacteria and 0.2-3.9 for C. raciborskii. However, Microcystis spp. was not observed by manual enumeration, while it was detected at low levels by qPCR, suggesting that qPCR is more sensitive and accurate. Thus the molecular approaches provide an additional reliable monitoring option to traditional microscopic enumeration for the ecosystems monitoring program.

  13. Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Kaushik, Rajni; Balasubramanian, Rajasekhar

    2012-01-01

    Bacterial pathogens in airborne particulate matter (PM) and in rainwater (RW) were detected using a robust and sensitive Real-Time PCR method. Both RW and PM were collected simultaneously in the tropical atmosphere of Singapore, which were then subjected to analysis for the presence of selected bacterial pathogens and potential pathogen of health concern ( Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila). These pathogens were found to be prevalent in both PM and RW samples with E. coli being the most prevalent potential pathogen in both types of samples. The temporal distribution of these pathogens in PM and RW was found to be similar to each other. Using the proposed microbiological technique, the atmospheric deposition (dry and wet deposition) of bacterial pathogens to lakes and reservoirs can be studied in view of growing concerns about the outbreak of waterborne diseases.

  14. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    SciTech Connect

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  15. Miniaturized Real-Time PCR on a Q3 System for Rapid KRAS Genotyping.

    PubMed

    Guarnaccia, Maria; Iemmolo, Rosario; Petralia, Salvatore; Conoci, Sabrina; Cavallaro, Sebastiano

    2017-04-11

    Colorectal cancer (CRC) is an aggressive human malignancy with a complex genomic landscape harboring KRAS mutations. In 40%-60% of patients with CRC, constantly active KRAS proteins affect the prognosis, surgical strategy, and clinical benefit from therapy with anti-epidermal growth factor receptor (EGFR) agents. For this reason, there is a greater demand for minimally-invasive diagnostic devices to characterize the genetic pattern and prevent the acquired mechanism to drug resistance. The rapid developments in cutting-edge diagnostic techniques are expected to play a growing role in medicine and represent an attractive promise to identify potential responders to personalized medicine. Here we propose a new method to simultaneously detect the main KRAS mutations on the portable real-time PCR Q3 platform. This platform is based on hybrid silicon-plastic technology implemented in a miniaturized chip able to achieve a sample-in answer-out rapid analysis, allowing a new approach to genetic counseling and testing.

  16. [Detection and subgrouping of respiratory syncytial virus RNA by real-time RT-PCR].

    PubMed

    Yokoi, Hajime; Tanaka, Toshimitsu; Mizumura, Ayano; Kitahashi, Tomoko

    2012-09-01

    The TaqMan-based quantitative real-time RT-PCR assay we developed uses specific probes to identify respiratory syncytial virus (RSV) and to distinguish RSV subgroups A (RSV-A) and B (RSV-B). We selected conserved regions of the F gene as assay targets and designed new primers and TaqMan MGB probes to detect RSV-A and B. RSV-A and B control plasmids confirmed real-time reverse transcription polymerase chain reaction (RT-PCR) reactivity whose efficiency was 2.5 x 10(1) to 2.5 x 10(7) copies/tube. The assay detection limit was 10 to 10(2) times higher than that of the conventional RT-PCR assay and was equal to the nested PCR assay. No cross-reactions occurred against other respiratory viruses, including influenza virus, metapneumovirus, measles virus, coxsackievirus, enterovirus, echovirus, mumps virus, parainfluenza virus, and rhinovirus. Of 154 clinical specimens derived from subjects with acute respiratory infection and tested by using both real-time RT-PCR and nested PCR, 40 were RSV-positive in both assays. Of these, 25 were identified as RSV-A and 15 as RSV-B by both assays. There was 100% concordance in RSV subgroup identification between real-time RT-PCR and nested PCR assays. These results indicate that our real-time RT-PCR assay can be used for rapid detection, quantitative analysis and subgrouping of RSV-A and RSV-B.

  17. Real-time windowing in imaging radar using FPGA technique

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Escamilla-Hernandez, Enrique

    2005-02-01

    The imaging radar uses the high frequency electromagnetic waves reflected from different objects for estimating of its parameters. Pulse compression is a standard signal processing technique used to minimize the peak transmission power and to maximize SNR, and to get a better resolution. Usually the pulse compression can be achieved using a matched filter. The level of the side-lobes in the imaging radar can be reduced using the special weighting function processing. There are very known different weighting functions: Hamming, Hanning, Blackman, Chebyshev, Blackman-Harris, Kaiser-Bessel, etc., widely used in the signal processing applications. Field Programmable Gate Arrays (FPGAs) offers great benefits like instantaneous implementation, dynamic reconfiguration, design, and field programmability. This reconfiguration makes FPGAs a better solution over custom-made integrated circuits. This work aims at demonstrating a reasonably flexible implementation of FM-linear signal and pulse compression using Matlab, Simulink, and System Generator. Employing FPGA and mentioned software we have proposed the pulse compression design on FPGA using classical and novel windows technique to reduce the side-lobes level. This permits increasing the detection ability of the small or nearly placed targets in imaging radar. The advantage of FPGA that can do parallelism in real time processing permits to realize the proposed algorithms. The paper also presents the experimental results of proposed windowing procedure in the marine radar with such the parameters: signal is linear FM (Chirp); frequency deviation DF is 9.375MHz; the pulse width T is 3.2μs taps number in the matched filter is 800 taps; sampling frequency 253.125*106 MHz. It has been realized the reducing of side-lobes levels in real time permitting better resolution of the small targets.

  18. Development of a high-throughput real time PCR based on a hot-start alternative for Pfu mediated by quantum dots.

    PubMed

    Sang, Fuming; Yang, Yang; Yuan, Lin; Ren, Jicun; Zhang, Zhizhou

    2015-10-14

    Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour preincubation at 50 °C before real time PCR. Moreover, the results obtained by QD-based HS PCR were comparable to a commercial Taq antibody DNA polymerase. However, no obvious HS effect of QDs was found in real time PCR using Taq DNA polymerase. The findings of this study demonstrated that a cost-effective high-throughput real time PCR based on QD triggered HS PCR could be established with high consistency, sensitivity and accuracy.

  19. Detection of Food Allergens by Taqman Real-Time PCR Methodology.

    PubMed

    García, Aina; Madrid, Raquel; García, Teresa; Martín, Rosario; González, Isabel

    2017-01-01

    Real-time PCR (polymerase chain reaction) has shown to be a very effective technology for the detection of food allergens. The protocol described herein consists on a real-time PCR assay targeting the plant ITS (Internal Transcribed Spacer) region, using species-specific primers and hydrolysis probes (Taqman) dual labeled with a reporter fluorophore at the 5' end (6-carboxyfluorescein, FAM) and a quencher fluorophore at the 3' end (Blackberry, BBQ). The species-specific real-time PCR systems (primers/probe) described in this work allowed the detection of different nuts (peanut, hazelnut, pistachio, almond, cashew, macadamia, walnut and pecan), common allergens present in commercial food products, with a detection limit of 0.1 mg/kg.

  20. Detection of Zika virus by SYBR green one-step real-time RT-PCR.

    PubMed

    Xu, Ming-Yue; Liu, Si-Qing; Deng, Cheng-Lin; Zhang, Qiu-Yan; Zhang, Bo

    2016-10-01

    The ongoing Zika virus (ZIKV) outbreak has rapidly spread to new areas of Americas, which were the first transmissions outside its traditional endemic areas in Africa and Asia. Due to the link with newborn defects and neurological disorder, numerous infected cases throughout the world and various mosquito vectors, the virus has been considered to be an international public health emergency. In the present study, we developed a SYBR Green based one-step real-time RT-PCR assay for rapid detection of ZIKV. Our results revealed that the real-time assay is highly specific and sensitive in detection of ZIKV in cell samples. Importantly, the replication of ZIKV at different time points in infected cells could be rapidly monitored by the real-time RT-PCR assay. Specifically, the real-time RT-PCR showed acceptable performance in measurement of infectious ZIKV RNA. This assay could detect ZIKV at a titer as low as 1PFU/mL. The real-time RT-PCR assay could be a useful tool for further virology surveillance and diagnosis of ZIKV.

  1. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR.

    PubMed

    Furet, Jean-Pierre; Firmesse, Olivier; Gourmelon, Michèle; Bridonneau, Chantal; Tap, Julien; Mondot, Stanislas; Doré, Joël; Corthier, Gérard

    2009-06-01

    Pollution of the environment by human and animal faecal pollution affects the safety of shellfish, drinking water and recreational beaches. To pinpoint the origin of contaminations, it is essential to define the differences between human microbiota and that of farm animals. A strategy based on real-time quantitative PCR (qPCR) assays was therefore developed and applied to compare the composition of intestinal microbiota of these two groups. Primers were designed to quantify the 16S rRNA gene from dominant and subdominant bacterial groups. TaqMan probes were defined for the qPCR technique used for dominant microbiota. Human faecal microbiota was compared with that of farm animals using faecal samples collected from rabbits, goats, horses, pigs, sheep and cows. Three dominant bacterial groups (Bacteroides/Prevotella, Clostridium coccoides and Bifidobacterium) of the human microbiota showed differential population levels in animal species. The Clostridium leptum group showed the lowest differences among human and farm animal species. Human subdominant bacterial groups were highly variable in animal species. Partial least squares regression indicated that the human microbiota could be distinguished from all farm animals studied. This culture-independent comparative assessment of the faecal microbiota between humans and farm animals will prove useful in identifying biomarkers of human and animal faecal contaminations that can be applied to microbial source tracking methods.

  2. [Development of uncompetitive exogenous internal amplification control for real-time PCR based on UFA method].

    PubMed

    Ivanov, M K; Bragin, A G; Prasolova, M A; Vedernikov, V E; Dymshits, G M

    2009-01-01

    An uncompetitive exogenous internal amplification control method (EIAC) was developed on the basis of short synthetic DNA segment, whose amplification can be detected in real time by UFA spectroscopy principle. The EIAC was shown to be useful as internal control in diagnostic test systems based on DNA or RNA detection by multiplex real-time PCR. It can be applied to assess the quality of extracted DNA or RNA, and also to detect and study the factors causing PCR inhibition and earlier plateau effect.

  3. Development of real-time PCR assay for differential detection of Bordetella bronchiseptica and Bordetella parapertussis.

    PubMed

    Tizolova, Anette; Brun, Delphine; Guiso, Nicole; Guillot, Sophie

    2014-04-01

    Bordetella parapertussis is a causative agent of whooping cough in humans, and B. bronchiseptica is causing wide variety of respiratory infections in mammals, including humans. Specific diagnostic tests are not currently available. Our first objective was to develop a real-time PCR test for the specific detection of B. bronchiseptica based on the previously described end-point PCR, targeting an intergenomic sequence of the fla gene locus, but it has not been reached. However, there is cross-reactivity between B. parapertussis and B. bronchiseptica. Therefore, the targeted region of several clinical isolates of both species was sequenced, and alignment of the sequences allowed the development of a 2-step real-time PCR assay. The first PCR assay detected the DNA of all clinical isolates of both B. bronchiseptica and B. parapertussis tested. The second PCR assay detected only the DNA of B. parapertussis clinical isolates, thereby allowing discrimination between B. parapertussis and B. bronchiseptica.

  4. Molecular diagnosis of African Swine Fever by a new real-time PCR using universal probe library.

    PubMed

    Fernández-Pinero, J; Gallardo, C; Elizalde, M; Robles, A; Gómez, C; Bishop, R; Heath, L; Couacy-Hymann, E; Fasina, F O; Pelayo, V; Soler, A; Arias, M

    2013-02-01

    A highly sensitive and specific real-time PCR method was developed for the reliable and rapid detection of African swine fever virus (ASFV). The method uses a commercial Universal Probe Library (UPL) probe combined with a specifically designed primer set to amplify an ASFV DNA fragment within the VP72 coding genome region. The detection range of the optimized UPL PCR technique was confirmed by analysis of a large panel (n = 46) of ASFV isolates, belonging to 19 of the 22 viral p72 genotypes described. No amplification signal was observed when closely clinically related viruses, such as classical swine fever, or other porcine pathogens were tested by this assay. The detection limit of the UPL PCR method was established below 18 DNA copies. Validation experiments using an extensive collection of field porcine and tick samples (n = 260), coming from Eastern and Western African regions affected by ASF, demonstrated that the UPL PCR technique was able to detect over 10% more positive samples than the real-time TaqMan PCR test recommended in the OIE manual, confirming its superior diagnostic sensitivity. Clinical material collected during experimental infections with different ASFV p72 genotypes was useful for assuring both the capacity of the UPL PCR for an early viral DNA detection and the competence of the technique to be applied in any ASF diagnostic target sample. The reliability and robustness of the UPL PCR was finally verified with a panel of ASFV-infected clinical samples which was repeatedly tested at different times. Additionally, an internal control PCR assay was also developed and standardized using UPL probes within the endogenous β-actin gene. Finally, the complete study offers a new validated real-time PCR technique, by means of a standardized commercial probe, providing a simple, rapid and affordable test, which is ready for application in the routine diagnosis of ASF.

  5. Two quantitative real-time PCR assays for the detection of penaeid shrimp and blue crab, crustacean shellfish allergens.

    PubMed

    Eischeid, Anne C; Kim, Bang-hyun; Kasko, Sasha M

    2013-06-19

    Food allergen detection methods must be able to specifically detect minute quantities of an allergenic food in a complex food matrix. One technique that can be used is real-time PCR. For the work described here, real-time PCR assays were developed to detect penaeid shrimp and blue crab, crustacean shellfish allergens. The method was tested using shrimp meat and crab meat spiked into several types of foods, including canned soups, deli foods, meat, seafood, and prepared seafood products. Foods were spiked with either shrimp or crab at levels ranging from 0.1 to 10⁶ parts per million (ppm) and analyzed either raw or cooked by a variety of methods. Real-time PCR data were used to generate linear standard curves, and assays were evaluated with respect to linear range and reaction efficiency. Results indicate that both assays performed well in a variety of food types. High reaction efficiencies were achieved across a linear range of 6-8 orders of magnitude. Limits of detection were generally between 0.1 and 1 ppm. Cooking methods used to simulate thermal processing of foods had little effect on assay performance. This work demonstrates that real-time PCR can be a valuable tool in the detection of crustacean shellfish.

  6. Direct sample preparation methods for the detection of Plum pox virus by real-time RT-PCR.

    PubMed

    Capote, Nieves; Bertolini, Edson; Olmos, Antonio; Vidal, Eduardo; Martínez, Maria Carmen; Cambra, Mariano

    2009-03-01

    Direct systems to process plant materials allowed high-throughput testing of Plum pox virus (PPV) by real-time reverse transcription (RT)-PCR without nucleic acids purification. Crude plant extracts were diluted in buffer or spotted on membranes to be used as templates. Alternatively, immobilized PPV targets were amplified from fresh sections of plant tissues printed or squashed onto the same supports, without extract preparation. Spot real-time RT-PCR was validated as a PPV diagnostic method in samples collected during the dormancy period and showed high sensitivity (93.6%), specificity (98.0%), and post-test probability (97.9%) towards sharka disease. In an analysis of 2919 Prunus samples by spot real-time RT-PCR and DASI-ELISA 90.8% of the results coincided, demonstrating high agreement (k = 0.77 +/- 0.01) between the two techniques. These results validate the use of immobilized PPV targets and spot real-time RT-PCR as screening method for largescale analyses.

  7. Easy-to-use strategy for reference gene selection in quantitative real-time PCR experiments.

    PubMed

    Klenke, Stefanie; Renckhoff, Kristina; Engler, Andrea; Peters, Jürgen; Frey, Ulrich H

    2016-12-01

    Real-time PCR is an indispensable technique for mRNA expression analysis but conclusions depend on appropriate reference gene selection. However, while reference gene selection has been a topic of publications, this issue is often disregarded when measuring target mRNA expression. Therefore, we (1) evaluated the frequency of appropriate reference gene selection, (2) suggest an easy-to-use tool for least variability reference gene selection, (3) demonstrate application of this tool, and (4) show effects on target gene expression profiles. All 2015 published articles in Naunyn-Schmiedeberg's Archives of Pharmacology were screened for the use of quantitative real-time PCR analysis and selection of reference genes. Target gene expression (Vegfa, Grk2, Sirt4, and Timp3) in H9c2 cells was analyzed following various interventions (hypoxia, hyperglycemia, and/or isoflurane exposure with and without subsequent hypoxia) in relation to putative reference genes (Actb, Gapdh, B2m, Sdha, and Rplp1) using the least variability method vs. an arbitrarily selected but established reference gene. In the vast majority (18 of 21) of papers, no information was provided regarding selection of an appropriate reference gene. In only 1 of 21 papers, a method of appropriate reference gene selection was described and in 2 papers reference gene selection remains unclear. The method of reference gene selection had major impact on interpretation of target gene expression. With hypoxia, for instance, the least variability gene was Rplp1 and target gene expression (Vefga) heavily showed a 2-fold up-regulation (p = 0.022) but no change (p = 0.3) when arbitrarily using Gapdh. Frequency of appropriate reference gene selection in this journal is low, and we propose our strategy for reference gene selection as an easy tool for proper target gene expression.

  8. Sex ratio determination in bovine semen: a new approach by quantitative real time PCR.

    PubMed

    Parati, K; Bongioni, G; Aleandri, R; Galli, A

    2006-12-01

    Sex preselection of livestock offspring in cattle represents, nowadays, a big potential for genetic improvement and market demand satisfaction. Sperm sorting by flow cytometer provides a powerful tool for artificial insemination and production of predefined sexed embryos but, an accurate verification of the yield of sperm separation remains essential for a field application of this technique or for improvement and validation of other related semen sexing technologies. In this work a new method for the determination of the proportion of X- and Y-bearing spermatozoa in bovine semen sample was developed by real time PCR. Two sets of primers and internal TaqMan probes were designed on specific X- and Y-chromosome genes. To allow a direct quantification, a standard reference was established using two plasmid cDNA clones (ratio 1:1) for the specific gene targets. The method was validated by a series of accuracy, repeatability and reproducibility assays and by testing two sets of sorted and unsorted semen samples. A high degree of accuracy (98.9%), repeatability (CV=2.58%) and reproducibility (CV=2.57%) was shown. The results of X- and Y-sorted semen samples analysed by real time PCR and by flow cytometric reanalysis showed no significant difference (P>0.05). The evaluation of X-chromosome bearing sperms content in unsorted samples showed an average of 51.11+/-0.56% for ejaculates and 50.17+/-0.58% for the commercial semen. This new method for quantification of the sexual chromosome content in spermatozoa demonstrated to be rapid and reliable, providing a valid support to the sperm sexing technologies.

  9. Detection of Leishmania infantum in 4 different dog samples by real-time PCR and ITS-1 nested PCR.

    PubMed

    Carvalho Ferreira, Aline Leandra; Carregal, Virgínia Mendes; de Almeida Ferreira, Sidney; Leite, Rodrigo Souza; de Andrade, Antero Silva Ribeiro

    2014-04-01

    The canine visceral leishmaniasis (CVL) diagnosis is an important step of visceral leishmaniasis control program in Brazil, which involves the elimination of infected dogs, the main animal reservoir host of the disease. The aim of the present study was to evaluate a sensitive real-time PCR method for Leishmania infantum detection in 4 different clinical samples of dogs, including the noninvasive conjunctival swab (CS) sample. The results of real-time PCR were compared with those obtained using internal transcribed spacer 1 nested PCR. Animals were divided into 2 groups based on the absence or presence of CVL clinical sings. The CS associated with real-time PCR, using primers addressed to kinetoplast DNA minicircles, was able to detect L. infantum infection in 96.7% of dogs without clinical signs and in 100% of the symptomatic animals, demonstrating the importance of these procedures for diagnosing CVL.

  10. Monitoring of Saccharomyces and Hanseniaspora populations during alcoholic fermentation by real-time quantitative PCR.

    PubMed

    Hierro, Núria; Esteve-Zarzoso, Braulio; Mas, Albert; Guillamón, Jose M

    2007-12-01

    Real-time, or quantitative, PCR (QPCR) was developed for the rapid quantification of two of the most important yeast groups in alcoholic fermentation (Saccharomyces spp. and Hanseniaspora spp.). Specific primers were designed from the region spanning the internal transcribed spacer 2 (ITS2) and the 5.8S rRNA gene. To confirm the specificity of these primers, they were tested with different yeast species, acetic acid bacteria and lactic acid bacteria. The designed primers only amplified for the intended group of species and none of the PCR assays was positive for any other wine microorganisms. This technique was performed on reference yeast strains from pure cultures and validated with both artificially contaminated wines and real wine fermentation samples. To determine the effectiveness of the technique, the QPCR results were compared with those obtained by plating. The design of new primers for other important wine yeast species will enable to monitor yeast diversity during industrial wine fermentation and to detect the main spoilage yeasts in wine.

  11. Detection of chicken and turkey meat in meat mixtures by using real-time PCR assays.

    PubMed

    Kesmen, Zulal; Yetiman, Ahmet E; Sahin, Fikrettin; Yetim, Hasan

    2012-02-01

    In this study, TaqMan-based real-time Polymerase Chain Reaction (PCR) techniques were developed for the detection of chicken and turkey meat in raw and heat-treated meat mixtures. Primers and TaqMan probe sets were designed to amplify 86 bp and 136 bp fragments for the chicken and turkey species, respectively, on the mitochondrial NADH dehydrogenase subunit 2 gene. In the results, it was possible to detect each species at the level of 0.1 pg template DNA with the TaqMan probe technique without any cross-reactivity with nontarget species (bovine, ovine, donkey, pork, and horse) while the detection level was 1 pg template DNA using conventional PCR. The TaqMan probe assays used in this study allowed the detection of as little as 0.001% level of both species in the experimental meat mixtures, prepared by mixing chicken and turkey meat with beef at different levels (0.001% to 10%). In conclusion, TaqMan probe assays developed in this research are promising tools in the specific identification and sensitive quantification of meat species even in the case of heat-treated meat products, and suitable for a rapid, automated, and routine analysis.

  12. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR

    PubMed Central

    Abt, Melissa A.; Grek, Christina L.; Ghatnekar, Gautam S.; Yeh, Elizabeth S.

    2016-01-01

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death 1. Common sites of metastatic spread include lung, lymph node, brain, and bone 2. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level 3–6. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level 7, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue. PMID:26862835

  13. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR.

    PubMed

    Abt, Melissa A; Grek, Christina L; Ghatnekar, Gautam S; Yeh, Elizabeth S

    2016-01-29

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death. Common sites of metastatic spread include lung, lymph node, brain, and bone. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue.

  14. Real-time vehicle noise cancellation techniques for gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, Antonio L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2012-06-01

    Acoustical sniper positioning systems rely on the detection and direction-of-arrival (DOA) estimation of the shockwave and the muzzle blast in order to provide an estimate of a potential snipers location. Field tests have shown that detecting and estimating the DOA of the muzzle blast is a rather difficult task in the presence of background noise sources, e.g., vehicle noise, especially in long range detection and absorbing terrains. In our previous work presented in the 2011 edition of this conference we highlight the importance of improving the SNR of the gunshot signals prior to the detection and recognition stages, aiming at lowering the false alarm and miss-detection rates and, thereby, increasing the reliability of the system. This paper reports on real-time noise cancellation techniques, like Spectral Subtraction and Adaptive Filtering, applied to gunshot signals. Our model assumes the background noise as being short-time stationary and uncorrelated to the impulsive gunshot signals. In practice, relatively long periods without signal occur and can be used to estimate the noise spectrum and its first and second order statistics as required in the spectral subtraction and adaptive filtering techniques, respectively. The results presented in this work are supported with extensive simulations based on real data.

  15. Real-Time SCADA Cyber Protection Using Compression Techniques

    SciTech Connect

    Lyle G. Roybal; Gordon H Rueff

    2013-11-01

    The Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) has a critical mission to secure the energy infrastructure from cyber attack. Through DOE-OE’s Cybersecurity for Energy Delivery Systems (CEDS) program, the Idaho National Laboratory (INL) has developed a method to detect malicious traffic on Supervisory, Control, and Data Acquisition (SCADA) network using a data compression technique. SCADA network traffic is often repetitive with only minor differences between packets. Research performed at the INL showed that SCADA network traffic has traits desirable for using compression analysis to identify abnormal network traffic. An open source implementation of a Lempel-Ziv-Welch (LZW) lossless data compression algorithm was used to compress and analyze surrogate SCADA traffic. Infected SCADA traffic was found to have statistically significant differences in compression when compared against normal SCADA traffic at the packet level. The initial analyses and results are clearly able to identify malicious network traffic from normal traffic at the packet level with a very high confidence level across multiple ports and traffic streams. Statistical differentiation between infected and normal traffic level was possible using a modified data compression technique at the 99% probability level for all data analyzed. However, the conditions tested were rather limited in scope and need to be expanded into more realistic simulations of hacking events using techniques and approaches that are better representative of a real-world attack on a SCADA system. Nonetheless, the use of compression techniques to identify malicious traffic on SCADA networks in real time appears to have significant merit for infrastructure protection.

  16. Quantification of DNA fragmentation in processed foods using real-time PCR.

    PubMed

    Mano, Junichi; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Fukudome, Shin-Ichi; Hayashida, Takuya; Kawakami, Hiroyuki; Kurimoto, Youichi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Takabatake, Reona; Kitta, Kazumi

    2017-07-01

    DNA analysis of processed foods is performed widely to detect various targets, such as genetically modified organisms (GMOs). Food processing often causes DNA fragmentation, which consequently affects the results of PCR analysis. In order to assess the effects of DNA fragmentation on the reliability of PCR analysis, we investigated a novel methodology to quantify the degree of DNA fragmentation. We designed four real-time PCR assays that amplified 18S ribosomal RNA gene sequences common to various plants at lengths of approximately 100, 200, 400, and 800 base pairs (bp). Then, we created an indicator value, "DNA fragmentation index (DFI)", which is calculated from the Cq values derived from the real-time PCR assays. Finally, we demonstrated the efficacy of this method for the quality control of GMO detection in processed foods by evaluating the relationship between the DFI and the limit of detection.

  17. Whole blood Nested PCR and Real-time PCR amplification of Talaromyces marneffei specific DNA for diagnosis.

    PubMed

    Lu, Sha; Li, Xiqing; Calderone, Richard; Zhang, Jing; Ma, Jianchi; Cai, Wenying; Xi, Liyan

    2016-02-01

    Talaromyces marneffei is a dimorphic pathogenic fungus, which is a life-threatening invasive mycosis in the immunocompromised host. Prompt diagnosis of T. marneffei infection remains difficult although there has been progress in attempts to expedite the diagnosis of this infection. We previously demonstrated the value of nested polymerase chain reaction (PCR) to detect T. marneffei in paraffin embedded tissue samples with high sensitivity and specificity. In this study, this assay was used to detect the DNA of T. marneffei in whole blood samples. Real-time PCR assay was also evaluated to identify T. marneffei in the same samples. Twenty out of 30 whole blood samples (67%) collected from 23 patients were found positive by using the nested PCR assay, while 23/30 (77%) samples were found positive by using the real-time PCR assay. In order to express accurately the fungal loads, we used a normalized linearized plasmid as an internal control for real-time PCR. The assay results were correlated as the initial quantity (copies/μl) with fungal burden. These data indicate that combination of nested PCR and real-time PCR assay provides an attractive alternative for identification of T. marneffei DNA in whole blood samples of HIV-infected patients.

  18. Specific detection of viable Legionella cells by combined use of photoactivated ethidium monoazide and PCR/real-time PCR.

    PubMed

    Chang, Bin; Sugiyama, Kanji; Taguri, Toshitsugu; Amemura-Maekawa, Junko; Kura, Fumiaki; Watanabe, Haruo

    2009-01-01

    Legionella organisms are prevalent in manmade water systems and cause legionellosis in humans. A rapid detection method for viable Legionella cells combining ethidium monoazide (EMA) and PCR/real-time PCR was assessed. EMA could specifically intercalate and cleave the genomic DNA of heat- and chlorine-treated dead Legionella cells. The EMA-PCR assay clearly showed an amplified fragment specific for Legionella DNA from viable cells, but it could not do so for DNA from dead cells. The number of EMA-treated dead Legionella cells estimated by real-time PCR exhibited a 10(4)- to 10(5)-fold decrease compared to the number of dead Legionella cells without EMA treatment. Conversely, no significant difference in the numbers of EMA-treated and untreated viable Legionella cells was detected by the real-time PCR assay. The combined assay was also confirmed to be useful for specific detection of culturable Legionella cells from water samples obtained from spas. Therefore, the combined use of EMA and PCR/real-time PCR detects viable Legionella cells rapidly and specifically and may be useful in environmental surveillance for Legionella.

  19. Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Christen, Richard; Dequiedt, Samuel; Mougel, Christophe; Lelièvre, Mélanie; Jolivet, Claudy; Shahbazkia, Hamid Reza; Guillou, Laure; Arrouays, Dominique; Ranjard, Lionel

    2011-01-01

    Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils. PMID:21931659

  20. Development of a real-time PCR for Bartonella spp. detection, a current emerging microorganism.

    PubMed

    Parra, Elena; Segura, Ferran; Tijero, Jessica; Pons, Imma; Nogueras, Maria-Mercedes

    2017-04-01

    A real-time PCR assay using SYBR Green was optimized to detect those Bartonella that are most frequently described as pathogens. The assay was genus-specific. Sequencing allowed to distinguish species. Assay sensitivity was determined using 10-fold serial dilutions of genomic DNA. Dynamic range was 100 ng-100 fg and sensitivity was 50 copies/reaction.

  1. European validation of Real-Time PCR method for detection of Salmonella spp. in pork meat.

    PubMed

    Delibato, Elisabetta; Rodriguez-Lazaro, David; Gianfranceschi, Monica; De Cesare, Alessandra; Comin, Damiano; Gattuso, Antonietta; Hernandez, Marta; Sonnessa, Michele; Pasquali, Frédérique; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Prukner-Radovcic, Estella; Horvatek Tomic, Danijela; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John E; Chemaly, Marianne; Le Gall, Francoise; González-García, Patricia; Lettini, Antonia Anna; Lukac, Maja; Quesne, Segolénè; Zampieron, Claudia; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Proroga, Yolande T R; Capuano, Federico; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Salmonella spp. requires more than five days for final confirmation, and consequently there is a need for an alternative methodology for detection of this pathogen particularly in those food categories with a short shelf-life. This study presents an international (at European level) ISO 16140-based validation study of a non-proprietary Real-Time PCR-based method that can generate final results the day following sample analysis. It is based on an ISO compatible enrichment coupled to an easy and inexpensive DNA extraction and a consolidated Real-Time PCR assay. Thirteen laboratories from seven European Countries participated to this trial, and pork meat was selected as food model. The limit of detection observed was down to 10 CFU per 25 g of sample, showing excellent concordance and accordance values between samples and laboratories (100%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (100%) when the results obtained for the Real-Time PCR-based methods were compared to those of the ISO 6579:2002 standard method. The results of this international trial demonstrate that the evaluated Real-Time PCR-based method represents an excellent alternative to the ISO standard. In fact, it shows an equal and solid performance as well as it reduces dramatically the extent of the analytical process, and can be easily implemented routinely by the Competent Authorities and Food Industry laboratories.

  2. Application of real-time PCR to postharvest physiology – DNA isolation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Real-time PCR technology has been widely used in the postharvest plant physiology research. One of the difficulties to isolate DNA from plant martial and pathogen cells is the presence of rigid polysaccharide cell walls and capsules, which physically protect DNA from cell lysis. Many materials requi...

  3. Rapid detection of Salmonella in bovine lymph nodes using a commercial real-time PCR system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid Salmonella detection is needed to help prevent the distribution of contaminated food products. Using traditional culture methods, Salmonella detection can take up to 3-5 days. Using an improved protocol and a commercial real-time PCR system, we have shortened the detection time to under 24 h...

  4. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    PubMed

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples.

  5. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    DTIC Science & Technology

    2004-12-01

    33672 Bacillus megaterium ................................................................ NA...Assay for a Unique Chromosomal Sequence of Bacillus anthracis Elizabeth Bode,1 William Hurtle,2† and David Norwood1* United States Army Medical...modification 4 June 2004/Accepted 9 August 2004 Real-time PCR has become an important method for the rapid identification of Bacillus anthracis since the

  6. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET) PCR TO DETECT ARCOBACTER SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using the Fluorescence Resonance Energy Transfer technology...

  7. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER PCR TO DETECT ARCOBACTER SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using Fluorescence Resonance Energy Transfer technology. D...

  8. Identifying Haemophilus haemolyticus and Haemophilus influenzae by SYBR Green real-time PCR.

    PubMed

    Latham, Roger; Zhang, Bowen; Tristram, Stephen

    2015-05-01

    SYBR Green real time PCR assays for protein D (hpd), fuculose kinase (fucK) and [Cu, Zn]-superoxide dismutase (sodC) were designed for use in an algorithm for the identification of Haemophilus influenzae and H. haemolyticus. When tested on 127 H. influenzae and 60 H. haemolyticus all isolates were identified correctly.

  9. Detection of shrimp-derived components in food by real-time fluorescent PCR.

    PubMed

    Cao, Jijuan; Yu, Bing; Ma, Lidan; Zheng, Qiuyue; Zhao, Xin; Xu, Junyi

    2011-10-01

    Crustaceans such as shrimp and crabs and their products are important allergens in food, and allergic reactions due to the consumption of shrimp and crabs are frequently reported. However, the chemical properties of shrimp-derived allergens, except for Pen a I, are still unclear. Therefore, it is important to establish a more sensitive and specific method for detecting the composition of foods containing shrimp. In the present study, we developed a real-time fluorescent PCR to identify the specific shrimp-derived components in food. The primers and TaqMan probes for real-time fluorescent PCR were designed based on 16S rRNA genes through comparing a large number of nucleic acid sequences from different species of shrimp that have been published by the National Center for Biotechnology Information. In total, 56 kinds of samples, including different kinds of shrimp, crab, fish, shellfish, and octopus, were subjected to detection by real-time PCR. The results indicated that real-time fluorescent PCR could successfully identify the shrimp-derived components. In order to explore the effect of food processing on detection sensitivity, fish powder containing shrimp powder was treated by heating at 133°C for 30 min. The limit of detection of shrimp-derived components in fish powder was 0.05% (wt/wt).

  10. Quantification of viable Brochothrix thermosphacta in cooked shrimp and salmon by real-time PCR.

    PubMed

    Mamlouk, Kelthoum; Macé, Sabrina; Guilbaud, Morgan; Jaffrès, Emmanuel; Ferchichi, Mounir; Prévost, Hervé; Pilet, Marie-France; Dousset, Xavier

    2012-05-01

    Brochothrix thermosphacta, a Gram-positive bacterium, is considered as the predominant spoilage microbiota of modified atmosphere packing (MAP) shrimp and fish. Traditional methods currently used to detect B. thermosphacta in foods are time-consuming and labour-intensive. The aim of this study was to develop a real-time PCR quantification method combined with a propidium monoazide (PMA) sample treatment step to monitor the population of B. thermosphacta in cooked shrimp and salmon. The specificity of the two primers MO405 and MO404 used to amplify a 70 bp fragment of the 16S rRNA gene was demonstrated by using purified DNA from 30 strains, among 21 bacterial species including 22 reference strains. Using these primers for real-time PCR and in pure culture, a good correlation was obtained between real-time PCR and the conventional plating method. Quantification was linear over 7-log units using artificially inoculated samples. The method performed successfully when tested on naturally contaminated cooked shrimp and fresh salmon, with a minimum threshold of 1.9×10² CFU/g for accurate quantification of B. thermosphacta. The correlation between the B. thermosphacta counts obtained by real-time PCR and plate counts on naturally contaminated shrimp and salmon was high (R²=0.895). Thus, this study presents a rapid tool for producing reliable quantitative data on B. thermosphacta in cooked shrimp and fresh salmon.

  11. Rapid species identification of cooked poisonous mushrooms by using real-time PCR.

    PubMed

    Maeta, Kazuhiko; Ochi, Tomoya; Tokimoto, Keisuke; Shimomura, Norihiro; Maekawa, Nitaro; Kawaguchi, Nobuhisa; Nakaya, Makoto; Kitamoto, Yutaka; Aimi, Tadanori

    2008-05-01

    Species-specific identification of the major cooked and fresh poisonous mushrooms in Japan was performed using a real-time PCR system. Specific fluorescence signals were detected, and no nonspecific signals were detected. Therefore, we succeeded in developing a species-specific test for the identification of poisonous mushrooms within 1.5 h.

  12. Quantitative detection of residual porcine host cell DNA by real-time PCR.

    PubMed

    Chang, Jen-Ting; Chen, Yu-Chen; Chou, Yu-Chi; Wang, Shih-Rong

    2014-03-01

    All biological products are derived from complex living systems and are often mixed with large numbers of impurities. For reasons of safety, residual host-cell DNA must be eliminated during processing. To assay host-cell DNA content in biopharmaceutical products derived from porcine sources, this study applies the quantitative real-time polymerase chain reaction (Q-PCR) method. The optimized assay in this study is based on the pol region of the porcine endogenous retrovirus (PERV). Assay validation results demonstrate that the proposed assay has appropriate accuracy, preciseness, reproducibility, and sensitivity. Primer and probe specificity are evaluated in real-time Q-PCR reactions using genomic DNA from rabbit, mouse, cat, hamster, monkey, human cell, yeast, and Escherichia coli as templates. The sensitivity of real-time Q-PCR is determined using genomic DNA from the porcine kidney cell line. The reliable detection range is within 0.5-10(5) pg/reaction. The limit of quantitation is 500 fg. The sensitivity of the assay meets the authority criterion. Moreover, the assay is applied to determine the level of host-cell DNA in recombinant human coagulation factor IX (rhFIX) from transgenic pigs. The real-time Q-PCR assay is thus a promising new tool for quantitative detection and clearance validation of residual porcine DNA when manufacturing recombinant therapeutics.

  13. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    PubMed

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  14. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    ERIC Educational Resources Information Center

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  15. Detection and quantification of Pratylenchus thornei in DNA extracted from soil using real-time PCR.

    PubMed

    Yan, Guiping; Smiley, Richard W; Okubara, Patricia A

    2012-01-01

    The root-lesion nematode Pratylenchus thornei is one of the most important pests restricting productivity of wheat in the Pacific Northwest (PNW). It is laborious and difficult to use microscopy to count and identify the nematodes in soils. A SYBR Green I-based real-time polymerase chain reaction (PCR) assay was developed to detect and quantify this species from DNA extracts of soil. A primer set, designed from the internal transcribed spacer region (ITS1) of rDNA, was highly specific to P. thornei and did not amplify DNA from 27 isolates of other Pratylenchus spp., other nematodes, and six fungal species present in PNW wheat fields. A standard curve relating threshold cycle and log values of nematode number was generated from artificially infested soils. The standard curve was supported by a high correlation between the numbers of P. thornei added to soil and the numbers quantified using real-time PCR. Examination of 15 PNW dryland field soils and 20 greenhouse samples revealed significant positive correlations between the numbers determined by real-time PCR and by the Whitehead tray and microscopic method. Real-time PCR is a rapid, sensitive alternative to time-consuming nematode extractions, microscopic identification, and counting of P. thornei from field and greenhouse soils.

  16. [PCR "real time" to analyze the quantitative and qualitative relations microbiota of periodontal pockets].

    PubMed

    Zorina, O A; Kulakov, A A; Boriskina, O A; Rebrikov, D V

    2011-01-01

    The introduction of a broad medical practice PCR "real time" is just beginning and dentistry is no exception. Modern molecular genetic methods provide numerous opportunities for diagnosis, assessment and prediction in patients with inflammatory periodontal diseases. Early and accurate diagnosis can allow in the future reduce the incidence of periodontitis and the progression of its course.

  17. PCR real time assays for the early detection of BKV-DNA in immunocompromised patients.

    PubMed

    Marinelli, Katia; Bagnarelli, Patrizia; Gaffi, Gianni; Trappolini, Silvia; Leoni, Pietro; Paggi, Alessandra Mataloni; Della Vittoria, Agnese; Scalise, Giorgio; Varaldo, Pietro Emanuele; Menzo, Stefano

    2007-07-01

    Testing for viral BKV-DNA in urine is a non-invasive early detection and monitoring tool in the diagnostic of BKV-related pathologies: quantitative analysis by Real-Time PCR can provide useful information in addition to cytologic analysis, although our study suggests that high BKV viruria is not necessarily associated with kidney or bladder damage.

  18. Real-time RT-PCR assay for detection and differentiation of Citrus tristeza virus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For universal detection of Citrus tristeza virus (CTV) strains by real time RT-PCR, a protocol was developed based on a set of primers and a Cy5-labeled TaqMan probe. This test included primers and a TET-labeled TaqMan probe selected on the mitochondrial nad5 gene for the simultaneous detection of ...

  19. REAL-TIME PCR METHOD TO DETECT ENTEROCOCCUS FAECALIS IN WATER

    EPA Science Inventory

    A 16S rDNA real-time PCR method was developed to detect Enterococcus faecalis in water samples. The dynamic range for cell detection spanned five logs and the detection limit was determined to be 6 cfu/reaction. The assay was capable of detecting E. faecalis cells added to biof...

  20. Diagnosis of gastric cryptosporidiosis in birds using a duplex real-time PCR assay.

    PubMed

    Nakamura, Alex A; Homem, Camila G; da Silva, Adriana M J; Meireles, Marcelo V

    2014-09-15

    Three species and several genotypes of Cryptosporidium can infect the epithelial surface of the bursa of Fabricius, the respiratory tract, the proventriculus, the intestine, and the urinary tract in birds. There is reason to believe that gastric cryptosporidiosis in birds is caused by Cryptosporidium galli and Cryptosporidium avian genotype III, resulting in a chronic illness of the proventriculus that can lead to a debilitating and fatal clinical condition in birds of the orders Passeriformes and Psittaciformes. The objectives of the present study were to develop a duplex real-time polymerase chain reaction (PCR) that targets the 18S rRNA gene to simultaneously detect C. galli and Cryptosporidium avian genotype III DNA and to compare the duplex real-time PCR results to those of nested PCR targeting a partial fragment of the 18S rRNA gene, followed by sequencing of the amplified products (nPCR/S). A total of 1027 fecal samples were collected from birds of the orders Psittaciformes and Passeriformes originating either from captivity or the wild. Duplex real-time PCR results were positive in 580 (56.47%) and 21 (2.04%) samples, respectively, for C. galli and Cryptosporidium avian genotype III, whereas nPCR/S was positive in 28 (2.73%) and three (0.29%) samples, respectively, for C. galli and Cryptosporidium avian genotype III. Novel host birds were identified for both of the above gastric species, and it was also possible to identify Cryptosporidium baileyi and, for the first time in Brazil, Cryptosporidium avian genotype V. The duplex real-time PCR assay developed in the present study represents a sensitive and specific method for the detection of C. galli and Cryptosporidium avian genotype III in bird fecal samples. Moreover, this method may serve as an alternative to nPCR/S as a gold standard for the diagnosis of gastric cryptosporidiosis in birds.

  1. Real-Time PCR Improves Helicobacter pylori Detection in Patients with Peptic Ulcer Bleeding

    PubMed Central

    Casalots, Alex; Sanfeliu, Esther; Boix, Loreto; García-Iglesias, Pilar; Sánchez-Delgado, Jordi; Montserrat, Antònia; Bella-Cueto, Maria Rosa; Gallach, Marta; Sanfeliu, Isabel; Segura, Ferran; Calvet, Xavier

    2011-01-01

    Background and Aims Histological and rapid urease tests to detect H. pylori in biopsy specimens obtained during peptic ulcer bleeding episodes (PUB) often produce false-negative results. We aimed to examine whether immunohistochemistry and real-time PCR can improve the sensitivity of these biopsies. Patients and Methods We selected 52 histology-negative formalin-fixed paraffin-embedded biopsy specimens obtained during PUB episodes. Additional tests showed 10 were true negatives and 42 were false negatives. We also selected 17 histology-positive biopsy specimens obtained during PUB to use as controls. We performed immunohistochemistry staining and real-time PCR for 16S rRNA, ureA, and 23S rRNA for H. pylori genes on all specimens. Results All controls were positive for H. pylori on all PCR assays and immunohistochemical staining. Regarding the 52 initially negative biopsies, all PCR tests were significantly more sensitive than immunohistochemical staining (p<0.01). Sensitivity and specificity were 55% and 80% for 16S rRNA PCR, 43% and 90% for ureA PCR, 41% and 80% for 23S rRNA PCR, and 7% and 100% for immunohistochemical staining, respectively. Combined analysis of PCR assays for two genes were significantly more sensitive than ureA or 23S rRNA PCR tests alone (p<0.05) and marginally better than 16S rRNA PCR alone. The best combination was 16S rRNA+ureA, with a sensitivity of 64% and a specificity of 80%. Conclusions Real-time PCR improves the detection of H. pylori infection in histology-negative formalin-fixed paraffin-embedded biopsy samples obtained during PUB episodes. The low reported prevalence of H. pylori in PUB may be due to the failure of conventional tests to detect infection. PMID:21625499

  2. Development of absolute quantification method for genotype-specific Babesia microti using real-time PCR and practical experimental tips of real-time PCR.

    PubMed

    Ohmori, Shiho; Nagano-Fujii, Motoko; Saito-Ito, Atsuko

    2016-10-01

    Babesia microti, a rodent babesia, is known as a pathogen of zoonosis, human babesiosis, is composed of several genotypes of small subunit ribosomal RNA gene (SSUrDNA) and different genotypes have been suggested to have different infectivity and pathogenicity to humans. We established a real-time PCR assay using SYBR Green I, which allows specific detection and absolute quantification for each SSUrDNA-type-B. microti of four SSUrDNA-types found in Japanese rodents even in mixed infection. In this assay, four genotype-specific primer pairs targeted on internal transcribed spacer 1 or 2 sequences were used. Primer pairs have the characteristics for a high specificity for homologous genotype DNA. The calibration curves of cycle threshold (Ct) values versus log concentrations of DNA for all four genotypes were linear over 10(7) fold range of DNA concentrations with correlation coefficient from 0.95 to 1 and sufficient amplification efficiency from 90% to 110%. The standard curves for all four genotypes were not changed even in the presence of heterologous DNA. In this paper, we introduce how to establish and perform the genotype-specific real-time PCR and our practical experimental tips to be recommended.

  3. Real-time quantitative PCR assay for monitoring of nervous necrosis virus infection in grouper aquaculture.

    PubMed

    Kuo, Hsiao-Che; Wang, Ting-Yu; Chen, Peng-Peng; Chen, Young-Mao; Chuang, Hui-Ching; Chen, Tzong-Yueh

    2011-03-01

    Viral nervous necrosis caused by nervous necrosis virus (NNV) exacts a high mortality and results in huge economic losses in grouper aquaculture in Taiwan. The present study developed a real-time quantitative PCR (qPCR) method for NNV monitoring. The assay showed a strong linear correlation (r(2) = 0.99) between threshold cycle (C(T)) and RNA quantities, which allowed identification of infected groupers by the C(T) value and could be exploited to warn of NNV infection prior to an outbreak in grouper fish farms. Real-time qPCR also confirmed the copious content of NNV in grouper fin, similar to that in primary tissues; the result was verified by using in situ reverse transcription-PCR (RT-PCR). This indicated that grouper fin was a suitable sample for NNV detection, in a manner that could be relatively benign to the fish. The rapid spread of NNV infection to the entire population of affected farms was evident. The developed real-time qPCR method is rapid, highly sensitive, and applicable to routine high-throughput detection of large numbers of samples and has potential as a suitable tool for diagnostic, epidemiological, and genetic studies of grouper aquaculture.

  4. Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR.

    PubMed

    Priha, Outi; Hallamaa, Katri; Saarela, Maria; Raaska, Laura

    2004-05-01

    The aim of this study was to develop a PCR-based rapid method to detect Bacillus cereus group cells from paper and cardboard. Primers targeting the 16S rDNA and real-time PCR with SYBR green I detection were used in order to be able to also quantify the target. Both autoclaved cardboard samples spiked with B. cereus vegetative cells or spores and naturally contaminated paper and cardboard samples were studied. Results were compared with culturing verified by commercial (API) tests. Several different methods were tested for DNA isolation from the paper and cardboard samples. Two commercial kits intended for soils, the UltraClean soil DNA kit and the FastDNA spin kit for soil, gave the most reproducible results. In spiked samples, the average yield was 50% of added vegetative cells, but spore yield was only about 10%. PCR results from adding vegetative cells correlated with added colony-forming unit (cfu) values ( r=0.93, P <0.001) in the range 100-10,000 cfu g(-1). Three out of nine studied paper and cardboard samples contained B. cereus group bacteria, based both on culturing and real-time PCR. The numbers were 10(2)-10(3) bacteria g(-1); and PCR gave somewhat higher results than culturing. Thus, real-time PCR can be used as a rapid semi-quantitative method to screen paper and cardboard samples for contamination with B. cereus group bacteria.

  5. A real-time PCR assay for the monitoring of influenza A virus in wild birds.

    PubMed

    Karlsson, Malin; Wallensten, Anders; Lundkvist, Ake; Olsen, Björn; Brytting, Maria

    2007-09-01

    A screening system including a new real-time PCR assay for the monitoring of influenza A virus in wild birds was developed. The real-time PCR assay uses SYBR green chemistry and the primers are targeting the matrix gene of influenza A virus. The performance of the assay was compared with two other assays, one assay also using SYBR green chemistry and one assay using TaqMan chemistry, i.e. a specific probe. A total of 45 fecal bird samples were analysed for influenza A virus in three different PCR reactions. Overall, 26 samples were positive in at least one of the three real-time PCR assays. Of the 26 samples, 18 were positive by all three reactions. Eight samples were found positive exclusively by the two SYBR green reactions, six of which were detected by both SYBR green reactions. Of the 26 positive samples, 15 samples were verified as positive either by virus isolation or influenza A M2-gene PCR. The results showed that the two SYBR green systems had a higher performance regarding the detection of influenza A as compared to the PCR reaction using a specific probe.

  6. New real-time-PCR method to identify single point mutations in hepatitis C virus

    PubMed Central

    Chen, Qian; Belmonte, Irene; Buti, Maria; Nieto, Leonardo; Garcia-Cehic, Damir; Gregori, Josep; Perales, Celia; Ordeig, Laura; Llorens, Meritxell; Soria, Maria Eugenia; Esteban, Rafael; Esteban, Juan Ignacio; Rodriguez-Frias, Francisco; Quer, Josep

    2016-01-01

    AIM To develop a fast, low-cost diagnostic strategy to identify single point mutations in highly variable genomes such as hepatitis C virus (HCV). METHODS In patients with HCV infection, resistance-associated amino acid substitutions within the viral quasispecies prior to therapy can confer decreased susceptibility to direct-acting antiviral agents and lead to treatment failure and virological relapse. One such naturally occurring mutation is the Q80K substitution in the HCV-NS3 protease gene, which confers resistance to PI inhibitors, particularly simeprevir. Low-cost, highly sensitive techniques enabling routine detection of these single point mutations would be useful to identify patients at a risk of treatment failure. LightCycler methods, based on real-time PCR with sequence-specific probe hybridization, have been implemented in most diagnostic laboratories. However, this technique cannot identify single point mutations in highly variable genetic environments, such as the HCV genome. To circumvent this problem, we developed a new method to homogenize all nucleotides present in a region except the point mutation of interest. RESULTS Using nucleotide-specific probes Q, K, and R substitutions at position 80 were clearly identified at a sensitivity of 10% (mutations present at a frequency of at least 10% were detected). The technique was successfully applied to identify the Q80K substitution in 240 HCV G1 serum samples, with performance comparable to that of direct Sanger sequencing, the current standard procedure for this purpose. The new method was then validated in a Catalonian population of 202 HCV G1-infected individuals. Q80K was detected in 14.6% of G1a patients and 0% of G1b in our setting. CONCLUSION A fast, low-cost diagnostic strategy based on real-time PCR and fluorescence resonance energy transfer probe melting curve analysis has been successfully developed to identify single point mutations in highly variable genomes such as hepatitis C virus. This

  7. Real-time shipboard orbit determination using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Brammer, R. F.

    1974-01-01

    The real-time tracking and orbit determination program used on board the NASA tracking ship, the USNS Vanguard, is described in this paper. The computer program uses a variety of filtering algorithms, including an extended Kalman filter, to derive real-time orbit determinations (position-velocity state vectors) from shipboard tracking and navigation data. Results from Apollo missions are given to show that orbital parameters can be estimated quickly and accurately using these methods.

  8. Utility of real-time Taqman PCR for antemortem and postmortem diagnosis of human rabies.

    PubMed

    Mani, Reeta Subramaniam; Madhusudana, Shampur Narayan; Mahadevan, Anita; Reddy, Vijayalakshmi; Belludi, Ashwin Yajaman; Shankar, Susarla Krishna

    2014-10-01

    Rabies, a fatal zoonotic viral encephalitis remains a neglected disease in India despite a high disease burden. Laboratory confirmation is essential, especially in patients with paralytic rabies who pose a diagnostic dilemma. However, conventional tests for diagnosis of rabies have several limitations. In the present study the utility of a real-time TaqMan PCR assay was evaluated for antemortem/postmortem diagnosis of rabies. Human clinical samples received for antemortem rabies diagnosis (CSF, saliva, nuchal skin biopsy, serum), and samples obtained postmortem from laboratory confirmed rabies in humans (brain tissue, CSF, serum) and animals (brain tissue) were included in the study. All CSF and sera were tested for rabies viral neutralizing antibodies (RVNA) by rapid fluorescent focus inhibition test (RFFIT) and all samples (except sera) were processed for detection of rabies viral RNA by real-time TaqMan PCR. All the 29 (100%) brain tissues from confirmed cases of human and animal rabies, and 11/14 (78.5%) CSF samples obtained postmortem from confirmed human rabies cases were positive by real-time TaqMan PCR. Rabies viral RNA was detected in 5/11 (45.4%) CSF samples, 6/10 (60%) nuchal skin biopsies, and 6/7 (85.7%) saliva samples received for antemortem diagnosis. Real-time TaqMan PCR alone could achieve antemortem rabies diagnosis in 11/13 (84.6%) cases; combined with RVNA detection in CSF antemortem rabies diagnosis could be achieved in all 13 (100%) cases. Real-time TaqMan PCR should be made available widely as an adjunctive test for diagnosis of human rabies in high disease burden countries like India.

  9. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  10. Taqman real-time PCR assays for rapid detection of avian pathogenic Escherichia coli isolates.

    PubMed

    Ikuta, Nilo; De Oliveira Solla Sobral, Fabiana; Lehmann, Fernanda Kieling Moreira; da Silveira, Proença Vinicius; de Carli, Silvia; Casanova, Yara Silva; Celmer, Álvaro José; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2014-12-01

    Avian pathogenic Escherichia coli (APEC) isolates are currently differentiated from nonpathogenic strains by classical PCR of virulence genes. This study improves the detection of the five main virulence genes used for APEC detection with the development of duplex and single Taqman real-time PCR to these targets. Primers and probes targeted to ompT, hlyF, iroN, iutA, and iss genes were designed and used in the implementation of single (iss) and duplex (hlyF/ompT and iroN/iutA) Taqman PCR assays. All five virulence genes of E coli strains were successfully detected by classical and Taqman real-time (single and duplex) PCR. A panel of 111 E coli isolates, obtained from avian samples collected in different Brazilian regions between 2010 and 2011, were further tested by both assays. Complete agreement was observed in the detection of four genes, ompT, hlyF, iron, iutA, but not for iss. This issue was addressed by combining the forward primer of the classical PCR to the new iss reverse primer and probe, resulting in complete agreement for all five genes. In total, 61 (55%) Brazilian E. coli isolates were detected as APEC, and the remaining 50 (45%) as avian fecal E. coli (AFEC). In conclusion, classical and Taqman real-time PCR presented exactly the same analytical performance for the differentiation of APEC and AFEC isolates. The developed real-time Taqman PCR assays could be used for the detection and differentiation of APEC isolates.

  11. Quantifying Aotus monkey cytokines by real-time quantitative RT-PCR.

    PubMed

    Pico de Coaña, Yago; Barrero, Carlos; Cajiao, Isabela; Mosquera, Catalina; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    Aotus spp. monkeys are considered the ideal model for studying the progress of malarial infection and the immune response it elicits. We describe the use of a recently developed technique, real-time quantitative RT-PCR, to quantify several Aotus monkey cytokine mRNAs involved in Th1/Th2 responses (IL-4, IL-10, TNF-beta and IFN-gamma). Specific primers were designed for each cytokine and standard curves were constructed using serial dilutions of pDNA containing each target sequence. Results were normalized to GAPDH housekeeping gene expression levels. Standard curves showed high correlation coefficients and were linear over a wide range of copy numbers. Quantification of Aotus samples showed little intra- and inter-experiment variation, thus, the technique has proven to be highly reproducible and sensitive allowing us to detect as little as 25 copies/microl of target DNA. This technique will allow studying Th1 and Th2 cytokine patterns elicited in response to infection for prospectively evaluating the efficacy of malarial vaccines.

  12. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    PubMed

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.

  13. Development of Multiplexed Real-Time Quantitative PCR Assay for Detecting Human Adenoviruses

    PubMed Central

    Huang, Meei-Li; Nguy, Long; Ferrenberg, James; Boeckh, Michael; Cent, Anne; Corey, Lawrence

    2008-01-01

    Adenoviruses (AdV) have been associated with a wide variety of human disease and are increasingly recognized as viral pathogens that can cause significant morbidity and mortality in immunocompromised patients. Early detection of AdV DNA in plasma and sterile fluids has been shown to be useful for identifying patients at risk for invasive AdV disease. Due to the large number of existing Adv types, few real-time quantitative AdV PCR assays published effectively cover all AdV types. We designed a series of AdV PCR primers and probes and empirically multiplexed them into two separate real-time PCR assays to quantitatively detect all 49 serotypes of human AdV (Types 1-49) available from ATCC. We then subsequently multiplexed all the primers and probes into one reaction. The sensitivity of these assays was determined to be less than 10 copies per reaction (500 copies/ml plasma). In a retrospective evaluation we detected all 84 clinical AdV isolates isolated in cell culture from patients undergoing hematopoietic stem cell transplant (HSCT) between 1981 and 1987. Prospective analysis of 46 consecutive clinical samples submitted for adenovirus testing showed greater sensitivity and equal specificity of the AdV PCR than viral culture. This real time PCR assay allows rapid, sensitive and specific quantification of all currently defined adenoviruses into either two or one multiplex assay for clinical samples. PMID:18707838

  14. Real-time PCR detection of aldoxime dehydratase genes in nitrile-degrading microorganisms.

    PubMed

    Dooley-Cullinane, Tríona Marie; O'Reilly, Catherine; Coffey, Lee

    2017-02-01

    Aldoxime dehydratase catalyses the conversion of aldoximes to their corresponding nitriles. Utilization of the aldoxime-nitrile metabolising enzyme pathway can facilitate the move towards a greener chemistry. In this work, a real-time PCR assay was developed for the detection of aldoxime dehydratase genes in aldoxime/nitrile metabolising microorganisms which have been purified from environmental sources. A conventional PCR assay was also designed allowing gene confirmation via sequencing. Aldoxime dehydratase genes were identified in 30 microorganisms across 11 genera including some not previously shown to harbour the gene. The assay displayed a limit of detection of 1 pg/μL DNA or 7 CFU/reaction. This real-time PCR assay should prove valuable in the high-throughput screening of micro-organisms for novel aldoxime dehydratase genes towards pharmaceutical and industrial applications.

  15. Real-time PCR detection of protein analytes with conformation-switching aptamers

    PubMed Central

    Yang, Litao; Ellington, Andrew D.

    2008-01-01

    We have developed a novel method that utilizes conformation-switching aptamers for real-time PCR analysis of protein analytes. The aptamers have been designed so that they assume one secondary structure in the absence of a protein analyte, and a different secondary structure in the presence of a protein such as thrombin or PDGF. The protein-bound structure in turn assembles a ligation junction for the addition of a real-time PCR primer. Protein concentrations could be specifically detected into the picomolar range, even in the presence of cell lysates. The method has advantages relative to both immunoPCR (since no signal is produced by background binding) and to the proximity ligation assay (PLA; since only one epitope on a protein surface must be bound, rather than two). PMID:18541130

  16. Protocol for Real-Time PCR Identification of Anthrax Spores from Nasal Swabs after Broth Enrichment

    PubMed Central

    Oggioni, Marco R.; Meacci, Francesca; Carattoli, Alessandra; Ciervo, Alessandra; Orru, Germano; Cassone, Antonio; Pozzi, Gianni

    2002-01-01

    A mass-screening protocol for the diagnosis of anthrax from nasal swabs based on an enrichment step in liquid medium was devised. Incubation for growth was performed in autoclavable vials and racks which allow real-time PCR analysis of sterilized cultures. A dual-color PCR was set up with primers and probes for the chromosomal marker rpoB and the plasmid marker lef. Specific primer and probe sets were designed for the differentiation of Bacillus anthracis from B. cereus and for the differentiation of the Sterne vaccine strain from field isolates and the Ames strain, which was used in the recent anthrax bioterrorist attack. The present protocol thus combines the high specificity and sensitivity of real-time PCR with excellent biosafety and the low hands-on time necessary for the processing of large numbers of samples, which is extremely important during control programs involving the processing of large numbers of samples. PMID:12409358

  17. Rapid and economic DNA extraction from a single salmon egg for real-time PCR amplification.

    PubMed

    Yang, Jing-Iong; Huang, Hsiao-Yun; Chou, Yii-Cheng; Chen, Chien-Cheng; Lee, Guo-Chi; Chang, Hsueh-Wei

    2011-01-01

    Salmon eggs are common in Japanese sushi and other seafood products; however, certain fish eggs are used as counterfeit salmon eggs which are found in foods and processed products. This study develops a simple, rapid, and cost-effective method for DNA extraction, filtration (FT) and dilution (DL) protocols from a single salmon egg with good DNA quality for real-time PCR amplification. The DNA amount, DNA quality, and real-time PCR performance for different dilutions and different lengths of PCR amplicons were evaluated and compared with the common Qiagen tissue kit (QTK) and Chelex-100-based (CX) protocols. The extracted DNA from a single salmon egg using the FT or DL protocol can be applied in phylogenic research, food authentication and post-marketing monitoring of genetically modified (GM) food products.

  18. A real-time PCR diagnostic method for detection of Naegleria fowleri.

    PubMed

    Madarová, Lucia; Trnková, Katarína; Feiková, Sona; Klement, Cyril; Obernauerová, Margita

    2010-09-01

    Naegleria fowleri is a free-living amoeba that can cause primary amoebic meningoencephalitis (PAM). While, traditional methods for diagnosing PAM still rely on culture, more current laboratory diagnoses exist based on conventional PCR methods; however, only a few real-time PCR processes have been described as yet. Here, we describe a real-time PCR-based diagnostic method using hybridization fluorescent labelled probes, with a LightCycler instrument and accompanying software (Roche), targeting the Naegleria fowleriMp2Cl5 gene sequence. Using this method, no cross reactivity with other tested epidemiologically relevant prokaryotic and eukaryotic organisms was found. The reaction detection limit was 1 copy of the Mp2Cl5 DNA sequence. This assay could become useful in the rapid laboratory diagnostic assessment of the presence or absence of Naegleria fowleri.

  19. Protocol for real-time PCR identification of anthrax spores from nasal swabs after broth enrichment.

    PubMed

    Oggioni, Marco R; Meacci, Francesca; Carattoli, Alessandra; Ciervo, Alessandra; Orru, Germano; Cassone, Antonio; Pozzi, Gianni

    2002-11-01

    A mass-screening protocol for the diagnosis of anthrax from nasal swabs based on an enrichment step in liquid medium was devised. Incubation for growth was performed in autoclavable vials and racks which allow real-time PCR analysis of sterilized cultures. A dual-color PCR was set up with primers and probes for the chromosomal marker rpoB and the plasmid marker lef. Specific primer and probe sets were designed for the differentiation of Bacillus anthracis from B. cereus and for the differentiation of the Sterne vaccine strain from field isolates and the Ames strain, which was used in the recent anthrax bioterrorist attack. The present protocol thus combines the high specificity and sensitivity of real-time PCR with excellent biosafety and the low hands-on time necessary for the processing of large numbers of samples, which is extremely important during control programs involving the processing of large numbers of samples.

  20. Development of real-time PCR assays for genotyping of Chlamydia trachomatis.

    PubMed

    Jalal, Hamid; Stephen, Hannah; Alexander, Sarah; Carne, Christopher; Sonnex, Christopher

    2007-08-01

    We have developed and validated a nested real-time PCR (NRT-PCR) for the genotyping of Chlamydia trachomatis and used it specifically for the typing of either eight genovars from D to K or three genovars of lymphogranuloma venereum (LGV). The 11 probes used in the NRT-PCR correctly identified the DNA from D to K and LGV reference strains and did not cross-react with the DNA from 26 strains representing the bacterial pathogens and commensals of the oropharynx, genital tract, and rectum. The NRT-PCR had a 95% probability of detection at four genome copies (confidence interval, three to six copies) of C. trachomatis per reaction. One hundred cervical and urethral swab specimens containing C. trachomatis DNA from 63 women and 37 men were used to validate the method. The results from the NRT-PCR and the DNA sequencing of amplicons generated from the omp1 gene showed 100% correlation for these samples. The assay also identified the LGV-II genotype in 24 of 48 rectal swab specimens containing C. trachomatis DNA that were obtained from men having sex with men. The Sexually Transmitted Bacteria Reference Laboratory, London, independently confirmed these results using group-specific LGV real-time PCR and restriction fragment length polymorphism analysis. Compared with the NRT-PCR, non-NRT-PCR was found to be less sensitive: it typed C. trachomatis DNA in only 80% of the genital samples and 90% of the rectal swab samples. This is the first successful demonstration of the use of real-time PCR for the genotype-specific typing of C. trachomatis strains that cause sexually transmitted diseases.

  1. Detection and quantification of Enterococcus gilvus in cheese by real-time PCR.

    PubMed

    Zago, Miriam; Bonvini, Barbara; Carminati, Domenico; Giraffa, Giorgio

    2009-10-01

    The objective of this work was to investigate the occurrence of Enterococcus gilvus in cheese. For this purpose, a real-time PCR protocol using phenylalanyl-tRNA synthase (pheS) as a target gene was optimized to evaluate the presence and abundance of this microorganism in Italian artisan cheeses. The real-time assay unequivocally distinguished E. gilvus from 25 non-target LAB and non-LAB species, demonstrating its absolute specificity. The assay performed well not only with purified DNA but also with DNA extracted from cheese samples artificially contaminated with E. gilvus. The dynamic range of target determination of the method in the cheese matrix (from 10(7) to 10(4) cfu/ml, covering three orders of magnitude) was lower and the detection limit higher than in vitro conditions, but still high enough to obtain an excellent quantification accuracy in cheese. Twenty commercially available cheeses were analyzed by real-time PCR and approximately 40% of the cheese samples contained E. gilvus at levels ranging from 4.17+/-0.10 to 6.75+/-0.01 log cfu/g. Such levels represented 0.1-10% of the total enterococci counted on kanamycin aesculin azide agar (KAA) from the corresponding cheeses. The successful isolation of E. gilvus from cheeses containing high loads of this species, as detected by real-time PCR, provided definitive proof on both assay specificity and presence of this organism in cheeses. Despite the relatively low sensitivity in cheese (> or =4 log cfu/g), the real-time PCR described here may, however, be useful to detect E. gilvus rapidly when present at (sub)dominant levels within the enterococcal cheese microflora. The assay may be helpful to detect and quantify E. gilvus strains from food, thus enabling a better understanding of technological role, ecological and safety aspects in cheeses and other fermented food products of this infrequent species.

  2. The application of real-time PCR technique to detect rare cell clones with primary T790M Substitution of EGFR gene in metastases of non-small cell lung cancer to central nervous system in chemotherapy naive patients.

    PubMed

    Powrózek, Tomasz; Krawczyk, Paweł; Jarosz, Bożena; Mlak, Radosław; Wojas-Krawczyk, Kamila; Sawicki, Marek; Stencel, Dariusz; Trojanowski, Tomasz; Milanowski, Janusz

    2014-10-01

    The time-limited efficacy of reversible EGFR-TKIs in patients with advanced non-small cell lung cancer (NSCLC) with EGFR gene activating mutations is associated with development of treatment resistance after some period of therapy. This resistance predominantly results from secondary mutations located in EGFR gene, especially T790M substitution. There is limited information available concerning the prevalence of primary T790M mutations in patients with metastatic NSCLC tumors before treatment with EGFR-TKIs. The aim of work was to assess the prevalence of de novo T790M mutations in EGFR gene in tissue samples from NSCLC metastatases in central nervous system (CNS) in both chemotherapy and EGFR-TKI naive NSCLC patients. We analyzed DNA samples isolated from paraffin-embedded tissue from CNS metastases for T790M mutations using real-time PCR and TaqMan probe against the T790M mutant sequence. The tissue samples were taken during palliative neurosurgery in 143 NSCLC patients. Amplification of the T790M-specific sequence was detected in 25 patients (17.5 %). The quantity of mutated DNA was less than 1 % in all samples with amplification, and in vast majority (20 patients, 14 % of all samples) it was even less that 0.1 %. In 5 patients (3.5 %) quantity of mutated DNA ranged from 0.1 to 1 % and true positive results of T790M mutation presence in these patients were most possible. Amplification of this sequence was not concurrent with common EGFR mutations and was not associated with sex, smoking status and pathological type of cancer. There is a possibility to detect the primary T790M mutation in brain metastases of NSCLC in EGFR-TKIs naïve patients.

  3. Legionellosis and Lung Abscesses: Contribution of Legionella Quantitative Real-Time PCR to an Adapted Followup

    PubMed Central

    Descours, G.; Tellini, C.; Flamens, C.; Philit, F.; Celard, M.; Etienne, J.; Lina, G.; Jarraud, S.

    2013-01-01

    We report a case of severe Legionnaires' disease (LD) complicated by a lung abscess in an immunocompetent patient who required ECMO therapy and thoracic surgery. The results of repeated Legionella quantitative real-time PCR performed on both sera and respiratory samples correlated with the LD severity and the poor clinical outcome. Moreover, the PCR allowed for the detection of Legionella DNA in the lung abscess specimen, which was negative when cultured for Legionella. This case report provides a logical basis for further investigations to examine whether the Legionella quantitative PCR could improve the assessment of LD severity and constitute a prognostic marker. PMID:23862082

  4. Assessment of a Solid Phase Matrix for the Neutralization and Real-Time PCR Detection of Bacillus anthracis

    DTIC Science & Technology

    2006-12-01

    for the Neutralization and Real - Time PCR Detection of Bacillus anthracis D.E. Bader, G.R. Fisher and C.W. Stratilo DRDC Suffield Technical Memorandum...Matrix for the Neutralization and Real - Time PCR Detection of Bacillus anthracis D.E. Bader, G.R. Fisher, and C.W. Stratilo Defence R&D Canada - Suffield...evaluated for their neutralization ability, based on cell culture analysis, and were also analyzed using real - time PCR detection assays designed to

  5. Comparison of droplet digital PCR to real-time PCR for quantification of hepatitis B virus DNA.

    PubMed

    Tang, Hui; Cai, Qingchun; Li, Hu; Hu, Peng

    2016-06-16

    Quantitative real-time PCR (qPCR) has been widely implemented for clinical hepatitis B viral load testing, but a lack of standardization and relatively poor precision hinder its usefulness. Droplet digital PCR (ddPCR) is a promising tool that offers high precision and direct quantification. In this study, we compared the ddPCR QX100 platform by Bio-Rad with the CFX384 Touch Real-Time PCR Detection System (Bio-Rad, USA) to detect serial plasmid DNA dilutions of known concentrations as well as HBV DNA extracted from patient serum samples. Both methods showed a high degree of linearity and quantitative correlation. However, ddPCR assays generated more reproducible results and detected lower copy numbers than qPCR assays. Patient sample quantifications by ddPCR and qPCR were highly agreeable based on the Bland-Altman analysis. Collectively, our findings demonstrate that ddPCR offers improved analytical sensitivity and specificity for HBV measurements and is suitable for clinical HBV detection.

  6. Comparison of Culture, Conventional and Real-time PCR Methods for Listeria monocytogenes in Foods

    PubMed Central

    Moon, Jin-San

    2014-01-01

    We compared standard culture methods as well as conventional PCR and real-time PCR for the detection of Listeria monocytogenes (L. monocytogenes) in milk, cheese, fresh-cut vegetables, and raw beef that have different levels of background microflora. No statistical differences were observed in sensitivity between the two selective media in all foods. In total, real-time PCR assay exhibited statistically excellent detection sensitivity (p<0.05) and was less time consuming and laborious as compared with standard culture methods. Conventional culture methods showed poor performance in detecting L. monocytogenes in food with high levels of background microflora, generating numerous false negative results. While the detection of L. monocytogenes in fresh cut vegetable by culture methods was hindered only by L. innocua, various background microflora, such as L. innocua, L. welshimeri, L. grayi, and Enterococcus faecalis appeared on the two selective media as presumptive positive colonies in raw beef indicating the necessity of improvement of current selective media. It appears that real-time PCR is an effective and sensitive presumptive screening tool for L. monocytogenes in various types of foods, especially foods samples with high levels of background microflora, thus complementing standard culture methodologies. PMID:26761501

  7. Determination of pig sex in meat and meat products using multiplex real time-PCR.

    PubMed

    Abdulmawjood, A; Krischek, C; Wicke, M; Klein, G

    2012-07-01

    For specific production lines, European retail companies demand exclusively female pork meat. To control the quality of their suppliers the identification and a quantitative detection of the animal sex origin of the meat is therefore of importance for meat processors. To enable a fast and reliable detection of male pig meat, a real time-PCR-system was designed in the present study. This was based on the genes AMEL-X and AMEL-Y. The real time-PCR assay allowed the detection of male pig meat at a concentration of 1% yielding a detection probability of 100% while the detection probability investigating meat samples containing 0.1% male pig meat was 44.4%. The analytic sensitivity of this system was assessed to be <5 pg DNA per PCR reaction. The assessment of the accuracy of the real time-PCR assay to correctly identify sex individuals was investigated with 62 pigs including males (n=29) and females (n=33) belonging to different breeds/lines. With the newly designed test all analysed animals were correctly sexed. No amplification was obtained with cow, goat, sheep, turkey and chicken genomic DNA. The presented assay can be used for sex diagnosis, for the detection of male pig meat and for meat quality control.

  8. Real-time duplex PCR for simultaneous HPV 16 and HPV 18 DNA quantitation.

    PubMed

    Jacquin, Elise; Saunier, Maëlle; Mauny, Frédéric; Schwarz, Elisabeth; Mougin, Christiane; Prétet, Jean-Luc

    2013-11-01

    HPV 16 and HPV 18 are responsible for more than 75% of cervical cancers and high HPV 16 loads are associated with both prevalent and incident lesions. The objective of the present study was to develop a method allowing the detection and quantitation of HPV 16 and 18 DNA to improve future strategies for cervical cancer screening. A duplex real-time PCR allowing the simultaneous quantitation of both HPV 16 and HPV 18 was carried out. Mixes of HPV 16 and HPV 18 whole genome plasmids were prepared to test a wide range of viral DNA concentrations. The values obtained for each mix of plasmids with the simplex and the duplex PCR were very close to the theoretical values except when a HPV type represented only 1:1000 genome equivalent or lower than the concurrent type. Cervical samples harboring HPV 16, HPV 18 or both types were tested by comparing the results with simplex and duplex real-time PCR assays. HPV 16 and HPV 18 genome titers were similar with the two assays. In conclusion, the real-time duplex PCR proved to be robust for HPV 16 and HPV 18 DNA quantitation.

  9. Livers provide a reliable matrix for real-time PCR confirmation of avian botulism.

    PubMed

    Le Maréchal, Caroline; Ballan, Valentine; Rouxel, Sandra; Bayon-Auboyer, Marie-Hélène; Baudouard, Marie-Agnès; Morvan, Hervé; Houard, Emmanuelle; Poëzevara, Typhaine; Souillard, Rozenn; Woudstra, Cédric; Le Bouquin, Sophie; Fach, Patrick; Chemaly, Marianne

    2016-04-01

    Diagnosis of avian botulism is based on clinical symptoms, which are indicative but not specific. Laboratory investigations are therefore required to confirm clinical suspicions and establish a definitive diagnosis. Real-time PCR methods have recently been developed for the detection of Clostridium botulinum group III producing type C, D, C/D or D/C toxins. However, no study has been conducted to determine which types of matrices should be analyzed for laboratory confirmation using this approach. This study reports on the comparison of different matrices (pooled intestinal contents, livers, spleens and cloacal swabs) for PCR detection of C. botulinum. Between 2013 and 2015, 63 avian botulism suspicions were tested and 37 were confirmed as botulism. Analysis of livers using real-time PCR after enrichment led to the confirmation of 97% of the botulism outbreaks. Using the same method, spleens led to the confirmation of 90% of botulism outbreaks, cloacal swabs of 93% and pooled intestinal contents of 46%. Liver appears to be the most reliable type of matrix for laboratory confirmation using real-time PCR analysis.

  10. Use of TaqMan® real-time PCR for rapid detection of Salmonella enterica serovar Typhi.

    PubMed

    Ranjbar, Reza; Naghoni, Ali; Farshad, Shohreh; Lashini, Hadi; Najafi, Ali; Sadeghifard, Nourkhoda; Mammina, Caterina

    2014-06-01

    We evaluated the performances of a newly designed real-time polymerase chain reaction (PCR) assay using TaqMan® probes to detect Salmonella Typhi. TaqMan® real-time PCR assays were performed by designed primers and probe based on the staG gene for detecting S. Typhi. The specificity of the assay was evaluated on 15 Salmonella serovars. The analytical specificity was evaluated on 20 non-Salmonella microorganisms. The analytical sensitivity was assessed using decreasing DNA quantities of S. Typhi ATCC 19430. Finally the detection capability of the TaqMan® real-time PCR assay on isolates recovered from patients with Salmonella infections was compared to the conventional PCR assay. Only S. Typhi strain had positive results when subjected to the assay using Typhi-specific real-time PCR. No amplification products were observed in real-time PCR with any of the non-Salmonella microorganisms tested. The TaqMan® real-time PCR was more sensitive than the conventional PCR. In conclusion, we found that the easy-to-use real-time PCR assays were faster than conventional PCR systems. The staG-based TaqMan® real-time PCR assay showed to be specific and sensitive method for the safe and rapid detection of the S. Typhi.

  11. Development of real-time RT-PCR for the detection of low concentrations of Rift Valley fever virus.

    PubMed

    Maquart, Marianne; Temmam, Sarah; Héraud, Jean-Michel; Leparc-Goffart, Isabelle; Cêtre-Sossah, Catherine; Dellagi, Koussay; Cardinale, Eric; Pascalis, Hervé

    2014-01-01

    In recent years, Madagascar and the Comoros archipelago have been affected by epidemics of Rift Valley fever (RVF), however detection of Rift Valley fever virus (RVFV) in zebu, sheep and goats during the post epidemic periods was frequently unsuccessful. Thus, a highly sensitive real-time RT-PCR assay was developed for the detection of RVFV at low viral loads. A new RVF SYBR Green RT-PCR targeting the M segment was tested on serum from different RVF seronegative ruminant species collected from May 2010 to August 2011 in Madagascar and the Comoros archipelago and compared with a RVF specific quantitative real time RT-PCR technique, which is considered as the reference technique. The specificity was tested on a wide range of arboviruses or other viruses giving RVF similar clinical signs. A total of 38 out of 2756 serum samples tested positive with the new RT-PCR, whereas the reference technique only detected 5 out of the 2756. The described RT-PCR is an efficient diagnostic tool for the investigation of enzootic circulation of the RVF virus. It allows the detection of low viral RNA loads adapted for the investigations of reservoirs or specific epidemiological situations such as inter-epizootic periods.

  12. Comparison of real-time PCR methods for the detection of Naegleria fowleri in surface water and sediment.

    PubMed

    Streby, Ashleigh; Mull, Bonnie J; Levy, Karen; Hill, Vincent R

    2015-05-01

    Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Foursuch assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices.

  13. Development of an Alu-based, real-time PCR method for quantitation of human DNA in forensic samples.

    PubMed

    Nicklas, Janice A; Buel, Eric

    2003-09-01

    Determining the amount of human DNA extracted from a crime scene sample is an important step in DNA profiling. The forensic community relies almost entirely upon a technique (slot blot) to quantitate human DNA that is imprecise, time consuming, and labor intensive. We have previously described a method for quantitation of human DNA based on PCR amplification of a repetitive Alu sequence that uses a fluorescence plate reader. This manuscript describes and validates a variation of this assay using real-time PCR and SYBR Green I for quantitation. The advantages of the real-time assay over the plate reader assay are: reduced hands-on time, lower assay cost, and a greater dynamic range. The main disadvantage is the cost of the real-time instrument. However, for those forensic laboratories with access to a real-time instrument, this Alu-based assay has a dynamic range of 16 ng to 1 pg, is sensitive, specific, fast, quantitative, and uses only 2 microL of sample.

  14. Design of primers and probes for quantitative real-time PCR methods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  15. Differentiation of infectious bursal disease virus strains using real-time RT-PCR and high resolution melt curve analysis.

    PubMed

    Ghorashi, Seyed A; O'Rourke, Denise; Ignjatovic, Jagoda; Noormohammadi, Amir H

    2011-01-01

    Differentiation of infectious bursal disease virus (IBDV) strains is crucial for effective vaccination programs and epidemiological investigations. In this study, a combination of real-time RT-PCR and high resolution melt (HRM) curve analysis was developed for simultaneous detection and differentiation of IBDV strains/isolates. The hypervariable region of VP2 gene was amplified from several IBDV strains and subjected to HRM curve analysis. The method could readily differentiate between classical vaccines/isolates and variants. Analysis of the nucleotide sequence of the amplicons from each strain revealed that each melt curve profile was related to a unique DNA sequence. The real-time RT-PCR HRM curve analysis was also able to differentiate IBDV strains/isolates directly in bursal tissues from field submissions and from vaccinated commercial flocks. The differences between melting peaks generated from IBDV strains were significantly different (P<0.0001) demonstrating the high discriminatory power of this technique. The results presented in this study indicated that real-time RT-PCR followed by HRM curve analysis provides a rapid and robust technique for genotyping IBDV isolates/strains and can contribute to effective control of IBDV outbreaks.

  16. Use of real-time PCR to detect canine parvovirus in feces of free-ranging wolves.

    PubMed

    Mech, L David; Almberg, Emily S; Smith, Douglas; Goyal, Sagar; Singer, Randall S

    2012-04-01

    Using real-time PCR, we tested 15 wolf (Canis lupus) feces from the Superior National Forest (SNF), Minnesota, USA, and 191 from Yellowstone National Park (YNP), USA, collected during summer and 13 during winter for canine parvovirus (CPV)-2 DNA. We also tested 20 dog feces for CPV-2 DNA. The PCR assay was 100% sensitive and specific with a minimum detection threshold of 10(4) 50% tissue culture infective dose. Virus was detected in two winter specimens but none of the summer specimens. We suggest applying the technique more broadly especially with winter feces.

  17. Use of real-time PCR to detect canine parvovirus in feces of free-ranging wolves

    USGS Publications Warehouse

    Mech, L. David; Almberg, Emily S.; Smith, Douglas; Goyal, Sagar; Singer, Randall S.

    2012-01-01

    Using real-time PCR, we tested 15 wolf (Canis lupus) feces from the Superior National Forest (SNF), Minnesota, USA, and 191 from Yellowstone National Park (YNP), USA, collected during summer and 13 during winter for canine parvovirus (CPV)-2 DNA. We also tested 20 dog feces for CPV-2 DNA. The PCR assay was 100% sensitive and specific with a minimum detection threshold of 104 50% tissue culture infective dose. Virus was detected in two winter specimens but none of the summer specimens. We suggest applying the technique more broadly especially with winter feces.

  18. Detection and quantification of cultured marine Alexandrium species by real-time PCR.

    PubMed

    Zhang, Fengli; Li, Zhiyong

    2012-12-01

    The occurrence of harmful algal blooms (HABs) throughout the world has increased and poses a large threat to human health, fishery resources and tourism industries. The genus Alexandrium includes a number of toxic species associated with HABs. Therefore, it is very important to rapidly detect and monitor the harmful algae, such as Alexandrium genus. In this study, a standard curve of plasmid containing 18S rDNA-28S rDNA region from Alexandrium catenella was constructed and 5.8S rDNA sequence served as the primer of the real-time PCR. Cultured A. catenella, Alexandrium affine, Alexandrium lusitanicum and Alexandrium minutum samples were analyzed by real-time PCR using the same set of primers simultaneously. Using microscopy cells counts, 5.8S rDNA copies per cell and total DNA per cell were estimated. This assay method is promising for rapid detection of large number of Alexandrium samples.

  19. Fast real-time PCR for the detection of crustacean allergen in foods.

    PubMed

    Herrero, Beatriz; Vieites, Juan M; Espiñeira, Montserrat

    2012-02-29

    Crustaceans are one of the most common allergens causing severe food reaction. These food allergens are a health problem, and they have become very important; there are various regulations that establish that labeling must be present regarding these allergens to warn consumers. In the present work a fast real-time PCR, by a LNA probe, was developed. This allows the detection of crustaceans in all kinds of products, including processed products in which very aggressive treatments of temperature and pressure during the manufacturing process are used. This methodology provides greater sensitivity and specificity and reduces the analysis time of real-time PCR to 40 min. This methodology was further validated by means of simulating products likely to contain this allergen. For this, products present on the market were spiked with crustacean cooking water. The assay is a potential tool in issues related to the labeling of products and food security to protect the allergic consumer.

  20. Multiplex real-time PCR for identification of canine parvovirus antigenic types.

    PubMed

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Narang, Deepti

    2016-07-01

    Canine parvovirus (CPV) is an important disease causing gastroenteritis and/or haemorrhagic gastroenteritis in dogs. There are four antigenic types of CPV reported worldwide viz. CPV 2, CPV 2a, CPV 2b and CPV 2c. The diagnosis of CPV with the identification of the antigen type responsible remains problematic. In the present study, identification as well as antigenic typing of CPV was done using a de novo multiplex real time PCR to combat the problem of antigenic type identification. From the study it could be concluded that the here developed multiplex real time PCR assay could be used for rapid detection of CPV as well as typing of its three antigenic types.

  1. Multiplex Real-Time PCR for Detection of Campylobacter, Salmonella, and Shigella

    PubMed Central

    Barletta, F.; Mercado, E. H.; Lluque, A.; Ruiz, J.; Cleary, T. G.

    2013-01-01

    Infectious diarrhea can be classified based on its clinical presentation as noninflammatory or inflammatory disease. In developing countries, among inflammatory diarrhea cases, Shigella is the most common cause, followed by Campylobacter and Salmonella. Because the time frame in which treatment choices must be made is short and conventional stool cultures lack good sensitivity, there is a need for a rapid, sensitive, and inexpensive detection technique. The purpose of our study was to develop a multiplex real-time PCR procedure to simultaneously identify Campylobacter spp., Salmonella spp., and Shigella spp. Primers were designed to amplify the invA, ipaH, and 16S rRNA genes simultaneously in a single reaction to detect Salmonella, Shigella, and Campylobacter, respectively. Using this approach, we correctly identified 102 of 103 strains of the targeted enteropathogens and 34 of 34 other pathogens. The melting temperatures were 82.96 ± 0.05°C for invA, 85.56 ± 0.28°C for ipaH, and 89.21 ± 0.24°C for 16S rRNA. The limit of accurate quantification for the assay in stool samples was 104 CFU g−1; however, the limit of detection was 103 CFU g−1. This assay is a simple, rapid, inexpensive, and reliable system for the practical detection of these three enteropathogens in clinical specimens. PMID:23761159

  2. Microbiological quality indicators in waters of dairy farms: detection of pathogens by PCR in real time.

    PubMed

    Rodríguez, Diana Catalina; Pino, Nancy; Peñuela, Gustavo

    2012-06-15

    When contaminated water is used to wash the udders of dairy cattle and milking utensils, raw milk may become contaminated with pathogens. Washing with high quality water is essential to reduce the microbial contamination of milk. Furthermore, the wastewater generated in dairy herds also contains high populations of pathogens, antibiotics and nutrients that more often are thrown into the water bodies without any treatment. In this work, both supply water and wastewater from 20 dairy farms from Antioquia, Colombia was monitored for 10months to determine the presence of pathogenic microorganisms. Both Cryptosporidium and Fasciola were determined by the Polymerase Chain Reaction (PCR) technique in real time. The results showed that the supply water used for drinking and activities involving the herd, has high populations of Fasciola hepatica and Cryptosporidium parvum, with percentages of about 53.7% and 64.75% respectively. Additionally high populations of Pseudomonas aeruginosa, Shigella, Salmonella, total coliforms and Escherichia coli were found in both types of water, with values around 9.4×10(7), 2.1×10(7), 1.8×10(7), 1.9×10(10) and 1.5×10(10) UFC/100 ml respectively for the wastewater and 3.1×10(4), 1.9×10(4), 7.3×10(3), 1.2×10(5) and 6.2×10(3) UFC/100 ml for the supply water.

  3. Detection of Schmallenberg virus in different Culicoides spp. by real-time RT-PCR.

    PubMed

    De Regge, N; Deblauwe, I; De Deken, R; Vantieghem, P; Madder, M; Geysen, D; Smeets, F; Losson, B; van den Berg, T; Cay, A B

    2012-12-01

    To identify possible vectors of Schmallenberg virus (SBV), we tested pools containing heads of biting midges (Culicoides) that were caught during the summer and early autumn of 2011 at several places in Belgium by real-time RT-PCR. Pools of heads originating from following species: C. obsoletus complex, C. dewulfi and C. chiopterus were found positive, strongly indicating that these species are relevant vectors for SBV.

  4. [Real-time PCR Detection Method for the Reston Subtype of the Ebola Virus].

    PubMed

    Xu, Lili; Bao, Linlin; Gu, Songzhi; Qin, Chuan

    2015-05-01

    We aimed to develop a real-time polymerase chain reaction (PCR) detection method for the Reston subtype of the Ebola virus. The NP gene of the Reston subtype of the Ebola virus was selected as the detection object. Sequences of different subtypes of Ebola viruses were aligned using Clustal W software. The most unique and conserved regions of the Reston subtype of the Ebola virus were recruited as candidate sequences for specific primers. Primer Express and Primer Premier 5. 0 software were used to filter the optimal pair of primers for detection. Real-time PCR was carried out using optimized parameters and positive DNA prepared by serial (tenfold) dilution of a recombinant plasmid and by plotting a standard curve. In addition, the reproducibility, accuracy, and specificity of the assay were tested. Results showed that the sensitivity of detection of the Reston subtype of the Ebola virus by real-time PCR could reached 10(2) copies/microL. The linear relationship (R2) reached 0.997, the slope of the standard curve was -0.3101, and amplification efficiency was 110.145%. A sharp and narrow melting peak appeared at 79.94 degrees C for all standards in different dilutions. In conclusion, a fast and sensitive real-time PCR detection system for the Reston subtype of the Ebola virus was developed. This system could be used as a supplementary diagnostic and monitoring approach for basic and clinical studies on the Reston subtype of the Ebola virus. The detection system does not require expensive technology or specialist operators.

  5. Development of a multiplex real-time PCR assay for the detection of ruminant DNA.

    PubMed

    Ekins, Jason; Peters, Sharla M; Jones, Yolanda L; Swaim, Heidi; Ha, Tai; La Neve, Fabio; Civera, Tiziana; Blackstone, George; Vickery, Michael C L; Marion, Bill; Myers, Michael J; Yancy, Haile F

    2012-06-01

    The U.S. Food and Drug Administration (FDA) has previously validated a real-time PCR-based assay that is currently being used by the FDA and several state laboratories as the official screening method. Due to several shortcomings to the assay, a multiplex real-time PCR assay (MRTA) to detect three ruminant species (bovine, caprine, and ovine) was developed using a lyophilized bead design. The assay contained two primer or probe sets: a "ruminant" set to detect bovine-, caprine-, and ovine-derived materials and a second set to serve as an internal PCR control, formatted using a lyophilized bead design. Performance of the assay was evaluated against stringent acceptance criteria developed by the FDA's Center for Veterinary Medicine's Office of Research. The MRTA for the detection of ruminant DNA passed the stringent acceptance criteria for specificity, sensitivity, and selectivity. The assay met sensitivity and reproducibility requirements by detecting 30 of 30 complete feed samples fortified with meals at 0.1 % (wt/wt) rendered material from each of the three ruminant species. The MRTA demonstrated 100 % selectivity (0.0 % false positives) for negative controls throughout the assessment period. The assay showed ruggedness in both sample selection and reagent preparation. Second and third analyst trials confirmed the quality of the written standard operating procedure with consistency of results. An external laboratory participating in a peer-verification trial demonstrated 100 % specificity in identifying bovine meat and bone meal, while exhibiting a 0.03 % rate of false positives. The assay demonstrated equal levels of sensitivity and reproducibility compared with the FDA's current validated real-time PCR assay. The assay detected three prohibited species in less than 1.5 h of total assay time, a significant improvement over the current real-time assay. These results demonstrated this assay's suitability for routine regulatory use both as a primary screening tool

  6. Duplex Real-Time PCR Method for the Differentiation of Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Li, Xiaofang; Cui, Jinghua; DU, Xiaoli; Cui, Zhigang; Huang, Yibing; Kan, Biao

    2017-01-01

    Cronobacter sakazakii and Cronobacter malonaticus are the most common species of Cronobacter , so it is necessary to detect the two species as soon as possible in surveillance programs. We developed a real-time PCR method for identifying C. sakazakii and C. malonaticus from the genus Cronobacter . In this study, the two pairs of primers and probes were designed, targeting 16S rRNA and fusA, respectively. The specificity of the real-time PCR assay was validated with 112 strains of Cronobacter , including 56 C. sakazakii , 32 C. malonaticus , 16 Cronobacter dublinensis , 6 Cronobacter turicensis , and 2 Cronobacter muytjensii . The results showed that C. sakazakii and C. malonaticus were all correctly identified, consistent with the results of another method by analyzing the clustering of the fusA sequence. The detection limit for pure culture was 10(2) CFU/ml and 10(3) CFU/g for artificially contaminated rehydrated powdered infant formula. Therefore, the developed real-time PCR was a rapid, sensitive, and reliable method for the identification of C. sakazakii and C. malonaticus .

  7. Duplex real-time PCR assay for rapid detection of ampicillin-resistant Enterococcus faecium.

    PubMed

    Mohn, Stein Christian; Ulvik, Arve; Jureen, Roland; Willems, Rob J L; Top, Janetta; Leavis, Helen; Harthug, Stig; Langeland, Nina

    2004-02-01

    Rapid and accurate identification of carriers of resistant microorganisms is an important aspect of efficient infection control in hospitals. Traditional identification methods of antibiotic-resistant bacteria usually take at least 3 to 4 days after sampling. A duplex real-time PCR assay was developed for rapid detection of ampicillin-resistant Enterococcus faecium (ARE). Primers and probes that are used in this assay specifically detected the D-Ala-D-Ala ligase gene of E. faecium and the modified penicillin-binding protein 5 gene (pbp5) carrying the Glu-to-Val substitution at position 629 (Val-629) in a set of 129 tested E. faecium strains with known pbp5 sequence. Presence of the Val-629 in the strain set from 11 different countries was highly correlated with ampicillin resistance. In a screening of hospitalized patients, the real-time PCR assay yielded a sensitivity and a specificity for the detection of ARE colonization of 95% and 100%, respectively. The results were obtained 4 h after samples were harvested from overnight broth of rectal swab samples, identifying both species and the resistance marker mutation in pbp5. This novel assay reliably identifies ARE 2 to 3 days more quickly than traditional culture methods, thereby increasing laboratory throughput, making it useful for rectal screening of ARE. The assay demonstrates the advantages of real-time PCR for detection of nosocomial pathogens.

  8. Real-time PCR for quantification of viable Renibacterium salmoninarum in chum salmon Oncorhynchus keta.

    PubMed

    Suzuki, Kunio; Sakai, D K

    2007-03-13

    Quantification of msa gene mRNA of Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD), was investigated using reverse transcription followed by real-time PCR assay on R. salmoninarum in culture, and in experimentally challenged chum salmon Oncorhynchus keta fry kidney tissues (total of 70 samples) after intraperitoneal (i.p.) injection and bath infection. Correlations of msa gene mRNA concentrations with culturable cell concentrations (as colony forming units [CFU]), determined by drop-plate culture method on selective kidney disease medium (SKDM) agar through a 12 wk incubation time, and msa gene DNA concentrations by real-time PCR assay were examined. Furthermore, ovarian fluid samples from wild chum salmon adults with no clinical signs of disease were collected from 8 rivers and from clinically infected kokanee 0. nerka and masu salmon O. masou that were reared in 1 and 2 hatcheries, respectively (total of 414 samples). All samples were examined by nested PCR assay. Then, positive samples were examined by real-time PCR assays for mRNA and DNA; mRNA was detectable at 8 log units (5.0 x 101 to 5.0 x 10(9) copies p11(-1)) with high correlation (R2 = 0.999). The mRNA concentration correlated with CFU in kidney tissue from fish infected by i.p. injection (R2 = 0.924), by bath infection (R2 = 0.502) and in culture (R2 = 0.888). R. salmoninarum was detected and quantified by real-time PCR assay for mRNA in ovarian fluid samples in both subclinically infected chum salmon adults and clinically infected kokanee and masu salmon adults; detection rates ranged from 0 to 44.4% and concentrations ranged from 9.7 x 10(2) to 5.6 x 10(5) copies pl(-1). These results indicate that real-time PCR assay for the mRNA is a rapid, sensitive and reliable method to detect and quantify the viability of R. salmoninarum in kidney and ovarian fluid samples of salmonid fishes with both clinical and subclinical infection of the pathogen.

  9. Real-time image subtraction using phase reversal technique

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, Vuyyuru; Krishna Mohan, Nandigana K.

    1999-10-01

    A simple coherent interferometric processing method for image subtraction in real-time is presented. The proposed method is based on interferometric principle using Mach- Zehnder interferometer. The phase reversal is accomplished by varying the pressure within an air-filled quartz cell inserted in one of the arms of the interferometer. Initially, the interferometer is aligned to obtain broad interference fringes in the cell region. Then the input imageries are introduced in both the arms of the interferometer and adjusted for exact registration as seen in the plane of observation. By introducing a phase change of (pi) -rad between the two arms of the interferometer, the difference between the inputs is detected in real-time on the monitor. Phase shift calibration and information processing of the proposed method is presented with the results.

  10. Sensitive on-chip quantitative real-time PCR performed on an adaptable and robust platform.

    PubMed

    Lund-Olesen, Torsten; Dufva, Martin; Dahl, John Arne; Collas, Philippe; Hansen, Mikkel Fougt

    2008-12-01

    A robust, flexible and efficient system for performing high sensitivity quantitative on-chip real-time PCR for research purposes is presented. The chips used consist of microchannels etched in silicon. The surface in the channels is a thermally grown silicon dioxide and the channel is sealed by a glass lid. The chips contain four PCR chambers but this number can be increased for further multiplexing. Contrary to PCR chips with oil covered open chambers, these channel-like chambers are easily integrated in lab-on-a-chip devices. The temperature is controlled by a Peltier element and the fluorochrome detector system is a commercially available fluorescence stereo microscope equipped with a CCD camera. The setup shows an excellent signal-to-noise ratio of about 400 compared to that of about 150 obtained in a commercial real time PCR machine. A detection limit of a few copies of target molecules is found, which is 100 to 100,000-fold better than other on-chip real-time PCR systems presented in the literature. This demonstrates that the PCR system can be used for critical applications. We also demonstrate that high quality melting curves can be obtained. Such curves are important in lab-on-a-chip systems for identification of amplified product. The usability of the system is validated by performing quantitative on-chip measurements of the amount of specific gene sequences co-immunoprecipitated with various posttranslationally modified histone proteins. Similar results are obtained from on-chip experiments and experiments carried out in a commercial system on larger sample volumes.

  11. A noninvasive, direct real-time PCR method for sex determination in multiple avian species

    USGS Publications Warehouse

    Brubaker, Jessica L.; Karouna-Renier, Natalie K.; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T.; Henry, Paula F.P.

    2011-01-01

    Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.

  12. A noninvasive, direct real-time PCR method for sex determination in multiple avian species.

    PubMed

    Brubaker, Jessica L; Karouna-Renier, Natalie K; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T; Henry, Paula F P

    2011-03-01

    Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.

  13. Detection of yellow fever virus: a comparison of quantitative real-time PCR and plaque assay.

    PubMed

    Bae, Hi-Gung; Nitsche, Andreas; Teichmann, Anette; Biel, Stefan S; Niedrig, Matthias

    2003-06-30

    Yellow fever virus quantitation is performed routinely by cultivation of virus containing samples using susceptible cells. Counting of the resulting plaques provides a marker for the number of infectious particles present in the sample. This assay usually takes up to 5 days before results are obtained and must be carried out under L2 or L3 laboratory conditions, depending on the yellow fever virus strain used. For clinical diagnosis of yellow fever virus infections the cell culture-based approach takes too long and is of limited practical relevance. Recently, due to its considerable sensitivity, PCR has become a promising method for virus detection. However, whilst PCR can detect virus-specific nucleic acids, it does not allow conclusions to be drawn regarding the infectious potential of the virus detected. Nonetheless, for diagnostic purposes, a rapid, specific and sensitive virus PCR is preferable. Therefore, two independent yellow fever virus-specific real-time PCR assays were established and compared the viral RNA loads to the results of a traditional plaque assay. The estimated ratio of yellow fever virus genomes to infectious particles was between 1000:1 and 5000:1; both approaches displayed a comparable precision of <45%. A significant correlation between genome number as determined by real-time PCR and the corresponding number of plaques in paired samples was found with a Pearson coefficient of correlation of r=0.88 (P<0.0001).

  14. Real-time PCR probe optimization using design of experiments approach.

    PubMed

    Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F

    2016-03-01

    Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

  15. Detection of intestinal protozoa in paediatric patients with gastrointestinal symptoms by multiplex real-time PCR.

    PubMed

    Maas, L; Dorigo-Zetsma, J W; de Groot, C J; Bouter, S; Plötz, F B; van Ewijk, B E

    2014-06-01

    The performance of a multiplex real-time PCR for the detection of Blastocystis, Dientamoeba fragilis, Giardia lamblia, Cryptosporidium species and Entamoeba species in faecal samples was evaluated in an observational prospective study. Paediatric patients (0-18 years) presenting with gastrointestinal symptoms and suspected of having enteroparasitic disease were included. A questionnaire on gastrointestinal symptoms and the chosen treatment was completed at the start of the study and after 6 weeks. Of 163 paediatric patients (mean age, 7.8 years), 114 (70%) had a PCR-positive faecal sample. D. fragilis was detected most frequently, in 101 patients, followed by Blastocystis in 49. In faecal samples of 47 patients, more than one protozoan was detected, mainly the combination of D. fragilis and Blastocystis. Reported gastrointestinal symptoms were abdominal pain (78%), nausea (30%), and altered bowel habits (28%). Eighty-nine of the PCR-positive patients were treated with antibiotics. A significant reduction in abdominal pain was observed both in treated and in untreated patients. This study demonstrated that multiplex real-time PCR detects a high percentage of intestinal protozoa in paediatric patients with gastrointestinal symptoms. However, interpretation and determination of the clinical relevance of a positive PCR result in this population are still difficult.

  16. Identification of lactic acid bacteria isolated from wine using real-time PCR.

    PubMed

    Kántor, Attila; Kluz, Maciej; Puchalski, Czeslaw; Terentjeva, Margarita; Kačániová, Miroslava

    2016-01-01

    Different lactic acid bacteria strains have been shown to cause wine spoilage, including the generation of substances undesirable for the health of wine consumers. The aim of this study was to investigate the occurrence of selected species of heterofermentative lactobacilli, specifically Lactobacillus brevis, Lactobacillus hilgardii, and Lactobacillus plantarum in six different Slovak red wines following the fermentation process. In order to identify the dominant Lactobacillus strain using quantitative (real time) polymerized chain reaction (qPCR) method, pure lyophilized bacterial cultures from the Czech Collection of Microorganisms were used. Six different red wine samples following malolactic fermentation were obtained from selected wineries. After collection, the samples were subjected to a classic plate dilution method for enumeration of lactobacilli cells. Real-time PCR was performed after DNA extraction from pure bacterial strains and wine samples. We used SYBR® Green master mix reagents for measuring the fluorescence in qPCR. The number of lactobacilli ranged from 3.60 to 5.02 log CFU mL(-1). Specific lactobacilli strains were confirmed by qPCR in all wine samples. The number of lactobacilli ranged from 10(3) to 10(6) CFU mL(-1). A melting curve with different melting temperatures (T(m)) of DNA amplicons was obtained after PCR for the comparison of T(m) of control and experimental portions, revealing that the most common species in wine samples was Lactobacillus plantarum with a T(m) of 84.64°C.

  17. Development of a novel detection system for microbes from bovine diarrhea by real-time PCR

    PubMed Central

    TSUCHIAKA, Shinobu; MASUDA, Tsuneyuki; SUGIMURA, Satoshi; KOBAYASHI, Suguru; KOMATSU, Natsumi; NAGAI, Makoto; OMATSU, Tsutomu; FURUYA, Tetsuya; OBA, Mami; KATAYAMA, Yukie; KANDA, Shuhei; YOKOYAMA, Tadashi; MIZUTANI, Tetsuya

    2015-01-01

    Diarrhea in cattle is one of the most economically costly disorders, decreasing milk production and weight gain. In the present study, we established a novel simultaneous detection system using TaqMan real-time PCR designed as a system for detection of microbes from bovine diarrhea using real-time PCR (referred to as Dembo-PCR). Dembo-PCR simultaneously detects a total of 19 diarrhea-causing pathogens, including viruses, bacteria and protozoa. Specific primer–probe sets were newly designed for 7 pathogens and were synthesized on the basis of previous reports for 12 pathogens. Assays were optimized to react under the same reaction conditions. The PCR efficiency and correlation coefficient (R2) of standard curves for each assay were more than 80% and 0.9766, respectively. Furthermore, the sensitivity of Dembo-PCR in fecal sample analysis was measured with feces spiked with target pathogens or synthesized DNA that included specific nucleotide target regions. The resulting limits of detection (LOD) for virus-spiked samples, bacteria and DNA fragments were 0.16–1.6 TCID50 (PFU/reaction), 1.3–13 CFU/reaction and 10–100 copies/reaction, respectively. All reactions showed high sensitivity in pathogen detection. A total of 8 fecal samples, collected from 6 diarrheic cattle, 1 diarrheic calf and 1 healthy cow, were tested using Dembo-PCR to validate the assay’s clinical performance. The results revealed that bovine coronavirus had infected all diarrheic adult cattle and that bovine torovirus had infected the diarrheic calf. These results suggest that Dembo-PCR may be a powerful tool for diagnosing infectious agents in cattle diarrhea. PMID:26616156

  18. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    PubMed Central

    Bode, Elizabeth; Hurtle, William; Norwood, David

    2004-01-01

    Real-time PCR has become an important method for the rapid identification of Bacillus anthracis since the 2001 anthrax mailings. Most real-time PCR assays for B. anthracis have been developed to detect virulence genes located on the pXO1 and pXO2 plasmids. In contrast, only two published chromosomal targets exist, the rpoB gene and the gyrA gene. In the present study, subtraction-hybridization with a plasmid-cured B. anthracis tester strain and a Bacillus cereus driver was used to find a unique chromosomal sequence. By targeting this region, a real-time assay was developed with the Ruggedized Advanced Pathogen Identification Device. Further testing has revealed that the assay has 100% sensitivity and 100% specificity, with a limit of detection of 50 fg of DNA. The results of a search for sequences with homology with the BLAST program demonstrated significant alignment to the recently published B. anthracis Ames strain, while an inquiry for protein sequence similarities indicated homology with an abhydrolase from B. anthracis strain A2012. The importance of this chromosomal assay will be to verify the presence of B. anthracis independently of plasmid occurrence. PMID:15583318

  19. [Real-time PCR kits for the detection of the African Swine Fever virus].

    PubMed

    Latyshev, O E; Eliseeva, O V; Grebennikova, T V; Verkhovskiĭ, O A; Tsibezov, V V; Chernykh, O Iu; Dzhailidi, G A; Aliper, T I

    2014-01-01

    The results obtained using the diagnostic kit based on real-time polymerase chain reaction to detect the DNA of the African Swine Fever in the pathological material, as well as in the culture fluid, are presented. A high sensitivity and specificity for detection of the DNA in the organs and tissues of animals was shown to be useful for detection in the European Union referentiality reagent kits for DNA detection by real time PCR of ASFV. More rapid and effective method of DNA extraction using columns mini spin Quick gDNA(TM) MiniPrep was suggested and compared to the method of DNA isolation on the inorganic sorbent. High correlation of the results of the DNA detection of ASFV by real-time PCR and antigen detection results ASFV by competitive ELISA obtained with the ELISA SEROTEST/INGEZIM COMRAC PPA was demonstrated. The kit can be used in the veterinary services for effective monitoring of ASFV to contain, eliminate and prevent further spread of the disease.

  20. Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV)

    USGS Publications Warehouse

    Purcell, Maureen K.; Thompson, Rachel L.; Garver, Kyle A.; Hawley, Laura M.; Batts, William N.; Sprague, Laura; Sampson, Corie; Winton, James R.

    2013-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonid fishes in North America, Europe and Asia and is reportable to the World Organization for Animal Health (OIE). Phylogenetic analysis has identified 5 major virus genogroups of IHNV worldwide, designated U, M, L, E and J; multiple subtypes also exist within those genogroups. Here, we report the development and validation of a universal IHNV reverse-transcriptase real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) gene. Properties of diagnostic sensitivity (DSe) and specificity (DSp) were defined using laboratory-challenged steelhead trout Oncorhynchus mykiss, and the new assay was compared to the OIE-accepted conventional PCR test and virus isolation in cell culture. The IHNV N gene RT-rPCR had 100% DSp and DSe and a higher estimated diagnostic odds ratio (DOR) than virus culture or conventional PCR. The RT-rPCR assay was highly repeatable within a laboratory and highly reproducible between laboratories. Field testing of the assay was conducted on a random sample of juvenile steelhead collected from a hatchery raceway experiencing an IHN epizootic. The RT-rPCR detected a greater number of positive samples than cell culture and there was 40% agreement between the 2 tests. Overall, the RT-rPCR assay was highly sensitive, specific, repeatable and reproducible and is suitable for use in a diagnostic setting.

  1. Low-cost, real-time, continuous flow PCR system for pathogen detection.

    PubMed

    Fernández-Carballo, B Leticia; McGuiness, Ian; McBeth, Christine; Kalashnikov, Maxim; Borrós, Salvador; Sharon, Andre; Sauer-Budge, Alexis F

    2016-04-01

    In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.0 mm × 30.9 mm × 0.4 mm disposable thermoplastic chip. In order to make the single-use chip economically viable, it was manufactured by hot embossing and was designed to be compatible with roll-to-roll embossing for large scale production. The prototype instrumentation surrounding the chip includes two heaters, thermal sensors, and an optical system. The optical system allows for pathogen detection via real time fluorescence measurements. FAM probes were used as fluorescent reporters of the amplicons generated during the PCR. To demonstrate the function of the chip, two infectious bacteria targets were selected: Chlamydia trachomatis and Escherichia coli O157:H7. For both bacteria, the limit of detection of the system was determined, PCR efficiencies were calculated, and different flow velocities were tested. We have demonstrated successful detection for these two bacterial pathogens highlighting the versatility and broad utility of our portable, low-cost, and rapid PCR diagnostic device.

  2. Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV).

    PubMed

    Purcell, Maureen K; Thompson, Rachel L; Garver, Kyle A; Hawley, Laura M; Batts, William N; Sprague, Laura; Sampson, Corie; Winton, James R

    2013-10-11

    Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonid fishes in North America, Europe and Asia and is reportable to the World Organization for Animal Health (OIE). Phylogenetic analysis has identified 5 major virus genogroups of IHNV worldwide, designated U, M, L, E and J; multiple subtypes also exist within those genogroups. Here, we report the development and validation of a universal IHNV reverse-transcriptase real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) gene. Properties of diagnostic sensitivity (DSe) and specificity (DSp) were defined using laboratory-challenged steelhead trout Oncorhynchus mykiss, and the new assay was compared to the OIE-accepted conventional PCR test and virus isolation in cell culture. The IHNV N gene RT-rPCR had 100% DSp and DSe and a higher estimated diagnostic odds ratio (DOR) than virus culture or conventional PCR. The RT-rPCR assay was highly repeatable within a laboratory and highly reproducible between laboratories. Field testing of the assay was conducted on a random sample of juvenile steelhead collected from a hatchery raceway experiencing an IHN epizootic. The RT-rPCR detected a greater number of positive samples than cell culture and there was 40% agreement between the 2 tests. Overall, the RT-rPCR assay was highly sensitive, specific, repeatable and reproducible and is suitable for use in a diagnostic setting.

  3. Development a diagnostic pan-dermatophyte TaqMan probe real-time PCR assay based on beta tubulin gene.

    PubMed

    Mirhendi, Hossein; Motamedi, Marjan; Makimura, Koichi; Satoh, Kazuo

    2016-08-01

    Early differentiation of dermatophytosis from other cutaneous mycoses is essential to avoid inaccurate therapy. DNA-based techniques including real-time PCR have increasingly been considered for detection of fungal elements in clinical specimens. In this study, after partial sequence analysis of beta tubulin (BT2) gene in 13 common and rare pathogenic dermatophyte species, a pan-dermatophyte primer and probe set was designed in a TaqMan probe-based PCR format. The sensitivity and specificity of the system was tested with 22 reference strains of dermatophytes, 234 positive clinical specimens, 32 DNA samples extracted from normal nails, several fungi other than dermatophytes and human DNAs. Analytical detection limit of the designed PCR on serially diluted DNAs of prepared recombinant plasmid indicated that only five molecules per sample are the minimum number for reliable detection by the assay. A total of 226 out of 234 (96.5%) DNAs extracted from clinical samples, but none of the 32 nail samples, from healthy volunteers were positive in PCR. The real-time PCR targeted beta tubulin gene established in this study could be a sensitive diagnostic tool which is significantly faster than the conventional culture method and should be useful in the clinical settings, in large-scale epidemiological studies and in clinical trials of antifungal therapy.

  4. [BK virus nephropathy after renal transplantation. Diagnosis and prognosis by real time PCR].

    PubMed

    Echavarría, Marcela; Basilotta, Natalia; Aguiar, Ana; Davalos, Mario; Ricarte, Carmen; Iotti, Alejandro; Carballal, Guadalupe

    2007-01-01

    BK virus nephropathy may lead to kidney transplant failure. BK infection and acute rejection are clinically undistinguishable, therefore diagnosis of these entities is critical to establish the correct treatment. The new molecular methods using PCR and real time PCR have significantly contributed to the rapid and sensitive diagnosis of BK virus. Furthermore, viral load determination in-plasma has significantly been associated with BK virus nephropathy. Definite diagnosis of nephropathy requires renal biopsy, although due to the multifocal nature of the disease sensitivity may be less than 100%. BK detection in blood and urine by PCR has contributed to the diagnosis of nephropathy in a more standardized and less invasive way. Recently, quantification of BK virus in plasma has been used for the diagnosis and monitoring of this disease. In the present study, we describe the validation of a real time PCR method for BK virus detection in plasma and urine and its application for diagnosis and monitoring in a renal transplant patient with nephropathy.

  5. Monitoring temperature with fluorescence during real-time PCR and melting analysis.

    PubMed

    Sanford, Lindsay N; Wittwer, Carl T

    2013-03-01

    Accurate control of the sample temperature during thermal cycling is critical for successful polymerase chain reaction (PCR). Direct sensor contact with the reaction is problematic, forcing measurements external to the sample and compromising accuracy during rapid temperature transitions. The widespread use of fluorescence in real-time PCR and melting analysis suggests another measure of temperature, the intrinsic fluorescence of temperature-sensitive passive dyes. Calibration curves correlating sulforhodamine B fluorescence to temperature on nine real-time PCR instruments were obtained by heating at 0.018-0.1 °C/s between 50 and 95 °C, with a twofold change in fluorescence. After instrument stabilization for 20 min, no dye photobleaching was observed and thermal degradation was 2.2%/h at 80 °C. During cycling, solution temperatures derived from fluorescence were well matched to thermocouples placed within samples, but not to temperatures recorded by the instrument. Solution temperatures lagged instrument temperatures by up to 8 °C during cycling, often requiring 5-10 s at target temperatures for equilibration. Melting curves were displaced by 0.2-1.1 °C. Temperature inaccuracies were dependent on the instrument, the ramp rate, and the sample volume. The fluorescence of passive dyes can be used to accurately assess solution temperatures during PCR and should be particularly useful at fast cycling speeds.

  6. Real-time PCR systems targeting giant viruses of amoebae and their virophages.

    PubMed

    Ngounga, Tatsiana; Pagnier, Isabelle; Reteno, Dorine-Gaelle Ikanga; Raoult, Didier; La Scola, Bernard; Colson, Philippe

    2013-01-01

    Giant viruses that infect amoebae, including mimiviruses and marseilleviruses, were first described in 2003. Virophages were subsequently described that infect mimiviruses. Culture isolation with Acanthamoeba spp. and metagenomic studies have shown that these giant viruses are common inhabitants of our biosphere and have enabled the recent detection of these viruses in human samples. However, the genomes of these viruses display substantial genetic diversity, making it a challenge to examine their presence in environmental and clinical samples using conventional and real-time PCR. We designed and evaluated the performance of PCR systems capable of detecting all currently isolated mimiviruses, marseilleviruses and virophages to assess their prevalence in various samples. Our real-time PCR assays accurately detected all or most of the members of the currently delineated lineages of giant viruses infecting acanthamoebae as well as the mimivirus virophages, and enabled accurate classification of the mimiviruses of amoebae in lineages A, B or C. We were able to detect four new mimiviruses directly from environmental samples and correctly classified these viruses within mimivirus lineage C. This was subsequently confirmed by culture on amoebae followed by partial Sanger sequencing. PCR systems such as those implemented here may contribute to an improved understanding of the prevalence of mimiviruses, their virophages and marseilleviruses in humans.

  7. Real-time PCR strategy for parasite quantification in blood and tissue samples of experimental Trypanosoma cruzi infection.

    PubMed

    Caldas, Sérgio; Caldas, Ivo Santana; Diniz, Lívia de Figueiredo; Lima, Wanderson Geraldo de; Oliveira, Riva de Paula; Cecílio, Alzira Batista; Ribeiro, Isabela; Talvani, André; Bahia, Maria Terezinha

    2012-09-01

    The lack of an accurate diagnosis has been a serious obstacle to the advancement of the anti-Trypanosoma cruzi chemotherapy and long-term infection can result in different health risks to human. PCRs are alternative methods, more sensitive than conventional parasitological techniques, which due to their low sensitivities are considered unsuitable for these purposes. The aim of this study was to investigate a sensitive diagnostic strategy to quantify blood and cardiac tissues parasites based on real-time PCR tools during acute and chronic phases of murine Chagas disease, as well as to monitor the evolution of infection in those mice under specific treatment. In parallel, fresh blood examination, immunological analysis and quantification of cardiac inflammation were also performed to confront and improve real-time PCR data. Similar profiles of parasitemia curves were observed in both quantification techniques during the acute phase of the infection. In contrast, parasites could be quantified only by real-time PCR at 60 and 120 days of infection. In cardiac tissue, real-time PCR detected T. cruzi DNA in 100% of infected mice, and using this tool a significant Pearson correlation between parasite load in peripheral blood and in cardiac tissue during acute and chronic phases was observed. Levels of serum CCL2, CCL5 and nitric oxide were coincident with parasite load but focal and diffuse mononuclear infiltrates was observed, even with significant (p<0.05) reduction of parasitism after 60 days of infection. Later, this methodology was used to monitor the evolution of infection in animals treated with itraconazole (Itz). Itz-treatment induced a reduction of parasite load in both blood and cardiac muscle at the treatment period, but after the end of chemotherapy an increase of parasitism was detected. Interestingly, inflammatory mediators levels and heart inflammation intensity had similar evolution to the parasite load, in the group of animals treated. Taken together, our

  8. Evaluation of different enrichment methods for pathogenic Yersinia species detection by real time PCR

    PubMed Central

    2014-01-01

    Background Yersiniosis is a zoonotic disease reported worldwide. Culture and PCR based protocols are the most common used methods for detection of pathogenic Yersinia species in animal samples. PCR sensitivity could be increased by an initial enrichment step. This step is particularly useful in surveillance programs, where PCR is applied to samples from asymptomatic animals. The aim of this study was to evaluate the improvement in pathogenic Yersinia species detection using a suitable enrichment method prior to the real time PCR (rtPCR). Nine different enrichment protocols were evaluated including six different broth mediums (CASO, ITC, PSB, PBS, PBSMSB and PBSSSB). Results The analysis of variance showed significant differences in Yersinia detection by rtPCR according to the enrichment protocol used. These differences were higher for Y. pseudotuberculosis than for Y. enterocolitica. In general, samples incubated at lower temperatures yielded the highest detection rates. The best results were obtained with PBSMSB and PBS2. Application of PBSMSB protocol to free-ranging wild board samples improved the detection of Y. enterocolitica by 21.2% when compared with direct rtPCR. Y. pseudotuberculosis detection was improved by 10.6% when results obtained by direct rtPCR and by PBSMSB enrichment before rtPCR were analyzed in combination. Conclusions The data obtained in the present study indicate a difference in Yersinia detection by rtPCR related to the enrichment protocol used, being PBSMSB enrichment during 15 days at 4°C and PBS during 7 days at 4°C the most efficient. The use of direct rtPCR in combination with PBSMSB enrichment prior to rtPCR resulted in an improvement in the detection rates of pathogenic Yersinia in wild boar and could be useful for application in other animal samples. PMID:25168886

  9. Developmental stage of strongyle eggs affects the outcome variations of real-time PCR analysis.

    PubMed

    Andersen, U V; Haakansson, I T; Roust, T; Rhod, M; Baptiste, K E; Nielsen, M K

    2013-01-16

    Strongyle and trichostrongyle parasites are ubiquitous nematodes of grazing livestock. Several molecular diagnostic tests are based upon measuring and quantifying DNA obtained from parasite eggs. It is well known that such eggs undergo development during storage, but it remains unknown to which extent developmental stages can affect the variation of diagnostic test results. This study investigated the influence of developmental stages of strongyle eggs on the variation real-time polymerase chain reaction (PCR) results. Mixed species strongyle eggs were obtained from the faeces of a naturally infected horse. Eggs were isolated and placed in microtiter plates with demineralized water. A total of 25 wells containing 100 eggs each were set up and kept refrigerated for up to five days. Once daily, five wells were examined on an inverted microscope at 100× magnification, where the developmental stages of the eggs were noted, and then eggs harvested for DNA extraction. The protocol was repeated three times. Genomic DNA was extracted using a commercial kit previously validated for strongyle type eggs. PCR reactions were performed with a primer set specific for the ribosomal DNA region for all strongyle type parasites (NC1, NC2). SYBR Green Real-Time PCRs were performed in triplicates. Results revealed a statistically significant increase in PCR yield after three days, which was statistically associated with beginning embryonation of the eggs. In conclusion, storage time and developmental stage of strongyle eggs are significant sources of error in studies based on quantitative real-time PCR analysis. This study suggests that for refrigerated storage of more than three days, eggs should be inactivated and preserved for further analysis.

  10. Real-time PCR using mycobacteriophage DNA for rapid phenotypic drug susceptibility results for Mycobacterium tuberculosis.

    PubMed

    Pholwat, Suporn; Ehdaie, Beeta; Foongladda, Suporn; Kelly, Kimberly; Houpt, Eric

    2012-03-01

    Managing drug-resistant Mycobacterium tuberculosis requires drug susceptibility testing, yet conventional drug susceptibility testing is slow, and molecular testing does not yield results for all antituberculous drugs. We addressed these challenges by utilizing real-time PCR of mycobacteriophage D29 DNA to evaluate the drug resistance of clinical M. tuberculosis isolates. Mycobacteriophages infect and replicate in viable bacterial cells faster than bacterial cells replicate and have been used for detection and drug resistance testing for M. tuberculosis either by using reporter cells or phages with engineered reporter constructs. Our primary protocol involved culturing M. tuberculosis isolates for 48 h with and without drugs at critical concentrations, followed by incubation with 10(3) PFU/ml of D29 mycobacteriophage for 24 h and then real-time PCR. Many drugs could be incubated instantly with M. tuberculosis and phage for 24 h alone. The change in phage DNA real-time PCR cycle threshold (C(T)) between control M. tuberculosis and M. tuberculosis treated with drugs was calculated and correlated with conventional agar proportion drug susceptibility results. Specifically, 9 susceptible clinical isolates, 22 multidrug-resistant (MDR), and 1 extensively drug-resistant (XDR) M. tuberculosis strains were used and C(T) control-C(T) drug cutoffs of between +0.3 and -6.0 yielded 422/429 (98%) accurate results for isoniazid, rifampin, streptomycin, ethambutol, amikacin, kanamycin, capreomycin, ofloxacin, moxifloxacin, ethionamide, para-aminosalicylic acid, cycloserine, and linezolid. Moreover, the ΔC(T) values correlated with isolate MIC for most agents. This D29 quantitative PCR assay offers a rapid, accurate, 1- to 3-day phenotypic drug susceptibility test for first- and second-line drugs and may suggest an approximate MIC.

  11. Detection of Invasive Aspergillosis in Bone Marrow Transplant Recipients Using Real-Time PCR

    PubMed Central

    Nabili, Mojtaba; Shokohi, Tahereh; Janbabaie, Ghasem; Hashemi-Soteh, Mohammad Bagher; Ali-Moghaddam, Kamran; Aghili, Seyed Reza

    2013-01-01

    Objective: The invasive aspergillosis (IA) is a serious opportunistic infection caused by various species of Aspergillus in immunocompromised individuals. Basically, rapid and early diagnosis prevents IA progression. In this study we performed a Real Time PCR/ Fluorescence Resonance Energy Transfer (FRET) for diagnosis of IA in hematologic malignancies and bone marrow transplant recipients. Materials and Methods: Sixty two patients with hematologic malignancies and marrow transplant recipients were evaluated for IA in Sari and Tehran from 2009 to 2010. The primer and hybridization probe were designed to amplify the specific sequence of 18S rRNA genes using Light Cycler system and FRET. Galactomannan (GM) assay was performed on serums which obtained from selected patients using the Platelia Aspergillus kit. Results: According to the criteria defined by the European Organization for Research and Treatment of Cancer and Mycoses Study Group (EORTC/MSG) for IA, 18 (29%) patients out of 62 patients were stratified into probable and possible groups. The female-to-male ratio was 1:2; the mean age of the patients was 36 years. The most common malignancies in these patients were acute lymphoblastic leukemia (38.9%). The minimum detection limit was 10 conidia (101 CFU/ml) equivalents (100 fg) per PCR reaction. GM assay was positive in 20.9% and real-time PCR probe set assay were positive in 17.7% patients who had clinical signs and host factor according to the mentioned criteria. Conclusion: Using the Real-Time PCR/FRET assay in whole blood specimens seems to be a promising method for diagnosis of IA, especially when used in combination with the GM detection test. PMID:23853434

  12. FPGA implementation of principal component regression (PCR) for real-time differentiation of dopamine from interferents.

    PubMed

    Bozorgzadeh, Bardia; Covey, Daniel P; Garris, Paul A; Mohseni, Pedram

    2015-01-01

    This paper reports on field-programmable gate array (FPGA) implementation of a digital signal processing (DSP) unit for real-time processing of neurochemical data obtained by fast-scan cyclic voltammetry (FSCV) at a carbonfiber microelectrode (CFM). The DSP unit comprises a decimation filter and two embedded processors to process the FSCV data obtained by an oversampling recording front-end and differentiate the target analyte from interferents in real time with a chemometrics algorithm using principal component regression (PCR). Interfaced with an integrated, FSCV-sensing front-end, the DSP unit successfully resolves the dopamine response from that of pH change and background-current drift, two common dopamine interferents, in flow injection analysis involving bolus injection of mixed solutions, as well as in biological tests involving electrically evoked, transient dopamine release in the forebrain of an anesthetized rat.

  13. Real-time PCR for detection of NDM-1 carbapenemase genes from spiked stool samples.

    PubMed

    Naas, Thierry; Ergani, Ayla; Carrër, Amélie; Nordmann, Patrice

    2011-09-01

    An in-house quantitative real-time PCR (qPCR) assay using TaqMan chemistry has been developed to detect NDM-1 carbapenemase genes from bacterial isolates and directly from stool samples. The qPCR amplification of bla(NDM-1) DNA was linear over 10 log dilutions (r(2) = 0.99), and the amplification efficiency was 1.03. The qPCR detection limit was reproducibly 1 CFU, or 10 plasmid molecules, and there was no cross-reaction with DNA extracted from several multidrug-resistant bacteria harboring other β-lactam resistance genes. Feces spiked with decreasing amounts of enterobacterial isolates producing NDM-1 were spread on ChromID ESBL and on CHROMagar KPC media and were subjected to the qPCR. The limits of carbapenem-resistant bacterial detection from stools was reproducibly 1 × 10(1) to 3 × 10(1) CFU/100 mg feces with ChromID ESBL medium. The CHROMagar KPC culture medium had higher limits of detection (1 × 10(1) to 4 × 10(3) CFU/ml), especially with bacterial isolates having low carbapenem MICs. The limits of detection with the qPCR assay were reproducibly below 1 × 10(1) CFU/100 mg of feces by qPCR assay. Samples spiked with NDM-1-negative bacteria were negative by qPCR. The sensitivity and specificity of the bla(NDM-1) qPCR assay on spiked samples were 100% in both cases. Using an automated DNA extraction system (QIAcube system), the qPCR assay was reproducible. The use of qPCR is likely to shorten the time for bla(NDM-1) detection from 48 h to 4 h and will be a valuable tool for outbreak follow-up in order to rapidly isolate colonized patients and assign them to cohorts.

  14. Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.

    PubMed

    Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S

    2008-07-01

    A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.

  15. Comparative Evaluation of Real-Time PCR Methods for Human Noroviruses in Wastewater and Human Stool

    PubMed Central

    Konta, Yoshimitsu; Kazama, Shinobu; Inaba, Manami; Imagawa, Toshifumi; Tohma, Kentaro; Saito, Mayuko; Suzuki, Akira; Oshitani, Hitoshi; Omura, Tatsuo

    2016-01-01

    Selecting the best quantitative PCR assay is essential to detect human norovirus genome effectively from clinical and environmental samples because no cell lines have been developed to propagate this virus. The real-time PCR methods for noroviruses GI (4 assays) and GII (3 assays) were evaluated using wastewater (n = 70) and norovirus-positive stool (n = 77) samples collected in Japan between 2012 and 2013. Standard quantitative PCR assays recommended by the U.S. Environmental Protection Agency, International Organization for Standardization, and Ministry of Health, Labour and Welfare, Japan, together with recently reported assays were included. Significant differences in positive rates and quantification cycles were observed by non-parametric analysis. The present study identifies the best assay for norovirus GI and GII to amplify norovirus genomes efficiently. PMID:27525654

  16. Probe-based real-time PCR method for multilocus melt typing of Xylella fastidiosa strains.

    PubMed

    Brady, Jeff A; Faske, Jennifer B; Ator, Rebecca A; Castañeda-Gill, Jessica M; Mitchell, Forrest L

    2012-04-01

    Epidemiological studies of Pierce's disease (PD) can be confounded by a lack of taxonomic detail on the bacterial causative agent, Xylella fastidiosa (Xf). PD in grape is caused by strains of Xylella fastidiosa subsp. fastidiosa, but is not caused by other subspecies of Xf that typically colonize plants other than grape. Detection assays using ELISA and qPCR are effective at detecting and quantifying Xf presence or absence, but offer no information on Xf subspecies or strain identity. Surveying insects or host plants for Xf by current ELISA or qPCR methods provides only presence/absence and quantity information for any and all Xf subspecies, potentially leading to false assessments of disease threat. This study uses a series of adjacent-hybridizing DNA melt analysis probes that are capable of efficiently discriminating Xf subspecies and strain relationships in rapid real-time PCR reactions.

  17. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    PubMed

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  18. BactQuant: An enhanced broad-coverage bacterial quantitative real-time PCR assay

    PubMed Central

    2012-01-01

    Background Bacterial load quantification is a critical component of bacterial community analysis, but a culture-independent method capable of detecting and quantifying diverse bacteria is needed. Based on our analysis of a diverse collection of 16 S rRNA gene sequences, we designed a broad-coverage quantitative real-time PCR (qPCR) assay—BactQuant—for quantifying 16 S rRNA gene copy number and estimating bacterial load. We further utilized in silico evaluation to complement laboratory-based qPCR characterization to validate BactQuant. Methods The aligned core set of 4,938 16 S rRNA gene sequences in the Greengenes database were analyzed for assay design. Cloned plasmid standards were generated and quantified using a qPCR-based approach. Coverage analysis was performed computationally using >670,000 sequences and further evaluated following the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Results A bacterial TaqMan® qPCR assay targeting a 466 bp region in V3-V4 was designed. Coverage analysis showed that 91% of the phyla, 96% of the genera, and >80% of the 89,537 species analyzed contained at least one perfect sequence match to the BactQuant assay. Of the 106 bacterial species evaluated, amplification efficiencies ranged from 81 to 120%, with r2-value of >0.99, including species with sequence mismatches. Inter- and intra-run coefficient of variance was <3% and <16% for Ct and copy number, respectively. Conclusions The BactQuant assay offers significantly broader coverage than a previously reported universal bacterial quantification assay BactQuant in vitro performance was better than the in silico predictions. PMID:22510143

  19. Universal Probe Library based real-time PCR for rapid detection of bacterial pathogens from positive blood culture bottles.

    PubMed

    Zhu, Lingxiang; Shen, Ding-Xia; Zhou, Qiming; Liu, Chao-Jun; Li, Zexia; Fang, Xiangdong; Li, Quan-Zhen

    2014-03-01

    A set of real-time PCR based assays using the locked nucleic acid probes from Roche Universal ProbeLibrary were developed for rapid detection of eight bacterial species from positive blood culture bottles. Four duplex real-time PCR reactions targeting to one Gram-positive bacterium and one Gram-negative bacterium were optimized for species identification according to Gram stain results. We also included mecA-specific primers and probes in the assays to indicate the presence of methicillin resistance in the bacterial species. The analytical sensitivity was in the range of 1-10 CFU per PCR reaction mixture. The specificity and cross reactivity of the assay was validated by 28 ATCC reference strains and 77 negative blood culture specimens. No cross-reactivity was observed in these samples thus demonstrating 100 % specificity. 72 previously characterized clinical isolates were tested by the real-time PCR assay and validated the accuracy and feasibility of the real-time PCR assay. Furthermore, 55 positive blood culture samples were tested using real-time PCR and 50 (90.9 %) of them were identified as the same species as judged by biochemical analysis. In total, real-time PCR showed 98.2 % consistent to that of traditional methods. Real-time PCR can be used as a supplement for early detection of the frequently-occurred pathogens from the positive blood cultures.

  20. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    PubMed

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  1. Molecular diagnosis of Kingella kingae osteoarticular infections by specific real-time PCR assay.

    PubMed

    Cherkaoui, Abdessalam; Ceroni, Dimitri; Emonet, Stéphane; Lefevre, Yan; Schrenzel, Jacques

    2009-01-01

    Kingella kingae is an emerging pathogen that is recognized as a causative agent of septic arthritis and osteomyelitis, primarily in infants and children. The bacterium is best detected by rapid inoculation in blood culture systems or by real-time PCR assays. Pathogenesis of the agent was linked recently to the production of a potent cytotoxin, known as RTX, which is toxic to a variety of human cell types. The locus encoding the RTX toxin is thought to be a putative virulence factor, and is, apparently, essential for inducing cytotoxic effects on respiratory epithelial, synovial and macrophage-like cells. Herein, we describe a novel real-time PCR assay that targets the RTX toxin gene and illustrate its use in two clinical cases. The assay exhibited a sensitivity of 30 c.f.u., which is 10-fold more sensitive than a previously published semi-nested broad-range 16S rRNA gene PCR, and showed no cross-reactivity with several related species and common osteoarticular pathogens.

  2. An immunomagnetic separation-real-time PCR method for quantification of Cryptosporidium parvum in water samples.

    PubMed

    Fontaine, Melanie; Guillot, Emmanuelle

    2003-07-01

    The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.

  3. Critical analysis of rhinovirus RNA load quantification by real-time reverse transcription-PCR.

    PubMed

    Schibler, Manuel; Yerly, Sabine; Vieille, Gaël; Docquier, Mylène; Turin, Lara; Kaiser, Laurent; Tapparel, Caroline

    2012-09-01

    Rhinoviruses are the most frequent cause of human respiratory infections, and quantitative rhinovirus diagnostic tools are needed for clinical investigations. Although results obtained by real-time reverse-transcription PCR (RT-PCR) assays are frequently converted to viral RNA loads, this presents several limitations regarding accurate virus RNA quantification, particularly given the need to reliably quantify all known rhinovirus genotypes with a single assay. Using an internal extraction control and serial dilutions of an in vitro-transcribed rhinovirus RNA reference standard, we validated a quantitative one-step real-time PCR assay. We then used chimeric rhinovirus genomes with 5'-untranslated regions (5'UTRs) originating from the three rhinovirus species and from one enterovirus to estimate the impact of the 5'UTR diversity. Respiratory specimens from infected patients were then also analyzed. The assay quantification ability ranged from 4.10 to 9.10 log RNA copies/ml, with an estimated error margin of ±10%. This variation was mainly linked to target variability and interassay variability. Taken together, our results indicate that our assay can reliably estimate rhinovirus RNA load, provided that the appropriate error margin is used. In contrast, due to the lack of a universal rhinovirus RNA standard and the variability related to sample collection procedures, accurate absolute rhinovirus RNA quantification in respiratory specimens is currently hardly feasible.

  4. Simultaneous detection and differentiation of Campylobacter jejuni, C. coli, and C. lari in chickens by multiplex real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multiplex real-time PCR (qPCR) assay was developed to detect and differentiate the three most commonly found and harmful species of Campylobacter in a single PCR reaction. The qPCR primers and TaqMan probes were designed to amplify the unique DNA sequences of hipO, cdtA, and pepT genes which are s...

  5. Monitoring of wild birds for Newcastle disease virus in Switzerland using real time RT-PCR.

    PubMed

    Camenisch, Glauco; Bandli, Risch; Hoop, Richard

    2008-07-01

    Wild birds are considered to be the natural reservoir of the Newcastle disease virus (NDV; avian paramyxovirus-1) causing New-castle disease, and are often suspected to be involved in outbreaks in domesticated birds. To assess the epidemiologic status of wild birds living, or overwintering, in Switzerland, 3,049 cloacal swabs covering the period 2003-2006 were screened for NDV, using real time RT-PCR. All samples were negative. This result seems in contrast with previously performed serologic screenings of wild birds.

  6. A Real-Time PCR Method Targeting Camel Ingredient for Food Authentication.

    PubMed

    Wu, Yajun; Yang, Yange; Wang, Bin; Liu, Mingchang; Han, Jianxun; Chen, Ying

    2015-01-01

    The special nutritious value of camel showed high potential for market exploitation. In this paper, a real-time PCR method targeting camel ingredient in camel meat and milk is reported as an approach to fight against adulteration. To understand the impact of processing procedures on the amplifiability of cytb gene, four kinds of processed camel meat were investigated, and the rate of DNA breakage was explored. The method was able to detect 5 fg/μL camel DNA and highly processed food containing 0.01% camel meat with a high confidence level.

  7. Real-time PCR diagnosis of Plasmodium vivax among blood donors

    PubMed Central

    2012-01-01

    Background When selecting blood donors in transfusion centres, one important problem is to identify, during screening, individuals with infectious diseases that can be transmitted by blood, such as malaria, especially when the parasite densities are very low. This problem is particularly severe in endemic areas, such as the Brazilian Amazon. In the present study, molecular diagnostic (real-time PCR) of Plasmodium vivax was used to identify blood donors infected with malaria parasites. Methods Samples from 595 blood donors were collected in seven haemotherapy centres in northern Brazil located in areas at risk for malaria transmission, and the analyses were performed by real-time PCR with TaqMan probes on 7500 Real-Time PCR Systems, to genotype the mitochondrial DNA region specific to P. vivax. The experiment was designed for hybridization of the cytochrome c oxidase genes of the mitochondrial genome (GenBank GI63022502). The serological data were obtained using enzyme-linked immunosorbent assay - ELISA (Anti-HIV, Anti-HTLV I-II; Anti-HVC, HBsAg, Anti-HBc, Chagas disease) and VDRL (Syphilis) from the Blood Bank System of the Haematology and Haemotherapy Centre of Pará. Results The assay identified eight individuals in the sample (1.34%) infected with P. vivax at the time of blood donation. This percentage was higher than the altered serological results (reactive or inconclusive) of the prevalence of anti-HIV (0.67%), anti-hepatitis C virus (0.34%), anti-hepatitis B surface antigen (0.67%), anti-human T-lymphotropic virus I/II (1.18%), anti-Chagas disease (0.17%) and syphilis (VDRL) (0.50%), but not higher than anti-hepatitis B core antigen antibodies (4.37%). This result indicates the need to use more sensitive methods of diagnosing malaria in blood banks. Conclusion The real-time PCR with TaqMan probes enabled the identification of P. vivax in a high proportion of clinically healthy donors, highlighting the potential risk for transfusion-transmitted malaria

  8. Soft Fruit Traceability in Food Matrices using Real-Time PCR

    PubMed Central

    Palmieri, Luisa; Bozza, Elisa; Giongo, Lara

    2009-01-01

    Food product authentication provides a means of monitoring and identifying products for consumer protection and regulatory compliance. There is a scarcity of analytical methods for confirming the identity of fruit pulp in products containing Soft Fruit. In the present work we have developed a very sensible qualitative and quantitative method to determine the presence of berry DNAs in different food matrices. To our knowledge, this is the first study that shows the applicability, to Soft Fruit traceability, of melting curve analysis and multiplexed fluorescent probes, in a Real-Time PCR platform. This methodology aims to protect the consumer from label misrepresentation. PMID:22253987

  9. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    PubMed

    Hasanpour, Mojtaba; Najafi, Akram

    2017-03-28

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (Tm) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains.

  10. Extensible multiplex real-time PCR for rapid bacterial identification with carbon nanotube composite microparticles.

    PubMed

    Jung, Seungwon; Kim, Jungmin; Kim, Junsun; Yang, Sang Hwa; Kim, Sang Kyung

    2017-03-01

    The early diagnosis of pathogenic bacteria is significant for bacterial identification and antibiotic resistance. Implementing rapid, sensitive, and specific detection, molecular diagnosis has been considered complementary to the conventional bacterial culture. Composite microparticles of a primer-immobilized network (cPIN) are developed for multiplex detection of pathogenic bacteria with real-time polymerase chain reaction (qPCR). A pair of specific primers are incorporated and stably conserved in a cPIN particle. One primer is crosslinked to the polymer network, and the other is bound to carbon nanotubes (CNTs) in the particle. At the initiation of qPCR, the latter primer is released from the CNTs and participates in the amplification. The amplification efficiency of this cPIN qPCR is estimated at more than 90% with suppressed non-specific signals from complex samples. In multiplexing, four infective pathogens are successfully discriminated using this cPIN qPCR. Multiplex qPCR conforms with the corresponding singleplex assays, proving independent amplification in each particle. Four bacterial targets from clinical samples are differentially analyzed in 30min of a single qPCR trial with multiple cPIN particles.

  11. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    NASA Astrophysics Data System (ADS)

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-05-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants.

  12. Novel multitarget real-time PCR assay for rapid detection of Bordetella species in clinical specimens.

    PubMed

    Tatti, Kathleen M; Sparks, Kansas N; Boney, Kathryn O; Tondella, Maria Lucia

    2011-12-01

    A novel multitarget real-time PCR (RT-PCR) assay for the rapid identification of Bordetella pertussis, B. parapertussis, and B. holmesii was developed using multicopy insertion sequences (ISs) in combination with the pertussis toxin subunit S1 (ptxS1) singleplex assay. The RT-PCR targets for the multiplex assay include IS481, commonly found in B. pertussis and B. holmesii; IS1001 of B. parapertussis; and the IS1001-like sequence of B. holmesii. Overall, 402 Bordetella species and 66 non-Bordetella species isolates were tested in the multitarget assay. Cross-reactivity was found only with 5 B. bronchiseptica isolates, which were positive with IS1001 of B. parapertussis. The lower limit of detection (LLOD) of the multiplex assay was similar to the LLOD of each target in an individual assay format, which was approximately 1 genomic equivalent per reaction for all targets. A total of 197 human clinical specimens obtained during cough-illness outbreak investigations were used to evaluate the multitarget RT-PCR assay. The multiplex assay results from 87 clinical specimens were compared to the individual RT-PCR assay and culture results. The multitarget assay is useful as a diagnostic tool to confirm B. pertussis infections and to rapidly identify other Bordetella species. In conclusion, the use of this multitarget RT-PCR approach increases specificity, while it decreases the amount of time, reagents, and specimen necessary for RT-PCRs used for accurate diagnosis of pertussis-like illness.

  13. Interlaboratory comparison of real-time pcr protocols for quantification of general fecal indicator bacteria

    USGS Publications Warehouse

    Shanks, O.C.; Sivaganesan, M.; Peed, L.; Kelty, C.A.; Blackwood, A.D.; Greene, M.R.; Noble, R.T.; Bushon, R.N.; Stelzer, E.A.; Kinzelman, J.; Anan'Eva, T.; Sinigalliano, C.; Wanless, D.; Griffith, J.; Cao, Y.; Weisberg, S.; Harwood, V.J.; Staley, C.; Oshima, K.H.; Varma, M.; Haugland, R.A.

    2012-01-01

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized protocol requires information on the reproducibility and sources of variation associated with qPCR methodology across laboratories. This study examines interlaboratory variability in the measurement of enterococci and Bacteroidales concentrations from standardized, spiked, and environmental sources of DNA using the Entero1a and GenBac3 qPCR methods, respectively. Comparisons are based on data generated from eight different research facilities. Special attention was placed on the influence of the DNA isolation step and effect of simplex and multiplex amplification approaches on interlaboratory variability. Results suggest that a crude lysate is sufficient for DNA isolation unless environmental samples contain substances that can inhibit qPCR amplification. No appreciable difference was observed between simplex and multiplex amplification approaches. Overall, interlaboratory variability levels remained low (<10% coefficient of variation) regardless of qPCR protocol. ?? 2011 American Chemical Society.

  14. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    PubMed Central

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-01-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants. PMID:27142574

  15. Detection and Quantification of Wallemia sebi in Aerosols by Real-Time PCR, Conventional PCR, and Cultivation

    PubMed Central

    Zeng, Qing-Yin; Westermark, Sven-Olof; Rasmuson-Lestander, Åsa; Wang, Xiao-Ru

    2004-01-01

    Wallemia sebi is a deuteromycete fungus commonly found in agricultural environments in many parts of the world and is suspected to be a causative agent of farmer's lung disease. The fungus grows slowly on commonly used culture media and is often obscured by the fast-growing fungi. Thus, its occurrence in different environments has often been underestimated. In this study, we developed two sets of PCR primers specific to W. sebi that can be applied in either conventional PCR or real-time PCR for rapid detection and quantification of the fungus in environmental samples. Both PCR systems proved to be highly specific and sensitive for W. sebi detection even in a high background of other fungal DNAs. These methods were employed to investigate the presence of W. sebi in the aerosols of a farm. The results revealed a high concentration of W. sebi spores, 107 m−3 by real-time PCR and 106 m−3 by cultivation, which indicates the prevalence of W. sebi in farms handling hay and grain and in cow barns. The methods developed in this study could serve as rapid, specific, and sensitive means of detecting W. sebi in aerosol and surface samples and could thus facilitate investigations of its distribution, ecology, clinical diagnosis, and exposure risk assessment. PMID:15574929

  16. Selection and Validation of Reference Genes for Quantitative Real-time PCR in Gentiana macrophylla

    PubMed Central

    He, Yihan; Yan, Hailing; Hua, Wenping; Huang, Yaya; Wang, Zhezhi

    2016-01-01

    Real time quantitative PCR (RT-qPCR or qPCR) has been extensively applied for analyzing gene expression because of its accuracy, sensitivity, and high throughput. However, the unsuitable choice of reference gene(s) can lead to a misinterpretation of results. We evaluated the stability of 10 candidates – five traditional housekeeping genes (UBC21, GAPC2, EF-1α4, UBQ10, and UBC10) and five novel genes (SAND1, FBOX, PTB1, ARP, and Expressed1) – using the transcriptome data of Gentiana macrophylla. Common statistical algorithms ΔCt, GeNorm, NormFinder, and BestKeeper were run with samples collected from plants under various experimental conditions. For normalizing expression levels from tissues at different developmental stages, GAPC2 and UBC21 had the highest rankings. Both SAND1 and GAPC2 proved to be the optimal reference genes for roots from plants exposed to abiotic stresses while EF-1α4 and SAND1 were optimal when examining expression data from the leaves of stressed plants. Based on a comprehensive ranking of stability under different experimental conditions, we recommend that SAND1 and EF-1α4 are the most suitable overall. In this study, to find a suitable reference gene and its real-time PCR assay for G. macrophylla DNA content quantification, we evaluated three target genes including WRKY30, G10H, and SLS, through qualitative and absolute quantitative PCR with leaves under elicitors stressed experimental conditions. Arbitrary use of reference genes without previous evaluation can lead to a misinterpretation of the data. Our results will benefit future research on the expression of genes related to secoiridoid biosynthesis in this species under different experimental conditions. PMID:27446172

  17. Multiplex real-time reverse transcription-PCR assay for determination of hepatitis C virus genotypes.

    PubMed

    Cook, Linda; Sullivan, KaWing; Krantz, Elizabeth M; Bagabag, Arthur; Jerome, Keith R

    2006-11-01

    A variety of methods have been used to determine hepatitis C virus (HCV) genotypes. Because therapeutic decisions for chronic HCV-related hepatitis are made on the basis of genotype, it is important that genotype be accurately determined by clinical laboratories. Existing methods are often subjective, inaccurate, manual, time-consuming, and contamination prone. We therefore evaluated real-time reverse transcription-PCR (RT-PCR) reagents that have recently become commercially available (Abbott HCV Genotype ASR). The assay developed by our laboratory starts with purified RNA and can be performed in 4 to 5 h. An initial evaluation of 479 samples was done with a restriction fragment length polymorphism (RFLP) method and the RT-PCR assay, and discrepant samples were sequenced. An additional 1,200 samples were then tested, and data from all assays were used to evaluate the efficiency and specificity of each genotype-specific reaction. Good correlation between results by the two methods was seen. Discrepant samples included those indeterminate by the RT-PCR assay (n = 110) and a subset that were incorrectly called 2a by the RFLP method (n = 75). The real-time RT-PCR assay performed well with genotype 1, 2, and 3 samples. Inadequate numbers of samples were available to evaluate fully genotypes 4, 5, and 6. Analysis of each primer-probe set demonstrated that weak cross-reactive amplifications were common but usually did not interfere with the genotype determination. However, in about 1% of samples, two or more genotypes amplified at roughly equivalent amounts. Further studies are necessary to determine whether these mixed-genotype samples are true mixtures or a reflection of occasional cross-reactive amplifications.

  18. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    PubMed Central

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-01-01

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples. PMID:26492259

  19. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    PubMed

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  20. Molecular diagnosis of alpha-thalassemia by combining real-time PCR with SYBR Green1 and dissociation curve analysis.

    PubMed

    Liu, Jingzhong; Yan, Mei; Wang, Zhangyong; Wang, Lirong; Zhou, Yan; Xiao, Bai

    2006-07-01

    The aim of the study was to set up an automatic molecular diagnostic method for deletional alpha-thalassemia without gel electrophoresis and TaqMan probe. Four real-time polymerase chain reactions (PCRs) with SYBR Green1 and ABI7000 (SYBR-PCR) followed by dissociation curve (DC) analysis were used to detect the --(SEA), - alpha(3.7), -alpha(4.2), and non-deletion-type alleles (alpha alpha or alpha(T)alpha), respectively. Positive results of the SYBR-PCRs were defined by the special shapes of the dissociation curves and the peak height at specific Tm for each predetermined PCR at a specific Tm for each PCR amplicon > or = cutoff values. Molecular diagnosis of alpha-thalassemia was determined by combining all four SYBR-PCR results. The specific Tms for the SYBR-PCR1-4, which was used to detect the --(SEA), - alpha(3.7), -alpha(4.2), and non-deletion-type alleles were 82.5 +/- 1 degrees Celsius, 82.8 +/- 1 degrees Celsius, 81.5 +/- 1 degrees Celsius, and 83.0 +/- 1 degrees Celsius, respectively. The cutoff values of the specific peaks for the positive amplificons were 40, 20, 10, and 70. The C(T) VS log copies of a recombinant plasmid DNA showed a good linear relationship between 10(5) approximately 10(0). Sensitivity of the SYBR-PCR-based method was at least 16 times higher than the multiplex PCR (mPCR)/gel electrophoresis method. Diagnostic outcomes of the 120 alpha-thalassemia cases by using the SYBR-PCR and DC analysis techniques were shown to be the same as that by using the mPCR/gel electrophoresis methods. The SYBR-PCR combined with the DC analysis technique is an alternative assay for the routine molecular diagnosis of alpha-thalassemia.

  1. Detection of Brucella spp. in bottlenose dolphins Tursiops truncatus by a real-time PCR using blowhole swabs.

    PubMed

    Wu, Qingzhong; Conway, Jessica; Phillips, Kristen M; Stolen, Megan; Durden, Wendy N; Fauquier, Deborah; McFee, Wayne E; Schwacke, Lori

    2016-08-09

    Blowhole swabs are a simple and non-invasive method for collecting samples from cetaceans and can be used for screening large numbers of animals in the field. This study reports a real-time PCR assay for the detection of Brucella spp. using blowhole swab samples from bottlenose dolphins Tursiops truncatus stranded in the coastal region of Virginia, South Carolina and northern Florida, USA, between 2013 and 2015. We used real-time PCR results on lung samples from the same dolphins in order to estimate the relative sensitivity and specificity of real-time PCR of blowhole swabs. Brucella DNA was detected in lung tissue of 22% (18/81) and in blowhole swabs of 21% (17/81) of the sampled dolphins. The relative sensitivity and specificity of real-time PCR on blowhole swabs as compared to the real-time PCR on lung samples was 94% (17/18) and 100% (63/63), respectively. These results indicate that real-time PCR on blowhole swabs may be used as a non-invasive test for rapid detection of Brucella spp. in the respiratory tract of dolphins. To our knowledge, this is the first report on the use of blowhole swabs for detection of bacterial pathogens by real-time PCR in bottlenose dolphins.

  2. Significance of "Not Detected but Amplified" Results by Real-Time PCR Method for HPV DNA Detection.

    PubMed

    Kim, Taek Soo; Lim, Mi Suk; Hong, Yun Ji; Hwang, Sang Mee; Park, Kyoung Un; Song, Junghan; Kim, Eui-Chong

    2016-01-01

    Human papillomavirus (HPV) infection is an important etiologic factor in cervical carcinogenesis. Various HPV DNA detection methods have been evaluated for clinicopathological level. For the specimens with normal cytological finding, discrepancies among the detection methods were frequently found and adequate interpretation can be difficult. 6,322 clinical specimens were submitted and evaluated for real-time PCR and Hybrid Capture 2 (HC2). 573 positive or "Not Detected but Amplified" (NDBA) specimens by real-time PCR were additionally tested using genetic analyzer. For the reliability of real-time PCR, 325 retests were performed. Optimal cut-off cycle threshold (CT ) value was evaluated also. 78.7% of submitted specimens showed normal or nonspecific cytological finding. The distributions of HPV types by real-time PCR were not different between positive and NDBA cases. For positive cases by fragment analysis, concordance rates with real-time PCR and HC2 were 94.2% and 84.2%. In NDBA cases, fragment analysis and real-time PCR showed identical results in 77.0% and HC2 revealed 27.6% of concordance with fragment analysis. Optimal cut-off CT value was different for HPV types. NDBA results in real-time PCR should be regarded as equivocal, not negative. The adjustment of cut-off CT value for HPV types will be helpful for the appropriate result interpretation.

  3. Significance of “Not Detected but Amplified” Results by Real-Time PCR Method for HPV DNA Detection

    PubMed Central

    Kim, Taek Soo; Lim, Mi Suk; Hwang, Sang Mee; Song, Junghan; Kim, Eui-Chong

    2016-01-01

    Human papillomavirus (HPV) infection is an important etiologic factor in cervical carcinogenesis. Various HPV DNA detection methods have been evaluated for clinicopathological level. For the specimens with normal cytological finding, discrepancies among the detection methods were frequently found and adequate interpretation can be difficult. 6,322 clinical specimens were submitted and evaluated for real-time PCR and Hybrid Capture 2 (HC2). 573 positive or “Not Detected but Amplified” (NDBA) specimens by real-time PCR were additionally tested using genetic analyzer. For the reliability of real-time PCR, 325 retests were performed. Optimal cut-off cycle threshold (CT) value was evaluated also. 78.7% of submitted specimens showed normal or nonspecific cytological finding. The distributions of HPV types by real-time PCR were not different between positive and NDBA cases. For positive cases by fragment analysis, concordance rates with real-time PCR and HC2 were 94.2% and 84.2%. In NDBA cases, fragment analysis and real-time PCR showed identical results in 77.0% and HC2 revealed 27.6% of concordance with fragment analysis. Optimal cut-off CT value was different for HPV types. NDBA results in real-time PCR should be regarded as equivocal, not negative. The adjustment of cut-off CT value for HPV types will be helpful for the appropriate result interpretation. PMID:28097135

  4. A simple and rapid protocol of crude DNA extraction from apple trees for PCR and real-time PCR detection of 'Candidatus Phytoplasma mali'.

    PubMed

    Aldaghi, M; Massart, S; Dutrecq, O; Bertaccini, A; Jijakli, M H; Lepoivre, P

    2009-03-01

    Different PCR protocols have been established for detection of European fruit trees phytoplasmas; however the majority of the procedures for extracting phytoplasma DNA are complex, time consuming, and expensive, with a risk of contamination or loss of target DNA. In present study, a crude extract preparation method previously used to detect other plant pathogens was adapted to samples from apple trees infected by 'Candidatus Phytoplasma mali'. End-point and real-time PCR detection of 'Ca. P. mali' were used to compare this extraction procedure with an established method for efficient extraction of purified DNA. The crude extract proved fully adequate for phytoplasma detection in samples from 86 in vitro and 35 in vivo apple shoots or plants and 10 periwinkle plants. High inter- and intra-run reproducibility was obtained for phytoplasma detection with different TaqMan MGB- or SYBR Green-based real-time PCR protocols applied to the crude extracts. Real-time PCR applied to serially diluted crude and purified extracts revealed the same phytoplasma detection limit (dilution up to 10(5)). All results confirm the suitability of this simple, quick, efficient extraction technique for accurate detection of 'Ca. P. mali' in different types of apple and periwinkle samples.

  5. Development of a real-time PCR for the detection of pathogenic Leptospira spp. in California sea lions.

    PubMed

    Wu, Qingzhong; Prager, Katherine C; Goldstein, Tracey; Alt, David P; Galloway, Renee L; Zuerner, Richard L; Lloyd-Smith, James O; Schwacke, Lori

    2014-08-11

    Several real-time PCR assays are currently used for detection of pathogenic Leptospira spp.; however, few methods have been described for the successful evaluation of clinical urine samples. This study reports a rapid assay for the detection of pathogenic Leptospira spp. in California sea lions Zalophus californianus using real-time PCR with primers and a probe targeting the lipL32 gene. The PCR assay had high analytic sensitivity-the limit of detection was 3 genome copies per PCR volume using L. interrogans serovar Pomona DNA and 100% analytic specificity; it detected all pathogenic leptospiral serovars tested and none of the non-pathogenic Leptospira species (L. biflexa and L. meyeri serovar Semaranga), the intermediate species L. inadai, or the non-Leptospira pathogens tested. Our assay had an amplification efficiency of 1.00. Comparisons between the real-time PCR assay and culture isolation for detection of pathogenic Leptospira spp. in urine and kidney tissue samples from California sea lions showed that samples were more often positive by real-time PCR than by culture methods. Inclusion of an internal amplification control in the real-time PCR assay showed no inhibitory effects in PCR negative samples. These studies indicated that our real-time PCR assay has high analytic sensitivity and specificity for the rapid detection of pathogenic Leptospira species in urine and kidney tissue samples.

  6. Real-Time PCR Assay Using Fine-Needle Aspirates and Tissue Biopsy Specimens for Rapid Diagnosis of Mycobacterial Lymphadenitis in Children

    PubMed Central

    van Coppenraet, E. S. Bruijnesteijn; Lindeboom, J. A.; Prins, J. M.; Peeters, M. F.; Claas, E. C. J.; Kuijper, E. J.

    2004-01-01

    A real-time PCR assay was developed to diagnose and identify the causative agents of suspected mycobacterial lymphadenitis. Primers and probes for the real-time PCR were designed on the basis of the internal transcribed spacer sequence, enabling the recognition of the genus Mycobacterium and the species Mycobacterium avium and M. tuberculosis. The detection limit for the assay was established at 1,100 CFU/ml of pus, and the specificity tests showed no false-positive reaction with other mycobacterial species and other pathogens causing lymphadenitis. From 67 children with suspected mycobacterial lymphadenitis based on a positive mycobacterial skin test, 102 samples (58 fine-needle aspirates [FNA] and 44 tissue specimens) were obtained. The real-time PCR assay detected a mycobacterial infection in 48 patients (71.6%), whereas auramine staining and culturing were positive for 31 (46.3%) and 28 (41.8%) of the patients. The addition of the real-time PCR assay to conventional diagnostic tests resulted in the recognition of 13 more patients with mycobacterial disease. These results indicate that the real-time PCR is more sensitive than conventional staining and culturing techniques (P = 0.006). The M. avium-specific real-time PCR was positive for 38 patients, and the M. tuberculosis-specific real-time PCR was positive for 1 patient. Analysis of 27 patients from whom FNA and tissue biopsy specimens were collected revealed significantly more positive real-time PCR results for FNA than for tissue biopsy specimens (P = 0.003). Samples from an age-matched control group of 50 patients with PCR-proven cat scratch disease were all found to be negative by the real-time PCR. We conclude that this real-time PCR assay with a sensitivity of 72% for patients with lymphadenitis and a specificity of 100% for the detection of atypical mycobacteria can provide excellent support for clinical decision making in children with lymphadenitis. PMID:15184446

  7. Real-time PCR assay is superior to other methods for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran.

    PubMed

    Molla Kazemiha, Vahid; Bonakdar, Shahin; Amanzadeh, Amir; Azari, Shahram; Memarnejadian, Arash; Shahbazi, Shirin; Shokrgozar, Mohammad Ali; Mahdian, Reza

    2016-08-01

    Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert(®) assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert(®) mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert(®), indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.

  8. Analysis of one-step and two-step real-time RT-PCR using SuperScript III.

    PubMed

    Wacker, Michael J; Godard, Michael P

    2005-09-01

    Real-time reverse transcription polymerase chain reaction (RT-PCR) is a commonly used technique to analyze gene expression. There has been little research conducted to test if SuperScript III quantitative one-step (reverse transcription carried out in the same tube as PCR) and two-step (reverse transcription carried out in a separate reaction) RT-PCR systems provide similar real-time results. In this study, real-time reactions were set up using the housekeeping genes glyceraldehyde phosphate dehydrogenase (GAPDH), beta2-microglobulin (B2M), and RNA polymerase 2 subunit A (PolR2A). Reaction efficiencies were determined by generating standard curves using total RNA isolated from human skeletal muscle and brain. Reaction efficiencies ranged from 97.7+/-0.9% to 99.4+/-1.8% for one-step and 98.0+/-0.2% to 102.6+/-1.3% for two-step RT-PCR (R2 values for all reactions>or=0.995). The sensitivities of one-step and two-step methods, as measured by cycle threshold values, were similar for GAPDH and B2M. However, for the lesser expressed PolR2A mRNA there was a 5 cycle lower threshold for one-step. In summary, both SuperScript III one-step and two-step methods yield reaction efficiencies close to 100% and produce similar, accurate, linear standard curves. However, using the one-step method with gene-specific priming may be more sensitive for quantification of certain genes such as PolR2A.

  9. Chlamydia infection in patients with and without cervical intra-epithelial lesions tested by real-time PCR vs. direct immunofluorescence.

    PubMed

    Oliveira, Micheline de Lucena; Amorim, Melania Maria Ramos de; Souza, Paulo Roberto Eleutério de; Albuquerque, Lúcia Cristina Bezerra de; Brandão, Lucas André Cavalcanti; Guimarães, Rafael Lima

    2008-08-01

    This study compares the detection rates of Chlamydia trachomatis by two techniques, direct immunofluorescence (IMF) and real time polymerase chain reaction (PCR), in patients with and without intra-epithelial cervical lesions (SIL) in Recife. We conducted a transversal study involving 35 women with SIL and 35 without SIL attended at Ambulatório Especializado da Mulher, Recife, Brazil. They were tested for Chlamydia trachomatis using two techniques, direct IMF or real time PCR. The rates of Chlamydia trachomatis detection were compared and the association with intra-epithelial cervical lesions was determined using the chi-square test at a 5% level of significance. Concordance between the tests was evaluated using kappa. The global prevalence of Chlamydia infection was 47.1% by direct IMF and 58.6% by real time PCR. A significant association was observed between Chlamydia diagnosis and presence of intra-epithelial cervical lesions, with about 80% positive results by direct IMF and 77.1% by real time PCR. However, the detected rate of infection with Chlamydia trachomatis was significantly greater in patients without intra-epithelial cervical lesions tested by real time PCR (40%) when compared to direct IMF (14.3%). The concordance between the tests was weak, with a kappa coefficient of 0.4. Both real time PCR and direct IMF detected elevated rates of Chlamydia infection in patients with intra-epithelial cervical lesions (80%) but the tests were discordant when patients without cervical lesions were tested, possibly because sensitivity of real time PCR is greater.

  10. Evaluation of postmortem bacterial migration using culturing and real-time quantitative PCR.

    PubMed

    Tuomisto, Sari; Karhunen, Pekka J; Vuento, Risto; Aittoniemi, Janne; Pessi, Tanja

    2013-07-01

    Postmortem bacteriology can be a valuable tool for evaluating deaths due to bacterial infection or for researching the involvement of bacteria in various diseases. In this study, time-dependent postmortem bacterial migration into liver, mesenteric lymph node, pericardial fluid, portal, and peripheral vein was analyzed in 33 autopsy cases by bacterial culturing and real-time quantitative polymerase chain reaction (RT-qPCR). None suffered or died from bacterial infection. According to culturing, pericardial fluid and liver were the most sterile samples up to 5 days postmortem. In these samples, multigrowth and staphylococci were not or rarely detected. RT-qPCR was more sensitive and showed higher bacterial positivity in all samples. Relative amounts of intestinal bacterial DNA (bifidobacteria, bacteroides, enterobacter, clostridia) increased with time. Sterility of blood samples was low during the studied time periods (1-7 days). The best postmortem microbiological sampling sites were pericardial fluid and liver up to 5 days after death.

  11. Real-Time PCR Assay for Detection and Enumeration of Dekkera bruxellensis in Wine

    PubMed Central

    Phister, Trevor G.; Mills, David A.

    2003-01-01

    Traditional methods to detect the spoilage yeast Dekkera bruxellensis from wine involve lengthy enrichments. To overcome this difficulty, we developed a quantitative real-time PCR method to directly detect and enumerate D. bruxellensis in wine. Specific PCR primers to D. bruxellensis were designed to the 26S rRNA gene, and nontarget yeast and bacteria common to the winery environment were not amplified. The assay was linear over a range of cell concentrations (6 log units) and could detect as little as 1 cell per ml in wine. The addition of large amounts of nontarget yeasts did not impact the efficiency of the assay. This method will be helpful to identify possible routes of D. bruxellensis infection in winery environments. Moreover, the time involved in performing the assay (3 h) should enable winemakers to more quickly make wine processing decisions in order to reduce the threat of spoilage by D. bruxellensis. PMID:14660395

  12. Characterization of the yeast ecosystem in grape must and wine using real-time PCR.

    PubMed

    Zott, K; Claisse, O; Lucas, P; Coulon, J; Lonvaud-Funel, A; Masneuf-Pomarede, I

    2010-08-01

    The complex microbial ecosystem of grape must and wine harbours a wide diversity of yeast species. Specific oligonucleotide primers for real-time quantitative PCR(QPCR) were designed to analyse several important non-Saccharomyces yeasts (Issatchenkia orientalis, Metschnikowia pulcherrima, Torulaspora delbrueckii, Candida zemplinina and Hanseniaspora spp.) and Saccharomyces spp. in fresh wine must, during fermentation and in the finished wine. The specificity of all primer couples for their target yeast species were validated and the QPCR methods developed were compared with a classic approach of colony identification by RFLP-ITS-PCR on cultured samples. Once the methods had been developed and validated, they were used to study these non-Saccharomyces yeasts in wine samples and to monitor their dynamics throughout the fermentation process. This study confirms the usefulness and the relevance of QPCR for studying non-Saccharomyces yeasts in the complex yeast ecosystem of grape must and wine.

  13. Evaluating the thermostability of commercial fast real-time PCR master mixes.

    PubMed

    Abou Tayoun, Ahmad N; Ward, Brian P; Maltezos, George; Scherer, Axel; Tsongalis, Gregory J

    2012-10-01

    There is an increasing need for affordable, thermostable PCR reagents that can be used for diagnostic testing in resource limited settings. The development of point-of-care devices in such settings is highly dependent on the availability and efficacy of thermostable reagents. Here, we assess the thermostability of commercial, intercalating dye-based real-time PCR master mixes. We show that several of these master mixes have thermostability and robust performance at 20°C, 40°C, and 45°C for 6, 4 and 2 weeks, respectively. However, none of the master mixes that we evaluated was able to withstand more than 1 month at 45°C incubation. Our findings have implications for clinical diagnostics in the developing world where cold-chain delivery of diagnostic assays is difficult to guarantee.

  14. Detection of peanut (Arachis hypogaea) allergen by Real-time PCR method with internal amplification control.

    PubMed

    Zhang, Wen-Ju; Cai, Qin; Guan, Xiao; Chen, Qin

    2015-05-01

    Specific primer sets were designed based on the DNA sequence of Ara h 1, one of the major peanut (Arachis hypogaea) allergens, and a competitive internal amplification control (IAC) was designed by compound primer technology. By choosing 314 copies/PCR as the IAC dosage, a Real-time PCR method with IAC was established for detecting peanut allergen Ara h 1 DNA. The method showed high specificity with a detection limit of 0.005% peanut. A series of commercial food products with/without peanut components were tested. Among these products, the peanut allergen Ara h 1 DNA could be detected in 12 products labelled containing peanut ingredients, in two without a declaration of peanut and one labelled that was produced in a facility that produced peanut-containing foods. This indicates that the method is highly sensitive for the detection of peanut ingredients in foods.

  15. A newly established real-time PCR for detection of Borrelia miyamotoi in Ixodes ricinus ticks.

    PubMed

    Reiter, Michael; Schötta, Anna-Margarita; Müller, Andreas; Stockinger, Hannes; Stanek, Gerold

    2015-04-01

    A total of 350 ticks collected in Austria were analyzed for the presence of DNA sequences of B. miyamotoi. Three ticks gave positive results in a B. miyamotoi-specific nested PCR. Results were confirmed by sequencing the amplified glpQ gene from the positive samples. Moreover we developed a real-time PCR which unambiguously detected B. miyamotoi in all positive samples. Further genotyping of the samples found 100% identity of the 16S-23S intergenic spacer region with Swedish B. miyamotoi sequences. This is the first detection of the relapsing fever spirochete Borrelia miyamotoi in hard ticks in Austria. The results consolidate the picture of a European-wide distribution of B. miyamotoi and again underscore the need for clinical awareness to clarify possible involvement of this species in human disease.

  16. Selective quantification of human DNA by real-time PCR of FOXP2.

    PubMed

    Soejima, Mikiko; Hiroshige, Kenichi; Yoshimoto, Joji; Koda, Yoshiro

    2012-07-01

    We established a simple quantitative PCR procedure with high specificity and sensitivity using TaqMan probes targeting the FOXP2 sequence. This assay distinguished human and nonhuman, including primates, samples with the exception of mouse, turtle, lizard, and fishes. However, the specific amplification of mouse, lizard, and turtle fragments of FOXP2 could be confirmed by electrophoresis after real-time PCR. Because the C(T) values obtained for human DNA were not affected by contaminating animal DNA at concentrations up to 30 times that of human DNA, we were able to estimate the concentration of human DNA in mixed specimens. This assay provides a reliable and useful method for routine quantification of human-specific DNA in forensic practice.

  17. Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.

    PubMed

    Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I

    2013-05-01

    We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test.

  18. A Real-Time PCR Method to Detect the Population Level of Halovirus SNJ1

    PubMed Central

    Mei, Yunjun; He, Congcong; Deng, Wei; Ba, Dala; Yang, Ming; Zhang, Jian; Zhang, Shunxi; Shen, Ping; Chen, Xiangdong

    2016-01-01

    Although viruses of haloarchaea are the predominant predator in hypersaline ecosystem, the culture studies about halovirus-host systems are infancy. The main reason is the tradition methodology (plaque assay) for virus-host interaction depends on culturable and susceptible host. Actually, more than 90% of haloarchaea are unculturable. Therefore, it is necessary to establish an approach for detecting the dynamics of virus in hypersaline environment without culture. In this study, we report a convenient method to determine the dynamics of halovirus SNJ1 based on quantitative real-time PCR (qPCR). All findings showed that the qPCR method was specific (single peak in melt curves), accurate (a good linear relationship between the log of the PFU and the Ct values, R2 = 0.99), reproducible (low coefficient of variations, below 1%). Additionally, the physicochemical characteristics of the samples tested did not influence the stability of qPCR. Therefore, the qPCR method has the potential value in quantifying and surveying haloviruses in halophilic ecological system. PMID:27192212

  19. Hygienization by anaerobic digestion: comparison between evaluation by cultivation and quantitative real-time PCR.

    PubMed

    Lebuhn, M; Effenberger, M; Garcés, G; Gronauer, A; Wilderer, P A

    2005-01-01

    In order to assess hygienization by anaerobic digestion, a comparison between evaluation by cultivation and quantitative real-time PCR (qPCR) including optimized DNA extraction and quantification was carried out for samples from a full-scale fermenter cascade (F1, mesophilic; F2, thermophilic; F3, mesophilic). The system was highly effective in inactivating (pathogenic) viable microorganisms, except for spore-formers. Conventionally performed cultivation underestimated viable organisms particularly in F2 and F3 by a factor of at least 10 as shown by data from extended incubation times, probably due to the rise of sublethally injured (active but not cultivable) cells. Incubation should hence be extended adequately in incubation-based hygiene monitoring of stressed samples, in order to minimize contamination risks. Although results from qPCR and cultivation agreed for the equilibrated compartments, considerably higher qPCR values were obtained for the fermenters. The difference probably corresponded to DNA copies from decayed cells that had not yet been degraded by the residual microbial activity. An extrapolation from qPCR determination to the quantity of viable organisms is hence not justified for samples that had been exposed to lethal stress.

  20. Estimation of transgene copy number in transformed citrus plants by quantitative multiplex real-time PCR.

    PubMed

    Omar, Ahmad A; Dekkers, Marty G H; Graham, James H; Grosser, Jude W

    2008-01-01

    Quantitative real-time PCR (qRT-PCR) was adapted to estimate transgene copy number of the rice Xa21 gene in transgenic citrus plants. This system used TaqMan qRT-PCR and the endogenous citrus gene encoding for lipid transfer protein (LTP). Transgenic "Hamlin" sweet orange plants were generated using two different protoplast-GFP transformation systems: cotransformation and single plasmid transformation. A dilution series of genomic DNA from one of the transgenic lines was used to generate a standard curve for the endogenous LTP and the transgene Xa21. This standard curve was used for relative quantification of the endogenous gene and the transgene. Copy numbers of the transgene Xa21 detected from qRT-PCR analysis correlated with that from Southern blot analysis (r = 0.834). Thus, qRT-PCR is an efficient means of estimating copy number in transgenic citrus plants. This analysis can be performed at much earlier stages of transgenic plant development than southern blot analysis, which expedites investigation of transgenes in slow-growing woody plants.

  1. Using Real-Time PCR as a tool for monitoring the authenticity of commercial coffees.

    PubMed

    Ferreira, Thiago; Farah, Adriana; Oliveira, Tatiane C; Lima, Ivanilda S; Vitório, Felipe; Oliveira, Edna M M

    2016-05-15

    Coffee is one of the main food products commercialized in the world. Its considerable market value among food products makes it susceptible to adulteration, especially with cereals. Therefore, the objective of this study was to develop a method based on Real-Time Polymerase Chain Reaction (PCR) for detection of cereals in commercial ground roast and soluble coffees. After comparison with standard curves obtained by serial dilution of DNA extracted from barley, corn and rice, the method was sensitive and specific to quantify down to 0.6 pg, 14 pg and 16 pg of barley, corn and rice DNA, respectively. To verify the applicability of the method, 30 commercial samples obtained in different countries were evaluated and those classified as gourmets or superior did not present the tested cereals DNA. However, barley was detected in various traditional (cheaper) samples from South America. In addition, corn and rice were also detected in different samples. Real-Time PCR showed to be suitable for detection of food adulterants in commercial ground roast and soluble coffees.

  2. Multiplex real-time PCR SYBR Green for detection and typing of group III Clostridium botulinum.

    PubMed

    Anniballi, Fabrizio; Auricchio, Bruna; Delibato, Elisabetta; Antonacci, Monia; De Medici, Dario; Fenicia, Lucia

    2012-01-27

    Clostridium botulinum type C and type D belonging to the group III organisms, are mainly responsible for animal botulism outbreaks. Clinical signs alone are often insufficient to make a diagnosis of botulism and a laboratory confirmation is required. Laboratory confirmation can be performed by demonstrating the presence of botulinum neurotoxins in serum, gastrointestinal contents, liver, wound of sick or dead animals, or by demonstrating the presence of C. botulinum in gastrointestinal contents, liver, and wound. Demonstration of spores in gastrointestinal contents or tissue of animals with clinical signs indicative of botulism reinforces the clinical diagnosis. With the aim of detecting and typing C. botulinum group III organisms, a multiplex real-time PCR SYBR Green was developed and in-house validated. Selectivity, limit of detection, relative accuracy, relative specificity, relative sensitivity, and repeatability of the method were investigated. The multiplex real-time PCR SYBR green used showed a 100% selectivity, 100% relative accuracy, 100% relative specificity, 100% relative sensitivity and a limit of detection of 277 and 580 DNA copies for C. botulinum type C and C. botulinum type D, respectively. The method reported here represents a suitable tool for laboratory diagnosis of type C and D botulism and for testing a large number of samples collected during the animal botulism surveillance and prevention activities.

  3. Real-time PCR assays for the detection and quantification of Streptococcus pneumoniae.

    PubMed

    Park, Hee Kuk; Lee, Hee Joong; Lee, Hee Jung; Kim, Wonyong

    2010-09-01

    Streptococcus pneumoniae is the main etiologic agent of pneumonia worldwide. Because the members of the viridans group streptococci share a high degree of DNA sequence homologies, phenotypic and genotypic discriminations of S. pneumoniae from the viridans group are difficult. A quantitative real-time PCR assay targeting the capsular polysaccharide biosynthesis gene (cpsA) was developed as a species-specific detection tool for S. pneumoniae. The specificity was evaluated using genomic DNAs extracted from 135 oral cocci strains. Twenty-seven S. pneumoniae strains tested positive, whereas 108 other strains including Streptococcus pseudopneumoniae, Streptococcus mitis, and Streptococcus oralis did not show a specific signal. The linear regression of standard curves indicated high correlations between the log numbers of S. pneumoniae cells and the C(T) values (R(2)=0.99). The minimal limit of detection was 32 fg of purified genomic DNA, equivalent to 14 genomes of S. pneumoniae. This new real-time PCR method may be very useful as a rapid and specific tool for detecting and quantifying S. pneumoniae.

  4. Development of a real-time quantitative PCR for detecting duck hepatitis a virus genotype C.

    PubMed

    Huang, Qiuxue; Yue, Hua; Zhang, Bin; Nie, Peiting; Tang, Cheng

    2012-10-01

    Recently, duck hepatitis A virus genotype C (DHAV-C), a causative agent of duck viral hepatitis, has been responsible for increasing economic losses in the duck industry in China and South Korea. In this study, a real-time PCR assay targeting the 2C gene for detecting DHAV-C was developed. The assay was confirmed to be specific and sensitive, and the minimum detection limit was 3.36 × 10(3) copies per reaction, making this assay suitable for rapid diagnosis of DHAV-C infection from clinical samples. In addition, the dynamics of the viral loads in tissues of specific-pathogen-free (SPF) ducklings infected with DHAV-C were investigated using this method. The DHAV-C could be detected earliest in the liver within 12 h postinfection. Moreover, high viral loads were identified in the heart, liver, spleen, lung, kidney, bursa of Fabricius, thymus, pancreas, brain, and small intestine after 24 h postinfection. Taking the data collectively, the study described in this report is the first to have developed a real-time PCR method for detection of DHAV-C and thus contributes to pathogenicity research.

  5. Species identification of white false hellebore (Veratrum album subsp. oxysepalum) using real-time PCR.

    PubMed

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Kubota, Satoshi; Aragane, Masako; Ohta, Hikoto; Sugita, Ritsuko

    2017-03-20

    Food poisoning is frequently caused by the accidental ingestion of toxic plants that possess strong morphological similarities to edible plants. False helleborine (Veratrum album) is one of the most common plants involved in such accidents. In cases of poisoning by toxic plants, rapid and accurate identification, usually based on the morphological or chemical analysis of plant parts, is required for appropriate medical treatment or forensic investigation. However, morphological examinations require experience in systematic botany because the samples are fragmentary, and chemical analysis of natural compounds can be difficult. In this study, we developed a TaqMan real-time PCR method using trnH-psbA and trnL-trnF that could be carried out in 30-60min. The lower detection limit was less than 10pg of DNA and the primer sets were specific to V. album and Veratrum stamineum. Mixed samples, cooked samples, and simulated gastric contents were successfully identified, and a multiplex assay of two regions was also possible. These results indicate that the TaqMan real-time PCR analysis is a very effective method to detect small samples of V. album and V. stamineum accurately and rapidly in poisoning cases.

  6. A real-time PCR for the detection of hepatopancreatic parvovirus (HPV) of penaeid shrimp.

    PubMed

    Yan, D C; Tang, K F J; Lightner, D V

    2010-06-01

    Hepatopancreatic parvovirus (HPV) causes a common shrimp disease that occurs in many shrimp farming regions, especially in the Indo Pacific, and infects most of the cultured penaeid species. There are seven geographic HPV isolates known, so a method to detect different HPV types is needed. We developed a sensitive and generic real-time PCR assay for the detection of HPV. A pair of primers and TaqMan probe based on an HPV sequence obtained from samples of Fenneropenaeus chinensis from Korea were selected, and they were used to amplify a 92 bp DNA fragment. This real-time PCR was found to be specific to HPV and did not react with other shrimp viruses. A plasmid (pHPV-2) containing the target HPV sequence was constructed and used for determination of the sensitivity of this assay. The assay could detect a single copy of plasmid DNA, and it was used successfully in finding HPV in shrimp samples from the China-Yellow Sea region, Taiwan, Korea, Thailand, Madagascar, New Caledonia and Tanzania.

  7. Effect of ionizing radiation on the quantitative detection of Salmonella using real-time PCR

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Jung, Jinwoo; Kim, Minjeong; Ryu, Sangryeol; Kim, Dongho

    2008-09-01

    Food irradiation is an economically viable technology for inactivating foodborne pathogens, but irradiation can mask pathogens in unhygienically prepared food. The aim of this study was to investigate the effect of irradiation treatment on the detection of Salmonella using real-time PCR. Three commercially available kits were tested, of which the InstaGene Matrix procedure was most effective in preparing template DNA from Salmonella exposed to radiation in broth culture. The minimum level of detection by real-time PCR combined with InstaGene Matrix was 3 log units of Salmonella per milliliter. However, when pure cultures of Salmonella were irradiated at 3 and 5 kGy, the cycle threshold ( CT) increased 1-1.5-fold compared to irradiation at 0 and 1 kGy. This indicated that irradiation treatment may result in an underestimation of bacterial counts due to radiation-induced DNA lesions. We also compared CT values in inoculated chicken homogenates before and after irradiation, which in this model caused a 1.3-3.3-fold underestimation of bacterial counts with respect to irradiation dose.

  8. A Low-Cost and Fast Real-Time PCR System Based on Capillary Convection.

    PubMed

    Qiu, Xianbo; Ge, Shengxiang; Gao, Pengfei; Li, Ke; Yang, Yongliang; Zhang, Shiyin; Ye, Xiangzhong; Xia, Ningshao; Qian, Shizhi

    2017-02-01

    A low-cost and fast real-time PCR system in a pseudo-isothermal manner with disposable capillary tubes based on thermal convection for point-of-care diagnostics is developed and tested. Once stable temperature gradient along the capillary tube has been established, a continuous circulatory flow or thermal convection inside the capillary tube will repeatedly transport PCR reagents through temperature zones associated with the DNA denaturing, annealing, and extension stages of the reaction. To establish stable temperature gradient along the capillary tube, a dual-temperature heating strategy with top and bottom heaters is adopted here. A thermal waveguide is adopted for precise maintenance of the temperature of the top heater. An optimized optical network is developed for monitoring up to eight amplification units for real-time fluorescence detection. The system performance was demonstrated with repeatable detection of influenza A (H1N1) virus nucleic acid targets with a limit of detection of 1.0 TCID50/mL within 30 min.

  9. Development of two quantitative real-time PCR diagnostic kits for HPV isolates from Korea.

    PubMed

    Jeeva, Subbiah; Kim, Nam-Il; Jang, In-Kwon; Choi, Tae-Jin

    2012-10-01

    Viral pathogens, alongside other pathogens, have major effects on crustacean aquaculture. Hepatopancreatic parvovirus (HPV) is an emerging virus in the shrimp industry and has been detected in shrimp farms worldwide. The HPV genome has greater diversity than other shrimp viruses owing to its wide host range and geographical distribution. Therefore, developing diagnostic tools is essential to detect even small copy numbers from the target region of native HPV isolates. We have developed two easy to use quantitative real-time PCR kits, called Green Star and Dual Star, which contain all of the necessary components for real-time PCR, including HPV primers, using the primers obtained from the sequences of HPV isolates from Korea, and analyzed their specificity, efficiency, and reproducibility. These two kits could detect from 1 to 1 × 10(9) copies of cloned HPV DNA. The minimum detection limits obtained from HPV-infected shrimp were 7.74 × 10(1) and 9.06 × 10(1) copies in the Green Star and Dual Star assay kits, respectively. These kits can be used for rapid, sensitive, and efficient screening for HPV isolates from Korea before the introduction of postlarval stages into culture ponds, thereby decreasing the incidence of early development of the disease.

  10. Real-Time PCR Detection of Phaeomoniella chlamydospora and Phaeoacremonium aleophilum

    PubMed Central

    Cobos, Rebeca; Martín, Laura; López-Enríquez, Lorena

    2012-01-01

    Phaeomoniella chlamydospora and Phaeoacremonium aleophilum are the two main fungal causal agents of Petri disease and esca. Both diseases cause significant economic losses to viticulturalists. Since no curative control measures are known, proactive defensive measures must be taken. An important aspect of current research is the development of sensitive and time-saving protocols for the detection and identification of these pathogens. Real-time PCR based on the amplification of specific sequences is now being used for the identification and quantification of many infective agents. The present work reports real-time PCR protocols for identification of P. chlamydospora and P. aleophilum. Specificity was demonstrated against purified DNA from 60 P. chlamydospora isolates or 61 P. aleophilum isolates, and no amplification was obtained with 54 nontarget DNAs. The limits of detection (i.e., DNA detectable in 95% of reactions) were around 100 fg for P. chlamydospora and 50 fg for P. aleophilum. Detection was specific and sensitive for P. chlamydospora and P. aleophilum. Spores of P. chlamydospora and P. aleophilum were detected without the need for DNA purification. The established protocols detected these fungi in wood samples after DNA purification. P. chlamydospora was detectable without DNA purification and isolation in 67% of reactions. The detection of these pathogens in wood samples has great potential for use in pathogen-free certification schemes. PMID:22447605

  11. Wolbachia pipientis Growth Kinetics and Susceptibilities to 13 Antibiotics Determined by Immunofluorescence Staining and Real-Time PCR

    PubMed Central

    Fenollar, Florence; Maurin, Max; Raoult, Didier

    2003-01-01

    Wolbachia spp. are strict intracellular bacteria that infect a wide range of arthropods and filarial nematodes. Filarial nematodes are important causes of human diseases. There is increasing evidence that Wolbachia spp. influence important functions in the biology of the hosts, specifically, infertility. Preliminary experiments with humans and animals have suggested that antibiotics with activity against Wolbachia may help to treat filariasis. In this study, we determined using a real-time quantitative PCR assay the growth kinetics of a strain of Wolbachia pipientis from a mosquito grown in Aa23 cells. The doubling time was estimated to be 14 h. We then determined the susceptibilities of this strain to 13 antibiotics by two methods: an immunofluorescent-antibody test and a real-time quantitative PCR assay. Both techniques gave similar results. Doxycycline and rifampin were the most effective compounds, with MICs of 0.125 and 0.06 to 0.125 μg/ml, respectively. Fluoroquinolones were less effective, with MICs of 2 to 4 μg/ml for ciprofloxacin, 2 μg/ml for ofloxacin, and 1 μg/ml for levofloxacin. β-Lactams (penicillin G, amoxicillin, ceftriaxone) were not effective at concentrations up to 128 μg/ml. The MIC of erythromycin was >32 μg/ml, whereas that of telithromycin was 8 μg/ml. Other antibiotic compounds were bacteriostatic only at high concentrations, including gentamicin, co-trimoxazole, and thiamphenicol. The real-time PCR assay was a convenient and reliable technique for determination of the antibiotic susceptibilities of Wolbachia. It may help in the future to simplify antibiotic susceptibility testing of strict intracellular pathogens. PMID:12709338

  12. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses.

    PubMed

    Shi, Xiju; Liu, Xuming; Wang, Qin; Das, Amaresh; Ma, Guiping; Xu, Lu; Sun, Qing; Peddireddi, Lalitha; Jia, Wei; Liu, Yanhua; Anderson, Gary; Bai, Jianfa; Shi, Jishu

    2016-10-01

    Mixed infection with different pathogens is common in swine production systems especially under intensive production conditions. Quick and accurate detection and differentiation of different pathogens are necessary for epidemiological surveillance, disease management and import and export controls. In this study, we developed and validated a panel of multiplex real-time PCR/RT-PCR assays composed of four subpanels, each detects three common swine pathogens. The panel detects 12 viruses or viral serotypes, namely, VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU and SIV. Correlation coefficients (R(2)) and PCR amplification efficiencies of all singular and triplex real-time PCR reactions are within the acceptable range. Comparison between singular and triplex real-time PCR assays of each subpanel indicates that there is no significant interference on assay sensitivities caused by multiplexing. Specificity tests on 226 target clinical samples or 4 viral strains and 91 non-target clinical samples revealed that the real-time PCR panel is 100% specific, and there is no cross amplification observed. The limit of detection of each triplex real-time PCR is less than 10 copies per reaction for DNA, and less than 16 copies per reaction for RNA viruses. The newly developed multiplex real-time PCR panel also detected different combinations of co-infections as confirmed by other means of detections.

  13. Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear

    PubMed Central

    HASSANPOUR, Gholamreza; MIRHENDI, Hossein; MOHEBALI, Mehdi; RAEISI, Ahmad; ZERAATI, Hojjat; KESHAVARZ, Hossein

    2016-01-01

    Background: We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan-Plasmodium real-time PCR for accurate screening of individuals suspected of malaria. Methods: A single primer/probe set for pan-species Plasmodium-specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction. Results: The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum. All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR. Conclusion: By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples. PMID:28127357

  14. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species.

    PubMed

    Doi, Hideyuki; Takahara, Teruhiko; Minamoto, Toshifumi; Matsuhashi, Saeko; Uchii, Kimiko; Yamanaka, Hiroki

    2015-05-05

    Environmental DNA (eDNA) has been used to investigate species distributions in aquatic ecosystems. Most of these studies use real-time polymerase chain reaction (PCR) to detect eDNA in water; however, PCR amplification is often inhibited by the presence of organic and inorganic matter. In droplet digital PCR (ddPCR), the sample is partitioned into thousands of nanoliter droplets, and PCR inhibition may be reduced by the detection of the end-point of PCR amplification in each droplet, independent of the amplification efficiency. In addition, real-time PCR reagents can affect PCR amplification and consequently alter detection rates. We compared the effectiveness of ddPCR and real-time PCR using two different PCR reagents for the detection of the eDNA from invasive bluegill sunfish, Lepomis macrochirus, in ponds. We found that ddPCR had higher detection rates of bluegill eDNA in pond water than real-time PCR with either of the PCR reagents, especially at low DNA concentrations. Limits of DNA detection, which were tested by spiking the bluegill DNA to DNA extracts from the ponds containing natural inhibitors, found that ddPCR had higher detection rate than real-time PCR. Our results suggest that ddPCR is more resistant to the presence of PCR inhibitors in field samples than real-time PCR. Thus, ddPCR outperforms real-time PCR methods for detecting eDNA to document species distributions in natural habitats, especially in habitats with high concentrations of PCR inhibitors.

  15. Quantification of endogenous and exogenous feline leukemia virus sequences by real-time PCR assays.

    PubMed

    Tandon, Ravi; Cattori, Valentino; Willi, Barbara; Lutz, Hans; Hofmann-Lehmann, Regina

    2008-05-15

    Endogenous retroviruses are integrated in the genome of most vertebrates. They represent footprints of ancient retroviral infection and are vertically transmitted from parents to their offspring. In the genome of all domestic cats, sequences closely related to exogenous FeLV known as endogenous feline leukemia virus (enFeLV), are present. enFeLV are incapable of giving rise to infectious virus particles. However, transcription and translation of enFeLV have been demonstrated in tissues of healthy cats and in feline cell lines. The presence of enFeLV-env has been shown in specific embryonic tissues and adult thymic cells. In addition, the enFeLV-env region recombines with FeLV subgroup A giving rise to an infectious FeLV-B virus. enFeLV envelope protein, FeLIX (FeLV infectivity X-essory protein) is also involved in mediating FeLV-T infection. In order to test the hypothesis that the enFeLV loads play a role in exogenous FeLV-A infection and pathogenesis, quantitative real-time PCR and RT-PCR assays were developed. An assay, specific to U3 region of all different subtypes of exogenous FeLV, was designed and applied to quantify exogenous FeLV proviral or viral load in cats, while three real-time PCR assays were designed to quantify U3 and env enFeLV loads (two within U3 amplifying different sequences; one within env). enFeLV loads were investigated in blood samples derived from Swiss privately owned domestic cats, specific pathogen-free (SPF) cats and European wildcats (Felis silvestris silvestris). Significant differences in enFeLV loads were observed between privately owned cats and SPF cats as well as among SPF cats originating from different catteries and among domestic cats of different breeds. When privately owned cats were compared, FeLV-infected cats had higher loads than uninfected cats. In addition, wildcats had higher enFeLV loads than domestic cats. In conclusion, the quantitative real-time PCR assays described herein are important prerequisites to

  16. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Luque, M Isabel; Martín, Alberto; Córdoba, Juan J

    2012-08-01

    Aflatoxins are among the most toxic mycotoxins. Early detection and quantification of aflatoxin-producing species is crucial to improve food safety. In the present work, two protocols of real-time PCR (qPCR) based on SYBR Green and TaqMan were developed, and their sensitivity and specificity were evaluated. Primers and probes were designed from the o-methyltransferase gene (omt-1) involved in aflatoxin biosynthesis. Fifty-three mold strains representing aflatoxin producers and non-producers of different species, usually reported in food products, were used as references. All strains were tested for aflatoxins production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the proposed qPCR method was demonstrated by the strong linear relationship of the standard curves constructed with the omt-1 gene copy number and Ct values for the different aflatoxin producers tested. The ability of the qPCR protocols to quantify aflatoxin-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 4 to 1 log cfu/g per reaction for all qPCR assays in the different food matrices (peanuts, spices and dry-fermented sausages). The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g for SYBR Green and TaqMan assays. No significant effect was observed due to the different equipment, operator, and qPCR methodology used in the tests of repeatability and reproducibility for different foods. The proposed methods quantified with high efficiency the fungal load in foods. These qPCR protocols are proposed for use to quantify aflatoxin-producing molds in food products.

  17. Correlation of Real Time PCR Cycle Threshold Cut-Off with Bordetella pertussis Clinical Severity.

    PubMed

    Bolotin, Shelly; Deeks, Shelley L; Marchand-Austin, Alex; Rilkoff, Heather; Dang, Vica; Walton, Ryan; Hashim, Ahmed; Farrell, David; Crowcroft, Natasha S

    2015-01-01

    Bordetella pertussis testing performed using real-time polymerase chain reaction (RT-PCR) is interpreted based on a cycle threshold (Ct) value. At Public Health Ontario Laboratories (PHOL), a Ct value <36 is reported as positive, and Ct values ≥36 and <40 are reported as indeterminate. PHOL reported indeterminate results to physicians and public health units until May 2012, after which these results were only reported to physicians. We investigated the association between Ct value and disease symptom and severity to examine the significance of indeterminate results clinically, epidemiologically and for public health reporting. B. pertussis positive and indeterminate RT-PCR results were linked to pertussis cases reported in the provincial Integrated Public Health Information System (iPHIS), using deterministic linkage. Patients with positive RT-PCR results had a lower median age of 10.8 years compared to 12.0 years for patients with indeterminate results (p = 0.24). Hospitalized patients had significantly lower Ct values than non-hospitalized patients (median Ct values of 20.7 vs. 31.6, p<0.001). The proportion of patients reporting the most indicative symptoms of pertussis did not differ between patients with positive vs. indeterminate RT-PCR results. Taking the most indicative symptoms of pertussis as the gold-standard, the positive predictive value of the RT-PCR test was 68.1%. RT-PCR test results should be interpreted in the context of the clinical symptoms, age, vaccination status, prevalence, and other factors. Further information on interpretation of indeterminate RT-PCR results may be needed, and the utility of reporting to public health practitioners should be re-evaluated.

  18. Rapid and Accurate Identification by Real-Time PCR of Biotoxin-Producing Dinoflagellates from the Family Gymnodiniaceae

    PubMed Central

    Smith, Kirsty F.; de Salas, Miguel; Adamson, Janet; Rhodes, Lesley L.

    2014-01-01

    The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR) assays targeting the large subunit ribosomal RNA (LSU rRNA) gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples. PMID:24608972

  19. Multiplex real-time PCR assay for rapid detection of methicillin-resistant staphylococci directly from positive blood cultures.

    PubMed

    Wang, Hye-Young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok; Uh, Young; Lee, Hyeyoung

    2014-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 10(3) CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene.

  20. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

    PubMed Central

    Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.

    2015-01-01

    Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438

  1. Evaluation of real-time PCR for Strongyloides stercoralis and hookworm as diagnostic tool in asymptomatic schoolchildren in Cambodia.

    PubMed

    Schär, Fabian; Odermatt, Peter; Khieu, Virak; Panning, Marcus; Duong, Socheat; Muth, Sinuon; Marti, Hanspeter; Kramme, Stefanie

    2013-05-01

    Diagnosis of soil-transmitted helminths such as Strongyloides stercoralis and hookworms (Ancylostoma duodenale and Necator americanus) is challenging due to irregular larval and egg output in infected individuals and insensitive conventional diagnostic procedures. Sensitive novel real-time PCR assays have been developed. Our study aimed to evaluate the real-time PCR assays as a diagnostic tool for detection of Strongyloides spp. and hookworms in a random stool sample of 218 asymptomatic schoolchildren in Cambodia. Overall prevalence of 17.4% (38/218) and 34.9% (76/218) were determined by real-time PCR for S. stercoralis and hookworms, respectively. Sensitivity and specificity of S. stercoralis specific real-time PCR as compared to the combination of Baermann/Koga Agar as gold standard were 88.9% and 92.7%, respectively. For hookworm specific real-time PCR a sensitivity of 78.9% and specificity of 78.9% were calculated. Co-infections were detectable by PCR in 12.8% (28/218) of individuals. S. stercoralis real-time PCR applied in asymptomatic cases showed a lower sensitivity compared to studies undertaken with symptomatic patients with the same molecular tool, yet it proved to be a valid supplement in the diagnosis of STH infection in Cambodia.

  2. Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis.

    PubMed

    Sales, Mariana L; Fonseca Júnior, Antônio Augusto; Orzil, Lívia; Alencar, Andrea Padilha; Silva, Marcio Roberto; Issa, Marina Azevedo; Soares Filho, Paulo Martins; Lage, Andrey Pereira; Heinemann, Marcos Bryan

    2014-01-01

    Mycobacterium tuberculosis is the major cause of tuberculosis in humans. This bacillus gained prominence with the occurrence of HIV, presenting itself as an important opportunistic infection associated with acquired immunodeficiency syndrome (AIDS). The current study aimed to develop a real-time PCR using Eva Green technology for molecular identification of M. tuberculosis isolates. The primers were designed to Rv1510 gene. Ninety nine samples of M. tuberculosis and sixty samples of M. bovis were tested and no sample of the bovine bacillus was detected by the qPCR. Statistical tests showed no difference between the qPCR and biochemical tests used to identify the Mycobacterium tuberculosis. The correlation between tests was perfect with Kappa index of 1.0 (p < 0.001, CI = 0.84 - 1.0). The diagnostic sensitivity and specificity were 100% (CI = 95.94% - 100%) and 100% (CI = 93.98% - 100%). This qPCR was developed with the goal of diagnosing the bacillus M. tuberculosis in samples of bacterial suspension. TB reference laboratories (health and agriculture sectors), public health programs and epidemiological studies probably may benefit from such method.

  3. QPCR: Application for real-time PCR data management and analysis

    PubMed Central

    Pabinger, Stephan; Thallinger, Gerhard G; Snajder, René; Eichhorn, Heiko; Rader, Robert; Trajanoski, Zlatko

    2009-01-01

    Background Since its introduction quantitative real-time polymerase chain reaction (qPCR) has become the standard method for quantification of gene expression. Its high sensitivity, large dynamic range, and accuracy led to the development of numerous applications with an increasing number of samples to be analyzed. Data analysis consists of a number of steps, which have to be carried out in several different applications. Currently, no single tool is available which incorporates storage, management, and multiple methods covering the complete analysis pipeline. Results QPCR is a versatile web-based Java application that allows to store, manage, and analyze data from relative quantification qPCR experiments. It comprises a parser to import generated data from qPCR instruments and includes a variety of analysis methods to calculate cycle-threshold and amplification efficiency values. The analysis pipeline includes technical and biological replicate handling, incorporation of sample or gene specific efficiency, normalization using single or multiple reference genes, inter-run calibration, and fold change calculation. Moreover, the application supports assessment of error propagation throughout all analysis steps and allows conducting statistical tests on biological replicates. Results can be visualized in customizable charts and exported for further investigation. Conclusion We have developed a web-based system designed to enhance and facilitate the analysis of qPCR experiments. It covers the complete analysis workflow combining parsing, analysis, and generation of charts into one single application. The system is freely available at PMID:19712446

  4. Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis

    PubMed Central

    Sales, Mariana L.; Fonseca, Antônio Augusto; Orzil, Lívia; Alencar, Andrea Padilha; Silva, Marcio Roberto; Issa, Marina Azevedo; Filho, Paulo Martins Soares; Lage, Andrey Pereira; Heinemann, Marcos Bryan

    2014-01-01

    Mycobacterium tuberculosis is the major cause of tuberculosis in humans. This bacillus gained prominence with the occurrence of HIV, presenting itself as an important opportunistic infection associated with acquired immunodeficiency syndrome (AIDS). The current study aimed to develop a real-time PCR using Eva Green technology for molecular identification of M. tuberculosis isolates. The primers were designed to Rv1510 gene. Ninety nine samples of M. tuberculosis and sixty samples of M. bovis were tested and no sample of the bovine bacillus was detected by the qPCR. Statistical tests showed no difference between the qPCR and biochemical tests used to identify the Mycobacterium tuberculosis. The correlation between tests was perfect with Kappa index of 1.0 (p < 0.001, CI = 0.84 – 1.0). The diagnostic sensitivity and specificity were 100% (CI = 95.94% – 100%) and 100% (CI = 93.98% – 100%). This qPCR was developed with the goal of diagnosing the bacillus M. tuberculosis in samples of bacterial suspension. TB reference laboratories (health and agriculture sectors), public health programs and epidemiological studies probably may benefit from such method. PMID:25763042

  5. Detection by real time PCR of walnut allergen coding sequences in processed foods.

    PubMed

    Linacero, Rosario; Ballesteros, Isabel; Sanchiz, Africa; Prieto, Nuria; Iniesto, Elisa; Martinez, Yolanda; Pedrosa, Mercedes M; Muzquiz, Mercedes; Cabanillas, Beatriz; Rovira, Mercè; Burbano, Carmen; Cuadrado, Carmen

    2016-07-01

    A quantitative real-time PCR (RT-PCR) method, employing novel primer sets designed on Jug r 1, Jug r 3, and Jug r 4 allergen-coding sequences, was set up and validated. Its specificity, sensitivity, and applicability were evaluated. The DNA extraction method based on CTAB-phenol-chloroform was best for walnut. RT-PCR allowed a specific and accurate amplification of allergen sequence, and the limit of detection was 2.5pg of walnut DNA. The method sensitivity and robustness were confirmed with spiked samples, and Jug r 3 primers detected up to 100mg/kg of raw walnut (LOD 0.01%, LOQ 0.05%). Thermal treatment combined with pressure (autoclaving) reduced yield and amplification (integrity and quality) of walnut DNA. High hydrostatic pressure (HHP) did not produce any effect on the walnut DNA amplification. This RT-PCR method showed greater sensitivity and reliability in the detection of walnut traces in commercial foodstuffs compared with ELISA assays.

  6. Evaluation of Reference Genes for Quantitative Real-Time PCR in Songbirds

    PubMed Central

    Zinzow-Kramer, Wendy M.; Horton, Brent M.; Maney, Donna L.

    2014-01-01

    Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbird: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology. PMID:24780145

  7. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl

    USGS Publications Warehouse

    Smith, Matthew M.; Schmutz, Joel A.; Apelgren, Chloe; Ramey, Andy M.

    2015-01-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n = 105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R2 = 0.694, P = 0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species.

  8. SNPs and real-time quantitative PCR method for constitutional allelic copy number determination, the VPREB1 marker case

    PubMed Central

    2011-01-01

    Background 22q11.2 microdeletion is responsible for the DiGeorge Syndrome, characterized by heart defects, psychiatric disorders, endocrine and immune alterations and a 1 in 4000 live birth prevalence. Real-time quantitative PCR (qPCR) approaches for allelic copy number determination have recently been investigated in 22q11.2 microdeletions detection. The qPCR method was performed for 22q11.2 microdeletions detection as a first-level screening approach in a genetically unknown series of patients with congenital heart defects. A technical issue related to the VPREB1 qPCR marker was pointed out. Methods A set of 100 unrelated Italian patients with congenital heart defects were tested for 22q11.2 microdeletions by a qPCR method using six different markers. Fluorescence In Situ Hybridization technique (FISH) was used for confirmation. Results qPCR identified six patients harbouring the 22q11.2 microdeletion, confirmed by FISH. The VPREB1 gene marker presented with a pattern consistent with hemideletion in one 3 Mb deleted patient, suggestive for a long distal deletion, and in additional five non-deleted patients. The long distal 22q11.2 deletion was not confirmed by Comparative Genomic Hybridization. Indeed, the VPREB1 gene marker generated false positive results in association with the rs1320 G/A SNP, a polymorphism localized within the VPREB1 marker reverse primer sequence. Patients heterozygous for rs1320 SNP, showed a qPCR profile consistent with the presence of a hemideletion. Conclusions Though the qPCR technique showed advantages as a screening approach in terms of cost and time, the VPREB1 marker case revealed that single nucleotide polymorphisms can interfere with qPCR data generating erroneous allelic copy number interpretations. PMID:21545739

  9. Real-Time PCR Quantitation of Clostridia in Feces of Autistic Children

    PubMed Central

    Song, Yuli; Liu, Chengxu; Finegold, Sydney M.

    2004-01-01

    Based on the hypothesis that intestinal clostridia play a role in late-onset autism, we have been characterizing clostridia from stools of autistic and control children. We applied the TaqMan real-time PCR procedure to detect and quantitate three Clostridium clusters and one Clostridium species, C. bolteae, in stool specimens. Group- and species-specific primers targeting the 16S rRNA genes were designed, and specificity of the primers was confirmed with DNA from related bacterial strains. In this procedure, a linear relationship exists between the threshold cycle (CT) fluorescence value and the number of bacterial cells (CFU). The assay showed high sensitivity: as few as 2 cells of members of cluster I, 6 cells of cluster XI, 4 cells of cluster XIVab, and 0.6 cell of C. bolteae could be detected per PCR. Analysis of the real-time PCR data indicated that the cell count differences between autistic and control children for C. bolteae and the following Clostridium groups were statistically significant: mean counts of C. bolteae and clusters I and XI in autistic children were 46-fold (P = 0.01), 9.0-fold (P = 0.014), and 3.5-fold (P = 0.004) greater than those in control children, respectively, but not for cluster XIVab (2.6 × 108 CFU/g in autistic children and 4.8 × 108 CFU/g in controls; respectively). More subjects need to be studied. The assay is a rapid and reliable method, and it should have great potential for quantitation of other bacteria in the intestinal tract. PMID:15528506

  10. Real-time watermarking techniques for sensor networks

    NASA Astrophysics Data System (ADS)

    Fang, Jessica; Potkonjak, Miodrag

    2003-06-01

    Wireless sensor networks have emerged as the major criteria that enable the next scientific, technological, engineering, and economic revolution. Since digital rights management is of the crucial importance for sensor networks, there is an urgent need for development of intellectual property protection (IPP) techniques. We have developed the first system of watermarking techniques to embed cryptologically encoded authorship signatures into data and information acquired by wireless embedded sensor networks. The key idea is to impose additional constraints during the data acquisition or sensor data processing. Constraints correspond to the encrypted signature and are selected in such a way that they provide favorable tradeoffs between the accuracy and the strength of proof of the authorship. The techniques for watermarking raw sensor data include one that modifies the location and orientation of a sensor, time management discipline (e.g. frequency and phase of intervals between consecutive data capturing), and its resolution. The second set of techniques embeds signature during data processing. There are at least three degrees of freedom that can be exploited: error minimization procedures, physical world model building, and solving of computationally intractable problems. We have developed several watermarking techniques that leverage on the error minimization degree of freedom and have demonstrated their effectiveness for watermarking location discovery information.

  11. Use of Occult Blood Detection Cards for Real-Time PCR-Based Diagnosis of Schistosoma Mansoni Infection

    PubMed Central

    Schunk, Mirjam; Kebede Mekonnen, Seleshi; Wondafrash, Beyene; Mengele, Carolin; Fleischmann, Erna; Herbinger, Karl-Heinz; Verweij, Jaco J.; Geldmacher, Christof; Bretzel, Gisela; Löscher, Thomas; Zeynudin, Ahmed

    2015-01-01

    Background In Schistosoma mansoni infection, diagnosis and control after treatment mainly rely on parasitological stool investigations which are laborious and have limited sensitivity. PCR methods have shown equal or superior sensitivity but preservation and storage methods limit their use in the field. Therefore, the use of occult blood detection cards (fecal cards) for easy sampling and storage of fecal samples for further PCR testing was evaluated in a pilot study. Methodology Stool specimens were collected in a highly endemic area for S. mansoni in Ethiopia and submitted in an investigator-blinded fashion to microscopic examination by Kato-Katz thick smear as well as to real-time PCR using either fresh frozen stool samples or stool smears on fecal cards which have been stored at ambient temperature for up to ten months. Principal Findings Out of 55 stool samples, 35 were positive by microscopy, 33 and 32 were positive by PCR of frozen samples and of fecal card samples, respectively. When microscopy was used as diagnostic “gold standard”, the sensitivity of PCR on fresh stool was 94.3% (95%-CI: 86.6; 100) and on fecal cards 91.4% (95%-CI: 82.2; 100). Conclusions The use of fecal cards proved to be a simple and useful method for stool collection and prolonged storage prior to PCR based diagnosis of S. mansoni infection. This technique may be a valuable approach for large scale surveillance and post treatment assessments PMID:26360049

  12. Development of a SYBR Green real-time RT-PCR assay for the detection of avian encephalomyelitis virus.

    PubMed

    Liu, Qingtian; Yang, Zengqi; Hao, Huafang; Cheng, Shenli; Fan, Wentao; Du, Enqi; Xiao, Sa; Wang, Xinglong; Zhang, Shuxia

    2014-09-01

    Avian encephalomyelitis virus (AEV) causes epidemic diseases in poultry worldwide. A SYBR Green real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay was developed for the rapid detection and quantitation of AEV in this study. A pair of specific primers was designed in the highly conserved VP1 gene of this virus. When comparing this assay with conventional RT-PCR, the rRT-PCR assay was 100 times more sensitive and could detect levels as low as 10 standard DNA copies of the AEV SX strain. The specificity of this technique was evaluated in five other avian pathogens. The AEV RNA was detected as early as three days post-infection in chicken embryos. All 18 clinical chicken brains collected from an AEV outbreak in Northwestern China were detected to be positive (100%) using the rRT-PCR assay. However, only 5 of the 18 samples were positive (28%) using the conventional RT-PCR. The results were confirmed by virus isolation in chicken embryos. This high sensitivity, specificity, and simplicity of the SYBR Green rRT-PCR approach can be a more effective method than the conventional one for AEV diagnosis and surveillance.

  13. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies

    PubMed Central

    Wong, Samson S. Y.; Poon, Rosana W. S.; Chau, Sandy; Wong, Sally C. Y.; To, Kelvin K. W.; Cheng, Vincent C. C.; Fung, Kitty S. C.

    2015-01-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566

  14. Utilization of multiple real-time PCR assays for the diagnosis of Bordetella spp. in clinical specimens.

    PubMed

    Tatti, Kathleen M; Tondella, Maria Lucia

    2013-01-01

    Bordetella pertussis causes an upper respiratory infection in infants, adolescents, and adults. Diagnosis of pertussis, a vaccine-preventable disease, can be difficult, but recent implementation of real-time PCR assays in laboratories has hastened the ability of clinicians to make an accurate diagnosis. In this paper we describe the method of nasopharyngeal specimen collection, extraction of DNA, and real-time PCR assays that will allow the detection and identification of Bordetella spp. in clinical specimens.

  15. Utility of a fecal real-time PCR protocol for detection of Mycobacterium bovis infection in African buffalo (Syncerus caffer).

    PubMed

    Roug, Annette; Geoghegan, Claire; Wellington, Elizabeth; Miller, Woutrina A; Travis, Emma; Porter, David; Cooper, David; Clifford, Deana L; Mazet, Jonna A K; Parsons, Sven

    2014-01-01

    A real-time PCR protocol for detecting Mycobacterium bovis in feces was evaluated in bovine tuberculosis-infected African buffalo (Syncerus caffer). Fecal samples spiked with 1.42 × 10(3) cells of M. bovis culture/g and Bacille Calmette-Guérin standards with 1.58 × 10(1) genome copies/well were positive by real-time PCR but all field samples were negative.

  16. Evaluation of Four Commercial Real-Time PCR Assays for Detection of Bordetella spp. in Nasopharyngeal Aspirates ▿

    PubMed Central

    Lanotte, Philippe; Plouzeau, Chloé; Burucoa, Christophe; Grélaud, Carole; Guillot, Sophie; Guiso, Nicole; Garnier, Fabien

    2011-01-01

    We evaluated the performances of 4 commercial real-time PCR kits for Bordetella pertussis IS481 sequence detection in nasopharyngeal aspirates by comparison with an in-house real-time PCR assay. Among them, the Simplexa Bordetella pertussis/parapertussis assay (Focus Diagnostics), the SmartCycler Bordetella pertussis/parapertussis assay (Cepheid), and Bordetella R-gene (Argene) present sensitivities over 90%. One kit proved unsuitable for routine clinical use. PMID:21918018

  17. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children.

    PubMed

    Rosey, Anne-Laure; Abachin, Eric; Quesnes, Gilles; Cadilhac, Céline; Pejin, Zagorka; Glorion, Christophe; Berche, Patrick; Ferroni, Agnès

    2007-01-01

    The broad-range PCR has been successfully developed to search for fastidious, slow-growing or uncultured bacteria, and is mostly used when an empirical antibiotic treatment has already been initiated. The technique generally involves standard PCR targeting the gene coding for 16S ribosomal RNA, and includes a post-PCR visualisation step on agarose gel which is a potential source of cross-over contamination. In addition, interpretation of the presence of amplified products on gels can be difficult. We then developed a new SYBR Green-based, universal real-time PCR assay targeting the gene coding for 16S ribosomal RNA, coupled with sequencing of amplified products. The real-time PCR assay was evaluated on 94 articular fluid samples collected from children hospitalised for suspicion of septic arthritis, as compared to the results obtained with bacterial cultures and conventional broad-range PCR. DNA extraction was performed with the automated MagNa Pure system. We could detect DNA from various bacterial pathogens including fastidious bacteria (Kingella kingae, Streptococcus pneumoniae, Streptococcus pyogenes, Salmonella spp, Staphylococcus aureus) from 23% of cases of septic arthritis giving negative culture results. The real-time technique was easier to interpret and allowed to detect four more cases than conventional PCR. PCR based molecular techniques appear to be essential to perform in case of suspicion of septic arthritis, provided the increase of the diagnosed bacterial etiologies. Real-time PCR technique is a sensitive and reliable technique, which can replace conventional PCR for clinical specimens with negative bacterial culture.

  18. Assessing UV Inactivation of Adenovirus 41 Using Integrated Cell Culture Real-Time qPCR/RT-qPCR.

    PubMed

    Ding, Ning; Craik, Stephen A; Pang, Xiaoli; Lee, Bonita; Neumann, Norman F

    2017-04-01

      Enteric adenoviruses are among most UV-resistant viruses in water. Cytopathic effects (CPE)-based cell culture TCID50 assay as a conventional virus assessment approach has major drawbacks for enteric adenovirus since it is selective on cell lines and takes longer time to show CPE. Integrated cell culture real-time quantitative PCR (ICC-qPCR) and reverse transcriptase (RT)-qPCR were applied in this study, in comparison with TCID50, to assess UV inactivation of adenovirus type 41 (Ad41) in water. Adenovirus type 41 was exposed to UV doses of 40, 80, 160, and 320 mJ/cm2 using a collimated beam apparatus. There was no significant difference of inactivation at conducted UV doses between measurements using TCID50 assay and ICC-RT-qPCR. Both assays fitted the Chick-Watson model at 95% confidence level. The inactivation measured by ICC-qPCR did not fit the Chick-Watson model. In summary, ICC-RT-qPCR is the most appropriate alternate to CPE-based assay for assessing UV inactivation of enteric adenoviruses.

  19. Modeling real-time PCR kinetics: Richards reparametrized equation for quantitative estimation of European hake (Merluccius merluccius).

    PubMed

    Sánchez, Ana; Vázquez, José A; Quinteiro, Javier; Sotelo, Carmen G

    2013-04-10

    Real-time PCR is the most sensitive method for detection and precise quantification of specific DNA sequences, but it is not usually applied as a quantitative method in seafood. In general, benchmark techniques, mainly cycle threshold (Ct), are the routine method for quantitative estimations, but they are not the most precise approaches for a standard assay. In the present work, amplification data from European hake (Merluccius merluccius) DNA samples were accurately modeled by three sigmoid reparametrized equations, where the lag phase parameter (λc) from the Richards equation with four parameters was demonstrated to be the perfect substitute for Ct for PCR quantification. The concentrations of primers and probes were subsequently optimized by means of that selected kinetic parameter. Finally, the linear correlation among DNA concentration and λc was also confirmed.

  20. A New Lab Developed Real Time PCR Assay for Direct Detection of C. Difficle from Stool Sample without DNA Extraction.

    PubMed

    Li, Brandon

    2016-09-01

    Clostridium difficile is a major cause of nosocomial antibiotic-associated infectious diarrhea and pseudomembranous colitis. Detection of C. difficile by anaerobic bacterial culture and/or cytotoxicity assays has been largely replaced by rapid enzyme immunoassays (EIA). However, due to the lack of sensitivity of stool EIA, we developed a multiplex real-time PCR assay targeting the C. difficile toxin genes tcdB. stool samples from hospitalized pediatric patients suspected of having C. difficile-associated disease were prospectively collected. Three testing modalities were evaluated, including enriched culture, cepheid Xpert and real-time Pcr (tcdB) on stool samples performed with tcdB gene-specific primers and hydrolysis probes. A total of 150 de-identified clinical specimen were analyzed. The sensitivities of stool real-time Pcr were 95% against cepheid Xpert C. difficile and 93% against enriched culture respectively, with a specificity of 97% and 94%. The lower limit of detection of the stool real-time PCR was 0.5 cFU/ml of per reaction for tcdB. Direct detection of C. difficile toxin genes in stool samples by real-time Pcr showed performance comparable to enriched culture. Real-time PCR of DNA from stool samples is a rapid and cost-effective diagnostic modality for patients that should facilitate appropriate patient management.

  1. A New Lab Developed Real Time PCR Assay for Direct Detection of C. Difficle from Stool Sample without DNA Extraction

    PubMed Central

    Li, Brandon

    2016-01-01

    Clostridium difficile is a major cause of nosocomial antibiotic-associated infectious diarrhea and pseudomembranous colitis. Detection of C. difficile by anaerobic bacterial culture and/or cytotoxicity assays has been largely replaced by rapid enzyme immunoassays (EIA). However, due to the lack of sensitivity of stool EIA, we developed a multiplex real-time PCR assay targeting the C. difficile toxin genes tcdB. stool samples from hospitalized pediatric patients suspected of having C. difficile-associated disease were prospectively collected. Three testing modalities were evaluated, including enriched culture, cepheid Xpert and real-time Pcr (tcdB) on stool samples performed with tcdB gene-specific primers and hydrolysis probes. A total of 150 de-identified clinical specimen were analyzed. The sensitivities of stool real-time Pcr were 95% against cepheid Xpert C. difficile and 93% against enriched culture respectively, with a specificity of 97% and 94%. The lower limit of detection of the stool real-time PCR was 0.5 cFU/ml of per reaction for tcdB. Direct detection of C. difficile toxin genes in stool samples by real-time Pcr showed performance comparable to enriched culture. Real-time PCR of DNA from stool samples is a rapid and cost-effective diagnostic modality for patients that should facilitate appropriate patient management. PMID:27829823

  2. Detection of 12 respiratory viruses by duplex real time PCR assays in respiratory samples.

    PubMed

    Arvia, Rosaria; Corcioli, Fabiana; Ciccone, Nunziata; Della Malva, Nunzia; Azzi, Alberta

    2015-12-01

    Different viruses can be responsible for similar clinical manifestations of respiratory infections. Thus, the etiological diagnosis of respiratory viral diseases requires the detection of a large number of viruses. In this study, 6 duplex real-time PCR assays, using EvaGreen intercalating dye, were developed to detect 12 major viruses responsible for respiratory diseases: influenza A and B viruses, enteroviruses (including enterovirus spp, and rhinovirus spp), respiratory syncytial virus, human metapneumovirus, coronaviruses group I (of which CoV 229E and CoV NL63 are part) and II (including CoV OC43 and CoV HKU1), parainfluenza viruses type 1, 2, 3 and 4, human adenoviruses and human bocaviruses. The 2 target viruses of each duplex reaction were distinguishable by the melting temperatures of their amplicons. The 6 duplex real time PCR assays were applied for diagnostic purpose on 202 respiratory samples from 157 patients. One hundred fifty-seven samples were throat swabs and 45 were bronchoalveolar lavages. The results of the duplex PCR assays were confirmed by comparison with a commercial, validated, assay; in addition, the positive results were confirmed by sequencing. The analytical sensitivity of the duplex PCR assays varied from 10(3) copies/ml to 10(4) copies/ml. For parainfluenza virus 2 only it was 10(5) copies/ml. Seventy clinical samples (35%) from 55 patients (30 children and 25 adults) were positive for 1 or more viruses. In adult patients, influenza A virus was the most frequently detected respiratory virus followed by rhinoviruses. In contrast, respiratory syncytial virus was the most common virus in children, followed by enteroviruses, influenza A virus and coronavirus NL63. The small number of samples/patients does not allow us to draw any epidemiological conclusion. Altogether, the results of this study indicate that the 6 duplex PCR assays described in this study are sensitive, specific and cost-effective. Thus, this assay could be

  3. Evaluation of a new single-tube multiprobe real-time PCR for diagnosis of Entamoeba histolytica and Entamoeba dispar.

    PubMed

    Liang, Shih-Yu; Hsia, Kan-Tai; Chan, Yun-Hsien; Fan, Chia-Kwung; Jiang, Donald Dah-Shyong; Landt, Olfert; Ji, Dar-Der

    2010-08-01

    A single-tube multiprobe real-time PCR assay for simultaneous detection of Entamoeba histolytica and Entamoeba dispar was developed. One primer pair with 2 species-specific probes was designed based on new SSU RNA regions of the ribosomal DNA-containing episome. The sensitivity is 1 parasite per milliliter of feces and thus superior to the conventional nested PCR and comparable to other published real-time PCR protocols. The applicability for clinical diagnosis was validated with 218 stool specimens from patients. A total of 51 E. histolytica and 39 E. dispar positive samples was detected by the multiprobe real-time PCR compared to 39 and 22 by routine nested PCR diagnosis. The detection rate of Entamoeba species for the multiprobe real-time PCR assays was significantly higher than the nested PCR (40.8% vs. 28.0%, P < 0.01). The test did not show cross reactivity with DNA from Entamoeba moshkovskii, Giardia lamblia , Cryptosporidium sp., Escherichia coli , or other nonpathogenic enteric parasites. The multiprobe real-time PCR assay is simple and rapid and has high specificity and sensitivity. The assay could streamline the laboratory diagnosis procedure and facilitate epidemiological investigation.

  4. Evaluation of loop-mediated isothermal amplification method (LAMP) for pathogenic Leptospira spp. detection with leptospires isolation and real-time PCR.

    PubMed

    Suwancharoen, Duangjai; Sittiwicheanwong, Busara; Wiratsudakul, Anuwat

    2016-09-01

    Leptospirosis has been one of the worldwide zoonotic diseases caused by pathogenic Leptospira spp. Many molecular techniques have consecutively been developed to detect such pathogen including loop-mediated isothermal amplification method (LAMP). The objectives of this study were to evaluate the diagnostic accuracy of LAMP assay and real-time PCR using bacterial culture as the gold standard and to assess the agreement among these three tests using Cohen's kappa statistics. In total, 533 urine samples were collected from 266 beef and 267 dairy cattle reared in central region of Thailand. Sensitivity and specificity of LAMP were 96.8% (95% CI 81.5-99.8) and 97.0% (95% CI 94.9-98.2), respectively. The accuracy of LAMP (97.0%) was significantly higher than that of real-time PCR (91.9%) at 95% CI. With Cohen's kappa statistics, culture method and LAMP were substantially agreed with each other (77.4%), whereas real-time PCR only moderately agreed with culture (47.7%) and LAMP (45.3%), respectively. Consequently, LAMP was more effective than real-time PCR in detecting Leptospira spp. in the urine of cattle. Besides, LAMP had less cost and was simpler than real-time PCR. Thus, LAMP was an excellent alternative for routine surveillance of leptospirosis in cattle.

  5. Evaluation of loop-mediated isothermal amplification method (LAMP) for pathogenic Leptospira spp. detection with leptospires isolation and real-time PCR

    PubMed Central

    SUWANCHAROEN, Duangjai; SITTIWICHEANWONG, Busara; WIRATSUDAKUL, Anuwat

    2016-01-01

    Leptospirosis has been one of the worldwide zoonotic diseases caused by pathogenic Leptospira spp. Many molecular techniques have consecutively been developed to detect such pathogen including loop–mediated isothermal amplification method (LAMP). The objectives of this study were to evaluate the diagnostic accuracy of LAMP assay and real-time PCR using bacterial culture as the gold standard and to assess the agreement among these three tests using Cohen’s kappa statistics. In total, 533 urine samples were collected from 266 beef and 267 dairy cattle reared in central region of Thailand. Sensitivity and specificity of LAMP were 96.8% (95% CI 81.5–99.8) and 97.0% (95% CI 94.9–98.2), respectively. The accuracy of LAMP (97.0%) was significantly higher than that of real-time PCR (91.9%) at 95% CI. With Cohen’s kappa statistics, culture method and LAMP were substantially agreed with each other (77.4%), whereas real-time PCR only moderately agreed with culture (47.7%) and LAMP (45.3%), respectively. Consequently, LAMP was more effective than real-time PCR in detecting Leptospira spp. in the urine of cattle. Besides, LAMP had less cost and was simpler than real-time PCR. Thus, LAMP was an excellent alternative for routine surveillance of leptospirosis in cattle. PMID:27150208

  6. Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with the linear array HPV genotyping PCR assay and influence of DNA extraction method on HPV detection.

    PubMed

    Roberts, Christine C; Swoyer, Ryan; Bryan, Janine T; Taddeo, Frank J

    2011-05-01

    Real-time human papillomavirus (HPV) type-specific multiplex PCR assays were developed to detect HPV DNA in specimens collected for the efficacy determination of the quadrivalent HPV (type 6, 11, 16, and 18) L1 virus-like particle (VLP) vaccine (Gardasil). We evaluated the concordance between type-specific multiplex HPV PCR and the widely used, commercially available Roche Linear Array genotyping PCR assay. Female genital swab specimens were tested for the presence of L1, E6, and E7 sequences of HPV type 6 (HPV6), HPV11, HPV16, HPV18, HPV31, HPV45, HPV52, and HPV58 and E6 and E7 sequences of HPV33, HPV35, HPV39, HPV51, HPV56, and HPV59 in type- and gene-specific real-time multiplex PCR assays. Specimens were also tested for the presence of L1 sequences using two versions of the Roche Linear Array genotyping assay. Measures of concordance of a modified version of the Linear Array and the standard Linear Array PCR assay were evaluated. With specimen DNA extraction using the Qiagen Spin blood kit held as the constant, multiplex PCR assays detect more HPV-positive specimens for the 14 HPV types common to both than either version of the Linear Array HPV genotyping assay. Type-specific agreements between the assays were good, at least 0.838, but were often driven by negative agreement in HPV types with low prevalence, as evidenced by reduced proportions of positive agreement. Overall HPV status agreements ranged from 0.615 for multiplex PCR and standard Linear Array to 0.881 for multiplex PCR and modified Linear Array. An alternate DNA extraction technique, that used by the Qiagen MinElute kit, impacted subsequent HPV detection in both the multiplex PCR and Linear Array assays.

  7. Seasonal variation in transcript abundance in cork tissue analyzed by real time RT-PCR.

    PubMed

    Soler, Marçal; Serra, Olga; Molinas, Marisa; García-Berthou, Emili; Caritat, Antònia; Figueras, Mercè

    2008-05-01

    The molecular processes underlying cork biosynthesis and differentiation are mostly unknown. Recently, a list of candidate genes for cork biosynthesis and regulation was made available opening new possibilities for molecular studies in cork oak (Quercus suber L.). Based on this list, we analyzed the seasonal variation in mRNA abundance in cork tissue of selected genes by real time reverse-transcriptase polymerase chain reaction (RT-PCR). Relative transcript abundance was evaluated by principal component analysis and genes were clustered in several functional subgroups. Structural genes of suberin pathways such as CYP86A1, GPAT and HCBT, and regulatory genes of the NAM and WRKY families showed highest transcript accumulation in June, a crucial month for cork development. Other cork structural genes, such as FAT and F5H, were significantly correlated with temperature and relative humidity. The stress genes HSP17.4 and ANN were strongly positively correlated to temperature, in accord with their protective role.

  8. Real-Time PCR Detection of Dogwood Anthracnose Fungus in Historical Herbarium Specimens from Asia.

    PubMed

    Miller, Stephen; Masuya, Hayato; Zhang, Jian; Walsh, Emily; Zhang, Ning

    2016-01-01

    Cornus species (dogwoods) are popular ornamental trees and important understory plants in natural forests of northern hemisphere. Dogwood anthracnose, one of the major diseases affecting the native North American Cornus species, such as C. florida, is caused by the fungal pathogen Discula destructiva. The origin of this fungus is not known, but it is hypothesized that it was imported to North America with its host plants from Asia. In this study, a TaqMan real-time PCR assay was used to detect D. destructiva in dried herbarium and fresh Cornus samples. Several herbarium specimens from Japan and China were detected positive for D. destructiva, some of which were collected before the first report of the dogwood anthracnose in North America. Our findings further support that D. destructiva was introduced to North America from Asia where the fungus likely does not cause severe disease.

  9. Real-Time PCR Detection of Dogwood Anthracnose Fungus in Historical Herbarium Specimens from Asia

    PubMed Central

    Miller, Stephen; Masuya, Hayato; Zhang, Jian; Walsh, Emily; Zhang, Ning

    2016-01-01

    Cornus species (dogwoods) are popular ornamental trees and important understory plants in natural forests of northern hemisphere. Dogwood anthracnose, one of the major diseases affecting the native North American Cornus species, such as C. florida, is caused by the fungal pathogen Discula destructiva. The origin of this fungus is not known, but it is hypothesized that it was imported to North America with its host plants from Asia. In this study, a TaqMan real-time PCR assay was used to detect D. destructiva in dried herbarium and fresh Cornus samples. Several herbarium specimens from Japan and China were detected positive for D. destructiva, some of which were collected before the first report of the dogwood anthracnose in North America. Our findings further support that D. destructiva was introduced to North America from Asia where the fungus likely does not cause severe disease. PMID:27096929

  10. Diagnosis of Lobesia botrana (Lepidoptera: Tortricidae) Using Real-Time PCR.

    PubMed

    Ledezma, L A; Barr, N B; Epstein, M E; Gilligan, T M

    2016-08-01

    A real-time PCR assay is reported for identification of Lobesia botrana (Denis and Schiffermüller) collected in California. This assay multiplexes two independent TaqMan probe systems in a single reaction tube to reduce handling time and sample exposure to environmental contaminants. One probe system targets a segment of DNA located in the internal transcribed spacer region 2 (ITS2) that is present in the L. botrana genome but absent in native North American Tortricidae. The second probe system serves as a control for DNA quality by targeting a segment of the 18S rDNA gene that is conserved in L. botrana and all of the tested nontarget species. The assay successfully diagnosed 70 Lobesia botrana specimens and 95 nontarget specimens. No false-positive or false-negative results were observed supporting its application for identification of this pest in California.

  11. Validation of real-time PCR assays for bioforensic detection of model plant pathogens.

    PubMed

    James, Mindy; Blagden, Trenna; Moncrief, Ian; Burans, James P; Schneider, Katherine; Fletcher, Jacqueline

    2014-03-01

    The U.S. agricultural sector is vulnerable to intentionally introduced microbial threats because of its wide and open distribution and economic importance. To investigate such events, forensically valid assays for plant pathogen detection are needed. In this work, real-time PCR assays were developed for three model plant pathogens: Pseudomonas syringae pathovar tomato, Xylella fastidiosa, and Wheat streak mosaic virus. Validation included determination of the linearity and range, limit of detection, sensitivity, specificity, and exclusivity of each assay. Additionally, positive control plasmids, distinguishable from native signature by restriction enzyme digestion, were developed to support forensic application of the assays. Each assay displayed linear amplification of target nucleic acid, detected 100 fg or less of target nucleic acid, and was specific to its target pathogen. Results obtained with these model pathogens provide the framework for development and validation of similar assays for other plant pathogens of high consequence.

  12. Integrated sorting, concentration and real time PCR based detection system for sensitive detection of microorganisms

    PubMed Central

    Nayak, Monalisha; Singh, Deepak; Singh, Himanshu; Kant, Rishi; Gupta, Ankur; Pandey, Shashank Shekhar; Mandal, Swarnasri; Ramanathan, Gurunath; Bhattacharya, Shantanu

    2013-01-01

    The extremely low limit of detection (LOD) posed by global food and water safety standards necessitates the need to perform a rapid process of integrated detection with high specificity, sensitivity and repeatability. The work reported in this article shows a microchip platform which carries out an ensemble of protocols which are otherwise carried in a molecular biology laboratory to achieve the global safety standards. The various steps in the microchip include pre-concentration of specific microorganisms from samples and a highly specific real time molecular identification utilizing a q-PCR process. The microchip process utilizes a high sensitivity antibody based recognition and an electric field mediated capture enabling an overall low LOD. The whole process of counting, sorting and molecular identification is performed in less than 4 hours for highly dilute samples. PMID:24253282

  13. Real-time PCR identification of lake whitefish Coregonus clupeaformis in the Laurentian Great Lakes.

    PubMed

    Overdyk, L M; Braid, H E; Naaum, A M; Crawford, S S; Hanner, R H

    2016-04-01

    The purpose of this study was to develop a real-time PCR assay to specifically identify lake whitefish Coregonus clupeaformis in larval fish assemblages based on a 122 bp amplicon from the mitochondrial genome. The efficiency of the reaction, as calculated from the standard curve, was 90.77% with the standard curve having an r(2) value of 0.998. Specificity of the assay provided single melt peak in a melt-curve analysis and amplification of only the target species. The assay successfully identified target DNA in as low as 0.1% proportion of a DNA mixture. This assay was designed on the portable Smart Cycler II platform and can be used in both field and laboratory settings to successfully identify C. clupeaformis.

  14. Real-time immuno-PCR: an approach for detection of trace amounts of transgenic proteins.

    PubMed

    Kumar, Rajesh; Sinha, Rajeshwar P

    2014-01-01

    The research on manipulation of crop genomes for transgenic development is continuously increasing due to several benefits. The major concerns linked to the effect of transgenic crops are human health and environment sustainability. To monitor transgenic samples in the food chain, several highly sensitive and specific DNA-based and protein-based detection methods are being used. However, real- time immunio-PCR (RT-IPCR) assay would be able to provide a sensitive detection of trace amounts of transgenic proteins or allergens in the samples and help in monitoring these materials. In the present study, we developed a novel RT-IPCR method to monitor CrylAc transgenic protein in samples with an LOD of 100 pg/mL. The assay may also be useful in the evaluation of functional stability of transgenes inserted in the plant genome.

  15. Real-Time PCR Assay for the Identification of the Brown Marmorated Stink Bug (Halyomorpha halys)

    PubMed Central

    Dhami, Manpreet K.; Dsouza, Melissa; Waite, David W.; Anderson, Diane; Li, Dongmei

    2016-01-01

    The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), is a gregarious crop pest that has rapidly spread across the world in the last two decades. It is an excellent hitchhiker species, especially as an over-wintering adult. During this period it is often associated with non-biological commodities such as shipping containers and machinery that travel long distances. Inadequate identification keys and similarity to common species has assisted its spread across Europe, while accurate identification from immature stages or eggs is not possible. We developed a real-time TaqMan PCR assay for the accurate and sensitive detection of the brown marmorated stink bug from all life stages. The assay performance against required diagnostic criterion and within a quarantine framework are described. PMID:26955631

  16. Determination of ABO genotypes by real-time PCR using allele-specific primers.

    PubMed

    Muro, Tomonori; Fujihara, Junko; Imamura, Shinji; Nakamura, Hiroaki; Kimura-Kataoka, Kaori; Toga, Tomoko; Iida, Reiko; Yasuda, Toshihiro; Takeshita, Haruo

    2012-01-01

    ABO grouping of biological specimens is informative for identifying victims and narrowing down suspects. In Japan and elsewhere, ABO grouping as well as DNA profiling plays an essential role in crime investigations. In the present study, we developed a new method for ABO genotyping using allele-specific primers and real-time PCR. The method allows for the detection of three single nucleotide polymorphisms (SNPs) at nucleotide positions 261, 796, and 803 in the ABO gene and the determination of six major ABO genotypes. This method required less than 2 h for accurate ABO genotyping using 2.0 ng of DNA. This method could be applicable for rapid and simple screening of forensic samples.

  17. Simultaneous real-time PCR detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis.

    PubMed

    Skottman, T; Piiparinen, H; Hyytiäinen, H; Myllys, V; Skurnik, M; Nikkari, S

    2007-03-01

    This report describes the development of in-house real-time PCR assays using minor groove binding probes for simultaneous detection of the Bacillus anthracis pag and cap genes, the Francisella tularensis 23 KDa gene, as well as the Yersinia pestis pla gene. The sensitivities of these assays were at least 1 fg, except for the assay targeting the Bacillus anthracis cap gene, which showed a sensitivity of 10 fg when total DNA was used as a template in a serial dilution. The clinical value of the Bacillus anthracis- and Francisella tularensis-specific assays was demonstrated by successful amplification of DNA from cases of cow anthrax and hare tularemia, respectively. No cross-reactivity between these species-specific assays or with 39 other bacterial species was noted. These assays may provide a rapid tool for the simultaneous detection and identification of the three category A bacterial species listed as biological threats by the Centers for Disease Control and Prevention.

  18. Rapid detection of Salmonella in foods using real-time PCR.

    PubMed

    Cheng, Chorng-Ming; Lin, Wen; Van, Khanh Thien; Phan, Lieuchi; Tran, Nelly N; Farmer, Doris

    2008-12-01

    Conventional methods for detection of Salmonella serovars in foods are generally time-consuming and labor intensive. A real-time PCR method has been developed with custom designed primers and a TaqMan probe to detect the presence of a 262-bp fragment of the Salmonella-specific invA gene. The method has been tested with a total of 384 field-isolated Salmonella serovars and non-Salmonella stock strains, as well as 420 U.S. Food and Drug Administration food samples, comprising a variety of food matrices. The method was highly specific in detecting Salmonella in spiked chili powder and shrimp samples, with a sensitivity of 0.04 CFU/g. In addition, the method is faster, more accurate, and less costly than the traditional U.S. Food and Drug Administration's Bacteriological Analytical Manual cell-culturing and the AOAC International-approved VIDAS methods to detect Salmonella in foods.

  19. Comparison of TaqMan and Epoch Dark Quenchers during real-time reverse transcription PCR.

    PubMed

    Daum, Luke T; Ye, Keying; Chambers, James P; Santiago, Jose; Hickman, John R; Barnes, William J; Kruzelock, Russell P; Atchley, Daniel H

    2004-06-01

    Several biotechnology companies have recently introduced novel quencher fluors for use with dual-labeled fluorogenic hydrolysis probes. The Epoch Dark Quencher trade mark fluorochrome consists of a non-fluorescent moiety capable of absorption at higher wavelengths (400-650 nm). The aim of this study was to: (1) evaluate the feasibility of using Epoch Dark Quencher fluorochromes in real-time PCR pathogen detection assays that were previously optimized with TaqMan (TAMRA) quenching fluors, and (2) compare the sensitivity based on cycle threshold (CT) between probes containing either TaqMan or Epoch Dark Quencher fluors. Our data indicate Epoch Dark Quencher probes can be used in place of TaqMan probes and their performance was not better than traditional TaqMan (TAMRA) quenchers. Marginal differences observed between quenching fluorochromes may arise from concentration differences during probe synthesis.

  20. Development of a real-time PCR method for the identification of Atlantic mackerel (Scomber scombrus).

    PubMed

    Velasco, Amaya; Sánchez, Ana; Martínez, Icíar; Santaclara, Francisco J; Pérez-Martín, Ricardo I; Sotelo, Carmen G

    2013-12-01

    A Real Time-PCR method based on TaqMan technology for the identification of Scomber scombrus has been developed. A system of specific primers and a Minor Groove Binding (MGB) TaqMan probe based on sequences of the mitochondrial cytochrome b region was designed. The method was successfully tested in 81 specimens of S. scombrus and related species and validated in 26 different commercial samples. An average Threshold Cycle (Ct) value of 15.3 was obtained with S. scombrus DNA. With the other species tested fluorescence signal was not detected or Ct was significantly higher (P<0.001). The efficiency of the assay was estimated to be 92.41%, with 100% specificity, and no cross reactivity was detected with any other species. These results reveal that the developed method is a rapid and efficient tool to unequivocally identify S. scombrus and may aid in the prevention of fraud or mislabelling in mackerel products.

  1. Real time estimation of ship motions using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Triantafyllou, M. S.; Bodson, M.; Athans, M.

    1983-01-01

    The estimation of the heave, pitch, roll, sway, and yaw motions of a DD-963 destroyer is studied, using Kalman filtering techniques, for application in VTOL aircraft landing. The governing equations are obtained from hydrodynamic considerations in the form of linear differential equations with frequency dependent coefficients. In addition, nonminimum phase characteristics are obtained due to the spatial integration of the water wave forces. The resulting transfer matrix function is irrational and nonminimum phase. The conditions for a finite-dimensional approximation are considered and the impact of the various parameters is assessed. A detailed numerical application for a DD-963 destroyer is presented and simulations of the estimations obtained from Kalman filters are discussed.

  2. Evaluation of Housekeeping Genes for Quantitative Real-Time PCR Analysis of Bradysia odoriphaga (Diptera: Sciaridae)

    PubMed Central

    Shi, Caihua; Yang, Fengshan; Zhu, Xun; Du, Erxia; Yang, Yuting; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    The soil insect Bradysia odoriphaga (Diptera: Sciaridae) causes substantial damage to Chinese chive. Suitable reference genes in B. odoriphaga (Bradysia odoriphaga) have yet to be identified for normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR). This study was focused on identifying the expression stability of 12 candidate housekeeping genes in B. odoriphaga under various experiment conditions. The final stability ranking of 12 housekeeping genes was obtained with RefFinder, and the most suitable number of reference genes was analyzed by GeNorm. The results revealed that the most appropriate sets of internal controls were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18 across all samples. The use of the most suitable reference genes versus an arbitrarily selected reference gene resulted in significant differences in the analysis of a target gene expression. HSP23 in B. odoriphaga was found to be up-regulated under low temperatures. These results will contribute to the standardization of qRT-PCR and will also be valuable for further research on gene function in B. odoriphaga. PMID:27399679

  3. Validation of reference genes for quantitative real-time PCR during latex regeneration in rubber tree.

    PubMed

    Long, Xiangyu; He, Bin; Gao, Xinsheng; Qin, Yunxia; Yang, Jianghua; Fang, Yongjun; Qi, Jiyan; Tang, Chaorong

    2015-06-01

    In rubber tree, latex regeneration is one of the decisive factors influencing the rubber yield, although its molecular regulation is not well known. Quantitative real-time PCR (qPCR) is a popular and powerful tool used to understand the molecular mechanisms of latex regeneration. However, the suitable reference genes required for qPCR are not available to investigate the expressions of target genes during latex regeneration. In this study, 20 candidate reference genes were selected and evaluated for their expression stability across the samples during the process of latex regeneration. All reference genes showed a relatively wide range of the threshold cycle values, and their stability was validated by four different algorithms (comparative delta Ct method, Bestkeeper, NormFinder and GeNorm). Three softwares (comparative delta Ct method, NormFinder and GeNorm) exported similar results that identify UBC4, ADF, UBC2a, eIF2 and ADF4 as the top five suitable references, and 18S as the least suitable one. The application of the screened references would improve accuracy and reliability of gene expression analysis in latex regeneration experiments.

  4. Selection of Reference Genes for Real-Time Quantitative PCR in Pinus massoniana Post Nematode Inoculation

    PubMed Central

    Wei, Yongcheng; Liu, Qinghua; Dong, Hongyu; Zhou, Zhichun; Hao, Yanping; Chen, Xuelian; Xu, Liuyi

    2016-01-01

    Pinus massoniaia Lamb has gained more and more attention as the most important tree species for timber and forestation in South China. Gene expression studies are of great importance to identify new and elite cultivars. Real-time quantitative PCR, a highly sensitive and specific method, is commonly used in the analysis of gene expression. The appropriate reference genes must be employed to normalize the calculation program for ascertaining repeatable and significant results. Herein, eleven housekeeping genes were evaluated during different stages of P. massoniana post nematode inoculation in this study. Three statistical approaches such as geNorm, NormFinder and BestKeeper were selected to analyze the stability of candidate genes. The results indicated that U2af and β-TUB were the most stable reference genes. These two genes could be used for the normalization in most of the experiments of P. massoniana, while Histone and AK were the least stable ones. In addition, EF expressed at the lowest average Ct value was the most abundant candidate gene. As an important gene associated with defense mechanisms, ABC transporter was analyzed by qRT-PCR, and the results were used to confirm the reliability of two genes. The selected reference genes in the present study will be conducive to future gene expression normalized by qRT-PCR in P. massoniana. PMID:26800152

  5. [Diagnosis of whooping cough by serology and real-time PCR].

    PubMed

    Mikešová, Romana; Stiborová, Ivana; Richter, Josef; Rajnohová Dobiášová, Lucie; Král, Vlastimil

    2013-09-01

    The goal of this study is to summarize the results of the detection of Bordetella pertussis (BP) and Bordetella parapertussis (BPP) by a real-time polymerase chain reaction (RT-PCR) assay and serological methods. In 2008-2010, 73 patients of the Department of Clinical Immunology and Allergology of the Centre for Immunology and Microbiology, Public Health Institute in Ústí nad Labem were screened for pertussis. They were selected according to the WHO and ECDC criteria, i. e. they presented with a persistent cough lasting more than two weeks. Direct detection of BP and BPP DNA from nasopharyngeal wash specimens was performed using a RT PCR assay. The serological responses were evaluated by a direct agglutination test for the detection of total antibodies and by enzyme-linked immunosobent assay (ELISA) for the detection of IgG, IgA, and IgM antibodies against pertussis toxin. Forty-two patients were positive for BP and/or BPP, 19 of them by RT-PCR (group A) and 23 by serology (group B). Ten group A patients (52.6%) were also positive by serology. Our results show that pertussis needs to be a consideration in persistent cough. We believe that increased awareness of the medical community, along with improved laboratory tests will result in increased detection of pertussis that is still considered by many physicians as a childhood infection.

  6. Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.

    PubMed

    Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L

    2016-07-01

    Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR.

  7. Real-Time Fluorogenic Reverse Transcription-PCR Assays for Detection of Bacteriophage MS2

    PubMed Central

    O'Connell, Kevin P.; Bucher, Jennifer R.; Anderson, Patricia E.; Cao, Cheng J.; Khan, Akbar S.; Gostomski, Mark V.; Valdes, James J.

    2006-01-01

    Bacteriophage MS2 is used in place of pathogenic viruses in a wide variety of studies that range from testing of compounds for disinfecting surfaces to studying environmental transport and fate of pathogenic viruses in groundwater. MS2 is also used as a pathogen simulant in the research, development, and testing (including open air tests) of methods, systems, and devices for the detection of pathogens in both the battlefield and homeland defense settings. PCR is often used as either an integral part of such detection systems or as a reference method to assess the sensitivity and specificity of microbial detection. To facilitate the detection of MS2 by PCR, we describe here a set of real-time fluorogenic reverse transcription-PCR assays. The sensitivity of the assays (performed with primer pairs and corresponding dye-labeled probes) ranged from 0.4 to 40 fg of MS2 genomic RNA (200 to 20,000 genome equivalents). We also demonstrate the usefulness of the primer pairs in assays without dye-labeled probe that included the DNA-binding dye SYBR green. None of the assays gave false-positive results when tested against 400 pg of several non-MS2 nucleic acid targets. PMID:16391081

  8. Selection of Reference Genes for Real-Time Quantitative PCR in Pinus massoniana Post Nematode Inoculation.

    PubMed

    Wei, Yongcheng; Liu, Qinghua; Dong, Hongyu; Zhou, Zhichun; Hao, Yanping; Chen, Xuelian; Xu, Liuyi

    2016-01-01

    Pinus massoniaia Lamb has gained more and more attention as the most important tree species for timber and forestation in South China. Gene expression studies are of great importance to identify new and elite cultivars. Real-time quantitative PCR, a highly sensitive and specific method, is commonly used in the analysis of gene expression. The appropriate reference genes must be employed to normalize the calculation program for ascertaining repeatable and significant results. Herein, eleven housekeeping genes were evaluated during different stages of P. massoniana post nematode inoculation in this study. Three statistical approaches such as geNorm, NormFinder and BestKeeper were selected to analyze the stability of candidate genes. The results indicated that U2af and β-TUB were the most stable reference genes. These two genes could be used for the normalization in most of the experiments of P. massoniana, while Histone and AK were the least stable ones. In addition, EF expressed at the lowest average Ct value was the most abundant candidate gene. As an important gene associated with defense mechanisms, ABC transporter was analyzed by qRT-PCR, and the results were used to confirm the reliability of two genes. The selected reference genes in the present study will be conducive to future gene expression normalized by qRT-PCR in P. massoniana.

  9. An updated TaqMan real-time PCR for canine and feline parvoviruses.

    PubMed

    Streck, André Felipe; Rüster, Dana; Truyen, Uwe; Homeier, Timo

    2013-10-01

    Canine parvovirus type 2 (CPV-2) emerged in late 1970s from the feline panleukopenia virus (FPLV) and developed, since then, into novel genetic and antigenic variants (CPV-2a, -2b and -2c). Canine and feline parvoviruses cause an acute enteric disease in their hosts, with high level of viral shedding. In this study, a quantitative TaqMan PCR for detection and quantitation of canine and feline parvoviruses in serum and fecal samples was developed. The primers were designed based upon the entire GenBank content for CPV and FPLV. A standard curve was generated, and validation tests were performed using 10-fold serial dilutions of CPV-2 virus in CPV/FPLV-negative feces and CPV/FPLV-negative serum samples. As a result, the 100% detection limit of the PCR was 18 copies of the viral genome per μl of serum and fecal sample. All canine parvovirus types as well as FPLV were detected. In conclusion, the real-time PCR represents an upgraded and useful tool to identify and quantify canine and feline parvoviruses in different sample matrices.

  10. Evaluation of baker's yeast in honey using a real-time PCR assay.

    PubMed

    Kast, Christina; Roetschi, Alexandra

    2017-04-01

    Occasionally, melissopalynological analysis reveals the presence of baker's yeast (Saccharomyces cerevisiae) in honey sediments. A field experiment reproducing a common spring bee feeding practice, using sugar paste containing baker's yeast, was performed to understand how S. cerevisiae are introduced into honey. Apart from classical microscopy, a real-time quantitative PCR (qPCR) system specific for S. cerevisiae was established for quantification of S. cerevisiae in honeys. Results showed that S. cerevisiae cells are stored in the honey of the brood combs and are also transferred into honey in the supers. The concentrations of S. cerevisiae were highest in honey of the brood frames immediately after the feeding and decreased over time to low concentrations at the end of the year. A high content of S. cerevisiae cells were also found in the honey from supers of the spring harvest. Observed S. cerevisiae cells were not able to multiply in a high-sugar environment, such as honey, and their viability decreased rapidly after addition to the honey. The screening of 200 Swiss honeys revealed the presence of S. cerevisiae in 4.5% of the samples, as determined by microscopy and qPCR. Finally, the method described here may indicate an unwanted sucrose addition to honey through bee-feeding.

  11. Harmonization of Bordetella pertussis real-time PCR diagnostics in the United States in 2012.

    PubMed

    Williams, Margaret M; Taylor, Thomas H; Warshauer, David M; Martin, Monte D; Valley, Ann M; Tondella, M Lucia

    2015-01-01

    Real-time PCR (rt-PCR) is an important diagnostic tool for the identification of Bordetella pertussis, Bordetella holmesii, and Bordetella parapertussis. Most U.S. public health laboratories (USPHLs) target IS481, present in 218 to 238 copies in the B. pertussis genome and 32 to 65 copies in B. holmesii. The CDC developed a multitarget PCR assay to differentiate B. pertussis, B. holmesii, and B. parapertussis and provided protocols and training to 19 USPHLs. The 2012 performance exercise (PE) assessed the capability of USPHLs to detect these three Bordetella species in clinical samples. Laboratories were recruited by the Wisconsin State Proficiency Testing program through the Association of Public Health Laboratories, in partnership with the CDC. Spring and fall PE panels contained 12 samples each of viable Bordetella and non-Bordetella species in saline. Fifty and 53 USPHLs participated in the spring and fall PEs, respectively, using a variety of nucleic acid extraction methods, PCR platforms, and assays. Ninety-six percent and 94% of laboratories targeted IS481 in spring and fall, respectively, in either singleplex or multiplex assays. In spring and fall, respectively, 72% and 79% of USPHLs differentiated B. pertussis and B. holmesii and 68% and 72% identified B. parapertussis. IS481 cycle threshold (CT) values for B. pertussis samples had coefficients of variation (CV) ranging from 10% to 28%. Of the USPHLs that differentiated B. pertussis and B. holmesii, sensitivity was 96% and specificity was 95% for the combined panels. The 2012 PE demonstrated increased harmonization of rt-PCR Bordetella diagnostic protocols in USPHLs compared to that of the previous survey.

  12. Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates.

    PubMed

    Bowers, H A; Tengs, T; Glasgow, H B; Burkholder, J M; Rublee, P A; Oldach, D W

    2000-11-01

    Pfiesteria complex species are heterotrophic and mixotrophic dinoflagellates that have been recognized as harmful algal bloom species associated with adverse fish and human health effects along the East Coast of North America, particularly in its largest (Chesapeake Bay in Maryland) and second largest (Albermarle-Pamlico Sound in North Carolina) estuaries. In response to impacts on human health and the economy, monitoring programs to detect the organism have been implemented in affected areas. However, until recently, specific identification of the two toxic species known thus far, Pfiesteria piscicida and P. shumwayae (sp. nov.), required scanning electron microscopy (SEM). SEM is a labor-intensive process in which a small number of cells can be analyzed, posing limitations when the method is applied to environmental estuarine water samples. To overcome these problems, we developed a real-time PCR-based assay that permits rapid and specific identification of these organisms in culture and heterogeneous environmental water samples. Various factors likely to be encountered when assessing environmental samples were addressed, and assay specificity was validated through screening of a comprehensive panel of cultures, including the two recognized Pfiesteria species, morphologically similar species, and a wide range of other estuarine dinoflagellates. Assay sensitivity and sample stability were established for both unpreserved and fixative (acidic Lugol's solution)-preserved samples. The effects of background DNA on organism detection and enumeration were also explored, and based on these results, we conclude that the assay may be utilized to derive quantitative data. This real-time PCR-based method will be useful for many other applications, including adaptation for field-based technology.

  13. [Investigation of West Nile virus RNA in blood donors by real-time RT-PCR].

    PubMed

    Sahiner, Fatih; Avcı, Ismail Yaşar; Bedir, Orhan; Koru, Ozgür; Sener, Kenan; Yapar, Mehmet; Kubar, Ayhan

    2012-07-01

    West Nile virus (WNV), a member of Flaviviridae family, is an enveloped, icosahedral symmetric RNA virus. Primary reservoir hosts of WNV are birds, but the virus can cause various infections in humans and other mammals. The most common and natural transmission way of WNV infections is mosquito bites, however, humans can be infected by different routes. The most important non-mosquito transmission route is contaminated blood and blood products. In this study, we aimed to investigate the risk of WNV transmission through blood and blood products in Ankara, Turkey. The presence of WNV RNA was investigated by in house real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in serum samples obtained from 729 healthy blood donors (mean age: 27.7 years; 711 were male), regardless of the donor's seropositivity status since the virus can be transmitted at the early stages of infection when seroconversion has not yet developed. Serum samples were collected in August-September 2009, the period when these infections are more frequent due to mosquito activity. The vast majority of donors (n= 702, 96.3%) have been inhabiting in Ankara and 569 (78%) of donors have had risk factors for arboviral infections (e.g. outdoor activity, mosquito and tick bites). WNV RNA was not detected by real-time RT-PCR analysis in any serum sample included in this study. According to the results of our study, it can be said that the risk of WNV transmission through blood and blood products is low in Ankara. However, WNV seropositivity was detected within the range of 0.56 to 2.4% among blood donors in previous studies and probable and confirmed WNV infections have been reported in our region. In addition, WNV outbreaks have emerged in some countries neighbouring Turkey recently. Thus, the risk of WNV transmission through blood and blood products should not be ignored and blood donor questionnaires should be evaluated in detail.

  14. A real-time PCR assay for detection and quantification of Verticillium dahliae in spinach seed.

    PubMed

    Duressa, Dechassa; Rauscher, Gilda; Koike, Steven T; Mou, Beiquan; Hayes, Ryan J; Maruthachalam, Karunakaran; Subbarao, Krishna V; Klosterman, Steven J

    2012-04-01

    Verticillium dahliae is a soilborne fungus that causes Verticillium wilt on multiple crops in central coastal California. Although spinach crops grown in this region for fresh and processing commercial production do not display Verticillium wilt symptoms, spinach seeds produced in the United States or Europe are commonly infected with V. dahliae. Planting of the infected seed increases the soil inoculum density and may introduce exotic strains that contribute to Verticillium wilt epidemics on lettuce and other crops grown in rotation with spinach. A sensitive, rapid, and reliable method for quantification of V. dahliae in spinach seed may help identify highly infected lots, curtail their planting, and minimize the spread of exotic strains via spinach seed. In this study, a quantitative real-time polymerase chain reaction (qPCR) assay was optimized and employed for detection and quantification of V. dahliae in spinach germplasm and 15 commercial spinach seed lots. The assay used a previously reported V. dahliae-specific primer pair (VertBt-F and VertBt-R) and an analytical mill for grinding tough spinach seed for DNA extraction. The assay enabled reliable quantification of V. dahliae in spinach seed, with a sensitivity limit of ≈1 infected seed per 100 (1.3% infection in a seed lot). The quantification was highly reproducible between replicate samples of a seed lot and in different real-time PCR instruments. When tested on commercial seed lots, a pathogen DNA content corresponding to a quantification cycle value of ≥31 corresponded with a percent seed infection of ≤1.3%. The assay is useful in qualitatively assessing seed lots for V. dahliae infection levels, and the results of the assay can be helpful to guide decisions on whether to apply seed treatments.

  15. Investigation of telomere lengths measurement by quantitative real-time PCR to predict age.

    PubMed

    Hewakapuge, Sudinna; van Oorschot, Roland A H; Lewandowski, Paul; Baindur-Hudson, Swati

    2008-09-01

    Currently DNA profiling methods only compare a suspect's DNA with DNA left at the crime scene. When there is no suspect, it would be useful for the police to be able to predict what the person of interest looks like by analysing the DNA left behind in a crime scene. Determination of the age of the suspect is an important factor in creating an identikit. Human somatic cells gradually lose telomeric repeats with age. This study investigated if one could use a correlation between telomere length and age, to predict the age of an individual from their DNA. Telomere length, in buccal cells, of 167 individuals aged between 1 and 96 years old was measured using real-time quantitative PCR. Telomere length decreased with age (r=-0.185, P<0.05) and the age of an individual could be roughly determined by the following formula: (age=relative telomere length -1.5/-0.005). The regression (R(2)) value between telomere length and age was approximately 0.04, which is too low to be use for forensics. The causes for the presence of large variation in telomere lengths in the population were further investigated. The age prediction accuracies were low even after dividing samples into non-related Caucasians, males and females (5%, 9% and 1%, respectively). Mean telomere lengths of eight age groups representing each decade of life showed non-linear decrease in telomere length with age. There were variations in telomere lengths even among similarly aged individuals aged 26 years old (n=10) and age 54 years old (n=9). Therefore, telomere length measurement by real-time quantitative PCR cannot be used to predict age of a person, due to the presence of large inter-individual variations in telomere lengths.

  16. Equine herpesvirus 1 (EHV-1) nucleotide polymorphism determination using formalin fixed tissues in EHV-1 induced abortions and myelopathies with real-time PCR and pyrosequencing.

    PubMed

    Tewari, Deepanker; Del Piero, Fabio; Cieply, Stephen; Feria, Willard; Acland, Helen

    2013-11-01

    Equine herpesvirus-1 (EHV-1) strains with a single point mutation at the 2254 nucleotide position with a G2254 constitution within the DNA polymerase gene are associated strongly with equine myeloencephalopathies. Infections with non-neuropathogenic EHV-1 strains without the G2254 nucleotide but with an A2254 nucleotide are associated less frequently with equine neurologic disease. A retrospective study utilizing DNA extracted from formalin fixed paraffin embedded tissues was conducted with real time PCR and pyrosequencing, to determine the infecting EHV-1 strains. Infection with EHV-1 A2254 and or G2254 strain was detected with real time PCR, and was confirmed with a rapid pyrosequencing technique. Pyrosequencing was useful in at least 2 cases where real time PCR was equivocal in determining the infecting EHV-1 strain type. The strain with G2254 mutation was detected in 9.4% of 21 studied abortion cases, and in 86.6% of 15 neurologic cases.

  17. Quantitative real-time PCR (qPCR) for the detection and quantification of dactylogyrid parasites infecting Lutjanus guttatus.

    PubMed

    Soler-Jiménez, L C; García-Gasca, A; Fajer-Ávila, E J

    2017-03-07

    Severe infections of the spotted rose snapper Lutjanus guttatus resulting from dactylogyrid monogeneans present a risk to aquaculture. Currently, the diagnosis of this infection requires the morphological identification and manual quantification of parasites. Based on the characterization of the 28S rRNA gene of dactylogyrid species present in L. guttatus, specific primers were designed for real-time polymerase chain reaction (qPCR) using EvaGreen® chemistry. The standard curve method estimated the number of dactylogyrids accurately. A total of 85 gill samples from cage-cultured fish infected with dactylogyrids were analysed. The estimated number of dactylogyrids using this molecular method was very similar to the manual count that was performed initially. The standardized qPCR approach will be helpful as a complementary method for the early routine monitoring of dactylogyrid infections and for epidemiological studies in which a high number of fish must be studied.

  18. In-house validation and quality control of real-time PCR methods for GMO detection: a practical approach.

    PubMed

    Ciabatti, I; Froiio, A; Gatto, F; Amaddeo, D; Marchesi, U

    2006-01-01

    GMO detection and quantification methods in the EU are mainly based on real-time PCR. The analytical methods in use must be validated, first on an intra-laboratory scale and through a collaborative trial thereafter. Since a consensual protocol for intra-laboratory validation of real-time PCR methods is lacking, we provide a practical approach for the in-house validation of quantitative real-time PCR methods, establishing acceptability criteria and quality controls for PCR runs. Parameters such as limit of detection, limit of quantification, precision, trueness, linear dynamic range, PCR efficiency, robustness and specificity are considered. The protocol is sufficiently detailed to be directly applicable, increases the reliability of results and their harmonization among different laboratories, and represents a necessary preliminary step before proceeding to a time-consuming and costly full validation study.

  19. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR.

    PubMed

    Kerst, Gunter; Kreyenberg, Hermann; Roth, Carmen; Well, Catrin; Dietz, Klaus; Coustan-Smith, Elaine; Campana, Dario; Koscielniak, Ewa; Niemeyer, Charlotte; Schlegel, Paul G; Müller, Ingo; Niethammer, Dietrich; Bader, Peter

    2005-03-01

    Minimal (i.e. submicroscopic) residual disease (MRD) predicts outcome in childhood acute lymphoblastic leukaemia (ALL). To be used clinically, MRD assays must be reliable and accurate. Two well-established techniques, flow cytometry (FC) and polymerase chain reaction (PCR), can detect leukaemic cells with a sensitivity of 0.01% (10(-4)). We analysed diagnostic samples of 45 ALL-patients (37 B-lineage ALL, eight T-lineage ALL) by four-colour FC and real-time PCR. Leukaemia-associated immunophenotypes, at a sensitivity of MRD detection by FC at the 0.01% level, were identified in 41 cases (91%); antigen-receptor gene rearrangements suitable for MRD detection with a sensitivity of 0.01% or better by PCR were identified in 38 cases (84%). The combined use of FC and PCR allowed MRD monitoring in all 45 patients. In 105 follow-up samples, MRD estimates by both methods were highly concordant, with a deviation factor of <5 by Bland-Altman analysis. Importantly, the concordance between FC and PCR was also observed in regenerating bone marrow samples containing high proportions of CD19(+) cells, and in samples studied 24 h after collection. We conclude that both MRD assays yield generally concordant results. Their combined use should enable MRD monitoring in virtually all patients and prevent false-negative results due to clonal evolution or phenotypic shifts.

  20. Detection of Schistosoma mansoni infection by TaqMan® Real-Time PCR in a hamster model.

    PubMed

    Espírito-Santo, Maria Cristina Carvalho; Alvarado-Mora, Mónica Viviana; Pinto, Pedro Luiz Silva; de Brito, Thales; Botelho-Lima, Lívia; Heath, Ashley Richard; Amorim, Maria Galli; Dias-Neto, Emmanuel; Chieffi, Pedro Paulo; Pinho, João Renato Rebello; Carrilho, Flair José; Luna, Expedito José Albuquerque; Gryschek, Ronaldo Cesar Borges

    2014-08-01

    An experimental study in hamsters was performed to evaluate the capability for detecting Schistosoma mansoni DNA in serum and fecal samples during the pre and post-egg-laying periods of infection using TaqMan® Real-Time PCR system (qPCR), was compared with the circumoval precipitin test (COPT) and the Kato-Katz technique, especially among individuals with low parasitic burden. Twenty-four hamsters were infected with cercariae. Three hamsters were sacrificed per week under anesthesia, from 7 days post infection (DPI) up to 56 DPI. A serum sample and a pool of feces were collected from each hamster. The presence of S. mansoni eggs in fecal samples was evaluated by Kato-Katz method and in the hamsters gutby histopathology. Detection of S. mansoni DNA was performed using qPCR and S. mansoni antibody using COPT. The first detection of eggs in feces by Kato-Katz method and S. mansoni DNA in feces by qPCR occurred 49 DPI. Nevertheless, S. mansoni DNA was detected in serum samples from 14 up to 56 DPI. COPT was positive at 35 DPI. The results not only confirm the reliability of S. mansoni DNA detection by qPCR, but also demonstrate that serum is a trustworthy source of DNA in the pre patent infection period.

  1. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    PubMed

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels.

  2. A FRET-Based Real-Time PCR Assay to Identify the Main Causal Agents of New World Tegumentary Leishmaniasis

    PubMed Central

    De Los Santos, Maxy; Soberón, Valeria; Lucas, Carmen M.; Matlashewski, Greg; Llanos-Cuentas, Alejandro; Ore, Marianela; Baldeviano, G. Christian; Edgel, Kimberly A.; Lescano, Andres G.; Graf, Paul C. F.; Bacon, David J.

    2013-01-01

    In South America, various species of Leishmania are endemic and cause New World tegumentary leishmaniasis (NWTL). The correct identification of these species is critical for adequate clinical management and surveillance activities. We developed a real-time polymerase chain reaction (PCR) assay and evaluated its diagnostic performance using 64 archived parasite isolates and 192 prospectively identified samples collected from individuals with suspected leishmaniasis enrolled at two reference clinics in Lima, Peru. The real-time PCR assay was able to detect a single parasite and provided unambiguous melting peaks for five Leishmania species of the Viannia subgenus that are highly prevalent in South America: L. (V.) braziliensis, L. (V.) panamensis, L. (V.) guyanensis, L. (V.) peruviana and L. (V.) lainsoni. Using kinetoplastid DNA-based PCR as a gold standard, the real-time PCR had sensitivity and specificity values of 92% and 77%, respectively, which were significantly higher than those of conventional tests such as microscopy, culture and the leishmanin skin test (LST). In addition, the real-time PCR identified 147 different clinical samples at the species level, providing an overall agreement of 100% when compared to multilocus sequence typing (MLST) data performed on a subset of these samples. Furthermore, the real-time PCR was three times faster and five times less expensive when compared to PCR - MLST for species identification from clinical specimens. In summary, this new assay represents a cost-effective and reliable alternative for the identification of the main species causing NWTL in South America. PMID:23301111

  3. Quantitative real-time RT-PCR assay for research studies on enterovirus infections in the central nervous system.

    PubMed

    Volle, Romain; Nourrisson, Céline; Mirand, Audrey; Regagnon, Christel; Chambon, Martine; Henquell, Cécile; Bailly, Jean-Luc; Peigue-Lafeuille, Hélène; Archimbaud, Christine

    2012-10-01

    Human enteroviruses are the most frequent cause of aseptic meningitis and are involved in other neurological infections. Qualitative detection of enterovirus genomes in cerebrospinal fluid is a prerequisite in diagnosing neurological diseases. The pathogenesis of these infections is not well understood and research in this domain would benefit from the availability of a quantitative technique to determine viral load in clinical specimens. This study describes the development of a real-time RT-qPCR assay using hydrolysis TaqMan probe and a competitive RNA internal control. The assay has high specificity and can be used for a large sample of distinct enterovirus strains and serotypes. The reproducible limit of detection was estimated at 1875 copies/ml of quantitative standards composed of RNA transcripts obtained from a cloned echovirus 30 genome. Technical performance was unaffected by the introduction of a competitive RNA internal control before RNA extraction. The mean enterovirus RNA concentration in an evaluation series of 15 archived cerebrospinal fluid specimens was determined at 4.78 log(10)copies/ml for the overall sample. The sensitivity and reproducibility of the real time RT-qPCR assay used in combination with the internal control to monitor the overall specimen process make it a valuable tool with applied research into enterovirus infections.

  4. Comparison of real-time PCR methods for the detection of Naegleria fowleri in surface water and sediment

    PubMed Central

    Streby, Ashleigh; Mull, Bonnie J.; Levy, Karen

    2015-01-01

    Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Four such assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices. PMID:25855343

  5. TaqMan real-time quantitative PCR assay for detection of fluoroquinolone-resistant Neisseria gonorrhoeae.

    PubMed

    Zhao, LiHong; Zhao, ShuPing

    2012-12-01

    It is noted that more than 99 % of fluoroquinolone resistance in Neisseria gonorrhoeae (QRNG) specimens have been shown to have the mutation of Ser91/Phe in the gyrA gene. In order to detect QRNG isolates as quickly as possible, the real-time TaqMan quantitative PCR assay was established for detection of the point mutation of Ser91/Phe in gyrA gene. The standard curve was generated automatically on ABI Prism PE7500. The correlation coefficient (r) of the standard curve was -0.9984 (R(2) = 0.9968), indicating a quietly precise log-linear relationship between the concentration of target DNA and the Ct value. Presently, correlated, cultured antimicrobial susceptibility testing of N. gonorrhoeae isolates continues to be the gold standard method for the detection of antimicrobial resistance. Comparison to the correlated, cultured antimicrobial susceptibility testing, the sensitivity and specificity of the established TaqMan assay for the detection of the QRNG specimens were 100 and 99 %, respectively. The TaqMan assay also allows for rapid detection of QRNG isolates without complex laboratory techniques. Therefore, real-time TaqMan quantitative PCR assay is a rapid, simple, highly sensitive, highly specific, and easy-to-perform method for the detection of the QRNG specimens. It can be applied as a quick screening method for QRNG isolates to help clinical determination of optimal treatment prescription.

  6. Rapid molecular haemagglutinin subtyping of avian influenza isolates by specific real-time RT-PCR tests.

    PubMed

    Elizalde, Maia; Agüero, Montserrat; Buitrago, Dolores; Yuste, María; Arias, María Luisa; Muñoz, María Jesús; Lelli, Davide; Pérez-Ramírez, Elisa; Moreno-Martin, Ana María; Fernández-Pinero, Jovita

    2014-02-01

    Sixteen haemagglutinin (HA) subtypes of avian influenza viruses (AIV) have been described to date. Rapid subtype identification of any AIV is of major interest because of the possible serious consequences for the poultry industry and even public health. Molecular techniques currently allow immediate accurate subtype characterisation prior to virus isolation. In this study, a set of fourteen specific real-time RT-PCR methods were developed and evaluated for AIV HA subtyping (H1-H4, H6-H8, H10-H16), H5 and H9 being excluded on the basis of the current validity of the European Union (EU) recommended specific assays. Specific primers and probes sets for each HA-subtype were designed to hybridise the largest isolates range within each single subtype, considering the Eurasian lineage as a major target. The robustness and general application of the 14 HA-subtype methods were verified by the analysis of 110 AIV isolates belonging to all 16 HA-subtypes, performed in different laboratories. The developed real-time RT-PCR assays proved to be highly specific and revealed suitable sensitivity, allowing direct HA-subtyping of clinical material. In summary, this study provides for the first time a panel of molecular tests using specific hydrolysis probes for rapid and complete AIV HA-subtype identification.

  7. Evaluation of drug effects on Toxoplasma gondii nuclear and plastid DNA replication using real-time PCR.

    PubMed

    Zhao, Qing; Zhang, Ming; Hong, Lingxian; Zhou, Kefu; Lin, Yuguang

    2010-04-01

    Toxoplasma gondii Nicolle and Manceaux, 1908 is a unicellular protozoan that can infect a broad spectrum of organisms including humans. In addition to a nuclear genome, it also carries a circular DNA within a plastid-like organelle (apicoplast) and a linear genome within its mitochondria. The plastid organelle has been shown to be the target of various anti-parasitic drugs or antibiotics. To evaluate the effects of agents on the DNA replication of T. gondii, we tested six drugs (ciprofloxacin, acetylspiramycin, clindamycin, azithromycin, artemether, and sulfadiazine) on the parasite cultured in Hela cells. After drug treatment for 48 h, the parasite growth and DNA replication were evaluated and quantitated using TaqMan real-time quantitative PCR with oligonucleotide primers synthesized based on a gene from the apicoplast genome (ycf24, Genbank accession no. U87145) and a gene from the nuclear genome (uprt, Genbank accession no. U10246). Our results showed that ciprofloxacin was the most effective in inhibiting the replication of the plastid DNA after 48 h drug treatment, with a reduction of 22% in the copy number of the plastid DNA. Artemether was the most effective drug in suppressing the proliferation of tachyzoites. This study also demonstrates that real-time quantitative PCR is a simple and useful technique for monitoring parasite growth and DNA replication.

  8. Evaluation of real-time RT-PCR assays for detection and quantification of norovirus genogroups I and II.

    PubMed

    Rupprom, Kitwadee; Chavalitshewinkoon-Petmitr, Porntip; Diraphat, Pornphan; Kittigul, Leera

    2017-02-20

    Noroviruses are the leading cause of acute gastroenteritis in humans. Real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) is a promising molecular method for the detection of noroviruses. In this study, the performance of three TaqMan real-time RT-PCR assays was assessed, which were one commercially available real-time RT-PCR kit (assay A: Norovirus Real Time RT-PCR kit) and two in-house real-time RT-PCR assays (assay B: LightCycler RNA Master Hybprobe and assay C: RealTime ready RNA Virus Master). Assays A and B showed higher sensitivity than assay C for norovirus GI, while they all had the same sensitivity (10(3) DNA copies/mL) for GII DNA standard controls. Assay B had the highest efficiency for both genogroups. No cross-reactivity was observed among GI and GII noroviruses, rotavirus, hepatitis A virus, and poliovirus. The detection rates of these assays in GI and GII norovirus-positive fecal samples were not significantly different. However, the mean quantification cycle (Cq) value of assay B for GII was lower than assays A and C with statistical significance (P-value, 0.000). All three real-time RT-PCR assays could detect a variety of noroviruses including GI.2, GII.2, GII.3, GII.4, GII.6, GII.12, GII.17, and GII.21. This study suggests assay B as a suitable assay for the detection and quantification of noroviruses GI and GII due to good analytical sensitivity and higher performance to amplify norovirus on DNA standard controls and clinical samples.

  9. Increased efficacy for in-house validation of real-time PCR GMO detection methods.

    PubMed

    Scholtens, I M J; Kok, E J; Hougs, L; Molenaar, B; Thissen, J T N M; van der Voet, H

    2010-03-01

    To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSD(r) and RSD(R)) were calculated. The results showed that not only the PCR reaction but also the factors 'DNA isolation' and 'PCR day' are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods.

  10. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    PubMed

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity.

  11. First-trimester fetal sex determination in maternal serum using real-time PCR.

    PubMed

    Costa, J M; Benachi, A; Gautier, E; Jouannic, J M; Ernault, P; Dumez, Y

    2001-12-01

    Fetal sex prediction can be achieved using PCR targeted at the SRY gene by analysing cell-free fetal DNA in maternal serum. Unfortunately, the results reported to date show a lack of sensitivity, especially during the first trimester of pregnancy. Therefore, determination of fetal sex by maternal serum analysis could not replace karyotype analysis following chorionic villus sampling. A new highly sensitive real-time PCR was developed to detect an SRY gene sequence in maternal serum. Analysis was performed on 121 pregnant women during the first trimester of pregnancy (mean gestational age: 11.8 weeks). Among them, 51 had at least one previous male-bearing pregnancy. Results were compared with fetal sex. SRY PCR analysis of maternal serum was in complete concordance with fetal sex. Among the 121 pregnant women, 61 were bearing a male fetus and 60 a female fetus. No false-negative results were observed. Furthermore, no false-positive results occurred, even though 27 women carrying a female fetus during the current pregnancy had at least one previous male-bearing pregnancy. This study demonstrates that a reliable, non-invasive sex determination can be achieved by PCR analysis of maternal serum during the first trimester of pregnancy. This non-invasive approach for fetal sex prediction should have great implications in the management of pregnant women who are carriers of an X-linked genetic disorder. Prenatal diagnosis might thus be performed for male fetuses only, avoiding invasive procedures and the risk of the loss of female fetuses.

  12. The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE).

    PubMed

    Taylor, Sean C; Mrkusich, Eli M

    2014-01-01

    In the past decade, the techniques of quantitative PCR (qPCR) and reverse transcription (RT)-qPCR have become accessible to virtually all research labs, producing valuable data for peer-reviewed publications and supporting exciting research conclusions. However, the experimental design and validation processes applied to the associated projects are the result of historical biases adopted by individual labs that have evolved and changed since the inception of the techniques and associated technologies. This has resulted in wide variability in the quality, reproducibility and interpretability of published data as a direct result of how each lab has designed their RT-qPCR experiments. The 'minimum information for the publication of quantitative real-time PCR experiments' (MIQE) was published to provide the scientific community with a consistent workflow and key considerations to perform qPCR experiments. We use specific examples to highlight the serious negative ramifications for data quality when the MIQE guidelines are not applied and include a summary of good and poor practices for RT-qPCR.

  13. Quantitative real-time PCR (qPCR) for Eimeria tenella replication--Implications for experimental refinement and animal welfare.

    PubMed

    Nolan, Matthew J; Tomley, Fiona M; Kaiser, Pete; Blake, Damer P

    2015-10-01

    The Eimeria species are highly pathogenic parasites of chickens. Research aimed at reducing their impact is hindered by a lack of non-subjective, quantitative, tools to measure parasite replication in the host. The time-consuming, and often time-sensitive, nature of existing approaches precludes their use in large-scale genetic, epidemiological, and evolutionary analyses. We have used quantitative real-time PCR (qPCR) to accurately quantify Eimeria tenella in chicken tissue and shown this to be more efficient and sensitive than traditional methodologies. We tested four chicken-specific reference qPCR assays and found beta-actin (actb) to be optimal for sample normalisation. In an experimental setting, chickens were inoculated with 500, 1500, or 4500 E. tenella oocysts and parasite replication and the impact of infection measured by i) qPCR analysis of DNA extracted from caecal tissues collected at five and eight days post-infection (dpi), ii) faecal oocyst counts (FOCs) on samples taken from six to eight dpi, and iii) lesion scoring on caeca collected post-mortem at five and eight dpi. Quantitative real-time PCR test results indicated a significant dose-dependent increase in parasite numbers among study groups for samples collected five dpi (i.e., prior to gametogony) (R(2)=0.994) (p<0.002) but not in those from day eight (after most oocyst shedding) (R(2)=0.006) (p>0.379). A strong dose-dependent increase in parasite replication and severity of infection was also revealed by FOC (R(2)=0.997) and lesion scoring. Importantly, qPCR offers substantial improvements for animal welfare via improved statistical power and reduced group sizes in experimental studies. The described qPCR method overcomes subjective limitations of coproscopic quantification, allows reproducible medium- to high-throughput examination of tissues, faeces, and oocysts, and is a valuable tool for determining the impact of Eimeria infections in both experimental and field settings.

  14. Quantitative real-time PCR (qPCR) for Eimeria tenella replication — Implications for experimental refinement and animal welfare

    PubMed Central

    Nolan, Matthew J.; Tomley, Fiona M.; Kaiser, Pete; Blake, Damer P.

    2015-01-01

    The Eimeria species are highly pathogenic parasites of chickens. Research aimed at reducing their impact is hindered by a lack of non-subjective, quantitative, tools to measure parasite replication in the host. The time-consuming, and often time-sensitive, nature of existing approaches precludes their use in large-scale genetic, epidemiological, and evolutionary analyses. We have used quantitative real-time PCR (qPCR) to accurately quantify Eimeria tenella in chicken tissue and shown this to be more efficient and sensitive than traditional methodologies. We tested four chicken-specific reference qPCR assays and found beta-actin (actb) to be optimal for sample normalisation. In an experimental setting, chickens were inoculated with 500, 1500, or 4500 E. tenella oocysts and parasite replication and the impact of infection measured by i) qPCR analysis of DNA extracted from caecal tissues collected at five and eight days post-infection (dpi), ii) faecal oocyst counts (FOCs) on samples taken from six to eight dpi, and iii) lesion scoring on caeca collected post-mortem at five and eight dpi. Quantitative real-time PCR test results indicated a significant dose-dependent increase in parasite numbers among study groups for samples collected five dpi (i.e., prior to gametogony) (R2 = 0.994) (p < 0.002) but not in those from day eight (after most oocyst shedding) (R2 = 0.006) (p > 0.379). A strong dose-dependent increase in parasite replication and severity of infection was also revealed by FOC (R2 = 0.997) and lesion scoring. Importantly, qPCR offers substantial improvements for animal welfare via improved statistical power and reduced group sizes in experimental studies. The described qPCR method overcomes subjective limitations of coproscopic quantification, allows reproducible medium- to high-throughput examination of tissues, faeces, and oocysts, and is a valuable tool for determining the impact of Eimeria infections in both experimental and field settings

  15. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  16. Single-tube nested real-time PCR as a new highly sensitive approach to trace hazelnut.

    PubMed

    Costa, Joana; Mafra, Isabel; Kuchta, Tomas; Oliveira, Maria Beatriz P P

    2012-08-22

    Hazelnut is one of the most commonly consumed tree nuts, being largely used by the food industry in a wide variety of processed foods. However, it is a source of allergens capable of inducing mild to severe allergic reactions in sensitized individuals. Hence, the development of highly sensitive methodologies for hazelnut traceability is essential. In this work, we developed a novel technique for hazelnut detection based on a single-tube nested real-time PCR system. The system presents high specificity and sensitivity, enabling a relative limit of detection of 50 mg/kg of hazelnut in wheat material and an absolute limit of detection of 0.5 pg of hazelnut DNA (1 DNA copy). Its application to processed food samples was successfully achieved, detecting trace amounts of hazelnut in chocolate down to 60 mg/kg. These results highlight the adequacy of the technique for the specific detection and semiquantitation of hazelnut as potential hidden allergens in foods.

  17. A semi-nested real-time PCR method to detect low chimerism percentage in small quantity of hematopoietic stem cell transplant DNA samples.

    PubMed

    Aloisio, Michelangelo; Bortot, Barbara; Gandin, Ilaria; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2017-02-01

    Chimerism status evaluation of post-allogeneic hematopoietic stem cell transplantation samples is essential to predict post-transplant relapse. The most commonly used technique capable of detecting small increments of chimerism is quantitative real-time PCR. Although this method is already used in several laboratories, previously described protocols often lack sensitivity and the amount of the DNA required for each chimerism analysis is too high. In the present study, we compared a novel semi-nested allele-specific real-time PCR (sNAS-qPCR) protocol with our in-house standard allele-specific real-time PCR (gAS-qPCR) protocol. We selected two genetic markers and analyzed technical parameters (slope, y-intercept, R2, and standard deviation) useful to determine the performances of the two protocols. The sNAS-qPCR protocol showed better sensitivity and precision. Moreover, the sNAS-qPCR protocol requires, as input, only 10 ng of DNA, which is at least 10-fold less than the gAS-qPCR protocols described in the literature. Finally, the proposed sNAS-qPCR protocol could prove very useful for performing chimerism analysis with a small amount of DNA, as in the case of blood cell subsets.

  18. Real-time PCR detection of bacteria belonging to the Firmicutes Phylum.

    PubMed

    Haakensen, M; Dobson, C M; Deneer, H; Ziola, B

    2008-07-31

    Members of the bacterial Phylum Firmicutes occupy a wide range of habitats and can be either beneficial or detrimental in diverse settings, including food- and beverage-related industries. Firmicutes are responsible for the vast majority of beer-spoilage incidents and, as such, they have a substantial financial impact in the brewing industry. Rapid detection and identification of a bacterium as a Firmicutes is difficult due to widespread genetic transfer and genome reduction resulting in phenotypic diversity in these bacteria. Here we describe a real-time multiplex PCR to detect and differentiate Firmicutes associated with beer-spoilage from non-Firmicutes bacteria that may be present as benign environmental contaminants. A region of the 16S rRNA gene was identified and predicted to be highly conserved amongst, and essentially specific for, Firmicutes. A real-time PCR assay using a hydrolysis probe targeting this region of the 16S rRNA gene was experimentally shown to detect ten genera of Firmicutes known to be beer spoilers, but does not cross-react with eleven of twelve non-Firmicutes genera which can periodically appear in beer. Only one non-Firmicutes species, Zymomonas mobilis, weakly reacted with the Firmicutes probe. This rPCR assay has a standard curve that is linear over six orders of magnitude of DNA, with a quantitation limit of DNA from <10 bacteria. When used to detect bacteria present in beer, the assay was able to detect 50-100 colony forming units (CFU) of Firmicutes directly from 2.5 cm membranes used to filter 100 ml of contaminated beer. Through incorporation of a 4.7 cm filter and an overnight pre-enrichment incubation, the sensitivity was increased to 2.5-10 CFU per package of beer (341 ml). When multiplexed with a second hydrolysis probe targeting a universal region of the 16S rRNA gene, the assay reliably differentiates between Firmicutes and non-Firmicutes bacteria found in breweries.

  19. Quantitative real-time PCR assay for Clostridium septicum in poultry gangrenous dermatitis associated samples.

    PubMed

    Neumann, A P; Dunham, S M; Rehberger, T G; Siragusa, G R

    2010-08-01

    Clostridium septicum is a spore-forming anaerobe frequently implicated in cases of gangrenous dermatitis (GD) and other spontaneously occurring myonecrotic infections of poultry. Although C. septicum is readily cultured from diseased tissues it can be difficult to enumerate due to its tendency to swarm over the surface of agar plates. In this study a quantitative real-time PCR assay was developed in order to more accurately measure the levels of C. septicum in healthy as well as GD associated poultry samples. The assay was specifically designed to target the C. septicum alpha toxin gene, csa, which is, to our knowledge, carried by all strains of C. septicum and has been shown to be essential for virulence. Genomic DNAs from a diverse collection of bacterial species, including closely related Clostridium chauvoei, Clostridium carnis, Clostridium tertium as well as several strains of Clostridium perfringens, all failed to produce a positive reaction. An approximate reproducible limit of detection in spiked extracts of at least 10(3) cfu/g of C. septicum was observed for a variety of different sample types. C. septicum levels in broiler chicken field samples estimated from the results of qPCR were statistically correlated to culture based enumerations obtained from those same tissues.

  20. Development of real-time PCR methods to quantify patulin-producing molds in food products.

    PubMed

    Rodríguez, Alicia; Luque, M Isabel; Andrade, María J; Rodríguez, Mar; Asensio, Miguel A; Córdoba, Juan J

    2011-09-01

    Patulin is a mycotoxin produced by different Penicillium and Aspergillus strains isolated from food products. To improve food safety, the presence of patulin-producing molds in foods should be quantified. In the present work, two real-time (RTi) PCR protocols based on SYBR Green and TaqMan were developed. Thirty four patulin producers and 28 non-producers strains belonging to different species usually reported in food products were used. The patulin production was tested by mycellar electrokinetic capillary electrophoresis (MECE) and high-pressure liquid chromatography-mass spectrometry (HPLC-MS). A primer pair F-idhtrb/R-idhtrb and the probe IDHprobe were designed from the isoepoxydon dehydrogenase (idh) gene, involved in patulin biosynthesis. The functionality of the developed method was demonstrated by the high linear relationship of the standard curves constructed with the idh gene copy number and Ct values for the different patulin producers tested. The ability to quantify patulin producers of the developed SYBR Green and TaqMan assays in artificially inoculated food samples was successful, with a minimum threshold of 10 conidia g(-1) per reaction. The developed methods quantified with high efficiency fungal load in foods. These RTi-PCR protocols, are proposed to be used to quantify patulin-producing molds in food products and to prevent patulin from entering the food chain.

  1. RAPHIDOPHYCEAE [CHADEFAUD EX SILVA] SYSTEMATICS AND RAPID IDENTIFICATION: SEQUENCE ANALYSES AND REAL-TIME PCR ASSAYS

    PubMed Central

    Bowers, Holly A.; Tomas, Carmelo; Tengs, Torstein; Kempton, Jason W.; Lewitus, Alan J.; Oldach, David W.

    2010-01-01

    Species within the class Raphidophyceae were associated with fish kill events in Japanese, European, Canadian, and U.S. coastal waters. Fish mortality was attributable to gill damage with exposure to reactive oxygen species (peroxide, superoxide, and hydroxide radicals), neurotoxins, physical clogging, and hemolytic substances. Morphological identification of these organisms in environmental water samples is difficult, particularly when fixatives are used. Because of this difficulty and the continued global emergence of these species in coastal estuarine waters, we initiated the development and validation of a suite of real-time polymerase chain reaction (PCR) assays. Sequencing was used to generate complete data sets for nuclear encoded small-subunit ribosomal RNA (SSU rRNA; 18S); internal transcribed spacers 1 and 2, 5.8S; and plastid encoded SSU rRNA (16S) for confirmed raphidophyte cultures from various geographic locations. Sequences for several Chattonella species (C. antiqua, C. marina, C. ovata, C. subsalsa, and C. verruculosa), Heterosigma akashiwo, and Fibrocapsa japonica were generated and used to design rapid and specific PCR assays for several species including C. verruculosa Hara et Chihara, C. subsalsa Biecheler, the complex comprised of C. marina Hara et Chihara, C. antiqua Ono and C. ovata, H. akashiwo Ono, and F. japonica Toriumi et Takano using appropriate loci. With this comprehensive data set, we were also able to perform phylogenetic analyses to determine the relationship between these species. PMID:20411032

  2. Statistical assessment of DNA extraction reagent lot variability in real-time quantitative PCR

    USGS Publications Warehouse

    Bushon, R.N.; Kephart, C.M.; Koltun, G.F.; Francy, D.S.; Schaefer, F. W.; Lindquist, H.D. Alan

    2010-01-01

    Aims: The aim of this study was to evaluate the variability in lots of a DNA extraction kit using real-time PCR assays for Bacillus anthracis, Francisella tularensis and Vibrio cholerae. Methods and Results: Replicate aliquots of three bacteria were processed in duplicate with three different lots of a commercial DNA extraction kit. This experiment was repeated in triplicate. Results showed that cycle threshold values were statistically different among the different lots. Conclusions: Differences in DNA extraction reagent lots were found to be a significant source of variability for qPCR results. Steps should be taken to ensure the quality and consistency of reagents. Minimally, we propose that standard curves should be constructed for each new lot of extraction reagents, so that lot-to-lot variation is accounted for in data interpretation. Significance and Impact of the Study: This study highlights the importance of evaluating variability in DNA extraction procedures, especially when different reagent lots are used. Consideration of this variability in data interpretation should be an integral part of studies investigating environmental samples with unknown concentrations of organisms. ?? 2010 The Society for Applied Microbiology.

  3. Performance of real-time PCR Xpert ®MTB/RIF in diagnosing extrapulmonary tuberculosis.

    PubMed

    Mazzola, Ester; Arosio, Marco; Nava, Alice; Fanti, Diana; Gesu, Giovanni; Farina, Claudio

    2016-12-01

    The real time PCR Xpert ® MTB/RIF is fundamental for rapid diagnosis in paucibacillary respiratory samples and for the detection of multidrug-resistant TB cases. This paper aimed to determine its performance on different extrapulmonary samples. We determined sensitivity, specificity, positive and negative predictive value on respiratory and non-respiratory samples collected from January 2010 to June 2014. The protocol for the Xpert ® MTB/RIF PCR suggested by Cepheid was strictly followed for all specimens. In 12257 respiratory samples we observed a sensitivity of 87.1% and a specificity of 99.9%. There were 2818 extrapulmonary specimens, of which 250 were followed by a positive culture for Mycobacterium tuberculosis complex, whereas 72 samples were culture-negative: tuberculosis was clinically confirmed in 71 of them and was excluded for one sample. The sensitivity of the test on urine, pus and CSF samples was 88.2%, 95.6% and 100% respectively. In contrast, the sensitivity of gastric aspirates and biopsies was 81.8% and 83.6% respectively, whereas results of total cavitary fluids were significantly worse than expected (53.7% sensitivity). Our experience shows that Xpert MTB/RIF assay is an accurate, sensitive, and specific test for the rapid detection of pulmonary and extra-pulmonary TB with the only exception of cavitary fluids.

  4. Multi-Probe Real-Time PCR Identification of Common Mycobacterium Species in Blood Culture Broth

    PubMed Central

    Foongladda, Suporn; Pholwat, Suporn; Eampokalap, Boonchuay; Kiratisin, Pattarachai; Sutthent, Ruengpung

    2009-01-01

    Mycobacterium tuberculosis complex, M. avium, and M. intracellulare are the most common causes of systemic bacterial infection in AIDS patients. To identify these mycobacterial isolates in primary blood culture broths, we developed a multiple hybridization probe-based real-time PCR assay using the LightCycler system. The primers were designed to amplify a 320-bp fragment of Mycobacterium 16S rRNA genes. Reaction specificity was evaluated using PCR amplification curves along with specific melting temperatures of probes on DNA extracted from 13 Mycobacterium species. In this study, results showed 100% accuracy for the selected bacterial panel. Detection limits were 350, 600, and 650 colony-forming unit (CFU)/ml blood culture broths for M. tuberculosis complex, M. avium, and M. intracellulare, respectively (1 to 2 CFU/reaction). To evaluate clinical applicability, 341 acid-fast bacilli in blood culture broths were analyzed. In total, 327 (96%) were positively identified: 54.5% M. tuberculosis complex, 37.5% M. avium, and 3.8% M. intracellulare. Results can be available within 3 hours of receiving a broth sample, which makes this rapid and simple assay an attractive diagnostic tool for clinical use. PMID:19095775

  5. Multitarget real-time PCR-based system: monitoring for unauthorized genetically modified events in India.

    PubMed

    Randhawa, Gurinder Jit; Singh, Monika; Sood, Payal; Bhoge, Rajesh K

    2014-07-23

    A multitarget TaqMan real-time PCR (RTi-PCR) based system was developed to monitor unauthorized genetically modified (GM) events in India. Most of the GM events included in this study are either authorized for commercial cultivation or field trials, which were indigenously developed or imported for research purposes. The developed system consists of a 96-well prespotted plate with lyophilized primers and probes, for simultaneous detection of 47 targets in duplicate, including 21 event-specific sequences, 5 construct regions, 15 for transgenic elements, and 6 taxon-specific targets for cotton, eggplant, maize, potato, rice, and soybean. Limit of detection (LOD) of assays ranged from 0.1 to 0.01% GM content for different targets. Applicability, robustness, and practical utility of the developed system were verified with stacked GM cotton event, powdered samples of proficiency testing and two unknown test samples. This user-friendly multitarget approach can be efficiently utilized for monitoring the unauthorized GM events in an Indian context.

  6. Real-time PCR assay for detection of a new simulant for poxvirus biothreat agents.

    PubMed

    Garnier, Laurence; Gaudin, Jean-Christophe; Bensadoun, Paul; Rebillat, Isabelle; Morel, Yannick

    2009-03-01

    Research and financial efforts spent on biodefense technologies highlight the current concern for biothreat event preparedness. Nonhazardous but relevant "simulant" microorganisms are typically used to simplify technological developments, testing, and staff training. The bacteriophage MS2, a small RNA virus, is classically used as the reference simulant for biothreat viruses within the biodefense community. However, variola virus, considered a major threat, displays very different features (size, envelope, and double-stranded DNA genome). The size parameter is critical for aerosol sampling, detection, and protection/filtration technologies. Therefore, a panel of relevant simulants should be used to cover the diversity of biothreat agents. Thus, we investigated a new virus model, the Cydia pomonella granulovirus (baculovirus), which is currently used as a biopesticide. It displays a size similar to that of poxviruses, is enveloped, and contains double-stranded DNA. To provide a molecular tool to detect and quantify this model virus, we developed an assay based on real-time PCR, with a limit of detection ranging from roughly 10 to a few tens of target copies per microl according to the sample matrix. The specificity of the assay against a large panel of potential cross-reactive microorganisms was checked, and the suitability of the assay for environmental samples, especially aerosol studies, was determined. In conclusion, we suggest that our PCR assay allows Cydia pomonella granulovirus to be used as a simulant for poxviruses. This assay may also be useful for environmental or crop treatment studies.

  7. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.

    PubMed

    Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael

    2009-01-01

    A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.

  8. Evaluation of propidium monoazide real-time PCR for enumeration of probiotic lactobacilli microencapsulated in calcium alginate beads.

    PubMed

    Oketič, K; Matijašić, B Bogovič; Obermajer, T; Radulović, Z; Lević, S; Mirković, N; Nedović, V

    2015-01-01

    The aim of the study was to evaluate real-time PCR coupled with propidium monoazide (PMA) treatment for enumeration of microencapsulated probiotic lactobacilli microencapsulated in calcium alginate beads. Lactobacillus gasseri K7 (CCM 7710) and Lactobacillus delbrueckii subsp. bulgaricus (CCM 7712) were analysed by plate counting and PMA real-time PCR during storage at 4 °C for 90 days. PMA was effective in preventing PCR amplification of the target sequences of DNA released from heat-compromised bacteria. The values obtained by real-time PCR of non-treated samples were in general higher than those obtained by real-time PCR of PMA-treated samples or by plate counting, indicating the presence of sub-lethally injured cells. This study shows that plate count could not be completely replaced by culture independent method PMA real-time PCR for enumeration of probiotics, but may rather complement the well-established plate counting, providing useful information about the ratio of compromised bacteria in the samples.

  9. Quantification of fungal abundance on cultural heritage using real time PCR targeting the β-actin gene.

    PubMed

    Ettenauer, Jörg; Piñar, Guadalupe; Tafer, Hakim; Sterflinger, Katja

    2014-01-01

    The traditional methodology used for the identification of microbes colonizing our cultural heritage was the application of cultivation methods and/or microscopy. This approach has many advantages, as living microorganisms may be obtained for physiological investigations. In addition, these techniques allow the quantitative and qualitative assessment of the investigated environment. Quantitative analyses are done by plate count and the determination of abundance by the colony forming unit (CFU). Nevertheless, these techniques have many drawbacks that lead to an underestimation of the cell numbers and do not provide a comprehensive overview of the composition of the inhabiting microbiota. In the last decades, several molecular techniques have been developed enabling many advantages over the cultivation approach. Mainly PCR-based, fingerprinting techniques allow a qualitative detection and identification of the microbiota. In this study, we developed a real time PCR method as a simple, rapid and reliable tool to detect and quantify fungal abundance using the β-actin gene, which is known to appear as a single-copy gene in fungi. To this end, five different indoor thermal insulation materials applied for historical buildings that were previously tested for their bio-susceptibility against various fungi were subjected to qPCR analyses. The obtained results were compared with those obtained from a previous study investigating the bio-susceptibility of the insulation materials using classical cultivation experiments. Both results correlated well, revealing that Perlite plaster was the most suitable insulation material, showing the lowest fungal CFU and qPCR values. In contrast, insulations made of wood showed to be not recommendable from the microbiological point of view. In addition, the potential of qPCR was tested in other materials of cultural heritage, as old parchments, showing to be a suitable method for measuring fungal abundance in these delicate materials.

  10. Quantification of fungal abundance on cultural heritage using real time PCR targeting the β-actin gene

    PubMed Central

    Ettenauer, Jörg; Piñar, Guadalupe; Tafer, Hakim; Sterflinger, Katja

    2014-01-01

    The traditional methodology used for the identification of microbes colonizing our cultural heritage was the application of cultivation methods and/or microscopy. This approach has many advantages, as living microorganisms may be obtained for physiological investigations. In addition, these techniques allow the quantitative and qualitative assessment of the investigated environment. Quantitative analyses are done by plate count and the determination of abundance by the colony forming unit (CFU). Nevertheless, these techniques have many drawbacks that lead to an underestimation of the cell numbers and do not provide a comprehensive overview of the composition of the inhabiting microbiota. In the last decades, several molecular techniques have been developed enabling many advantages over the cultivation approach. Mainly PCR-based, fingerprinting techniques allow a qualitative detection and identification of the microbiota. In this study, we developed a real time PCR method as a simple, rapid and reliable tool to detect and quantify fungal abundance using the β-actin gene, which is known to appear as a single-copy gene in fungi. To this end, five different indoor thermal insulation materials applied for historical buildings that were previously tested for their bio-susceptibility against various fungi were subjected to qPCR analyses. The obtained results were compared with those obtained from a previous study investigating the bio-susceptibility of the insulation materials using classical cultivation experiments. Both results correlated well, revealing that Perlite plaster was the most suitable insulation material, showing the lowest fungal CFU and qPCR values. In contrast, insulations made of wood showed to be not recommendable from the microbiological point of view. In addition, the potential of qPCR was tested in other materials of cultural heritage, as old parchments, showing to be a suitable method for measuring fungal abundance in these delicate materials. PMID

  11. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1991-01-01

    Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.

  12. Impact of Short-Time Urine Freezing on the Sensitivity of an Established Schistosoma Real-Time PCR Assay

    PubMed Central

    Kenguele, Hilaire M.; Adegnika, Ayola A.; Nkoma, Anne-Marie; Ateba-Ngoa, Ulysse; Mbong, Mirabeau; Zinsou, Jeannot; Lell, Bertrand; Verweij, Jaco J.

    2014-01-01

    Urogenital schistosomiaisis is a serious public health problem in sub-Saharan Africa. In this study, we have updated an established real-time polymerase chain reaction (PCR) routinely used in our laboratory. Schistosoma genus-specific real-time PCR was performed on DNA isolated from 85 urine samples and pellets obtained after centrifugation without and after frozen storage. The results revealed that concentration by centrifugation of the urine samples and freezing of the samples before extracting DNA improves the sensitivity of the PCR. PMID:24710612

  13. Analysis of Enterococci and Bacteriodales Fecal Indicator Bacteria in a Lake Michigan Tributary by Real-Time Quantitative PCR

    EPA Science Inventory

    The Salt Creek watershed in northwest Indiana drains into Lake Michigan near several heavily used recreational beaches. This study aimed to investigate the levels of fecal indicator bacteria, enterococci and Bacteroidales, in Salt Creek using real-time quantitative PCR (qPCR) an...

  14. Quantification of 2,4-diacetylphloroglucinol producing Pseudomonas fluorescens in the plant rhizosphere by real-time PCR.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR SYBR green assay was developed to quantify populations of 2, 4-DAPG-producing (phlD+) Pseudomonas fluorescens in soil and the rhizosphere. Primers were designed to specifically amplify the phlD gene from four different genotypes (A, B, D, and I) of phlD+ P. fluorescens and PCR condit...

  15. Quantification of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains in the plant rhizosphere by real-time PCR.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR SYBR green assay was developed to quantify populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing (phlD+) strains of Pseudomonas fluorescens in soil and the rhizosphere. Primers were designed and PCR conditions were optimized to specifically amplify the phlD gene from four di...

  16. EVALUATION OF QUANTITATIVE REAL TIME PCR FOR THE MEASUREMENT OF HELICOBATER PYLORI AT LOW CONCENTRATIONS IN DRINKING WATER

    EPA Science Inventory

    Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.

    Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...

  17. Inter-laboratory Comparison of Real-time PCR Methods for Quantification of General Fecal Indicator Bacteria

    EPA Science Inventory

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized prot...

  18. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    EPA Science Inventory

    There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...

  19. A human fecal contamination index for ranking impaired recreational watersusing the HF183 quantitative real-time PCR method

    EPA Science Inventory

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...

  20. Development of a real-time PCR assay for the direct detection of Candida species causing Vulvovaginal candidiasis.

    PubMed

    Tardif, Keith D; Schlaberg, Robert

    2017-01-25

    Identification of Candida species by traditional methods can be time-consuming and have limited analytical sensitivity. We developed a multiplex real-time PCR assay for detection and differentiation of Candida species causing vulvovaginal candidiasis (VVC). Overall, this PCR assay is a powerful diagnostic tool offering superior accuracy, sensitivity, and specificity.

  1. EVALUATION OF A RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....

  2. Assessment of real-time PCR assay for detection of Rickettsia spp. and Rickettsia rickettsii in banked clinical samples.

    PubMed

    Kato, Cecilia Y; Chung, Ida H; Robinson, Lauren K; Austin, Amy L; Dasch, Gregory A; Massung, Robert F

    2013-01-01

    Two novel real-time PCR assays were developed for the detection of Rickettsia spp. One assay detects all tested Rickettsia spp.; the other is specific for Rickettsia rickettsii. Evaluation using DNA from human blood and tissue samples showed both assays to be more sensitive than nested PCR assays currently in use at the CDC.

  3. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  4. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  5. Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat.

    PubMed

    Brusa, Victoria; Galli, Lucía; Linares, Luciano H; Ortega, Emanuel E; Lirón, Juan P; Leotta, Gerardo A

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) are recognized as food-borne pathogens. We developed and validated two SYBR green PCR (SYBR-PCR) and a real-time multiplex PCR (RT-PCR) to detect stx1 and stx2 genes in meat samples, and compared these techniques in ground beef samples from retail stores. One set of primers and one hydrolysis probe were designed for each stx gene. For RT-PCR, an internal amplification control (IAC) was used. All PCR intra-laboratory validations were performed using pure strains and artificially contaminated ground beef samples. A total of 50 STEC and 30 non-STEC strains were used. Naturally contaminated ground beef samples (n=103) were obtained from retail stores and screened with SYBR-PCR and RT-PCR, and stx-positive samples were processed for STEC isolation. In the intra-laboratory validation, each PCR obtained a 1×10(2) CFU mL(-1) limit of detection and 100% inclusivity and exclusivity. The same results were obtained when different laboratory analysts in alternate days performed the assay. The level of agreement obtained with SYBR-PCR and RT-PCR was kappa=0.758 and 0.801 (P<0.001) for stx1 and stx2 gene detection, respectively. Two PCR strategies were developed and validated, and excellent performance with artificially contaminated ground beef samples was obtained. However, the efforts made to isolate STEC from retail store samples were not enough. Only 11 STEC strains were isolated from 35 stx-positive ground beef samples identically detected by all PCRs. The combination of molecular approaches based on the identification of a virulence genotypic profile of STEC must be considered to improve isolation.

  6. Exploring Valid Reference Genes for Quantitative Real-Time PCR Analysis in Sesamia inferens (Lepidoptera: Noctuidae)

    PubMed Central

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (−8, −6, −4, −2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens. PMID:25585250

  7. Development of a TT Virus DNA Quantification System Using Real-Time Detection PCR

    PubMed Central

    Kato, Takanobu; Mizokami, Masashi; Mukaide, Motokazu; Orito, Etsuro; Ohno, Tomoyoshi; Nakano, Tatsunori; Tanaka, Yasuhito; Kato, Hideaki; Sugauchi, Fuminaka; Ueda, Ryuzo; Hirashima, Noboru; Shimamatsu, Kazuhide; Kage, Masayoshi; Kojiro, Masamichi

    2000-01-01

    Although TT virus (TTV) was isolated from a cryptogenic posttransfusion hepatitis patient, its pathogenic role remains unclear. It has been reported that the majority of the healthy population is infected with TTV. To elucidate the differences between TTV infection in patients with liver diseases and TTV infection in the healthy population, a quantification system was developed. TTV DNA was quantified by a real-time detection PCR (RTD-PCR) assay on an ABI Prism 7700 sequence detector. With this system, TTV DNA was quantified in 78 hepatitis C virus (HCV)-infected patients (63 with elevated serum alanine aminotransferase [ALT] levels and 15 with normal ALT levels) and in 70 voluntary blood donors (BDs). The quantification range was 2.08 to 7.35 log copies/ml. The intra-assay and interassay coefficients of variation were 0.37 to 6.33% and 0.60 to 7.07%, respectively. The mean serum TTV DNA levels in the HCV-infected patients with both elevated and normal ALT levels and BDs were 3.69 ± 0.89, 3.45 ± 0.76, and 3.45 ± 0.67 log copies/ml, respectively. Comparison of the serum TTV DNA levels among the HCV-infected patients revealed that they were not related to the serum ALT and HCV core protein levels or to the histopathological score on liver biopsy. This study showed that (i) the RTD-PCR assay for the detection of TTV was accurate and had a high degree of sensitivity, (ii) the mean serum TTV DNA level was similar among HCV-infected patients, irrespective of their ALT level, and also among BDs, and (iii) a high serum TTV DNA level does not affect the serum ALT and HCV levels or liver damage in HCV-infected patients. PMID:10618070

  8. Real-Time Reverse Transcription-PCR Assay Panel for Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Lu, Xiaoyan; Whitaker, Brett; Sakthivel, Senthil Kumar K.; Kamili, Shifaq; Rose, Laura E.; Lowe, Luis; Mohareb, Emad; Elassal, Emad M.; Al-sanouri, Tarek; Haddadin, Aktham

    2014-01-01

    A new human coronavirus (CoV), subsequently named Middle East respiratory syndrome (MERS)-CoV, was first reported in Saudi Arabia in September 2012. In response, we developed two real-time reverse transcription-PCR (rRT-PCR) assays targeting the MERS-CoV nucleocapsid (N) gene and evaluated these assays as a panel with a previously published assay targeting the region upstream of the MERS-CoV envelope gene (upE) for the detection and confirmation of MERS-CoV infection. All assays detected ≤10 copies/reaction of quantified RNA transcripts, with a linear dynamic range of 8 log units and 1.3 × 10−3 50% tissue culture infective doses (TCID50)/ml of cultured MERS-CoV per reaction. All assays performed comparably with respiratory, serum, and stool specimens spiked with cultured virus. No false-positive amplifications were obtained with other human coronaviruses or common respiratory viral pathogens or with 336 diverse clinical specimens from non-MERS-CoV cases; specimens from two confirmed MERS-CoV cases were positive with all assay signatures. In June 2012, the U.S. Food and Drug Administration authorized emergency use of the rRT-PCR assay panel as an in vitro diagnostic test for MERS-CoV. A kit consisting of the three assay signatures and a positive control was assembled and distributed to public health laboratories in the United States and internationally to support MERS-CoV surveillance and public health responses. PMID:24153118

  9. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae).

    PubMed

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  10. Reference gene selection for quantitative real-time PCR normalization in Quercus suber.

    PubMed

    Marum, Liliana; Miguel, Andreia; Ricardo, Cândido P; Miguel, Célia

    2012-01-01

    The use of reverse transcription quantitative PCR technology to assess gene expression levels requires an accurate normalization of data in order to avoid misinterpretation of experimental results and erroneous analyses. Despite being the focus of several transcriptomics projects, oaks, and particularly cork oak (Quercus suber), have not been investigated regarding the identification of reference genes suitable for the normalization of real-time quantitative PCR data. In this study, ten candidate reference genes (Act, CACs, EF-1α, GAPDH, His3, PsaH, Sand, PP2A, ß-Tub and Ubq) were evaluated to determine the most stable internal reference for quantitative PCR normalization in cork oak. The transcript abundance of these genes was analysed in several tissues of cork oak, including leaves, reproduction cork, and periderm from branches at different developmental stages (1-, 2-, and 3-year old) or collected in different dates (active growth period versus dormancy). The three statistical methods (geNorm, NormFinder, and CV method) used in the evaluation of the most suitable combination of reference genes identified Act and CACs as the most stable candidates when all the samples were analysed together, while ß-Tub and PsaH showed the lowest expression stability. However, when different tissues, developmental stages, and collection dates were analysed separately, the reference genes exhibited some variation in their expression levels. In this study, and for the first time, we have identified and validated reference genes in cork oak that can be used for quantification of target gene expression in different tissues and experimental conditions and will be useful as a starting point for gene expression studies in other oaks.

  11. Real-time PCR for the detection of Salmonella spp. in food: An alternative approach to a conventional PCR system suggested by the FOOD-PCR project.

    PubMed

    Hein, Ingeborg; Flekna, Gabriele; Krassnig, Martina; Wagner, Martin

    2006-09-01

    A real-time PCR assay using non-patented primers and a TaqMan probe for the detection and quantification of Salmonella spp. is presented. The assay is based on an internationally validated conventional PCR system, which was suggested as a standard method for the detection of Salmonella spp. in the FOOD-PCR project. The assay was sensitive and specific. Consistent detection of 9.5 genome equivalents per PCR reaction was achieved, whereas samples containing an average of 0.95 genome equivalents per reaction were inconsistently positive. The assay performed equally well as a commercially available real-time PCR assay and allowed sensitive detection of Salmonella spp. in artificially contaminated food. After enrichment for 16 h in buffered peptone water (BPW) or universal pre-enrichment broth (UPB) 2.5 CFU/25 g salmon and minced meat, and 5 CFU/25 g chicken meat and 25 ml raw milk were detected. Enrichment in BPW yielded higher numbers of CFU/ml than UPB for all matrices tested. However, the productivity of UPB was sufficient, as all samples were positive with both real-time PCR methods, including those containing less than 300 CFU/ml enrichment broth (enrichment of 5 CFU/25 ml raw milk in UPB).

  12. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  13. Reference gene selection for real-time quantitative PCR analysis of the mouse uterus in the peri-implantation period.

    PubMed

    Lin, Pengfei; Lan, Xiangli; Chen, Fenglei; Yang, Yanzhou; Jin, Yaping; Wang, Aihua

    2013-01-01

    The study of uterine gene expression patterns is valuable for understanding the biological and molecular mechanisms that occur during embryo implantation. Real-time quantitative RT-PCR (qRT-PCR) is an extremely sensitive technique that allows for the precise quantification of mRNA abundance; however, selecting stable reference genes suitable for the normalization of qRT-PCR data is required to avoid the misinterpretation of experimental results and erroneous analyses. This study employs several mouse models, including an early pregnancy, a pseudopregnancy, a delayed implantation and activation, an artificial decidualization and a hormonal treatment model; ten candidate reference genes (PPIA, RPLP0, HPRT1, GAPDH, ACTB, TBP, B2M, 18S, UBC and TUBA) that are found in uterine tissues were assessed for their suitability as internal controls for relative qRT-PCR quantification. GeNorm(PLUS), NormFinder, and BestKeeper were used to evaluate these candidate reference genes, and all of these methods identified RPLP0 and GAPDH as the most stable candidates and B2M and 18S as the least stable candidates. However, when the different models were analyzed separately, the reference genes exhibited some variation in their expression levels.

  14. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  15. A novel poisson distribution-based approach for testing boundaries of real-time PCR assays for food pathogen quantification.

    PubMed

    Rossmanith, Peter; Wagner, Martin

    2011-09-01

    The validation of quantitative real-time PCR systems and above all, proof of the detection limit of this method, is a frequently and intensively discussed topic in food pathogen detection. Among proper sample collection, assay design, careful experimental design, execution of real-time PCR, and data analysis, the validation of the method per se ensuring reliable quantification data is of prime importance. The purpose of this study was to evaluate a novel validation tool for real-time PCR assays, based on the theoretical possibility of the amplification of a single DNA target. The underlying mathematical basis for the work is Poisson distribution, which describes patterns of low particle numbers in a volume. In this context, we focused on the quantitative aspect of real-time PCR for the first time. This allowed for demonstration of the reliable amplification of a lone target DNA molecule and the demonstration of the distinct discrimination between integer molecular numbers when using low initial copy numbers. A real-time PCR assay amplifying a 274-bp fragment of the positive regulatory protein A locus of Listeria monocytogenes was used for this work. Evidence for a linear range of quantification from a single target copy to 10 ng of target DNA was experimentally demonstrated, and evidence for the significance of this novel validation approach is presented here.

  16. Detection and differentiation of norovirus genogroups I and II from clinical stool specimens using real-time PCR.

    PubMed

    Ramanan, Poornima; Espy, M J; Khare, Reeti; Binnicker, M J

    2017-04-01

    A real-time RT-PCR assay was designed to detect and differentiate norovirus genogroups I (GI) and II (GII), with primers and probes targeting the nonstructural polyprotein gene. Stool samples (n = 100) submitted for routine testing by the BioFire FilmArray® GI panel were also tested by the norovirus GI/GII real-time PCR assays. When compared to the FilmArray GI panel, the norovirus real-time PCR assay demonstrated a sensitivity of 77.5% (62/80) and specificity of 95% (19/20). Specimens yielding discordant results (n = 19) were tested at two outside laboratories for adjudication. Following discordant resolution, the adjusted sensitivity and specificity of the norovirus real-time PCR assays were 96.9% (63/65) and 100% (35/35), respectively. These results suggest that the real-time PCR assays are able to accurately detect and differentiate norovirus GI/GII from clinical stool specimens. Furthermore, our report highlights a potential issue with the specificity of the BioFire FilmArray® norovirus assay, which warrants additional investigation.

  17. Development of real-time PCR to detect oral vaccine-like poliovirus and its application to environmental surveillance.

    PubMed

    Iwai-Itamochi, Masae; Yoshida, Hiromu; Obara-Nagoya, Mayumi; Horimoto, Eiji; Kurata, Takeshi; Takizawa, Takenori

    2014-01-01

    In order to perform environmental surveillance to track oral poliovirus vaccine-like poliovirus sensitively and conveniently, real-time PCR was developed and applied to a raw sewage concentrate. The real-time PCR method detected 0.01-0.1 TCID50 of 3 serotypes of Sabin strain specifically. The method also detected the corresponding serotypes of oral poliovirus vaccine-like poliovirus specifically, but detected neither wild poliovirus, except Mahoney for type 1 and Saukett for type 3, nor other enteric viruses, as far as examined. When real-time PCR was applied to environmental surveillance, the overall agreement rates between real-time PCR and the cell culture were 83.3% for all serotypes. Since real-time PCR has the advantages of rapid detection of viruses and minimum requirement of sampling volume as compared with ordinary cell culture, it is suitable to monitor oral poliovirus vaccine-like poliovirus in the environment, especially in areas where an oral vaccine is being replaced by an inactivated vaccine.

  18. Optimal swab processing recovery method for detection of bioterrorism-related Francisella tularensis by real-time PCR.

    PubMed

    Walker, Roblena E; Petersen, Jeannine M; Stephens, Kenyatta W; Dauphin, Leslie A

    2010-10-01

    Francisella tularensis, the etiological agent of tularemia, is regarded as a potential bioterrorism agent. The advent of bioterrorism has heightened awareness of the need for validated methods for processing environmental samples. In this study we determined the optimal method for processing environmental swabs for the recovery and subsequent detection of F. tularensis by the use of real-time PCR assays. Four swab processing recovery methods were compared: heat, sonication, vortexing, and the Swab Extraction Tube System (SETS). These methods were evaluated using cotton, foam, polyester and rayon swabs spiked with six pathogenic strains of F. tularensis. Real-time PCR analysis using a multi-target 5'nuclease assay for F. tularensis showed that the use of the SETS method resulted in the best limit of detection when evaluated using multiple strains of F. tularensis. We demonstrated also that the efficiency of F. tularensis recovery from swab specimens was not equivalent for all swab processing methodologies and, thus, that this variable can affect real-time PCR assay sensitivity. The effectiveness of the SETS method was independent of the automated DNA extraction method and real-time PCR platforms used. In conclusion, diagnostic laboratories can now potentially incorporate the SETS method into specimen processing protocols for the rapid and efficient detection of F. tularensis by real-time PCR during laboratory bioterrorism-related investigations.

  19. Senior Thai fecal microbiota comparison between vegetarians and non-vegetarians using PCR-DGGE and real-time PCR.

    PubMed

    Ruengsomwong, Supatjaree; Korenori, Yuki; Sakamoto, Naoshige; Wannissorn, Bhusita; Nakayama, Jiro; Nitisinprasert, Sunee

    2014-08-01

    The fecal microbiotas were investigated in 13 healthy Thai subjects using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Among the 186 DNA bands detected on the polyacrylamide gel, 37 bands were identified as representing 11 species: Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides uniformis, Bacteroides vulgatus, Clostridium colicanis, Eubacterium eligenes, E. rectale, Faecalibacterium prausnitzii, Megamonas funiformis, Prevotella copri, and Roseburia intestinalis, belonging mainly to the groups of Bacteroides, Prevotella, Clostridium, and F. prausnitzii. A dendrogram of the PCR-DGGE divided the subjects; vegetarians and non-vegetarians. The fecal microbiotas were also analyzed using a quantitative real-time PCR focused on Bacteroides, Bifidobacterium, Enterobacteriaceae, Clostrium coccoides-Eubacterium rectale, C. leptum, Lactobacillus, and Prevotella. The nonvegetarian and vegetarian subjects were found to have significant differences in the high abundance of the Bacteroides and Prevotella genera, respectively. No significant differences were found in the counts of Bifidabacterium, Enterobacteriaceae, C. coccoides-E. rectale group, C. leptum group, and Lactobacillus. Therefore, these findings on the microbiota of healthy Thais consuming different diets could provide helpful data for predicting the health of South East Asians with similar diets.

  20. Validation of Reference Genes for Real-Time Quantitative PCR (qPCR) Analysis of Avibacterium paragallinarum

    PubMed Central

    Wen, Shuxiang; Chen, Xiaoling; Xu, Fuzhou; Sun, Huiling

    2016-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) offers a robust method for measurement of gene expression levels. Selection of reliable reference gene(s) for gene expression study is conducive to reduce variations derived from different amounts of RNA and cDNA, the efficiency of the reverse transcriptase or polymerase enzymes. Until now reference genes identified for other members of the family Pasteurellaceae have not been validated for Avibacterium paragallinarum. The aim of this study was to validate nine reference genes of serovars A, B, and C strains of A. paragallinarum in different growth phase by qRT-PCR. Three of the most widely used statistical algorithms, geNorm, NormFinder and ΔCT method were used to evaluate the expression stability of reference genes. Data analyzed by overall rankings showed that in exponential and stationary phase of serovar A, the most stable reference genes were gyrA and atpD respectively; in exponential and stationary phase of serovar B, the most stable reference genes were atpD and recN respectively; in exponential and stationary phase of serovar C, the most stable reference genes were rpoB and recN respectively. This study provides recommendations for stable endogenous control genes for use in further studies involving measurement of gene expression levels. PMID:27942007

  1. Type A influenza virus detection from horses by real-time RT-PCR and insulated isothermal RT-PCR.

    PubMed

    Balasuriya, Udeni B R

    2014-01-01

    Equine influenza (EI) is a highly contagious disease of horses caused by the equine influenza virus (EIV) H3N8 subtype. EI is the most important respiratory virus infection of horses and can disrupt major equestrian events and cause significant economic losses to the equine industry worldwide. Influenza H3N8 virus spreads rapidly in susceptible horses and can result in very high morbidity within 24-48 h after exposure to the virus. Therefore, rapid and accurate diagnosis of EI is critical for implementation of prevention and control measures to avoid the spread of EIV and to reduce the economic impact of the disease. The probe-based real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assays targeting various EIV genes are reported to be highly sensitive and specific compared to the Directigen Flu A(®) test and virus isolation in embryonated hens' eggs. Recently, a TaqMan(®) probe-based insulated isothermal RT-PCR (iiRT-PCR) assay for the detection of EIV H3N8 subtype has been described. These molecular based diagnostic assays provide a fast and reliable means of EIV detection and disease surveillance.

  2. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  3. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    PubMed

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  4. A novel method for diagnosis of smear-negative tuberculosis patients by combining a random unbiased Phi29 amplification with a specific real-time PCR.

    PubMed

    Pang, Yu; Lu, Jie; Yang, Jian; Wang, Yufeng; Cohen, Chad; Ni, Xin; Zhao, Yanlin

    2015-07-01

    In this study, we develop a novel method for diagnosis of smear-negative tuberculosis patients by performing a random unbiased Phi29 amplification prior to the use of a specific real-time PCR. The limit of detection (LOD) of the conventional real-time PCR was 100 colony-forming units (CFU) of MTB genome/reaction, while the REPLI real-time PCR assay could detect 0.4 CFU/reaction. In comparison with the conventional real-time PCR, REPLI real-time PCR shows better sensitivity for the detection of smear-negative tuberculosis (P = 0.015).

  5. Dynamics of microcystin production and quantification of potentially toxigenic Microcystis sp. using real-time PCR.

    PubMed

    Srivastava, Ankita; Choi, Gang-Guk; Ahn, Chi-Yong; Oh, Hee-Mock; Ravi, Alok Kumar; Asthana, Ravi Kumar

    2012-03-01

    Cyanobacterial blooms in eutrophied water body are generally composed of various genotypes with or without microcystin-producing genes (mcy gene cluster). Thus there is a need for quantification of potent toxin producing strains. The present study aimed at identifying microcystin variants and its producer strains in Durgakund pond, Varanasi, India, based on quantification of cpcBA-IGS and mcyA (condensation domain) genes using real-time PCR and LC-MS. Increase in microcystin concentrations was correlated with increase in mcyA copy number and the level of pigments (chlorophyll a, phycocyanin and carotenoids). Also, selected environmental factors (water temperature, light irradiance, rainfall, pH, N and P) and the concentration of microcystin variants (MC-LR, -RR and -YR) were also assessed in samples during May 2010 to April 2011 to establish the possible correlation among these parameters. Nutrients favored cyanobacterial bloom but it could not be correlated with the levels of microcystin variants and seemed to be geographically specific. Microcystis sp. dominant in the pond comprised potentially toxigenic cells. The ratio of potentially toxigenic Microcystis sp. to that of total Microcystis sp. ranged from 0% to 14%. Such studies paved the way to identify and quantify the most potent microcystin producer in the tropical aquatic body.

  6. Quantitative analysis of the expression of ACAT genes in human tissues by real-time PCR.

    PubMed

    Smith, Jeffery L; Rangaraj, Kavitha; Simpson, Robert; Maclean, Donald J; Nathanson, Les K; Stuart, Katherine A; Scott, Shaun P; Ramm, Grant A; de Jersey, John

    2004-04-01

    ACAT (also called sterol o-acyltransferase) catalyzes the esterification of cholesterol by reaction with long-chain acyl-CoA derivatives and plays a pivotal role in the regulation of cholesterol homeostasis. Although two human ACAT genes termed ACAT-1 and ACAT-2 have been reported, prior research on differential tissue expression is qualitative and incomplete. We have developed a quantitative multiplex assay for each ACAT isoform after RT treatment of total RNA using TaqMan real-time quantitative PCR normalized to beta-actin in the same reaction tube. This enabled us to calculate the relative abundance of transcripts in several human tissues as an ACAT-2/ACAT-1 ratio. In liver (n = 17), ACAT-1 transcripts were on average 9-fold (range, 1.7- to 167-fold) more abundant than ACAT-2, whereas in duodenal samples (n = 10), ACAT-2 transcripts were on average 3-fold (range, 0.39- to 12.2-fold) more abundant than ACAT-1. ACAT-2 was detected for the first time in peripheral blood mononuclear cells. Interesting differences in ACAT-2 mRNA expression were evident in subgroup analysis of samples from different sources. These results demonstrate quantitatively that ACAT-1 transcripts predominate in human liver and ACAT-2 transcripts predominate in human duodenum and support the notion that ACAT-2 has an important regulatory role in liver and intestine.

  7. Pseudomonas stutzeri Nitrite Reductase Gene Abundance in Environmental Samples Measured by Real-Time PCR

    PubMed Central

    Grüntzig, Verónica; Nold, Stephen C.; Zhou, Jizhong; Tiedje, James M.

    2001-01-01

    We used real-time PCR to quantify the denitrifying nitrite reductase gene (nirS), a functional gene of biogeochemical significance. The assay was tested in vitro and applied to environmental samples. The primer-probe set selected was specific for nirS sequences that corresponded approximately to the Pseudomonas stutzeri species. The assay was linear from 1 to 106 gene copies (r2 = 0.999). Variability at low gene concentrations did not allow detection of twofold differences in gene copy number at less than 100 copies. DNA spiking and cell-addition experiments gave predicted results, suggesting that this assay provides an accurate measure of P. stutzeri nirS abundance in environmental samples. Although P. stutzeri abundance was high in lake sediment and groundwater samples, we detected low or no abundance of this species in marine sediment samples from Puget Sound (Wash.) and from the Washington ocean margin. These results suggest that P. stutzeri may not be a dominant marine denitrifier. PMID:11157241

  8. Detection of canine distemper virus in dogs by real-time RT-PCR.

    PubMed

    Elia, Gabriella; Decaro, Nicola; Martella, Vito; Cirone, Francesco; Lucente, Maria Stella; Lorusso, Eleonora; Di Trani, Livia; Buonavoglia, Canio

    2006-09-01

    Canine distemper virus is the etiological agent of a severe disease in dogs and many other carnivores. Clinical diagnosis of canine distemper is difficult due to the broad spectrum of signs that may be confounded with other respiratory and enteric diseases of dogs. Accordingly, a laboratory confirmation is required for suspected cases. In this study a real-time RT-PCR assay was developed for detection and quantitation of canine distemper virus. The assay exhibited high specificity as all the negative controls (no-template-controls and samples from healthy sero-negative dogs) and other canine pathogens were not misdetected. Up to 1 x 10(2) copies of RNA were detected by the TaqMan assay, thus revealing a high sensitivity. Quantitative TaqMan was validated on clinical samples, including various tissues and organs collected from dogs naturally infected by canine distemper virus. Urines, tonsil, conjunctival swabs and whole blood were found to contain high virus loads and therefore proved to be suitable targets for detection of canine distemper virus RNA.

  9. Microbiological monitoring of acid mine drainage treatment systems and aquatic surroundings using real-time PCR.

    PubMed

    Han, J S; Kim, C G

    2009-01-01

    In general, acid mine drainage (AMD) causes low pH and high metal concentrations in mining areas and surroundings. The aim of this research was to achieve microbiological monitoring for AMD and to assess whether mine water outflows have any ecological effects on the aqueous ecosystem receiving effluents from different types of treatment system. The water quality of aquatic sample was analyzed and the molecular biological diversity of the samples was assessed using 16S rRNA methods, which were implemented to determine which bacteria existed throughout various unit processes for different AMD treatment systems and their receiving water environments. Acidiphilium cryptum, a heterotrophic acidophile, was found at the AMD sites, and Rhodoferax ferrireducens, which can reduce iron using insoluble Fe(III) as an electron acceptor, was detected at many AMD treatment facilities and downstream of the treatment processes. Subsequently, quantitative real-time PCR was conducted on specific genes of selected bacteria. Surprisingly, obvious trends were observed in the relative abundance of the various bacteria that corresponded to the water quality analytical results. The copy number of Desulfosporosinus orientus, a sulfate reducing bacteria, was also observed to decrease in response to decreases in metals according to the downstream flow of the AMD treatment system.

  10. [Real time PCR hybridization for the rapid and specific identification of Francisella tularensis].

    PubMed

    Bielawska-Drózd, Agata; Niemcewicz, Marcin; Gaweł, Jerzy; Bartoszcze, Michał; Graniak, Grzegorz; Joniec, Justyna; Kołodziej, Marcin

    2010-01-01

    Tularemia is highly infectious and fatal zoonotic disease caused by Gram negative bacteria Francisella tularensis. The necessity to undergo medical treatment in early phase of illness in humans and possibility of making use of bacterial aerosol by terrorists in an attack create an urgent need to implement a rapid and effective method which enables to identify the agent. In our study two primers FopA F/R and hybridization probes FopA S1/S2 designed from fopA gene sequence, were tested for their potential applicability to identify F. tularensis. In this research 50 strains of F. tularensis were used and the test gave positive results. Reaction specificity was confirmed by using of non-Francisella tularensis bacterial species. The results obtained in the real-time PCR reaction with primers Tul4 F/R and hybridization probes Tul4 S1/S2, designed from tul4 gene, were comparable to the results from previous experiment with fopA - primers set. Investigation of fopA and tul4 primers and hybridization probes properties revealed characteristic Tm (melting temperature) value of the products--61 degrees C and 60 degrees C, respectively. Detection sensitivity was remarkably higher when fopA primers set was used 1 fg/microl, and for tul4 primers set, minimal detectable concentration is 10 fg/microl.

  11. A real-time PCR signature to discriminate between tuberculosis and other pulmonary diseases.

    PubMed

    Laux da Costa, Lucas; Delcroix, Melaine; Dalla Costa, Elis R; Prestes, Isaías V; Milano, Mariana; Francis, Steve S; Unis, Gisela; Silva, Denise R; Riley, Lee W; Rossetti, Maria L R

    2015-07-01

    The goal of this study was to identify a host gene signature that can distinguish tuberculosis (TB) from other pulmonary diseases (OPD). We conducted real-time PCR on whole blood samples from patients in Brazil. TB and OPD patients (asthma and non-TB pneumonia) differentially expressed granzyme A (GZMA), guanylate binding protein 5 (GBP5) and Fc gamma receptor 1A (CD64). Receiver operating characteristic, tree classification and random forest analyses were applied to evaluate the discriminatory power of the three genes and find the gene panel most predictive of patients' disease classification. Tree classification produced a model based on GBP5 and CD64 expression. In random forest analysis, the combination of the three genes provided a robust biosignature to distinguish TB from OPD with 95% specificity and 93% sensitivity. Our results suggest that GBP5 and CD64 in tandem may be the most predictive combination. However, GZMA contribution to the prediction model requires further investigation. Regardless, these three genes show promise as a rapid diagnostic marker separating TB from OPD.

  12. A real-time PCR signature to discriminate between tuberculosis and other pulmonary diseases

    PubMed Central

    da Costa, Lucas Laux; Delcroix, Melaine; Dalla Costa, Elis R.; Prestes, Isaías V.; Milano, Mariana; Francis, Steve S.; Unis, Gisela; Silva, Denise R.; Riley, Lee W.; Rossetti, Maria L. R.

    2015-01-01

    The goal of this study was to identify a host gene signature that can distinguish tuberculosis (TB) from other pulmonary diseases (OPD). We conducted real-time PCR on whole blood samples from patients in Brazil. TB and OPD patients (asthma and non-TB pneumonia) differentially expressed granzyme A (GZMA), guanylate binding protein 5 (GBP5) and Fc gamma receptor 1A (CD64). Receiver operating characteristic, tree classification and random forest analyses were applied to evaluate the discriminatory power of the three genes and find the gene panel most predictive of patients’ disease classification. Tree classification produced a model based on GBP5 and CD64 expression. In random forest analysis, the combination of the three genes provided a robust biosignature to distinguish TB from OPD with 95% specificity and 93% sensitivity. Our results suggest that GBP5 and CD64 in tandem may be the most predictive combination. However, GZMA contribution to the prediction model requires further investigation. Regardless, these three genes show promise as a rapid diagnostic marker separating TB from OPD. PMID:26025597

  13. Real Time RT-PCR Assays for Detection and Typing of African Horse Sickness Virus

    PubMed Central

    Bachanek-Bankowska, Katarzyna; Maan, Sushila; Castillo-Olivares, Javier; Manning, Nicola M.; Maan, Narender Singh; Potgieter, Abraham C.; Di Nardo, Antonello; Sutton, Geoff; Batten, Carrie; Mertens, Peter P. C.

    2014-01-01

    Although African horse sickness (AHS) can cause up to 95% mortality in horses, naïve animals can be protected by vaccination against the homologous AHSV serotype. Genome segment 2 (Seg-2) encodes outer capsid protein VP2, the most variable of the AHSV proteins. VP2 is also a primary target for AHSV specific neutralising antibodies, and consequently determines the identity of the nine AHSV serotypes. In contrast VP1 (the viral polymerase) and VP3 (the sub-core shell protein), encoded by Seg-1 and Seg-3 respectively, are highly conserved, representing virus species/orbivirus-serogroup-specific antigens. We report development and evaluation of real-time RT-PCR assays targeting AHSV Seg-1 or Seg-3, that can detect any AHSV type (virus species/serogroup-specific assays), as well as type-specific assays targeting Seg-2 of the nine AHSV serotypes. These assays were evaluated using isolates of different AHSV serotypes and other closely related orbiviruses, from the ‘Orbivirus Reference Collection’ (ORC) at The Pirbright Institute. The assays were shown to be AHSV virus-species-specific, or type-specific (as designed) and can be used for rapid, sensitive and reliable detection and identification (typing) of AHSV RNA in infected blood, tissue samples, homogenised Culicoides, or tissue culture supernatant. None of the assays amplified cDNAs from closely related heterologous orbiviruses, or from uninfected host animals or cell cultures. PMID:24721971

  14. Strain prioritization for natural product discovery by a high-throughput real-time PCR method.

    PubMed

    Hindra; Huang, Tingting; Yang, Dong; Rudolf, Jeffrey D; Xie, Pengfei; Xie, Guangbo; Teng, Qihui; Lohman, Jeremy R; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Duan, Yanwen; Shen, Ben

    2014-10-24

    Natural products offer unmatched chemical and structural diversity compared to other small-molecule libraries, but traditional natural product discovery programs are not sustainable, demanding too much time, effort, and resources. Here we report a strain prioritization method for natural product discovery. Central to the method is the application of real-time PCR, targeting genes characteristic to the biosynthetic machinery of natural products with distinct scaffolds in a high-throughput format. The practicality and effectiveness of the method were showcased by prioritizing 1911 actinomycete strains for diterpenoid discovery. A total of 488 potential diterpenoid producers were identified, among which six were confirmed as platensimycin and platencin dual producers and one as a viguiepinol and oxaloterpin producer. While the method as described is most appropriate to prioritize strains for discovering specific natural products, variations of this method should be applicable to the discovery of other classes of natural products. Applications of genome sequencing and genome mining to the high-priority strains could essentially eliminate the chance elements from traditional discovery programs and fundamentally change how natural products are discovered.

  15. The application of real-time PCR to the analysis of T cell repertoires

    PubMed Central

    Wettstein, Peter; Strausbauch, Michael; Therneau, Terry; Borson, Nancy

    2008-01-01

    The diversity of T-cell populations is determined by the spectrum of antigen-specific T-cell receptors (TCRs) that are heterodimers of α and β subunits encoded by rearranged combinations of variable (AV and BV), joining (AJ and BJ), and constant region genes (AC and BC). We have developed a novel approach for analysis of β transcript diversity in mice with a real-time PCR-based method that uses a matrix of BV- and BJ-specific primers to amplify 240 distinct BV–BJ combinations. Defined endpoints (Ct values) and dissociation curves are generated for each BV–BJ combination and the Ct values are consolidated in a matrix that characterizes the β transcript diversity of each RNA sample. Relative diversities of BV–BJ combinations in individual RNA samples are further described by estimates of scaled entropy. A skin allograft system was used to demonstrate that dissection of repertoires into 240 BV–BJ combinations increases efficiency of identifying and sequencing β transcripts that are overrepresented at inflammatory sites. These BV–BJ matrices should generate greater investigation in laboratory and clinical settings due to increased throughput, resolution and identification of overrepresented TCR transcripts. PMID:18835849

  16. Real-time PCR quantification of gene expression in embryonic mouse tissue.

    PubMed

    Villalon, Eric; Schulz, David J; Waters, Samuel T

    2014-01-01

    The Gbx family of transcription factors consists of two closely related proteins GBX1 and GBX2. A defining feature of the GBX family is a highly conserved 60 amino acid DNA-binding domain, which differs by just two amino acids. Gbx1 and Gbx2 are co-expressed in several areas of the developing central nervous system including the forebrain, anterior hindbrain, and spinal cord, suggesting the potential for genetic redundancy. However, there is a spatiotemporal difference in expression of Gbx1 and Gbx2 in the forebrain and spinal cord. Gbx2 has been shown to play a critical role in positioning the midbrain/hindbrain boundary and developing anterior hindbrain, whereas gene-targeting experiments in mice have revealed an essential function for Gbx1 in the spinal cord for normal locomotion. To determine if Gbx2 could potentially compensate for a loss of Gbx1 in the developing spinal cord, we performed real-time PCR to examine levels of Gbx2 expression in Gbx1(-/-) spinal cord at embryonic day (E) 13.5, a developmental stage when Gbx2 is rapidly downregulated. We demonstrate that Gbx2 expression is elevated in the spinal cord of Gbx1(-/-) embryos.

  17. Rapid Identification and Enumeration of Saccharomyces cerevisiae Cells in Wine by Real-Time PCR

    PubMed Central

    Martorell, P.; Querol, A.; Fernández-Espinar, M. T.

    2005-01-01

    Despite the beneficial role of Saccharomyces cerevisiae in the food industry for food and beverage production, it is able to cause spoilage in wines. We have developed a real-time PCR method to directly detect and quantify this yeast species in wine samples to provide winemakers with a rapid and sensitive method to detect and prevent wine spoilage. Specific primers were designed for S. cerevisiae using the sequence information obtained from a cloned random amplified polymorphic DNA band that differentiated S. cerevisiae from its sibling species Saccharomyces bayanus, Saccharomyces pastorianus, and Saccharomyces paradoxus. The specificity of the primers was demonstrated for typical wine spoilage yeast species. The method was useful for estimating the level of S. cerevisiae directly in sweet wines and red wines without preenrichment when yeast is present in concentrations as low as 3.8 and 5 CFU per ml. This detection limit is in the same order as that obtained from glucose-peptone-yeast growth medium (GPY). Moreover, it was possible to quantify S. cerevisiae in artificially contaminated samples accurately. Limits for accurate quantification in wine were established, from 3.8 × 105 to 3.8 CFU/ml in sweet wine and from 5 × 106 to 50 CFU/ml in red wine. PMID:16269715

  18. A multiplex real-time PCR assay for the detection and differentiation of Francisella tularensis subspecies.

    PubMed

    Gunnell, Mark K; Lovelace, Charity D; Satterfield, Benjamin A; Moore, Emily A; O'Neill, Kim L; Robison, Richard A

    2012-11-01

    Francisella tularensis is the aetiological agent of tularaemia, a zoonotic disease with worldwide prevalence. F. tularensis is a highly pathogenic organism and has been designated a category A biothreat agent by the Centers for Disease Control and Prevention. Tularaemia is endemic in much of the USA, Europe and parts of Asia. It is transmitted by numerous vectors and vehicles such as deer flies, ticks and rabbits. Currently, there are four recognized subspecies of F. tularensis: tularensis (type A), holarctica (type B), mediasiatica and novicida. Within the type A classification there are two subclassifications, type A.I and A.II, each with a specific geographical distribution across the USA. F. tularensis subsp. holartica (type B) is found in both the USA and Europe. Because of virulence differences among subtypes, it is important that health departments, hospitals and other government agencies are able to quickly identify each subtype. The purpose of this study was to develop a multiplex real-time PCR assay for the identification and discrimination of type A.I, type A.II, type B and novicida subspecies of F. tularensis. The assay was validated using 119 isolates of F. tularensis, three of its nearest neighbours and 14 other bacterial pathogens. This assay proved to be ~98 % successful at identifying the known subspecies of F. tularensis and could prove to be a useful tool in the characterization of this important pathogen.

  19. Detection of enteroviruses and parechoviruses by a multiplex real-time RT-PCR assay.

    PubMed

    Pabbaraju, Kanti; Wong, Sallene; Wong, Anita A; Tellier, Raymond

    2015-04-01

    Detection of all enteroviruses while excluding cross-detection of rhinoviruses is challenging because of sequence similarities in the commonly used conserved targets for molecular assays. In addition, simultaneous detection and differentiation of enteroviruses and parechoviruses would be beneficial because of a similar clinical picture presented by these viruses. A sensitive and specific real-time RT-PCR protocol that can address these clinical needs would be valuable to molecular diagnostic laboratories. Here we report a multiplex nucleic acid based assay using hydrolysis probes targeting the 5' non-translated region for the detection and differentiation of enteroviruses and parechoviruses without cross-detection of rhinoviruses. This assay has been shown to detect enteroviruses belonging to the different species in a variety of specimen types without detecting the different species of rhinoviruses. Laboratory validation shows the assay to be sensitive, specific, reproducible, easy to set up and uses generic cycling conditions. This assay can be implemented for diagnostic testing of patient samples in a high throughput fashion.

  20. Salmonella spp. fecal shedding detected by real-time PCR in competing endurance horses.

    PubMed

    Fielding, C Langdon; Meier, Chloe A; Magdesian, K Gary; Pusterla, Nicola

    2013-09-01

    Fecal shedding of Salmonella spp. was recently documented in 8% of endurance horses presented to equine referral centers for colic. Previous studies have documented fecal shedding of Salmonella spp. in as few as 0.8% of the general horse population, although horses with colic appear to be at higher risk. Fecal Salmonella spp. shedding before and after endurance horse competitions has not been evaluated. Fecal samples were collected from 204 horses during three separate 100 mile endurance competitions. Following incubation in selenite broth, 289 fecal samples were tested by real-time PCR analysis for Salmonella spp. Only one post-race sample (0.5% tested positive for Salmonella spp. in this study and no pre-race sample was available from this horse. Results suggest that fecal shedding of Salmonella spp. is uncommon in endurance horses during competitions. Further research is needed to confirm and identify the source of Salmonella spp. infection in endurance horses with colic requiring treatment at referral centers.

  1. Microscopy, culture, and quantitative real-time PCR examination confirm internalization of mycobacteria in plants.

    PubMed

    Kaevska, M; Lvoncik, S; Slana, I; Kulich, P; Kralik, P

    2014-07-01

    The environment is a reservoir of nontuberculous mycobacteria and is considered a source of infection for animals and humans. Mycobacteria can persist in different types of environments for a relatively long time. We have studied their possible internalization into plant tissue through intact, as well as damaged, root systems of different types of plants grown in vitro and under field conditions. The substrate into which plants were seeded was previously contaminated with different strains of Mycobacterium avium (10(8) to 10(10) cells/g of soil) and feces from animals with paratuberculosis. We detected M. avium subsp. avium, hominissuis, and paratuberculosis in the stems and leaves of the plants by both culture and real-time quantitative PCR. The presence of mycobacteria in the plant tissues was confirmed by microscopy. The concentration of mycobacteria found inside plant tissue was several orders of magnitude lower (up to 10(4) cells/g of tissue) than the initial concentration of mycobacteria present in the culture medium or substrate. These findings led us to the hypothesis that plants may play a role in the spread and transmission of mycobacteria to other organisms in the environment.

  2. Rapid Qualitative Urinary Tract Infection Pathogen Identification by SeptiFast® Real-Time PCR

    PubMed Central

    Malinka, Thomas; Klaschik, Sven; Weber, Stefan U.; Schewe, Jens-Christian; Stüber, Frank; Book, Malte

    2011-01-01

    Background Urinary tract infections (UTI) are frequent in outpatients. Fast pathogen identification is mandatory for shortening the time of discomfort and preventing serious complications. Urine culture needs up to 48 hours until pathogen identification. Consequently, the initial antibiotic regimen is empirical. Aim To evaluate the feasibility of qualitative urine pathogen identification by a commercially available real-time PCR blood pathogen test (SeptiFast®) and to compare the results with dipslide and microbiological culture. Design of study Pilot study with prospectively collected urine samples. Setting University hospital. Methods 82 prospectively collected urine samples from 81 patients with suspected UTI were included. Dipslide urine culture was followed by microbiological pathogen identification in dipslide positive samples. In parallel, qualitative DNA based pathogen identification (SeptiFast®) was performed in all samples. Results 61 samples were SeptiFast® positive, whereas 67 samples were dipslide culture positive. The inter-methodological concordance of positive and negative findings in the gram+, gram- and fungi sector was 371/410 (90%), 477/492 (97%) and 238/246 (97%), respectively. Sensitivity and specificity of the SeptiFast® test for the detection of an infection was 0.82 and 0.60, respectively. SeptiFast® pathogen identifications were available at least 43 hours prior to culture results. Conclusion The SeptiFast® platform identified bacterial DNA in urine specimens considerably faster compared to conventional culture. For UTI diagnosis sensitivity and specificity is limited by its present qualitative setup which does not allow pathogen quantification. Future quantitative assays may hold promise for PCR based UTI pathogen identification as a supplementation of conventional culture methods. PMID:21359187

  3. Reverse transcription real-time PCR for detection of porcine interferon α and β genes.

    PubMed

    Razzuoli, E; Villa, R; Sossi, E; Amadori, M

    2011-10-01

    A few studies provided convincing evidence of constitutive expression of type I interferons (IFNs) in humans and mice, and of the steady-state role of these cytokines under health conditions. These results were later confirmed in pigs, too. In line with this tenet, low levels of IFN-α/β can be detected in swine tissues in the absence of any specific inducer. These studies are compounded by the utmost complexity of type I IFNs (including among others 17 IFN-α genes in pigs), which demands proper research tools. This prompted us to analyse the available protocols and to develop a relevant, robust, reverse transcription (RT) real-time polymerase chain reaction (PCR) detection system for the amplification of porcine IFN-α/β genes. The adopted test procedure is user-friendly and provides the complete panel of gene expression of one subject in a microtitre plate. Also, a proper use of PCR fluorochromes (SYBR(®) versus EvaGreen(®) supermix) enables users to adopt proper test protocols in case of low-expression porcine IFN-α genes. This is accounted for by the much higher sensitivity of the test protocol with EvaGreen(®) supermix. Interestingly, IFN-β showed the highest frequency of constitutive expression, in agreement with its definition of 'immediate early' gene in both humans and mice. Results indicate that the outlined procedure can detect both constitutively expressed and virus-induced IFN-α/β genes, as well as the impact of environmental, non-infectious stressors on the previous profile of constitutive expression.

  4. Detection of Bartonella spp. in wild rodents in Israel using HRM real-time PCR.

    PubMed

    Morick, Danny; Baneth, Gad; Avidor, Boaz; Kosoy, Michael Y; Mumcuoglu, Kosta Y; Mintz, Dvir; Eyal, Osnat; Goethe, Ralph; Mietze, Andreas; Shpigel, Nahum; Harrus, Shimon

    2009-11-18

    The prevalence of Bartonella spp. in wild rodents was studied in 19 geographical locations in Israel. One hundred and twelve rodents belonging to five species (Mus musculus, Rattus rattus, Microtus socialis, Acomys cahirinus and Apodemus sylvaticus) were included in the survey. In addition, 156 ectoparasites were collected from the rodents. Spleen sample from each rodent and the ectoparasites were examined for the presence of Bartonella DNA using high resolution melt (HRM) real-time PCR. The method was designed for the simultaneous detection and differentiation of eight Bartonella spp. according to the nucleotide variation in each of two gene fragments (rpoB and gltA) and the 16S-23S intergenic spacer (ITS) locus, using the same PCR protocol which allowed the simultaneous amplification of the three different loci. Bartonella DNA was detected in spleen samples of 19 out of 79 (24%) black rats (R. rattus) and in 1 of 4 (25%) Cairo spiny mice (A. cahirinus). In addition, 15 of 34 (44%) flea pools harbored Bartonella DNA. Only rat flea (Xenopsyla cheopis) pools collected from black rats (R. rattus) were positive for Bartonella DNA. The Bartonella sp. detected in spleen samples from black rats (R. rattus) was closely related to both B. tribocorum and B. elizabethae. The species detected in the Cairo spiny mouse (A. cahirinus) spleen sample was closely related to the zoonotic pathogen, B. elizabethae. These results indicate that Bartonella species are highly prevalent in suburban rodent populations and their ectoparasites in Israel. Further investigation of the prevalence and zoonotic potential of the Bartonella species detected in the black rats and the Cairo spiny mouse is warranted.

  5. Confirmation of the spinal motor neuron gene 2 (SMN2) copy numbers by real-time PCR.

    PubMed

    Wieme, Maamouri-Hicheri; Monia Ben, Hammer; Yosr, Bouhlal; Sihem, Souilem; Nawel, Toumi; Ines, Manai-Azizi; Wajdi, Bennour; Najla, Khmiri; Houda, Nahdi; Faycal, Hentati; Rim, Amouri

    2012-09-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by mutation or deletion of the survival motor neuron gene 1 (SMN1). SMN2, a copy gene, influences the severity of SMA and may be used in somatic gene therapy of patients with SMA in the future. The SMA carrier analysis developed at the Institute of Medical Genetics, Catholic University (Rome), on the Applied Biosystems real-time PCR instruments by Dr Danilo Tiziano and his group, provides a robust workflow to evaluate SMA carrier status. In this study, the SMN2 copy number was confirmed on 22 patients by developing our own assay on the basis of a relative real-time PCR system using the 7500 Fast Real-Time PCR System.

  6. Development of a real-time PCR method to detect potentially allergenic sesame (Sesamum indicum) in food.

    PubMed

    Schöringhumer, Kerstin; Cichna-Markl, Margit

    2007-12-26

    Recent papers indicate that the prevalence of allergic reactions to sesame (Sesamum indicum) is increasing in European countries. This paper describes the development of a selective real-time PCR method for the detection of sesame in food. The assay did not show any cross-reactivity with 17 common food ingredients. The real-time PCR method was applied to determine sesame in several crackers, salty snacks, biscuits, tahina sesame paste and sesame oil. With the exception of sesame oil, in all of the samples where sesame was declared, sesame was detected by the real-time PCR assay (Ct value<35). In the samples which might contain sesame or where sesame was not listed, sesame could not be detected (Ct value>35).

  7. Real-Time Quantitative PCR (QPCR) and Reverse Transcription-QPCR for Detection and Enumeration of Total Yeasts in Wine▿

    PubMed Central

    Hierro, Núria; Esteve-Zarzoso, Braulio; González, Ángel; Mas, Albert; Guillamón, Jose M.

    2006-01-01

    Real-time PCR, or quantitative PCR (QPCR), has been developed to rapidly detect and quantify the total number of yeasts in wine without culturing. Universal yeast primers were designed from the variable D1/D2 domains of the 26S rRNA gene. These primers showed good specificity with all the wine yeasts tested, and they did not amplify the most representative wine species of acetic acid bacteria and lactic acid bacteria. Numerous standard curves were constructed with different strains and species grown in yeast extract-peptone-dextrose medium or incubated in wine. The small standard errors with these replicas proved that the assay is reproducible and highly robust. This technique was validated with artificially contaminated and natural wine samples. We also performed a reverse transcription-QPCR (RT-QPCR) assay from rRNA for total viable yeast quantification. This technique had a low detection limit and was more accurate than QPCR because the dead cells were not quantified. As far as we know, this is the first time that RT-QPCR has been performed to quantify viable yeasts from rRNA. RT-QPCR is a rapid and accurate technique for enumerating yeasts during industrial wine fermentation and controlling the risk of wine spoilage. PMID:17088381

  8. Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine.

    PubMed

    Hierro, Núria; Esteve-Zarzoso, Braulio; González, Angel; Mas, Albert; Guillamón, Jose M

    2006-11-01

    Real-time PCR, or quantitative PCR (QPCR), has been developed to rapidly detect and quantify the total number of yeasts in wine without culturing. Universal yeast primers were designed from the variable D1/D2 domains of the 26S rRNA gene. These primers showed good specificity with all the wine yeasts tested, and they did not amplify the most representative wine species of acetic acid bacteria and lactic acid bacteria. Numerous standard curves were constructed with different strains and species grown in yeast extract-peptone-dextrose medium or incubated in wine. The small standard errors with these replicas proved that the assay is reproducible and highly robust. This technique was validated with artificially contaminated and natural wine samples. We also performed a reverse transcription-QPCR (RT-QPCR) assay from rRNA for total viable yeast quantification. This technique had a low detection limit and was more accurate than QPCR because the dead cells were not quantified. As far as we know, this is the first time that RT-QPCR has been performed to quantify viable yeasts from rRNA. RT-QPCR is a rapid and accurate technique for enumerating yeasts during industrial wine fermentation and controlling the risk of wine spoilage.

  9. European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese.

    PubMed

    Gianfranceschi, Monica Virginia; Rodriguez-Lazaro, David; Hernandez, Marta; González-García, Patricia; Comin, Damiano; Gattuso, Antonietta; Delibato, Elisabetta; Sonnessa, Michele; Pasquali, Frederique; Prencipe, Vincenza; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Kozačinski, Lidija; Tomic, Danijela Horvatek; Zdolec, Nevijo; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John Elmerdahl; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Paiusco, Antonella; De Cesare, Alessandra; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Listeria monocytogenes requires around 7 days for final confirmation, and due to perishable nature of RTE food products, there is a clear need for an alternative methodology for detection of this pathogen. This study presents an international (at European level) ISO 16140-based validation trial of a non-proprietary real-time PCR-based methodology that can generate final results in the following day of the analysis. This methodology is based on an ISO compatible enrichment coupled to a bacterial DNA extraction and a consolidated real-time PCR assay. Twelve laboratories from six European countries participated in this trial, and soft cheese was selected as food model since it can represent a difficult matrix for the bacterial DNA extraction and real-time PCR amplification. The limit of detection observed was down to 10 CFU per 25 of sample, showing excellent concordance and accordance values between samples and laboratories (>75%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (82.75%, 96.70% and 97.62%, respectively) when the results obtained for the real-time PCR-based methods were compared to those of the ISO 11290-1 standard method. An interesting observation was that the L. monocytogenes detection by the real-time PCR method was less affected in the presence of Listeria innocua in the contaminated samples, proving therefore to be more reliable than the reference method. The results of this international trial demonstrate that the evaluated real-time PCR-based method represents an excellent alterative to the ISO standard since it shows a higher performance as well as reduce the extent of the analytical process, and can be easily implemented routinely by the competent authorities and food industry laboratories.

  10. A meta-analysis to evaluate the effectiveness of real-time PCR for diagnosing novel coronavirus infections.

    PubMed

    Lin, C; Ye, R; Xia, Y L

    2015-12-02

    Novel coronavirus (nCoV) belongs to the Coronaviridae family, which includes the virus that causes SARS, or severe acute respiratory syndrome. However, infection source, transmission route, and host of nCoV have not yet been thoroughly characterized. In some cases, nCoV presented a limited person-to-person transmission. Therefore, early diagnosis of nCoV may be of importance for reducing the spread of disease in public. Methods for nCoV diagnosis involve smear dyeing inspection, culture identification, and real-time PCR detection, all of which are proved highly effective. Here, we performed a meta-analysis to evaluate the effectiveness of real-time PCR for diagnosing nCoV infection. Fifteen articles conformed to the inclusion and exclusion criteria for further meta-analysis on the basis of a wide range of publications searched from databases involving PubMed, EMBASE, Web of Science, Medline, ISI. We analyzed the stability and publication bias as well as examined the heterogeneity inspection of real-time PCR detection in contrast to smear staining and culture identification. The fixed-effect model was adopted in our meta-analysis. Our result demonstrated that the combination of real-time PCR and smear diagnostics yielded an odds ratio (OR) = 1.91, 95% confidence interval (CI) = 1.51-2.41, Z = 5.43, P < 0.05, while the combination of real-time PCR and culture identification yielded OR = 2.44, 95%CI = 1.77-3.37, Z = 5.41, P < 0.05. Therefore, we propose real-time PCR as an efficient method that offers an auxiliary support for future nCoV diagnosis.

  11. Molecular detection of Toxoplasma gondii in water samples from Scotland and a comparison between the 529bp real-time PCR and ITS1 nested PCR.

    PubMed

    Wells, Beth; Shaw, Hannah; Innocent, Giles; Guido, Stefano; Hotchkiss, Emily; Parigi, Maria; Opsteegh, Marieke; Green, James; Gillespie, Simon; Innes, Elisabeth A; Katzer, Frank

    2015-12-15

    Waterborne transmission of Toxoplasma gondii is a potential public health risk and there are currently no agreed optimised methods for the recovery, processing and detection of T. gondii oocysts in water samples. In this study modified methods of T. gondii oocyst recovery and DNA extraction were applied to 1427 samples collected from 147 public water supplies throughout Scotland. T. gondii DNA was detected, using real time PCR (qPCR) targeting the 529bp repeat element, in 8.79% of interpretable samples (124 out of 1411 samples). The samples which were positive for T. gondii DNA originated from a third of the sampled water sources. The samples which were positive by qPCR and some of the negative samples were reanalysed using ITS1 nested PCR (nPCR) and results compared. The 529bp qPCR was the more sensitive technique and a full analysis of assay performance, by Bayesian analysis using a Markov Chain Monte Carlo method, was completed which demonstrated the efficacy of this method for the detection of T. gondii in water samples.

  12. Validation of reference genes for quantitative gene expression studies in Volvox carteri using real-time RT-PCR.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2013-12-01

    Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) is a sensitive technique for analysis of gene expression under a wide diversity of biological conditions. However, the identification of suitable reference genes is a critical factor for analysis of gene expression data. To determine potential reference genes for normalization of qRT-PCR data in the green alga Volvox carteri, the transcript levels of ten candidate reference genes were measured by qRT-PCR in three experimental sample pools containing different developmental stages, cell types and stress treatments. The expression stability of the candidate reference genes was then calculated using the algorithms geNorm, NormFinder and BestKeeper. The genes for 18S ribosomal RNA (18S) and eukaryotic translation elongation factor 1α2 (eef1) turned out to have the most stable expression levels among the samples both from different developmental stages and different stress treatments. The genes for the ribosomal protein L23 (rpl23) and the TATA-box binding protein (tbpA) showed equivalent transcript levels in the comparison of different cell types, and therefore, can be used as reference genes for cell-type specific gene expression analysis. Our results indicate that more than one reference gene is required for accurate normalization of qRT-PCRs in V. carteri. The reference genes in our study show a much better performance than the housekeeping genes used as a reference in previous studies.

  13. Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR.

    PubMed

    Zhang, Kun; Niu, Shaofang; Di, Dianping; Shi, Lindan; Liu, Deshui; Cao, Xiuling; Miao, Hongqin; Wang, Xianbing; Han, Chenggui; Yu, Jialin; Li, Dawei; Zhang, Yongliang

    2013-10-10

    Both genome-wide transcriptomic surveys of the mRNA expression profiles and virus-induced gene silencing-based molecular studies of target gene during virus-plant interaction involve the precise estimation of the transcript abundance. Quantitative real-time PCR (qPCR) is the most widely adopted technique for mRNA quantification. In order to obtain reliable quantification of transcripts, identification of the best reference genes forms the basis of the preliminary work. Nevertheless, the stability of internal controls in virus-infected monocots needs to be fully explored. In this work, the suitability of ten housekeeping genes (ACT, EF1α, FBOX, GAPDH, GTPB, PP2A, SAND, TUBβ, UBC18 and UK) for potential use as reference genes in qPCR were investigated in five different monocot plants (Brachypodium, barley, sorghum, wheat and maize) under infection with different viruses including Barley stripe mosaic virus (BSMV), Brome mosaic virus (BMV), Rice black-streaked dwarf virus (RBSDV) and Sugarcane mosaic virus (SCMV). By using three different algorithms, the most appropriate reference genes or their combinations were identified for different experimental sets and their effectiveness for the normalisation of expression studies were further validated by quantitative analysis of a well-studied PR-1 gene. These results facilitate the selection of desirable reference genes for more accurate gene expression studies in virus-infected monocots.

  14. Real time PCR detection of rabbit haemorrhagic disease virus in rabbits infected with different European strains of RHDV.

    PubMed

    Niedźwiedzka-Rystwej, P; Hukowska-Szematowicz, B; Działo, J; Tokarz-Deptuła, B; Deptuła, W

    2013-01-01

    The paper concerns the use of a novel, very effective diagnostic method, a real-time PCR for diagnosis of a viral agent causing viral haemorrhagic disease in rabbits - RHDV. Until now, the method was widely used for detecting many different viruses, both DNA, and RNA, but as far as RHDV is concerned, there are not many records of such use. This study aimed at the detection of 17 different strains from different European regions, differing in biological features and mortality. The study confirmed that real-time PCR is an applicable and effective method for diagnosis of RHDV, irrespective of the stains' features.

  15. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification.

    PubMed

    Kanthaswamy, S; Premasuthan, A; Ng, J; Satkoski, J; Goyal, V

    2012-03-01

    In the United States, human forensic evidence collected from crime scenes is usually comingled with biomaterial of canine and feline origins. Knowledge of the concentration of nuclear DNA extracted from a crime scene biological sample and the species from which the sample originated is essential for DNA profiling. The ability to accurately detect and quantify target DNA in mixed-species samples is crucial when target DNA may be overwhelmed by non-target DNA. We have designed and evaluated a species-specific (human, dog and cat) nuclear DNA identification assay based on the TaqMan(®) quantitative real-time PCR (qPCR) technology that can simultaneously detect and measure minute quantities of DNA specific to either humans, dogs and/or cats. The fluorogenic triplex assay employs primers and hydrolysis probes that target the human TH01 locus as well as the dog and cat Melanocortin 1 Receptor (MC1R) sequences in a species-specific manner. We also demonstrate that the assay is a highly sensitive, reliable and robust method for identifying and quantifying mixed-species templates of human-dog-cat origin with as little as 0.4 pg of human and cat nuclear DNA, respectively, and 4.0 pg of dog nuclear DNA.

  16. In planta distribution of 'Candidatus Liberibacter asiaticus' as revealed by polymerase chain reaction (PCR) and real-time PCR.

    PubMed

    Tatineni, Satyanarayana; Sagaram, Uma Shankar; Gowda, Siddarame; Robertson, Cecile J; Dawson, William O; Iwanami, Toru; Wang, Nian

    2008-05-01

    Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide, and is caused by a phloem-limited fastidious prokaryotic alpha-proteobacterium that is yet to be cultured. In this study, a combination of traditional polymerase chain reaction (PCR) and real-time PCR targeting the putative DNA polymerase and 16S rDNA sequence of 'Candidatus Liberibacter asiaticus,' respectively, were used to examine the distribution and movement of the HLB pathogen in the infected citrus tree. We found that 'Ca. Liberibacter asiaticus' was distributed in bark tissue, leaf midrib, roots, and different floral and fruit parts, but not in endosperm and embryo, of infected citrus trees. Quantification analysis of the HLB bacterium indicated that it was distributed unevenly in planta and ranged from 14 to 137,031 cells/mug of total DNA in different tissues. A relatively high concentration of 'Ca. Liberibacter asiaticus' was observed in fruit peduncles. Our data from greenhouse-infected plants also indicated that 'Ca. Liberibacter asiaticus' was transmitted systemically from infection site to different parts of the plant. Understanding the distribution and movement of the HLB bacterium inside an individual citrus tree is critical for discerning its virulence mechanism and to develop management strategies for HLB.

  17. Comparison of competitive-nested PCR and real-time PCR in detecting BCR-ABL fusion transcripts in chronic myeloid leukemia patients.

    PubMed

    Guo, J Q; Lin, H; Kantarjian, H; Talpaz, M; Champlin, R; Andreeff, M; Glassman, A; Arlinghaus, R B

    2002-12-01

    Real-time RT-PCR has great advantages for estimating transcript levels in a variety of situations. These include relative rapid assay times (hours), reliability and ease of performing replicate analyses. In contrast, competitive PCR is a very labor-intensive procedure requiring a few days to generate useful data. We compared the same samples from CML patients by both methods. Importantly, we used the Bcr-Abl junction plasmid DNA, which is used as a competitor in the manual competitive PCR assay, to generate a standard curve for the real-time assay. This permitted reporting the real-time data as the number of BCR-ABL transcripts per microg of total RNA, which is the same format used for the competitive PCR assay. In this study, a total of 435 peripheral blood and marrow samples from 285 CML patients were analyzed by RT-PCR; these patients were undergoing therapy by STI-571, interferon, and bone marrow transplantation treatment. Most samples also had assay values for the Philadelphia chromosome (Ph), FISH and Western blotting for the Bcr-Abl oncoprotein. Our findings indicated that the real-time assay was less sensitive than the manual competitive RT-PCR assay (t = 5.118; P < 0.001). Of interest, the transcript levels in cell line mixtures with various ratios of K562/KG-1 (BCR-ABL positive/negative) cells were also significantly higher with the competitive RT-PCR assays than real-time RT-PCR, except for levels of BCR-ABL below 200 transcripts per microg of RNA. In both patient and cell line experiments, dividing the BCR-ABL transcripts by the total ABL transcripts virtually eliminated the difference between real-time BCR-ABL transcript values and quantitative competitive BCR-ABL transcript values, indicating that both BCR-ABL and ABL transcripts were underestimated by the real-time assay. In addition, the increased sensitivity of the nested, competitive RT-PCR was readily apparent in patients with minimal residual disease, which by the real-time were negative in the

  18. Development of a real-time PCR assay for the identification of Gyrodactylus parasites infecting salmonids in northern Europe.

    PubMed

    Collins, Catherine M; Kerr, Rose; McIntosh, Rebecca; Snow, Mike

    2010-06-11

    Gyrodactylus salaris is a monogenean freshwater parasite that causes high mortality in wild Atlantic salmon, and a number of countries employ monitoring programmes for its presence. A TaqMan-MGB (minor groove binding) probe real-time multiplex assay targeting the internal transcribed spacer ribosomal DNA (ITS rDNA) was developed to simultaneously identify G. salaris/G. thymalli and 2 other commonly occurring Gyrodactylus species infecting salmonids in northern Europe: G. derjavinoides and G. truttae. In addition, a Gyrodactylus genus-level assay was developed to assess parasite DNA quality. The species-specific real-time PCR method correctly identified target species from a wide geographical range and from a number of salmonid hosts. It did not amplify G. lucii or G. teuchis. These species were successfully amplified using the Gyrodactylus genus real-time assay. The species-specific real-time assay proved to be significantly faster than the currently employed molecular screening method of ITS rDNA PCR amplification followed by restriction fragment length polymorphism analyses (RFLP). However, as with ITS RFLP, the real-time method did not distinguish between G. salaris and the non-pathogenic G. thymalli, its principle advantage being a significant reduction in time to achieve an initial diagnostic screen before the employment of more in-depth analyses for those specimens giving a positive G. salaris/G. thymalli real-time result.

  19. Optimization of Quantitative Detection of Cytomegalovirus DNA in Plasma by Real-Time PCR

    PubMed Central

    Boeckh, Michael; Huang, MeeiLi; Ferrenberg, James; Stevens-Ayers, Terry; Stensland, Laurence; Garrett Nichols, W.; Corey, Lawrence

    2004-01-01

    Previous studies have shown that detection of cytomegalovirus (CMV) DNA in plasma is less sensitive than the antigenemia assay for CMV surveillance in blood. In 1,983 blood samples, plasma PCR assays with three different primer sets (UL125 alone, UL126 alone, and UL55/UL123-exon 4) were compared to the pp65 antigenemia assay and blood cultures. Plasma PCR detected CMV more frequently in blood specimens than either the antigenemia assay or cultures, but of the three PCR assays, the double-primer assay (UL55/UL123-exon 4) performed best with regard to sensitivity, specificity, and predictive values compared to antigenemia: 122 of 151 antigenemia-positive samples were detected (sensitivity, 80.1%), and there were 122 samples that were PCR positive-antigenemia negative (specificity, 93%). Samples with discrepant results had a low viral load (median, 0.5 cells per slide; 1,150 copies per ml) and were often obtained from patients receiving antiviral therapy. CMV could be detected by other methods in 15 of 29 antigenemia positive-PCR negative samples compared to 121 of 122 PCR positive-antigenemia negative samples (P < 0.001). On a per-subject basis, 21 of 25 patients (antigenemia positive-PCR negative) and all 57 (PCR positive-antigenemia negative) could be confirmed at different time points during follow-up. The higher sensitivity of the double-primer assay resulted in earlier detection compared to antigenemia in a time-to-event analysis of 42 CMV-seropositive stem cell transplant recipients, and two of three patients with CMV disease who were antigenemia negative were detected by plasma PCR prior to the onset of disease. Interassay variability was low, and the dynamic range was >5 log10. Automated DNA extraction resulted in high reproducibility, accurate CMV quantitation (R = 0.87, P < 0.001), improved sensitivity, and increased speed of sample processing. Thus, primer optimization and improved DNA extraction techniques resulted in a plasma-based PCR assay that is

  20. Comparison of a commercial real-time PCR assay, RealCycler® PJIR kit, progenie molecular, to an in-house real-time PCR assay for the diagnosis of Pneumocystis jirovecii infections.

    PubMed

    Guillaud-Saumur, Thibaud; Nevez, Gilles; Bazire, Amélie; Virmaux, Michèle; Papon, Nicolas; Le Gal, Solène

    2017-04-01

    We compared the RealCycler® PJIR kit (Progenie Molecular), available in Europe, to an in-house real-time PCR assay for the diagnosis of Pneumocystis jirovecii infections. Excellent agreement was found (concordance rate, 97.4%; Cohen's kappa, 0.918>0.8) showing that this commercial assay represents an alternative method for the diagnosis of P. jirovecii infections.

  1. SYBR green dye-based probe-free SNP genotyping: introduction of T-Plex real-time PCR assay.

    PubMed

    Baris, Ibrahim; Etlik, Ozdal; Koksal, Vedat; Ocak, Zeynep; Baris, Saniye Tugba

    2013-10-15

    Single-nucleotide polymorphism (SNP) genotyping is widely used in genetic association studies to characterize genetic factors underlying inherited traits. Despite many recent advances in high-throughput SNP genotyping, inexpensive and flexible methods with reasonable throughput levels are still needed. Real-time PCR methods for discovering and genotyping SNPs are becoming increasingly important in various fields of biology. In this study, we introduce a new, single-tube strategy that combines the tetra-primer ARMS PCR assay, SYBR Green I-based real-time PCR, and melting-point analysis with primer design strategies to detect the SNP of interest. This assay, T-Plex real-time PCR, is based on the T(m) discrimination of the amplified allele-specific amplicons in a single tube. The specificity, sensitivity, and robustness of the assay were evaluated for common mutations in the FV, PII, MTHFR, and FGFR3 genes. We believe that T-Plex real-time PCR would be a useful alternative for either individual genotyping requests or large epidemiological studies.

  2. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods

    NASA Astrophysics Data System (ADS)

    Rinsoz, Thomas; Duquenne, Philippe; Greff-Mirguet, Guylaine; Oppliger, Anne

    Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count non-culturable or non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescence microscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the "impaction on nutrient agar" method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria.

  3. A sensitive multiplex real-time PCR panel for rapid diagnosis of viruses associated with porcine respiratory and reproductive disorders.

    PubMed

    Wu, Haigang; Rao, Pinbin; Jiang, Yonghou; Opriessnig, Tanja; Yang, Zongqi

    2014-01-01

    The objective of this study was to develop a multiplex real-time PCR panel using TaqMan probes for the detection and differentiation of porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus North American type (PRRSV-NA), pseudorabies virus (PRV), classical swine fever virus (CSFV), porcine parvovirus type 1 (PPV1) and Japanese encephalitis virus (JEV). Specific primer and probe combinations for PCV2, PRRSV, PRV, CSFV, PPV1 and JEV were selected within the conserved region of each viral genome. The multiplex real-time PCR panel which was run in two separate tubes was capable of specific detection of the six selected pig viruses, without cross-reactions with other non-targeted pig viruses. The detection limit of the assays was 10 copies/μL for PCV2, PRV, CSFV and PRRSV and 100 copies/μL for PPV and JEV. The two-tube multiplex real-time PCR panel showed 99.2% concordance with conventional PCR assays on 118 field samples. Overall, the multiplex real-time PCR panel provides a fast, specific, and sensitive diagnostic tool for detection of multiple viral pathogens in pigs and will be useful not only for diagnostics, or ecological, epidemiological and pathogenesis studies, but also for investigating host/virus or virus/virus interactions, particularly during coinfections.

  4. Simultaneous detection of Cherry necrotic rusty mottle virus and Cherry green ring mottle virus using real-time PCR and high resolution melting analysis.

    PubMed

    Komorowska, Beata; Fiore, Nicola; Zamorano, Alan; Li, Ruhui

    2014-08-01

    In this study, the real-time PCR assays were combined with high resolution melting (HRM) analysis for the simultaneous detection of Cherry necrotic rusty mottle virus (CNRMV) and Cherry green ring mottle virus (CGRMV) infection in sweet cherry trees. Detection of CNRMV and CGRMV was performed in a real-time PCR using a primer set for both of them or duplex real-time PCR that included one specific primer set for each virus. These two strategies allowed us to confirmed virus infection in all tested samples. In 17 field samples the technique revealed samples positive for CNRMV or CGRMV as well as positive for both viruses. In addition, the HRM analysis made it possible to differentiate clearly between CNRMV and CGRMV. Sequence variations among CNRMV and CGRMV isolates observed from the HRM peaks were confirmed by sequencing. To test the capability to use this method in field, forty one sweet cherry samples were examined by HRM analysis. The HRM data showed that seven samples were positive for CNRMV and three were infected with CGRMV. The results presented in this study indicated that real-time PCR followed by HRM analysis provides sensitive, automated and rapid tool to detect and differentiate between CNRMV and CGRMV isolates.

  5. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs).

    PubMed

    Dörries, Hans-Henno; Remus, Ivonne; Grönewald, Astrid; Grönewald, Cordt; Berghof-Jäger, Kornelia

    2010-03-01

    The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.

  6. A novel real-time PCR assay for quantitative analysis of methylated alleles (QAMA): analysis of the retinoblastoma locus.

    PubMed

    Zeschnigk, Michael; Böhringer, Stefan; Price, Elizabeth Ann; Onadim, Zerrin; Masshöfer, Lars; Lohmann, Dietmar R

    2004-09-07

    Altered methylation patterns have been found to play a role in developmental disorders, cancer and aging. Increasingly, changes in DNA methylation are used as molecular markers of disease. Therefore, there is a need for reliable and easy to use techniques to detect and measure DNA methylation in research and routine diagnostics. We have established a novel quantitative analysis of methylated alleles (QAMA) which is essentially a major improvement over a previous method based on real-time PCR (MethyLight). This method is based on real-time PCR on bisulfite-treated DNA. A significant advantage over conventional MethyLight is gained by the use of TaqMan probes based on minor groove binder (MGB) technology. Their improved sequence specificity facilitates relative quantification of methylated and unmethylated alleles that are simultaneously amplified in single tube. This improvement allows precise measurement of the ratio of methylated versus unmethylated alleles and cuts down potential sources of inter-assay variation. Therefore, fewer control assays are required. We have used this novel technical approach to identify hypermethylation of the CpG island located in the promoter region of the retinoblastoma (RB1) gene and found that QAMA facilitates reliable and fast measurement of the relative quantity of methylated alleles and improves handling of diagnostic methylation analysis. Moreover, the simplified reaction setup and robustness inherent to the single tube assay facilitates high-throughput methylation analysis. Because the high sequence specificity inherent to the MGB technology is widely used to discriminate single nucleotide polymorphisms, QAMA potentially can be used to discriminate the methylation status of single CpG dinucleotides.

  7. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    PubMed

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species