Sample records for real-time scheduling algorithm

  1. VAXELN Experimentation: Programming a Real-Time Periodic Task Dispatcher Using VAXELN Ada 1.1

    DTIC Science & Technology

    1987-11-01

    synchronization to the SQM and VAXELN semaphores. Based on real-time scheduling theory, the optimal rate-monotonic scheduling algorithm [Lui 73...schedulability test based on the rate-monotonic algorithm , namely task-lumping [Sha 871, was necessary to cal- culate the theoretically expected schedulability...8217 Guide Digital Equipment Corporation, Maynard, MA, 1986. [Lui 73] Liu, C.L., Layland, J.W. Scheduling Algorithms for Multi-programming in a Hard-Real-Time

  2. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.

    PubMed

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-07-08

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  3. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors

    PubMed Central

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-01-01

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722

  4. A method of operation scheduling based on video transcoding for cluster equipment

    NASA Astrophysics Data System (ADS)

    Zhou, Haojie; Yan, Chun

    2018-04-01

    Because of the cluster technology in real-time video transcoding device, the application of facing the massive growth in the number of video assignments and resolution and bit rate of diversity, task scheduling algorithm, and analyze the current mainstream of cluster for real-time video transcoding equipment characteristics of the cluster, combination with the characteristics of the cluster equipment task delay scheduling algorithm is proposed. This algorithm enables the cluster to get better performance in the generation of the job queue and the lower part of the job queue when receiving the operation instruction. In the end, a small real-time video transcode cluster is constructed to analyze the calculation ability, running time, resource occupation and other aspects of various algorithms in operation scheduling. The experimental results show that compared with traditional clustering task scheduling algorithm, task delay scheduling algorithm has more flexible and efficient characteristics.

  5. Non preemptive soft real time scheduler: High deadline meeting rate on overload

    NASA Astrophysics Data System (ADS)

    Khalib, Zahereel Ishwar Abdul; Ahmad, R. Badlishah; El-Shaikh, Mohamed

    2015-05-01

    While preemptive scheduling has gain more attention among researchers, current work in non preemptive scheduling had shown promising result in soft real time jobs scheduling. In this paper we present a non preemptive scheduling algorithm meant for soft real time applications, which is capable of producing better performance during overload while maintaining excellent performance during normal load. The approach taken by this algorithm has shown more promising results compared to other algorithms including its immediate predecessor. We will present the analysis made prior to inception of the algorithm as well as simulation results comparing our algorithm named gutEDF with EDF and gEDF. We are convinced that grouping jobs utilizing pure dynamic parameters would produce better performance.

  6. Time-critical multirate scheduling using contemporary real-time operating system services

    NASA Technical Reports Server (NTRS)

    Eckhardt, D. E., Jr.

    1983-01-01

    Although real-time operating systems provide many of the task control services necessary to process time-critical applications (i.e., applications with fixed, invariant deadlines), it may still be necessary to provide a scheduling algorithm at a level above the operating system in order to coordinate a set of synchronized, time-critical tasks executing at different cyclic rates. The scheduling requirements for such applications and develops scheduling algorithms using services provided by contemporary real-time operating systems.

  7. A high performance load balance strategy for real-time multicore systems.

    PubMed

    Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing

    2014-01-01

    Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper.

  8. A High Performance Load Balance Strategy for Real-Time Multicore Systems

    PubMed Central

    Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing

    2014-01-01

    Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper. PMID:24955382

  9. Scheduling for energy and reliability management on multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Qi, Xuan

    Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.

  10. Scheduling Dependent Real-Time Activities

    DTIC Science & Technology

    1990-08-01

    dependency relationships in a way that is suitable for all real - time systems . This thesis provides an algorithm, called DASA, that is effective for...scheduling the class of real - time systems known as supervisory control systems. Simulation experiments that account for the time required to make scheduling

  11. Scheduling in Sensor Grid Middleware for Telemedicine Using ABC Algorithm

    PubMed Central

    Vigneswari, T.; Mohamed, M. A. Maluk

    2014-01-01

    Advances in microelectromechanical systems (MEMS) and nanotechnology have enabled design of low power wireless sensor nodes capable of sensing different vital signs in our body. These nodes can communicate with each other to aggregate data and transmit vital parameters to a base station (BS). The data collected in the base station can be used to monitor health in real time. The patient wearing sensors may be mobile leading to aggregation of data from different BS for processing. Processing real time data is compute-intensive and telemedicine facilities may not have appropriate hardware to process the real time data effectively. To overcome this, sensor grid has been proposed in literature wherein sensor data is integrated to the grid for processing. This work proposes a scheduling algorithm to efficiently process telemedicine data in the grid. The proposed algorithm uses the popular swarm intelligence algorithm for scheduling to overcome the NP complete problem of grid scheduling. Results compared with other heuristic scheduling algorithms show the effectiveness of the proposed algorithm. PMID:25548557

  12. Real-time scheduling using minimum search

    NASA Technical Reports Server (NTRS)

    Tadepalli, Prasad; Joshi, Varad

    1992-01-01

    In this paper we consider a simple model of real-time scheduling. We present a real-time scheduling system called RTS which is based on Korf's Minimin algorithm. Experimental results show that the schedule quality initially improves with the amount of look-ahead search and tapers off quickly. So it sppears that reasonably good schedules can be produced with a relatively shallow search.

  13. A distributed scheduling algorithm for heterogeneous real-time systems

    NASA Technical Reports Server (NTRS)

    Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi

    1991-01-01

    Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.

  14. A new task scheduling algorithm based on value and time for cloud platform

    NASA Astrophysics Data System (ADS)

    Kuang, Ling; Zhang, Lichen

    2017-08-01

    Tasks scheduling, a key part of increasing resource utilization and enhancing system performance, is a never outdated problem especially in cloud platforms. Based on the value density algorithm of the real-time task scheduling system and the character of the distributed system, the paper present a new task scheduling algorithm by further studying the cloud technology and the real-time system: Least Level Value Density First (LLVDF). The algorithm not only introduces some attributes of time and value for tasks, it also can describe weighting relationships between these properties mathematically. As this feature of the algorithm, it can gain some advantages to distinguish between different tasks more dynamically and more reasonably. When the scheme was used in the priority calculation of the dynamic task scheduling on cloud platform, relying on its advantage, it can schedule and distinguish tasks with large amounts and many kinds more efficiently. The paper designs some experiments, some distributed server simulation models based on M/M/C model of queuing theory and negative arrivals, to compare the algorithm against traditional algorithm to observe and show its characters and advantages.

  15. Static Schedulers for Embedded Real-Time Systems

    DTIC Science & Technology

    1989-12-01

    Because of the need for having efficient scheduling algorithms in large scale real time systems , software engineers put a lot of effort on developing...provide static schedulers for he Embedded Real Time Systems with single processor using Ada programming language. The independent nonpreemptable...support the Computer Aided Rapid Prototyping for Embedded Real Time Systems so that we determine whether the system, as designed, meets the required

  16. A Scheduling Algorithm for Replicated Real-Time Tasks

    NASA Technical Reports Server (NTRS)

    Yu, Albert C.; Lin, Kwei-Jay

    1991-01-01

    We present an algorithm for scheduling real-time periodic tasks on a multiprocessor system under fault-tolerant requirement. Our approach incorporates both the redundancy and masking technique and the imprecise computation model. Since the tasks in hard real-time systems have stringent timing constraints, the redundancy and masking technique are more appropriate than the rollback techniques which usually require extra time for error recovery. The imprecise computation model provides flexible functionality by trading off the quality of the result produced by a task with the amount of processing time required to produce it. It therefore permits the performance of a real-time system to degrade gracefully. We evaluate the algorithm by stochastic analysis and Monte Carlo simulations. The results show that the algorithm is resilient under hardware failures.

  17. Investigating the Effect of Voltage-Switching on Low-Energy Task Scheduling in Hard Real-Time Systems

    DTIC Science & Technology

    2005-01-01

    We investigate the effect of voltage-switching on task execution times and energy consumption for dual-speed hard real - time systems , and present a...scheduling algorithm and apply it to two real-life task sets. Our results show that energy can be conserved in embedded real - time systems using energy...aware task scheduling. We also show that switching times have a significant effect on the energy consumed in hard real - time systems .

  18. Dynamic I/O Power Management for Hard Real-Time Systems

    DTIC Science & Technology

    2005-01-01

    recently emerged as an attractive alternative to inflexible hardware solutions. DPM for hard real - time systems has received relatively little attention...In particular, energy-driven I/O device scheduling for real - time systems has not been considered before. We present the first online DPM algorithm...which we call Low Energy Device Scheduler (LEDES), for hard real - time systems . LEDES takes as inputs a predetermined task schedule and a device-usage

  19. The Traffic Management Advisor

    NASA Technical Reports Server (NTRS)

    Nedell, William; Erzberger, Heinz; Neuman, Frank

    1990-01-01

    The traffic management advisor (TMA) is comprised of algorithms, a graphical interface, and interactive tools for controlling the flow of air traffic into the terminal area. The primary algorithm incorporated in it is a real-time scheduler which generates efficient landing sequences and landing times for arrivals within about 200 n.m. from touchdown. A unique feature of the TMA is its graphical interface that allows the traffic manager to modify the computer-generated schedules for specific aircraft while allowing the automatic scheduler to continue generating schedules for all other aircraft. The graphical interface also provides convenient methods for monitoring the traffic flow and changing scheduling parameters during real-time operation.

  20. Electricity Usage Scheduling in Smart Building Environments Using Smart Devices

    PubMed Central

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%. PMID:24453860

  1. Electricity usage scheduling in smart building environments using smart devices.

    PubMed

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.

  2. Mixed Criticality Scheduling for Industrial Wireless Sensor Networks

    PubMed Central

    Jin, Xi; Xia, Changqing; Xu, Huiting; Wang, Jintao; Zeng, Peng

    2016-01-01

    Wireless sensor networks (WSNs) have been widely used in industrial systems. Their real-time performance and reliability are fundamental to industrial production. Many works have studied the two aspects, but only focus on single criticality WSNs. Mixed criticality requirements exist in many advanced applications in which different data flows have different levels of importance (or criticality). In this paper, first, we propose a scheduling algorithm, which guarantees the real-time performance and reliability requirements of data flows with different levels of criticality. The algorithm supports centralized optimization and adaptive adjustment. It is able to improve both the scheduling performance and flexibility. Then, we provide the schedulability test through rigorous theoretical analysis. We conduct extensive simulations, and the results demonstrate that the proposed scheduling algorithm and analysis significantly outperform existing ones. PMID:27589741

  3. Multiresource allocation and scheduling for periodic soft real-time applications

    NASA Astrophysics Data System (ADS)

    Gopalan, Kartik; Chiueh, Tzi-cker

    2001-12-01

    Real-time applications that utilize multiple system resources, such as CPU, disks, and network links, require coordinated scheduling of these resources in order to meet their end-to-end performance requirements. Most state-of-the-art operating systems support independent resource allocation and deadline-driven scheduling but lack coordination among multiple heterogeneous resources. This paper describes the design and implementation of an Integrated Real-time Resource Scheduler (IRS) that performs coordinated allocation and scheduling of multiple heterogeneous resources on the same machine for periodic soft real-time application. The principal feature of IRS is a heuristic multi-resource allocation algorithm that reserves multiple resources for real-time applications in a manner that can maximize the number of applications admitted into the system in the long run. At run-time, a global scheduler dispatches the tasks of the soft real-time application to individual resource schedulers according to the precedence constraints between tasks. The individual resource schedulers, which could be any deadline based schedulers, can make scheduling decisions locally and yet collectively satisfy a real-time application's performance requirements. The tightness of overall timing guarantees is ultimately determined by the properties of individual resource schedulers. However, IRS maximizes overall system resource utilization efficiency by coordinating deadline assignment across multiple tasks in a soft real-time application.

  4. Knowledge-Based Scheduling of Arrival Aircraft in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Krzeczowski, K. J.; Davis, T.; Erzberger, H.; Lev-Ram, Israel; Bergh, Christopher P.

    1995-01-01

    A knowledge based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real time simulation. The scheduling system automatically sequences, assigns landing times, and assign runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithm is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reductions, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithm is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper describes the scheduling algorithms, gives examples of their use, and presents data regarding their potential benefits to the air traffic system.

  5. Knowledge-based scheduling of arrival aircraft

    NASA Technical Reports Server (NTRS)

    Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.

    1995-01-01

    A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.

  6. Modeling heterogeneous processor scheduling for real time systems

    NASA Technical Reports Server (NTRS)

    Leathrum, J. F.; Mielke, R. R.; Stoughton, J. W.

    1994-01-01

    A new model is presented to describe dataflow algorithms implemented in a multiprocessing system. Called the resource/data flow graph (RDFG), the model explicitly represents cyclo-static processor schedules as circuits of processor arcs which reflect the order that processors execute graph nodes. The model also allows the guarantee of meeting hard real-time deadlines. When unfolded, the model identifies statically the processor schedule. The model therefore is useful for determining the throughput and latency of systems with heterogeneous processors. The applicability of the model is demonstrated using a space surveillance algorithm.

  7. An Optimal Scheduling Algorithm with a Competitive Factor for Real-Time Systems

    DTIC Science & Technology

    1991-07-29

    real - time systems in which the value of a task is proportional to its computation time. The system obtains the value of a given task if the task completes by its deadline. Otherwise, the system obtains no value for the task. When such a system is underloaded (i.e. there exists a schedule for which all tasks meet their deadlines), Dertouzos [6] showed that the earliest deadline first algorithm will achieve 100% of the possible value. We consider the case of a possibly overloaded system and present an algorithm which: 1. behaves like the earliest deadline first

  8. Designing a fuzzy scheduler for hard real-time systems

    NASA Technical Reports Server (NTRS)

    Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami

    1992-01-01

    In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.

  9. Charge scheduling of an energy storage system under time-of-use pricing and a demand charge.

    PubMed

    Yoon, Yourim; Kim, Yong-Hyuk

    2014-01-01

    A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power.

  10. Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge

    PubMed Central

    Yoon, Yourim

    2014-01-01

    A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power. PMID:25197720

  11. Development of a takeoff performance monitoring system. Ph.D. Thesis. Contractor Report, Jan. 1984 - Jun. 1985

    NASA Technical Reports Server (NTRS)

    Srivatsan, Raghavachari; Downing, David R.

    1987-01-01

    Discussed are the development and testing of a real-time takeoff performance monitoring algorithm. The algorithm is made up of two segments: a pretakeoff segment and a real-time segment. One-time imputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data for that takeoff. The real-time segment uses the scheduled performance data generated in the pretakeoff segment, runway length data, and measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. An important feature of this algorithm is the one-time estimation of the runway rolling friction coefficient. The algorithm was tested using a six-degree-of-freedom airplane model in a computer simulation. Results from a series of sensitivity analyses are also included.

  12. An Efficient Randomized Algorithm for Real-Time Process Scheduling in PicOS Operating System

    NASA Astrophysics Data System (ADS)

    Helmy*, Tarek; Fatai, Anifowose; Sallam, El-Sayed

    PicOS is an event-driven operating environment designed for use with embedded networked sensors. More specifically, it is designed to support the concurrency in intensive operations required by networked sensors with minimal hardware requirements. Existing process scheduling algorithms of PicOS; a commercial tiny, low-footprint, real-time operating system; have their associated drawbacks. An efficient, alternative algorithm, based on a randomized selection policy, has been proposed, demonstrated, confirmed for efficiency and fairness, on the average, and has been recommended for implementation in PicOS. Simulations were carried out and performance measures such as Average Waiting Time (AWT) and Average Turn-around Time (ATT) were used to assess the efficiency of the proposed randomized version over the existing ones. The results prove that Randomized algorithm is the best and most attractive for implementation in PicOS, since it is most fair and has the least AWT and ATT on average over the other non-preemptive scheduling algorithms implemented in this paper.

  13. PWFQ: a priority-based weighted fair queueing algorithm for the downstream transmission of EPON

    NASA Astrophysics Data System (ADS)

    Xu, Sunjuan; Ye, Jiajun; Zou, Junni

    2005-11-01

    In the downstream direction of EPON, all ethernet frames share one downlink channel from the OLT to destination ONUs. To guarantee differentiated services, a scheduling algorithm is needed to solve the link-sharing issue. In this paper, we first review the classical WFQ algorithm and point out the shortcomings existing in the fair queueing principle of WFQ algorithm for EPON. Then we propose a novel scheduling algorithm called Priority-based WFQ (PWFQ) algorithm which distributes bandwidth based on priority. PWFQ algorithm can guarantee the quality of real-time services whether under light load or under heavy load. Simulation results also show that PWFQ algorithm not only can improve delay performance of real-time services, but can also meet the worst-case delay bound requirements.

  14. A real-time architecture for time-aware agents.

    PubMed

    Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V

    2004-06-01

    This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.

  15. Design principles and algorithms for automated air traffic management

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    1995-01-01

    This paper presents design principles and algorithm for building a real time scheduler. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high altitude airspace far from the airport and low altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time.

  16. Dynamic vehicle routing with time windows in theory and practice.

    PubMed

    Yang, Zhiwei; van Osta, Jan-Paul; van Veen, Barry; van Krevelen, Rick; van Klaveren, Richard; Stam, Andries; Kok, Joost; Bäck, Thomas; Emmerich, Michael

    2017-01-01

    The vehicle routing problem is a classical combinatorial optimization problem. This work is about a variant of the vehicle routing problem with dynamically changing orders and time windows. In real-world applications often the demands change during operation time. New orders occur and others are canceled. In this case new schedules need to be generated on-the-fly. Online optimization algorithms for dynamical vehicle routing address this problem but so far they do not consider time windows. Moreover, to match the scenarios found in real-world problems adaptations of benchmarks are required. In this paper, a practical problem is modeled based on the procedure of daily routing of a delivery company. New orders by customers are introduced dynamically during the working day and need to be integrated into the schedule. A multiple ant colony algorithm combined with powerful local search procedures is proposed to solve the dynamic vehicle routing problem with time windows. The performance is tested on a new benchmark based on simulations of a working day. The problems are taken from Solomon's benchmarks but a certain percentage of the orders are only revealed to the algorithm during operation time. Different versions of the MACS algorithm are tested and a high performing variant is identified. Finally, the algorithm is tested in situ: In a field study, the algorithm schedules a fleet of cars for a surveillance company. We compare the performance of the algorithm to that of the procedure used by the company and we summarize insights gained from the implementation of the real-world study. The results show that the multiple ant colony algorithm can get a much better solution on the academic benchmark problem and also can be integrated in a real-world environment.

  17. An Optimal Static Scheduling Algorithm for Hard Real-Time Systems Specified in a Prototyping Language

    DTIC Science & Technology

    1989-12-01

    to construct because the mechanism is a dispatching procedure. Since all nonpreemptive schedules are contained in the set of all preemptive schedules...the optimal value of T’.. in the preemptive case is at least a lower bound on the optimal T., for the nonpreemptive schedules. This principle is the...adapt to changes in the enviro.nment. In hard real-time systems, tasks are also distinguished as preemptable and nonpreemptable . A task is preemptable

  18. Job-shop scheduling applied to computer vision

    NASA Astrophysics Data System (ADS)

    Sebastian y Zuniga, Jose M.; Torres-Medina, Fernando; Aracil, Rafael; Reinoso, Oscar; Jimenez, Luis M.; Garcia, David

    1997-09-01

    This paper presents a method for minimizing the total elapsed time spent by n tasks running on m differents processors working in parallel. The developed algorithm not only minimizes the total elapsed time but also reduces the idle time and waiting time of in-process tasks. This condition is very important in some applications of computer vision in which the time to finish the total process is particularly critical -- quality control in industrial inspection, real- time computer vision, guided robots. The scheduling algorithm is based on the use of two matrices, obtained from the precedence relationships between tasks, and the data obtained from the two matrices. The developed scheduling algorithm has been tested in one application of quality control using computer vision. The results obtained have been satisfactory in the application of different image processing algorithms.

  19. Rate Monotonic Analysis for Real-Time Systems

    DTIC Science & Technology

    1991-03-01

    The essential goal of the Rate Monotonic Analysis (RMA) for Real - Time Systems Project at the Software Engineering Institute is to catalyze...improvement in the practice of real time systems engineering, specifically by increasing the use of rate monotonic analysis and scheduling algorithms. In this

  20. Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: a case study

    NASA Astrophysics Data System (ADS)

    Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke

    2018-06-01

    In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.

  1. Exact and Heuristic Algorithms for Runway Scheduling

    NASA Technical Reports Server (NTRS)

    Malik, Waqar A.; Jung, Yoon C.

    2016-01-01

    This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.

  2. The LSST OCS scheduler design

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco; Schumacher, German

    2014-08-01

    The Large Synoptic Survey Telescope (LSST) is a complex system of systems with demanding performance and operational requirements. The nature of its scientific goals requires a special Observatory Control System (OCS) and particularly a very specialized automatic Scheduler. The OCS Scheduler is an autonomous software component that drives the survey, selecting the detailed sequence of visits in real time, taking into account multiple science programs, the current external and internal conditions, and the history of observations. We have developed a SysML model for the OCS Scheduler that fits coherently in the OCS and LSST integrated model. We have also developed a prototype of the Scheduler that implements the scheduling algorithms in the simulation environment provided by the Operations Simulator, where the environment and the observatory are modeled with real weather data and detailed kinematics parameters. This paper expands on the Scheduler architecture and the proposed algorithms to achieve the survey goals.

  3. Missed deadline notification in best-effort schedulers

    NASA Astrophysics Data System (ADS)

    Banachowski, Scott A.; Wu, Joel; Brandt, Scott A.

    2003-12-01

    It is common to run multimedia and other periodic, soft real-time applications on general-purpose computer systems. These systems use best-effort scheduling algorithms that cannot guarantee applications will receive responsive scheduling to meet deadline or timing requirements. We present a simple mechanism called Missed Deadline Notification (MDN) that allows applications to notify the system when they do not receive their desired level of responsiveness. Consisting of a single system call with no arguments, this simple interface allows the operating system to provide better support for soft real-time applications without any a priori information about their timing or resource needs. We implemented MDN in three different schedulers: Linux, BEST, and BeRate. We describe these implementations and their performance when running real-time applications and discuss policies to prevent applications from abusing MDN to gain extra resources.

  4. Uplink Packet-Data Scheduling in DS-CDMA Systems

    NASA Astrophysics Data System (ADS)

    Choi, Young Woo; Kim, Seong-Lyun

    In this letter, we consider the uplink packet scheduling for non-real-time data users in a DS-CDMA system. As an effort to jointly optimize throughput and fairness, we formulate a time-span minimization problem incorporating the time-multiplexing of different simultaneous transmission schemes. Based on simple rules, we propose efficient scheduling algorithms and compare them with the optimal solution obtained by linear programming.

  5. Applying MDA to SDR for Space to Model Real-time Issues

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2007-01-01

    NASA space communications systems have the challenge of designing SDRs with highly-constrained Size, Weight and Power (SWaP) resources. A study is being conducted to assess the effectiveness of applying the MDA Platform-Independent Model (PIM) and one or more Platform-Specific Models (PSM) specifically to address NASA space domain real-time issues. This paper will summarize our experiences with applying MDA to SDR for Space to model real-time issues. Real-time issues to be examined, measured, and analyzed are: meeting waveform timing requirements and efficiently applying Real-time Operating System (RTOS) scheduling algorithms, applying safety control measures, and SWaP verification. Real-time waveform algorithms benchmarked with the worst case environment conditions under the heaviest workload will drive the SDR for Space real-time PSM design.

  6. On program restructuring, scheduling, and communication for parallel processor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polychronopoulos, Constantine D.

    1986-08-01

    This dissertation discusses several software and hardware aspects of program execution on large-scale, high-performance parallel processor systems. The issues covered are program restructuring, partitioning, scheduling and interprocessor communication, synchronization, and hardware design issues of specialized units. All this work was performed focusing on a single goal: to maximize program speedup, or equivalently, to minimize parallel execution time. Parafrase, a Fortran restructuring compiler was used to transform programs in a parallel form and conduct experiments. Two new program restructuring techniques are presented, loop coalescing and subscript blocking. Compile-time and run-time scheduling schemes are covered extensively. Depending on the program construct, thesemore » algorithms generate optimal or near-optimal schedules. For the case of arbitrarily nested hybrid loops, two optimal scheduling algorithms for dynamic and static scheduling are presented. Simulation results are given for a new dynamic scheduling algorithm. The performance of this algorithm is compared to that of self-scheduling. Techniques for program partitioning and minimization of interprocessor communication for idealized program models and for real Fortran programs are also discussed. The close relationship between scheduling, interprocessor communication, and synchronization becomes apparent at several points in this work. Finally, the impact of various types of overhead on program speedup and experimental results are presented.« less

  7. An FMS Dynamic Production Scheduling Algorithm Considering Cutting Tool Failure and Cutting Tool Life

    NASA Astrophysics Data System (ADS)

    Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.

    2016-02-01

    This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.

  8. A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank

    2004-01-01

    The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.

  9. Smart sensing to drive real-time loads scheduling algorithm in a domotic architecture

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; Raimondo, Pierfrancesco; De Rango, Floriano; Vaccaro, Andrea

    2014-05-01

    Nowadays the focus on power consumption represent a very important factor regarding the reduction of power consumption with correlated costs and the environmental sustainability problems. Automatic control load based on power consumption and use cycle represents the optimal solution to costs restraint. The purpose of these systems is to modulate the power request of electricity avoiding an unorganized work of the loads, using intelligent techniques to manage them based on real time scheduling algorithms. The goal is to coordinate a set of electrical loads to optimize energy costs and consumptions based on the stipulated contract terms. The proposed algorithm use two new main notions: priority driven loads and smart scheduling loads. The priority driven loads can be turned off (stand by) according to a priority policy established by the user if the consumption exceed a defined threshold, on the contrary smart scheduling loads are scheduled in a particular way to don't stop their Life Cycle (LC) safeguarding the devices functions or allowing the user to freely use the devices without the risk of exceeding the power threshold. The algorithm, using these two kind of notions and taking into account user requirements, manages loads activation and deactivation allowing the completion their operation cycle without exceeding the consumption threshold in an off-peak time range according to the electricity fare. This kind of logic is inspired by industrial lean manufacturing which focus is to minimize any kind of power waste optimizing the available resources.

  10. Design and implementation of priority and time-window based traffic scheduling and routing-spectrum allocation mechanism in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Wang, Honghuan; Xing, Fangyuan; Yin, Hongxi; Zhao, Nan; Lian, Bizhan

    2016-02-01

    With the explosive growth of network services, the reasonable traffic scheduling and efficient configuration of network resources have an important significance to increase the efficiency of the network. In this paper, an adaptive traffic scheduling policy based on the priority and time window is proposed and the performance of this algorithm is evaluated in terms of scheduling ratio. The routing and spectrum allocation are achieved by using the Floyd shortest path algorithm and establishing a node spectrum resource allocation model based on greedy algorithm, which is proposed by us. The fairness index is introduced to improve the capability of spectrum configuration. The results show that the designed traffic scheduling strategy can be applied to networks with multicast and broadcast functionalities, and makes them get real-time and efficient response. The scheme of node spectrum configuration improves the frequency resource utilization and gives play to the efficiency of the network.

  11. Evaluations of Some Scheduling Algorithms for Hard Real-Time Systems

    DTIC Science & Technology

    1990-06-01

    construct because the mechanism is a dispatching procedure. Since all nonpreemptive schedules are contained in the set of all preemptive schedules, the...optimal value of Tmax in the preemptive case is at least a lower bound on the optimal Tmax for the nonpreemptive schedules. This principle is the basis...23 b. Nonpreemptable Version .............................................. 24 4. The Minimize Maximum Tardiness with Earliest Start

  12. A sustainable genetic algorithm for satellite resource allocation

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Campbell, M. L.; Krenz, W. C.

    1995-01-01

    A hybrid genetic algorithm is used to schedule tasks for 8 satellites, which can be modelled as a robot whose task is to retrieve objects from a two dimensional field. The objective is to find a schedule that maximizes the value of objects retrieved. Typical of the real-world tasks to which this corresponds is the scheduling of ground contacts for a communications satellite. An important feature of our application is that the amount of time available for running the scheduler is not necessarily known in advance. This requires that the scheduler produce reasonably good results after a short period but that it also continue to improve its results if allowed to run for a longer period. We satisfy this requirement by developing what we call a sustainable genetic algorithm.

  13. Wireless Sensor Network Metrics for Real-Time Systems

    DTIC Science & Technology

    2009-05-20

    to compute the probability of end-to-end packet delivery as a function of latency, the expected radio energy consumption on the nodes from relaying... schedules for WSNs. Particularly, we focus on the impact scheduling has on path diversity, using short repeating schedules and Greedy Maximal Matching...a greedy algorithm for constructing a mesh routing topology. Finally, we study the implications of using distributed scheduling schemes to generate

  14. An Improved Scheduling Algorithm for Data Transmission in Ultrasonic Phased Arrays with Multi-Group Ultrasonic Sensors

    PubMed Central

    Tang, Wenming; Liu, Guixiong; Li, Yuzhong; Tan, Daji

    2017-01-01

    High data transmission efficiency is a key requirement for an ultrasonic phased array with multi-group ultrasonic sensors. Here, a novel FIFOs scheduling algorithm was proposed and the data transmission efficiency with hardware technology was improved. This algorithm includes FIFOs as caches for the ultrasonic scanning data obtained from the sensors with the output data in a bandwidth-sharing way, on the basis of which an optimal length ratio of all the FIFOs is achieved, allowing the reading operations to be switched among all the FIFOs without time slot waiting. Therefore, this algorithm enhances the utilization ratio of the reading bandwidth resources so as to obtain higher efficiency than the traditional scheduling algorithms. The reliability and validity of the algorithm are substantiated after its implementation in the field programmable gate array (FPGA) technology, and the bandwidth utilization ratio and the real-time performance of the ultrasonic phased array are enhanced. PMID:29035345

  15. Measuring the effects of heterogeneity on distributed systems

    NASA Technical Reports Server (NTRS)

    El-Toweissy, Mohamed; Zeineldine, Osman; Mukkamala, Ravi

    1991-01-01

    Distributed computer systems in daily use are becoming more and more heterogeneous. Currently, much of the design and analysis studies of such systems assume homogeneity. This assumption of homogeneity has been mainly driven by the resulting simplicity in modeling and analysis. A simulation study is presented which investigated the effects of heterogeneity on scheduling algorithms for hard real time distributed systems. In contrast to previous results which indicate that random scheduling may be as good as a more complex scheduler, this algorithm is shown to be consistently better than a random scheduler. This conclusion is more prevalent at high workloads as well as at high levels of heterogeneity.

  16. Energy-Efficient Scheduling for Hybrid Tasks in Control Devices for the Internet of Things

    PubMed Central

    Gao, Zhigang; Wu, Yifan; Dai, Guojun; Xia, Haixia

    2012-01-01

    In control devices for the Internet of Things (IoT), energy is one of the critical restriction factors. Dynamic voltage scaling (DVS) has been proved to be an effective method for reducing the energy consumption of processors. This paper proposes an energy-efficient scheduling algorithm for IoT control devices with hard real-time control tasks (HRCTs) and soft real-time tasks (SRTs). The main contribution of this paper includes two parts. First, it builds the Hybrid tasks with multi-subtasks of different function Weight (HoW) task model for IoT control devices. HoW describes the structure of HRCTs and SRTs, and their properties, e.g., deadlines, execution time, preemption properties, and energy-saving goals, etc. Second, it presents the Hybrid Tasks' Dynamic Voltage Scaling (HTDVS) algorithm. HTDVS first sets the slowdown factors of subtasks while meeting the different real-time requirements of HRCTs and SRTs, and then dynamically reclaims, reserves, and reuses the slack time of the subtasks to meet their ideal energy-saving goals. Experimental results show HTDVS can reduce energy consumption about 10%–80% while meeting the real-time requirements of HRCTs, HRCTs help to reduce the deadline miss ratio (DMR) of systems, and HTDVS has comparable performance with the greedy algorithm and is more favorable to keep the subtasks' ideal speeds. PMID:23112659

  17. Range and mission scheduling automation using combined AI and operations research techniques

    NASA Technical Reports Server (NTRS)

    Arbabi, Mansur; Pfeifer, Michael

    1987-01-01

    Ground-based systems for Satellite Command, Control, and Communications (C3) operations require a method for planning, scheduling and assigning the range resources such as: antenna systems scattered around the world, communications systems, and personnel. The method must accommodate user priorities, last minute changes, maintenance requirements, and exceptions from nominal requirements. Described are computer programs which solve 24 hour scheduling problems, using heuristic algorithms and a real time interactive scheduling process.

  18. Design Principles and Algorithms for Air Traffic Arrival Scheduling

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Itoh, Eri

    2014-01-01

    This report presents design principles and algorithms for building a real-time scheduler of arrival aircraft based on a first-come-first-served (FCFS) scheduling protocol. The algorithms provide the conceptual and computational foundation for the Traffic Management Advisor (TMA) of the Center/terminal radar approach control facilities (TRACON) automation system, which comprises a set of decision support tools for managing arrival traffic at major airports in the United States. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high-altitude airspace far away from the airport and low-altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time. This report is a revision of an earlier paper first presented as part of an Advisory Group for Aerospace Research and Development (AGARD) lecture series in September 1995. The authors, during vigorous discussions over the details of this paper, felt it was important to the air-trafficmanagement (ATM) community to revise and extend the original 1995 paper, providing more detail and clarity and thereby allowing future researchers to understand this foundational work as the basis for the TMA's scheduling algorithms.

  19. System-level power optimization for real-time distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Luo, Jiong

    Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as well. Variable-frequency links have been designed by circuit designers for both parallel and serial links, which can adaptively regulate the supply voltage of transceivers to a desired link frequency, to exploit the variations in bandwidth requirement for power savings. We propose solutions for simultaneous dynamic voltage scaling of processors and links. The proposed solution considers real-time scheduling, flow control, and packet routing jointly. It can trade off the power consumption on processors and communication links via efficient slack allocation, and lead to more power savings than dynamic voltage scaling on processors alone. For battery-operated systems, the battery lifespan is an important concern. Due to the effects of discharge rate and battery recovery, the discharge pattern of batteries has an impact on the battery lifespan. Battery models indicate that even under the same average power consumption, reducing peak power current and variance in the power profile can increase the battery efficiency and thereby prolong battery lifetime. To take advantage of these effects, we propose battery-driven scheduling techniques for embedded applications, to reduce the peak power and the variance in the power profile of the overall system under real-time constraints. The proposed scheduling algorithms are also beneficial in addressing reliability and signal integrity concerns by effectively controlling peak power and variance of the power profile.

  20. Proposed algorithm to improve job shop production scheduling using ant colony optimization method

    NASA Astrophysics Data System (ADS)

    Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari

    2017-12-01

    This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.

  1. Redundant and fault-tolerant algorithms for real-time measurement and control systems for weapon equipment.

    PubMed

    Li, Dan; Hu, Xiaoguang

    2017-03-01

    Because of the high availability requirements from weapon equipment, an in-depth study has been conducted on the real-time fault-tolerance of the widely applied Compact PCI (CPCI) bus measurement and control system. A redundancy design method that uses heartbeat detection to connect the primary and alternate devices has been developed. To address the low successful execution rate and relatively large waste of time slices in the primary version of the task software, an improved algorithm for real-time fault-tolerant scheduling is proposed based on the Basic Checking available time Elimination idle time (BCE) algorithm, applying a single-neuron self-adaptive proportion sum differential (PSD) controller. The experimental validation results indicate that this system has excellent redundancy and fault-tolerance, and the newly developed method can effectively improve the system availability. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Solving Energy-Aware Real-Time Tasks Scheduling Problem with Shuffled Frog Leaping Algorithm on Heterogeneous Platforms

    PubMed Central

    Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M.K.

    2015-01-01

    Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution. PMID:26110406

  3. Cost-efficient scheduling of FAST observations

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Zhao, Laiping; Yu, Ce; Xiao, Jian; Sun, Jizhou; Zhu, Ming; Zhong, Yi

    2018-03-01

    A cost-efficient schedule for the Five-hundred-meter Aperture Spherical radio Telescope (FAST) requires to maximize the number of observable proposals and the overall scientific priority, and minimize the overall slew-cost generated by telescope shifting, while taking into account the constraints including the astronomical objects visibility, user-defined observable times, avoiding Radio Frequency Interference (RFI). In this contribution, first we solve the problem of maximizing the number of observable proposals and scientific priority by modeling it as a Minimum Cost Maximum Flow (MCMF) problem. The optimal schedule can be found by any MCMF solution algorithm. Then, for minimizing the slew-cost of the generated schedule, we devise a maximally-matchable edges detection-based method to reduce the problem size, and propose a backtracking algorithm to find the perfect matching with minimum slew-cost. Experiments on a real dataset from NASA/IPAC Extragalactic Database (NED) show that, the proposed scheduler can increase the usage of available times with high scientific priority and reduce the slew-cost significantly in a very short time.

  4. An Integrated Approach to Locality-Conscious Processor Allocation and Scheduling of Mixed-Parallel Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vydyanathan, Naga; Krishnamoorthy, Sriram; Sabin, Gerald M.

    2009-08-01

    Complex parallel applications can often be modeled as directed acyclic graphs of coarse-grained application-tasks with dependences. These applications exhibit both task- and data-parallelism, and combining these two (also called mixedparallelism), has been shown to be an effective model for their execution. In this paper, we present an algorithm to compute the appropriate mix of task- and data-parallelism required to minimize the parallel completion time (makespan) of these applications. In other words, our algorithm determines the set of tasks that should be run concurrently and the number of processors to be allocated to each task. The processor allocation and scheduling decisionsmore » are made in an integrated manner and are based on several factors such as the structure of the taskgraph, the runtime estimates and scalability characteristics of the tasks and the inter-task data communication volumes. A locality conscious scheduling strategy is used to improve inter-task data reuse. Evaluation through simulations and actual executions of task graphs derived from real applications as well as synthetic graphs shows that our algorithm consistently generates schedules with lower makespan as compared to CPR and CPA, two previously proposed scheduling algorithms. Our algorithm also produces schedules that have lower makespan than pure taskand data-parallel schedules. For task graphs with known optimal schedules or lower bounds on the makespan, our algorithm generates schedules that are closer to the optima than other scheduling approaches.« less

  5. A new scheduling algorithm for parallel sparse LU factorization with static pivoting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigori, Laura; Li, Xiaoye S.

    2002-08-20

    In this paper we present a static scheduling algorithm for parallel sparse LU factorization with static pivoting. The algorithm is divided into mapping and scheduling phases, using the symmetric pruned graphs of L' and U to represent dependencies. The scheduling algorithm is designed for driving the parallel execution of the factorization on a distributed-memory architecture. Experimental results and comparisons with SuperLU{_}DIST are reported after applying this algorithm on real world application matrices on an IBM SP RS/6000 distributed memory machine.

  6. Operator Objective Function Guidance for a Real-Time Unmanned Vehicle Scheduling Algorithm

    DTIC Science & Technology

    2012-12-01

    Consensus - Based Decentralized Auctions for Robust Task Allocation ,” IEEE Transactions on Robotics and Automation, Vol. 25, No. 4, No. 4, 2009, pp. 912...planning for the fleet. The decentralized task planner used in OPS-USERS is the consensus - based bundle algorithm (CBBA), a decentralized , polynomial...and surveillance (OPS-USERS), which leverages decentralized algorithms for vehicle routing and task allocation . This

  7. Applying dynamic priority scheduling scheme to static systems of pinwheel task model in power-aware scheduling.

    PubMed

    Seol, Ye-In; Kim, Young-Kuk

    2014-01-01

    Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10-80% over the existing algorithms.

  8. Applying Dynamic Priority Scheduling Scheme to Static Systems of Pinwheel Task Model in Power-Aware Scheduling

    PubMed Central

    2014-01-01

    Power-aware scheduling reduces CPU energy consumption in hard real-time systems through dynamic voltage scaling (DVS). In this paper, we deal with pinwheel task model which is known as static and predictable task model and could be applied to various embedded or ubiquitous systems. In pinwheel task model, each task's priority is static and its execution sequence could be predetermined. There have been many static approaches to power-aware scheduling in pinwheel task model. But, in this paper, we will show that the dynamic priority scheduling results in power-aware scheduling could be applied to pinwheel task model. This method is more effective than adopting the previous static priority scheduling methods in saving energy consumption and, for the system being still static, it is more tractable and applicable to small sized embedded or ubiquitous computing. Also, we introduce a novel power-aware scheduling algorithm which exploits all slacks under preemptive earliest-deadline first scheduling which is optimal in uniprocessor system. The dynamic priority method presented in this paper could be applied directly to static systems of pinwheel task model. The simulation results show that the proposed algorithm with the algorithmic complexity of O(n) reduces the energy consumption by 10–80% over the existing algorithms. PMID:25121126

  9. Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Fox, Mark; Tate, Austin; Zweben, Monte

    1992-01-01

    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques.

  10. Real-time adaptive aircraft scheduling

    NASA Technical Reports Server (NTRS)

    Kolitz, Stephan E.; Terrab, Mostafa

    1990-01-01

    One of the most important functions of any air traffic management system is the assignment of ground-holding times to flights, i.e., the determination of whether and by how much the take-off of a particular aircraft headed for a congested part of the air traffic control (ATC) system should be postponed in order to reduce the likelihood and extent of airborne delays. An analysis is presented for the fundamental case in which flights from many destinations must be scheduled for arrival at a single congested airport; the formulation is also useful in scheduling the landing of airborne flights within the extended terminal area. A set of approaches is described for addressing a deterministic and a probabilistic version of this problem. For the deterministic case, where airport capacities are known and fixed, several models were developed with associated low-order polynomial-time algorithms. For general delay cost functions, these algorithms find an optimal solution. Under a particular natural assumption regarding the delay cost function, an extremely fast (O(n ln n)) algorithm was developed. For the probabilistic case, using an estimated probability distribution of airport capacities, a model was developed with an associated low-order polynomial-time heuristic algorithm with useful properties.

  11. A Solution Method of Scheduling Problem with Worker Allocation by a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Osawa, Akira; Ida, Kenichi

    In a scheduling problem with worker allocation (SPWA) proposed by Iima et al, the worker's skill level to each machine is all the same. However, each worker has a different skill level for each machine in the real world. For that reason, we propose a new model of SPWA in which a worker has the different skill level to each machine. To solve the problem, we propose a new GA for SPWA consisting of the following new three procedures, shortening of idle time, modifying infeasible solution to feasible solution, and a new selection method for GA. The effectiveness of the proposed algorithm is clarified by numerical experiments using benchmark problems for job-shop scheduling.

  12. Dynamic Human-Computer Collaboration in Real-time Unmanned Vehicle Scheduling

    DTIC Science & Technology

    2010-06-01

    Rarely play games Play games once a month Weekly gamer A few times a week gamer Daily gamer Types of games played: 9. Rate...Algorithm, Alchemy , or Apostasy?," International Journal of Human-Computer Studies, vol. 52, pp. 203-216, 2000. [52] J.-M. Hoc, "From Human

  13. Anchorage Arrival Scheduling Under Off-Nominal Weather Conditions

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon; Chan, William N.; Mukherjee, Avijit

    2012-01-01

    Weather can cause flight diversions, passenger delays, additional fuel consumption and schedule disruptions at any high volume airport. The impacts are particularly acute at the Ted Stevens Anchorage International Airport in Anchorage, Alaska due to its importance as a major international portal. To minimize the impacts due to weather, a multi-stage scheduling process is employed that is iteratively executed, as updated aircraft demand and/or airport capacity data become available. The strategic scheduling algorithm assigns speed adjustments for flights that originate outside of Anchorage Center to achieve the proper demand and capacity balance. Similarly, an internal departure-scheduling algorithm assigns ground holds for pre-departure flights that originate from within Anchorage Center. Tactical flight controls in the form of airborne holding are employed to reactively account for system uncertainties. Real-world scenarios that were derived from the January 16, 2012 Anchorage visibility observations and the January 12, 2012 Anchorage arrival schedule were used to test the initial implementation of the scheduling algorithm in fast-time simulation experiments. Although over 90% of the flights in the scenarios arrived at Anchorage without requiring any delay, pre-departure scheduling was the dominant form of control for Anchorage arrivals. Additionally, tactical scheduling was used extensively in conjunction with the pre-departure scheduling to reactively compensate for uncertainties in the arrival demand. For long-haul flights, the strategic scheduling algorithm performed best when the scheduling horizon was greater than 1,000 nmi. With these long scheduling horizons, it was possible to absorb between ten and 12 minutes of delay through speed control alone. Unfortunately, the use of tactical scheduling, which resulted in airborne holding, was found to increase as the strategic scheduling horizon increased because of the additional uncertainty in the arrival times of the aircraft. Findings from these initial experiments indicate that it is possible to schedule arrivals into Anchorage with minimal delays under low-visibility conditions with less disruption to high-cost, international flights.

  14. Scheduling periodic jobs using imprecise results

    NASA Technical Reports Server (NTRS)

    Chung, Jen-Yao; Liu, Jane W. S.; Lin, Kwei-Jay

    1987-01-01

    One approach to avoid timing faults in hard, real-time systems is to make available intermediate, imprecise results produced by real-time processes. When a result of the desired quality cannot be produced in time, an imprecise result of acceptable quality produced before the deadline can be used. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. Since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result, the amount of processor time assigned to any task in a valid schedule can be less than the amount of time required to complete the task. A meaningful formulation of the scheduling problem must take into account the overall quality of the results. Depending on the different types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in results produced in different periods are not cumulative. A reasonable performance measure is the average error over all jobs. Three heuristic algorithms that lead to feasible schedules with small average errors are described. For type C jobs, the undesirable effects of errors produced in different periods are cumulative. Schedulability criteria of type C jobs are discussed.

  15. Sensibility study in a flexible job shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Curralo, Ana; Pereira, Ana I.; Barbosa, José; Leitão, Paulo

    2013-10-01

    This paper proposes the impact assessment of the jobs order in the optimal time of operations in a Flexible Job Shop Scheduling Problem. In this work a real assembly cell was studied: the AIP-PRIMECA cell at the Université de Valenciennes et du Hainaut-Cambrésis, in France, which is considered as a Flexible Job Shop problem. The problem consists in finding the machines operations schedule, taking into account the precedence constraints. The main objective is to minimize the batch makespan, i.e. the finish time of the last operation completed in the schedule. Shortly, the present study consists in evaluating if the jobs order affects the optimal time of the operations schedule. The genetic algorithm was used to solve the optimization problem. As a conclusion, it's assessed that the jobs order influence the optimal time.

  16. Hard real-time beam scheduler enables adaptive images in multi-probe systems

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2014-03-01

    Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.

  17. a Quadtree Organization Construction and Scheduling Method for Urban 3d Model Based on Weight

    NASA Astrophysics Data System (ADS)

    Yao, C.; Peng, G.; Song, Y.; Duan, M.

    2017-09-01

    The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.

  18. A comparison of multiprocessor scheduling methods for iterative data flow architectures

    NASA Technical Reports Server (NTRS)

    Storch, Matthew

    1993-01-01

    A comparative study is made between the Algorithm to Architecture Mapping Model (ATAMM) and three other related multiprocessing models from the published literature. The primary focus of all four models is the non-preemptive scheduling of large-grain iterative data flow graphs as required in real-time systems, control applications, signal processing, and pipelined computations. Important characteristics of the models such as injection control, dynamic assignment, multiple node instantiations, static optimum unfolding, range-chart guided scheduling, and mathematical optimization are identified. The models from the literature are compared with the ATAMM for performance, scheduling methods, memory requirements, and complexity of scheduling and design procedures.

  19. Efficient Computation of Separation-Compliant Speed Advisories for Air Traffic Arriving in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2012-01-01

    A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.

  20. Parallel processing of real-time dynamic systems simulation on OSCAR (Optimally SCheduled Advanced multiprocessoR)

    NASA Technical Reports Server (NTRS)

    Kasahara, Hironori; Honda, Hiroki; Narita, Seinosuke

    1989-01-01

    Parallel processing of real-time dynamic systems simulation on a multiprocessor system named OSCAR is presented. In the simulation of dynamic systems, generally, the same calculation are repeated every time step. However, we cannot apply to Do-all or the Do-across techniques for parallel processing of the simulation since there exist data dependencies from the end of an iteration to the beginning of the next iteration and furthermore data-input and data-output are required every sampling time period. Therefore, parallelism inside the calculation required for a single time step, or a large basic block which consists of arithmetic assignment statements, must be used. In the proposed method, near fine grain tasks, each of which consists of one or more floating point operations, are generated to extract the parallelism from the calculation and assigned to processors by using optimal static scheduling at compile time in order to reduce large run time overhead caused by the use of near fine grain tasks. The practicality of the scheme is demonstrated on OSCAR (Optimally SCheduled Advanced multiprocessoR) which has been developed to extract advantageous features of static scheduling algorithms to the maximum extent.

  1. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  2. Some Results of Weak Anticipative Concept Applied in Simulation Based Decision Support in Enterprise

    NASA Astrophysics Data System (ADS)

    Kljajić, Miroljub; Kofjač, Davorin; Kljajić Borštnar, Mirjana; Škraba, Andrej

    2010-11-01

    The simulation models are used as for decision support and learning in enterprises and in schools. Tree cases of successful applications demonstrate usefulness of weak anticipative information. Job shop scheduling production with makespan criterion presents a real case customized flexible furniture production optimization. The genetic algorithm for job shop scheduling optimization is presented. Simulation based inventory control for products with stochastic lead time and demand describes inventory optimization for products with stochastic lead time and demand. Dynamic programming and fuzzy control algorithms reduce the total cost without producing stock-outs in most cases. Values of decision making information based on simulation were discussed too. All two cases will be discussed from optimization, modeling and learning point of view.

  3. Enhanced round robin CPU scheduling with burst time based time quantum

    NASA Astrophysics Data System (ADS)

    Indusree, J. R.; Prabadevi, B.

    2017-11-01

    Process scheduling is a very important functionality of Operating system. The main-known process-scheduling algorithms are First Come First Serve (FCFS) algorithm, Round Robin (RR) algorithm, Priority scheduling algorithm and Shortest Job First (SJF) algorithm. Compared to its peers, Round Robin (RR) algorithm has the advantage that it gives fair share of CPU to the processes which are already in the ready-queue. The effectiveness of the RR algorithm greatly depends on chosen time quantum value. Through this research paper, we are proposing an enhanced algorithm called Enhanced Round Robin with Burst-time based Time Quantum (ERRBTQ) process scheduling algorithm which calculates time quantum as per the burst-time of processes already in ready queue. The experimental results and analysis of ERRBTQ algorithm clearly indicates the improved performance when compared with conventional RR and its variants.

  4. A generalized network flow model for the multi-mode resource-constrained project scheduling problem with discounted cash flows

    NASA Astrophysics Data System (ADS)

    Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan

    2015-02-01

    An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.

  5. Performance analysis of a large-grain dataflow scheduling paradigm

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Wills, Robert W.

    1993-01-01

    A paradigm for scheduling computations on a network of multiprocessors using large-grain data flow scheduling at run time is described and analyzed. The computations to be scheduled must follow a static flow graph, while the schedule itself will be dynamic (i.e., determined at run time). Many applications characterized by static flow exist, and they include real-time control and digital signal processing. With the advent of computer-aided software engineering (CASE) tools for capturing software designs in dataflow-like structures, macro-dataflow scheduling becomes increasingly attractive, if not necessary. For parallel implementations, using the macro-dataflow method allows the scheduling to be insulated from the application designer and enables the maximum utilization of available resources. Further, by allowing multitasking, processor utilizations can approach 100 percent while they maintain maximum speedup. Extensive simulation studies are performed on 4-, 8-, and 16-processor architectures that reflect the effects of communication delays, scheduling delays, algorithm class, and multitasking on performance and speedup gains.

  6. A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints.

    PubMed

    Xiang, Wei; Yin, Jiao; Lim, Gino

    2015-02-01

    Operating room (OR) surgery scheduling determines the individual surgery's operation start time and assigns the required resources to each surgery over a schedule period, considering several constraints related to a complete surgery flow and the multiple resources involved. This task plays a decisive role in providing timely treatments for the patients while balancing hospital resource utilization. The originality of the present study is to integrate the surgery scheduling problem with real-life nurse roster constraints such as their role, specialty, qualification and availability. This article proposes a mathematical model and an ant colony optimization (ACO) approach to efficiently solve such surgery scheduling problems. A modified ACO algorithm with a two-level ant graph model is developed to solve such combinatorial optimization problems because of its computational complexity. The outer ant graph represents surgeries, while the inner graph is a dynamic resource graph. Three types of pheromones, i.e. sequence-related, surgery-related, and resource-related pheromone, fitting for a two-level model are defined. The iteration-best and feasible update strategy and local pheromone update rules are adopted to emphasize the information related to the good solution in makespan, and the balanced utilization of resources as well. The performance of the proposed ACO algorithm is then evaluated using the test cases from (1) the published literature data with complete nurse roster constraints, and 2) the real data collected from a hospital in China. The scheduling results using the proposed ACO approach are compared with the test case from both the literature and the real life hospital scheduling. Comparison results with the literature shows that the proposed ACO approach has (1) an 1.5-h reduction in end time; (2) a reduction in variation of resources' working time, i.e. 25% for ORs, 50% for nurses in shift 1 and 86% for nurses in shift 2; (3) an 0.25h reduction in individual maximum overtime (OT); and (4) an 42% reduction in the total OT of nurses. Comparison results with the real 10-workday hospital scheduling further show the advantage of the ACO in several measurements. Instead of assigning all surgeries by a surgeon to only one OR and the same nurses by traditional manual approach in hospital, ACO realizes a more balanced surgery arrangement by assigning the surgeries to different ORs and nurses. It eventually leads to shortening the end time within the confidential interval of [7.4%, 24.6%] with 95% confidence level. The ACO approach proposed in this paper efficiently solves the surgery scheduling problem with daily nurse roster while providing a shortened end time and relatively balanced resource allocations. It also supports the advantage of integrating the surgery scheduling with the nurse scheduling and the efficiency of systematic optimization considering a complete three-stage surgery flow and resources involved. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. TES Instrument Decommissioning

    Atmospheric Science Data Center

    2018-03-20

    TES Instrument Decommissioning Tuesday, March 20, 2018 ... PST during a scheduled real time satellite contact the TES IOT along with the Aura FOT commanded the TES instrument to its ... generated from an algorithm update to the base Ground Data System software and will be made available to the scientific community in the ...

  8. More reliable protein NMR peak assignment via improved 2-interval scheduling.

    PubMed

    Chen, Zhi-Zhong; Lin, Guohui; Rizzi, Romeo; Wen, Jianjun; Xu, Dong; Xu, Ying; Jiang, Tao

    2005-03-01

    Protein NMR peak assignment refers to the process of assigning a group of "spin systems" obtained experimentally to a protein sequence of amino acids. The automation of this process is still an unsolved and challenging problem in NMR protein structure determination. Recently, protein NMR peak assignment has been formulated as an interval scheduling problem (ISP), where a protein sequence P of amino acids is viewed as a discrete time interval I (the amino acids on P one-to-one correspond to the time units of I), each subset S of spin systems that are known to originate from consecutive amino acids from P is viewed as a "job" j(s), the preference of assigning S to a subsequence P of consecutive amino acids on P is viewed as the profit of executing job j(s) in the subinterval of I corresponding to P, and the goal is to maximize the total profit of executing the jobs (on a single machine) during I. The interval scheduling problem is max SNP-hard in general; but in the real practice of protein NMR peak assignment, each job j(s) usually requires at most 10 consecutive time units, and typically the jobs that require one or two consecutive time units are the most difficult to assign/schedule. In order to solve these most difficult assignments, we present an efficient 13/7-approximation algorithm for the special case of the interval scheduling problem where each job takes one or two consecutive time units. Combining this algorithm with a greedy filtering strategy for handling long jobs (i.e., jobs that need more than two consecutive time units), we obtain a new efficient heuristic for protein NMR peak assignment. Our experimental study shows that the new heuristic produces the best peak assignment in most of the cases, compared with the NMR peak assignment algorithms in the recent literature. The above algorithm is also the first approximation algorithm for a nontrivial case of the well-known interval scheduling problem that breaks the ratio 2 barrier.

  9. Multi-trip vehicle routing and scheduling problem with time window in real life

    NASA Astrophysics Data System (ADS)

    Sze, San-Nah; Chiew, Kang-Leng; Sze, Jeeu-Fong

    2012-09-01

    This paper studies a manpower scheduling problem with multiple maintenance operations and vehicle routing considerations. Service teams located at a common service centre are required to travel to different customer sites. All customers must be served within given time window, which are known in advance. The scheduling process must take into consideration complex constraints such as a meal break during the team's shift, multiple travelling trips, synchronisation of service teams and working shifts. The main objective of this study is to develop a heuristic that can generate high quality solution in short time for large problem instances. A Two-stage Scheduling Heuristic is developed for different variants of the problem. Empirical results show that the proposed solution performs effectively and efficiently. In addition, our proposed approximation algorithm is very flexible and can be easily adapted to different scheduling environments and operational requirements.

  10. An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT

    PubMed Central

    Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan

    2016-01-01

    In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process. PMID:27827909

  11. An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT.

    PubMed

    Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan

    2016-11-04

    In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process.

  12. An Elegant Sufficiency: Load-Aware Differentiated Scheduling of Data Transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kettimuthu, Rajkumar; Vardoyan, Gayane; Agrawal, Gagan

    2015-11-15

    We investigate the file transfer scheduling problem, where transfers among different endpoints must be scheduled to maximize pertinent metrics. We propose two new algorithms that exploit the fact that the aggregate bandwidth obtained over a network or at a storage system tends to increase with the number of concurrent transfers—but only up to a certain limit. The first algorithm, SEAL, uses runtime information and data-driven models to approximate system load and adapt transfer schedules and concurrency so as to maximize performance while avoiding saturation. We implement this algorithm using GridFTP as the transfer protocol and evaluate it using real transfermore » logs in a production WAN environment. Results show that SEAL can improve average slowdowns and turnaround times by up to 25% and worst-case slowdown and turnaround times by up to 50%, compared with the best-performing baseline scheme. Our second algorithm, STEAL, further leverages user-supplied categorization of transfers as either “interactive” (requiring immediate processing) or “batch” (less time-critical). Results show that STEAL reduces the average slowdown of interactive transfers by 63% compared to the best-performing baseline and by 21% compared to SEAL. For batch transfers, compared to the best-performing baseline, STEAL improves by 18% the utilization of the bandwidth unused by interactive transfers. By elegantly ensuring a sufficient, but not excessive, allocation of concurrency to the right transfers, we significantly improve overall performance despite constraints.« less

  13. Real-Time Charging Strategies for an Electric Vehicle Aggregator to Provide Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, George; Negrete-Pincetic, Matias; Olivares, Daniel E.

    Real-time charging strategies, in the context of vehicle to grid (V2G) technology, are needed to enable the use of electric vehicle (EV) fleets batteries to provide ancillary services (AS). Here, we develop tools to manage charging and discharging in a fleet to track an Automatic Generation Control (AGC) signal when aggregated. We also propose a real-time controller that considers bidirectional charging efficiency and extend it to study the effect of looking ahead when implementing Model Predictive Control (MPC). Simulations show that the controller improves tracking error as compared with benchmark scheduling algorithms, as well as regulation capacity and battery cycling.

  14. Real-Time Charging Strategies for an Electric Vehicle Aggregator to Provide Ancillary Services

    DOE PAGES

    Wenzel, George; Negrete-Pincetic, Matias; Olivares, Daniel E.; ...

    2017-03-13

    Real-time charging strategies, in the context of vehicle to grid (V2G) technology, are needed to enable the use of electric vehicle (EV) fleets batteries to provide ancillary services (AS). Here, we develop tools to manage charging and discharging in a fleet to track an Automatic Generation Control (AGC) signal when aggregated. We also propose a real-time controller that considers bidirectional charging efficiency and extend it to study the effect of looking ahead when implementing Model Predictive Control (MPC). Simulations show that the controller improves tracking error as compared with benchmark scheduling algorithms, as well as regulation capacity and battery cycling.

  15. Real-time distributed scheduling algorithm for supporting QoS over WDM networks

    NASA Astrophysics Data System (ADS)

    Kam, Anthony C.; Siu, Kai-Yeung

    1998-10-01

    Most existing or proposed WDM networks employ circuit switching, typically with one session having exclusive use of one entire wavelength. Consequently they are not suitable for data applications involving bursty traffic patterns. The MIT AON Consortium has developed an all-optical LAN/MAN testbed which provides time-slotted WDM service and employs fast-tunable transceivers in each optical terminal. In this paper, we explore extensions of this service to achieve fine-grained statistical multiplexing with different virtual circuits time-sharing the wavelengths in a fair manner. In particular, we develop a real-time distributed protocol for best-effort traffic over this time-slotted WDM service with near-optical fairness and throughput characteristics. As an additional design feature, our protocol supports the allocation of guaranteed bandwidths to selected connections. This feature acts as a first step towards supporting integrated services and quality-of-service guarantees over WDM networks. To achieve high throughput, our approach is based on scheduling transmissions, as opposed to collision- based schemes. Our distributed protocol involves one MAN scheduler and several LAN schedulers (one per LAN) in a master-slave arrangement. Because of propagation delays and limits on control channel capacities, all schedulers are designed to work with partial, delayed traffic information. Our distributed protocol is of the `greedy' type to ensure fast execution in real-time in response to dynamic traffic changes. It employs a hybrid form of rate and credit control for resource allocation. We have performed extensive simulations, which show that our protocol allocates resources (transmitters, receivers, wavelengths) fairly with high throughput, and supports bandwidth guarantees.

  16. Multi-time scale energy management of wind farms based on comprehensive evaluation technology

    NASA Astrophysics Data System (ADS)

    Xu, Y. P.; Huang, Y. H.; Liu, Z. J.; Wang, Y. F.; Li, Z. Y.; Guo, L.

    2017-11-01

    A novel energy management of wind farms is proposed in this paper. Firstly, a novel comprehensive evaluation system is proposed to quantify economic properties of each wind farm to make the energy management more economical and reasonable. Then, a combination of multi time-scale schedule method is proposed to develop a novel energy management. The day-ahead schedule optimizes unit commitment of thermal power generators. The intraday schedule is established to optimize power generation plan for all thermal power generating units, hydroelectric generating sets and wind power plants. At last, the power generation plan can be timely revised in the process of on-line schedule. The paper concludes with simulations conducted on a real provincial integrated energy system in northeast China. Simulation results have validated the proposed model and corresponding solving algorithms.

  17. Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong

    2016-01-01

    Accurate taxi time prediction is required for enabling efficient runway scheduling that can increase runway throughput and reduce taxi times and fuel consumptions on the airport surface. Currently NASA and American Airlines are jointly developing a decision-support tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp controllers to make gate pushback decisions and improve the overall efficiency of airport surface traffic. In this presentation, we propose to use Linear Optimized Sequencing (LINOS), a discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the runway scheduler in real-time airport operations. To assess its prediction accuracy, we also introduce a data-driven analytical method using machine learning techniques. These two taxi time prediction methods are evaluated with actual taxi time data obtained from the SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport (CLT) using various performance measurement metrics. Based on the taxi time prediction results, we also discuss how the prediction accuracy can be affected by the operational complexity at this airport and how we can improve the fast time simulation model before implementing it with an airport scheduling algorithm in a real-time environment.

  18. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  19. Function Allocation in a Robust Distributed Real-Time Environment

    DTIC Science & Technology

    1991-12-01

    fundamental characteristic of a distributed system is its ability to map individual logical functions of an application program onto many physical nodes... how much of a node’s processor time is scheduled for function processing. IMC is the function- to -function communication required to facilitate...indicator of how much excess processor time a node has. The reconfiguration algorithms use these variables to determine the most appropriate node(s) to

  20. Dynamic Voltage-Frequency and Workload Joint Scaling Power Management for Energy Harvesting Multi-Core WSN Node SoC

    PubMed Central

    Li, Xiangyu; Xie, Nijie; Tian, Xinyue

    2017-01-01

    This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget. PMID:28208730

  1. Dynamic Voltage-Frequency and Workload Joint Scaling Power Management for Energy Harvesting Multi-Core WSN Node SoC.

    PubMed

    Li, Xiangyu; Xie, Nijie; Tian, Xinyue

    2017-02-08

    This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget.

  2. Logic Model Checking of Time-Periodic Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Florian, Mihai; Gamble, Ed; Holzmann, Gerard

    2012-01-01

    In this paper we report on the work we performed to extend the logic model checker SPIN with built-in support for the verification of periodic, real-time embedded software systems, as commonly used in aircraft, automobiles, and spacecraft. We first extended the SPIN verification algorithms to model priority based scheduling policies. Next, we added a library to support the modeling of periodic tasks. This library was used in a recent application of the SPIN model checker to verify the engine control software of an automobile, to study the feasibility of software triggers for unintended acceleration events.

  3. Advanced order management in ERM systems: the tic-tac-toe algorithm

    NASA Astrophysics Data System (ADS)

    Badell, Mariana; Fernandez, Elena; Puigjaner, Luis

    2000-10-01

    The concept behind improved enterprise resource planning systems (ERP) systems is the overall integration of the whole enterprise functionality into the management systems through financial links. Converting current software into real management decision tools requires crucial changes in the current approach to ERP systems. This evolution must be able to incorporate the technological achievements both properly and in time. The exploitation phase of plants needs an open web-based environment for collaborative business-engineering with on-line schedulers. Today's short lifecycles of products and processes require sharp and finely tuned management actions that must be guided by scheduling tools. Additionally, such actions must be able to keep track of money movements related to supply chain events. Thus, the necessary outputs require financial-production integration at the scheduling level as proposed in the new approach of enterprise management systems (ERM). Within this framework, the economical analysis of the due date policy and its optimization become essential to manage dynamically realistic and optimal delivery dates with price-time trade-off during the marketing activities. In this work we propose a scheduling tool with web-based interface conducted by autonomous agents when precise economic information relative to plant and business actions and their effects are provided. It aims to attain a better arrangement of the marketing and production events in order to face the bid/bargain process during e-commerce. Additionally, management systems require real time execution and an efficient transaction-oriented approach capable to dynamically adopt realistic and optimal actions to support marketing management. To this end the TicTacToe algorithm provides sequence optimization with acceptable tolerances in realistic time.

  4. A Solution Method of Job-shop Scheduling Problems by the Idle Time Shortening Type Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Ida, Kenichi; Osawa, Akira

    In this paper, we propose a new idle time shortening method for Job-shop scheduling problems (JSPs). We insert its method into a genetic algorithm (GA). The purpose of JSP is to find a schedule with the minimum makespan. We suppose that it is effective to reduce idle time of a machine in order to improve the makespan. The left shift is a famous algorithm in existing algorithms for shortening idle time. The left shift can not arrange the work to idle time. For that reason, some idle times are not shortened by the left shift. We propose two kinds of algorithms which shorten such idle time. Next, we combine these algorithms and the reversal of a schedule. We apply GA with its algorithm to benchmark problems and we show its effectiveness.

  5. A statistical-based scheduling algorithm in automated data path synthesis

    NASA Technical Reports Server (NTRS)

    Jeon, Byung Wook; Lursinsap, Chidchanok

    1992-01-01

    In this paper, we propose a new heuristic scheduling algorithm based on the statistical analysis of the cumulative frequency distribution of operations among control steps. It has a tendency of escaping from local minima and therefore reaching a globally optimal solution. The presented algorithm considers the real world constraints such as chained operations, multicycle operations, and pipelined data paths. The result of the experiment shows that it gives optimal solutions, even though it is greedy in nature.

  6. Real-time subway information for improving transit ridership.

    DOT National Transportation Integrated Search

    2016-08-01

    In recent years, the standardization of transit schedule information has yielded a dramatic increase in the accessibility of computerized transit schedules and given rise to real-time service schedules. Two such real-time service schedules are the Ge...

  7. Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver's drowsiness detection and warning.

    PubMed

    Lin, Chin-Teng; Chen, Yu-Chieh; Huang, Teng-Yi; Chiu, Tien-Ting; Ko, Li-Wei; Liang, Sheng-Fu; Hsieh, Hung-Yi; Hsu, Shang-Hwa; Duann, Jeng-Ren

    2008-05-01

    Biomedical signal monitoring systems have been rapidly advanced with electronic and information technologies in recent years. However, most of the existing physiological signal monitoring systems can only record the signals without the capability of automatic analysis. In this paper, we proposed a novel brain-computer interface (BCI) system that can acquire and analyze electroencephalogram (EEG) signals in real-time to monitor human physiological as well as cognitive states, and, in turn, provide warning signals to the users when needed. The BCI system consists of a four-channel biosignal acquisition/amplification module, a wireless transmission module, a dual-core signal processing unit, and a host system for display and storage. The embedded dual-core processing system with multitask scheduling capability was proposed to acquire and process the input EEG signals in real time. In addition, the wireless transmission module, which eliminates the inconvenience of wiring, can be switched between radio frequency (RF) and Bluetooth according to the transmission distance. Finally, the real-time EEG-based drowsiness monitoring and warning algorithms were implemented and integrated into the system to close the loop of the BCI system. The practical online testing demonstrates the feasibility of using the proposed system with the ability of real-time processing, automatic analysis, and online warning feedback in real-world operation and living environments.

  8. ATAMM enhancement and multiprocessing performance evaluation

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.

    1994-01-01

    The algorithm to architecture mapping model (ATAAM) is a Petri net based model which provides a strategy for periodic execution of a class of real-time algorithms on multicomputer dataflow architecture. The execution of large-grained, decision-free algorithms on homogeneous processing elements is studied. The ATAAM provides an analytical basis for calculating performance bounds on throughput characteristics. Extension of the ATAMM as a strategy for cyclo-static scheduling provides for a truly distributed ATAMM multicomputer operating system. An ATAAM testbed consisting of a centralized graph manager and three processors is described using embedded firmware on 68HC11 microcontrollers.

  9. A novel minimum cost maximum power algorithm for future smart home energy management.

    PubMed

    Singaravelan, A; Kowsalya, M

    2017-11-01

    With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  10. A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times

    NASA Astrophysics Data System (ADS)

    Li, Xin; Fung, Richard Y. K.

    2018-02-01

    This article presents a dynamic algorithm for job scheduling in two-cluster tools producing multi-type wafers with flexible processing times. Flexible processing times mean that the actual times for processing wafers should be within given time intervals. The objective of the work is to minimize the completion time of the newly inserted wafer. To deal with this issue, a two-cluster tool is decomposed into three reduced single-cluster tools (RCTs) in a series based on a decomposition approach proposed in this article. For each single-cluster tool, a dynamic scheduling algorithm based on temporal constraints is developed to schedule the newly inserted wafer. Three experiments have been carried out to test the dynamic scheduling algorithm proposed, comparing with the results the 'earliest starting time' heuristic (EST) adopted in previous literature. The results show that the dynamic algorithm proposed in this article is effective and practical.

  11. Evaluation of Recoverable-Robust Timetables on Tree Networks

    NASA Astrophysics Data System (ADS)

    D'Angelo, Gianlorenzo; di Stefano, Gabriele; Navarra, Alfredo

    In the context of scheduling and timetabling, we study a challenging combinatorial problem which is interesting from both a practical and a theoretical point of view. The motivation behind it is to cope with scheduled activities which might be subject to unavoidable disturbances, such as delays, occurring during the operational phase. The idea is to preventively plan some extra time for the scheduled activities in order to be "prepared" if a delay occurs, and to absorb it without the necessity of re-scheduling the activities from scratch. This realizes the concept of designing so called robust timetables. During the planning phase, one has to consider recovery features that might be applied at runtime if delays occur. Such recovery capabilities are given as input along with the possible delays that must be considered. The objective is the minimization of the overall needed time. The quality of a robust timetable is measured by the price of robustness, i.e. the ratio between the cost of the robust timetable and that of a non-robust optimal timetable. The considered problem is known to be NP-hard. We propose a pseudo-polynomial time algorithm and apply it on random networks and real case scenarios provided by Italian railways. We evaluate the effect of robustness on the scheduling of the activities and provide the price of robustness with respect to different scenarios. We experimentally show the practical effectiveness and efficiency of the proposed algorithm.

  12. Runway Scheduling Using Generalized Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Montoya, Justin; Wood, Zachary; Rathinam, Sivakumar

    2011-01-01

    A generalized dynamic programming method for finding a set of pareto optimal solutions for a runway scheduling problem is introduced. The algorithm generates a set of runway fight sequences that are optimal for both runway throughput and delay. Realistic time-based operational constraints are considered, including miles-in-trail separation, runway crossings, and wake vortex separation. The authors also model divergent runway takeoff operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth International airport and three baseline heuristics are used to illustrate preliminary benefits of using the generalized dynamic programming method. Simulated traffic levels ranged from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline schedulers. Computational results suggest that the algorithm is promising for real-time application with an average computation time of 4.5 seconds. For even faster computation times, two heuristics are developed. As compared to the optimal, the heuristics are within 5% of the expected delay per aircraft and 1% of the expected number of runway operations per hour ad can be 100x faster.

  13. MARTe: A Multiplatform Real-Time Framework

    NASA Astrophysics Data System (ADS)

    Neto, André C.; Sartori, Filippo; Piccolo, Fabio; Vitelli, Riccardo; De Tommasi, Gianmaria; Zabeo, Luca; Barbalace, Antonio; Fernandes, Horacio; Valcarcel, Daniel F.; Batista, Antonio J. N.

    2010-04-01

    Development of real-time applications is usually associated with nonportable code targeted at specific real-time operating systems. The boundary between hardware drivers, system services, and user code is commonly not well defined, making the development in the target host significantly difficult. The Multithreaded Application Real-Time executor (MARTe) is a framework built over a multiplatform library that allows the execution of the same code in different operating systems. The framework provides the high-level interfaces with hardware, external configuration programs, and user interfaces, assuring at the same time hard real-time performances. End-users of the framework are required to define and implement algorithms inside a well-defined block of software, named Generic Application Module (GAM), that is executed by the real-time scheduler. Each GAM is reconfigurable with a set of predefined configuration meta-parameters and interchanges information using a set of data pipes that are provided as inputs and required as output. Using these connections, different GAMs can be chained either in series or parallel. GAMs can be developed and debugged in a non-real-time system and, only once the robustness of the code and correctness of the algorithm are verified, deployed to the real-time system. The software also supplies a large set of utilities that greatly ease the interaction and debugging of a running system. Among the most useful are a highly efficient real-time logger, HTTP introspection of real-time objects, and HTTP remote configuration. MARTe is currently being used to successfully drive the plasma vertical stabilization controller on the largest magnetic confinement fusion device in the world, with a control loop cycle of 50 ?s and a jitter under 1 ?s. In this particular project, MARTe is used with the Real-Time Application Interface (RTAI)/Linux operating system exploiting the new ?86 multicore processors technology.

  14. An algorithm for a single machine scheduling problem with sequence dependent setup times and scheduling windows

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1975-01-01

    An enumeration algorithm is presented for solving a scheduling problem similar to the single machine job shop problem with sequence dependent setup times. The scheduling problem differs from the job shop problem in two ways. First, its objective is to select an optimum subset of the available tasks to be performed during a fixed period of time. Secondly, each task scheduled is constrained to occur within its particular scheduling window. The algorithm is currently being used to develop typical observational timelines for a telescope that will be operated in earth orbit. Computational times associated with timeline development are presented.

  15. Call Admission Control on Single Node Networks under Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) Scheduler

    NASA Astrophysics Data System (ADS)

    Hanada, Masaki; Nakazato, Hidenori; Watanabe, Hitoshi

    Multimedia applications such as music or video streaming, video teleconferencing and IP telephony are flourishing in packet-switched networks. Applications that generate such real-time data can have very diverse quality-of-service (QoS) requirements. In order to guarantee diverse QoS requirements, the combined use of a packet scheduling algorithm based on Generalized Processor Sharing (GPS) and leaky bucket traffic regulator is the most successful QoS mechanism. GPS can provide a minimum guaranteed service rate for each session and tight delay bounds for leaky bucket constrained sessions. However, the delay bounds for leaky bucket constrained sessions under GPS are unnecessarily large because each session is served according to its associated constant weight until the session buffer is empty. In order to solve this problem, a scheduling policy called Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) was proposed in [17]. ORC-GPS is a rate-based scheduling like GPS, and controls the service rate in order to lower the delay bounds for leaky bucket constrained sessions. In this paper, we propose a call admission control (CAC) algorithm for ORC-GPS, for leaky-bucket constrained sessions with deterministic delay requirements. This CAC algorithm for ORC-GPS determines the optimal values of parameters of ORC-GPS from the deterministic delay requirements of the sessions. In numerical experiments, we compare the CAC algorithm for ORC-GPS with one for GPS in terms of schedulable region and computational complexity.

  16. Single-Pass Serial Scheduling Heuristic for Eglin AFB Range Services Division Schedule

    DTIC Science & Technology

    2009-06-01

    scheduling tool for this RCPSP. Research on a schedule improvement metaheuristic and coding of the complete algorithm is required before it can be...a schedule better by applying metaheuristic improvement algorithms to a feasible schedule after it is created. 2.5.1. Greedy Algorithm The...next available position, the algorithm will not utilize all the available range time and manpower. An improvement metaheuristic is required to

  17. Segment Fixed Priority Scheduling for Self Suspending Real Time Tasks

    DTIC Science & Technology

    2016-08-11

    Segment-Fixed Priority Scheduling for Self-Suspending Real -Time Tasks Junsung Kim, Department of Electrical and Computer Engineering, Carnegie...4 2.1 Application of a Multi-Segment Self-Suspending Real -Time Task Model ............................. 5 3 Fixed Priority Scheduling...1 Figure 2: A multi-segment self-suspending real -time task model

  18. Heuristic-based scheduling algorithm for high level synthesis

    NASA Technical Reports Server (NTRS)

    Mohamed, Gulam; Tan, Han-Ngee; Chng, Chew-Lye

    1992-01-01

    A new scheduling algorithm is proposed which uses a combination of a resource utilization chart, a heuristic algorithm to estimate the minimum number of hardware units based on operator mobilities, and a list-scheduling technique to achieve fast and near optimal schedules. The schedule time of this algorithm is almost independent of the length of mobilities of operators as can be seen from the benchmark example (fifth order digital elliptical wave filter) presented when the cycle time was increased from 17 to 18 and then to 21 cycles. It is implemented in C on a SUN3/60 workstation.

  19. Real Time Energy Management Control Strategies for Hybrid Powertrains

    NASA Astrophysics Data System (ADS)

    Zaher, Mohamed Hegazi Mohamed

    In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.

  20. Binary Trees and Parallel Scheduling Algorithms.

    DTIC Science & Technology

    1980-09-01

    been pro- cessed for p. time units. If a job does not complete by its due time, it is tardy. In a nonpreemptive schedule, job i is scheduled to process...the preemptive schedule obtained by the algorithm of section 2.1.2 also minimizes 5Ti, this problem is easily solved in parallel. When lci is to e...August 1978, pp. 657-661. 14. Horn, W. A., "Some simple scheduling algorithms," Naval Res. Logist . Qur., Vol. 21, pp. 177-185, 1974. i5. Hforowitz, E

  1. Comparison of OPC job prioritization schemes to generate data for mask manufacturing

    NASA Astrophysics Data System (ADS)

    Lewis, Travis; Veeraraghavan, Vijay; Jantzen, Kenneth; Kim, Stephen; Park, Minyoung; Russell, Gordon; Simmons, Mark

    2015-03-01

    Delivering mask ready OPC corrected data to the mask shop on-time is critical for a foundry to meet the cycle time commitment for a new product. With current OPC compute resource sharing technology, different job scheduling algorithms are possible, such as, priority based resource allocation and fair share resource allocation. In order to maximize computer cluster efficiency, minimize the cost of the data processing and deliver data on schedule, the trade-offs of each scheduling algorithm need to be understood. Using actual production jobs, each of the scheduling algorithms will be tested in a production tape-out environment. Each scheduling algorithm will be judged on its ability to deliver data on schedule and the trade-offs associated with each method will be analyzed. It is now possible to introduce advance scheduling algorithms to the OPC data processing environment to meet the goals of on-time delivery of mask ready OPC data while maximizing efficiency and reducing cost.

  2. Space communications scheduler: A rule-based approach to adaptive deadline scheduling

    NASA Technical Reports Server (NTRS)

    Straguzzi, Nicholas

    1990-01-01

    Job scheduling is a deceptively complex subfield of computer science. The highly combinatorial nature of the problem, which is NP-complete in nearly all cases, requires a scheduling program to intelligently transverse an immense search tree to create the best possible schedule in a minimal amount of time. In addition, the program must continually make adjustments to the initial schedule when faced with last-minute user requests, cancellations, unexpected device failures, quests, cancellations, unexpected device failures, etc. A good scheduler must be quick, flexible, and efficient, even at the expense of generating slightly less-than-optimal schedules. The Space Communication Scheduler (SCS) is an intelligent rule-based scheduling system. SCS is an adaptive deadline scheduler which allocates modular communications resources to meet an ordered set of user-specified job requests on board the NASA Space Station. SCS uses pattern matching techniques to detect potential conflicts through algorithmic and heuristic means. As a result, the system generates and maintains high density schedules without relying heavily on backtracking or blind search techniques. SCS is suitable for many common real-world applications.

  3. An Evaluation of a Flight Deck Interval Management Algorithm Including Delayed Target Trajectories

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Underwood, Matthew C.; Barmore, Bryan; Leonard, Robert D.

    2014-01-01

    NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature air traffic management technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise timebased scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise in-trail spacing. During high demand operations, TMA-TM may produce a schedule and corresponding aircraft trajectories that include delay to ensure that a particular aircraft will be properly spaced from other aircraft at each schedule waypoint. These delayed trajectories are not communicated to the automation onboard the aircraft, forcing the IM aircraft to use the published speeds to estimate the target aircraft's estimated time of arrival. As a result, the aircraft performing IM operations may follow an aircraft whose TMA-TM generated trajectories have substantial speed deviations from the speeds expected by the spacing algorithm. Previous spacing algorithms were not designed to handle this magnitude of uncertainty. A simulation was conducted to examine a modified spacing algorithm with the ability to follow aircraft flying delayed trajectories. The simulation investigated the use of the new spacing algorithm with various delayed speed profiles and wind conditions, as well as several other variables designed to simulate real-life variability. The results and conclusions of this study indicate that the new spacing algorithm generally exhibits good performance; however, some types of target aircraft speed profiles can cause the spacing algorithm to command less than optimal speed control behavior.

  4. Real-time implementations of image segmentation algorithms on shared memory multicore architecture: a survey (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akil, Mohamed

    2017-05-01

    The real-time processing is getting more and more important in many image processing applications. Image segmentation is one of the most fundamental tasks image analysis. As a consequence, many different approaches for image segmentation have been proposed. The watershed transform is a well-known image segmentation tool. The watershed transform is a very data intensive task. To achieve acceleration and obtain real-time processing of watershed algorithms, parallel architectures and programming models for multicore computing have been developed. This paper focuses on the survey of the approaches for parallel implementation of sequential watershed algorithms on multicore general purpose CPUs: homogeneous multicore processor with shared memory. To achieve an efficient parallel implementation, it's necessary to explore different strategies (parallelization/distribution/distributed scheduling) combined with different acceleration and optimization techniques to enhance parallelism. In this paper, we give a comparison of various parallelization of sequential watershed algorithms on shared memory multicore architecture. We analyze the performance measurements of each parallel implementation and the impact of the different sources of overhead on the performance of the parallel implementations. In this comparison study, we also discuss the advantages and disadvantages of the parallel programming models. Thus, we compare the OpenMP (an application programming interface for multi-Processing) with Ptheads (POSIX Threads) to illustrate the impact of each parallel programming model on the performance of the parallel implementations.

  5. A Novel Algorithm Combining Finite State Method and Genetic Algorithm for Solving Crude Oil Scheduling Problem

    PubMed Central

    Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun

    2014-01-01

    A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031

  6. Optimal Decentralized Protocol for Electric Vehicle Charging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, LW; Topcu, U; Low, SH

    We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guidemore » their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.« less

  7. An adaptive optimal control for smart structures based on the subspace tracking identification technique

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele

    2014-04-01

    A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.

  8. The R-Shell approach - Using scheduling agents in complex distributed real-time systems

    NASA Technical Reports Server (NTRS)

    Natarajan, Swaminathan; Zhao, Wei; Goforth, Andre

    1993-01-01

    Large, complex real-time systems such as space and avionics systems are extremely demanding in their scheduling requirements. The current OS design approaches are quite limited in the capabilities they provide for task scheduling. Typically, they simply implement a particular uniprocessor scheduling strategy and do not provide any special support for network scheduling, overload handling, fault tolerance, distributed processing, etc. Our design of the R-Shell real-time environment fcilitates the implementation of a variety of sophisticated but efficient scheduling strategies, including incorporation of all these capabilities. This is accomplished by the use of scheduling agents which reside in the application run-time environment and are responsible for coordinating the scheduling of the application.

  9. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    PubMed Central

    Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361

  10. AI techniques for a space application scheduling problem

    NASA Technical Reports Server (NTRS)

    Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.

    1991-01-01

    Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).

  11. Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.

    PubMed

    Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  12. A Conceptual Level Design for a Static Scheduler for Hard Real-Time Systems

    DTIC Science & Technology

    1988-03-01

    The design of hard real - time systems is gaining a great deal of attention in the software engineering field as more and more real-world processes are...for these hard real - time systems . PSDL, as an executable design language, is supported by an execution support system consisting of a static scheduler, dynamic scheduler, and translator.

  13. Sensor Transmission Power Schedule for Smart Grids

    NASA Astrophysics Data System (ADS)

    Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.

    2017-11-01

    Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).

  14. SOSS User Guide

    NASA Technical Reports Server (NTRS)

    Zhu, Zhifan; Gridnev, Sergei; Windhorst, Robert D.

    2015-01-01

    This User Guide describes SOSS (Surface Operations Simulator and Scheduler) software build and graphic user interface. SOSS is a desktop application that simulates airport surface operations in fast time using traffic management algorithms. It moves aircraft on the airport surface based on information provided by scheduling algorithm prototypes, monitors separation violation and scheduling conformance, and produces scheduling algorithm performance data.

  15. Comparison of multiobjective evolutionary algorithms for operations scheduling under machine availability constraints.

    PubMed

    Frutos, M; Méndez, M; Tohmé, F; Broz, D

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.

  16. Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.

  17. AWAS: A dynamic work scheduling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.; Hao, J.; Kocur, G.

    1994-12-31

    The Automated Work Administration System (AWAS) is an automated scheduling system developed at GTE. A typical work center has 1000 employees and processes 4000 jobs each day. Jobs are geographically distributed within the service area of the work center, require different skills, and have to be done within specified time windows. Each job can take anywhere from 12 minutes to several hours to complete. Each employee can have his/her individual schedule, skill, or working area. The jobs can enter and leave the system at any time The employees dial up to the system to request for their next job atmore » the beginning of a day or after a job is done. The system is able to respond to the changes dynamically and produce close to optimum solutions at real time. We formulate the real world problem as a minimum cost network flow problem. Both employees and jobs are formulated as nodes. Relationship between jobs and employees are formulated as arcs, and working hours contributed by employees and consumed by jobs are formulated as flow. The goal is to minimize missed commitments. We solve the problem with the successive shortest path algorithm. Combined with pre-processing and post-processing, the system produces reasonable outputs and the response time is very good.« less

  18. Production scheduling with ant colony optimization

    NASA Astrophysics Data System (ADS)

    Chernigovskiy, A. S.; Kapulin, D. V.; Noskova, E. E.; Yamskikh, T. N.; Tsarev, R. Yu

    2017-10-01

    The optimum solution of the production scheduling problem for manufacturing processes at an enterprise is crucial as it allows one to obtain the required amount of production within a specified time frame. Optimum production schedule can be found using a variety of optimization algorithms or scheduling algorithms. Ant colony optimization is one of well-known techniques to solve the global multi-objective optimization problem. In the article, the authors present a solution of the production scheduling problem by means of an ant colony optimization algorithm. A case study of the algorithm efficiency estimated against some others production scheduling algorithms is presented. Advantages of the ant colony optimization algorithm and its beneficial effect on the manufacturing process are provided.

  19. A parallel computing engine for a class of time critical processes.

    PubMed

    Nabhan, T M; Zomaya, A Y

    1997-01-01

    This paper focuses on the efficient parallel implementation of systems of numerically intensive nature over loosely coupled multiprocessor architectures. These analytical models are of significant importance to many real-time systems that have to meet severe time constants. A parallel computing engine (PCE) has been developed in this work for the efficient simplification and the near optimal scheduling of numerical models over the different cooperating processors of the parallel computer. First, the analytical system is efficiently coded in its general form. The model is then simplified by using any available information (e.g., constant parameters). A task graph representing the interconnections among the different components (or equations) is generated. The graph can then be compressed to control the computation/communication requirements. The task scheduler employs a graph-based iterative scheme, based on the simulated annealing algorithm, to map the vertices of the task graph onto a Multiple-Instruction-stream Multiple-Data-stream (MIMD) type of architecture. The algorithm uses a nonanalytical cost function that properly considers the computation capability of the processors, the network topology, the communication time, and congestion possibilities. Moreover, the proposed technique is simple, flexible, and computationally viable. The efficiency of the algorithm is demonstrated by two case studies with good results.

  20. An improved robust buffer allocation method for the project scheduling problem

    NASA Astrophysics Data System (ADS)

    Ghoddousi, Parviz; Ansari, Ramin; Makui, Ahmad

    2017-04-01

    Unpredictable uncertainties cause delays and additional costs for projects. Often, when using traditional approaches, the optimizing procedure of the baseline project plan fails and leads to delays. In this study, a two-stage multi-objective buffer allocation approach is applied for robust project scheduling. In the first stage, some decisions are made on buffer sizes and allocation to the project activities. A set of Pareto-optimal robust schedules is designed using the meta-heuristic non-dominated sorting genetic algorithm (NSGA-II) based on the decisions made in the buffer allocation step. In the second stage, the Pareto solutions are evaluated in terms of the deviation from the initial start time and due dates. The proposed approach was implemented on a real dam construction project. The outcomes indicated that the obtained buffered schedule reduces the cost of disruptions by 17.7% compared with the baseline plan, with an increase of about 0.3% in the project completion time.

  1. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation

    PubMed Central

    Kong, Zehui; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control. PMID:28671967

  2. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation.

    PubMed

    Kong, Zehui; Zou, Yuan; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.

  3. Multiobjective optimisation design for enterprise system operation in the case of scheduling problem with deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei

    2016-03-01

    The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.

  4. Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Stottler, D.

    There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.

  5. A meta-heuristic method for solving scheduling problem: crow search algorithm

    NASA Astrophysics Data System (ADS)

    Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi

    2018-04-01

    Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.

  6. Comparison of Multiobjective Evolutionary Algorithms for Operations Scheduling under Machine Availability Constraints

    PubMed Central

    Frutos, M.; Méndez, M.; Tohmé, F.; Broz, D.

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502

  7. Self-balancing dynamic scheduling of electrical energy for energy-intensive enterprises

    NASA Astrophysics Data System (ADS)

    Gao, Yunlong; Gao, Feng; Zhai, Qiaozhu; Guan, Xiaohong

    2013-06-01

    Balancing production and consumption with self-generation capacity in energy-intensive enterprises has huge economic and environmental benefits. However, balancing production and consumption with self-generation capacity is a challenging task since the energy production and consumption must be balanced in real time with the criteria specified by power grid. In this article, a mathematical model for minimising the production cost with exactly realisable energy delivery schedule is formulated. And a dynamic programming (DP)-based self-balancing dynamic scheduling algorithm is developed to obtain the complete solution set for such a multiple optimal solutions problem. For each stage, a set of conditions are established to determine whether a feasible control trajectory exists. The state space under these conditions is partitioned into subsets and each subset is viewed as an aggregate state, the cost-to-go function is then expressed as a function of initial and terminal generation levels of each stage and is proved to be a staircase function with finite steps. This avoids the calculation of the cost-to-go of every state to resolve the issue of dimensionality in DP algorithm. In the backward sweep process of the algorithm, an optimal policy is determined to maximise the realisability of energy delivery schedule across the entire time horizon. And then in the forward sweep process, the feasible region of the optimal policy with the initial and terminal state at each stage is identified. Different feasible control trajectories can be identified based on the region; therefore, optimising for the feasible control trajectory is performed based on the region with economic and reliability objectives taken into account.

  8. Stochastic online appointment scheduling of multi-step sequential procedures in nuclear medicine.

    PubMed

    Pérez, Eduardo; Ntaimo, Lewis; Malavé, César O; Bailey, Carla; McCormack, Peter

    2013-12-01

    The increased demand for medical diagnosis procedures has been recognized as one of the contributors to the rise of health care costs in the U.S. in the last few years. Nuclear medicine is a subspecialty of radiology that uses advanced technology and radiopharmaceuticals for the diagnosis and treatment of medical conditions. Procedures in nuclear medicine require the use of radiopharmaceuticals, are multi-step, and have to be performed under strict time window constraints. These characteristics make the scheduling of patients and resources in nuclear medicine challenging. In this work, we derive a stochastic online scheduling algorithm for patient and resource scheduling in nuclear medicine departments which take into account the time constraints imposed by the decay of the radiopharmaceuticals and the stochastic nature of the system when scheduling patients. We report on a computational study of the new methodology applied to a real clinic. We use both patient and clinic performance measures in our study. The results show that the new method schedules about 600 more patients per year on average than a scheduling policy that was used in practice by improving the way limited resources are managed at the clinic. The new methodology finds the best start time and resources to be used for each appointment. Furthermore, the new method decreases patient waiting time for an appointment by about two days on average.

  9. Genetic algorithm to solve the problems of lectures and practicums scheduling

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.

  10. Scheduling time-critical graphics on multiple processors

    NASA Technical Reports Server (NTRS)

    Meyer, Tom W.; Hughes, John F.

    1995-01-01

    This paper describes an algorithm for the scheduling of time-critical rendering and computation tasks on single- and multiple-processor architectures, with minimal pipelining. It was developed to manage scientific visualization scenes consisting of hundreds of objects, each of which can be computed and displayed at thousands of possible resolution levels. The algorithm generates the time-critical schedule using progressive-refinement techniques; it always returns a feasible schedule and, when allowed to run to completion, produces a near-optimal schedule which takes advantage of almost the entire multiple-processor system.

  11. Re-scheduling as a tool for the power management on board a spacecraft

    NASA Technical Reports Server (NTRS)

    Albasheer, Omar; Momoh, James A.

    1995-01-01

    The scheduling of events on board a spacecraft is based on forecast energy levels. The real time values of energy may not coincide with the forecast values; consequently, a dynamic revising to the allocation of power is needed. The re-scheduling is also needed for other reasons on board a spacecraft like the addition of new event which must be scheduled, or a failure of an event due to many different contingencies. This need of rescheduling is very important to the survivability of the spacecraft. In this presentation, a re-scheduling tool will be presented as a part of an overall scheme for the power management on board a spacecraft from the allocation of energy point of view. The overall scheme is based on the optimal use of energy available on board a spacecraft using expert systems combined with linear optimization techniques. The system will be able to schedule maximum number of events utilizing most energy available. The outcome is more events scheduled to share the operation cost of that spacecraft. The system will also be able to re-schedule in case of a contingency with minimal time and minimal disturbance of the original schedule. The end product is a fully integrated planning system capable of producing the right decisions in short time with less human error. The overall system will be presented with the re-scheduling algorithm discussed in detail, then the tests and results will be presented for validations.

  12. Simultaneous Scheduling of Jobs, AGVs and Tools Considering Tool Transfer Times in Multi Machine FMS By SOS Algorithm

    NASA Astrophysics Data System (ADS)

    Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.

    2017-08-01

    This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.

  13. PixonVision real-time Deblurring Anisoplanaticism Corrector (DAC)

    NASA Astrophysics Data System (ADS)

    Hier, R. G.; Puetter, R. C.

    2007-09-01

    DigiVision, Inc. and PixonImaging LLC have teamed to develop a real-time Deblurring Anisoplanaticism Corrector (DAC) for the Army. The DAC measures the geometric image warp caused by anisoplanaticism and removes it to rectify and stabilize (dejitter) the incoming image. Each new geometrically corrected image field is combined into a running-average reference image. The image averager employs a higher-order filter that uses temporal bandpass information to help identify true motion of objects and thereby adaptively moderate the contribution of each new pixel to the reference image. This result is then passed to a real-time PixonVision video processor (see paper 6696-04 note, the DAC also first dehazes the incoming video) where additional blur from high-order seeing effects is removed, the image is spatially denoised, and contrast is adjusted in a spatially adaptive manner. We plan to implement the entire algorithm within a few large modern FPGAs on a circuit board for video use. Obvious applications are within the DOD, surveillance and intelligence, security and law enforcement communities. Prototype hardware is scheduled to be available in late 2008. To demonstrate the capabilities of the DAC, we present a software simulation of the algorithm applied to real atmosphere-corrupted video data collected by Sandia Labs.

  14. Time Series Discord Detection in Medical Data using a Parallel Relational Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodbridge, Diane; Rintoul, Mark Daniel; Wilson, Andrew T.

    Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithmsmore » on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.« less

  15. Time Series Discord Detection in Medical Data using a Parallel Relational Database [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodbridge, Diane; Wilson, Andrew T.; Rintoul, Mark Daniel

    Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithmsmore » on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.« less

  16. Multi-Satellite Observation Scheduling for Large Area Disaster Emergency Response

    NASA Astrophysics Data System (ADS)

    Niu, X. N.; Tang, H.; Wu, L. X.

    2018-04-01

    an optimal imaging plan, plays a key role in coordinating multiple satellites to monitor the disaster area. In the paper, to generate imaging plan dynamically according to the disaster relief, we propose a dynamic satellite task scheduling method for large area disaster response. First, an initial robust scheduling scheme is generated by a robust satellite scheduling model in which both the profit and the robustness of the schedule are simultaneously maximized. Then, we use a multi-objective optimization model to obtain a series of decomposing schemes. Based on the initial imaging plan, we propose a mixed optimizing algorithm named HA_NSGA-II to allocate the decomposing results thus to obtain an adjusted imaging schedule. A real disaster scenario, i.e., 2008 Wenchuan earthquake, is revisited in terms of rapid response using satellite resources and used to evaluate the performance of the proposed method with state-of-the-art approaches. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.

  17. Toward a Real-Time Measurement-Based System for Estimation of Helicopter Engine Degradation Due to Compressor Erosion

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Simo, Donald L.

    2007-01-01

    This paper presents a preliminary demonstration of an automated health assessment tool, capable of real-time on-board operation using existing engine control hardware. The tool allows operators to discern how rapidly individual turboshaft engines are degrading. As the compressor erodes, performance is lost, and with it the ability to generate power. Thus, such a tool would provide an instant assessment of the engine s fitness to perform a mission, and would help to pinpoint any abnormal wear or performance anomalies before they became serious, thereby decreasing uncertainty and enabling improved maintenance scheduling. The research described in the paper utilized test stand data from a T700-GE-401 turboshaft engine that underwent sand-ingestion testing to scale a model-based compressor efficiency degradation estimation algorithm. This algorithm was then applied to real-time Health Usage and Monitoring System (HUMS) data from a T700-GE-701C to track compressor efficiency on-line. The approach uses an optimal estimator called a Kalman filter. The filter is designed to estimate the compressor efficiency using only data from the engine s sensors as input.

  18. Efficient genetic algorithms using discretization scheduling.

    PubMed

    McLay, Laura A; Goldberg, David E

    2005-01-01

    In many applications of genetic algorithms, there is a tradeoff between speed and accuracy in fitness evaluations when evaluations use numerical methods with varying discretization. In these types of applications, the cost and accuracy vary from discretization errors when implicit or explicit quadrature is used to estimate the function evaluations. This paper examines discretization scheduling, or how to vary the discretization within the genetic algorithm in order to use the least amount of computation time for a solution of a desired quality. The effectiveness of discretization scheduling can be determined by comparing its computation time to the computation time of a GA using a constant discretization. There are three ingredients for the discretization scheduling: population sizing, estimated time for each function evaluation and predicted convergence time analysis. Idealized one- and two-dimensional experiments and an inverse groundwater application illustrate the computational savings to be achieved from using discretization scheduling.

  19. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    PubMed

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  20. Real-Time Considerations for Rugged Embedded Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Ceriani, Marco; Palermo, Gianluca

    This chapter introduces the characterizing aspects of embedded systems, and discusses the specific features that a designer should address to an embedded system “rugged”, i.e., able to operate reliably in harsh environments. The chapter addresses both the hardware and the less obvious software aspect. After presenting a current list of certifications for ruggedization, the chapters present a case study that focuses on the interaction of the hardware and software layers in reactive real-time system. In particular, it shows how the use of fast FPGA prototyping could provide insights on unexpected factors that influence the performance and thus responsiveness to eventsmore » of a scheduling algorithm for multiprocessor systems that manages both periodic, hard real-time task, and aperiodic tasks. The main lesson is that to make the system “rugged”, a designer should consider these issues by, for example, overprovisioning resources and/or computation capabilities.« less

  1. Shared Activity Coordination

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Barrett, Anthony C.

    2003-01-01

    Interacting agents that interleave planning and execution must reach consensus on their commitments to each other. In domains where agents have varying degrees of interaction and different constraints on communication and computation, agents will require different coordination protocols in order to efficiently reach consensus in real time. We briefly describe a largely unexplored class of real-time, distributed planning problems (inspired by interacting spacecraft missions), new challenges they pose, and a general approach to solving the problems. These problems involve self-interested agents that have infrequent communication but collaborate on joint activities. We describe a Shared Activity Coordination (SHAC) framework that provides a decentralized algorithm for negotiating the scheduling of shared activities in a dynamic environment, a soft, real-time approach to reaching consensus during execution with limited communication, and a foundation for customizing protocols for negotiating planner interactions. We apply SHAC to a realistic simulation of interacting Mars missions and illustrate the simplicity of protocol development.

  2. Linear triangular optimization technique and pricing scheme in residential energy management systems

    NASA Astrophysics Data System (ADS)

    Anees, Amir; Hussain, Iqtadar; AlKhaldi, Ali Hussain; Aslam, Muhammad

    2018-06-01

    This paper presents a new linear optimization algorithm for power scheduling of electric appliances. The proposed system is applied in a smart home community, in which community controller acts as a virtual distribution company for the end consumers. We also present a pricing scheme between community controller and its residential users based on real-time pricing and likely block rates. The results of the proposed optimization algorithm demonstrate that by applying the anticipated technique, not only end users can minimise the consumption cost, but it can also reduce the power peak to an average ratio which will be beneficial for the utilities as well.

  3. A note on resource allocation scheduling with group technology and learning effects on a single machine

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu

    2017-09-01

    In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.

  4. Design and implementation of laser target simulator in hardware-in-the-loop simulation system based on LabWindows/CVI and RTX

    NASA Astrophysics Data System (ADS)

    Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong

    2016-11-01

    In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.

  5. Job Scheduling in a Heterogeneous Grid Environment

    NASA Technical Reports Server (NTRS)

    Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak

    2004-01-01

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  6. Operational Planning of Channel Airlift Missions Using Forecasted Demand

    DTIC Science & Technology

    2013-03-01

    tailored to the specific problem ( Metaheuristics , 2005). As seen in the section Cargo Loading Algorithm , heuristic methods are often iterative...that are equivalent to the forecasted cargo amount. The simulated pallets are then used in a heuristic cargo loading algorithm . The loading... algorithm places cargo onto available aircraft (based on real schedules) given the date and the destination and outputs statistics based on the aircraft ton

  7. An advanced approach to traditional round robin CPU scheduling algorithm to prioritize processes with residual burst time nearest to the specified time quantum

    NASA Astrophysics Data System (ADS)

    Swaraj Pati, Mythili N.; Korde, Pranav; Dey, Pallav

    2017-11-01

    The purpose of this paper is to introduce an optimised variant to the round robin scheduling algorithm. Every algorithm works in its own way and has its own merits and demerits. The proposed algorithm overcomes the shortfalls of the existing scheduling algorithms in terms of waiting time, turnaround time, throughput and number of context switches. The algorithm is pre-emptive and works based on the priority of the associated processes. The priority is decided on the basis of the remaining burst time of a particular process, that is; lower the burst time, higher the priority and higher the burst time, lower the priority. To complete the execution, a time quantum is initially specified. In case if the burst time of a particular process is less than 2X of the specified time quantum but more than 1X of the specified time quantum; the process is given high priority and is allowed to execute until it completes entirely and finishes. Such processes do not have to wait for their next burst cycle.

  8. An Extended Deterministic Dendritic Cell Algorithm for Dynamic Job Shop Scheduling

    NASA Astrophysics Data System (ADS)

    Qiu, X. N.; Lau, H. Y. K.

    The problem of job shop scheduling in a dynamic environment where random perturbation exists in the system is studied. In this paper, an extended deterministic Dendritic Cell Algorithm (dDCA) is proposed to solve such a dynamic Job Shop Scheduling Problem (JSSP) where unexpected events occurred randomly. This algorithm is designed based on dDCA and makes improvements by considering all types of signals and the magnitude of the output values. To evaluate this algorithm, ten benchmark problems are chosen and different kinds of disturbances are injected randomly. The results show that the algorithm performs competitively as it is capable of triggering the rescheduling process optimally with much less run time for deciding the rescheduling action. As such, the proposed algorithm is able to minimize the rescheduling times under the defined objective and to keep the scheduling process stable and efficient.

  9. A Genetic Algorithm Tool (splicer) for Complex Scheduling Problems and the Space Station Freedom Resupply Problem

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Valenzuela-Rendon, Manuel

    1993-01-01

    The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.

  10. A Real-Time Linux for Multicore Platforms

    DTIC Science & Technology

    2013-12-20

    under ARO support) to obtain a fully-functional OS for supporting real-time workloads on multicore platforms. This system, called LITMUS -RT...to be specified as plugin components. LITMUS -RT is open-source software (available at The views, opinions and/or findings contained in this report... LITMUS -RT (LInux Testbed for MUltiprocessor Scheduling in Real-Time systems), allows different multiprocessor real-time scheduling and

  11. Analysis of sequencing and scheduling methods for arrival traffic

    NASA Technical Reports Server (NTRS)

    Neuman, Frank; Erzberger, Heinz

    1990-01-01

    The air traffic control subsystem that performs scheduling is discussed. The function of the scheduling algorithms is to plan automatically the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several important scheduling algorithms are described and the statistical performance of the scheduling algorithms is examined. Scheduling brings order to an arrival sequence for aircraft. First-come-first-served scheduling (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the traffic, gaps will remain in the scheduled sequence of aircraft. These gaps are filled, or partially filled, by time-advancing the leading aircraft after a gap while still preserving the FCFS order. Tightly scheduled groups of aircraft remain with a mix of heavy and large aircraft. Separation requirements differ for different types of aircraft trailing each other. Advantage is taken of this fact through mild reordering of the traffic, thus shortening the groups and reducing average delays. Actual delays for different samples with the same statistical parameters vary widely, especially for heavy traffic.

  12. Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags

    NASA Astrophysics Data System (ADS)

    ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu

    2017-05-01

    Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.

  13. APGEN Scheduling: 15 Years of Experience in Planning Automation

    NASA Technical Reports Server (NTRS)

    Maldague, Pierre F.; Wissler, Steve; Lenda, Matthew; Finnerty, Daniel

    2014-01-01

    In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator), a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi- Mission Operations System), and how APGEN scheduling evolved over its applications to specific Space Missions. Our analysis identifies two major reasons for the successful application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific Language) for formulating scheduling algorithms, and a well-defined process for enlisting the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the combined spacecraft and ground support system.

  14. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    NASA Astrophysics Data System (ADS)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  15. Scheduling periodic jobs that allow imprecise results

    NASA Technical Reports Server (NTRS)

    Chung, Jen-Yao; Liu, Jane W. S.; Lin, Kwei-Jay

    1990-01-01

    The problem of scheduling periodic jobs in hard real-time systems that support imprecise computations is discussed. Two workload models of imprecise computations are presented. These models differ from traditional models in that a task may be terminated any time after it has produced an acceptable result. Each task is logically decomposed into a mandatory part followed by an optional part. In a feasible schedule, the mandatory part of every task is completed before the deadline of the task. The optional part refines the result produced by the mandatory part to reduce the error in the result. Applications are classified as type N and type C, according to undesirable effects of errors. The two workload models characterize the two types of applications. The optional parts of the tasks in an N job need not ever be completed. The resulting quality of each type-N job is measured in terms of the average error in the results over several consecutive periods. A class of preemptive, priority-driven algorithms that leads to feasible schedules with small average error is described and evaluated.

  16. Non-Evolutionary Algorithms for Scheduling Dependent Tasks in Distributed Heterogeneous Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne F. Boyer; Gurdeep S. Hura

    2005-09-01

    The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized taskmore » orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,« less

  17. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  18. Production scheduling and rescheduling with genetic algorithms.

    PubMed

    Bierwirth, C; Mattfeld, D C

    1999-01-01

    A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs.

  19. An Improved Recovery Algorithm for Decayed AES Key Schedule Images

    NASA Astrophysics Data System (ADS)

    Tsow, Alex

    A practical algorithm that recovers AES key schedules from decayed memory images is presented. Halderman et al. [1] established this recovery capability, dubbed the cold-boot attack, as a serious vulnerability for several widespread software-based encryption packages. Our algorithm recovers AES-128 key schedules tens of millions of times faster than the original proof-of-concept release. In practice, it enables reliable recovery of key schedules at 70% decay, well over twice the decay capacity of previous methods. The algorithm is generalized to AES-256 and is empirically shown to recover 256-bit key schedules that have suffered 65% decay. When solutions are unique, the algorithm efficiently validates this property and outputs the solution for memory images decayed up to 60%.

  20. PLAStiCC: Predictive Look-Ahead Scheduling for Continuous dataflows on Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumbhare, Alok; Simmhan, Yogesh; Prasanna, Viktor K.

    2014-05-27

    Scalable stream processing and continuous dataflow systems are gaining traction with the rise of big data due to the need for processing high velocity data in near real time. Unlike batch processing systems such as MapReduce and workflows, static scheduling strategies fall short for continuous dataflows due to the variations in the input data rates and the need for sustained throughput. The elastic resource provisioning of cloud infrastructure is valuable to meet the changing resource needs of such continuous applications. However, multi-tenant cloud resources introduce yet another dimension of performance variability that impacts the application’s throughput. In this paper wemore » propose PLAStiCC, an adaptive scheduling algorithm that balances resource cost and application throughput using a prediction-based look-ahead approach. It not only addresses variations in the input data rates but also the underlying cloud infrastructure. In addition, we also propose several simpler static scheduling heuristics that operate in the absence of accurate performance prediction model. These static and adaptive heuristics are evaluated through extensive simulations using performance traces obtained from public and private IaaS clouds. Our results show an improvement of up to 20% in the overall profit as compared to the reactive adaptation algorithm.« less

  1. CQPSO scheduling algorithm for heterogeneous multi-core DAG task model

    NASA Astrophysics Data System (ADS)

    Zhai, Wenzheng; Hu, Yue-Li; Ran, Feng

    2017-07-01

    Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.

  2. An Improved Memetic Algorithm for Break Scheduling

    NASA Astrophysics Data System (ADS)

    Widl, Magdalena; Musliu, Nysret

    In this paper we consider solving a complex real life break scheduling problem. This problem of high practical relevance arises in many working areas, e.g. in air traffic control and other fields where supervision personnel is working. The objective is to assign breaks to employees such that various constraints reflecting legal demands or ergonomic criteria are satisfied and staffing requirement violations are minimised.

  3. Predictive Scheduling for Electric Vehicles Considering Uncertainty of Load and User Behaviors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bin; Huang, Rui; Wang, Yubo

    2016-05-02

    Un-coordinated Electric Vehicle (EV) charging can create unexpected load in local distribution grid, which may degrade the power quality and system reliability. The uncertainty of EV load, user behaviors and other baseload in distribution grid, is one of challenges that impedes optimal control for EV charging problem. Previous researches did not fully solve this problem due to lack of real-world EV charging data and proper stochastic model to describe these behaviors. In this paper, we propose a new predictive EV scheduling algorithm (PESA) inspired by Model Predictive Control (MPC), which includes a dynamic load estimation module and a predictive optimizationmore » module. The user-related EV load and base load are dynamically estimated based on the historical data. At each time interval, the predictive optimization program will be computed for optimal schedules given the estimated parameters. Only the first element from the algorithm outputs will be implemented according to MPC paradigm. Current-multiplexing function in each Electric Vehicle Supply Equipment (EVSE) is considered and accordingly a virtual load is modeled to handle the uncertainties of future EV energy demands. This system is validated by the real-world EV charging data collected on UCLA campus and the experimental results indicate that our proposed model not only reduces load variation up to 40% but also maintains a high level of robustness. Finally, IEC 61850 standard is utilized to standardize the data models involved, which brings significance to more reliable and large-scale implementation.« less

  4. ATD-2 Surface Scheduling and Metering Concept

    NASA Technical Reports Server (NTRS)

    Coppenbarger, Richard A.; Jung, Yoon Chul; Capps, Richard Alan; Engelland, Shawn A.

    2017-01-01

    This presentation describes the concept of ATD-2 tactical surface scheduling and metering. The concept is composed of several elements, including data exchange and integration; surface modeling; surface scheduling; and surface metering. The presentation explains each of the elements. Surface metering is implemented to balance demand and capacity• When surface metering is on, target times from surface scheduler areconverted to advisories for throttling demand• Through the scheduling process, flights with CTOTs will not get addedmetering delay (avoids potential for ‘double delay’)• Carriers can designate certain flights as exempt from metering holds• Demand throttle in Phase 1 at CLT is through advisories sent to rampcontrollers for pushback instructions to the flight deck– Push now– Hold for an advised period of time (in minutes)• Principles of surface metering can be more generally applied to otherairports in the NAS to throttle demand via spot-release times (TMATs Strong focus on optimal use of airport resources• Flexibility enables stakeholders to vary the amount of delay theywould like transferred to gate• Addresses practical aspects of executing surface metering in aturbulent real world environment• Algorithms designed for both short term demand/capacityimbalances (banks) or sustained metering situations• Leverage automation to enable surface metering capability withoutrequiring additional positions• Represents first step in Tactical/Strategic fusion• Provides longer look-ahead calculations to enable analysis ofstrategic surface metering potential usage

  5. Scheduling real-time, periodic jobs using imprecise results

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Natarajan, Swaminathan

    1987-01-01

    A process is called a monotone process if the accuracy of its intermediate results is non-decreasing as more time is spent to obtain the result. The result produced by a monotone process upon its normal termination is the desired result; the error in this result is zero. External events such as timeouts or crashes may cause the process to terminate prematurely. If the intermediate result produced by the process upon its premature termination is saved and made available, the application may still find the result unusable and, hence, acceptable; such a result is said to be an imprecise one. The error in an imprecise result is nonzero. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. This problem differs from the traditional scheduling problems since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less than the amounts of time required to complete the tasks. A meaningful formulation of this problem taking into account the quality of the overall result is discussed. Three algorithms for scheduling jobs for which the effects of errors in results produced in different periods are not cumulative are described, and their relative merits are evaluated.

  6. A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.

    PubMed

    Xie, Zhiqiang; Shao, Xia; Xin, Yu

    2016-01-01

    To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.

  7. A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path

    PubMed Central

    Xie, Zhiqiang; Shao, Xia; Xin, Yu

    2016-01-01

    To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective. PMID:27490901

  8. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    NASA Astrophysics Data System (ADS)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  9. An Improved SoC Test Scheduling Method Based on Simulated Annealing Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Shen, Zhihang; Gao, Huaien; Chen, Bianna; Zheng, Weida; Xiong, Xiaoming

    2017-02-01

    In this paper, we propose an improved SoC test scheduling method based on simulated annealing algorithm (SA). It is our first to disorganize IP core assignment for each TAM to produce a new solution for SA, allocate TAM width for each TAM using greedy algorithm and calculate corresponding testing time. And accepting the core assignment according to the principle of simulated annealing algorithm and finally attain the optimum solution. Simultaneously, we run the test scheduling experiment with the international reference circuits provided by International Test Conference 2002(ITC’02) and the result shows that our algorithm is superior to the conventional integer linear programming algorithm (ILP), simulated annealing algorithm (SA) and genetic algorithm(GA). When TAM width reaches to 48,56 and 64, the testing time based on our algorithm is lesser than the classic methods and the optimization rates are 30.74%, 3.32%, 16.13% respectively. Moreover, the testing time based on our algorithm is very close to that of improved genetic algorithm (IGA), which is state-of-the-art at present.

  10. Algorithm comparison for schedule optimization in MR fingerprinting.

    PubMed

    Cohen, Ouri; Rosen, Matthew S

    2017-09-01

    In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Pruning-Based, Energy-Optimal, Deterministic I/O Device Scheduling for Hard Real-Time Systems

    DTIC Science & Technology

    2005-02-01

    However, DPM via I/O device scheduling for hard real - time systems has received relatively little attention. In this paper,we present an offline I/O...polynomial time. We present experimental results to show that EDS and MDO reduce the energy consumption of I/O devices significantly for hard real - time systems .

  12. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment.

    PubMed

    Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda

    2017-01-01

    Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.

  13. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment

    PubMed Central

    Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda

    2017-01-01

    Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505

  14. Routing and scheduling of hazardous materials shipments: algorithmic approaches to managing spent nuclear fuel transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, R.G.

    Much controversy surrounds government regulation of routing and scheduling of Hazardous Materials Transportation (HMT). Increases in operating costs must be balanced against expected benefits from local HMT bans and curfews when promulgating or preempting HMT regulations. Algorithmic approaches for evaluating HMT routing and scheduling regulatory policy are described. A review of current US HMT regulatory policy is presented to provide a context for the analysis. Next, a multiobjective shortest path algorithm to find the set of efficient routes under conflicting objectives is presented. This algorithm generates all efficient routes under any partial ordering in a single pass through the network.more » Also, scheduling algorithms are presented to estimate the travel time delay due to HMT curfews along a route. Algorithms are presented assuming either deterministic or stochastic travel times between curfew cities and also possible rerouting to avoid such cities. These algorithms are applied to the case study of US highway transport of spent nuclear fuel from reactors to permanent repositories. Two data sets were used. One data set included the US Interstate Highway System (IHS) network with reactor locations, possible repository sites, and 150 heavily populated areas (HPAs). The other data set contained estimates of the population residing with 0.5 miles of the IHS and the Eastern US. Curfew delay is dramatically reduced by optimally scheduling departure times unless inter-HPA travel times are highly uncertain. Rerouting shipments to avoid HPAs is a less efficient approach to reducing delay.« less

  15. Machine Learning Based Online Performance Prediction for Runtime Parallelization and Task Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J; Ma, X; Singh, K

    2008-10-09

    With the emerging many-core paradigm, parallel programming must extend beyond its traditional realm of scientific applications. Converting existing sequential applications as well as developing next-generation software requires assistance from hardware, compilers and runtime systems to exploit parallelism transparently within applications. These systems must decompose applications into tasks that can be executed in parallel and then schedule those tasks to minimize load imbalance. However, many systems lack a priori knowledge about the execution time of all tasks to perform effective load balancing with low scheduling overhead. In this paper, we approach this fundamental problem using machine learning techniques first to generatemore » performance models for all tasks and then applying those models to perform automatic performance prediction across program executions. We also extend an existing scheduling algorithm to use generated task cost estimates for online task partitioning and scheduling. We implement the above techniques in the pR framework, which transparently parallelizes scripts in the popular R language, and evaluate their performance and overhead with both a real-world application and a large number of synthetic representative test scripts. Our experimental results show that our proposed approach significantly improves task partitioning and scheduling, with maximum improvements of 21.8%, 40.3% and 22.1% and average improvements of 15.9%, 16.9% and 4.2% for LMM (a real R application) and synthetic test cases with independent and dependent tasks, respectively.« less

  16. Scheduling job shop - A case study

    NASA Astrophysics Data System (ADS)

    Abas, M.; Abbas, A.; Khan, W. A.

    2016-08-01

    The scheduling in job shop is important for efficient utilization of machines in the manufacturing industry. There are number of algorithms available for scheduling of jobs which depend on machines tools, indirect consumables and jobs which are to be processed. In this paper a case study is presented for scheduling of jobs when parts are treated on available machines. Through time and motion study setup time and operation time are measured as total processing time for variety of products having different manufacturing processes. Based on due dates different level of priority are assigned to the jobs and the jobs are scheduled on the basis of priority. In view of the measured processing time, the times for processing of some new jobs are estimated and for efficient utilization of the machines available an algorithm is proposed and validated.

  17. Sort-Mid tasks scheduling algorithm in grid computing.

    PubMed

    Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M

    2015-11-01

    Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.

  18. Sort-Mid tasks scheduling algorithm in grid computing

    PubMed Central

    Reda, Naglaa M.; Tawfik, A.; Marzok, Mohamed A.; Khamis, Soheir M.

    2014-01-01

    Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan. PMID:26644937

  19. A customizable system for real-time image processing using the Blackfin DSProcessor and the MicroC/OS-II real-time kernel

    NASA Astrophysics Data System (ADS)

    Coffey, Stephen; Connell, Joseph

    2005-06-01

    This paper presents a development platform for real-time image processing based on the ADSP-BF533 Blackfin processor and the MicroC/OS-II real-time operating system (RTOS). MicroC/OS-II is a completely portable, ROMable, pre-emptive, real-time kernel. The Blackfin Digital Signal Processors (DSPs), incorporating the Analog Devices/Intel Micro Signal Architecture (MSA), are a broad family of 16-bit fixed-point products with a dual Multiply Accumulate (MAC) core. In addition, they have a rich instruction set with variable instruction length and both DSP and MCU functionality thus making them ideal for media based applications. Using the MicroC/OS-II for task scheduling and management, the proposed system can capture and process raw RGB data from any standard 8-bit greyscale image sensor in soft real-time and then display the processed result using a simple PC graphical user interface (GUI). Additionally, the GUI allows configuration of the image capture rate and the system and core DSP clock rates thereby allowing connectivity to a selection of image sensors and memory devices. The GUI also allows selection from a set of image processing algorithms based in the embedded operating system.

  20. The Power of Flexibility: Autonomous Agents That Conserve Energy in Commercial Buildings

    NASA Astrophysics Data System (ADS)

    Kwak, Jun-young

    Agent-based systems for energy conservation are now a growing area of research in multiagent systems, with applications ranging from energy management and control on the smart grid, to energy conservation in residential buildings, to energy generation and dynamic negotiations in distributed rural communities. Contributing to this area, my thesis presents new agent-based models and algorithms aiming to conserve energy in commercial buildings. More specifically, my thesis provides three sets of algorithmic contributions. First, I provide online predictive scheduling algorithms to handle massive numbers of meeting/event scheduling requests considering flexibility , which is a novel concept for capturing generic user constraints while optimizing the desired objective. Second, I present a novel BM-MDP ( Bounded-parameter Multi-objective Markov Decision Problem) model and robust algorithms for multi-objective optimization under uncertainty both at the planning and execution time. The BM-MDP model and its robust algorithms are useful in (re)scheduling events to achieve energy efficiency in the presence of uncertainty over user's preferences. Third, when multiple users contribute to energy savings, fair division of credit for such savings to incentivize users for their energy saving activities arises as an important question. I appeal to cooperative game theory and specifically to the concept of Shapley value for this fair division. Unfortunately, scaling up this Shapley value computation is a major hindrance in practice. Therefore, I present novel approximation algorithms to efficiently compute the Shapley value based on sampling and partitions and to speed up the characteristic function computation. These new models have not only advanced the state of the art in multiagent algorithms, but have actually been successfully integrated within agents dedicated to energy efficiency: SAVES, TESLA and THINC. SAVES focuses on the day-to-day energy consumption of individuals and groups in commercial buildings by reactively suggesting energy conserving alternatives. TESLA takes a long-range planning perspective and optimizes overall energy consumption of a large number of group events or meetings together. THINC provides an end-to-end integration within a single agent of energy efficient scheduling, rescheduling and credit allocation. While SAVES, TESLA and THINC thus differ in their scope and applicability, they demonstrate the utility of agent-based systems in actually reducing energy consumption in commercial buildings. I evaluate my algorithms and agents using extensive analysis on data from over 110,000 real meetings/events at multiple educational buildings including the main libraries at the University of Southern California. I also provide results on simulations and real-world experiments, clearly demonstrating the power of agent technology to assist human users in saving energy in commercial buildings.

  1. Efficiently Scheduling Multi-core Guest Virtual Machines on Multi-core Hosts in Network Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2011-01-01

    Virtual machine (VM)-based simulation is a method used by network simulators to incorporate realistic application behaviors by executing actual VMs as high-fidelity surrogates for simulated end-hosts. A critical requirement in such a method is the simulation time-ordered scheduling and execution of the VMs. Prior approaches such as time dilation are less efficient due to the high degree of multiplexing possible when multiple multi-core VMs are simulated on multi-core host systems. We present a new simulation time-ordered scheduler to efficiently schedule multi-core VMs on multi-core real hosts, with a virtual clock realized on each virtual core. The distinguishing features of ourmore » approach are: (1) customizable granularity of the VM scheduling time unit on the simulation time axis, (2) ability to take arbitrary leaps in virtual time by VMs to maximize the utilization of host (real) cores when guest virtual cores idle, and (3) empirically determinable optimality in the tradeoff between total execution (real) time and time-ordering accuracy levels. Experiments show that it is possible to get nearly perfect time-ordered execution, with a slight cost in total run time, relative to optimized non-simulation VM schedulers. Interestingly, with our time-ordered scheduler, it is also possible to reduce the time-ordering error from over 50% of non-simulation scheduler to less than 1% realized by our scheduler, with almost the same run time efficiency as that of the highly efficient non-simulation VM schedulers.« less

  2. Collaborative Resource Allocation

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Wax, Allan; Lam, Raymond; Baldwin, John; Borden, Chester

    2007-01-01

    Collaborative Resource Allocation Networking Environment (CRANE) Version 0.5 is a prototype created to prove the newest concept of using a distributed environment to schedule Deep Space Network (DSN) antenna times in a collaborative fashion. This program is for all space-flight and terrestrial science project users and DSN schedulers to perform scheduling activities and conflict resolution, both synchronously and asynchronously. Project schedulers can, for the first time, participate directly in scheduling their tracking times into the official DSN schedule, and negotiate directly with other projects in an integrated scheduling system. A master schedule covers long-range, mid-range, near-real-time, and real-time scheduling time frames all in one, rather than the current method of separate functions that are supported by different processes and tools. CRANE also provides private workspaces (both dynamic and static), data sharing, scenario management, user control, rapid messaging (based on Java Message Service), data/time synchronization, workflow management, notification (including emails), conflict checking, and a linkage to a schedule generation engine. The data structure with corresponding database design combines object trees with multiple associated mortal instances and relational database to provide unprecedented traceability and simplify the existing DSN XML schedule representation. These technologies are used to provide traceability, schedule negotiation, conflict resolution, and load forecasting from real-time operations to long-range loading analysis up to 20 years in the future. CRANE includes a database, a stored procedure layer, an agent-based middle tier, a Web service wrapper, a Windows Integrated Analysis Environment (IAE), a Java application, and a Web page interface.

  3. Three-Stage Production Cost Modeling Approach for Evaluating the Benefits of Intra-Hour Scheduling between Balancing Authorities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samaan, Nader A.; Milligan, Michael; Hunsaker, Matthew

    This paper introduces a Production Cost Modeling (PCM) approach to evaluate the benefits of intra-hour scheduling between Balancing Authorities (BAs). The system operation is modeled in a three-stage sequential manner: day ahead (DA)-hour ahead (HA)-real time (RT). In addition to contingency reserve, each BA will need to carry out “up” and “down” load following and regulation reserve capacity requirements in the DA and HA time frames. In the real-time simulation, only contingency and regulation reserves are carried out as load following is deployed. To model current real-time operation with hourly schedules, a new constraint was introduced to force each BAmore » net exchange schedule deviation from HA schedules to be within NERC ACE limits. Case studies that investigate the benefits of moving from hourly exchange schedules between WECC BAs into 10-min exchange schedules under two different levels of wind and solar penetration (11% and 33%) are presented.« less

  4. Scheduling Algorithms for Maximizing Throughput with Zero-Forcing Beamforming in a MIMO Wireless System

    NASA Astrophysics Data System (ADS)

    Foronda, Augusto; Ohta, Chikara; Tamaki, Hisashi

    Dirty paper coding (DPC) is a strategy to achieve the region capacity of multiple input multiple output (MIMO) downlink channels and a DPC scheduler is throughput optimal if users are selected according to their queue states and current rates. However, DPC is difficult to implement in practical systems. One solution, zero-forcing beamforming (ZFBF) strategy has been proposed to achieve the same asymptotic sum rate capacity as that of DPC with an exhaustive search over the entire user set. Some suboptimal user group selection schedulers with reduced complexity based on ZFBF strategy (ZFBF-SUS) and proportional fair (PF) scheduling algorithm (PF-ZFBF) have also been proposed to enhance the throughput and fairness among the users, respectively. However, they are not throughput optimal, fairness and throughput decrease if each user queue length is different due to different users channel quality. Therefore, we propose two different scheduling algorithms: a throughput optimal scheduling algorithm (ZFBF-TO) and a reduced complexity scheduling algorithm (ZFBF-RC). Both are based on ZFBF strategy and, at every time slot, the scheduling algorithms have to select some users based on user channel quality, user queue length and orthogonality among users. Moreover, the proposed algorithms have to produce the rate allocation and power allocation for the selected users based on a modified water filling method. We analyze the schedulers complexity and numerical results show that ZFBF-RC provides throughput and fairness improvements compared to the ZFBF-SUS and PF-ZFBF scheduling algorithms.

  5. Energy-saving scheme based on downstream packet scheduling in ethernet passive optical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Lincong; Liu, Yejun; Guo, Lei; Gong, Xiaoxue

    2013-03-01

    With increasing network sizes, the energy consumption of Passive Optical Networks (PONs) has grown significantly. Therefore, it is important to design effective energy-saving schemes in PONs. Generally, energy-saving schemes have focused on sleeping the low-loaded Optical Network Units (ONUs), which tends to bring large packet delays. Further, the traditional ONU sleep modes are not capable of sleeping the transmitter and receiver independently, though they are not required to transmit or receive packets. Clearly, this approach contributes to wasted energy. Thus, in this paper, we propose an Energy-Saving scheme that is based on downstream Packet Scheduling (ESPS) in Ethernet PON (EPON). First, we design both an algorithm and a rule for downstream packet scheduling at the inter- and intra-ONU levels, respectively, to reduce the downstream packet delay. After that, we propose a hybrid sleep mode that contains not only ONU deep sleep mode but also independent sleep modes for the transmitter and the receiver. This ensures that the energy consumed by the ONUs is minimal. To realize the hybrid sleep mode, a modified GATE control message is designed that involves 10 time points for sleep processes. In ESPS, the 10 time points are calculated according to the allocated bandwidths in both the upstream and the downstream. The simulation results show that ESPS outperforms traditional Upstream Centric Scheduling (UCS) scheme in terms of energy consumption and the average delay for both real-time and non-real-time packets downstream. The simulation results also show that the average energy consumption of each ONU in larger-sized networks is less than that in smaller-sized networks; hence, our ESPS is better suited for larger-sized networks.

  6. A DAG Scheduling Scheme on Heterogeneous Computing Systems Using Tuple-Based Chemical Reaction Optimization

    PubMed Central

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977

  7. A DAG scheduling scheme on heterogeneous computing systems using tuple-based chemical reaction optimization.

    PubMed

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.

  8. Cloud computing task scheduling strategy based on improved differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Ge, Junwei; He, Qian; Fang, Yiqiu

    2017-04-01

    In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.

  9. A Dynamic Scheduling Method of Earth-Observing Satellites by Employing Rolling Horizon Strategy

    PubMed Central

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments. PMID:23690742

  10. A dynamic scheduling method of Earth-observing satellites by employing rolling horizon strategy.

    PubMed

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments.

  11. Real-Time Support on IEEE 802.11 Wireless Ad-Hoc Networks: Reality vs. Theory

    NASA Astrophysics Data System (ADS)

    Kang, Mikyung; Kang, Dong-In; Suh, Jinwoo

    The usable throughput of an IEEE 802.11 system for an application is much less than the raw bandwidth. Although 802.11b has a theoretical maximum of 11Mbps, more than half of the bandwidth is consumed by overhead leaving at most 5Mbps of usable bandwidth. Considering this characteristic, this paper proposes and analyzes a real-time distributed scheduling scheme based on the existing IEEE 802.11 wireless ad-hoc networks, using USC/ISI's Power Aware Sensing Tracking and Analysis (PASTA) hardware platform. We compared the distributed real-time scheduling scheme with the real-time polling scheme to meet deadline, and compared a measured real bandwidth with a theoretical result. The theoretical and experimental results show that the distributed scheduling scheme can guarantee real-time traffic and enhances the performance up to 74% compared with polling scheme.

  12. Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman

    2012-01-01

    In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.

  13. OGUPSA sensor scheduling architecture and algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixiong; Hintz, Kenneth J.

    1996-06-01

    This paper introduces a new architecture for a sensor measurement scheduler as well as a dynamic sensor scheduling algorithm called the on-line, greedy, urgency-driven, preemptive scheduling algorithm (OGUPSA). OGUPSA incorporates a preemptive mechanism which uses three policies, (1) most-urgent-first (MUF), (2) earliest- completed-first (ECF), and (3) least-versatile-first (LVF). The three policies are used successively to dynamically allocate and schedule and distribute a set of arriving tasks among a set of sensors. OGUPSA also can detect the failure of a task to meet a deadline as well as generate an optimal schedule in the sense of minimum makespan for a group of tasks with the same priorities. A side benefit is OGUPSA's ability to improve dynamic load balance among all sensors while being a polynomial time algorithm. Results of a simulation are presented for a simple sensor system.

  14. Planning and Execution: The Spirit of Opportunity for Robust Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola

    2004-01-01

    One of the most exciting endeavors pursued by human kind is the search for life in the Solar System and the Universe at large. NASA is leading this effort by designing, deploying and operating robotic systems that will reach planets, planet moons, asteroids and comets searching for water, organic building blocks and signs of past or present microbial life. None of these missions will be achievable without substantial advances in.the design, implementation and validation of autonomous control agents. These agents must be capable of robustly controlling a robotic explorer in a hostile environment with very limited or no communication with Earth. The talk focuses on work pursued at the NASA Ames Research center ranging from basic research on algorithm to deployed mission support systems. We will start by discussing how planning and scheduling technology derived from the Remote Agent experiment is being used daily in the operations of the Spirit and Opportunity rovers. Planning and scheduling is also used as the fundamental paradigm at the core of our research in real-time autonomous agents. In particular, we will describe our efforts in the Intelligent Distributed Execution Architecture (IDEA), a multi-agent real-time architecture that exploits artificial intelligence planning as the core reasoning engine of an autonomous agent. We will also describe how the issue of plan robustness at execution can be addressed by novel constraint propagation algorithms capable of giving the tightest exact bounds on resource consumption or all possible executions of a flexible plan.

  15. Time-optimum packet scheduling for many-to-one routing in wireless sensor networks

    USGS Publications Warehouse

    Song, W.-Z.; Yuan, F.; LaHuser, R.

    2007-01-01

    This paper studies the WSN application scenario with periodical traffic from all sensors to a sink. We present a time-optimum and energy-efficient packet scheduling algorithm and its distributed implementation. We first give a general many-to-one packet scheduling algorithm for wireless networks, and then prove that it is time-optimum and costs max(2N(u1) - 1, N(u 0) -1) time slots, assuming each node reports one unit of data in each round. Here N(u0) is the total number of sensors, while N(u 1) denotes the number of sensors in a sink's largest branch subtree. With a few adjustments, we then show that our algorithm also achieves time-optimum scheduling in heterogeneous scenarios, where each sensor reports a heterogeneous amount of data in each round. Then we give a distributed implementation to let each node calculate its duty-cycle locally and maximize efficiency globally. In this packet scheduling algorithm, each node goes to sleep whenever it is not transceiving, so that the energy waste of idle listening is also eliminated. Finally, simulations are conducted to evaluate network performance using the Qualnet simulator. Among other contributions, our study also identifies the maximum reporting frequency that a deployed sensor network can handle. ??2006 IEEE.

  16. Time-optimum packet scheduling for many-to-one routing in wireless sensor networks

    USGS Publications Warehouse

    Song, W.-Z.; Yuan, F.; LaHusen, R.; Shirazi, B.

    2007-01-01

    This paper studies the wireless sensor networks (WSN) application scenario with periodical traffic from all sensors to a sink. We present a time-optimum and energy-efficient packet scheduling algorithm and its distributed implementation. We first give a general many-to-one packet scheduling algorithm for wireless networks, and then prove that it is time-optimum and costs [image omitted], N(u0)-1) time slots, assuming each node reports one unit of data in each round. Here [image omitted] is the total number of sensors, while [image omitted] denotes the number of sensors in a sink's largest branch subtree. With a few adjustments, we then show that our algorithm also achieves time-optimum scheduling in heterogeneous scenarios, where each sensor reports a heterogeneous amount of data in each round. Then we give a distributed implementation to let each node calculate its duty-cycle locally and maximize efficiency globally. In this packet-scheduling algorithm, each node goes to sleep whenever it is not transceiving, so that the energy waste of idle listening is also mitigated. Finally, simulations are conducted to evaluate network performance using the Qualnet simulator. Among other contributions, our study also identifies the maximum reporting frequency that a deployed sensor network can handle.

  17. ASIC-based architecture for the real-time computation of 2D convolution with large kernel size

    NASA Astrophysics Data System (ADS)

    Shao, Rui; Zhong, Sheng; Yan, Luxin

    2015-12-01

    Bidimensional convolution is a low-level processing algorithm of interest in many areas, but its high computational cost constrains the size of the kernels, especially in real-time embedded systems. This paper presents a hardware architecture for the ASIC-based implementation of 2-D convolution with medium-large kernels. Aiming to improve the efficiency of storage resources on-chip, reducing off-chip bandwidth of these two issues, proposed construction of a data cache reuse. Multi-block SPRAM to cross cached images and the on-chip ping-pong operation takes full advantage of the data convolution calculation reuse, design a new ASIC data scheduling scheme and overall architecture. Experimental results show that the structure can achieve 40× 32 size of template real-time convolution operations, and improve the utilization of on-chip memory bandwidth and on-chip memory resources, the experimental results show that the structure satisfies the conditions to maximize data throughput output , reducing the need for off-chip memory bandwidth.

  18. Genetic Algorithm and Tabu Search for Vehicle Routing Problems with Stochastic Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Zuhaimy, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com; Irhamah, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com

    2010-11-11

    This paper presents a problem of designing solid waste collection routes, involving scheduling of vehicles where each vehicle begins at the depot, visits customers and ends at the depot. It is modeled as a Vehicle Routing Problem with Stochastic Demands (VRPSD). A data set from a real world problem (a case) is used in this research. We developed Genetic Algorithm (GA) and Tabu Search (TS) procedure and these has produced the best possible result. The problem data are inspired by real case of VRPSD in waste collection. Results from the experiment show the advantages of the proposed algorithm that aremore » its robustness and better solution qualities.« less

  19. Mission Operations Planning and Scheduling System (MOPSS)

    NASA Technical Reports Server (NTRS)

    Wood, Terri; Hempel, Paul

    2011-01-01

    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  20. The LHCb Grid Simulation: Proof of Concept

    NASA Astrophysics Data System (ADS)

    Hushchyn, M.; Ustyuzhanin, A.; Arzymatov, K.; Roiser, S.; Baranov, A.

    2017-10-01

    The Worldwide LHC Computing Grid provides access to data and computational resources to analyze it for researchers with different geographical locations. The grid has a hierarchical topology with multiple sites distributed over the world with varying number of CPUs, amount of disk storage and connection bandwidth. Job scheduling and data distribution strategy are key elements of grid performance. Optimization of algorithms for those tasks requires their testing on real grid which is hard to achieve. Having a grid simulator might simplify this task and therefore lead to more optimal scheduling and data placement algorithms. In this paper we demonstrate a grid simulator for the LHCb distributed computing software.

  1. Orion Entry Monitor

    NASA Technical Reports Server (NTRS)

    Smith, Kelly M.

    2016-01-01

    NASA is scheduled to launch the Orion spacecraft atop the Space Launch System on Exploration Mission 1 in late 2018. When Orion returns from its lunar sortie, it will encounter Earth's atmosphere with speeds in excess of 11 kilometers per second, and Orion will attempt its first precision-guided skip entry. A suite of flight software algorithms collectively called the Entry Monitor has been developed in order to enhance crew situational awareness and enable high levels of onboard autonomy. The Entry Monitor determines the vehicle capability footprint in real-time, provides manual piloting cues, evaluates landing target feasibility, predicts the ballistic instantaneous impact point, and provides intelligent recommendations for alternative landing sites if the primary landing site is not achievable. The primary engineering challenges of the Entry Monitor is in the algorithmic implementation in making a highly reliable, efficient set of algorithms suitable for onboard applications.

  2. Research on schedulers for astronomical observatories

    NASA Astrophysics Data System (ADS)

    Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian

    2012-09-01

    The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.

  3. An Algorithm for Automatically Modifying Train Crew Schedule

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoru; Kataoka, Kenji; Kojima, Teruhito; Asami, Masayuki

    Once the break-down of the train schedule occurs, the crew schedule as well as the train schedule has to be modified as quickly as possible to restore them. In this paper, we propose an algorithm for automatically modifying a crew schedule that takes all constraints into consideration, presenting a model of the combined problem of crews and trains. The proposed algorithm builds an initial solution by relaxing some of the constraint conditions, and then uses a Taboo-search method to revise this solution in order to minimize the degree of constraint violation resulting from these relaxed conditions. Then we show not only that the algorithm can generate a constraint satisfaction solution, but also that the solution will satisfy the experts. That is, we show the proposed algorithm is capable of producing a usable solution in a short time by applying to actual cases of train-schedule break-down, and that the solution is at least as good as those produced manually, by comparing the both solutions with several point of view.

  4. Efficient parallel architecture for highly coupled real-time linear system applications

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Homaifar, Abdollah; Barua, Soumavo

    1988-01-01

    A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics.

  5. Scheduling for the National Hockey League Using a Multi-objective Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Craig, Sam; While, Lyndon; Barone, Luigi

    We describe a multi-objective evolutionary algorithm that derives schedules for the National Hockey League according to three objectives: minimising the teams' total travel, promoting equity in rest time between games, and minimising long streaks of home or away games. Experiments show that the system is able to derive schedules that beat the 2008-9 NHL schedule in all objectives simultaneously, and that it returns a set of schedules that offer a range of trade-offs across the objectives.

  6. Simulated Stochastic Approximation Annealing for Global Optimization with a Square-Root Cooling Schedule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Faming; Cheng, Yichen; Lin, Guang

    2014-06-13

    Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that themore » new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.« less

  7. Scheduling nursing personnel on a microcomputer.

    PubMed

    Liao, C J; Kao, C Y

    1997-01-01

    Suggests that with the shortage of nursing personnel, hospital administrators have to pay more attention to the needs of nurses to retain and recruit them. Also asserts that improving nurses' schedules is one of the most economic ways for the hospital administration to create a better working environment for nurses. Develops an algorithm for scheduling nursing personnel. Contrary to the current hospital approach, which schedules nurses on a person-by-person basis, the proposed algorithm constructs schedules on a day-by-day basis. The algorithm has inherent flexibility in handling a variety of possible constraints and goals, similar to other non-cyclical approaches. But, unlike most other non-cyclical approaches, it can also generate a quality schedule in a short time on a microcomputer. The algorithm was coded in C language and run on a microcomputer. The developed software is currently implemented at a leading hospital in Taiwan. The response to the initial implementation is quite promising.

  8. Computing Game-Theoretic Solutions for Security in the Medium Term

    DTIC Science & Technology

    This project concerns the design of algorithms for computing game- theoretic solutions . (Game theory concerns how to act in a strategically optimal...way in environments with other agents who also seek to act optimally but have different , and possibly opposite, interests .) Such algorithms have...recently found application in a number of real-world security applications, including among others airport security, scheduling Federal Air Marshals, and

  9. Wind Power Ramping Product for Increasing Power System Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Mingjian; Zhang, Jie; Wu, Hongyu

    With increasing penetrations of wind power, system operators are concerned about a potential lack of system flexibility and ramping capacity in real-time dispatch stages. In this paper, a modified dispatch formulation is proposed considering the wind power ramping product (WPRP). A swinging door algorithm (SDA) and dynamic programming are combined and used to detect WPRPs in the next scheduling periods. The detected WPRPs are included in the unit commitment (UC) formulation considering ramping capacity limits, active power limits, and flexible ramping requirements. The modified formulation is solved by mixed integer linear programming. Numerical simulations on a modified PJM 5-bus Systemmore » show the effectiveness of the model considering WPRP, which not only reduces the production cost but also does not affect the generation schedules of thermal units.« less

  10. Analysis of Application Power and Schedule Composition in a High Performance Computing Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmore, Ryan; Gruchalla, Kenny; Phillips, Caleb

    As the capacity of high performance computing (HPC) systems continues to grow, small changes in energy management have the potential to produce significant energy savings. In this paper, we employ an extensive informatics system for aggregating and analyzing real-time performance and power use data to evaluate energy footprints of jobs running in an HPC data center. We look at the effects of algorithmic choices for a given job on the resulting energy footprints, and analyze application-specific power consumption, and summarize average power use in the aggregate. All of these views reveal meaningful power variance between classes of applications as wellmore » as chosen methods for a given job. Using these data, we discuss energy-aware cost-saving strategies based on reordering the HPC job schedule. Using historical job and power data, we present a hypothetical job schedule reordering that: (1) reduces the facility's peak power draw and (2) manages power in conjunction with a large-scale photovoltaic array. Lastly, we leverage this data to understand the practical limits on predicting key power use metrics at the time of submission.« less

  11. Operating room scheduling using hybrid clustering priority rule and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Santoso, Linda Wahyuni; Sinawan, Aisyah Ashrinawati; Wijaya, Andi Rahadiyan; Sudiarso, Andi; Masruroh, Nur Aini; Herliansyah, Muhammad Kusumawan

    2017-11-01

    Operating room is a bottleneck resource in most hospitals so that operating room scheduling system will influence the whole performance of the hospitals. This research develops a mathematical model of operating room scheduling for elective patients which considers patient priority with limit number of surgeons, operating rooms, and nurse team. Clustering analysis was conducted to the data of surgery durations using hierarchical and non-hierarchical methods. The priority rule of each resulting cluster was determined using Shortest Processing Time method. Genetic Algorithm was used to generate daily operating room schedule which resulted in the lowest values of patient waiting time and nurse overtime. The computational results show that this proposed model reduced patient waiting time by approximately 32.22% and nurse overtime by approximately 32.74% when compared to actual schedule.

  12. Open shop scheduling problem to minimize total weighted completion time

    NASA Astrophysics Data System (ADS)

    Bai, Danyu; Zhang, Zhihai; Zhang, Qiang; Tang, Mengqian

    2017-01-01

    A given number of jobs in an open shop scheduling environment must each be processed for given amounts of time on each of a given set of machines in an arbitrary sequence. This study aims to achieve a schedule that minimizes total weighted completion time. Owing to the strong NP-hardness of the problem, the weighted shortest processing time block (WSPTB) heuristic is presented to obtain approximate solutions for large-scale problems. Performance analysis proves the asymptotic optimality of the WSPTB heuristic in the sense of probability limits. The largest weight block rule is provided to seek optimal schedules in polynomial time for a special case. A hybrid discrete differential evolution algorithm is designed to obtain high-quality solutions for moderate-scale problems. Simulation experiments demonstrate the effectiveness of the proposed algorithms.

  13. Choosing a software design method for real-time Ada applications: JSD process inversion as a means to tailor a design specification to the performance requirements and target machine

    NASA Technical Reports Server (NTRS)

    Withey, James V.

    1986-01-01

    The validity of real-time software is determined by its ability to execute on a computer within the time constraints of the physical system it is modeling. In many applications the time constraints are so critical that the details of process scheduling are elevated to the requirements analysis phase of the software development cycle. It is not uncommon to find specifications for a real-time cyclic executive program included to assumed in such requirements. It was found that prelininary designs structured around this implementation abscure the data flow of the real world system that is modeled and that it is consequently difficult and costly to maintain, update and reuse the resulting software. A cyclic executive is a software component that schedules and implicitly synchronizes the real-time software through periodic and repetitive subroutine calls. Therefore a design method is sought that allows the deferral of process scheduling to the later stages of design. The appropriate scheduling paradigm must be chosen given the performance constraints, the largest environment and the software's lifecycle. The concept of process inversion is explored with respect to the cyclic executive.

  14. Research in Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  15. Optimal recombination in genetic algorithms for flowshop scheduling problems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  16. Solving a real-world problem using an evolving heuristically driven schedule builder.

    PubMed

    Hart, E; Ross, P; Nelson, J

    1998-01-01

    This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.

  17. A Survey of Recent MARTe Based Systems

    NASA Astrophysics Data System (ADS)

    Neto, André C.; Alves, Diogo; Boncagni, Luca; Carvalho, Pedro J.; Valcarcel, Daniel F.; Barbalace, Antonio; De Tommasi, Gianmaria; Fernandes, Horácio; Sartori, Filippo; Vitale, Enzo; Vitelli, Riccardo; Zabeo, Luca

    2011-08-01

    The Multithreaded Application Real-Time executor (MARTe) is a data driven framework environment for the development and deployment of real-time control algorithms. The main ideas which led to the present version of the framework were to standardize the development of real-time control systems, while providing a set of strictly bounded standard interfaces to the outside world and also accommodating a collection of facilities which promote the speed and ease of development, commissioning and deployment of such systems. At the core of every MARTe based application, is a set of independent inter-communicating software blocks, named Generic Application Modules (GAM), orchestrated by a real-time scheduler. The platform independence of its core library provides MARTe the necessary robustness and flexibility for conveniently testing applications in different environments including non-real-time operating systems. MARTe is already being used in several machines, each with its own peculiarities regarding hardware interfacing, supervisory control configuration, operating system and target control application. This paper presents and compares the most recent results of systems using MARTe: the JET Vertical Stabilization system, which uses the Real Time Application Interface (RTAI) operating system on Intel multi-core processors; the COMPASS plasma control system, driven by Linux RT also on Intel multi-core processors; ISTTOK real-time tomography equilibrium reconstruction which shares the same support configuration of COMPASS; JET error field correction coils based on VME, PowerPC and VxWorks; FTU LH reflected power system running on VME, Intel with RTAI.

  18. Single machine total completion time minimization scheduling with a time-dependent learning effect and deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Bo; Wang, Ming-Zheng; Ji, Ping

    2012-05-01

    In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of -1 < a < 0, where a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.

  19. Real-Time MENTAT programming language and architecture

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  20. A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Thammano, Arit; Teekeng, Wannaporn

    2015-05-01

    The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.

  1. A random-key encoded harmony search approach for energy-efficient production scheduling with shared resources

    NASA Astrophysics Data System (ADS)

    Garcia-Santiago, C. A.; Del Ser, J.; Upton, C.; Quilligan, F.; Gil-Lopez, S.; Salcedo-Sanz, S.

    2015-11-01

    When seeking near-optimal solutions for complex scheduling problems, meta-heuristics demonstrate good performance with affordable computational effort. This has resulted in a gravitation towards these approaches when researching industrial use-cases such as energy-efficient production planning. However, much of the previous research makes assumptions about softer constraints that affect planning strategies and about how human planners interact with the algorithm in a live production environment. This article describes a job-shop problem that focuses on minimizing energy consumption across a production facility of shared resources. The application scenario is based on real facilities made available by the Irish Center for Manufacturing Research. The formulated problem is tackled via harmony search heuristics with random keys encoding. Simulation results are compared to a genetic algorithm, a simulated annealing approach and a first-come-first-served scheduling. The superior performance obtained by the proposed scheduler paves the way towards its practical implementation over industrial production chains.

  2. Compilation time analysis to minimize run-time overhead in preemptive scheduling on multiprocessors

    NASA Astrophysics Data System (ADS)

    Wauters, Piet; Lauwereins, Rudy; Peperstraete, J.

    1994-10-01

    This paper describes a scheduling method for hard real-time Digital Signal Processing (DSP) applications, implemented on a multi-processor. Due to the very high operating frequencies of DSP applications (typically hundreds of kHz) runtime overhead should be kept as small as possible. Because static scheduling introduces very little run-time overhead it is used as much as possible. Dynamic pre-emption of tasks is allowed if and only if it leads to better performance in spite of the extra run-time overhead. We essentially combine static scheduling with dynamic pre-emption using static priorities. Since we are dealing with hard real-time applications we must be able to guarantee at compile-time that all timing requirements will be satisfied at run-time. We will show that our method performs at least as good as any static scheduling method. It also reduces the total amount of dynamic pre-emptions compared with run time methods like deadline monotonic scheduling.

  3. Representations and evolutionary operators for the scheduling of pump operations in water distribution networks.

    PubMed

    López-Ibáñez, Manuel; Prasad, T Devi; Paechter, Ben

    2011-01-01

    Reducing the energy consumption of water distribution networks has never had more significance. The greatest energy savings can be obtained by carefully scheduling the operations of pumps. Schedules can be defined either implicitly, in terms of other elements of the network such as tank levels; or explicitly, by specifying the time during which each pump is on/off. The traditional representation of explicit schedules is a string of binary values with each bit representing pump on/off status during a particular time interval. In this paper, we formally define and analyze two new explicit representations based on time-controlled triggers, where the maximum number of pump switches is established beforehand and the schedule may contain fewer than the maximum number of switches. In these representations, a pump schedule is divided into a series of integers with each integer representing the number of hours for which a pump is active/inactive. This reduces the number of potential schedules compared to the binary representation, and allows the algorithm to operate on the feasible region of the search space. We propose evolutionary operators for these two new representations. The new representations and their corresponding operations are compared with the two most-used representations in pump scheduling, namely, binary representation and level-controlled triggers. A detailed statistical analysis of the results indicates which parameters have the greatest effect on the performance of evolutionary algorithms. The empirical results show that an evolutionary algorithm using the proposed representations is an improvement over the results obtained by a recent state of the art hybrid genetic algorithm for pump scheduling using level-controlled triggers.

  4. Time Triggered Ethernet System Testing Means and Method

    NASA Technical Reports Server (NTRS)

    Smithgall, William Todd (Inventor); Hall, Brendan (Inventor); Varadarajan, Srivatsan (Inventor)

    2014-01-01

    Methods and apparatus are provided for evaluating the performance of a Time Triggered Ethernet (TTE) system employing Time Triggered (TT) communication. A real TTE system under test (SUT) having real input elements communicating using TT messages with output elements via one or more first TTE switches during a first time interval schedule established for the SUT. A simulation system is also provided having input simulators that communicate using TT messages via one or more second TTE switches with the same output elements during a second time interval schedule established for the simulation system. The first and second time interval schedules are off-set slightly so that messages from the input simulators, when present, arrive at the output elements prior to messages from the analogous real inputs, thereby having priority over messages from the real inputs and causing the system to operate based on the simulated inputs when present.

  5. A Study on Real-Time Scheduling Methods in Holonic Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Iwamura, Koji; Taimizu, Yoshitaka; Sugimura, Nobuhiro

    Recently, new architectures of manufacturing systems have been proposed to realize flexible control structures of the manufacturing systems, which can cope with the dynamic changes in the volume and the variety of the products and also the unforeseen disruptions, such as failures of manufacturing resources and interruptions by high priority jobs. They are so called as the autonomous distributed manufacturing system, the biological manufacturing system and the holonic manufacturing system. Rule-based scheduling methods were proposed and applied to the real-time production scheduling problems of the HMS (Holonic Manufacturing System) in the previous report. However, there are still remaining problems from the viewpoint of the optimization of the whole production schedules. New procedures are proposed, in the present paper, to select the production schedules, aimed at generating effective production schedules in real-time. The proposed methods enable the individual holons to select suitable machining operations to be carried out in the next time period. Coordination process among the holons is also proposed to carry out the coordination based on the effectiveness values of the individual holons.

  6. Decomposition of timed automata for solving scheduling problems

    NASA Astrophysics Data System (ADS)

    Nishi, Tatsushi; Wakatake, Masato

    2014-03-01

    A decomposition algorithm for scheduling problems based on timed automata (TA) model is proposed. The problem is represented as an optimal state transition problem for TA. The model comprises of the parallel composition of submodels such as jobs and resources. The procedure of the proposed methodology can be divided into two steps. The first step is to decompose the TA model into several submodels by using decomposable condition. The second step is to combine individual solution of subproblems for the decomposed submodels by the penalty function method. A feasible solution for the entire model is derived through the iterated computation of solving the subproblem for each submodel. The proposed methodology is applied to solve flowshop and jobshop scheduling problems. Computational experiments demonstrate the effectiveness of the proposed algorithm compared with a conventional TA scheduling algorithm without decomposition.

  7. SPORT: An Algorithm for Divisible Load Scheduling with Result Collection on Heterogeneous Systems

    NASA Astrophysics Data System (ADS)

    Ghatpande, Abhay; Nakazato, Hidenori; Beaumont, Olivier; Watanabe, Hiroshi

    Divisible Load Theory (DLT) is an established mathematical framework to study Divisible Load Scheduling (DLS). However, traditional DLT does not address the scheduling of results back to source (i. e., result collection), nor does it comprehensively deal with system heterogeneity. In this paper, the DLSRCHETS (DLS with Result Collection on HET-erogeneous Systems) problem is addressed. The few papers to date that have dealt with DLSRCHETS, proposed simplistic LIFO (Last In, First Out) and FIFO (First In, First Out) type of schedules as solutions to DLSRCHETS. In this paper, a new polynomial time heuristic algorithm, SPORT (System Parameters based Optimized Result Transfer), is proposed as a solution to the DLSRCHETS problem. With the help of simulations, it is proved that the performance of SPORT is significantly better than existing algorithms. The other major contributions of this paper include, for the first time ever, (a) the derivation of the condition to identify the presence of idle time in a FIFO schedule for two processors, (b) the identification of the limiting condition for the optimality of FIFO and LIFO schedules for two processors, and (c) the introduction of the concept of equivalent processor in DLS for heterogeneous systems with result collection.

  8. Real-time contingency handling in MAESTRO

    NASA Technical Reports Server (NTRS)

    Britt, Daniel L.; Geoffroy, Amy L.

    1992-01-01

    A scheduling and resource management system named MAESTRO was interfaced with a Space Station Module Power Management and Distribution (SSM/PMAD) breadboard at MSFC. The combined system serves to illustrate the integration of planning, scheduling, and control in a realistic, complex domain. This paper briefly describes the functional elements of the combined system, including normal and contingency operational scenarios, then focusses on the method used by the scheduler to handle real-time contingencies.

  9. Computing the Expected Cost of an Appointment Schedule for Statistically Identical Customers with Probabilistic Service Times

    PubMed Central

    Dietz, Dennis C.

    2014-01-01

    A cogent method is presented for computing the expected cost of an appointment schedule where customers are statistically identical, the service time distribution has known mean and variance, and customer no-shows occur with time-dependent probability. The approach is computationally efficient and can be easily implemented to evaluate candidate schedules within a schedule optimization algorithm. PMID:24605070

  10. An Analysis of Input/Output Paradigms for Real-Time Systems

    DTIC Science & Technology

    1990-07-01

    timing and concurrency aspects of real - time systems . This paper illustrates how to build a mathematical model of the schedulability of a real-time...various design alternatives. The primary characteristic that distinguishes real-time system from non- real - time systems is the importance of time. The

  11. Intelligent Scheduling for Underground Mobile Mining Equipment.

    PubMed

    Song, Zhen; Schunnesson, Håkan; Rinne, Mikael; Sturgul, John

    2015-01-01

    Many studies have been carried out and many commercial software applications have been developed to improve the performances of surface mining operations, especially for the loader-trucks cycle of surface mining. However, there have been quite few studies aiming to improve the mining process of underground mines. In underground mines, mobile mining equipment is mostly scheduled instinctively, without theoretical support for these decisions. Furthermore, in case of unexpected events, it is hard for miners to rapidly find solutions to reschedule and to adapt the changes. This investigation first introduces the motivation, the technical background, and then the objective of the study. A decision support instrument (i.e. schedule optimizer for mobile mining equipment) is proposed and described to address this issue. The method and related algorithms which are used in this instrument are presented and discussed. The proposed method was tested by using a real case of Kittilä mine located in Finland. The result suggests that the proposed method can considerably improve the working efficiency and reduce the working time of the underground mine.

  12. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    PubMed Central

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  13. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    PubMed

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  14. Task scheduling in dataflow computer architectures

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1994-01-01

    Dataflow computers provide a platform for the solution of a large class of computational problems, which includes digital signal processing and image processing. Many typical applications are represented by a set of tasks which can be repetitively executed in parallel as specified by an associated dataflow graph. Research in this area aims to model these architectures, develop scheduling procedures, and predict the transient and steady state performance. Researchers at NASA have created a model and developed associated software tools which are capable of analyzing a dataflow graph and predicting its runtime performance under various resource and timing constraints. These models and tools were extended and used in this work. Experiments using these tools revealed certain properties of such graphs that require further study. Specifically, the transient behavior at the beginning of the execution of a graph can have a significant effect on the steady state performance. Transformation and retiming of the application algorithm and its initial conditions can produce a different transient behavior and consequently different steady state performance. The effect of such transformations on the resource requirements or under resource constraints requires extensive study. Task scheduling to obtain maximum performance (based on user-defined criteria), or to satisfy a set of resource constraints, can also be significantly affected by a transformation of the application algorithm. Since task scheduling is performed by heuristic algorithms, further research is needed to determine if new scheduling heuristics can be developed that can exploit such transformations. This work has provided the initial development for further long-term research efforts. A simulation tool was completed to provide insight into the transient and steady state execution of a dataflow graph. A set of scheduling algorithms was completed which can operate in conjunction with the modeling and performance tools previously developed. Initial studies on the performance of these algorithms were done to examine the effects of application algorithm transformations as measured by such quantities as number of processors, time between outputs, time between input and output, communication time, and memory size.

  15. Real-time design with peer tasks

    NASA Technical Reports Server (NTRS)

    Goforth, Andre; Howes, Norman R.; Wood, Jonathan D.; Barnes, Michael J.

    1995-01-01

    We introduce a real-time design methodology for large scale, distributed, parallel architecture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with timing requirements (deadlines) found in user's specification. A work item consists of a collection of tasks of equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer whereas our method schedules work items to meet user's specification deadlines (sometimes called end-to-end deadlines). Our method supports these scheduling properties. Work item scheduling is based on domain specific importance instead of task level urgency and still meets as many user specification deadlines as can be met by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the throughput, measured in work items per second. Third, throughput is not degraded during overload and instead of resorting to task shedding during overload, the designer can specify which work items to shed. We prove these properties in a mathematical model.

  16. Coordinated scheduling for dynamic real-time systems

    NASA Technical Reports Server (NTRS)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  17. Scheduling Results for the THEMIS Observation Scheduling Tool

    NASA Technical Reports Server (NTRS)

    Mclaren, David; Rabideau, Gregg; Chien, Steve; Knight, Russell; Anwar, Sadaat; Mehall, Greg; Christensen, Philip

    2011-01-01

    We describe a scheduling system intended to assist in the development of instrument data acquisitions for the THEMIS instrument, onboard the Mars Odyssey spacecraft, and compare results from multiple scheduling algorithms. This tool creates observations of both (a) targeted geographical regions of interest and (b) general mapping observations, while respecting spacecraft constraints such as data volume, observation timing, visibility, lighting, season, and science priorities. This tool therefore must address both geometric and state/timing/resource constraints. We describe a tool that maps geometric polygon overlap constraints to set covering constraints using a grid-based approach. These set covering constraints are then incorporated into a greedy optimization scheduling algorithm incorporating operations constraints to generate feasible schedules. The resultant tool generates schedules of hundreds of observations per week out of potential thousands of observations. This tool is currently under evaluation by the THEMIS observation planning team at Arizona State University.

  18. Meta-RaPS Algorithm for the Aerial Refueling Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Kaplan, Sezgin; Arin, Arif; Rabadi, Ghaith

    2011-01-01

    The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for each fighter aircraft (job) on multiple tankers (machines). ARSP assumes that jobs have different release times and due dates, The total weighted tardiness is used to evaluate schedule's quality. Therefore, ARSP can be modeled as a parallel machine scheduling with release limes and due dates to minimize the total weighted tardiness. Since ARSP is NP-hard, it will be more appropriate to develop a pproimate or heuristic algorithm to obtain solutions in reasonable computation limes. In this paper, Meta-Raps-ATC algorithm is implemented to create high quality solutions. Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a recent and promising meta heuristic that is applied by introducing randomness to a construction heuristic. The Apparent Tardiness Rule (ATC), which is a good rule for scheduling problems with tardiness objective, is used to construct initial solutions which are improved by an exchanging operation. Results are presented for generated instances.

  19. Scheduling for Emergency Tasks in Industrial Wireless Sensor Networks

    PubMed Central

    Xia, Changqing; Kong, Linghe; Zeng, Peng

    2017-01-01

    Wireless sensor networks (WSNs) are widely applied in industrial manufacturing systems. By means of centralized control, the real-time requirement and reliability can be provided by WSNs in industrial production. Furthermore, many approaches reserve resources for situations in which the controller cannot perform centralized resource allocation. The controller assigns these resources as it becomes aware of when and where accidents have occurred. However, the reserved resources are limited, and such incidents are low-probability events. In addition, resource reservation may not be effective since the controller does not know when and where accidents will actually occur. To address this issue, we improve the reliability of scheduling for emergency tasks by proposing a method based on a stealing mechanism. In our method, an emergency task is transmitted by stealing resources allocated to regular flows. The challenges addressed in our work are as follows: (1) emergencies occur only occasionally, but the industrial system must deliver the corresponding flows within their deadlines when they occur; (2) we wish to minimize the impact of emergency flows by reducing the number of stolen flows. The contributions of this work are two-fold: (1) we first define intersections and blocking as new characteristics of flows; and (2) we propose a series of distributed routing algorithms to improve the schedulability and to reduce the impact of emergency flows. We demonstrate that our scheduling algorithm and analysis approach are better than the existing ones by extensive simulations. PMID:28726738

  20. An Online Scheduling Algorithm with Advance Reservation for Large-Scale Data Transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balman, Mehmet; Kosar, Tevfik

    Scientific applications and experimental facilities generate massive data sets that need to be transferred to remote collaborating sites for sharing, processing, and long term storage. In order to support increasingly data-intensive science, next generation research networks have been deployed to provide high-speed on-demand data access between collaborating institutions. In this paper, we present a practical model for online data scheduling in which data movement operations are scheduled in advance for end-to-end high performance transfers. In our model, data scheduler interacts with reservation managers and data transfer nodes in order to reserve available bandwidth to guarantee completion of jobs that aremore » accepted and confirmed to satisfy preferred time constraint given by the user. Our methodology improves current systems by allowing researchers and higher level meta-schedulers to use data placement as a service where theycan plan ahead and reserve the scheduler time in advance for their data movement operations. We have implemented our algorithm and examined possible techniques for incorporation into current reservation frameworks. Performance measurements confirm that the proposed algorithm is efficient and scalable.« less

  1. A Hybrid Procedural/Deductive Executive for Autonomous Spacecraft

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Gamble, Edward B.; Gat, Erann; Kessing, Ron; Kurien, James; Millar, William; Nayak, P. Pandurang; Plaunt, Christian; Williams, Brian C.; Lau, Sonie (Technical Monitor)

    1998-01-01

    The New Millennium Remote Agent (NMRA) will be the first AI system to control an actual spacecraft. The spacecraft domain places a strong premium on autonomy and requires dynamic recoveries and robust concurrent execution, all in the presence of tight real-time deadlines, changing goals, scarce resource constraints, and a wide variety of possible failures. To achieve this level of execution robustness, we have integrated a procedural executive based on generic procedures with a deductive model-based executive. A procedural executive provides sophisticated control constructs such as loops, parallel activity, locks, and synchronization which are used for robust schedule execution, hierarchical task decomposition, and routine configuration management. A deductive executive provides algorithms for sophisticated state inference and optimal failure recover), planning. The integrated executive enables designers to code knowledge via a combination of procedures and declarative models, yielding a rich modeling capability suitable to the challenges of real spacecraft control. The interface between the two executives ensures both that recovery sequences are smoothly merged into high-level schedule execution and that a high degree of reactivity is retained to effectively handle additional failures during recovery.

  2. JRTF: A Flexible Software Framework for Real-Time Control in Magnetic Confinement Nuclear Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Zheng, G. Z.; Zheng, W.; Chen, Z.; Yuan, T.; Yang, C.

    2016-04-01

    The magnetic confinement nuclear fusion experiments require various real-time control applications like plasma control. ITER has designed the Fast Plant System Controller (FPSC) for this job. ITER provided hardware and software standards and guidelines for building a FPSC. In order to develop various real-time FPSC applications efficiently, a flexible real-time software framework called J-TEXT real-time framework (JRTF) is developed by J-TEXT tokamak team. JRTF allowed developers to implement different functions as independent and reusable modules called Application Blocks (AB). The AB developers only need to focus on implementing the control tasks or the algorithms. The timing, scheduling, data sharing and eventing are handled by the JRTF pipelines. JRTF provides great flexibility on developing ABs. Unit test against ABs can be developed easily and ABs can even be used in non-JRTF applications. JRTF also provides interfaces allowing JRTF applications to be configured and monitored at runtime. JRTF is compatible with ITER standard FPSC hardware and ITER (Control, Data Access and Communication) CODAC Core software. It can be configured and monitored using (Experimental Physics and Industrial Control System) EPICS. Moreover the JRTF can be ported to different platforms and be integrated with supervisory control software other than EPICS. The paper presents the design and implementation of JRTF as well as brief test results.

  3. Improved NSGA model for multi objective operation scheduling and its evaluation

    NASA Astrophysics Data System (ADS)

    Li, Weining; Wang, Fuyu

    2017-09-01

    Reasonable operation can increase the income of the hospital and improve the patient’s satisfactory level. In this paper, by using multi object operation scheduling method with improved NSGA algorithm, it shortens the operation time, reduces the operation costand lowers the operation risk, the multi-objective optimization model is established for flexible operation scheduling, through the MATLAB simulation method, the Pareto solution is obtained, the standardization of data processing. The optimal scheduling scheme is selected by using entropy weight -Topsis combination method. The results show that the algorithm is feasible to solve the multi-objective operation scheduling problem, and provide a reference for hospital operation scheduling.

  4. A real time microcomputer implementation of sensor failure detection for turbofan engines

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Merrill, Walter C.

    1989-01-01

    An algorithm was developed which detects, isolates, and accommodates sensor failures using analytical redundancy. The performance of this algorithm was demonstrated on a full-scale F100 turbofan engine. The algorithm was implemented in real-time on a microprocessor-based controls computer which includes parallel processing and high order language programming. Parallel processing was used to achieve the required computational power for the real-time implementation. High order language programming was used in order to reduce the programming and maintenance costs of the algorithm implementation software. The sensor failure algorithm was combined with an existing multivariable control algorithm to give a complete control implementation with sensor analytical redundancy. The real-time microprocessor implementation of the algorithm which resulted in the successful completion of the algorithm engine demonstration, is described.

  5. Conversion-Integration of MSFC Nonlinear Signal Diagnostic Analysis Algorithms for Realtime Execution of MSFC's MPP Prototype System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1996-01-01

    NASA's advanced propulsion system Small Scale Magnetic Disturbances/Advanced Technology Development (SSME/ATD) has been undergoing extensive flight certification and developmental testing, which involves large numbers of health monitoring measurements. To enhance engine safety and reliability, detailed analysis and evaluation of the measurement signals are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce the risk of catastrophic system failures and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. During the development of SSME, ASRI participated in the research and development of several advanced non- linear signal diagnostic methods for health monitoring and failure prediction in turbomachinery components. However, due to the intensive computational requirement associated with such advanced analysis tasks, current SSME dynamic data analysis and diagnostic evaluation is performed off-line following flight or ground test with a typical diagnostic turnaround time of one to two days. The objective of MSFC's MPP Prototype System is to eliminate such 'diagnostic lag time' by achieving signal processing and analysis in real-time. Such an on-line diagnostic system can provide sufficient lead time to initiate corrective action and also to enable efficient scheduling of inspection, maintenance and repair activities. The major objective of this project was to convert and implement a number of advanced nonlinear diagnostic DSP algorithms in a format consistent with that required for integration into the Vanderbilt Multigraph Architecture (MGA) Model Based Programming environment. This effort will allow the real-time execution of these algorithms using the MSFC MPP Prototype System. ASRI has completed the software conversion and integration of a sequence of nonlinear signal analysis techniques specified in the SOW for real-time execution on MSFC's MPP Prototype. This report documents and summarizes the results of the contract tasks; provides the complete computer source code; including all FORTRAN/C Utilities; and all other utilities/supporting software libraries that are required for operation.

  6. Continual coordination through shared activities

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Barrett, Anthony C.

    2003-01-01

    Interacting agents that interleave planning and execution must reach consensus on their commitments to each other. In domains where agents have varying degrees of interaction and different constraints on communication and computation, agents will require different coordination protocols in order to efficiently reach consensus in real time. We briefly describe a largely unexplored class of realtime, distributed planning problems (inspired by interacting spacecraft missions), new challenges they pose, and a general approach to solving the problems. These problems involve self-interested agents that have infrequent communication but collaborate on joint activities. We describe a Shared Activity Coordination (SHAC) framework that provides a decentralized algorithm for negotiating the scheduling of shared activities over the lifetimes of separate missions, a soft, real-time approach to reaching consensus during execution with limited communication, and a foundation for customizing protocols for negotiating planner interactions. We apply SHAC to a realistic simulation of interacting Mars missions and illustrate the simplicity of protocol development.

  7. A De-centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments

    NASA Technical Reports Server (NTRS)

    Arora, Manish; Das, Sajal K.; Biswas, Rupak

    2002-01-01

    In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper, we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is decentralized, scalable, and overlaps the node coordination time with that of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.

  8. A De-Centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments

    NASA Technical Reports Server (NTRS)

    Arora, Manish; Das, Sajal K.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is de-centralized, scalable, and overlaps the node coordination time of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.

  9. Complexity of line-seru conversion for different scheduling rules and two improved exact algorithms for the multi-objective optimization.

    PubMed

    Yu, Yang; Wang, Sihan; Tang, Jiafu; Kaku, Ikou; Sun, Wei

    2016-01-01

    Productivity can be greatly improved by converting the traditional assembly line to a seru system, especially in the business environment with short product life cycles, uncertain product types and fluctuating production volumes. Line-seru conversion includes two decision processes, i.e., seru formation and seru load. For simplicity, however, previous studies focus on the seru formation with a given scheduling rule in seru load. We select ten scheduling rules usually used in seru load to investigate the influence of different scheduling rules on the performance of line-seru conversion. Moreover, we clarify the complexities of line-seru conversion for ten different scheduling rules from the theoretical perspective. In addition, multi-objective decisions are often used in line-seru conversion. To obtain Pareto-optimal solutions of multi-objective line-seru conversion, we develop two improved exact algorithms based on reducing time complexity and space complexity respectively. Compared with the enumeration based on non-dominated sorting to solve multi-objective problem, the two improved exact algorithms saves computation time greatly. Several numerical simulation experiments are performed to show the performance improvement brought by the two proposed exact algorithms.

  10. Composable Flexible Real-time Packet Scheduling for Networks on-Chip

    DTIC Science & Technology

    2012-05-16

    unclassified b . ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Copyright © 2012...words, real-time flows need to be composable. We set this as the design goal for our packet scheduling discipline developed in this paper. B . Motivating...with closest deadline is chosen to forward to the next router. B . Traffic Model We assume a traffic model for real-time flows similar to the one used

  11. An improved ant colony optimization algorithm with fault tolerance for job scheduling in grid computing systems

    PubMed Central

    Idris, Hajara; Junaidu, Sahalu B.; Adewumi, Aderemi O.

    2017-01-01

    The Grid scheduler, schedules user jobs on the best available resource in terms of resource characteristics by optimizing job execution time. Resource failure in Grid is no longer an exception but a regular occurring event as resources are increasingly being used by the scientific community to solve computationally intensive problems which typically run for days or even months. It is therefore absolutely essential that these long-running applications are able to tolerate failures and avoid re-computations from scratch after resource failure has occurred, to satisfy the user’s Quality of Service (QoS) requirement. Job Scheduling with Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure that jobs are executed successfully even when resource failure has occurred. The technique employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll back recovery strategy. Check-pointing aims at reducing the amount of work that is lost upon failure of the system by immediately saving the state of the system. A comparison of the proposed approach with an existing Ant Colony Optimization (ACO) algorithm is discussed. The experimental results of the implemented Fault Tolerance scheduling algorithm show that there is an improvement in the user’s QoS requirement over the existing ACO algorithm, which has no fault tolerance integrated in it. The performance evaluation of the two algorithms was measured in terms of the three main scheduling performance metrics: makespan, throughput and average turnaround time. PMID:28545075

  12. Real-time scheduling faces operational challenges.

    PubMed

    2005-01-01

    Online real-time patient scheduling presents a number of challenges. But a few advanced organizations are rolling out systems slowly, meeting those challenges as they go. And while this application is still too new to provide measurable benefits, anecdotal information seems to point to improvements in efficiency, patient satisfaction, and possibly quality of care.

  13. Surgery scheduling optimization considering real life constraints and comprehensive operation cost of operating room.

    PubMed

    Xiang, Wei; Li, Chong

    2015-01-01

    Operating Room (OR) is the core sector in hospital expenditure, the operation management of which involves a complete three-stage surgery flow, multiple resources, prioritization of the various surgeries, and several real-life OR constraints. As such reasonable surgery scheduling is crucial to OR management. To optimize OR management and reduce operation cost, a short-term surgery scheduling problem is proposed and defined based on the survey of the OR operation in a typical hospital in China. The comprehensive operation cost is clearly defined considering both under-utilization and overutilization. A nested Ant Colony Optimization (nested-ACO) incorporated with several real-life OR constraints is proposed to solve such a combinatorial optimization problem. The 10-day manual surgery schedules from a hospital in China are compared with the optimized schedules solved by the nested-ACO. Comparison results show the advantage using the nested-ACO in several measurements: OR-related time, nurse-related time, variation in resources' working time, and the end time. The nested-ACO considering real-life operation constraints such as the difference between first and following case, surgeries priority, and fixed nurses in pre/post-operative stage is proposed to solve the surgery scheduling optimization problem. The results clearly show the benefit of using the nested-ACO in enhancing the OR management efficiency and minimizing the comprehensive overall operation cost.

  14. Algorithm of composing the schedule of construction and installation works

    NASA Astrophysics Data System (ADS)

    Nehaj, Rustam; Molotkov, Georgij; Rudchenko, Ivan; Grinev, Anatolij; Sekisov, Aleksandr

    2017-10-01

    An algorithm for scheduling works is developed, in which the priority of the work corresponds to the total weight of the subordinate works, the vertices of the graph, and it is proved that for graphs of the tree type the algorithm is optimal. An algorithm is synthesized to reduce the search for solutions when drawing up schedules of construction and installation works, allocating a subset with the optimal solution of the problem of the minimum power, which is determined by the structure of its initial data and numerical values. An algorithm for scheduling construction and installation work is developed, taking into account the schedule for the movement of brigades, which is characterized by the possibility to efficiently calculate the values of minimizing the time of work performance by the parameters of organizational and technological reliability through the use of the branch and boundary method. The program of the computational algorithm was compiled in the MatLAB-2008 program. For the initial data of the matrix, random numbers were taken, uniformly distributed in the range from 1 to 100. It takes 0.5; 2.5; 7.5; 27 minutes to solve the problem. Thus, the proposed method for estimating the lower boundary of the solution is sufficiently accurate and allows efficient solution of the minimax task of scheduling construction and installation works.

  15. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem.

    PubMed

    Rajeswari, M; Amudhavel, J; Pothula, Sujatha; Dhavachelvan, P

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.

  16. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem

    PubMed Central

    Amudhavel, J.; Pothula, Sujatha; Dhavachelvan, P.

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria. PMID:28473849

  17. Model Checking Real Time Java Using Java PathFinder

    NASA Technical Reports Server (NTRS)

    Lindstrom, Gary; Mehlitz, Peter C.; Visser, Willem

    2005-01-01

    The Real Time Specification for Java (RTSJ) is an augmentation of Java for real time applications of various degrees of hardness. The central features of RTSJ are real time threads; user defined schedulers; asynchronous events, handlers, and control transfers; a priority inheritance based default scheduler; non-heap memory areas such as immortal and scoped, and non-heap real time threads whose execution is not impeded by garbage collection. The Robust Software Systems group at NASA Ames Research Center has JAVA PATHFINDER (JPF) under development, a Java model checker. JPF at its core is a state exploring JVM which can examine alternative paths in a Java program (e.g., via backtracking) by trying all nondeterministic choices, including thread scheduling order. This paper describes our implementation of an RTSJ profile (subset) in JPF, including requirements, design decisions, and current implementation status. Two examples are analyzed: jobs on a multiprogramming operating system, and a complex resource contention example involving autonomous vehicles crossing an intersection. The utility of JPF in finding logic and timing errors is illustrated, and the remaining challenges in supporting all of RTSJ are assessed.

  18. A Bee Evolutionary Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop Scheduling.

    PubMed

    Deng, Qianwang; Gong, Guiliang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua

    2017-01-01

    Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N , in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.

  19. A Bee Evolutionary Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop Scheduling

    PubMed Central

    Deng, Qianwang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua

    2017-01-01

    Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed. PMID:28458687

  20. Resource-constrained scheduling with hard due windows and rejection penalties

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher

    2016-09-01

    This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.

  1. A Heuristics Approach for Classroom Scheduling Using Genetic Algorithm Technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Izah R.; Sufahani, Suliadi; Ali, Maselan; Razali, Siti N. A. M.

    2018-04-01

    Reshuffling and arranging classroom based on the capacity of the audience, complete facilities, lecturing time and many more may lead to a complexity of classroom scheduling. While trying to enhance the productivity in classroom planning, this paper proposes a heuristic approach for timetabling optimization. A new algorithm was produced to take care of the timetabling problem in a university. The proposed of heuristics approach will prompt a superior utilization of the accessible classroom space for a given time table of courses at the university. Genetic Algorithm through Java programming languages were used in this study and aims at reducing the conflicts and optimizes the fitness. The algorithm considered the quantity of students in each class, class time, class size, time accessibility in each class and lecturer who in charge of the classes.

  2. Artificial immune algorithm for multi-depot vehicle scheduling problems

    NASA Astrophysics Data System (ADS)

    Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling

    2008-10-01

    In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.

  3. Algorithms for Scheduling and Network Problems

    DTIC Science & Technology

    1991-09-01

    time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and

  4. Runway Operations Planning: A Two-Stage Heuristic Algorithm

    NASA Technical Reports Server (NTRS)

    Anagnostakis, Ioannis; Clarke, John-Paul

    2003-01-01

    The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, can also be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. This paper introduces a two stage heuristic algorithm for solving the Runway Operations Planning (ROP) problem. In the first stage, sequences of departure class slots and runway crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program with a Branch & Bound algorithm implementation. Preliminary results from this implementation of the two-stage algorithm on real-world traffic data are presented.

  5. An Integer Batch Scheduling Model for a Single Machine with Simultaneous Learning and Deterioration Effects to Minimize Total Actual Flow Time

    NASA Astrophysics Data System (ADS)

    Yusriski, R.; Sukoyo; Samadhi, T. M. A. A.; Halim, A. H.

    2016-02-01

    In the manufacturing industry, several identical parts can be processed in batches, and setup time is needed between two consecutive batches. Since the processing times of batches are not always fixed during a scheduling period due to learning and deterioration effects, this research deals with batch scheduling problems with simultaneous learning and deterioration effects. The objective is to minimize total actual flow time, defined as a time interval between the arrival of all parts at the shop and their common due date. The decision variables are the number of batches, integer batch sizes, and the sequence of the resulting batches. This research proposes a heuristic algorithm based on the Lagrange Relaxation. The effectiveness of the proposed algorithm is determined by comparing the resulting solutions of the algorithm to the respective optimal solution obtained from the enumeration method. Numerical experience results show that the average of difference among the solutions is 0.05%.

  6. Improved teaching-learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Buddala, Raviteja; Mahapatra, Siba Sankar

    2017-11-01

    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.

  7. Real-time energy-saving metro train rescheduling with primary delay identification

    PubMed Central

    Li, Keping; Schonfeld, Paul

    2018-01-01

    This paper aims to reschedule online metro trains in delay scenarios. A graph representation and a mixed integer programming model are proposed to formulate the optimization problem. The solution approach is a two-stage optimization method. In the first stage, based on a proposed train state graph and system analysis, the primary and flow-on delays are specifically analyzed and identified with a critical path algorithm. For the second stage a hybrid genetic algorithm is designed to optimize the schedule, with the delay identification results as input. Then, based on the infrastructure data of Beijing Subway Line 4 of China, case studies are presented to demonstrate the effectiveness and efficiency of the solution approach. The results show that the algorithm can quickly and accurately identify primary delays among different types of delays. The economic cost of energy consumption and total delay is considerably reduced (by more than 10% in each case). The computation time of the Hybrid-GA is low enough for rescheduling online. Sensitivity analyses further demonstrate that the proposed approach can be used as a decision-making support tool for operators. PMID:29474471

  8. Three list scheduling temporal partitioning algorithm of time space characteristic analysis and compare for dynamic reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Chen, Naijin

    2013-03-01

    Level Based Partitioning (LBP) algorithm, Cluster Based Partitioning (CBP) algorithm and Enhance Static List (ESL) temporal partitioning algorithm based on adjacent matrix and adjacent table are designed and implemented in this paper. Also partitioning time and memory occupation based on three algorithms are compared. Experiment results show LBP partitioning algorithm possesses the least partitioning time and better parallel character, as far as memory occupation and partitioning time are concerned, algorithms based on adjacent table have less partitioning time and less space memory occupation.

  9. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.

    PubMed

    Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.

  10. Real Time Coincidence Processing Algorithm for Geiger Mode LADAR using FPGAs

    DTIC Science & Technology

    2017-01-09

    Defense for Research and Engineering. Real Time Coincidence Processing Algorithm for Geiger-Mode Ladar using FPGAs Rufo A. Antonio1, Alexandru N...the first ever Geiger-mode ladar processing al- gorithm that is suitable for implementation on an FPGA enabling real time pro- cessing and data...developed embedded FPGA real time processing algorithms that take noisy raw data, streaming at upwards of 1GB/sec, and filters the data to obtain a near- ly

  11. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  12. DSN Resource Scheduling

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Baldwin, John

    2007-01-01

    TIGRAS is client-side software, which provides tracking-station equipment planning, allocation, and scheduling services to the DSMS (Deep Space Mission System). TIGRAS provides functions for schedulers to coordinate the DSN (Deep Space Network) antenna usage time and to resolve the resource usage conflicts among tracking passes, antenna calibrations, maintenance, and system testing activities. TIGRAS provides a fully integrated multi-pane graphical user interface for all scheduling operations. This is a great improvement over the legacy VAX VMS command line user interface. TIGRAS has the capability to handle all DSN resource scheduling aspects from long-range to real time. TIGRAS assists NASA mission operations for DSN tracking of station equipment resource request processes from long-range load forecasts (ten years or longer), to midrange, short-range, and real-time (less than one week) emergency tracking plan changes. TIGRAS can be operated by NASA mission operations worldwide to make schedule requests for the DSN station equipment.

  13. Real-Time Embedded High Performance Computing: Communications Scheduling.

    DTIC Science & Technology

    1995-06-01

    real - time operating system must explicitly limit the degradation of the timing performance of all processes as the number of processes...adequately supported by a real - time operating system , could compound the development problems encountered in the past. Many experts feel that the... real - time operating system support for an MPP, although they all provide some support for distributed real-time applications. A distributed real

  14. A Model and Algorithms For a Software Evolution Control System

    DTIC Science & Technology

    1993-12-01

    dynamic scheduling approaches can be found in [67). Task scheduling can also be characterized as preemptive and nonpreemptive . A task is preemptive ...is NP-hard for both the preemptive and nonpreemptive cases [671 [84). Scheduling nonpreemptive tasks with arbitrary ready times is NP-hard in both...the preemptive and nonpreemptive cases [671 [841. Scheduling nonpreemptive tasks with arbitrary ready times is NP-hard in both multiprocessor and

  15. A Comparison of Techniques for Scheduling Fleets of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    Earth observing satellite (EOS) scheduling is a complex real-world domain representative of a broad class of over-subscription scheduling problems. Over-subscription problems are those where requests for a facility exceed its capacity. These problems arise in a wide variety of NASA and terrestrial domains and are .XI important class of scheduling problems because such facilities often represent large capital investments. We have run experiments comparing multiple variants of the genetic algorithm, hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on two variants of a realistically-sized model of the EOS scheduling problem. These are implemented as permutation-based methods; methods that search in the space of priority orderings of observation requests and evaluate each permutation by using it to drive a greedy scheduler. Simulated annealing performs best and random mutation operators outperform our squeaky (more intelligent) operator. Furthermore, taking smaller steps towards the end of the search improves performance.

  16. Asymptotic analysis of SPTA-based algorithms for no-wait flow shop scheduling problem with release dates.

    PubMed

    Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang

    2014-01-01

    We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.

  17. Asymptotic Analysis of SPTA-Based Algorithms for No-Wait Flow Shop Scheduling Problem with Release Dates

    PubMed Central

    Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang

    2014-01-01

    We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms. PMID:24764774

  18. Optimization of a pH-shift control strategy for producing monoclonal antibodies in Chinese hamster ovary cell cultures using a pH-dependent dynamic model.

    PubMed

    Hogiri, Tomoharu; Tamashima, Hiroshi; Nishizawa, Akitoshi; Okamoto, Masahiro

    2018-02-01

    To optimize monoclonal antibody (mAb) production in Chinese hamster ovary cell cultures, culture pH should be temporally controlled with high resolution. In this study, we propose a new pH-dependent dynamic model represented by simultaneous differential equations including a minimum of six system component, depending on pH value. All kinetic parameters in the dynamic model were estimated using an evolutionary numerical optimization (real-coded genetic algorithm) method based on experimental time-course data obtained at different pH values ranging from 6.6 to 7.2. We determined an optimal pH-shift schedule theoretically. We validated this optimal pH-shift schedule experimentally and mAb production increased by approximately 40% with this schedule. Throughout this study, it was suggested that the culture pH-shift optimization strategy using a pH-dependent dynamic model is suitable to optimize any pH-shift schedule for CHO cell lines used in mAb production projects. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Layout Study and Application of Mobile App Recommendation Approach Based On Spark Streaming Framework

    NASA Astrophysics Data System (ADS)

    Wang, H. T.; Chen, T. T.; Yan, C.; Pan, H.

    2018-05-01

    For App recommended areas of mobile phone software, made while using conduct App application recommended combined weighted Slope One algorithm collaborative filtering algorithm items based on further improvement of the traditional collaborative filtering algorithm in cold start, data matrix sparseness and other issues, will recommend Spark stasis parallel algorithm platform, the introduction of real-time streaming streaming real-time computing framework to improve real-time software applications recommended.

  20. A Sarsa(λ)-based control model for real-time traffic light coordination.

    PubMed

    Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  1. Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)

    1998-01-01

    The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.

  2. Efficient mapping algorithms for scheduling robot inverse dynamics computation on a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Lee, C. S. G.; Chen, C. L.

    1989-01-01

    Two efficient mapping algorithms for scheduling the robot inverse dynamics computation consisting of m computational modules with precedence relationship to be executed on a multiprocessor system consisting of p identical homogeneous processors with processor and communication costs to achieve minimum computation time are presented. An objective function is defined in terms of the sum of the processor finishing time and the interprocessor communication time. The minimax optimization is performed on the objective function to obtain the best mapping. This mapping problem can be formulated as a combination of the graph partitioning and the scheduling problems; both have been known to be NP-complete. Thus, to speed up the searching for a solution, two heuristic algorithms were proposed to obtain fast but suboptimal mapping solutions. The first algorithm utilizes the level and the communication intensity of the task modules to construct an ordered priority list of ready modules and the module assignment is performed by a weighted bipartite matching algorithm. For a near-optimal mapping solution, the problem can be solved by the heuristic algorithm with simulated annealing. These proposed optimization algorithms can solve various large-scale problems within a reasonable time. Computer simulations were performed to evaluate and verify the performance and the validity of the proposed mapping algorithms. Finally, experiments for computing the inverse dynamics of a six-jointed PUMA-like manipulator based on the Newton-Euler dynamic equations were implemented on an NCUBE/ten hypercube computer to verify the proposed mapping algorithms. Computer simulation and experimental results are compared and discussed.

  3. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  4. Advertisement scheduling on commercial radio station using genetics algorithm

    NASA Astrophysics Data System (ADS)

    Purnamawati, S.; Nababan, E. B.; Tsani, B.; Taqyuddin, R.; Rahmat, R. F.

    2018-03-01

    On the commercial radio station, the advertising schedule is done manually, which resulted in ineffectiveness of ads schedule. Playback time consists of two types such as prime time and regular time. Radio Ads scheduling will be discussed in this research is based on ad playback schedule between 5am until 12am which rules every 15 minutes. It provides 3 slots ads with playback duration per ads maximum is 1 minute. If the radio broadcast time per day is 12 hours, then the maximum number of ads per day which can be aired is 76 ads. The other is the enactment of rules of prime time, namely the hours where the common people (listeners) have the greatest opportunity to listen to the radio, namely between the hours and hours of 4 am - 8 am, 6 pm - 10 pm. The number of screenings of the same ads on one day are limited to prime time ie 5 times, while for regular time is 8 times. Radio scheduling process is done using genetic algorithms which are composed of processes initialization chromosomes, selection, crossover and mutation. Study on chromosome 3 genes, each chromosome will be evaluated based on the value of fitness calculated based on the number of infractions that occurred on each individual chromosome. Where rule 1 is the number of screenings per ads must not be more than 5 times per day and rule 2 is there should never be two or more scheduling ads delivered on the same day and time. After fitness value of each chromosome is acquired, then the do the selection, crossover and mutation. From this research result, the optimal advertising schedule with schedule a whole day and ads data playback time ads with this level of accuracy: the average percentage was 83.79%.

  5. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    NASA Astrophysics Data System (ADS)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  6. Fast packet switching algorithms for dynamic resource control over ATM networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, R.P.; Keattihananant, P.; Chang, T.

    1996-12-01

    Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types ofmore » schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.« less

  7. Performance and policy dimensions in internet routing

    NASA Technical Reports Server (NTRS)

    Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.; Thyagarajan, Ajit

    1995-01-01

    The Internet Routing Project, referred to in this report as the 'Highball Project', has been investigating architectures suitable for networks spanning large geographic areas and capable of very high data rates. The Highball network architecture is based on a high speed crossbar switch and an adaptive, distributed, TDMA scheduling algorithm. The scheduling algorithm controls the instantaneous configuration and swell time of the switch, one of which is attached to each node. In order to send a single burst or a multi-burst packet, a reservation request is sent to all nodes. The scheduling algorithm then configures the switches immediately prior to the arrival of each burst, so it can be relayed immediately without requiring local storage. Reservations and housekeeping information are sent using a special broadcast-spanning-tree schedule. Progress to date in the Highball Project includes the design and testing of a suite of scheduling algorithms, construction of software reservation/scheduling simulators, and construction of a strawman hardware and software implementation. A prototype switch controller and timestamp generator have been completed and are in test. Detailed documentation on the algorithms, protocols and experiments conducted are given in various reports and papers published. Abstracts of this literature are included in the bibliography at the end of this report, which serves as an extended executive summary.

  8. Determination of the Underlying Task Scheduling Algorithm for an Ada Runtime System

    DTIC Science & Technology

    1989-12-01

    was also curious as to how well I could model the test cases with Ada programs . In particular, I wanted to see whether I could model the equal arrival...parameter relationshis=s required to detect the execution of individual algorithms. These test cases were modeled using Ada programs . Then, the...results were analyzed to determine whether the Ada programs were capable of revealing the task scheduling algorithm used by the Ada run-time system. This

  9. Performances of the New Real Time Tsunami Detection Algorithm applied to tide gauges data

    NASA Astrophysics Data System (ADS)

    Chierici, F.; Embriaco, D.; Morucci, S.

    2017-12-01

    Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection (TDA) based on the real-time tide removal and real-time band-pass filtering of seabed pressure time series acquired by Bottom Pressure Recorders. The TDA algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability with respect to the most widely used tsunami detection algorithm, while containing the computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. In this work we present the performance of the TDA algorithm applied to tide gauge data. We have adapted the new tsunami detection algorithm and the Monte Carlo test methodology to tide gauges. Sea level data acquired by coastal tide gauges in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event generated by Tohoku earthquake on March 11th 2011, using data recorded by several tide gauges scattered all over the Pacific area.

  10. Measuring Chemotherapy Appointment Duration and Variation Using Real-Time Location Systems.

    PubMed

    Barysauskas, Constance M; Hudgins, Gina; Gill, Katie Kupferberg; Camuso, Kristen M; Bagley, Janet; Rozanski, Sheila; Kadish, Sarah

    Clinical schedules drive resource utilization, cost, and patient wait time. Accurate appointment duration allocation ensures appropriate staffing ratios to daily caseloads and maximizes scarce resources. Dana-Farber Cancer Institute (DFCI) infusion appointment duration is adjusted by regimen using a consensus method of experts including pharmacists, nurses, and administrators. Using real-time location system (RTLS), we examined the accuracy of observed appointment duration compared with the scheduled duration. Appointment duration was calculated using RTLS at DFCI between August 1, 2013, and September 30, 2013. Duration was defined as the total time a patient occupied an infusion chair. The top 10 administered infusion regimens were investigated (n = 805). Median observed appointment durations were statistically different than the scheduled durations. Appointment durations were shorter than scheduled 98% (C), 95% (I), and 75% (F) of the time and longer than scheduled 77% (A) and 76% (G) of the time. Fifty-six percent of the longer than scheduled (A) appointments were at least 30 minute longer. RTLS provides reliable and unbiased data to improve schedule accuracy. Replacing consensus with system-based data may improve clinic flow, relieve staff stress, and increase patient satisfaction. Further investigation is warranted to elucidate factors that impact variation in appointment duration.

  11. Balancing Contention and Synchronization on the Intel Paragon

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Nicol, David M.

    1996-01-01

    The Intel Paragon is a mesh-connected distributed memory parallel computer. It uses an oblivious and deterministic message routing algorithm: this permits us to develop highly optimized schedules for frequently needed communication patterns. The complete exchange is one such pattern. Several approaches are available for carrying it out on the mesh. We study an algorithm developed by Scott. This algorithm assumes that a communication link can carry one message at a time and that a node can only transmit one message at a time. It requires global synchronization to enforce a schedule of transmissions. Unfortunately global synchronization has substantial overhead on the Paragon. At the same time the powerful interconnection mechanism of this machine permits 2 or 3 messages to share a communication link with minor overhead. It can also overlap multiple message transmission from the same node to some extent. We develop a generalization of Scott's algorithm that executes complete exchange with a prescribed contention. Schedules that incur greater contention require fewer synchronization steps. This permits us to tradeoff contention against synchronization overhead. We describe the performance of this algorithm and compare it with Scott's original algorithm as well as with a naive algorithm that does not take interconnection structure into account. The Bounded contention algorithm is always better than Scott's algorithm and outperforms the naive algorithm for all but the smallest message sizes. The naive algorithm fails to work on meshes larger than 12 x 12. These results show that due consideration of processor interconnect and machine performance parameters is necessary to obtain peak performance from the Paragon and its successor mesh machines.

  12. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    PubMed Central

    Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359

  13. A stochastic tabu search algorithm to align physician schedule with patient flow.

    PubMed

    Niroumandrad, Nazgol; Lahrichi, Nadia

    2018-06-01

    In this study, we consider the pretreatment phase for cancer patients. This is defined as the period between the referral to a cancer center and the confirmation of the treatment plan. Physicians have been identified as bottlenecks in this process, and the goal is to determine a weekly cyclic schedule that improves the patient flow and shortens the pretreatment duration. High uncertainty is associated with the arrival day, profile and type of cancer of each patient. We also include physician satisfaction in the objective function. We present a MIP model for the problem and develop a tabu search algorithm, considering both deterministic and stochastic cases. Experiments show that our method compares very well to CPLEX under deterministic conditions. We describe the stochastic approach in detail and present a real application.

  14. Smart EV Energy Management System to Support Grid Services

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    Under smart grid scenarios, the advanced sensing and metering technologies have been applied to the legacy power grid to improve the system observability and the real-time situational awareness. Meanwhile, there is increasing amount of distributed energy resources (DERs), such as renewable generations, electric vehicles (EVs) and battery energy storage system (BESS), etc., being integrated into the power system. However, the integration of EVs, which can be modeled as controllable mobile energy devices, brings both challenges and opportunities to the grid planning and energy management, due to the intermittency of renewable generation, uncertainties of EV driver behaviors, etc. This dissertation aims to solve the real-time EV energy management problem in order to improve the overall grid efficiency, reliability and economics, using online and predictive optimization strategies. Most of the previous research on EV energy management strategies and algorithms are based on simplified models with unrealistic assumptions that the EV charging behaviors are perfectly known or following known distributions, such as the arriving time, leaving time and energy consumption values, etc. These approaches fail to obtain the optimal solutions in real-time because of the system uncertainties. Moreover, there is lack of data-driven strategy that performs online and predictive scheduling for EV charging behaviors under microgrid scenarios. Therefore, we develop an online predictive EV scheduling framework, considering uncertainties of renewable generation, building load and EV driver behaviors, etc., based on real-world data. A kernel-based estimator is developed to predict the charging session parameters in real-time with improved estimation accuracy. The efficacy of various optimization strategies that are supported by this framework, including valley-filling, cost reduction, event-based control, etc., has been demonstrated. In addition, the existing simulation-based approaches do not consider a variety of practical concerns of implementing such a smart EV energy management system, including the driver preferences, communication protocols, data models, and customized integration of existing standards to provide grid services. Therefore, this dissertation also solves these issues by designing and implementing a scalable system architecture to capture the user preferences, enable multi-layer communication and control, and finally improve the system reliability and interoperability.

  15. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    PubMed

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  16. Software algorithm and hardware design for real-time implementation of new spectral estimator

    PubMed Central

    2014-01-01

    Background Real-time spectral analyzers can be difficult to implement for PC computer-based systems because of the potential for high computational cost, and algorithm complexity. In this work a new spectral estimator (NSE) is developed for real-time analysis, and compared with the discrete Fourier transform (DFT). Method Clinical data in the form of 216 fractionated atrial electrogram sequences were used as inputs. The sample rate for acquisition was 977 Hz, or approximately 1 millisecond between digital samples. Real-time NSE power spectra were generated for 16,384 consecutive data points. The same data sequences were used for spectral calculation using a radix-2 implementation of the DFT. The NSE algorithm was also developed for implementation as a real-time spectral analyzer electronic circuit board. Results The average interval for a single real-time spectral calculation in software was 3.29 μs for NSE versus 504.5 μs for DFT. Thus for real-time spectral analysis, the NSE algorithm is approximately 150× faster than the DFT. Over a 1 millisecond sampling period, the NSE algorithm had the capability to spectrally analyze a maximum of 303 data channels, while the DFT algorithm could only analyze a single channel. Moreover, for the 8 second sequences, the NSE spectral resolution in the 3-12 Hz range was 0.037 Hz while the DFT spectral resolution was only 0.122 Hz. The NSE was also found to be implementable as a standalone spectral analyzer board using approximately 26 integrated circuits at a cost of approximately $500. The software files used for analysis are included as a supplement, please see the Additional files 1 and 2. Conclusions The NSE real-time algorithm has low computational cost and complexity, and is implementable in both software and hardware for 1 millisecond updates of multichannel spectra. The algorithm may be helpful to guide radiofrequency catheter ablation in real time. PMID:24886214

  17. An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints

    PubMed Central

    Rao, Yunqing; Qi, Dezhong; Li, Jinling

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491

  18. An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.

    PubMed

    Rao, Yunqing; Qi, Dezhong; Li, Jinling

    2013-01-01

    For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.

  19. A Comparison of Techniques for Scheduling Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2004-01-01

    Scheduling observations by coordinated fleets of Earth Observing Satellites (EOS) involves large search spaces, complex constraints and poorly understood bottlenecks, conditions where evolutionary and related algorithms are often effective. However, there are many such algorithms and the best one to use is not clear. Here we compare multiple variants of the genetic algorithm: stochastic hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on ten realistically-sized EOS scheduling problems. Schedules are represented by a permutation (non-temperal ordering) of the observation requests. A simple deterministic scheduler assigns times and resources to each observation request in the order indicated by the permutation, discarding those that violate the constraints created by previously scheduled observations. Simulated annealing performs best. Random mutation outperform a more 'intelligent' mutator. Furthermore, the best mutator, by a small margin, was a novel approach we call temperature dependent random sampling that makes large changes in the early stages of evolution and smaller changes towards the end of search.

  20. Quality of service routing in wireless ad hoc networks

    NASA Astrophysics Data System (ADS)

    Sane, Sachin J.; Patcha, Animesh; Mishra, Amitabh

    2003-08-01

    An efficient routing protocol is essential to guarantee application level quality of service running on wireless ad hoc networks. In this paper we propose a novel routing algorithm that computes a path between a source and a destination by considering several important constraints such as path-life, availability of sufficient energy as well as buffer space in each of the nodes on the path between the source and destination. The algorithm chooses the best path from among the multiples paths that it computes between two endpoints. We consider the use of control packets that run at a priority higher than the data packets in determining the multiple paths. The paper also examines the impact of different schedulers such as weighted fair queuing, and weighted random early detection among others in preserving the QoS level guarantees. Our extensive simulation results indicate that the algorithm improves the overall lifetime of a network, reduces the number of dropped packets, and decreases the end-to-end delay for real-time voice application.

  1. Deconstructing Nowicki and Smutnickis i-TSAB tabu search algorithm for the job-shop scheduling problem.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitley, L. Darrell; Watson, Jean-Paul; Howe, Adele E.

    Over the last decade and a half, tabu search algorithms for machine scheduling have gained a near-mythical reputation by consistently equaling or establishing state-of-the-art performance levels on a range of academic and real-world problems. Yet, despite these successes, remarkably little research has been devoted to developing an understanding of why tabu search is so effective on this problem class. In this paper, we report results that provide significant progress in this direction. We consider Nowicki and Smutnicki's i-TSAB tabu search algorithm, which represents the current state-of-the-art for the makespan-minimization form of the classical jobshop scheduling problem. Via a series ofmore » controlled experiments, we identify those components of i-TSAB that enable it to achieve state-of-the-art performance levels. In doing so, we expose a number of misconceptions regarding the behavior and/or benefits of tabu search and other local search metaheuristics for the job-shop problem. Our results also serve to focus future research, by identifying those specific directions that are most likely to yield further improvements in performance.« less

  2. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  3. Intelligent Scheduling for Underground Mobile Mining Equipment

    PubMed Central

    Song, Zhen; Schunnesson, Håkan; Rinne, Mikael; Sturgul, John

    2015-01-01

    Many studies have been carried out and many commercial software applications have been developed to improve the performances of surface mining operations, especially for the loader-trucks cycle of surface mining. However, there have been quite few studies aiming to improve the mining process of underground mines. In underground mines, mobile mining equipment is mostly scheduled instinctively, without theoretical support for these decisions. Furthermore, in case of unexpected events, it is hard for miners to rapidly find solutions to reschedule and to adapt the changes. This investigation first introduces the motivation, the technical background, and then the objective of the study. A decision support instrument (i.e. schedule optimizer for mobile mining equipment) is proposed and described to address this issue. The method and related algorithms which are used in this instrument are presented and discussed. The proposed method was tested by using a real case of Kittilä mine located in Finland. The result suggests that the proposed method can considerably improve the working efficiency and reduce the working time of the underground mine. PMID:26098934

  4. Advance Resource Provisioning in Bulk Data Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balman, Mehmet

    2012-10-01

    Today?s scientific and business applications generate mas- sive data sets that need to be transferred to remote sites for sharing, processing, and long term storage. Because of increasing data volumes and enhancement in current net- work technology that provide on-demand high-speed data access between collaborating institutions, data handling and scheduling problems have reached a new scale. In this paper, we present a new data scheduling model with ad- vance resource provisioning, in which data movement operations are defined with earliest start and latest comple- tion times. We analyze time-dependent resource assign- ment problem, and propose a new methodology to improvemore » the current systems by allowing researchers and higher-level meta-schedulers to use data-placement as-a-service, so they can plan ahead and submit transfer requests in advance. In general, scheduling with time and resource conflicts is NP-hard. We introduce an efficient algorithm to organize multiple requests on the fly, while satisfying users? time and resource constraints. We successfully tested our algorithm in a simple benchmark simulator that we have developed, and demonstrated its performance with initial test results.« less

  5. ECS: efficient communication scheduling for underwater sensor networks.

    PubMed

    Hong, Lu; Hong, Feng; Guo, Zhongwen; Li, Zhengbao

    2011-01-01

    TDMA protocols have attracted a lot of attention for underwater acoustic sensor networks (UWSNs), because of the unique characteristics of acoustic signal propagation such as great energy consumption in transmission, long propagation delay and long communication range. Previous TDMA protocols all allocated transmission time to nodes based on discrete time slots. This paper proposes an efficient continuous time scheduling TDMA protocol (ECS) for UWSNs, including the continuous time based and sender oriented conflict analysis model, the transmission moment allocation algorithm and the distributed topology maintenance algorithm. Simulation results confirm that ECS improves network throughput by 20% on average, compared to existing MAC protocols.

  6. Geometric Distribution-Based Readers Scheduling Optimization Algorithm Using Artificial Immune System.

    PubMed

    Duan, Litian; Wang, Zizhong John; Duan, Fu

    2016-11-16

    In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.

  7. Geometric Distribution-Based Readers Scheduling Optimization Algorithm Using Artificial Immune System

    PubMed Central

    Duan, Litian; Wang, Zizhong John; Duan, Fu

    2016-01-01

    In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range. PMID:27854342

  8. A real-time simulation evaluation of an advanced detection. Isolation and accommodation algorithm for sensor failures in turbine engines

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Delaat, J. C.

    1986-01-01

    An advanced sensor failure detection, isolation, and accommodation (ADIA) algorithm has been developed for use with an aircraft turbofan engine control system. In a previous paper the authors described the ADIA algorithm and its real-time implementation. Subsequent improvements made to the algorithm and implementation are discussed, and the results of an evaluation presented. The evaluation used a real-time, hybrid computer simulation of an F100 turbofan engine.

  9. A novel downlink scheduling strategy for traffic communication system based on TD-LTE technology.

    PubMed

    Chen, Ting; Zhao, Xiangmo; Gao, Tao; Zhang, Licheng

    2016-01-01

    There are many existing classical scheduling algorithms which can obtain better system throughput and user equality, however, they are not designed for traffic transportation environment, which cannot consider whether the transmission performance of various information flows could meet comprehensive requirements of traffic safety and delay tolerance. This paper proposes a novel downlink scheduling strategy for traffic communication system based on TD-LTE technology, which can perform two classification mappings for various information flows in the eNodeB: firstly, associate every information flow packet with traffic safety importance weight according to its relevance to the traffic safety; secondly, associate every traffic information flow with service type importance weight according to its quality of service (QoS) requirements. Once the connection is established, at every scheduling moment, scheduler would decide the scheduling order of all buffers' head of line packets periodically according to the instant value of scheduling importance weight function, which calculated by the proposed algorithm. From different scenario simulations, it can be verified that the proposed algorithm can provide superior differentiated transmission service and reliable QoS guarantee to information flows with different traffic safety levels and service types, which is more suitable for traffic transportation environment compared with the existing popularity PF algorithm. With the limited wireless resource, information flow closed related to traffic safety will always obtain priority scheduling right timely, which can help the passengers' journey more safe. Moreover, the proposed algorithm cannot only obtain good flow throughput and user fairness which are almost equal to those of the PF algorithm without significant differences, but also provide better realtime transmission guarantee to realtime information flow.

  10. A two-level structure for advanced space power system automation

    NASA Technical Reports Server (NTRS)

    Loparo, Kenneth A.; Chankong, Vira

    1990-01-01

    The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed.

  11. MIP Models and Hybrid Algorithms for Simultaneous Job Splitting and Scheduling on Unrelated Parallel Machines

    PubMed Central

    Ozmutlu, H. Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204

  12. An Optimal Schedule for Urban Road Network Repair Based on the Greedy Algorithm

    PubMed Central

    Lu, Guangquan; Xiong, Ying; Wang, Yunpeng

    2016-01-01

    The schedule of urban road network recovery caused by rainstorms, snow, and other bad weather conditions, traffic incidents, and other daily events is essential. However, limited studies have been conducted to investigate this problem. We fill this research gap by proposing an optimal schedule for urban road network repair with limited repair resources based on the greedy algorithm. Critical links will be given priority in repair according to the basic concept of the greedy algorithm. In this study, the link whose restoration produces the ratio of the system-wide travel time of the current network to the worst network is the minimum. We define such a link as the critical link for the current network. We will re-evaluate the importance of damaged links after each repair process is completed. That is, the critical link ranking will be changed along with the repair process because of the interaction among links. We repair the most critical link for the specific network state based on the greedy algorithm to obtain the optimal schedule. The algorithm can still quickly obtain an optimal schedule even if the scale of the road network is large because the greedy algorithm can reduce computational complexity. We prove that the problem can obtain the optimal solution using the greedy algorithm in theory. The algorithm is also demonstrated in the Sioux Falls network. The problem discussed in this paper is highly significant in dealing with urban road network restoration. PMID:27768732

  13. Automated Long - Term Scheduling for the SOFIA Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Civeit, Thomas

    2013-01-01

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the "Early Science" program as well as a deployment to Germany. The new observing period, known as Cycle 1, is scheduled to begin in 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA long-term schedules that will be used in operations from the Cycle 1 observing period. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.

  14. Competitive two-agent scheduling problems to minimize the weighted combination of makespans in a two-machine open shop

    NASA Astrophysics Data System (ADS)

    Jiang, Fuhong; Zhang, Xingong; Bai, Danyu; Wu, Chin-Chia

    2018-04-01

    In this article, a competitive two-agent scheduling problem in a two-machine open shop is studied. The objective is to minimize the weighted sum of the makespans of two competitive agents. A complexity proof is presented for minimizing the weighted combination of the makespan of each agent if the weight α belonging to agent B is arbitrary. Furthermore, two pseudo-polynomial-time algorithms using the largest alternate processing time (LAPT) rule are presented. Finally, two approximation algorithms are presented if the weight is equal to one. Additionally, another approximation algorithm is presented if the weight is larger than one.

  15. Computing Quantitative Characteristics of Finite-State Real-Time Systems

    DTIC Science & Technology

    1994-05-04

    Current methods for verifying real - time systems are essentially decision procedures that establish whether the system model satisfies a given...specification. We present a general method for computing quantitative information about finite-state real - time systems . We have developed algorithms that...our technique can be extended to a more general representation of real - time systems , namely, timed transition graphs. The algorithms presented in this

  16. Real-time control systems: feedback, scheduling and robustness

    NASA Astrophysics Data System (ADS)

    Simon, Daniel; Seuret, Alexandre; Sename, Olivier

    2017-08-01

    The efficient control of real-time distributed systems, where continuous components are governed through digital devices and communication networks, needs a careful examination of the constraints arising from the different involved domains inside co-design approaches. Thanks to the robustness of feedback control, both new control methodologies and slackened real-time scheduling schemes are proposed beyond the frontiers between these traditionally separated fields. A methodology to design robust aperiodic controllers is provided, where the sampling interval is considered as a control variable of the system. Promising experimental results are provided to show the feasibility and robustness of the approach.

  17. Design and Analysis of Scheduling Policies for Real-Time Computer Systems

    DTIC Science & Technology

    1992-01-01

    C. M. Krishna, "The Impact of Workload on the Reliability of Real-Time Processor Triads," to appear in Micro . Rel. [17] J.F. Kurose, "Performance... Processor Triads", to appear in Micro . Rel. "* J.F. Kurose. "Performance Analysis of Minimum Laxity Scheduling in Discrete Time Queue- ing Systems", to...exponentially distributed service times and deadlines. A similar model was developed for the ED policy for a single processor system under identical

  18. CARMENES instrument control system and operational scheduler

    NASA Astrophysics Data System (ADS)

    Garcia-Piquer, Alvaro; Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Gesa, Lluis; Morales, Juan Carlos; Pérez-Calpena, Ana; Seifert, Walter; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, José A.; Reiners, Ansgar

    2014-07-01

    The main goal of the CARMENES instrument is to perform high-accuracy measurements of stellar radial velocities (1m/s) with long-term stability. CARMENES will be installed in 2015 at the 3.5 m telescope in the Calar Alto Observatory (Spain) and it will be equipped with two spectrographs covering from the visible to the near-infrared. It will make use of its near-IR capabilities to observe late-type stars, whose peak of the spectral energy distribution falls in the relevant wavelength interval. The technology needed to develop this instrument represents a challenge at all levels. We present two software packages that play a key role in the control layer for an efficient operation of the instrument: the Instrument Control System (ICS) and the Operational Scheduler. The coordination and management of CARMENES is handled by the ICS, which is responsible for carrying out the operations of the different subsystems providing a tool to operate the instrument in an integrated manner from low to high user interaction level. The ICS interacts with the following subsystems: the near-IR and visible channels, composed by the detectors and exposure meters; the calibration units; the environment sensors; the front-end electronics; the acquisition and guiding module; the interfaces with telescope and dome; and, finally, the software subsystems for operational scheduling of tasks, data processing, and data archiving. We describe the ICS software design, which implements the CARMENES operational design and is planned to be integrated in the instrument by the end of 2014. The CARMENES operational scheduler is the second key element in the control layer described in this contribution. It is the main actor in the translation of the survey strategy into a detailed schedule for the achievement of the optimization goals. The scheduler is based on Artificial Intelligence techniques and computes the survey planning by combining the static constraints that are known a priori (i.e., target visibility, sky background, required time sampling coverage) and the dynamic change of the system conditions (i.e., weather, system conditions). Off-line and on-line strategies are integrated into a single tool for a suitable transfer of the target prioritization made by the science team to the real-time schedule that will be used by the instrument operators. A suitable solution will be expected to increase the efficiency of telescope operations, which will represent an important benefit in terms of scientific return and operational costs. We present the operational scheduling tool designed for CARMENES, which is based on two algorithms combining a global and a local search: Genetic Algorithms and Hill Climbing astronomy-based heuristics, respectively. The algorithm explores a large amount of potential solutions from the vast search space and is able to identify the most efficient ones. A planning solution is considered efficient when it optimizes the objectives defined, which, in our case, are related to the reduction of the time that the telescope is not in use and the maximization of the scientific return, measured in terms of the time coverage of each target in the survey. We present the results obtained using different test cases.

  19. Voltage scheduling for low power/energy

    NASA Astrophysics Data System (ADS)

    Manzak, Ali

    2001-07-01

    Power considerations have become an increasingly dominant factor in the design of both portable and desk-top systems. An effective way to reduce power consumption is to lower the supply voltage since voltage is quadratically related to power. This dissertation considers the problem of lowering the supply voltage at (i) the system level and at (ii) the behavioral level. At the system level, the voltage of the variable voltage processor is dynamically changed with the work load. Processors with limited sized buffers as well as those with very large buffers are considered. Given the task arrival times, deadline times, execution times, periods and switching activities, task scheduling algorithms that minimize energy or peak power are developed for the processors equipped with very large buffers. A relation between the operating voltages of the tasks for minimum energy/power is determined using the Lagrange multiplier method, and an iterative algorithm that utilizes this relation is developed. Experimental results show that the voltage assignment obtained by the proposed algorithm is very close (0.1% error) to that of the optimal energy assignment and the optimal peak power (1% error) assignment. Next, on-line and off-fine minimum energy task scheduling algorithms are developed for processors with limited sized buffers. These algorithms have polynomial time complexity and present optimal (off-line) and close-to-optimal (on-line) solutions. A procedure to calculate the minimum buffer size given information about the size of the task (maximum, minimum), execution time (best case, worst case) and deadlines is also presented. At the behavioral level, resources operating at multiple voltages are used to minimize power while maintaining the throughput. Such a scheme has the advantage of allowing modules on the critical paths to be assigned to the highest voltage levels (thus meeting the required timing constraints) while allowing modules on non-critical paths to be assigned to lower voltage levels (thus reducing the power consumption). A polynomial time resource and latency constrained scheduling algorithm is developed to distribute the available slack among the nodes such that power consumption is minimum. The algorithm is iterative and utilizes the slack based on the Lagrange multiplier method.

  20. Dispatch Strategy Development for Grid-tied Household Energy Systems

    NASA Astrophysics Data System (ADS)

    Cardwell, Joseph

    The prevalence of renewable generation will increase in the next several decades and offset conventional generation more and more. Yet this increase is not coming without challenges. Solar, wind, and even some water resources are intermittent and unpredictable, and thereby create scheduling challenges due to their inherent "uncontrolled" nature. To effectively manage these distributed renewable assets, new control algorithms must be developed for applications including energy management, bridge power, and system stability. This can be completed through a centralized control center though efforts are being made to parallel the control architecture with the organization of the renewable assets themselves--namely, distributed controls. Building energy management systems are being employed to control localized energy generation, storage, and use to reduce disruption on the net utility load. One such example is VOLTTRONTM, an agent-based platform for building energy control in real time. In this thesis, algorithms developed in VOLTTRON simulate a home energy management system that consists of a solar PV array, a lithium-ion battery bank, and the grid. Dispatch strategies are implemented to reduce energy charges from overall consumption (/kWh) and demand charges (/kW). Dispatch strategies for implementing storage devices are tuned on a month-to-month basis to provide a meaningful economic advantage under simulated scenarios to explore algorithm sensitivity to changing external factors. VOLTTRON agents provide automated real-time optimization of dispatch strategies to efficiently manage energy supply and demand, lower consumer costs associated with energy usage, and reduce load on the utility grid.

  1. Algorithm for removing scalp signals from functional near-infrared spectroscopy signals in real time using multidistance optodes.

    PubMed

    Kiguchi, Masashi; Funane, Tsukasa

    2014-11-01

    A real-time algorithm for removing scalp-blood signals from functional near-infrared spectroscopy signals is proposed. Scalp and deep signals have different dependencies on the source-detector distance. These signals were separated using this characteristic. The algorithm was validated through an experiment using a dynamic phantom in which shallow and deep absorptions were independently changed. The algorithm for measurement of oxygenated and deoxygenated hemoglobins using two wavelengths was explicitly obtained. This algorithm is potentially useful for real-time systems, e.g., brain-computer interfaces and neuro-feedback systems.

  2. Multiple R&D projects scheduling optimization with improved particle swarm algorithm.

    PubMed

    Liu, Mengqi; Shan, Miyuan; Wu, Juan

    2014-01-01

    For most enterprises, in order to win the initiative in the fierce competition of market, a key step is to improve their R&D ability to meet the various demands of customers more timely and less costly. This paper discusses the features of multiple R&D environments in large make-to-order enterprises under constrained human resource and budget, and puts forward a multi-project scheduling model during a certain period. Furthermore, we make some improvements to existed particle swarm algorithm and apply the one developed here to the resource-constrained multi-project scheduling model for a simulation experiment. Simultaneously, the feasibility of model and the validity of algorithm are proved in the experiment.

  3. Competitive On-Line Scheduling for Overloaded Real-Time Systems

    DTIC Science & Technology

    1993-09-01

    Real - Time Systems by Gilad Koren a dissertation submitted in partial fulfillment of the requirements...Overloaded Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...1.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 1.1.1 Real - Time Systems : : : : : : : : : : : : : : : : : : : : : : : : : : : :

  4. A new real-time tsunami detection algorithm

    NASA Astrophysics Data System (ADS)

    Chierici, F.; Embriaco, D.; Pignagnoli, L.

    2016-12-01

    Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection based on the real-time tide removal and real-time band-pass filtering of sea-bed pressure recordings. The algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability, at low computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. Pressure data sets acquired by Bottom Pressure Recorders in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event which occurred at Haida Gwaii on October 28th, 2012 using data recorded by the Bullseye underwater node of Ocean Networks Canada. The algorithm successfully ran for test purpose in year-long missions onboard the GEOSTAR stand-alone multidisciplinary abyssal observatory, deployed in the Gulf of Cadiz during the EC project NEAREST and on NEMO-SN1 cabled observatory deployed in the Western Ionian Sea, operational node of the European research infrastructure EMSO.

  5. Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs

    NASA Astrophysics Data System (ADS)

    Choi, Woo-Yong; Chatterjee, Mainak

    2015-03-01

    With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.

  6. A traveling-salesman-based approach to aircraft scheduling in the terminal area

    NASA Technical Reports Server (NTRS)

    Luenberger, Robert A.

    1988-01-01

    An efficient algorithm is presented, based on the well-known algorithm for the traveling salesman problem, for scheduling aircraft arrivals into major terminal areas. The algorithm permits, but strictly limits, reassigning an aircraft from its initial position in the landing order. This limitation is needed so that no aircraft or aircraft category is unduly penalized. Results indicate, for the mix of arrivals investigated, a potential increase in capacity in the 3 to 5 percent range. Furthermore, it is shown that the computation time for the algorithm grows only linearly with problem size.

  7. Fast parallel approach for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2009-12-01

    Two-dimensional fast Gabor transform algorithms are useful for real-time applications due to the high computational complexity of the traditional 2-D complex-valued discrete Gabor transform (CDGT). This paper presents two block time-recursive algorithms for 2-D DHT-based real-valued discrete Gabor transform (RDGT) and its inverse transform and develops a fast parallel approach for the implementation of the two algorithms. The computational complexity of the proposed parallel approach is analyzed and compared with that of the existing 2-D CDGT algorithms. The results indicate that the proposed parallel approach is attractive for real time image processing.

  8. Swarm satellite mission scheduling & planning using Hybrid Dynamic Mutation Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2017-08-01

    Space missions have traditionally been controlled by operators from a mission control center. Given the increasing number of satellites for some space missions, generating a command list for multiple satellites can be time-consuming and inefficient. Developing multi-satellite, onboard mission scheduling & planning techniques is, therefore, a key research field for future space mission operations. In this paper, an improved Genetic Algorithm (GA) using a new mutation strategy is proposed as a mission scheduling algorithm. This new mutation strategy, called Hybrid Dynamic Mutation (HDM), combines the advantages of both dynamic mutation strategy and adaptive mutation strategy, overcoming weaknesses such as early convergence and long computing time, which helps standard GA to be more efficient and accurate in dealing with complex missions. HDM-GA shows excellent performance in solving both unconstrained and constrained test functions. The experiments of using HDM-GA to simulate a multi-satellite, mission scheduling problem demonstrates that both the computation time and success rate mission requirements can be met. The results of a comparative test between HDM-GA and three other mutation strategies also show that HDM has outstanding performance in terms of speed and reliability.

  9. Delivering real-time status and arrival information to commuter rail passengers at complex stations

    DOT National Transportation Integrated Search

    2003-08-01

    Software was developed for calculating real-time train status in an Automated Train Information Display System (ATIDS) at NJ Transit. Interfaces were developed for passing schedules and real-time train position and routing data from a rail traffic co...

  10. Real-time dynamic simulation of the Cassini spacecraft using DARTS. Part 2: Parallel/vectorized real-time implementation

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Roberts, J. A.; Jain, A.; Man, G. K.

    1993-01-01

    Part 1 of this paper presented the requirements for the real-time simulation of Cassini spacecraft along with some discussion of the DARTS algorithm. Here, in Part 2 we discuss the development and implementation of parallel/vectorized DARTS algorithm and architecture for real-time simulation. Development of the fast algorithms and architecture for real-time hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it represents a hard real-time problem, in the sense that the correctness of the simulation depends on both the numerical accuracy and the exact timing of the computation. For a given model fidelity, the computation should be computed within a predefined time period. Further reduction in computation time allows increasing the fidelity of the model (i.e., inclusion of more flexible modes) and the integration routine.

  11. Adaptive Multilevel Middleware for Object Systems

    DTIC Science & Technology

    2006-12-01

    the system at the system-call level or using the CORBA-standard Extensible Transport Framework ( ETF ). Transparent insertion is highly desirable from an...often as it needs to. This is remedied by using the real-time scheduling class in a stock Linux kernel. We used schedsetscheduler system call (with...real-time scheduling class (SCHEDFIFO) for all the ML-NFD programs, later experiments with CPU load indicate that a stock Linux kernel is not

  12. A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model.

    PubMed

    Wang, Zhaocai; Ji, Zuwen; Wang, Xiaoming; Wu, Tunhua; Huang, Wei

    2017-12-01

    As a promising approach to solve the computationally intractable problem, the method based on DNA computing is an emerging research area including mathematics, computer science and molecular biology. The task scheduling problem, as a well-known NP-complete problem, arranges n jobs to m individuals and finds the minimum execution time of last finished individual. In this paper, we use a biologically inspired computational model and describe a new parallel algorithm to solve the task scheduling problem by basic DNA molecular operations. In turn, we skillfully design flexible length DNA strands to represent elements of the allocation matrix, take appropriate biological experiment operations and get solutions of the task scheduling problem in proper length range with less than O(n 2 ) time complexity. Copyright © 2017. Published by Elsevier B.V.

  13. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks.

    PubMed

    Al-Medhwahi, Mohammed; Hashim, Fazirulhisyam; Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.

  14. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks

    PubMed Central

    Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications. PMID:27257964

  15. Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor

    NASA Technical Reports Server (NTRS)

    McLoughlin, Terence H.; Campbell, Mark

    2004-01-01

    Recent advances in formation keeping for large numbers of spacecraft using the Autonomous Formation Flying are presented. This sensor, currently under development at JPL, has been identified as a key component in future formation flying spacecraft missions. The sensor provides accurate range and bearing measurements between pairs of spacecraft using GPS technology. Previous theoretical work by the authors has focused on developing a decentralized scheduling algorithm to control the tasking of such a sensor between the relative range and bearing measurements to each node in the formation. The resulting algorithm has been modified to include switching constraints in the sensor. This paper also presents a testbed for real time validation of a sixteen-node formation based on the Stellar Imager mission. Key aspects of the simulation include minimum fuel maneuvers based on free-body dynamics and a three body propagator for simulating the formation at L2.

  16. Architectural impact of FDDI network on scheduling hard real-time traffic

    NASA Technical Reports Server (NTRS)

    Agrawal, Gopal; Chen, Baio; Zhao, Wei; Davari, Sadegh

    1991-01-01

    The architectural impact on guaranteeing synchronous message deadlines in FDDI (Fiber Distributed Data Interface) token ring networks is examined. The FDDI network does not have facility to support (global) priority arbitration which is a useful facility for scheduling hard real time activities. As a result, it was found that the worst case utilization of synchronous traffic in an FDDI network can be far less than that in a centralized single processor system. Nevertheless, it is proposed and analyzed that a scheduling method can guarantee deadlines of synchronous messages having traffic utilization up to 33 pct., the highest to date.

  17. Influencing Trust for Human-Automation Collaborative Scheduling of Multiple Unmanned Vehicles.

    PubMed

    Clare, Andrew S; Cummings, Mary L; Repenning, Nelson P

    2015-11-01

    We examined the impact of priming on operator trust and system performance when supervising a decentralized network of heterogeneous unmanned vehicles (UVs). Advances in autonomy have enabled a future vision of single-operator control of multiple heterogeneous UVs. Real-time scheduling for multiple UVs in uncertain environments requires the computational ability of optimization algorithms combined with the judgment and adaptability of human supervisors. Because of system and environmental uncertainty, appropriate operator trust will be instrumental to maintain high system performance and prevent cognitive overload. Three groups of operators experienced different levels of trust priming prior to conducting simulated missions in an existing, multiple-UV simulation environment. Participants who play computer and video games frequently were found to have a higher propensity to overtrust automation. By priming gamers to lower their initial trust to a more appropriate level, system performance was improved by 10% as compared to gamers who were primed to have higher trust in the automation. Priming was successful at adjusting the operator's initial and dynamic trust in the automated scheduling algorithm, which had a substantial impact on system performance. These results have important implications for personnel selection and training for futuristic multi-UV systems under human supervision. Although gamers may bring valuable skills, they may also be potentially prone to automation bias. Priming during training and regular priming throughout missions may be one potential method for overcoming this propensity to overtrust automation. © 2015, Human Factors and Ergonomics Society.

  18. The Research and Test of Fast Radio Burst Real-time Search Algorithm Based on GPU Acceleration

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chen, M. Z.; Pei, X.; Wang, Z. Q.

    2017-03-01

    In order to satisfy the research needs of Nanshan 25 m radio telescope of Xinjiang Astronomical Observatory (XAO) and study the key technology of the planned QiTai radio Telescope (QTT), the receiver group of XAO studied the GPU (Graphics Processing Unit) based real-time FRB searching algorithm which developed from the original FRB searching algorithm based on CPU (Central Processing Unit), and built the FRB real-time searching system. The comparison of the GPU system and the CPU system shows that: on the basis of ensuring the accuracy of the search, the speed of the GPU accelerated algorithm is improved by 35-45 times compared with the CPU algorithm.

  19. The comparison of predictive scheduling algorithms for different sizes of job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.; Krenczyk, D.

    2016-08-01

    In the paper a survey of predictive and reactive scheduling methods is done in order to evaluate how the ability of prediction of reliability characteristics influences over robustness criteria. The most important reliability characteristics are: Mean Time to Failure, Mean Time of Repair. Survey analysis is done for a job shop scheduling problem. The paper answers the question: what method generates robust schedules in the case of a bottleneck failure occurrence before, at the beginning of planned maintenance actions or after planned maintenance actions? Efficiency of predictive schedules is evaluated using criteria: makespan, total tardiness, flow time, idle time. Efficiency of reactive schedules is evaluated using: solution robustness criterion and quality robustness criterion. This paper is the continuation of the research conducted in the paper [1], where the survey of predictive and reactive scheduling methods is done only for small size scheduling problems.

  20. Real-time implementation of logo detection on open source BeagleBoard

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Estevez, L.

    2011-03-01

    This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.

  1. The LSST operations simulator

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco; Saha, Abhijit; Chandrasekharan, Srinivasan; Cook, Kem; Petry, Catherine; Ridgway, Stephen

    2014-08-01

    The Operations Simulator for the Large Synoptic Survey Telescope (LSST; http://www.lsst.org) allows the planning of LSST observations that obey explicit science driven observing specifications, patterns, schema, and priorities, while optimizing against the constraints placed by design-specific opto-mechanical system performance of the telescope facility, site specific conditions as well as additional scheduled and unscheduled downtime. It has a detailed model to simulate the external conditions with real weather history data from the site, a fully parameterized kinematic model for the internal conditions of the telescope, camera and dome, and serves as a prototype for an automatic scheduler for the real time survey operations with LSST. The Simulator is a critical tool that has been key since very early in the project, to help validate the design parameters of the observatory against the science requirements and the goals from specific science programs. A simulation run records the characteristics of all observations (e.g., epoch, sky position, seeing, sky brightness) in a MySQL database, which can be queried for any desired purpose. Derivative information digests of the observing history are made with an analysis package called Simulation Survey Tools for Analysis and Reporting (SSTAR). Merit functions and metrics have been designed to examine how suitable a specific simulation run is for several different science applications. Software to efficiently compare the efficacy of different survey strategies for a wide variety of science applications using such a growing set of metrics is under development. A recent restructuring of the code allows us to a) use "look-ahead" strategies that avoid cadence sequences that cannot be completed due to observing constraints; and b) examine alternate optimization strategies, so that the most efficient scheduling algorithm(s) can be identified and used: even few-percent efficiency gains will create substantive scientific opportunity. The enhanced simulator is being used to assess the feasibility of desired observing cadences, study the impact of changing science program priorities and assist with performance margin investigations of the LSST system.

  2. Method and system for enabling real-time speckle processing using hardware platforms

    NASA Technical Reports Server (NTRS)

    Ortiz, Fernando E. (Inventor); Kelmelis, Eric (Inventor); Durbano, James P. (Inventor); Curt, Peterson F. (Inventor)

    2012-01-01

    An accelerator for the speckle atmospheric compensation algorithm may enable real-time speckle processing of video feeds that may enable the speckle algorithm to be applied in numerous real-time applications. The accelerator may be implemented in various forms, including hardware, software, and/or machine-readable media.

  3. A Genetic-Based Scheduling Algorithm to Minimize the Makespan of the Grid Applications

    NASA Astrophysics Data System (ADS)

    Entezari-Maleki, Reza; Movaghar, Ali

    Task scheduling algorithms in grid environments strive to maximize the overall throughput of the grid. In order to maximize the throughput of the grid environments, the makespan of the grid tasks should be minimized. In this paper, a new task scheduling algorithm is proposed to assign tasks to the grid resources with goal of minimizing the total makespan of the tasks. The algorithm uses the genetic approach to find the suitable assignment within grid resources. The experimental results obtained from applying the proposed algorithm to schedule independent tasks within grid environments demonstrate the applicability of the algorithm in achieving schedules with comparatively lower makespan in comparison with other well-known scheduling algorithms such as, Min-min, Max-min, RASA and Sufferage algorithms.

  4. Development of novel algorithm and real-time monitoring ambulatory system using Bluetooth module for fall detection in the elderly.

    PubMed

    Hwang, J Y; Kang, J M; Jang, Y W; Kim, H

    2004-01-01

    Novel algorithm and real-time ambulatory monitoring system for fall detection in elderly people is described. Our system is comprised of accelerometer, tilt sensor and gyroscope. For real-time monitoring, we used Bluetooth. Accelerometer measures kinetic force, tilt sensor and gyroscope estimates body posture. Also, we suggested algorithm using signals which obtained from the system attached to the chest for fall detection. To evaluate our system and algorithm, we experimented on three people aged over 26 years. The experiment of four cases such as forward fall, backward fall, side fall and sit-stand was repeated ten times and the experiment in daily life activity was performed one time to each subject. These experiments showed that our system and algorithm could distinguish between falling and daily life activity. Moreover, the accuracy of fall detection is 96.7%. Our system is especially adapted for long-time and real-time ambulatory monitoring of elderly people in emergency situation.

  5. Adaptive Subframe Partitioning and Efficient Packet Scheduling in OFDMA Cellular System with Fixed Decode-and-Forward Relays

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Ji, Yusheng; Liu, Fuqiang

    The integration of multihop relays with orthogonal frequency-division multiple access (OFDMA) cellular infrastructures can meet the growing demands for better coverage and higher throughput. Resource allocation in the OFDMA two-hop relay system is more complex than that in the conventional single-hop OFDMA system. With time division between transmissions from the base station (BS) and those from relay stations (RSs), fixed partitioning of the BS subframe and RS subframes can not adapt to various traffic demands. Moreover, single-hop scheduling algorithms can not be used directly in the two-hop system. Therefore, we propose a semi-distributed algorithm called ASP to adjust the length of every subframe adaptively, and suggest two ways to extend single-hop scheduling algorithms into multihop scenarios: link-based and end-to-end approaches. Simulation results indicate that the ASP algorithm increases system utilization and fairness. The max carrier-to-interference ratio (Max C/I) and proportional fairness (PF) scheduling algorithms extended using the end-to-end approach obtain higher throughput than those using the link-based approach, but at the expense of more overhead for information exchange between the BS and RSs. The resource allocation scheme using ASP and end-to-end PF scheduling achieves a tradeoff between system throughput maximization and fairness.

  6. The use of knowledge-based Genetic Algorithm for starting time optimisation in a lot-bucket MRP

    NASA Astrophysics Data System (ADS)

    Ridwan, Muhammad; Purnomo, Andi

    2016-01-01

    In production planning, Material Requirement Planning (MRP) is usually developed based on time-bucket system, a period in the MRP is representing the time and usually weekly. MRP has been successfully implemented in Make To Stock (MTS) manufacturing, where production activity must be started before customer demand is received. However, to be implemented successfully in Make To Order (MTO) manufacturing, a modification is required on the conventional MRP in order to make it in line with the real situation. In MTO manufacturing, delivery schedule to the customers is defined strictly and must be fulfilled in order to increase customer satisfaction. On the other hand, company prefers to keep constant number of workers, hence production lot size should be constant as well. Since a bucket in conventional MRP system is representing time and usually weekly, hence, strict delivery schedule could not be accommodated. Fortunately, there is a modified time-bucket MRP system, called as lot-bucket MRP system that proposed by Casimir in 1999. In the lot-bucket MRP system, a bucket is representing a lot, and the lot size is preferably constant. The time to finish every lot could be varying depends on due date of lot. Starting time of a lot must be determined so that every lot has reasonable production time. So far there is no formal method to determine optimum starting time in the lot-bucket MRP system. Trial and error process usually used for it but some time, it causes several lots have very short production time and the lot-bucket MRP would be infeasible to be executed. This paper presents the use of Genetic Algorithm (GA) for optimisation of starting time in a lot-bucket MRP system. Even though GA is well known as powerful searching algorithm, however, improvement is still required in order to increase possibility of GA in finding optimum solution in shorter time. A knowledge-based system has been embedded in the proposed GA as the improvement effort, and it is proven that the improved GA has superior performance when used in solving a lot-bucket MRP problem.

  7. Cash transportation vehicle routing and scheduling under stochastic travel times

    NASA Astrophysics Data System (ADS)

    Yan, Shangyao; Wang, Sin-Siang; Chang, Yu-Hsuan

    2014-03-01

    Stochastic disturbances occurring in real-world operations could have a significant influence on the planned routing and scheduling results of cash transportation vehicles. In this study, a time-space network flow technique is utilized to construct a cash transportation vehicle routing and scheduling model incorporating stochastic travel times. In addition, to help security carriers to formulate more flexible routes and schedules, a concept of the similarity of time and space for vehicle routing and scheduling is incorporated into the model. The test results show that the model could be useful for security carriers in actual practice.

  8. Asymptotic analysis of online algorithms and improved scheme for the flow shop scheduling problem with release dates

    NASA Astrophysics Data System (ADS)

    Bai, Danyu

    2015-08-01

    This paper discusses the flow shop scheduling problem to minimise the total quadratic completion time (TQCT) with release dates in offline and online environments. For this NP-hard problem, the investigation is focused on the performance of two online algorithms based on the Shortest Processing Time among Available jobs rule. Theoretical results indicate the asymptotic optimality of the algorithms as the problem scale is sufficiently large. To further enhance the quality of the original solutions, the improvement scheme is provided for these algorithms. A new lower bound with performance guarantee is provided, and computational experiments show the effectiveness of these heuristics. Moreover, several results of the single-machine TQCT problem with release dates are also obtained for the deduction of the main theorem.

  9. ECS: Efficient Communication Scheduling for Underwater Sensor Networks

    PubMed Central

    Hong, Lu; Hong, Feng; Guo, Zhongwen; Li, Zhengbao

    2011-01-01

    TDMA protocols have attracted a lot of attention for underwater acoustic sensor networks (UWSNs), because of the unique characteristics of acoustic signal propagation such as great energy consumption in transmission, long propagation delay and long communication range. Previous TDMA protocols all allocated transmission time to nodes based on discrete time slots. This paper proposes an efficient continuous time scheduling TDMA protocol (ECS) for UWSNs, including the continuous time based and sender oriented conflict analysis model, the transmission moment allocation algorithm and the distributed topology maintenance algorithm. Simulation results confirm that ECS improves network throughput by 20% on average, compared to existing MAC protocols. PMID:22163775

  10. Chemotherapy appointment scheduling under uncertainty using mean-risk stochastic integer programming.

    PubMed

    Alvarado, Michelle; Ntaimo, Lewis

    2018-03-01

    Oncology clinics are often burdened with scheduling large volumes of cancer patients for chemotherapy treatments under limited resources such as the number of nurses and chairs. These cancer patients require a series of appointments over several weeks or months and the timing of these appointments is critical to the treatment's effectiveness. Additionally, the appointment duration, the acuity levels of each appointment, and the availability of clinic nurses are uncertain. The timing constraints, stochastic parameters, rising treatment costs, and increased demand of outpatient oncology clinic services motivate the need for efficient appointment schedules and clinic operations. In this paper, we develop three mean-risk stochastic integer programming (SIP) models, referred to as SIP-CHEMO, for the problem of scheduling individual chemotherapy patient appointments and resources. These mean-risk models are presented and an algorithm is devised to improve computational speed. Computational results were conducted using a simulation model and results indicate that the risk-averse SIP-CHEMO model with the expected excess mean-risk measure can decrease patient waiting times and nurse overtime when compared to deterministic scheduling algorithms by 42 % and 27 %, respectively.

  11. A Sarsa(λ)-Based Control Model for Real-Time Traffic Light Coordination

    PubMed Central

    Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183

  12. Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems.

    PubMed

    Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao

    2017-12-20

    Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm.

  13. Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems

    PubMed Central

    Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao

    2017-01-01

    Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm. PMID:29261135

  14. A hybrid dynamic harmony search algorithm for identical parallel machines scheduling

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Pan, Quan-Ke; Wang, Ling; Li, Jun-Qing

    2012-02-01

    In this article, a dynamic harmony search (DHS) algorithm is proposed for the identical parallel machines scheduling problem with the objective to minimize makespan. First, an encoding scheme based on a list scheduling rule is developed to convert the continuous harmony vectors to discrete job assignments. Second, the whole harmony memory (HM) is divided into multiple small-sized sub-HMs, and each sub-HM performs evolution independently and exchanges information with others periodically by using a regrouping schedule. Third, a novel improvisation process is applied to generate a new harmony by making use of the information of harmony vectors in each sub-HM. Moreover, a local search strategy is presented and incorporated into the DHS algorithm to find promising solutions. Simulation results show that the hybrid DHS (DHS_LS) is very competitive in comparison to its competitors in terms of mean performance and average computational time.

  15. The role of real-time in biomedical science: a meta-analysis on computational complexity, delay and speedup.

    PubMed

    Faust, Oliver; Yu, Wenwei; Rajendra Acharya, U

    2015-03-01

    The concept of real-time is very important, as it deals with the realizability of computer based health care systems. In this paper we review biomedical real-time systems with a meta-analysis on computational complexity (CC), delay (Δ) and speedup (Sp). During the review we found that, in the majority of papers, the term real-time is part of the thesis indicating that a proposed system or algorithm is practical. However, these papers were not considered for detailed scrutiny. Our detailed analysis focused on papers which support their claim of achieving real-time, with a discussion on CC or Sp. These papers were analyzed in terms of processing system used, application area (AA), CC, Δ, Sp, implementation/algorithm (I/A) and competition. The results show that the ideas of parallel processing and algorithm delay were only recently introduced and journal papers focus more on Algorithm (A) development than on implementation (I). Most authors compete on big O notation (O) and processing time (PT). Based on these results, we adopt the position that the concept of real-time will continue to play an important role in biomedical systems design. We predict that parallel processing considerations, such as Sp and algorithm scaling, will become more important. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. StarBase: A Firm Real-Time Database Manager for Time-Critical Applications

    DTIC Science & Technology

    1995-01-01

    Mellon University [IO]. StarBase differs from previous RT-DBMS work [l, 2, 31 in that a) it relies on a real - time operating system which provides...simulation studies, StarBase uses a real - time operating system to provide basic real-time functionality and deals with issues beyond transaction...re- source scheduling provided by the underlying real - time operating system . Issues of data contention are dealt with by use of a priority

  17. Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm

    PubMed Central

    Jin, Junchen

    2016-01-01

    The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998

  18. Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.

    2010-01-01

    A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.

  19. A meshless EFG-based algorithm for 3D deformable modeling of soft tissue in real-time.

    PubMed

    Abdi, Elahe; Farahmand, Farzam; Durali, Mohammad

    2012-01-01

    The meshless element-free Galerkin method was generalized and an algorithm was developed for 3D dynamic modeling of deformable bodies in real time. The efficacy of the algorithm was investigated in a 3D linear viscoelastic model of human spleen subjected to a time-varying compressive force exerted by a surgical grasper. The model remained stable in spite of the considerably large deformations occurred. There was a good agreement between the results and those of an equivalent finite element model. The computational cost, however, was much lower, enabling the proposed algorithm to be effectively used in real-time applications.

  20. A computer method for schedule processing and quick-time updating.

    NASA Technical Reports Server (NTRS)

    Mccoy, W. H.

    1972-01-01

    A schedule analysis program is presented which can be used to process any schedule with continuous flow and with no loops. Although generally thought of as a management tool, it has applicability to such extremes as music composition and computer program efficiency analysis. Other possibilities for its use include the determination of electrical power usage during some operation such as spacecraft checkout, and the determination of impact envelopes for the purpose of scheduling payloads in launch processing. At the core of the described computer method is an algorithm which computes the position of each activity bar on the output waterfall chart. The algorithm is basically a maximal-path computation which gives to each node in the schedule network the maximal path from the initial node to the given node.

  1. Optimizing T-Learning Course Scheduling Based on Genetic Algorithm in Benefit-Oriented Data Broadcast Environments

    ERIC Educational Resources Information Center

    Huang, Yong-Ming; Chen, Chao-Chun; Wang, Ding-Chau

    2012-01-01

    Ubiquitous learning receives much attention in these few years due to its wide spectrum of applications, such as the T-learning application. The learner can use mobile devices to watch the digital TV based course content, and thus, the T-learning provides the ubiquitous learning environment. However, in real-world data broadcast environments, the…

  2. An UAV scheduling and planning method for post-disaster survey

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Zhou, X. G.; Yin, J.; Xiao, Q. Y.

    2014-11-01

    Annually, the extreme climate and special geological environments lead to frequent natural disasters, e.g., earthquakes, floods, etc. The disasters often bring serious casualties and enormous economic losses. Post-disaster surveying is very important for disaster relief and assessment. As the Unmanned Aerial Vehicle (UAV) remote sensing with the advantage of high efficiency, high precision, high flexibility, and low cost, it is widely used in emergency surveying in recent years. As the UAVs used in emergency surveying cannot stop and wait for the happening of the disaster, when the disaster happens the UAVs usually are working at everywhere. In order to improve the emergency surveying efficiency, it is needed to track the UAVs and assign the emergency surveying task for each selected UAV. Therefore, a UAV tracking and scheduling method for post-disaster survey is presented in this paper. In this method, Global Positioning System (GPS), and GSM network are used to track the UAVs; an emergency tracking UAV information database is built in advance by registration, the database at least includes the following information, e.g., the ID of the UAVs, the communication number of the UAVs; when catastrophe happens, the real time location of all UAVs in the database will be gotten using emergency tracking method at first, then the traffic cost time for all UAVs to the disaster region will be calculated based on the UAVs' the real time location and the road network using the nearest services analysis algorithm; the disaster region is subdivided to several emergency surveying regions based on DEM, area, and the population distribution map; the emergency surveying regions are assigned to the appropriated UAV according to shortest cost time rule. The UAVs tracking and scheduling prototype is implemented using SQLServer2008, ArcEnginge 10.1 SDK, Visual Studio 2010 C#, Android, SMS Modem, and Google Maps API.

  3. Research Directions in Real-Time Systems.

    DTIC Science & Technology

    1996-09-01

    This report summarizes a survey of published research in real time systems . Material is presented that provides an overview of the topic, focusing on...communications protocols and scheduling techniques. It is noted that real - time systems deserve special attention separate from other areas because of...formal tools for design and analysis of real - time systems . The early work on applications as well as notable theoretical advances are summarized

  4. Real-time photo-magnetic imaging.

    PubMed

    Nouizi, Farouk; Erkol, Hakan; Luk, Alex; Unlu, Mehmet B; Gulsen, Gultekin

    2016-10-01

    We previously introduced a new high resolution diffuse optical imaging modality termed, photo-magnetic imaging (PMI). PMI irradiates the object under investigation with near-infrared light and monitors the variations of temperature using magnetic resonance thermometry (MRT). In this paper, we present a real-time PMI image reconstruction algorithm that uses analytic methods to solve the forward problem and assemble the Jacobian matrix much faster. The new algorithm is validated using real MRT measured temperature maps. In fact, it accelerates the reconstruction process by more than 250 times compared to a single iteration of the FEM-based algorithm, which opens the possibility for the real-time PMI.

  5. Scheduling Policies for an Antiterrorist Surveillance System

    DTIC Science & Technology

    2008-06-27

    times; for example, see Reiman and Wein [17] and Olsen [15]. For real-time scheduling problems involving impatient customers, see Gaver et al. [2...heavy traffic with throughput time constraints: Asymptotically optimal dynamic controls. Queueing Systems 39, 23–54. 30 [17] Reiman , M. I. and Wein

  6. Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization.

    PubMed

    Mousavi, Maryam; Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah

    2017-01-01

    Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.

  7. Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization

    PubMed Central

    Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah

    2017-01-01

    Flexible manufacturing system (FMS) enhances the firm’s flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs’ battery charge. Assessment of the numerical examples’ scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software. PMID:28263994

  8. Supporting Real-Time Operations and Execution through Timeline and Scheduling Aids

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Pyrzak, Guy; Hashemi, Sam; Ahmed, Samia; McMillin, Kevin Edward; Medwid, Joseph Daniel; Chen, Diana; Hurtle, Esten

    2013-01-01

    Since 2003, the NASA Ames Research Center has been actively involved in researching and advancing the state-of-the-art of planning and scheduling tools for NASA mission operations. Our planning toolkit SPIFe (Scheduling and Planning Interface for Exploration) has supported a variety of missions and field tests, scheduling activities for Mars rovers as well as crew on-board International Space Station and NASA earth analogs. The scheduled plan is the integration of all the activities for the day/s. In turn, the agents (rovers, landers, spaceships, crew) execute from this schedule while the mission support team members (e.g., flight controllers) follow the schedule during execution. Over the last couple of years, our team has begun to research and validate methods that will better support users during realtime operations and execution of scheduled activities. Our team utilizes human-computer interaction principles to research user needs, identify workflow processes, prototype software aids, and user test these. This paper discusses three specific prototypes developed and user tested to support real-time operations: Score Mobile, Playbook, and Mobile Assistant for Task Execution (MATE).

  9. Dependable Real-Time Systems

    DTIC Science & Technology

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  10. Compositional schedulability analysis of real-time actor-based systems.

    PubMed

    Jaghoori, Mohammad Mahdi; de Boer, Frank; Longuet, Delphine; Chothia, Tom; Sirjani, Marjan

    2017-01-01

    We present an extension of the actor model with real-time, including deadlines associated with messages, and explicit application-level scheduling policies, e.g.,"earliest deadline first" which can be associated with individual actors. Schedulability analysis in this setting amounts to checking whether, given a scheduling policy for each actor, every task is processed within its designated deadline. To check schedulability, we introduce a compositional automata-theoretic approach, based on maximal use of model checking combined with testing. Behavioral interfaces define what an actor expects from the environment, and the deadlines for messages given these assumptions. We use model checking to verify that actors match their behavioral interfaces. We extend timed automata refinement with the notion of deadlines and use it to define compatibility of actor environments with the behavioral interfaces. Model checking of compatibility is computationally hard, so we propose a special testing process. We show that the analyses are decidable and automate the process using the Uppaal model checker.

  11. Generate stepper motor linear speed profile in real time

    NASA Astrophysics Data System (ADS)

    Stoychitch, M. Y.

    2018-01-01

    In this paper we consider the problem of realization of linear speed profile of stepper motors in real time. We considered the general case when changes of speed in the phases of acceleration and deceleration are different. The new and practical algorithm of the trajectory planning is given. The algorithms of the real time speed control which are suitable for realization to the microcontroller and FPGA circuits are proposed. The practical realization one of these algorithms, using Arduino platform, is given also.

  12. An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks

    PubMed Central

    Penumalli, Chakradhar; Palanichamy, Yogesh

    2015-01-01

    A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results. PMID:26221627

  13. Integrated Traffic Flow Management Decision Making

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon R.; Sridhar, Banavar; Mukherjee, Avijit

    2009-01-01

    A generalized approach is proposed to support integrated traffic flow management decision making studies at both the U.S. national and regional levels. It can consider tradeoffs between alternative optimization and heuristic based models, strategic versus tactical flight controls, and system versus fleet preferences. Preliminary testing was accomplished by implementing thirteen unique traffic flow management models, which included all of the key components of the system and conducting 85, six-hour fast-time simulation experiments. These experiments considered variations in the strategic planning look-ahead times, the replanning intervals, and the types of traffic flow management control strategies. Initial testing indicates that longer strategic planning look-ahead times and re-planning intervals result in steadily decreasing levels of sector congestion for a fixed delay level. This applies when accurate estimates of the air traffic demand, airport capacities and airspace capacities are available. In general, the distribution of the delays amongst the users was found to be most equitable when scheduling flights using a heuristic scheduling algorithm, such as ration-by-distance. On the other hand, equity was the worst when using scheduling algorithms that took into account the number of seats aboard each flight. Though the scheduling algorithms were effective at alleviating sector congestion, the tactical rerouting algorithm was the primary control for avoiding en route weather hazards. Finally, the modeled levels of sector congestion, the number of weather incursions, and the total system delays, were found to be in fair agreement with the values that were operationally observed on both good and bad weather days.

  14. A Simulation Based Approach to Optimize Berth Throughput Under Uncertainty at Marine Container Terminals

    NASA Technical Reports Server (NTRS)

    Golias, Mihalis M.

    2011-01-01

    Berth scheduling is a critical function at marine container terminals and determining the best berth schedule depends on several factors including the type and function of the port, size of the port, location, nearby competition, and type of contractual agreement between the terminal and the carriers. In this paper we formulate the berth scheduling problem as a bi-objective mixed-integer problem with the objective to maximize customer satisfaction and reliability of the berth schedule under the assumption that vessel handling times are stochastic parameters following a discrete and known probability distribution. A combination of an exact algorithm, a Genetic Algorithms based heuristic and a simulation post-Pareto analysis is proposed as the solution approach to the resulting problem. Based on a number of experiments it is concluded that the proposed berth scheduling policy outperforms the berth scheduling policy where reliability is not considered.

  15. Real-time operating system timing jitter and its impact on motor control

    NASA Astrophysics Data System (ADS)

    Proctor, Frederick M.; Shackleford, William P.

    2001-12-01

    General-purpose microprocessors are increasingly being used for control applications due to their widespread availability and software support for non-control functions like networking and operator interfaces. Two classes of real-time operating systems (RTOS) exist for these systems. The traditional RTOS serves as the sole operating system, and provides all OS services. Examples include ETS, LynxOS, QNX, Windows CE and VxWorks. RTOS extensions add real-time scheduling capabilities to non-real-time OSes, and provide minimal services needed for the time-critical portions of an application. Examples include RTAI and RTL for Linux, and HyperKernel, OnTime and RTX for Windows NT. Timing jitter is an issue in these systems, due to hardware effects such as bus locking, caches and pipelines, and software effects from mutual exclusion resource locks, non-preemtible critical sections, disabled interrupts, and multiple code paths in the scheduler. Jitter is typically on the order of a microsecond to a few tens of microseconds for hard real-time operating systems, and ranges from milliseconds to seconds in the worst case for soft real-time operating systems. The question of its significance on the performance of a controller arises. Naturally, the smaller the scheduling period required for a control task, the more significant is the impact of timing jitter. Aside from this intuitive relationship is the greater significance of timing on open-loop control, such as for stepper motors, than for closed-loop control, such as for servo motors. Techniques for measuring timing jitter are discussed, and comparisons between various platforms are presented. Techniques to reduce jitter or mitigate its effects are presented. The impact of jitter on stepper motor control is analyzed.

  16. Integration of domain and resource-based reasoning for real-time control in dynamic environments

    NASA Technical Reports Server (NTRS)

    Morgan, Keith; Whitebread, Kenneth R.; Kendus, Michael; Cromarty, Andrew S.

    1993-01-01

    A real-time software controller that successfully integrates domain-based and resource-based control reasoning to perform task execution in a dynamically changing environment is described. The design of the controller is based on the concept of partitioning the process to be controlled into a set of tasks, each of which achieves some process goal. It is assumed that, in general, there are multiple ways (tasks) to achieve a goal. The controller dynamically determines current goals and their current criticality, choosing and scheduling tasks to achieve those goals in the time available. It incorporates rule-based goal reasoning, a TMS-based criticality propagation mechanism, and a real-time scheduler. The controller has been used to build a knowledge-based situation assessment system that formed a major component of a real-time, distributed, cooperative problem solving system built under DARPA contract. It is also being employed in other applications now in progress.

  17. Scheduling algorithm for flow shop with two batch-processing machines and arbitrary job sizes

    NASA Astrophysics Data System (ADS)

    Cheng, Bayi; Yang, Shanlin; Hu, Xiaoxuan; Li, Kai

    2014-03-01

    This article considers the problem of scheduling two batch-processing machines in flow shop where the jobs have arbitrary sizes and the machines have limited capacity. The jobs are processed in batches and the total size of jobs in each batch cannot exceed the machine capacity. Once a batch is being processed, no interruption is allowed until all the jobs in it are completed. The problem of minimising makespan is NP-hard in the strong sense. First, we present a mathematical model of the problem using integer programme. We show the scale of feasible solutions of the problem and provide optimality properties. Then, we propose a polynomial time algorithm with running time in O(nlogn). The jobs are first assigned in feasible batches and then scheduled on machines. For the general case, we prove that the proposed algorithm has a performance guarantee of 4. For the special case where the processing times of each job on the two machines satisfy p 1 j = ap 2 j , the performance guarantee is ? for a > 0.

  18. Electromagnetic interference-aware transmission scheduling and power control for dynamic wireless access in hospital environments.

    PubMed

    Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio

    2011-11-01

    We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.

  19. Pre-Scheduled and Self Organized Sleep-Scheduling Algorithms for Efficient K-Coverage in Wireless Sensor Networks

    PubMed Central

    Hwang, I-Shyan

    2017-01-01

    The K-coverage configuration that guarantees coverage of each location by at least K sensors is highly popular and is extensively used to monitor diversified applications in wireless sensor networks. Long network lifetime and high detection quality are the essentials of such K-covered sleep-scheduling algorithms. However, the existing sleep-scheduling algorithms either cause high cost or cannot preserve the detection quality effectively. In this paper, the Pre-Scheduling-based K-coverage Group Scheduling (PSKGS) and Self-Organized K-coverage Scheduling (SKS) algorithms are proposed to settle the problems in the existing sleep-scheduling algorithms. Simulation results show that our pre-scheduled-based KGS approach enhances the detection quality and network lifetime, whereas the self-organized-based SKS algorithm minimizes the computation and communication cost of the nodes and thereby is energy efficient. Besides, SKS outperforms PSKGS in terms of network lifetime and detection quality as it is self-organized. PMID:29257078

  20. Evolving from Planning and Scheduling to Real-Time Operations Support: Design Challenges

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Ludowise, Melissa; McCurdy, Michael; Li, Jack

    2010-01-01

    Versions of Scheduling and Planning Interface for Exploration (SPIFe) have supported a variety of mission operations across NASA. This software tool has evolved and matured over several years, assisting planners who develop intricate schedules. While initially conceived for surface Mars missions, SPIFe has been deployed in other domains, where people rather than robotic explorers, execute plans. As a result, a diverse set of end-users has compelled growth in a new direction: supporting real-time operations. This paper describes the new needs and challenges that accompany this development. Among the key features that have been built for SPIFe are current time indicators integrated into the interface and timeline, as well as other plan attributes that enable execution of scheduled activities. Field tests include mission support for the Lunar CRater Observation and Sensing Satellite (LCROSS), NASA Extreme Environment Mission Operations (NEEMO) and Desert Research and Technology Studies (DRATS) campaigns.

  1. The application of connectionism to query planning/scheduling in intelligent user interfaces

    NASA Technical Reports Server (NTRS)

    Short, Nicholas, Jr.; Shastri, Lokendra

    1990-01-01

    In the mid nineties, the Earth Observing System (EOS) will generate an estimated 10 terabytes of data per day. This enormous amount of data will require the use of sophisticated technologies from real time distributed Artificial Intelligence (AI) and data management. Without regard to the overall problems in distributed AI, efficient models were developed for doing query planning and/or scheduling in intelligent user interfaces that reside in a network environment. Before intelligent query/planning can be done, a model for real time AI planning and/or scheduling must be developed. As Connectionist Models (CM) have shown promise in increasing run times, a connectionist approach to AI planning and/or scheduling is proposed. The solution involves merging a CM rule based system to a general spreading activation model for the generation and selection of plans. The system was implemented in the Rochester Connectionist Simulator and runs on a Sun 3/260.

  2. Enhancements of evolutionary algorithm for the complex requirements of a nurse scheduling problem

    NASA Astrophysics Data System (ADS)

    Tein, Lim Huai; Ramli, Razamin

    2014-12-01

    Over the years, nurse scheduling is a noticeable problem that is affected by the global nurse turnover crisis. The more nurses are unsatisfied with their working environment the more severe the condition or implication they tend to leave. Therefore, the current undesirable work schedule is partly due to that working condition. Basically, there is a lack of complimentary requirement between the head nurse's liability and the nurses' need. In particular, subject to highly nurse preferences issue, the sophisticated challenge of doing nurse scheduling is failure to stimulate tolerance behavior between both parties during shifts assignment in real working scenarios. Inevitably, the flexibility in shifts assignment is hard to achieve for the sake of satisfying nurse diverse requests with upholding imperative nurse ward coverage. Hence, Evolutionary Algorithm (EA) is proposed to cater for this complexity in a nurse scheduling problem (NSP). The restriction of EA is discussed and thus, enhancement on the EA operators is suggested so that the EA would have the characteristic of a flexible search. This paper consists of three types of constraints which are the hard, semi-hard and soft constraints that can be handled by the EA with enhanced parent selection and specialized mutation operators. These operators and EA as a whole contribute to the efficiency of constraint handling, fitness computation as well as flexibility in the search, which correspond to the employment of exploration and exploitation principles.

  3. Evaluation of the ACEC Benchmark Suite for Real-Time Applications

    DTIC Science & Technology

    1990-07-23

    1.0 benchmark suite waSanalyzed with respect to its measuring of Ada real-time features such as tasking, memory management, input/output, scheduling...and delay statement, Chapter 13 features , pragmas, interrupt handling, subprogram overhead, numeric computations etc. For most of the features that...meant for programming real-time systems. The ACEC benchmarks have been analyzed extensively with respect to their measuring of Ada real-time features

  4. Real-time dynamics simulation of the Cassini spacecraft using DARTS. Part 1: Functional capabilities and the spatial algebra algorithm

    NASA Technical Reports Server (NTRS)

    Jain, A.; Man, G. K.

    1993-01-01

    This paper describes the Dynamics Algorithms for Real-Time Simulation (DARTS) real-time hardware-in-the-loop dynamics simulator for the National Aeronautics and Space Administration's Cassini spacecraft. The spacecraft model consists of a central flexible body with a number of articulated rigid-body appendages. The demanding performance requirements from the spacecraft control system require the use of a high fidelity simulator for control system design and testing. The DARTS algorithm provides a new algorithmic and hardware approach to the solution of this hardware-in-the-loop simulation problem. It is based upon the efficient spatial algebra dynamics for flexible multibody systems. A parallel and vectorized version of this algorithm is implemented on a low-cost, multiprocessor computer to meet the simulation timing requirements.

  5. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    PubMed

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  6. Test Scheduling for Core-Based SOCs Using Genetic Algorithm Based Heuristic Approach

    NASA Astrophysics Data System (ADS)

    Giri, Chandan; Sarkar, Soumojit; Chattopadhyay, Santanu

    This paper presents a Genetic algorithm (GA) based solution to co-optimize test scheduling and wrapper design for core based SOCs. Core testing solutions are generated as a set of wrapper configurations, represented as rectangles with width equal to the number of TAM (Test Access Mechanism) channels and height equal to the corresponding testing time. A locally optimal best-fit heuristic based bin packing algorithm has been used to determine placement of rectangles minimizing the overall test times, whereas, GA has been utilized to generate the sequence of rectangles to be considered for placement. Experimental result on ITC'02 benchmark SOCs shows that the proposed method provides better solutions compared to the recent works reported in the literature.

  7. A street rubbish detection algorithm based on Sift and RCNN

    NASA Astrophysics Data System (ADS)

    Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting

    2018-02-01

    This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).

  8. Optimal RTP Based Power Scheduling for Residential Load in Smart Grid

    NASA Astrophysics Data System (ADS)

    Joshi, Hemant I.; Pandya, Vivek J.

    2015-12-01

    To match supply and demand, shifting of load from peak period to off-peak period is one of the effective solutions. Presently flat rate tariff is used in major part of the world. This type of tariff doesn't give incentives to the customers if they use electrical energy during off-peak period. If real time pricing (RTP) tariff is used, consumers can be encouraged to use energy during off-peak period. Due to advancement in information and communication technology, two-way communications is possible between consumers and utility. To implement this technique in smart grid, home energy controller (HEC), smart meters, home area network (HAN) and communication link between consumers and utility are required. HEC interacts automatically by running an algorithm to find optimal energy consumption schedule for each consumer. However, all the consumers are not allowed to shift their load simultaneously during off-peak period to avoid rebound peak condition. Peak to average ratio (PAR) is considered while carrying out minimization problem. Linear programming problem (LPP) method is used for minimization. The simulation results of this work show the effectiveness of the minimization method adopted. The hardware work is in progress and the program based on the method described here will be made to solve real problem.

  9. The serial message-passing schedule for LDPC decoding algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue

    2015-12-01

    The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.

  10. Scheduling quality of precise form sets which consist of tasks of circular type in GRID systems

    NASA Astrophysics Data System (ADS)

    Saak, A. E.; Kureichik, V. V.; Kravchenko, Y. A.

    2018-05-01

    Users’ demand in computer power and rise of technology favour the arrival of Grid systems. The quality of Grid systems’ performance depends on computer and time resources scheduling. Grid systems with a centralized structure of the scheduling system and user’s task are modeled by resource quadrant and re-source rectangle accordingly. A Non-Euclidean heuristic measure, which takes into consideration both the area and the form of an occupied resource region, is used to estimate scheduling quality of heuristic algorithms. The authors use sets, which are induced by the elements of square squaring, as an example of studying the adapt-ability of a level polynomial algorithm with an excess and the one with minimal deviation.

  11. Batch Scheduling for Hybrid Assembly Differentiation Flow Shop to Minimize Total Actual Flow Time

    NASA Astrophysics Data System (ADS)

    Maulidya, R.; Suprayogi; Wangsaputra, R.; Halim, A. H.

    2018-03-01

    A hybrid assembly differentiation flow shop is a three-stage flow shop consisting of Machining, Assembly and Differentiation Stages and producing different types of products. In the machining stage, parts are processed in batches on different (unrelated) machines. In the assembly stage, each part of the different parts is assembled into an assembly product. Finally, the assembled products will further be processed into different types of final products in the differentiation stage. In this paper, we develop a batch scheduling model for a hybrid assembly differentiation flow shop to minimize the total actual flow time defined as the total times part spent in the shop floor from the arrival times until its due date. We also proposed a heuristic algorithm for solving the problems. The proposed algorithm is tested using a set of hypothetic data. The solution shows that the algorithm can solve the problems effectively.

  12. Research on Production Scheduling System with Bottleneck Based on Multi-agent

    NASA Astrophysics Data System (ADS)

    Zhenqiang, Bao; Weiye, Wang; Peng, Wang; Pan, Quanke

    Aimed at the imbalance problem of resource capacity in Production Scheduling System, this paper uses Production Scheduling System based on multi-agent which has been constructed, and combines the dynamic and autonomous of Agent; the bottleneck problem in the scheduling is solved dynamically. Firstly, this paper uses Bottleneck Resource Agent to find out the bottleneck resource in the production line, analyses the inherent mechanism of bottleneck, and describes the production scheduling process based on bottleneck resource. Bottleneck Decomposition Agent harmonizes the relationship of job's arrival time and transfer time in Bottleneck Resource Agent and Non-Bottleneck Resource Agents, therefore, the dynamic scheduling problem is simplified as the single machine scheduling of each resource which takes part in the scheduling. Finally, the dynamic real-time scheduling problem is effectively solved in Production Scheduling System.

  13. Future aircraft networks and schedules

    NASA Astrophysics Data System (ADS)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents computational results of these large-scale instances. To validate the models and solution algorithms developed, this thesis also compares the daily flight schedules that it designs with the schedules of the existing airlines. Furthermore, it creates instances that represent different economic and fuel-prices conditions and derives schedules under these different conditions. In addition, it discusses the implication of using new aircraft in the future flight schedules. Finally, future research in three areas---model, computational method, and simulation for validation---is proposed.

  14. Conflict-Aware Scheduling Algorithm

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Borden, Chester

    2006-01-01

    conflict-aware scheduling algorithm is being developed to help automate the allocation of NASA s Deep Space Network (DSN) antennas and equipment that are used to communicate with interplanetary scientific spacecraft. The current approach for scheduling DSN ground resources seeks to provide an equitable distribution of tracking services among the multiple scientific missions and is very labor intensive. Due to the large (and increasing) number of mission requests for DSN services, combined with technical and geometric constraints, the DSN is highly oversubscribed. To help automate the process, and reduce the DSN and spaceflight project labor effort required for initiating, maintaining, and negotiating schedules, a new scheduling algorithm is being developed. The scheduling algorithm generates a "conflict-aware" schedule, where all requests are scheduled based on a dynamic priority scheme. The conflict-aware scheduling algorithm allocates all requests for DSN tracking services while identifying and maintaining the conflicts to facilitate collaboration and negotiation between spaceflight missions. These contrast with traditional "conflict-free" scheduling algorithms that assign tracks that are not in conflict and mark the remainder as unscheduled. In the case where full schedule automation is desired (based on mission/event priorities, fairness, allocation rules, geometric constraints, and ground system capabilities/ constraints), a conflict-free schedule can easily be created from the conflict-aware schedule by removing lower priority items that are in conflict.

  15. Testing Task Schedulers on Linux System

    NASA Astrophysics Data System (ADS)

    Jelenković, Leonardo; Groš, Stjepan; Jakobović, Domagoj

    Testing task schedulers on Linux operating system proves to be a challenging task. There are two main problems. The first one is to identify which properties of the scheduler to test. The second problem is how to perform it, e.g., which API to use that is sufficiently precise and in the same time supported on most platforms. This paper discusses the problems in realizing test framework for testing task schedulers and presents one potential solution. Observed behavior of the scheduler is the one used for “normal” task scheduling (SCHED_OTHER), unlike one used for real-time tasks (SCHED_FIFO, SCHED_RR).

  16. Temporal Proof Methodologies for Real-Time Systems,

    DTIC Science & Technology

    1990-09-01

    real time systems that communicate either through shared variables or by message passing and real time issues such as time-outs, process priorities (interrupts) and process scheduling. The authors exhibit two styles for the specification of real - time systems . While the first approach uses bounded versions of temporal operators the second approach allows explicit references to time through a special clock variable. Corresponding to two styles of specification the authors present and compare two fundamentally different proof

  17. Vectorization of a penalty function algorithm for well scheduling

    NASA Technical Reports Server (NTRS)

    Absar, I.

    1984-01-01

    In petroleum engineering, the oil production profiles of a reservoir can be simulated by using a finite gridded model. This profile is affected by the number and choice of wells which in turn is a result of various production limits and constraints including, for example, the economic minimum well spacing, the number of drilling rigs available and the time required to drill and complete a well. After a well is available it may be shut in because of excessive water or gas productions. In order to optimize the field performance a penalty function algorithm was developed for scheduling wells. For an example with some 343 wells and 15 different constraints, the scheduling routine vectorized for the CYBER 205 averaged 560 times faster performance than the scalar version.

  18. Runway Scheduling for Charlotte Douglas International Airport

    NASA Technical Reports Server (NTRS)

    Malik, Waqar A.; Lee, Hanbong; Jung, Yoon C.

    2016-01-01

    This paper describes the runway scheduler that was used in the 2014 SARDA human-in-the-loop simulations for CLT. The algorithm considers multiple runways and computes optimal runway times for departures and arrivals. In this paper, we plan to run additional simulation on the standalone MRS algorithm and compare the performance of the algorithm against a FCFS heuristic where aircraft avail of runway slots based on a priority given by their positions in the FCFS sequence. Several traffic scenarios corresponding to current day traffic level and demand profile will be generated. We also plan to examine the effect of increase in traffic level (1.2x and 1.5x) and observe trends in algorithm performance.

  19. Genetic algorithms for adaptive real-time control in space systems

    NASA Technical Reports Server (NTRS)

    Vanderzijp, J.; Choudry, A.

    1988-01-01

    Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.

  20. WFIRST: Exoplanet Target Selection and Scheduling with Greedy Optimization

    NASA Astrophysics Data System (ADS)

    Keithly, Dean; Garrett, Daniel; Delacroix, Christian; Savransky, Dmitry

    2018-01-01

    We present target selection and scheduling algorithms for missions with direct imaging of exoplanets, and the Wide Field Infrared Survey Telescope (WFIRST) in particular, which will be equipped with a coronagraphic instrument (CGI). Optimal scheduling of CGI targets can maximize the expected value of directly imaged exoplanets (completeness). Using target completeness as a reward metric and integration time plus overhead time as a cost metric, we can maximize the sum completeness for a mission with a fixed duration. We optimize over these metrics to create a list of target stars using a greedy optimization algorithm based off altruistic yield optimization (AYO) under ideal conditions. We simulate full missions using EXOSIMS by observing targets in this list for their predetermined integration times. In this poster, we report the theoretical maximum sum completeness, mean number of detected exoplanets from Monte Carlo simulations, and the ideal expected value of the simulated missions.

  1. Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows

    NASA Astrophysics Data System (ADS)

    Jittamai, Phongchai

    This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system composing of pipes, pumps, valves and storage facilities used to transport different types of liquids. Typically, products delivered by pipelines are petroleum of different grades moving either from production facilities to refineries or from refineries to distributors. Time-windows, which are generally used in logistics and scheduling areas, are incorporated in this study. The distribution of multiple products into oil pipeline subject to delivery time-windows is modeled as multicommodity network flow structure and mathematically formulated. The main focus of this dissertation is the investigation of operating issues and problem complexity of single-source pipeline problems and also providing solution methodology to compute input schedule that yields minimum total time violation from due delivery time-windows. The problem is proved to be NP-complete. The heuristic approach, a reversed-flow algorithm, is developed based on pipeline flow reversibility to compute input schedule for the pipeline problem. This algorithm is implemented in no longer than O(T·E) time. This dissertation also extends the study to examine some operating attributes and problem complexity of multiple-source pipelines. The multiple-source pipeline problem is also NP-complete. A heuristic algorithm modified from the one used in single-source pipeline problems is introduced. This algorithm can also be implemented in no longer than O(T·E) time. Computational results are presented for both methodologies on randomly generated problem sets. The computational experience indicates that reversed-flow algorithms provide good solutions in comparison with the optimal solutions. Only 25% of the problems tested were more than 30% greater than optimal values and approximately 40% of the tested problems were solved optimally by the algorithms.

  2. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  3. TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate sensor networks

    USGS Publications Warehouse

    Song, W.-Z.; Huang, R.; Shirazi, B.; Husent, R.L.

    2009-01-01

    Earlier sensor network MAC protocols focus on energy conservation in low-duty cycle applications, while some recent applications involve real-time high-data-rate signals. This motivates us to design an innovative localized TDMA MAC protocol to achieve high throughput and low congestion in data collection sensor networks, besides energy conservation. TreeMAC divides a time cycle into frames and frame into slots. Parent determines children's frame assigmnent based on their relative bandwidth demand, and each node calculates its own slot assignment based on its hop-count to the sink. This innovative 2-dimensional frame-slot assignment algorithm has the following nice theory properties. Firstly, given any node, at any time slot, there is at most one active sender in its neighborhood (includ ing itself). Secondly, the packet scheduling with TreelMAC is bufferless, which therefore minimizes the probability of network congestion. Thirdly, the data throughput to gateway is at least 1/3 of the optimum assuming reliable links. Our experiments on a 24 node test bed demonstrate that TreeMAC protocol significantly improves network throughput and energy efficiency, by comparing to the TinyOS's default CSMA MAC protocol and a recent TDMA MAC protocol Funneling-MAC[8]. ?? 2009 IEEE.

  4. A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex; Morris, Philip J.

    1999-01-01

    In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.

  5. Development of a decentralized multi-axis synchronous control approach for real-time networks.

    PubMed

    Xu, Xiong; Gu, Guo-Ying; Xiong, Zhenhua; Sheng, Xinjun; Zhu, Xiangyang

    2017-05-01

    The message scheduling and the network-induced delays of real-time networks, together with the different inertias and disturbances in different axes, make the synchronous control of the real-time network-based systems quite challenging. To address this challenge, a decentralized multi-axis synchronous control approach is developed in this paper. Due to the limitations of message scheduling and network bandwidth, error of the position synchronization is firstly defined in the proposed control approach as a subset of preceding-axis pairs. Then, a motion message estimator is designed to reduce the effect of network delays. It is proven that position and synchronization errors asymptotically converge to zero in the proposed controller with the delay compensation. Finally, simulation and experimental results show that the developed control approach can achieve the good position synchronization performance for the multi-axis motion over the real-time network. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Genetic algorithm parameters tuning for resource-constrained project scheduling problem

    NASA Astrophysics Data System (ADS)

    Tian, Xingke; Yuan, Shengrui

    2018-04-01

    Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.

  7. Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines

    PubMed Central

    Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing

    2014-01-01

    m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933

  8. Research on Scheduling Algorithm for Multi-satellite and Point Target Task on Swinging Mode

    NASA Astrophysics Data System (ADS)

    Wang, M.; Dai, G.; Peng, L.; Song, Z.; Chen, G.

    2012-12-01

    Nowadays, using satellite in space to observe ground is an important and major method to obtain ground information. With the development of the scientific technology in the field of space, many fields such as military and economic and other areas have more and more requirement of space technology because of the benefits of the satellite's widespread, timeliness and unlimited of area and country. And at the same time, because of the wide use of all kinds of satellites, sensors, repeater satellites and ground receiving stations, ground control system are now facing great challenge. Therefore, how to make the best value of satellite resources so as to make full use of them becomes an important problem of ground control system. Satellite scheduling is to distribute the resource to all tasks without conflict to obtain the scheduling result so as to complete as many tasks as possible to meet user's requirement under considering the condition of the requirement of satellites, sensors and ground receiving stations. Considering the size of the task, we can divide tasks into point task and area task. This paper only considers point targets. In this paper, a description of satellite scheduling problem and a chief introduction of the theory of satellite scheduling are firstly made. We also analyze the restriction of resource and task in scheduling satellites. The input and output flow of scheduling process are also chiefly described in the paper. On the basis of these analyses, we put forward a scheduling model named as multi-variable optimization model for multi-satellite and point target task on swinging mode. In the multi-variable optimization model, the scheduling problem is transformed the parametric optimization problem. The parameter we wish to optimize is the swinging angle of every time-window. In the view of the efficiency and accuracy, some important problems relating the satellite scheduling such as the angle relation between satellites and ground targets, positive and negative swinging angle and the computation of time window are analyzed and discussed. And many strategies to improve the efficiency of this model are also put forward. In order to solve the model, we bring forward the conception of activity sequence map. By using the activity sequence map, the activity choice and the start time of the activity can be divided. We also bring forward three neighborhood operators to search the result space. The front movement remaining time and the back movement remaining time are used to analyze the feasibility to generate solution from neighborhood operators. Lastly, the algorithm to solve the problem and model is put forward based genetic algorithm. Population initialization, crossover operator, mutation operator, individual evaluation, collision decrease operator, select operator and collision elimination operator is designed in the paper. Finally, the scheduling result and the simulation for a practical example on 5 satellites and 100 point targets with swinging mode is given, and the scheduling performances are also analyzed while the swinging angle in 0, 5, 10, 15, 25. It can be shown by the result that the model and the algorithm are more effective than those ones without swinging mode.

  9. Static Scheduler for Hard Real-Time Tasks on Multiprocessor Systems

    DTIC Science & Technology

    1992-09-01

    Foundation of Computer Science, 1980 . [SIM83] Simons, B., "Multiprocessor Scheduling of Unit-Time Jobs with Arbitrary Release Times and Deadlines", SIAM...Research Office Attn: Dr. David Hislop P. O. Box 12211 Research Triangle Park, NC 27709-2211 31. Persistent Data Systems 75 W. Chapel Ridge Road Attn: Dr

  10. The Priority Inversion Problem and Real-Time Symbolic Model Checking

    DTIC Science & Technology

    1993-04-23

    real time systems unpredictable in subtle ways. This makes it more difficult to implement and debug such systems. Our work discusses this problem and presents one possible solution. The solution is formalized and verified using temporal logic model checking techniques. In order to perform the verification, the BDD-based symbolic model checking algorithm given in previous works was extended to handle real-time properties using the bounded until operator. We believe that this algorithm, which is based on discrete time, is able to handle many real-time properties

  11. Genetic algorithms applied to the scheduling of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Sponsler, Jeffrey L.

    1989-01-01

    A prototype system employing a genetic algorithm (GA) has been developed to support the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used and appropriate genetic operators have been created. Several different crossover styles (random point selection, evolving points, and smart point selection) are tested and the best GA is compared with a neural network (NN) based optimizer. The smart crossover operator produces the best results and the GA system is able to evolve complete schedules using it. The GA is not as time-efficient as the NN system and the NN solutions tend to be better.

  12. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a manned spacecraft. These systems include spacecraft navigation and attitude control, propulsion, automated docking, vehicle health management and life support. ISAACC can integrate local critical subsystem health management with subsystems performing long term health monitoring. The ISAACC system and its relationship to ISHM will be presented.

  13. Multiple objects tracking with HOGs matching in circular windows

    NASA Astrophysics Data System (ADS)

    Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.

    2014-09-01

    In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.

  14. Aeon: Synthesizing Scheduling Algorithms from High-Level Models

    NASA Astrophysics Data System (ADS)

    Monette, Jean-Noël; Deville, Yves; van Hentenryck, Pascal

    This paper describes the aeon system whose aim is to synthesize scheduling algorithms from high-level models. A eon, which is entirely written in comet, receives as input a high-level model for a scheduling application which is then analyzed to generate a dedicated scheduling algorithm exploiting the structure of the model. A eon provides a variety of synthesizers for generating complete or heuristic algorithms. Moreover, synthesizers are compositional, making it possible to generate complex hybrid algorithms naturally. Preliminary experimental results indicate that this approach may be competitive with state-of-the-art search algorithms.

  15. Real time lobster posture estimation for behavior research

    NASA Astrophysics Data System (ADS)

    Yan, Sheng; Alfredsen, Jo Arve

    2017-02-01

    In animal behavior research, the main task of observing the behavior of an animal is usually done manually. The measurement of the trajectory of an animal and its real-time posture description is often omitted due to the lack of automatic computer vision tools. Even though there are many publications for pose estimation, few are efficient enough to apply in real-time or can be used without the machine learning algorithm to train a classifier from mass samples. In this paper, we propose a novel strategy for the real-time lobster posture estimation to overcome those difficulties. In our proposed algorithm, we use the Gaussian mixture model (GMM) for lobster segmentation. Then the posture estimation is based on the distance transform and skeleton calculated from the segmentation. We tested the algorithm on a serials lobster videos in different size and lighting conditions. The results show that our proposed algorithm is efficient and robust under various conditions.

  16. Real-time estimation of prostate tumor rotation and translation with a kV imaging system based on an iterative closest point algorithm.

    PubMed

    Tehrani, Joubin Nasehi; O'Brien, Ricky T; Poulsen, Per Rugaard; Keall, Paul

    2013-12-07

    Previous studies have shown that during cancer radiotherapy a small translation or rotation of the tumor can lead to errors in dose delivery. Current best practice in radiotherapy accounts for tumor translations, but is unable to address rotation due to a lack of a reliable real-time estimate. We have developed a method based on the iterative closest point (ICP) algorithm that can compute rotation from kilovoltage x-ray images acquired during radiation treatment delivery. A total of 11 748 kilovoltage (kV) images acquired from ten patients (one fraction for each patient) were used to evaluate our tumor rotation algorithm. For each kV image, the three dimensional coordinates of three fiducial markers inside the prostate were calculated. The three dimensional coordinates were used as input to the ICP algorithm to calculate the real-time tumor rotation and translation around three axes. The results show that the root mean square error was improved for real-time calculation of tumor displacement from a mean of 0.97 mm with the stand alone translation to a mean of 0.16 mm by adding real-time rotation and translation displacement with the ICP algorithm. The standard deviation (SD) of rotation for the ten patients was 2.3°, 0.89° and 0.72° for rotation around the right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively. The correlation between all six degrees of freedom showed that the highest correlation belonged to the AP and SI translation with a correlation of 0.67. The second highest correlation in our study was between the rotation around RL and rotation around AP, with a correlation of -0.33. Our real-time algorithm for calculation of rotation also confirms previous studies that have shown the maximum SD belongs to AP translation and rotation around RL. ICP is a reliable and fast algorithm for estimating real-time tumor rotation which could create a pathway to investigational clinical treatment studies requiring real-time measurement and adaptation to tumor rotation.

  17. Real-time estimation of prostate tumor rotation and translation with a kV imaging system based on an iterative closest point algorithm

    NASA Astrophysics Data System (ADS)

    Nasehi Tehrani, Joubin; O'Brien, Ricky T.; Rugaard Poulsen, Per; Keall, Paul

    2013-12-01

    Previous studies have shown that during cancer radiotherapy a small translation or rotation of the tumor can lead to errors in dose delivery. Current best practice in radiotherapy accounts for tumor translations, but is unable to address rotation due to a lack of a reliable real-time estimate. We have developed a method based on the iterative closest point (ICP) algorithm that can compute rotation from kilovoltage x-ray images acquired during radiation treatment delivery. A total of 11 748 kilovoltage (kV) images acquired from ten patients (one fraction for each patient) were used to evaluate our tumor rotation algorithm. For each kV image, the three dimensional coordinates of three fiducial markers inside the prostate were calculated. The three dimensional coordinates were used as input to the ICP algorithm to calculate the real-time tumor rotation and translation around three axes. The results show that the root mean square error was improved for real-time calculation of tumor displacement from a mean of 0.97 mm with the stand alone translation to a mean of 0.16 mm by adding real-time rotation and translation displacement with the ICP algorithm. The standard deviation (SD) of rotation for the ten patients was 2.3°, 0.89° and 0.72° for rotation around the right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively. The correlation between all six degrees of freedom showed that the highest correlation belonged to the AP and SI translation with a correlation of 0.67. The second highest correlation in our study was between the rotation around RL and rotation around AP, with a correlation of -0.33. Our real-time algorithm for calculation of rotation also confirms previous studies that have shown the maximum SD belongs to AP translation and rotation around RL. ICP is a reliable and fast algorithm for estimating real-time tumor rotation which could create a pathway to investigational clinical treatment studies requiring real-time measurement and adaptation to tumor rotation.

  18. A Novel Strategy Using Factor Graphs and the Sum-Product Algorithm for Satellite Broadcast Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh

    This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.

  19. A novel hybrid genetic algorithm to solve the make-to-order sequence-dependent flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Mirabi, Mohammad; Fatemi Ghomi, S. M. T.; Jolai, F.

    2014-04-01

    Flow-shop scheduling problem (FSP) deals with the scheduling of a set of n jobs that visit a set of m machines in the same order. As the FSP is NP-hard, there is no efficient algorithm to reach the optimal solution of the problem. To minimize the holding, delay and setup costs of large permutation flow-shop scheduling problems with sequence-dependent setup times on each machine, this paper develops a novel hybrid genetic algorithm (HGA) with three genetic operators. Proposed HGA applies a modified approach to generate a pool of initial solutions, and also uses an improved heuristic called the iterated swap procedure to improve the initial solutions. We consider the make-to-order production approach that some sequences between jobs are assumed as tabu based on maximum allowable setup cost. In addition, the results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.

  20. Real-time Upstream Monitoring System (RUMS): Forecasting arrival times of interplanetary shocks using energetic particle data from ACE

    NASA Astrophysics Data System (ADS)

    Ho, G.; Donegan, M.; Vandegriff, J.; Wagstaff, K.

    We have created a system for predicting the arrival times at Earth of interplanetary (IP) shocks that originate at the Sun. This system is currently available on the web (http://sd-www.jhuapl.edu/UPOS/RISP/index.html) and runs in real-time. Input data to our prediction algorithm is energetic particle data from the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. Real-time EPAM data is obtained from the National Oceanic and Atmospheric Administration (NOAA) Space Environment Center (SEC). Our algorithm operates in two stages. First it watches for a velocity dispersion signature (energetic ions show flux enhancement followed by subsequent enhancements in lower energies), which is commonly seen upstream of a large IP shock. Once a precursor signature has been detected, a pattern recognition algorithm is used to analyze the time series profile of the particle data and generate an estimate for the shock arrival time. Tests on the algorithm show an average error of roughly 9 hours for predictions made 24 hours before the shock arrival and roughly 5 hours when the shock is 12 hours away. This can provide significant lead-time and deliver critical information to mission planners, satellite operations controllers, and scientists. As of February 4, 2004, the ACE real-time stream has been switched to include data from another detector on EPAM. We are now processing the new real-time data stream and have made improvements to our algorithm based on this data. In this paper, we report prediction results from the updated algorithm.

  1. Contingency rescheduling of spacecraft operations

    NASA Technical Reports Server (NTRS)

    Britt, Daniel L.; Geoffroy, Amy L.; Gohring, John R.

    1988-01-01

    Spacecraft activity scheduling was a focus of attention in artificial intelligence recently. Several scheduling systems were devised which more-or-less successfully address various aspects of the activity scheduling problem, though most of these are not yet mature, with the notable expection of NASA's ESP. Few current scheduling systems, however, make any attempt to deal fully with the problem of modifying a schedule in near-real-time in the event of contingencies which may arise during schedule execution. These contingencies can include resources becoming unavailable unpredictably, a change in spacecraft conditions or environment, or the need to perform an activity not scheduled. In these cases it becomes necessary to repair an existing schedule, disrupting ongoing operations as little as possible. Normal scheduling is just a part of that which must be accomplished during contingency rescheduling. A prototype system named MAESTRO was developed for spacecraft activity scheduling. MAESTRO is briefly described with a focus on recent work in the area of real-time contingency handling. Included is a discussion of some of the complexities of the scheduling problem and how they affect contingency rescheduling, such as temporal constraints between activities, activities which may be interrupted and continued in any of several ways, and different ways to choose a resource complement which will allow continuation of an activity. Various heuristics used in MAESTRO for contingency rescheduling is discussed, as are operational concerns such as interaction of the scheduler with spacecraft subsystems controllers.

  2. Real-Time Neural Signals Decoding onto Off-the-Shelf DSP Processors for Neuroprosthetic Applications.

    PubMed

    Pani, Danilo; Barabino, Gianluca; Citi, Luca; Meloni, Paolo; Raspopovic, Stanisa; Micera, Silvestro; Raffo, Luigi

    2016-09-01

    The control of upper limb neuroprostheses through the peripheral nervous system (PNS) can allow restoring motor functions in amputees. At present, the important aspect of the real-time implementation of neural decoding algorithms on embedded systems has been often overlooked, notwithstanding the impact that limited hardware resources have on the efficiency/effectiveness of any given algorithm. Present study is addressing the optimization of a template matching based algorithm for PNS signals decoding that is a milestone for its real-time, full implementation onto a floating-point digital signal processor (DSP). The proposed optimized real-time algorithm achieves up to 96% of correct classification on real PNS signals acquired through LIFE electrodes on animals, and can correctly sort spikes of a synthetic cortical dataset with sufficiently uncorrelated spike morphologies (93% average correct classification) comparably to the results obtained with top spike sorter (94% on average on the same dataset). The power consumption enables more than 24 h processing at the maximum load, and latency model has been derived to enable a fair performance assessment. The final embodiment demonstrates the real-time performance onto a low-power off-the-shelf DSP, opening to experiments exploiting the efferent signals to control a motor neuroprosthesis.

  3. Dynamic scheduling and planning parallel observations on large Radio Telescope Arrays with the Square Kilometre Array in mind

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes

    2011-12-01

    Scheduling, the task of producing a time table for resources and tasks, is well-known to be a difficult problem the more resources are involved (a NP-hard problem). This is about to become an issue in Radio astronomy as observatories consisting of hundreds to thousands of telescopes are planned and operated. The Square Kilometre Array (SKA), which Australia and New Zealand bid to host, is aiming for scales where current approaches -- in construction, operation but also scheduling -- are insufficent. Although manual scheduling is common today, the problem is becoming complicated by the demand for (1) independent sub-arrays doing simultaneous observations, which requires the scheduler to plan parallel observations and (2) dynamic re-scheduling on changed conditions. Both of these requirements apply to the SKA, especially in the construction phase. We review the scheduling approaches taken in the astronomy literature, as well as investigate techniques from human schedulers and today's observatories. The scheduling problem is specified in general for scientific observations and in particular on radio telescope arrays. Also taken into account is the fact that the observatory may be oversubscribed, requiring the scheduling problem to be integrated with a planning process. We solve this long-term scheduling problem using a time-based encoding that works in the very general case of observation scheduling. This research then compares algorithms from various approaches, including fast heuristics from CPU scheduling, Linear Integer Programming and Genetic algorithms, Branch-and-Bound enumeration schemes. Measures include not only goodness of the solution, but also scalability and re-scheduling capabilities. In conclusion, we have identified a fast and good scheduling approach that allows (re-)scheduling difficult and changing problems by combining heuristics with a Genetic algorithm using block-wise mutation operations. We are able to explain and eradicate two problems in the literature: The inability of a GA to properly improve schedules and the generation of schedules with frequent interruptions. Finally, we demonstrate the scheduling framework for several operating telescopes: (1) Dynamic re-scheduling with the AUT Warkworth 12m telescope, (2) Scheduling for the Australian Mopra 22m telescope and scheduling for the Allen Telescope Array. Furthermore, we discuss the applicability of the presented scheduling framework to the Atacama Large Millimeter/submillimeter Array (ALMA, in construction) and the SKA. In particular, during the development phase of the SKA, this dynamic, scalable scheduling framework can accommodate changing conditions.

  4. Achieving reutilization of scheduling software through abstraction and generalization

    NASA Technical Reports Server (NTRS)

    Wilkinson, George J.; Monteleone, Richard A.; Weinstein, Stuart M.; Mohler, Michael G.; Zoch, David R.; Tong, G. Michael

    1995-01-01

    Reutilization of software is a difficult goal to achieve particularly in complex environments that require advanced software systems. The Request-Oriented Scheduling Engine (ROSE) was developed to create a reusable scheduling system for the diverse scheduling needs of the National Aeronautics and Space Administration (NASA). ROSE is a data-driven scheduler that accepts inputs such as user activities, available resources, timing contraints, and user-defined events, and then produces a conflict-free schedule. To support reutilization, ROSE is designed to be flexible, extensible, and portable. With these design features, applying ROSE to a new scheduling application does not require changing the core scheduling engine, even if the new application requires significantly larger or smaller data sets, customized scheduling algorithms, or software portability. This paper includes a ROSE scheduling system description emphasizing its general-purpose features, reutilization techniques, and tasks for which ROSE reuse provided a low-risk solution with significant cost savings and reduced software development time.

  5. [Design and implementation of real-time continuous glucose monitoring instrument].

    PubMed

    Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian

    2017-12-01

    Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.

  6. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    PubMed Central

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-01-01

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate. PMID:27070606

  7. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    PubMed

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-04-07

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  8. Evaluating the Real-time and Offline Performance of the Virtual Seismologist Earthquake Early Warning Algorithm

    NASA Astrophysics Data System (ADS)

    Cua, G.; Fischer, M.; Heaton, T.; Wiemer, S.

    2009-04-01

    The Virtual Seismologist (VS) algorithm is a Bayesian approach to regional, network-based earthquake early warning (EEW). Bayes' theorem as applied in the VS algorithm states that the most probable source estimates at any given time is a combination of contributions from relatively static prior information that does not change over the timescale of earthquake rupture and a likelihood function that evolves with time to take into account incoming pick and amplitude observations from the on-going earthquake. Potentially useful types of prior information include network topology or station health status, regional hazard maps, earthquake forecasts, and the Gutenberg-Richter magnitude-frequency relationship. The VS codes provide magnitude and location estimates once picks are available at 4 stations; these source estimates are subsequently updated each second. The algorithm predicts the geographical distribution of peak ground acceleration and velocity using the estimated magnitude and location and appropriate ground motion prediction equations; the peak ground motion estimates are also updated each second. Implementation of the VS algorithm in California and Switzerland is funded by the Seismic Early Warning for Europe (SAFER) project. The VS method is one of three EEW algorithms whose real-time performance is being evaluated and tested by the California Integrated Seismic Network (CISN) EEW project. A crucial component of operational EEW algorithms is the ability to distinguish between noise and earthquake-related signals in real-time. We discuss various empirical approaches that allow the VS algorithm to operate in the presence of noise. Real-time operation of the VS codes at the Southern California Seismic Network (SCSN) began in July 2008. On average, the VS algorithm provides initial magnitude, location, origin time, and ground motion distribution estimates within 17 seconds of the earthquake origin time. These initial estimate times are dominated by the time for 4 acceptable picks to be available, and thus are heavily influenced by the station density in a given region; these initial estimate times also include the effects of telemetry delay, which ranges between 6 and 15 seconds at the SCSN, and processing time (~1 second). Other relevant performance statistics include: 95% of initial real-time location estimates are within 20 km of the actual epicenter, 97% of initial real-time magnitude estimates are within one magnitude unit of the network magnitude. Extension of real-time VS operations to networks in Northern California is an on-going effort. In Switzerland, the VS codes have been run on offline waveform data from over 125 earthquakes recorded by the Swiss Digital Seismic Network (SDSN) and the Swiss Strong Motion Network (SSMS). We discuss the performance of the VS algorithm on these datasets in terms of magnitude, location, and ground motion estimation.

  9. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    PubMed Central

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  10. Better approximation guarantees for job-shop scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, L.A.; Paterson, M.; Srinivasan, A.

    1997-06-01

    Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein & Wein presented the first polynomial-time approximation algorithm for this problem that has a good (polylogarithmic) approximation guarantee. We improve the approximation guarantee of their work, and present further improvements for some important NP-hard special cases of this problem (e.g., in the preemptive case where machines can suspend work on operations and later resume). We also present NC algorithms with improved approximation guarantees for some NP-hard special cases.

  11. Evaluation of hybrid inverse planning and optimization (HIPO) algorithm for optimization in real-time, high-dose-rate (HDR) brachytherapy for prostate.

    PubMed

    Pokharel, Shyam; Rana, Suresh; Blikenstaff, Joseph; Sadeghi, Amir; Prestidge, Bradley

    2013-07-08

    The purpose of this study is to investigate the effectiveness of the HIPO planning and optimization algorithm for real-time prostate HDR brachytherapy. This study consists of 20 patients who underwent ultrasound-based real-time HDR brachytherapy of the prostate using the treatment planning system called Oncentra Prostate (SWIFT version 3.0). The treatment plans for all patients were optimized using inverse dose-volume histogram-based optimization followed by graphical optimization (GRO) in real time. The GRO is manual manipulation of isodose lines slice by slice. The quality of the plan heavily depends on planner expertise and experience. The data for all patients were retrieved later, and treatment plans were created and optimized using HIPO algorithm with the same set of dose constraints, number of catheters, and set of contours as in the real-time optimization algorithm. The HIPO algorithm is a hybrid because it combines both stochastic and deterministic algorithms. The stochastic algorithm, called simulated annealing, searches the optimal catheter distributions for a given set of dose objectives. The deterministic algorithm, called dose-volume histogram-based optimization (DVHO), optimizes three-dimensional dose distribution quickly by moving straight downhill once it is in the advantageous region of the search space given by the stochastic algorithm. The PTV receiving 100% of the prescription dose (V100) was 97.56% and 95.38% with GRO and HIPO, respectively. The mean dose (D(mean)) and minimum dose to 10% volume (D10) for the urethra, rectum, and bladder were all statistically lower with HIPO compared to GRO using the student pair t-test at 5% significance level. HIPO can provide treatment plans with comparable target coverage to that of GRO with a reduction in dose to the critical structures.

  12. Real coded genetic algorithm for fuzzy time series prediction

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.

    2017-10-01

    Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.

  13. Scheduling Non-Preemptible Jobs to Minimize Peak Demand

    DOE PAGES

    Yaw, Sean; Mumey, Brendan

    2017-10-28

    Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less

  14. Scheduling Non-Preemptible Jobs to Minimize Peak Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaw, Sean; Mumey, Brendan

    Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less

  15. Real-time algorithm for acoustic imaging with a microphone array.

    PubMed

    Huang, Xun

    2009-05-01

    Acoustic phased array has become an important testing tool in aeroacoustic research, where the conventional beamforming algorithm has been adopted as a classical processing technique. The computation however has to be performed off-line due to the expensive cost. An innovative algorithm with real-time capability is proposed in this work. The algorithm is similar to a classical observer in the time domain while extended for the array processing to the frequency domain. The observer-based algorithm is beneficial mainly for its capability of operating over sampling blocks recursively. The expensive experimental time can therefore be reduced extensively since any defect in a testing can be corrected instantaneously.

  16. Time management situation assessment (TMSA)

    NASA Technical Reports Server (NTRS)

    Richardson, Michael B.; Ricci, Mark J.

    1992-01-01

    TMSA is a concept prototype developed to support NASA Test Directors (NTDs) in schedule execution monitoring during the later stages of a Shuttle countdown. The program detects qualitative and quantitative constraint violations in near real-time. The next version will support incremental rescheduling and reason over a substantially larger number of scheduled events.

  17. Computing Bounds on Resource Levels for Flexible Plans

    NASA Technical Reports Server (NTRS)

    Muscvettola, Nicola; Rijsman, David

    2009-01-01

    A new algorithm efficiently computes the tightest exact bound on the levels of resources induced by a flexible activity plan (see figure). Tightness of bounds is extremely important for computations involved in planning because tight bounds can save potentially exponential amounts of search (through early backtracking and detection of solutions), relative to looser bounds. The bound computed by the new algorithm, denoted the resource-level envelope, constitutes the measure of maximum and minimum consumption of resources at any time for all fixed-time schedules in the flexible plan. At each time, the envelope guarantees that there are two fixed-time instantiations one that produces the minimum level and one that produces the maximum level. Therefore, the resource-level envelope is the tightest possible resource-level bound for a flexible plan because any tighter bound would exclude the contribution of at least one fixed-time schedule. If the resource- level envelope can be computed efficiently, one could substitute looser bounds that are currently used in the inner cores of constraint-posting scheduling algorithms, with the potential for great improvements in performance. What is needed to reduce the cost of computation is an algorithm, the measure of complexity of which is no greater than a low-degree polynomial in N (where N is the number of activities). The new algorithm satisfies this need. In this algorithm, the computation of resource-level envelopes is based on a novel combination of (1) the theory of shortest paths in the temporal-constraint network for the flexible plan and (2) the theory of maximum flows for a flow network derived from the temporal and resource constraints. The measure of asymptotic complexity of the algorithm is O(N O(maxflow(N)), where O(x) denotes an amount of computing time or a number of arithmetic operations proportional to a number of the order of x and O(maxflow(N)) is the measure of complexity (and thus of cost) of a maximumflow algorithm applied to an auxiliary flow network of 2N nodes. The algorithm is believed to be efficient in practice; experimental analysis shows the practical cost of maxflow to be as low as O(N1.5). The algorithm could be enhanced following at least two approaches. In the first approach, incremental subalgorithms for the computation of the envelope could be developed. By use of temporal scanning of the events in the temporal network, it may be possible to significantly reduce the size of the networks on which it is necessary to run the maximum-flow subalgorithm, thereby significantly reducing the time required for envelope calculation. In the second approach, the practical effectiveness of resource envelopes in the inner loops of search algorithms could be tested for multi-capacity resource scheduling. This testing would include inner-loop backtracking and termination tests and variable and value-ordering heuristics that exploit the properties of resource envelopes more directly.

  18. Managing Contention and Timing Constraints in a Real-Time Database System

    DTIC Science & Technology

    1995-01-01

    In order to realize many of these goals, StarBase is constructed on top of RT-Mach, a real - time operating system developed at Carnegie Mellon...University [ll]. StarBase differs from previous RT-DBMS work [l, 2, 31 in that a) it relies on a real - time operating system which provides priority...CPU and resource scheduling pro- vided by tlhe underlying real - time operating system . Issues of data contention are dealt with by use of a priority

  19. PRESEE: An MDL/MML Algorithm to Time-Series Stream Segmenting

    PubMed Central

    Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie

    2013-01-01

    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream. PMID:23956693

  20. PRESEE: an MDL/MML algorithm to time-series stream segmenting.

    PubMed

    Xu, Kaikuo; Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie

    2013-01-01

    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream.

  1. Suboptimal Scheduling in Switched Systems With Continuous-Time Dynamics: A Least Squares Approach.

    PubMed

    Sardarmehni, Tohid; Heydari, Ali

    2018-06-01

    Two approximate solutions for optimal control of switched systems with autonomous subsystems and continuous-time dynamics are presented. The first solution formulates a policy iteration (PI) algorithm for the switched systems with recursive least squares. To reduce the computational burden imposed by the PI algorithm, a second solution, called single loop PI, is presented. Online and concurrent training algorithms are discussed for implementing each solution. At last, effectiveness of the presented algorithms is evaluated through numerical simulations.

  2. Determining optimal selling price and lot size with process reliability and partial backlogging considerations

    NASA Astrophysics Data System (ADS)

    Hsieh, Tsu-Pang; Cheng, Mei-Chuan; Dye, Chung-Yuan; Ouyang, Liang-Yuh

    2011-01-01

    In this article, we extend the classical economic production quantity (EPQ) model by proposing imperfect production processes and quality-dependent unit production cost. The demand rate is described by any convex decreasing function of the selling price. In addition, we allow for shortages and a time-proportional backlogging rate. For any given selling price, we first prove that the optimal production schedule not only exists but also is unique. Next, we show that the total profit per unit time is a concave function of price when the production schedule is given. We then provide a simple algorithm to find the optimal selling price and production schedule for the proposed model. Finally, we use a couple of numerical examples to illustrate the algorithm and conclude this article with suggestions for possible future research.

  3. Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed

    NASA Technical Reports Server (NTRS)

    Tian, Ye; Song, Qi; Cattafesta, Louis

    2005-01-01

    This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.

  4. Distribution of a Generic Mission Planning and Scheduling Toolkit for Astronomical Spacecraft

    NASA Technical Reports Server (NTRS)

    Kleiner, Steven C.

    1998-01-01

    This 2-year report describes the progress made to date on the project to package and distribute the planning and scheduling toolkit for the SWAS astronomical spacecraft. SWAS was scheduled to be launched on a Pegasus XL vehicle in fall 1995. Three separate failures in the launch vehicle have delayed the SWAS launch. The researchers have used this time to continue developing scheduling algorithms and GUI design. SWAS is expected to be launched this year.

  5. An Algorithm for the Weighted Earliness-Tardiness Unconstrained Project Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Afshar Nadjafi, Behrouz; Shadrokh, Shahram

    This research considers a project scheduling problem with the object of minimizing weighted earliness-tardiness penalty costs, taking into account a deadline for the project and precedence relations among the activities. An exact recursive method has been proposed for solving the basic form of this problem. We present a new depth-first branch and bound algorithm for extended form of the problem, which time value of money is taken into account by discounting the cash flows. The algorithm is extended with two bounding rules in order to reduce the size of the branch and bound tree. Finally, some test problems are solved and computational results are reported.

  6. Flexible Job-Shop Scheduling with Dual-Resource Constraints to Minimize Tardiness Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Paksi, A. B. N.; Ma'ruf, A.

    2016-02-01

    In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.

  7. Piloted simulation of a ground-based time-control concept for air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1989-01-01

    A concept for aiding air traffic controllers in efficiently spacing traffic and meeting scheduled arrival times at a metering fix was developed and tested in a real time simulation. The automation aid, referred to as the ground based 4-D descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent-point and speed-profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is used by the air traffic controller to resolve conflicts and issue advisories to arrival aircraft. A joint simulation was conducted using a piloted simulator and an advanced concept air traffic control simulation to study the acceptability and accuracy of the DA automation aid from both the pilot's and the air traffic controller's perspectives. The results of the piloted simulation are examined. In the piloted simulation, airline crews executed controller issued descent advisories along standard curved path arrival routes, and were able to achieve an arrival time precision of + or - 20 sec at the metering fix. An analysis of errors generated in turns resulted in further enhancements of the algorithm to improve the predictive accuracy. Evaluations by pilots indicate general support for the concept and provide specific recommendations for improvement.

  8. Resource Allocation and Outpatient Appointment Scheduling Using Simulation Optimization

    PubMed Central

    Ling, Teresa Wai Ching; Yeung, Wing Kwan

    2017-01-01

    This paper studies the real-life problems of outpatient clinics having the multiple objectives of minimizing resource overtime, patient waiting time, and waiting area congestion. In the clinic, there are several patient classes, each of which follows different treatment procedure flow paths through a multiphase and multiserver queuing system with scarce staff and limited space. We incorporate the stochastic factors for the probabilities of the patients being diverted into different flow paths, patient punctuality, arrival times, procedure duration, and the number of accompanied visitors. We present a novel two-stage simulation-based heuristic algorithm to assess various tactical and operational decisions for optimizing the multiple objectives. In stage I, we search for a resource allocation plan, and in stage II, we determine a block appointment schedule by patient class and a service discipline for the daily operational level. We also explore the effects of the separate strategies and their integration to identify the best possible combination. The computational experiments are designed on the basis of data from a study of an ophthalmology clinic in a public hospital. Results show that our approach significantly mitigates the undesirable outcomes by integrating the strategies and increasing the resource flexibility at the bottleneck procedures without adding resources. PMID:29104748

  9. Resource Allocation and Outpatient Appointment Scheduling Using Simulation Optimization.

    PubMed

    Lin, Carrie Ka Yuk; Ling, Teresa Wai Ching; Yeung, Wing Kwan

    2017-01-01

    This paper studies the real-life problems of outpatient clinics having the multiple objectives of minimizing resource overtime, patient waiting time, and waiting area congestion. In the clinic, there are several patient classes, each of which follows different treatment procedure flow paths through a multiphase and multiserver queuing system with scarce staff and limited space. We incorporate the stochastic factors for the probabilities of the patients being diverted into different flow paths, patient punctuality, arrival times, procedure duration, and the number of accompanied visitors. We present a novel two-stage simulation-based heuristic algorithm to assess various tactical and operational decisions for optimizing the multiple objectives. In stage I, we search for a resource allocation plan, and in stage II, we determine a block appointment schedule by patient class and a service discipline for the daily operational level. We also explore the effects of the separate strategies and their integration to identify the best possible combination. The computational experiments are designed on the basis of data from a study of an ophthalmology clinic in a public hospital. Results show that our approach significantly mitigates the undesirable outcomes by integrating the strategies and increasing the resource flexibility at the bottleneck procedures without adding resources.

  10. Advanced detection, isolation, and accommodation of sensor failures in turbofan engines: Real-time microcomputer implementation

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Merrill, Walter C.

    1990-01-01

    The objective of the Advanced Detection, Isolation, and Accommodation Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines. For this purpose, an algorithm was developed which detects, isolates, and accommodates sensor failures by using analytical redundancy. The performance of this algorithm was evaluated on a real time engine simulation and was demonstrated on a full scale F100 turbofan engine. The real time implementation of the algorithm is described. The implementation used state-of-the-art microprocessor hardware and software, including parallel processing and high order language programming.

  11. Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing

    NASA Astrophysics Data System (ADS)

    Suma, T.; Murugesan, R.

    2018-04-01

    The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.

  12. Implementation of a Real-Time Stacking Algorithm in a Photogrammetric Digital Camera for Uavs

    NASA Astrophysics Data System (ADS)

    Audi, A.; Pierrot-Deseilligny, M.; Meynard, C.; Thom, C.

    2017-08-01

    In the recent years, unmanned aerial vehicles (UAVs) have become an interesting tool in aerial photography and photogrammetry activities. In this context, some applications (like cloudy sky surveys, narrow-spectral imagery and night-vision imagery) need a longexposure time where one of the main problems is the motion blur caused by the erratic camera movements during image acquisition. This paper describes an automatic real-time stacking algorithm which produces a high photogrammetric quality final composite image with an equivalent long-exposure time using several images acquired with short-exposure times. Our method is inspired by feature-based image registration technique. The algorithm is implemented on the light-weight IGN camera, which has an IMU sensor and a SoC/FPGA. To obtain the correct parameters for the resampling of images, the presented method accurately estimates the geometrical relation between the first and the Nth image, taking into account the internal parameters and the distortion of the camera. Features are detected in the first image by the FAST detector, than homologous points on other images are obtained by template matching aided by the IMU sensors. The SoC/FPGA in the camera is used to speed up time-consuming parts of the algorithm such as features detection and images resampling in order to achieve a real-time performance as we want to write only the resulting final image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images, as well as block diagrams of the described architecture. The resulting stacked image obtained on real surveys doesn't seem visually impaired. Timing results demonstrate that our algorithm can be used in real-time since its processing time is less than the writing time of an image in the storage device. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real-time the gyrometers of the IMU.

  13. Development of an irrigation scheduling software based on model predicted crop water stress

    USDA-ARS?s Scientific Manuscript database

    Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...

  14. An optimized compression algorithm for real-time ECG data transmission in wireless network of medical information systems.

    PubMed

    Cho, Gyoun-Yon; Lee, Seo-Joon; Lee, Tae-Ro

    2015-01-01

    Recent medical information systems are striving towards real-time monitoring models to care patients anytime and anywhere through ECG signals. However, there are several limitations such as data distortion and limited bandwidth in wireless communications. In order to overcome such limitations, this research focuses on compression. Few researches have been made to develop a specialized compression algorithm for ECG data transmission in real-time monitoring wireless network. Not only that, recent researches' algorithm is not appropriate for ECG signals. Therefore this paper presents a more developed algorithm EDLZW for efficient ECG data transmission. Results actually showed that the EDLZW compression ratio was 8.66, which was a performance that was 4 times better than any other recent compression method widely used today.

  15. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  16. RFID-based information visibility for hospital operations: exploring its positive effects using discrete event simulation.

    PubMed

    Asamoah, Daniel A; Sharda, Ramesh; Rude, Howard N; Doran, Derek

    2016-10-12

    Long queues and wait times often occur at hospitals and affect smooth delivery of health services. To improve hospital operations, prior studies have developed scheduling techniques to minimize patient wait times. However, these studies lack in demonstrating how such techniques respond to real-time information needs of hospitals and efficiently manage wait times. This article presents a multi-method study on the positive impact of providing real-time scheduling information to patients using the RFID technology. Using a simulation methodology, we present a generic scenario, which can be mapped to real-life situations, where patients can select the order of laboratory services. The study shows that information visibility offered by RFID technology results in decreased wait times and improves resource utilization. We also discuss the applicability of the results based on field interviews granted by hospital clinicians and administrators on the perceived barriers and benefits of an RFID system.

  17. A real-time implementation of an advanced sensor failure detection, isolation, and accommodation algorithm

    NASA Technical Reports Server (NTRS)

    Delaat, J. C.; Merrill, W. C.

    1983-01-01

    A sensor failure detection, isolation, and accommodation algorithm was developed which incorporates analytic sensor redundancy through software. This algorithm was implemented in a high level language on a microprocessor based controls computer. Parallel processing and state-of-the-art 16-bit microprocessors are used along with efficient programming practices to achieve real-time operation.

  18. Parallel-Batch Scheduling and Transportation Coordination with Waiting Time Constraint

    PubMed Central

    Gong, Hua; Chen, Daheng; Xu, Ke

    2014-01-01

    This paper addresses a parallel-batch scheduling problem that incorporates transportation of raw materials or semifinished products before processing with waiting time constraint. The orders located at the different suppliers are transported by some vehicles to a manufacturing facility for further processing. One vehicle can load only one order in one shipment. Each order arriving at the facility must be processed in the limited waiting time. The orders are processed in batches on a parallel-batch machine, where a batch contains several orders and the processing time of the batch is the largest processing time of the orders in it. The goal is to find a schedule to minimize the sum of the total flow time and the production cost. We prove that the general problem is NP-hard in the strong sense. We also demonstrate that the problem with equal processing times on the machine is NP-hard. Furthermore, a dynamic programming algorithm in pseudopolynomial time is provided to prove its ordinarily NP-hardness. An optimal algorithm in polynomial time is presented to solve a special case with equal processing times and equal transportation times for each order. PMID:24883385

  19. Foliage penetration by using 4-D point cloud data

    NASA Astrophysics Data System (ADS)

    Méndez Rodríguez, Javier; Sánchez-Reyes, Pedro J.; Cruz-Rivera, Sol M.

    2012-06-01

    Real-time awareness and rapid target detection are critical for the success of military missions. New technologies capable of detecting targets concealed in forest areas are needed in order to track and identify possible threats. Currently, LAser Detection And Ranging (LADAR) systems are capable of detecting obscured targets; however, tracking capabilities are severely limited. Now, a new LADAR-derived technology is under development to generate 4-D datasets (3-D video in a point cloud format). As such, there is a new need for algorithms that are able to process data in real time. We propose an algorithm capable of removing vegetation and other objects that may obfuscate concealed targets in a real 3-D environment. The algorithm is based on wavelets and can be used as a pre-processing step in a target recognition algorithm. Applications of the algorithm in a real-time 3-D system could help make pilots aware of high risk hidden targets such as tanks and weapons, among others. We will be using a 4-D simulated point cloud data to demonstrate the capabilities of our algorithm.

  20. Automatic intraaortic balloon pump timing using an intrabeat dicrotic notch prediction algorithm.

    PubMed

    Schreuder, Jan J; Castiglioni, Alessandro; Donelli, Andrea; Maisano, Francesco; Jansen, Jos R C; Hanania, Ramzi; Hanlon, Pat; Bovelander, Jan; Alfieri, Ottavio

    2005-03-01

    The efficacy of intraaortic balloon counterpulsation (IABP) during arrhythmic episodes is questionable. A novel algorithm for intrabeat prediction of the dicrotic notch was used for real time IABP inflation timing control. A windkessel model algorithm was used to calculate real-time aortic flow from aortic pressure. The dicrotic notch was predicted using a percentage of calculated peak flow. Automatic inflation timing was set at intrabeat predicted dicrotic notch and was combined with automatic IAB deflation. Prophylactic IABP was applied in 27 patients with low ejection fraction (< 35%) undergoing cardiac surgery. Analysis of IABP at a 1:4 ratio revealed that IAB inflation occurred at a mean of 0.6 +/- 5 ms from the dicrotic notch. In all patients accurate automatic timing at a 1:1 assist ratio was performed. Seventeen patients had episodes of severe arrhythmia, the novel IABP inflation algorithm accurately assisted 318 of 320 arrhythmic beats at a 1:1 ratio. The novel real-time intrabeat IABP inflation timing algorithm performed accurately in all patients during both regular rhythms and severe arrhythmia, allowing fully automatic intrabeat IABP timing.

  1. Medication Waste Reduction in Pediatric Pharmacy Batch Processes

    PubMed Central

    Veltri, Michael A.; Hamrock, Eric; Mollenkopf, Nicole L.; Holt, Kristen; Levin, Scott

    2014-01-01

    OBJECTIVES: To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. METHODS: A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. RESULTS: Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. CONCLUSIONS: The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste. PMID:25024671

  2. Medication waste reduction in pediatric pharmacy batch processes.

    PubMed

    Toerper, Matthew F; Veltri, Michael A; Hamrock, Eric; Mollenkopf, Nicole L; Holt, Kristen; Levin, Scott

    2014-04-01

    To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste.

  3. A novel adaptive, real-time algorithm to detect gait events from wearable sensors.

    PubMed

    Chia Bejarano, Noelia; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Ferrante, Simona

    2015-05-01

    A real-time, adaptive algorithm based on two inertial and magnetic sensors placed on the shanks was developed for gait-event detection. For each leg, the algorithm detected the Initial Contact (IC), as the minimum of the flexion/extension angle, and the End Contact (EC) and the Mid-Swing (MS), as minimum and maximum of the angular velocity, respectively. The algorithm consisted of calibration, real-time detection, and step-by-step update. Data collected from 22 healthy subjects (21 to 85 years) walking at three self-selected speeds were used to validate the algorithm against the GaitRite system. Comparable levels of accuracy and significantly lower detection delays were achieved with respect to other published methods. The algorithm robustness was tested on ten healthy subjects performing sudden speed changes and on ten stroke subjects (43 to 89 years). For healthy subjects, F1-scores of 1 and mean detection delays lower than 14 ms were obtained. For stroke subjects, F1-scores of 0.998 and 0.944 were obtained for IC and EC, respectively, with mean detection delays always below 31 ms. The algorithm accurately detected gait events in real time from a heterogeneous dataset of gait patterns and paves the way for the design of closed-loop controllers for customized gait trainings and/or assistive devices.

  4. Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data

    NASA Astrophysics Data System (ADS)

    Veerakachen, Watcharee; Raksapatcharawong, Mongkol

    2015-09-01

    Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.

  5. On-Board Mining in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.

    2004-12-01

    On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans provide capabilities for autonomous data mining, classification and feature extraction using both streaming and buffered data sources. A ground-based testbed provides a heterogeneous, embedded hardware and software environment representing both space-based and ground-based sensor platforms, including wireless sensor mesh architectures. The AODP project explores the EVE concepts in the world of sensor-networks, including ad-hoc networks of small sensor platforms.

  6. Real-Time Noise Removal for Line-Scanning Hyperspectral Devices Using a Minimum Noise Fraction-Based Approach

    PubMed Central

    Bjorgan, Asgeir; Randeberg, Lise Lyngsnes

    2015-01-01

    Processing line-by-line and in real-time can be convenient for some applications of line-scanning hyperspectral imaging technology. Some types of processing, like inverse modeling and spectral analysis, can be sensitive to noise. The MNF (minimum noise fraction) transform provides suitable denoising performance, but requires full image availability for the estimation of image and noise statistics. In this work, a modified algorithm is proposed. Incrementally-updated statistics enables the algorithm to denoise the image line-by-line. The denoising performance has been compared to conventional MNF and found to be equal. With a satisfying denoising performance and real-time implementation, the developed algorithm can denoise line-scanned hyperspectral images in real-time. The elimination of waiting time before denoised data are available is an important step towards real-time visualization of processed hyperspectral data. The source code can be found at http://www.github.com/ntnu-bioopt/mnf. This includes an implementation of conventional MNF denoising. PMID:25654717

  7. A Generic and Target Architecture For Command and Control Information Systems

    DTIC Science & Technology

    1991-09-01

    forces, logistics, and optimum routing of forces to destination; supports development of the force, material and personnel 9 lists, schedules , and...recommendations T.5, T.6, and T.73 for Telefax. Teletex, Textfax, and Telefax are not currently scheduled to become a part of GOSIP. In the 1995-1997 time...defining application interfaces to the func- tional areas that impact resource management, for example, priority scheduling , real-time files, and

  8. Using random forests to diagnose aviation turbulence.

    PubMed

    Williams, John K

    Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the National Aeronautics and Space Administration have funded the development of automated turbulence detection, diagnosis and forecasting products. This paper describes a methodology for fusing data from diverse sources and producing a real-time diagnosis of turbulence associated with thunderstorms, a significant cause of weather delays and turbulence encounters that is not well-addressed by current turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset that includes objective turbulence reports from commercial aircraft and collocated predictor data. It is evaluated on an independent test set using several performance metrics including receiver operating characteristic curves, which are used for FAA turbulence product evaluations prior to their deployment. A prototype implementation fuses data from Doppler radar, geostationary satellites, a lightning detection network and a numerical weather prediction model to produce deterministic and probabilistic turbulence assessments suitable for use by air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally implemented at the National Weather Service's Aviation Weather Center in 2014.

  9. System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.

    2016-01-01

    The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.

  10. 32 CFR 644.8 - Planning and scheduling real estate activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Planning and scheduling real estate activities... (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Project Planning Civil Works § 644.8 Planning and scheduling real estate activities. (a) Normal scheduling. (1) The objective of a planned program is to provide for...

  11. 32 CFR 644.8 - Planning and scheduling real estate activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Planning and scheduling real estate activities... (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Project Planning Civil Works § 644.8 Planning and scheduling real estate activities. (a) Normal scheduling. (1) The objective of a planned program is to provide for...

  12. 32 CFR 644.8 - Planning and scheduling real estate activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Planning and scheduling real estate activities... (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Project Planning Civil Works § 644.8 Planning and scheduling real estate activities. (a) Normal scheduling. (1) The objective of a planned program is to provide for...

  13. Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Youngblood, John N.; Saha, Aindam

    1987-01-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.

  14. Computer architecture for efficient algorithmic executions in real-time systems: new technology for avionics systems and advanced space vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, C.C.; Youngblood, J.N.; Saha, A.

    1987-12-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processingmore » elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.« less

  15. A hybrid online scheduling mechanism with revision and progressive techniques for autonomous Earth observation satellite

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Xing, Lining; Chen, Yingwu

    2017-11-01

    The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.

  16. Maximizing the nurses' preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm

    NASA Astrophysics Data System (ADS)

    Jafari, Hamed; Salmasi, Nasser

    2015-09-01

    The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital's demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses' preferences for working shifts and weekends off by considering several important factors such as hospital's policies, labor laws, governmental regulations, and the status of nurses at the end of the previous planning horizon in one of the largest hospitals in Iran i.e., Milad Hospital. Due to the shortage of available nurses, at first, the minimum total number of required nurses is determined. Then, a mathematical programming model is proposed to solve the problem optimally. Since the proposed research problem is NP-hard, a meta-heuristic algorithm based on simulated annealing (SA) is applied to heuristically solve the problem in a reasonable time. An initial feasible solution generator and several novel neighborhood structures are applied to enhance performance of the SA algorithm. Inspired from our observations in Milad hospital, random test problems are generated to evaluate the performance of the SA algorithm. The results of computational experiments indicate that the applied SA algorithm provides solutions with average percentage gap of 5.49 % compared to the upper bounds obtained from the mathematical model. Moreover, the applied SA algorithm provides significantly better solutions in a reasonable time than the schedules provided by the head nurses.

  17. Multi-objective optimization of discrete time-cost tradeoff problem in project networks using non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shahriari, Mohammadreza

    2016-06-01

    The time-cost tradeoff problem is one of the most important and applicable problems in project scheduling area. There are many factors that force the mangers to crash the time. This factor could be early utilization, early commissioning and operation, improving the project cash flow, avoiding unfavorable weather conditions, compensating the delays, and so on. Since there is a need to allocate extra resources to short the finishing time of project and the project managers are intended to spend the lowest possible amount of money and achieve the maximum crashing time, as a result, both direct and indirect costs will be influenced in the project, and here, we are facing into the time value of money. It means that when we crash the starting activities in a project, the extra investment will be tied in until the end date of the project; however, when we crash the final activities, the extra investment will be tied in for a much shorter period. This study is presenting a two-objective mathematical model for balancing compressing the project time with activities delay to prepare a suitable tool for decision makers caught in available facilities and due to the time of projects. Also drawing the scheduling problem to real world conditions by considering nonlinear objective function and the time value of money are considered. The presented problem was solved using NSGA-II, and the effect of time compressing reports on the non-dominant set.

  18. A Novel Real-Time Reference Key Frame Scan Matching Method.

    PubMed

    Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu

    2017-05-07

    Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions' environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems.

  19. Cooperative Scheduling of Imaging Observation Tasks for High-Altitude Airships Based on Propagation Algorithm

    PubMed Central

    Chuan, He; Dishan, Qiu; Jin, Liu

    2012-01-01

    The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible. PMID:23365522

  20. Joint optimization of green vehicle scheduling and routing problem with time-varying speeds

    PubMed Central

    Zhang, Dezhi; Wang, Xin; Ni, Nan; Zhang, Zhuo

    2018-01-01

    Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions. PMID:29466370

Top