Science.gov

Sample records for real-time signal processing

  1. Real-time fractal signal processing in the time domain

    NASA Astrophysics Data System (ADS)

    Hartmann, András; Mukli, Péter; Nagy, Zoltán; Kocsis, László; Hermán, Péter; Eke, András

    2013-01-01

    Fractal analysis has proven useful for the quantitative characterization of complex time series by scale-free statistical measures in various applications. The analysis has commonly been done offline with the signal being resident in memory in full length, and the processing carried out in several distinct passes. However, in many relevant applications, such as monitoring or forecasting, algorithms are needed to capture changes in the fractal measure real-time. Here we introduce real-time variants of the Detrended Fluctuation Analysis (DFA) and the closely related Signal Summation Conversion (SSC) methods, which are suitable to estimate the fractal exponent in one pass. Compared to offline algorithms, the precision is the same, the memory requirement is significantly lower, and the execution time depends on the same factors but with different rates. Our tests show that dynamic changes in the fractal parameter can be efficiently detected. We demonstrate the applicability of our real-time methods on signals of cerebral hemodynamics acquired during open-heart surgery.

  2. Hybrid integrated optic modules for real-time signal processing

    NASA Technical Reports Server (NTRS)

    Tsai, C. S.

    1984-01-01

    The most recent progress on four relatively new hybrid integrated optic device modules in LiNbO3 waveguides and one in YIG/GGG waveguide that are currently being studied are discussed. The five hybrid modules include a time-integrating acoustooptic correlator, a channel waveguide acoustooptic frequency shifter/modulator, an electrooptic channel waveguide total internal reflection moculator/switch, an electrooptic analog-to-digital converter using a Fabry-Perot modulator array, and a noncollinear magnetooptic modulator using magnetostatic surface waves. All of these devices possess the desirable characteristics of very large bandwidth (GHz or higher), very small substrate size along the optical path (typically 1.5 cm or less), single-mode optical propagation, and low drive power requirement. The devices utilize either acoustooptic, electrooptic or magnetooptic effects in planar or channel waveguides and, therefore, act as efficient interface devices between a light wave and temporal signals. Major areas of application lie in wideband multichannel optical real-time signal processing and communications. Some of the specific applications include spectral analysis and correlation of radio frequency (RF) signals, fiber-optic sensing, optical computing and multiport switching/routing, and analog-to-digital conversion of wide RF signals.

  3. Real-time radar signal processing for autonomous aircraft landing

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz A.; Helgeson, Michael A.; Radke, Jeffrey D.; Stein, Gunter

    1993-11-01

    Landing in poor weather is a crucial problem for the air transportation system. To aid the pilots for these conditions several solutions have been suggested and/or implemented including instrument landing systems (ILS) and microwave landing systems (MLS) that put the responsibility of the landing to a large extent in the hands of the airport facilities. These systems even though useful are not available due to their high costs even in a few major metropolitan airports. This shortcoming has generated interest in providing all weather capabilities not on the landing facility but on the vehicle itself. The Synthetic Vision System Technology Demonstration sponsored by the United States Federal Aviation Administration (FAA) and the U.S. Air Force represents an effort to respond to the above needs. In this paper we present a summary of a typical synthetic vision system. This system consists of a scanning 35 GHz radar, a scanning antenna, a signal/image processor and a head up display (HUD). The pilot is presented a final perspective image of the scene sensed by the radar with associated flight guidance symbology. This system is implemented in real time hardware and has been undergoing tower and flight testing under a variety of weather conditions since early 1992.

  4. Real-time signal processing for fetal heart rate monitoring.

    PubMed

    Ibrahimy, Muhammad I; Ahmed, Firoz; Mohd Ali, M A; Zahedi, Edmond

    2003-02-01

    An algorithm based on digital filtering, adaptive thresholding, statistical properties in the time domain, and differencing of local maxima and minima has been developed for the simultaneous measurement of the fetal and maternal heart rates from the maternal abdominal electrocardiogram during pregnancy and labor for ambulatory monitoring. A microcontroller-based system has been used to implement the algorithm in real-time. A Doppler ultrasound fetal monitor was used for statistical comparison on five volunteers with low risk pregnancies, between 35 and 40 weeks of gestation. Results showed an average percent root mean square difference of 5.32% and linear correlation coefficient from 0.84 to 0.93. The fetal heart rate curves remained inside a +/- 5-beats-per-minute limit relative to the reference ultrasound method for 84.1% of the time. PMID:12665042

  5. Real time SAR processing

    NASA Technical Reports Server (NTRS)

    Premkumar, A. B.; Purviance, J. E.

    1990-01-01

    A simplified model for the SAR imaging problem is presented. The model is based on the geometry of the SAR system. Using this model an expression for the entire phase history of the received SAR signal is formulated. From the phase history, it is shown that the range and the azimuth coordinates for a point target image can be obtained by processing the phase information during the intrapulse and interpulse periods respectively. An architecture for a VLSI implementation for the SAR signal processor is presented which generates images in real time. The architecture uses a small number of chips, a new correlation processor, and an efficient azimuth correlation process.

  6. Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)

    NASA Astrophysics Data System (ADS)

    Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.

    2016-05-01

    This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.

  7. Earthquake early warning system using real-time signal processing

    SciTech Connect

    Leach, R.R. Jr.; Dowla, F.U.

    1996-02-01

    An earthquake warning system has been developed to provide a time series profile from which vital parameters such as the time until strong shaking begins, the intensity of the shaking, and the duration of the shaking, can be derived. Interaction of different types of ground motion and changes in the elastic properties of geological media throughout the propagation path result in a highly nonlinear function. We use neural networks to model these nonlinearities and develop learning techniques for the analysis of temporal precursors occurring in the emerging earthquake seismic signal. The warning system is designed to analyze the first-arrival from the three components of an earthquake signal and instantaneously provide a profile of impending ground motion, in as little as 0.3 sec after first ground motion is felt at the sensors. For each new data sample, at a rate of 25 samples per second, the complete profile of the earthquake is updated. The profile consists of a magnitude-related estimate as well as an estimate of the envelope of the complete earthquake signal. The envelope provides estimates of damage parameters, such as time until peak ground acceleration (PGA) and duration. The neural network based system is trained using seismogram data from more than 400 earthquakes recorded in southern California. The system has been implemented in hardware using silicon accelerometers and a standard microprocessor. The proposed warning units can be used for site-specific applications, distributed networks, or to enhance existing distributed networks. By producing accurate, and informative warnings, the system has the potential to significantly minimize the hazards of catastrophic ground motion. Detailed system design and performance issues, including error measurement in a simple warning scenario are discussed in detail.

  8. Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI.

    PubMed

    Koush, Yury; Zvyagintsev, Mikhail; Dyck, Miriam; Mathiak, Krystyna A; Mathiak, Klaus

    2012-01-01

    Real-time fMRI allows analysis and visualization of the brain activity online, i.e. within one repetition time. It can be used in neurofeedback applications where subjects attempt to control an activation level in a specified region of interest (ROI) of their brain. The signal derived from the ROI is contaminated with noise and artifacts, namely with physiological noise from breathing and heart beat, scanner drift, motion-related artifacts and measurement noise. We developed a Bayesian approach to reduce noise and to remove artifacts in real-time using a modified Kalman filter. The system performs several signal processing operations: subtraction of constant and low-frequency signal components, spike removal and signal smoothing. Quantitative feedback signal quality analysis was used to estimate the quality of the neurofeedback time series and performance of the applied signal processing on different ROIs. The signal-to-noise ratio (SNR) across the entire time series and the group event-related SNR (eSNR) were significantly higher for the processed time series in comparison to the raw data. Applied signal processing improved the t-statistic increasing the significance of blood oxygen level-dependent (BOLD) signal changes. Accordingly, the contrast-to-noise ratio (CNR) of the feedback time series was improved as well. In addition, the data revealed increase of localized self-control across feedback sessions. The new signal processing approach provided reliable neurofeedback, performed precise artifacts removal, reduced noise, and required minimal manual adjustments of parameters. Advanced and fast online signal processing algorithms considerably increased the quality as well as the information content of the control signal which in turn resulted in higher contingency in the neurofeedback loop.

  9. Real-time digital signal processing for live electro-optic imaging.

    PubMed

    Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro

    2009-08-31

    We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.

  10. Hardware and software platform for real-time processing and visualization of echographic radiofrequency signals.

    PubMed

    Scabia, Marco; Biagi, Elena; Masotti, Leonardo

    2002-10-01

    In this paper the architecture of a hardware and software platform, for ultrasonic investigation is presented. The platform, used in conjunction with an analog front-end hardware for driving the ultrasonic transducers of any commercial echograph, having the radiofrequency echo signal access, make it possible to dispose of a powerful echographic system for experimenting any processing technique, also in a clinical environment in which real-time operation mode is an essential prerequisite. The platform transforms any echograph into a test-system for evaluating the diagnostic effectiveness of new investigation techniques. A particular user interface was designed in order to allow a real-time and simultaneous visualization of the results produced in the different stages of the chosen processing procedure. This is aimed at obtaining a better optimization of the processing algorithm. The most important platform aspect, which also constitutes the basic differentiation with respect to similar systems, is the direct processing of the radiofrequency echo signal, which is essential for a complete analysis of the particular ultrasound-media interaction phenomenon. The platform completely integrates the architecture of a personal computer (PC) giving rise to several benefits, such as the quick technological evolution in the PC field and an extreme degree of programmability for different applications. The PC also constitutes the user interface, as a flexible and intuitive visualization support, and performs some software signal processing, by custom algorithms and commercial libraries. The realized close synergy between hardware and software allows the acquisition and real-time processing of the echographic radiofrequency (RF) signal with fast data representation. PMID:12403146

  11. Real-time software processing and audio reproduction of directional Doppler signals.

    PubMed

    Fidanzati, Paolo; Morganti, Tiziano; Tortoli, Piero

    2005-12-01

    In ultrasound Doppler systems, directional signals are typically obtained by processing quadrature demodulated data with dedicated analog or digital circuits. In this paper, a software approach is proposed, that allows fully exploiting the reproduction and recording capabilities of low-cost personal computer sound cards and/or embedded chips. Forward/reverse signals are separated through a wideband Hilbert filter. No limitations are imposed on the input signal sample rate, which is matched to the standard output format of sound cards through a band-limited interpolation filter controlled in a feedback loop. The digital audio streaming is performed in real-time in a Windows-based application. The processed data are in a standard format compatible with real-time recording in waveform or compressed files, as requested in many research applications. Simulations and in vivo tests show a typical cross talk of -50 dB between forward and reverse components, with low latency time (39 ms) and central processing unit load compatible to currently available personal computers.

  12. Peta-Flop Real Time Radio Astronomy Signal Processing Instrumentation and the CASPER Collaboration

    NASA Astrophysics Data System (ADS)

    Werthimer, Dan

    2014-04-01

    I will briefly describe next generation radio telescopes, such as HERA and the Square Kilometer Array (SKA), which will require 1E15 to 1E17 operations per second of real time processing. I'll present some of the new architectures we've used to develop a variety of heterogeneous FPGA-GPU-CPU based signal processing systems for such telescopes, including spectrometers, correlators, and beam formers. I will also describe the CASPER collaboration, which has developed architectures, open source programming tools, libraries and reference designs that make it relatively easy to develop a variety of scalable, upgradeable, fault tolerant, low power, real time digital signal processing instrumentation. CASPER utilizes commercial 10Gbit and 40 Gbit ethernet switches to interconnect open source general purpose field programmable gate array (FPGA) boards with GPUs and software modules. CASPER collaborators at hundreds of universities, government labs and observatories have used these techniques to rapidly develop and deploy a variety of correlators, beamformers, spectrometers, pulsar/transient machines, and VLBI instrumentation. CASPER instrumentation is also utilized in physics, medicine, genomics and engineering. Open source source hardware, software, libraries, tools, tutorials, reference designs, information about workshops, and how to join the collaboration are available at http://casper.berkeley.edu

  13. Real-time digital signal processing in multiphoton and time-resolved microscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Warren, Warren S.; Fischer, Martin C.

    2016-03-01

    The use of multiphoton interactions in biological tissue for imaging contrast requires highly sensitive optical measurements. These often involve signal processing and filtering steps between the photodetector and the data acquisition device, such as photon counting and lock-in amplification. These steps can be implemented as real-time digital signal processing (DSP) elements on field-programmable gate array (FPGA) devices, an approach that affords much greater flexibility than commercial photon counting or lock-in devices. We will present progress toward developing two new FPGA-based DSP devices for multiphoton and time-resolved microscopy applications. The first is a high-speed multiharmonic lock-in amplifier for transient absorption microscopy, which is being developed for real-time analysis of the intensity-dependence of melanin, with applications in vivo and ex vivo (noninvasive histopathology of melanoma and pigmented lesions). The second device is a kHz lock-in amplifier running on a low cost (50-200) development platform. It is our hope that these FPGA-based DSP devices will enable new, high-speed, low-cost applications in multiphoton and time-resolved microscopy.

  14. Spectral analysis of laser Doppler signals in real time using digital processing.

    PubMed

    Dougherty, G

    1994-01-01

    A versatile spectrum analyser was developed to generate and display laser Doppler shift signals, and derived parameters, continuously in real time using a digital signal processing chip. A major attraction of the system is that it is entirely programmable, so that both the algorithms and the attributes of the system, such as window function and frame overlap, can be easily altered. It was used to investigate the relative merits of a variety of algorithms using a blood-flow phantom. An index based on the first moment of the Doppler power spectrum was found to be the most reliable flow indicator, with linearity extending towards a velocity of 5 mm s-1 for a blood haematocrit of 5%. The system is not limited to analysis based on the fast Fourier transform (FFT), and is suitable for non-linear techniques such as maximum entropy spectral estimation (MESE). PMID:8162263

  15. Real-time digital processing of Doppler ultrasound signals and calculation of flow parameters.

    PubMed

    Schlindwein, F S; Vieira, M H; Vasconcelos, C F; Simpson, D M

    1994-01-01

    Vascular diseases and their complications are responsible for around 27% of deaths in Brazil. Doppler ultrasound is a non-invasive technique that has been used to study blood flow in intact blood vessels since Satomura first reported the potential of the technique in 1959. Because it is non-invasive it makes sequential studies and those in normals feasible. Whereas in contrast angiography only vessel anatomy is displayed, Doppler ultrasound produces dynamic information on blood-flow. It may be used to estimate flow-rates, to image regions of blood flow (colour Doppler), and to help in locating sites of arterial disease, thus complementing X-ray examinations. This paper describes a system based on a Digital Signal Processor for real-time spectrum analysis of Doppler ultrasound signals, real-time display of sonograms, and calculation and analysis of three parameters of clinical interest derived from the Doppler signal. The system comprises a TMS320C25 development board, which acquires the signal and performs spectrum analysis, and a microcomputer, which reads the spectral estimates, displays them as a sonogram in real-time and calculates a set of spectral parameters proposed in the literature. The system permits a maximum sampling frequency of 40.96 kHz, and in the sonogram, 80 power spectra per second (each with 128 frequency bins) are displayed. In a preliminary study, the stability of the haemodynamic parameters and their dependence on a user-defined threshold value is investigated.

  16. Systolic architectures based on barrel shifters for real-time digital signal processing

    SciTech Connect

    Chen, T.

    1985-01-01

    The throughput in real-time digital signal processing applications is limited by both the capability of the processors employed for number-crunching operations and the capacity of a supporting communications link. The systolic architectures eliminate the memory bandwidth problems by allowing multiple computations for each memory access and result in a speed-up in the execution time of compute-bound computations. However, the throughput rate in a systolic array is still limited by the computational time needed for one basic cell, which is composed of a multiplier and an accumulator. The multiplier in the basic cell requires either a large chip area if high speed is desired, or a large amount of time if serial architecture is used. The use of barrel shifters as computational elements in systolic arrays was proposed and studied in detail in this thesis. In the new systolic arrays there are two different structures, parallel and cascaded, that can be used to implement FIR filters. A unique cascaded structure was developed in this study that is shown to have better performance and requires significantly less basic cells.

  17. The use of digital signal processors (DSPs) in real-time processing of multi-parametric bioelectronic signals.

    PubMed

    Ressler, Johann; Dirscherl, Andreas; Grothe, Helmut; Wolf, Bernhard

    2007-02-01

    In many cases of bioanalytical measurement, calculation of large amounts of data, analysis of complex signal waveforms or signal speed can overwhelm the performance of microcontrollers, analog electronic circuits or even PCs. One method to obtain results in real time is to apply a digital signal processor (DSP) for the analysis or processing of measurement data. In this paper we show how DSP-supported multiplying and accumulating (MAC) operations, such as time/frequency transformation, pattern recognition by correlation, convolution or filter algorithms, can optimize the processing of bioanalytical data. Discrete integral calculations are applied to the acquisition of impedance values as part of multi-parametric sensor chips, to pH monitoring using light-addressable potentiometric sensors (LAPS) and to the analysis of rapidly changing signal shapes, such as action potentials of cultured neuronal networks, as examples of DSP capability.

  18. Real-time MST radar signal processing using a microcomputer running under FORTH

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.

    1983-01-01

    Data on power, correlation time, and velocity were obtained at the Urbana radar using microcomputer and a single floppy disk drive. This system includes the following features: (1) measurement of the real and imaginary components of the received signal at 20 altitudes spaced by 1.5 km; (2) coherent integration of these components over a 1/8-s time period; (3) continuous real time display of the height profiles of the two coherently integrated components; (4) real time calculation of the 1 minute averages of the power and autocovariance function up to 6 lags; (5) output of these data to floppy disk once every 2 minutes; (6) display of the 1 minute power profiles while the data are stored to the disk; (7) visual prompting for the operator to change disks when required at the end of each hour of data; and (8) continuous audible indication of the status of the interrupt service routine. Accomplishments were enabled by two developments: the use of a new correlation algorithm and the use of the FORTH language to manage the various low level and high level procedures involved.

  19. Signal processing technique for non-invasive real-time estimation of cardiac output by inductance cardiography (thoracocardiography).

    PubMed

    Bucklar, G B; Kaplan, V; Bloch, K E

    2003-05-01

    Inductance cardiography (thoracocardiography) non-invasively monitors changes in stroke volume by recording ventricular volume curves with an inductive plethysmographic transducer encircling the chest at the level of the heart. Clinical application of this method has been hampered, as data analysis has not been feasible in real time. Therefore a novel, real-time signal processing technique for inductance cardiography has been developed. Its essential concept consists in performance of multiple tasks by several, logically linked signal processing modules that have access to common databases. Based on these principles, a software application was designed that performs acquisition, display, filtering and ECG-triggered ensemble averaging of inductance signals and separates cardiogenic waveforms from noise related to respiration and other sources. The resulting ventricular volume curves are automatically analysed. Performance of the technique for monitoring cardiac output in real time was compared with thermodilution in four patients in an intensive care unit. The bias (mean difference) among 76 paired thoracocardiographic and thermodilution derived changes in cardiac output was 0%; limits of agreement (+/- 2 SD of the bias) were +/- 25%. It is concluded that the proposed signal processing technique for inductance cardiography holds promise for non-invasive, real-time estimation of changes in cardiac output.

  20. Real-Time Processing of Continuous Physiological Signals in a Neurocritical Care Unit on a Stream Data Analytics Platform.

    PubMed

    Bai, Yong; Sow, Daby; Vespa, Paul; Hu, Xiao

    2016-01-01

    Continuous high-volume and high-frequency brain signals such as intracranial pressure (ICP) and electroencephalographic (EEG) waveforms are commonly collected by bedside monitors in neurocritical care. While such signals often carry early signs of neurological deterioration, detecting these signs in real time with conventional data processing methods mainly designed for retrospective analysis has been extremely challenging. Such methods are not designed to handle the large volumes of waveform data produced by bedside monitors. In this pilot study, we address this challenge by building a prototype system using the IBM InfoSphere Streams platform, a scalable stream computing platform, to detect unstable ICP dynamics in real time. The system continuously receives electrocardiographic and ICP signals and analyzes ICP pulse morphology looking for deviations from a steady state. We also designed a Web interface to display in real time the result of this analysis in a Web browser. With this interface, physicians are able to ubiquitously check on the status of their patients and gain direct insight into and interpretation of the patient's state in real time. The prototype system has been successfully tested prospectively on live hospitalized patients. PMID:27165881

  1. Real-Time Processing of Continuous Physiological Signals in a Neurocritical Care Unit on a Stream Data Analytics Platform.

    PubMed

    Bai, Yong; Sow, Daby; Vespa, Paul; Hu, Xiao

    2016-01-01

    Continuous high-volume and high-frequency brain signals such as intracranial pressure (ICP) and electroencephalographic (EEG) waveforms are commonly collected by bedside monitors in neurocritical care. While such signals often carry early signs of neurological deterioration, detecting these signs in real time with conventional data processing methods mainly designed for retrospective analysis has been extremely challenging. Such methods are not designed to handle the large volumes of waveform data produced by bedside monitors. In this pilot study, we address this challenge by building a prototype system using the IBM InfoSphere Streams platform, a scalable stream computing platform, to detect unstable ICP dynamics in real time. The system continuously receives electrocardiographic and ICP signals and analyzes ICP pulse morphology looking for deviations from a steady state. We also designed a Web interface to display in real time the result of this analysis in a Web browser. With this interface, physicians are able to ubiquitously check on the status of their patients and gain direct insight into and interpretation of the patient's state in real time. The prototype system has been successfully tested prospectively on live hospitalized patients.

  2. Fast, multi-channel real-time processing of signals with microsecond latency using graphics processing units

    SciTech Connect

    Rath, N. Levesque, J. P.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Kato, S.

    2014-04-15

    Fast, digital signal processing (DSP) has many applications. Typical hardware options for performing DSP are field-programmable gate arrays (FPGAs), application-specific integrated DSP chips, or general purpose personal computer systems. This paper presents a novel DSP platform that has been developed for feedback control on the HBT-EP tokamak device. The system runs all signal processing exclusively on a Graphics Processing Unit (GPU) to achieve real-time performance with latencies below 8 μs. Signals are transferred into and out of the GPU using PCI Express peer-to-peer direct-memory-access transfers without involvement of the central processing unit or host memory. Tests were performed on the feedback control system of the HBT-EP tokamak using forty 16-bit floating point inputs and outputs each and a sampling rate of up to 250 kHz. Signals were digitized by a D-TACQ ACQ196 module, processing done on an NVIDIA GTX 580 GPU programmed in CUDA, and analog output was generated by D-TACQ AO32CPCI modules.

  3. Fast, multi-channel real-time processing of signals with microsecond latency using graphics processing units

    NASA Astrophysics Data System (ADS)

    Rath, N.; Kato, S.; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.; Peng, Q.

    2014-04-01

    Fast, digital signal processing (DSP) has many applications. Typical hardware options for performing DSP are field-programmable gate arrays (FPGAs), application-specific integrated DSP chips, or general purpose personal computer systems. This paper presents a novel DSP platform that has been developed for feedback control on the HBT-EP tokamak device. The system runs all signal processing exclusively on a Graphics Processing Unit (GPU) to achieve real-time performance with latencies below 8 μs. Signals are transferred into and out of the GPU using PCI Express peer-to-peer direct-memory-access transfers without involvement of the central processing unit or host memory. Tests were performed on the feedback control system of the HBT-EP tokamak using forty 16-bit floating point inputs and outputs each and a sampling rate of up to 250 kHz. Signals were digitized by a D-TACQ ACQ196 module, processing done on an NVIDIA GTX 580 GPU programmed in CUDA, and analog output was generated by D-TACQ AO32CPCI modules.

  4. Fast, multi-channel real-time processing of signals with microsecond latency using graphics processing units.

    PubMed

    Rath, N; Kato, S; Levesque, J P; Mauel, M E; Navratil, G A; Peng, Q

    2014-04-01

    Fast, digital signal processing (DSP) has many applications. Typical hardware options for performing DSP are field-programmable gate arrays (FPGAs), application-specific integrated DSP chips, or general purpose personal computer systems. This paper presents a novel DSP platform that has been developed for feedback control on the HBT-EP tokamak device. The system runs all signal processing exclusively on a Graphics Processing Unit (GPU) to achieve real-time performance with latencies below 8 μs. Signals are transferred into and out of the GPU using PCI Express peer-to-peer direct-memory-access transfers without involvement of the central processing unit or host memory. Tests were performed on the feedback control system of the HBT-EP tokamak using forty 16-bit floating point inputs and outputs each and a sampling rate of up to 250 kHz. Signals were digitized by a D-TACQ ACQ196 module, processing done on an NVIDIA GTX 580 GPU programmed in CUDA, and analog output was generated by D-TACQ AO32CPCI modules.

  5. Feature-level signal processing for near-real-time odor identification

    NASA Astrophysics Data System (ADS)

    Roppel, Thaddeus A.; Padgett, Mary Lou; Waldemark, Joakim T. A.; Wilson, Denise M.

    1998-09-01

    Rapid detection and classification of odor is of particular interest in applications such as manufacturing of consumer items, food processing, drug and explosives detection, and battlefield situation assessment. Various detection and classification techniques are under investigation so that end users can have access to useful information from odor sensor arrays in near-real-time. Feature-level data clustering and classification techniques are proposed that are (1) parallelizable to permit efficient hardware implementation, (2) adaptable to readily incorporate new data classes, (3) capable of gracefully handling outlier data points and failed sensor conditions, and (4) can provide confidence intervals and/or a traceable decision record along with each classification to permit validation and verification. Results from using specific techniques will be presented and compared. The techniques studied include principal components analysis, automated outlier determination, radial basis functions (RBF), multi-layer perceptrons (MLP), and pulse-coupled neural networks (PCNN). The results reported here are based on data from a testbed in which a gas sensor array is exposed to odor samples on a continuous basis. We have reported previously that more detailed and faster discrimination can be obtained by using sensor transient response in addition to steady state response. As the size of the data set grows we are able to more accurately model performance of a sensor array under realistic conditions.

  6. Massively Parallel Signal Processing using the Graphics Processing Unit for Real-Time Brain-Computer Interface Feature Extraction.

    PubMed

    Wilson, J Adam; Williams, Justin C

    2009-01-01

    The clock speeds of modern computer processors have nearly plateaued in the past 5 years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card [graphics processing unit (GPU)] was developed for real-time neural signal processing of a brain-computer interface (BCI). The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter), followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a central processing unit-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels of 250 ms in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.

  7. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A., Jr.

    1989-01-01

    Advances in very large-scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible and potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for a DPCM-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the CODEC are described, and performance results are provided.

  8. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A.

    1991-01-01

    Advances in very large scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible an potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for DPCM (differential pulse code midulation)-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the codec are described, and performance results are provided.

  9. Embedded System for Real-Time Digital Processing of Medical Ultrasound Doppler Signals

    NASA Astrophysics Data System (ADS)

    Ricci, S.; Dallai, A.; Boni, E.; Bassi, L.; Guidi, F.; Cellai, A.; Tortoli, P.

    2008-12-01

    Ultrasound (US) Doppler systems are routinely used for the diagnosis of cardiovascular diseases. Depending on the application, either single tone bursts or more complex waveforms are periodically transmitted throughout a piezoelectric transducer towards the region of interest. Extraction of Doppler information from echoes backscattered from moving blood cells typically involves coherent demodulation and matched filtering of the received signal, followed by a suitable processing module. In this paper, we present an embedded Doppler US system which has been designed as open research platform, programmable according to a variety of strategies in both transmission and reception. By suitably sharing the processing tasks between a state-of-the-art FGPA and a DSP, the system can be used in several medical US applications. As reference examples, the detection of microemboli in cerebral circulation and the measurement of wall _distension_ in carotid arteries are finally presented.

  10. Optics based signal processing methods for intraoperative blood vessel detection and quantification in real time (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Amal; Shukair, Shetha A.; Le Rolland, Paul; Vijayvergia, Mayank; Subramanian, Hariharan; Gunn, Jonathan W.

    2016-03-01

    Minimally invasive operations require surgeons to make difficult cuts to blood vessels and other tissues with impaired tactile and visual feedback. This leads to inadvertent cuts to blood vessels hidden beneath tissue, causing serious health risks to patients and a non-reimbursable financial burden to hospitals. Intraoperative imaging technologies have been developed, but these expensive systems can be cumbersome and provide only a high-level view of blood vessel networks. In this research, we propose a lean reflectance-based system, comprised of a dual wavelength LED, photodiode, and novel signal processing algorithms for rapid vessel characterization. Since this system takes advantage of the inherent pulsatile light absorption characteristics of blood vessels, no contrast agent is required for its ability to detect the presence of a blood vessel buried deep inside any tissue type (up to a cm) in real time. Once a vessel is detected, the system is able to estimate the distance of the vessel from the probe and the diameter size of the vessel (with a resolution of ~2mm), as well as delineate the type of tissue surrounding the vessel. The system is low-cost, functions in real-time, and could be mounted on already existing surgical tools, such as Kittner dissectors or laparoscopic suction irrigation cannulae. Having been successfully validated ex vivo, this technology will next be tested in a live porcine study and eventually in clinical trials.

  11. Real-time measurement of joint movement using a digital signal processor-based image processing system

    NASA Astrophysics Data System (ADS)

    Moorehead, John D.; Harvey, David M.; Dangerfield, Peter H.; Montgomery, S. C.

    1994-09-01

    A new low cost imaging system has been devised to detect and measure joint movement to help with the diagnosis of ligament injuries in the human knee. The system uses a domestic video camcorder to record the movement of marks on a patient's knee as it is flexed. The pictures are then fed into the imaging system, where the coordinates of each mark are determined for each angle of flexion. The coordinate data is then processed to show the dynamic operation of the knee, from which an assessment of ligament damage can be made. The imaging system is comprised of a PC host, a commercial frame store, and a custom built TMS320C40 digital signal processor (dsp) board. The dsp is used to perform correlation and other imaging functions, to automatically determine the mark coordinates in real time. This paper describes the application and development of the system, and gives the results of the research to date.

  12. Digital codec for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A., Jr.

    1989-01-01

    The authors present the hardware implementation of a digital television bandwidth compression algorithm which processes standard NTSC (National Television Systems Committee) composite color television signals and produces broadcast-quality video in real time at an average of 1.8 b/pixel. The sampling rate used with this algorithm results in 768 samples over the active portion of each video line by 512 active video lines per video frame. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a nonadaptive predictor, nonuniform quantizer, and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The nonadaptive predictor and multilevel Huffman coder combine to set this technique apart from prior-art DPCM encoding algorithms. The authors describe the data compression algorithm and the hardware implementation of the codec and provide performance results.

  13. Processing PCM Data in Real Time

    NASA Technical Reports Server (NTRS)

    Wissink, T. L.

    1982-01-01

    Novel hardware configuration makes it possible for Space Shuttle launch processing system to monitor pulse-code-modulated data in real time. Using two microprogramable "option planes," incoming PCM data are monitored for changes at rate of one frame of data (80 16-bit words) every 10 milliseconds. Real-time PCM processor utilizes CPU in mini-computer and CPU's in two option planes.

  14. Digital phosphorimeter with frequency domain signal processing: Application to real-time fiber-optic oxygen sensing

    NASA Astrophysics Data System (ADS)

    Alcala, J. Ricardo; Yu, Clement; Yeh, Gong Jong

    1993-06-01

    An instrument to measure the excited-state lifetimes of phosphorescent materials in real time is described. This apparatus uses pulsed and frequency-doubled Nd:YAG solid-state laser for excitation, sampler for data acquisition, and frequency domain methods for data fitting. The instrument amplifies the ac components of the detector output and band limits the signal to 25 kHz. The fundamental frequency of the excitation is then set to obtain a desired number of harmonics. This band limited signal is sampled and averaged over few thousand cycles in the time domain. The frequency domain representation of the data is obtained by employing fast Fourier transform algorithms. The phase delay and the modulation ratio of each sampled harmonic is then computed. Ten to a hundred values of the phase and modulations are averaged before computing the sensor lifetime. The instrument is capable of measuring precise and accurate excited-state lifetimes from subpicowatt luminescent signals in 100 μm optical fibers. To monitor oxygen for biomedical applications the response time of the system is decreased by collecting only 8 or 16 harmonics. A least-squares fit yields the lifetimes of single exponentials. A component of zero lifetime is introduced to account for the backscatter excitation. The phosphorescence lifetimes measured reproducibly to three parts in a thousand are used to monitor oxygen. Oxygen concentrations are computed employing empirical polynomials. The system drift is less than 1% over 100 h of continuous operation. This instrument is used to measure oxygen concentrations in vitro and in vivo with 2 s update times and 90 s full response times. Examples of measurements in saline solutions and in dogs are presented.

  15. Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated FPGA approach.

    PubMed

    Pearson, Martin J; Pipe, A G; Mitchinson, B; Gurney, K; Melhuish, C; Gilhespy, I; Nibouche, M

    2007-09-01

    In this paper, we present two versions of a hardware processing architecture for modeling large networks of leaky-integrate-and-fire (LIF) neurons; the second version provides performance enhancing features relative to the first. Both versions of the architecture use fixed-point arithmetic and have been implemented using a single field-programmable gate array (FPGA). They have successfully simulated networks of over 1000 neurons configured using biologically plausible models of mammalian neural systems. The neuroprocessor has been designed to be employed primarily for use on mobile robotic vehicles, allowing bio-inspired neural processing models to be integrated directly into real-world control environments. When a neuroprocessor has been designed to act as part of the closed-loop system of a feedback controller, it is imperative to maintain strict real-time performance at all times, in order to maintain integrity of the control system. This resulted in the reevaluation of some of the architectural features of existing hardware for biologically plausible neural networks (NNs). In addition, we describe a development system for rapidly porting an underlying model (based on floating-point arithmetic) to the fixed-point representation of the FPGA-based neuroprocessor, thereby allowing validation of the hardware architecture. The developmental system environment facilitates the cooperation of computational neuroscientists and engineers working on embodied (robotic) systems with neural controllers, as demonstrated by our own experience on the Whiskerbot project, in which we developed models of the rodent whisker sensory system.

  16. Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated FPGA approach.

    PubMed

    Pearson, Martin J; Pipe, A G; Mitchinson, B; Gurney, K; Melhuish, C; Gilhespy, I; Nibouche, M

    2007-09-01

    In this paper, we present two versions of a hardware processing architecture for modeling large networks of leaky-integrate-and-fire (LIF) neurons; the second version provides performance enhancing features relative to the first. Both versions of the architecture use fixed-point arithmetic and have been implemented using a single field-programmable gate array (FPGA). They have successfully simulated networks of over 1000 neurons configured using biologically plausible models of mammalian neural systems. The neuroprocessor has been designed to be employed primarily for use on mobile robotic vehicles, allowing bio-inspired neural processing models to be integrated directly into real-world control environments. When a neuroprocessor has been designed to act as part of the closed-loop system of a feedback controller, it is imperative to maintain strict real-time performance at all times, in order to maintain integrity of the control system. This resulted in the reevaluation of some of the architectural features of existing hardware for biologically plausible neural networks (NNs). In addition, we describe a development system for rapidly porting an underlying model (based on floating-point arithmetic) to the fixed-point representation of the FPGA-based neuroprocessor, thereby allowing validation of the hardware architecture. The developmental system environment facilitates the cooperation of computational neuroscientists and engineers working on embodied (robotic) systems with neural controllers, as demonstrated by our own experience on the Whiskerbot project, in which we developed models of the rodent whisker sensory system. PMID:18220195

  17. Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system.

    PubMed

    Zhang, Kang; Kang, Jin U

    2010-05-24

    We realized graphics processing unit (GPU) based real-time 4D (3D+time) signal processing and visualization on a regular Fourier-domain optical coherence tomography (FD-OCT) system with a nonlinear k-space spectrometer. An ultra-high speed linear spline interpolation (LSI) method for lambda-to-k spectral re-sampling is implemented in the GPU architecture, which gives average interpolation speeds of >3,000,000 line/s for 1024-pixel OCT (1024-OCT) and >1,400,000 line/s for 2048-pixel OCT (2048-OCT). The complete FD-OCT signal processing including lambda-to-k spectral re-sampling, fast Fourier transform (FFT) and post-FFT processing have all been implemented on a GPU. The maximum complete A-scan processing speeds are investigated to be 680,000 line/s for 1024-OCT and 320,000 line/s for 2048-OCT, which correspond to 1GByte processing bandwidth. In our experiment, a 2048-pixel CMOS camera running up to 70 kHz is used as an acquisition device. Therefore the actual imaging speed is camera- limited to 128,000 line/s for 1024-OCT or 70,000 line/s for 2048-OCT. 3D Data sets are continuously acquired in real time at 1024-OCT mode, immediately processed and visualized as high as 10 volumes/second (12,500 A-scans/volume) by either en face slice extraction or ray-casting based volume rendering from 3D texture mapped in graphics memory. For standard FD-OCT systems, a GPU is the only additional hardware needed to realize this improvement and no optical modification is needed. This technique is highly cost-effective and can be easily integrated into most ultrahigh speed FD-OCT systems to overcome the 3D data processing and visualization bottlenecks.

  18. Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system.

    PubMed

    Zhang, Kang; Kang, Jin U

    2010-05-24

    We realized graphics processing unit (GPU) based real-time 4D (3D+time) signal processing and visualization on a regular Fourier-domain optical coherence tomography (FD-OCT) system with a nonlinear k-space spectrometer. An ultra-high speed linear spline interpolation (LSI) method for lambda-to-k spectral re-sampling is implemented in the GPU architecture, which gives average interpolation speeds of >3,000,000 line/s for 1024-pixel OCT (1024-OCT) and >1,400,000 line/s for 2048-pixel OCT (2048-OCT). The complete FD-OCT signal processing including lambda-to-k spectral re-sampling, fast Fourier transform (FFT) and post-FFT processing have all been implemented on a GPU. The maximum complete A-scan processing speeds are investigated to be 680,000 line/s for 1024-OCT and 320,000 line/s for 2048-OCT, which correspond to 1GByte processing bandwidth. In our experiment, a 2048-pixel CMOS camera running up to 70 kHz is used as an acquisition device. Therefore the actual imaging speed is camera- limited to 128,000 line/s for 1024-OCT or 70,000 line/s for 2048-OCT. 3D Data sets are continuously acquired in real time at 1024-OCT mode, immediately processed and visualized as high as 10 volumes/second (12,500 A-scans/volume) by either en face slice extraction or ray-casting based volume rendering from 3D texture mapped in graphics memory. For standard FD-OCT systems, a GPU is the only additional hardware needed to realize this improvement and no optical modification is needed. This technique is highly cost-effective and can be easily integrated into most ultrahigh speed FD-OCT systems to overcome the 3D data processing and visualization bottlenecks. PMID:20589038

  19. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: demonstrations with a passive wireless acoustic delay line probe and vision.

    PubMed

    Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates. PMID:24517814

  20. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: Demonstrations with a passive wireless acoustic delay line probe and vision

    NASA Astrophysics Data System (ADS)

    Goavec-Mérou, G.; Chrétien, N.; Friedt, J.-M.; Sandoz, P.; Martin, G.; Lenczner, M.; Ballandras, S.

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.

  1. Real-time signal processing XII; Proceedings of the Meeting, San Diego, CA, Aug. 10, 11, 1989

    SciTech Connect

    Letellier, J.P.

    1989-01-01

    The conference addresses trends in electronic implementations, algorithms and architectures for signal processing, optical processors, and trends in optical processing. Papers on optical point-to-point interconnections and their use in neural nets are included, along with works dealing with both the general use of neural nets and the specific use of specialized neural nets in system applications. A series of papers on the computation of two-dimensional Fourier transforms is found in the proceedings, as well as works on programing methods for crystallography, fast mapping of gravity equations on a linear array, adaptive signal processing using a liquid-crystal television, and hybrid digital-optical processors. Focus is placed on electrooptical implementations for two-dimensional array neural nets, radar imaging using the Wigner-Ville distribution, a recursive optical notching filter, and parallel algorithms for automatic target identification using CO{sub 2}-laser radar imagery.

  2. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  3. Real-time dual-mode standard/complex Fourier-domain OCT system using graphics processing unit accelerated 4D signal processing and visualization

    NASA Astrophysics Data System (ADS)

    Zhang, Kang; Kang, Jin U.

    2011-03-01

    We realized a real-time dual-mode standard/complex Fourier-domain optical coherence tomography (FD-OCT) system using graphics processing unit (GPU) accelerated 4D (3D+time) signal processing and visualization. For both standard and complex FD-OCT modes, the signal processing tasks were implemented on a dual-GPUs architecture that included λ-to-k spectral re-sampling, fast Fourier transform (FFT), modified Hilbert transform, logarithmic-scaling, and volume rendering. The maximum A-scan processing speeds achieved are >3,000,000 line/s for the standard 1024-pixel-FD-OCT, and >500,000 line/s for the complex 1024-pixel-FD-OCT. Multiple volumerendering of the same 3D data set were preformed and displayed with different view angles. The GPU-acceleration technique is highly cost-effective and can be easily integrated into most ultrahigh speed FD-OCT systems to overcome the 3D data processing and visualization bottlenecks.

  4. Near real time data processing system

    NASA Astrophysics Data System (ADS)

    Mousessian, Ardvas; Vuu, Christina

    2008-08-01

    Raytheon recently developed and implemented a Near Real Time (NRT) data processing subsystem for Earth Observing System (EOS) Microwave Limb Sounder (MLS3) instrument on NASA Aura spacecraft. The NRT can be viewed as a customized Science Information Processing System (SIPS) where the measurements and information provided by the instrument are expeditiously processed, packaged, and delivered. The purpose of the MLS NRT is to process Level 0 data up through Level 2, and distribute standard data products to the customer within 3-5 hours of the first set of data arrival.

  5. SEMICONDUCTOR DEVICES Parallel readout of two-element CdZnTe detectors with real-time digital signal processing

    NASA Astrophysics Data System (ADS)

    Zhubin, Shi; Linjun, Wang; Kaifeng, Qin; Jiahua, Min; Jijun, Zhang; Xiaoyan, Liang; Jian, Huang; Ke, Tang; Yiben, Xia

    2010-12-01

    Readout electronics, especially digital electronics, for two-element CdZnTe (CZT) detectors in parallel are developed. The preliminary results show the detection efficiency of the two-element CZT detectors in parallel with analog electronics is as many as 1.8 and 2.1 times the single ones, and the energy resolution (FWHM) is limited by that of the single one by the means of analog electronics. However, the digital method for signal processing will be sufficiently better by contrast with an analog method especially in energy resolution. The energy resolution by the means of digital electronics can be improved by about 26.67%, compared to that only with analog electronics, while their detection efficiency is almost the same. The cause for this difference is also discussed.

  6. Forearm motion discrimination technique using real-time EMG signals.

    PubMed

    Mizuno, Haruaki; Tsujiuchi, Nobutaka; Koizumi, Takayuki

    2011-01-01

    The objective of this study is to develop a method of discriminating real-time motion from electromyogram (EMG) signals. We previously proposed a motion discrimination method. This method could discriminate five motions (hand opening, hand closing, hand chucking, wrist extension, and wrist flexion) at a rate of above 90 percent from four channel EMG signals in the forearm. The method prevents elbow motions from interfering with hand motion discrimination. However, discrimination processing time of this method is more than 300 ms, and the shortest delay time that is perceivable by the user is generally regarded to be roughly 300 ms. Furthermore, a robot hand has a mechanical delay time. Thus, the discrimination time should be less than 300 ms. Here, we propose a real-time motion discrimination method using a hyper-sphere model. In comparison with the old model, the hyper-sphere models can make more complex decision regions which can discriminate at the state of the motion. Furthermore, this model can learn EMG signals in real-time. We experimentally verified that the discrimination accuracies of this method were above 90 percent. Moreover, elbow motions did not interfere with the hand motion discrimination. The discrimination processing time was less than 300 ms, and was about 30 percent shorter than that of the old method. PMID:22255323

  7. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model.

    PubMed

    Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao

    2016-02-01

    This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period.

  8. Real Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light

    PubMed Central

    Hashemi, Amjad; Saba, Valiallah; Resalat, Seyed Navid

    2014-01-01

    The objective of this study is development of driver’s sleepiness using Visually Evoked Potentials (VEP). VEP computed from EEG signals from the visual cortex. We use the Steady State VEPs (SSVEPs) that are one of the most important EEG signals used in human computer interface systems. SSVEP is a response to visual stimuli presented. We present a classification method to discriminate between closed eyes and opened eyes. Fourier transforms and power spectrum density features extracted from signals and Multilayer perceptron and radial basis function neural networks used for classification. The experimental results show an accuracy of 97% for test data. PMID:25436080

  9. An advanced real-time digital signal processing system for linear systems emulation, with special emphasis on network and acoustic response characterization

    NASA Astrophysics Data System (ADS)

    Gaydecki, Patrick; Fernandes, Bosco

    2003-11-01

    A fast digital signal processing (DSP) system is described that can perform real-time emulation of a wide variety of linear audio-bandwidth systems and networks, such as reverberant spaces, musical instrument bodies and very high order filter networks. The hardware design is based upon a Motorola DSP56309 operating at 110 million multiplication-accumulations per second and a dual-channel 24 bit codec with a maximum sampling frequency of 192 kHz. High level software has been developed to express complex vector frequency responses as both infinite impulse response (IIR) and finite impulse response (FIR) coefficients, in a form suitable for real-time convolution by the firmware installed in the DSP system memory. An algorithm has also been devised to express IIR filters as equivalent FIR structures, thereby obviating the potential instabilities associated with recursive equations and negating the traditional deficiencies of FIR filters respecting equivalent analogue designs. The speed and dynamic range of the system is such that, when sampling at 48 kHz, the frequency response can be specified to a spectral precision of 22 Hz when sampling at 10 kHz, this resolution increases to 0.9 Hz. Moreover, it is also possible to control the phase of any frequency band with a theoretical precision of 10-5 degrees in all cases. The system has been applied in the study of analogue filter networks, real-time Hilbert transformation, phase-shift systems and musical instrument body emulation, where it is providing valuable new insights into the understanding of psychoacoustic mechanisms.

  10. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  11. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary J. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1990-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  12. Real time simulator with Ti floating point digital signal processor

    SciTech Connect

    Razazian, K.; Bobis, J.P.; Dieckman, S.L.; Raptis, A.C.

    1994-08-01

    This paper describes the design and operation of a Real Time Simulator using Texas Instruments TMS320C30 digital signal processor. This system operates with two banks of memory which provide the input data to digital signal processor chip. This feature enables the TMS320C30 to be utilized in variety of applications for which external connections to acquire input data is not needed. In addition, some practical applications of this Real Time Simulator are discussed.

  13. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  14. Real-Time Signal Processor for Pulsar Studies

    NASA Astrophysics Data System (ADS)

    Ramkumar, P. S.; Deshpande, A. A.

    2001-12-01

    This paper describes the design, tests and preliminary results of a real-time parallel signal processor built to aid a wide variety of pulsar observations. The signal processor reduces the distortions caused by the effects of dispersion, Faraday rotation, doppler acceleration and parallactic angle variations, at a sustained data rate of 32 Msamples/sec. It also folds the pulses coherently over the period and integrates adjacent samples in time and frequency to enhance the signal-to-noise ratio. The resulting data are recorded for further off-line analysis of the characteristics of pulsars and the intervening medium. The signal processing for analysis of pulsar signals is quite complex, imposing the need for a high computational throughput, typically of the order of a Giga operations per second (GOPS). Conventionally, the high computational demand restricts the flexibility to handle only a few types of pulsar observations. This instrument is designed to handle a wide variety of Pulsar observations with the Giant Metre Wave Radio Telescope (GMRT), and is flexible enough to be used in many other high-speed, signal processing applications. The technology used includes field-programmable-gate-array(FPGA) based data/code routing interfaces, PC-AT based control, diagnostics and data acquisition, digital signal processor (DSP) chip based parallel processing nodes and C language based control software and DSP-assembly programs for signal processing. The architecture and the software implementation of the parallel processor are fine-tuned to realize about 60 MOPS per DSP node and a multiple-instruction-multiple-data (MIMD) capability.

  15. Real time reconstruction of quasiperiodic multi parameter physiological signals

    NASA Astrophysics Data System (ADS)

    Ganeshapillai, Gartheeban; Guttag, John

    2012-12-01

    A modern intensive care unit (ICU) has automated analysis systems that depend on continuous uninterrupted real time monitoring of physiological signals such as electrocardiogram (ECG), arterial blood pressure (ABP), and photo-plethysmogram (PPG). These signals are often corrupted by noise, artifacts, and missing data. We present an automated learning framework for real time reconstruction of corrupted multi-parameter nonstationary quasiperiodic physiological signals. The key idea is to learn a patient-specific model of the relationships between signals, and then reconstruct corrupted segments using the information available in correlated signals. We evaluated our method on MIT-BIH arrhythmia data, a two-channel ECG dataset with many clinically significant arrhythmias, and on the CinC challenge 2010 data, a multi-parameter dataset containing ECG, ABP, and PPG. For each, we evaluated both the residual distance between the original signals and the reconstructed signals, and the performance of a heartbeat classifier on a reconstructed ECG signal. At an SNR of 0 dB, the average residual distance on the CinC data was roughly 3% of the energy in the signal, and on the arrhythmia database it was roughly 16%. The difference is attributable to the large amount of diversity in the arrhythmia database. Remarkably, despite the relatively high residual difference, the classification accuracy on the arrhythmia database was still 98%, indicating that our method restored the physiologically important aspects of the signal.

  16. Vector processing enhancements for real-time image analysis.

    SciTech Connect

    Shoaf, S.; APS Engineering Support Division

    2008-01-01

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  17. Hybrid interconnection structures for real-time parallel processing

    NASA Technical Reports Server (NTRS)

    Kim, K. H.; Samson, John R., Jr.

    1989-01-01

    The use of hybrid interconnection structures that combine link connections and bus connections for real-time parallel processing is discussed. Idealistic parallel computation models for two real-time computing applications are described with attention given to a tightly coupled network model for object tracking and a network model for image processing. Consideration is given to the following different interconnection structures: the crossbar, the hypercube, the circular linked array, and the bus array.

  18. Cell-bionics: tools for real-time sensor processing.

    PubMed

    Toumazou, Chris; Cass, Tony

    2007-08-29

    The accurate monitoring of the physiological status of cells, tissues and whole organisms demands a new generation of devices capable of providing accurate data in real time with minimal perturbation of the system being measured. To deliver on the promise of cell-bionics advances over the past decade in miniaturization, analogue signal processing, low-power electronics, materials science and protein engineering need to be brought together. In this paper we summarize recent advances in our research that is moving us in this direction. Two areas in particular are highlighted: the exploitation of the physical properties inherent in semiconductor devices to perform very low power on chip signal processing and the use of gene technology to tailor proteins for sensor applications. In the context of engineered tissues, cell-bionics could offer the ability to monitor the precise physiological state of the construct, both during 'manufacture' and post-implantation. Monitoring during manufacture, particularly by embedded devices, would offer quality assurance of the materials components and the fabrication process. Post-implantation monitoring would reveal changes in the underlying physiology as a result of the tissue construct adapting to its new environment.

  19. Real-Time "Garbage Collection" for List Processing

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    1987-01-01

    Two proposed algorithmic techniques for list processing enable immediate identification of computer memory cells having become inactive through disconnection from active cells, together with addition of these inactive cells to pool of reusable cells. These two "garbage collection" techniques reduce memory requirements of list processors or increase their speed or both. With both techniques, processing continuity maintained, enabling real-time processing.

  20. Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling.

    PubMed

    Schmogrow, R; Meyer, M; Schindler, P C; Nebendahl, B; Dreschmann, M; Meyer, J; Josten, A; Hillerkuss, D; Ben-Ezra, S; Becker, J; Koos, C; Freude, W; Leuthold, J

    2014-01-13

    We demonstrate two efficient processing techniques for Nyquist signals, namely computation of signals using dynamic precision as well as arbitrary rational oversampling factors. With these techniques along with massively parallel processing it becomes possible to generate and receive high data rate Nyquist signals with flexible symbol rates and bandwidths, a feature which is highly desirable for novel flexgrid networks. We achieved maximum bit rates of 252 Gbit/s in real-time.

  1. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  2. An Innovative Compiler For Programming And Designing Real-Time Signal Processors

    NASA Astrophysics Data System (ADS)

    Petruschka, Orni; Torng, H. C.

    1986-04-01

    Real time signal processing tasks impose stringent requirements on computing systems. One approach to satisfying these demands is to employ intelligently interconnected multiple arithmetic units, such as multipliers, adders, logic units and others, to implement concurrent computations. Two problems emerge: 1) Programming: Programs with wide instruction words have to be developed to exercise the multiple arithmetic units fully and efficiently to meet the real-time processing loads; 2) Design: With a given set of real-time signal processing tasks, design procedures are needed to specify multiple arithmetic units and their interconnection schemes for the processor. This paper presents a compiler which provides a solution to the programming and design problems. The compiler that has been developed translates blocks of RISC-like instructions into programs of wide microinstructions; each of these microinstructions initiates many concurrently executable operations. In so doing, we seek to achieve the maximum utilization of execution resources and to complete processing tasks in minimum time. The compiler is based on an innovative "Dispatch Stack" concept, and has been applied to program Floating Point System(FPS) processors; the resulting program for computing inner-product and other signal processing tasks are as good as those obtained by laborious hand-compilation. We will then show that the compiler developed for programming can be used advantageously to design real-time signal processing systems with multiple arithmetic units.

  3. Real Time Calibration Method for Signal Conditioning Amplifiers

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Mata, Carlos T. (Inventor); Eckhoff, Anthony (Inventor); Perotti, Jose (Inventor); Lucena, Angel (Inventor)

    2004-01-01

    A signal conditioning amplifier receives an input signal from an input such as a transducer. The signal is amplified and processed through an analog to digital converter and sent to a processor. The processor estimates the input signal provided by the transducer to the amplifier via a multiplexer. The estimated input signal is provided as a calibration voltage to the amplifier immediately following the receipt of the amplified input signal. The calibration voltage is amplified by the amplifier and provided to the processor as an amplified calibration voltage. The amplified calibration voltage is compared to the amplified input signal, and if a significant error exists, the gain and/or offset of the amplifier may be adjusted as necessary.

  4. Real-time hyperspectral processing for automatic nonferrous material sorting

    NASA Astrophysics Data System (ADS)

    Picón, Artzai; Ghita, Ovidiu; Bereciartua, Aranzazu; Echazarra, Jone; Whelan, Paul F.; Iriondo, Pedro M.

    2012-01-01

    The application of hyperspectral sensors in the development of machine vision solutions has become increasingly popular as the spectral characteristics of the imaged materials are better modeled in the hyperspectral domain than in the standard trichromatic red, green, blue data. While there is no doubt that the availability of detailed spectral information is opportune as it opens the possibility to construct robust image descriptors, it also raises a substantial challenge when this high-dimensional data is used in the development of real-time machine vision systems. To alleviate the computational demand, often decorrelation techniques are commonly applied prior to feature extraction. While this approach has reduced to some extent the size of the spectral descriptor, data decorrelation alone proved insufficient in attaining real-time classification. This fact is particularly apparent when pixel-wise image descriptors are not sufficiently robust to model the spectral characteristics of the imaged materials, a case when the spatial information (or textural properties) also has to be included in the classification process. The integration of spectral and spatial information entails a substantial computational cost, and as a result the prospects of real-time operation for the developed machine vision system are compromised. To answer this requirement, in this paper we have reengineered the approach behind the integration of the spectral and spatial information in the material classification process to allow the real-time sorting of the nonferrous fractions that are contained in the waste of electric and electronic equipment scrap.

  5. An architecture for real-time vision processing

    NASA Technical Reports Server (NTRS)

    Chien, Chiun-Hong

    1994-01-01

    To study the feasibility of developing an architecture for real time vision processing, a task queue server and parallel algorithms for two vision operations were designed and implemented on an i860-based Mercury Computing System 860VS array processor. The proposed architecture treats each vision function as a task or set of tasks which may be recursively divided into subtasks and processed by multiple processors coordinated by a task queue server accessible by all processors. Each idle processor subsequently fetches a task and associated data from the task queue server for processing and posts the result to shared memory for later use. Load balancing can be carried out within the processing system without the requirement for a centralized controller. The author concludes that real time vision processing cannot be achieved without both sequential and parallel vision algorithms and a good parallel vision architecture.

  6. An intelligent processing environment for real-time simulation

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Wells, Buren Earl, Jr.

    1988-01-01

    The development of a highly efficient and thus truly intelligent processing environment for real-time general purpose simulation of continuous systems is described. Such an environment can be created by mapping the simulation process directly onto the University of Alamba's OPERA architecture. To facilitate this effort, the field of continuous simulation is explored, highlighting areas in which efficiency can be improved. Areas in which parallel processing can be applied are also identified, and several general OPERA type hardware configurations that support improved simulation are investigated. Three direct execution parallel processing environments are introduced, each of which greatly improves efficiency by exploiting distinct areas of the simulation process. These suggested environments are candidate architectures around which a highly intelligent real-time simulation configuration can be developed.

  7. Development of a real time bistatic radar receiver using signals of opportunity

    NASA Astrophysics Data System (ADS)

    Rainville, Nicholas

    Passive bistatic radar remote sensing offers a novel method of monitoring the Earth's surface by observing reflected signals of opportunity. The Global Positioning System (GPS) has been used as a source of signals for these observations and the scattering properties of GPS signals from rough surfaces are well understood. Recent work has extended GPS signal reflection observations and scattering models to include communications signals such as XM radio signals. However the communication signal reflectometry experiments to date have relied on collecting raw, high data-rate signals which are then post-processed after the end of the experiment. This thesis describes the development of a communication signal bistatic radar receiver which computes a real time correlation waveform, which can be used to retrieve measurements of the Earth's surface. The real time bistatic receiver greatly reduces the quantity of data that must be stored to perform the remote sensing measurements, as well as offering immediate feedback. This expands the applications for the receiver to include space and bandwidth limited platforms such as aircraft and satellites. It also makes possible the adjustment of flight plans to the observed conditions. This real time receiver required the development of an FGPA based signal processor, along with the integration of commercial Satellite Digital Audio Radio System (SDARS) components. The resulting device was tested both in a lab environment as well on NOAA WP-3D and NASA WB-57 aircraft.

  8. Real-time motion discrimination considering variation of EMG signals associated with lapse of time.

    PubMed

    Shiraki, Masashi; Tsujiuchi, Nobutaka; Akihito, Ito; Yamamoto, Tetsushi

    2015-08-01

    This study proposes a motion discrimination method that considers the variation of electromyogram (EMG) signals associated with a lapse of time. In a previous study, we proposed a real-time discrimination method based on EMG signals of the forearm. Our method uses a hypersphere model as a discriminator. In motion discrimination using EMG signals, one problem is to maintain high discrimination accuracy over time because EMG signals change with a lapse of time. This study analyzed the effect of changes in EMG signals on our method. Based on analysis results, adding a relearning system of the decision criteria to the discrimination system was expected to be effective. We created a new motion discrimination method that contains the relearning system and experimentally verified its effectiveness. The motion discrimination system discriminated three hand motions, open, grasp, and pinch with discrimination accuracy above 90% in real-time (processing time below 300 ms) even after time elapsed. PMID:26736306

  9. An Algorithm for Network Real Time Kinematic Processing

    NASA Astrophysics Data System (ADS)

    Malekzadeh, A.; Asgari, J.; Amiri-Simkooei, A. R.

    2015-12-01

    NRTK1 is an efficient method to achieve precise real time positioning from GNSS measurements. In this paper we attempt to improve NRTK algorithm by introducing a new strategy. In this strategy a precise relocation of master station observations is performed using Sagnac effect. After processing the double differences, the tropospheric and ionospheric errors of each baseline can be estimated separately. The next step is interpolation of these errors for the atmospheric errors mitigation of desired baseline. Linear and kriging interpolation methods are implemented in this study. In the new strategy the RINEX2 data of the master station is re-located and is converted to the desired virtual observations. Then the interpolated corrections are applied to the virtual observations. The results are compared by the classical method of VRS generation. 1 Network Real Time Kinematic 2 Receiver Independent Exchange Format

  10. Towards real-time remote processing of laparoscopic video

    NASA Astrophysics Data System (ADS)

    Ronaghi, Zahra; Duffy, Edward B.; Kwartowitz, David M.

    2015-03-01

    Laparoscopic surgery is a minimally invasive surgical technique where surgeons insert a small video camera into the patient's body to visualize internal organs and small tools to perform surgical procedures. However, the benefit of small incisions has a drawback of limited visualization of subsurface tissues, which can lead to navigational challenges in the delivering of therapy. Image-guided surgery (IGS) uses images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic camera system of interest is the vision system of the daVinci-Si robotic surgical system (Intuitive Surgical, Sunnyvale, CA, USA). The video streams generate approximately 360 megabytes of data per second, demonstrating a trend towards increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Processing this data on a bedside PC has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. The ability to acquire, process and visualize data in real-time is essential for performance of complex tasks as well as minimizing risk to the patient. As a result, utilizing high-speed networks to access computing clusters will lead to real-time medical image processing and improve surgical experiences by providing real-time augmented laparoscopic data. We aim to develop a medical video processing system using an OpenFlow software defined network that is capable of connecting to multiple remote medical facilities and HPC servers.

  11. Toward real-time remote processing of laparoscopic video.

    PubMed

    Ronaghi, Zahra; Duffy, Edward B; Kwartowitz, David M

    2015-10-01

    Laparoscopic surgery is a minimally invasive surgical technique where surgeons insert a small video camera into the patient's body to visualize internal organs and use small tools to perform surgical procedures. However, the benefit of small incisions has a drawback of limited visualization of subsurface tissues, which can lead to navigational challenges in the delivering of therapy. Image-guided surgery uses the images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic camera system of interest is the vision system of the daVinci-Si robotic surgical system (Intuitive Surgical, Sunnyvale, California). The video streams generate approximately 360 MB of data per second, demonstrating a trend toward increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Processing this data on a bedside PC has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. The ability to acquire, process, and visualize data in real time is essential for the performance of complex tasks as well as minimizing risk to the patient. As a result, utilizing high-speed networks to access computing clusters will lead to real-time medical image processing and improve surgical experiences by providing real-time augmented laparoscopic data. We have performed image processing algorithms on a high-definition head phantom video (1920 × 1080 pixels) and transferred the video using a message passing interface. The total transfer time is around 53 ms or 19 fps. We will optimize and parallelize these algorithms to reduce the total time to 30 ms. PMID:26668817

  12. A real-time dashboard for managing pathology processes

    PubMed Central

    Halwani, Fawaz; Li, Wei Chen; Banerjee, Diponkar; Lessard, Lysanne; Amyot, Daniel; Michalowski, Wojtek; Giffen, Randy

    2016-01-01

    Context: The Eastern Ontario Regional Laboratory Association (EORLA) is a newly established association of all the laboratory and pathology departments of Eastern Ontario that currently includes facilities from eight hospitals. All surgical specimens for EORLA are processed in one central location, the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital (TOH), where the rapid growth and influx of surgical and cytology specimens has created many challenges in ensuring the timely processing of cases and reports. Although the entire process is maintained and tracked in a clinical information system, this system lacks pre-emptive warnings that can help management address issues as they arise. Aims: Dashboard technology provides automated, real-time visual clues that could be used to alert management when a case or specimen is not being processed within predefined time frames. We describe the development of a dashboard helping pathology clinical management to make informed decisions on specimen allocation and tracking. Methods: The dashboard was designed and developed in two phases, following a prototyping approach. The first prototype of the dashboard helped monitor and manage pathology processes at the DPLM. Results: The use of this dashboard helped to uncover operational inefficiencies and contributed to an improvement of turn-around time within The Ottawa Hospital's DPML. It also allowed the discovery of additional requirements, leading to a second prototype that provides finer-grained, real-time information about individual cases and specimens. Conclusion: We successfully developed a dashboard that enables managers to address delays and bottlenecks in specimen allocation and tracking. This support ensures that pathology reports are provided within time frame standards required for high-quality patient care. Given the importance of rapid diagnostics for a number of diseases, the use of real-time dashboards within pathology departments could

  13. A novel algorithm for real-time adaptive signal detection and identification

    SciTech Connect

    Sleefe, G.E.; Ladd, M.D.; Gallegos, D.E.; Sicking, C.W.; Erteza, I.A.

    1998-04-01

    This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.

  14. Real-time process dynamics monitoring in Anammox reactors.

    PubMed

    Alpaslan Kocamemi, B; Dityapak, D

    2014-01-01

    Process dynamics in Anammox systems were evaluated through continuous monitoring of pH, oxidation reduction potential (ORP) and conductivity in two separate newly started-up sequencing batch reactors, one seeded with an enriched Anammox sludge and the other seeded with mixed activated sludge. The pH and ORP profiles exhibited characteristic patterns depending on the process dynamics during early start-up, start-up and enrichment phases of the operational period of 410 days. The simultaneously continuing processes of the start-up period showed apparent indicative trend lines in pH and ORP profiles. Conductivity profiles were consistent with the process dynamics in all phases. During the enrichment phase, conductivity decreases could quantitatively be related to process removal efficiencies and all real-time profiles exhibited specific break-points which coincided with the end of Anammox in each cycle. The end of Anammox was observed as an 'apex' on pH profiles and a 'valley' on ORP profiles. The 'apex' and 'valley' points exactly coincided with the end point of the linear decrease in the conductivity profiles. The overall findings suggested a great potential in using real-time pH, ORP and conductivity measurements for quick and reliable monitoring of Anammox systems during start-up and enrichment periods.

  15. A real-time optical data processing device

    NASA Technical Reports Server (NTRS)

    Jacobson, A.; Grinberg, J.; Bleha, W.; Miller, L.; Fraas, L.; Myer, G.; Boswell, D.

    1975-01-01

    The design, operation, and structure of the hybrid field effect light valve, a real-time input device for application to coherent optical data processing (CODP), is described. The device consists of a sandwich of thin films that electrically control the optical birefringence of a thin (2 micrometer) liquid crystal layer. It has high resolution (greater than 100 1/mm), contrast ratio (greater than 100:1), speed (10 sec on, 15 sec off) and input sensitivity (about 0.3 ergs/sq cm) in addition to cost and size advantages. Performance data for a laboratory model are presented.

  16. HPC enabled real-time remote processing of laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Ronaghi, Zahra; Sapra, Karan; Izard, Ryan; Duffy, Edward; Smith, Melissa C.; Wang, Kuang-Ching; Kwartowitz, David M.

    2016-03-01

    Laparoscopic surgery is a minimally invasive surgical technique. The benefit of small incisions has a disadvantage of limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative and intra-operative images to map subsurface structures. One particular laparoscopic system is the daVinci-si robotic surgical system. The video streams generate approximately 360 megabytes of data per second. Real-time processing this large stream of data on a bedside PC, single or dual node setup, has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. We have implement and compared performance of compression, segmentation and registration algorithms on Clemson's Palmetto supercomputer using dual NVIDIA K40 GPUs per node. Our computing framework will also enable reliability using replication of computation. We will securely transfer the files to remote HPC clusters utilizing an OpenFlow-based network service, Steroid OpenFlow Service (SOS) that can increase performance of large data transfers over long-distance and high bandwidth networks. As a result, utilizing high-speed OpenFlow- based network to access computing clusters with GPUs will improve surgical procedures by providing real-time medical image processing and laparoscopic data.

  17. A conceptual framework for intelligent real-time information processing

    NASA Technical Reports Server (NTRS)

    Schudy, Robert

    1987-01-01

    By combining artificial intelligence concepts with the human information processing model of Rasmussen, a conceptual framework was developed for real time artificial intelligence systems which provides a foundation for system organization, control and validation. The approach is based on the description of system processing terms of an abstraction hierarchy of states of knowledge. The states of knowledge are organized along one dimension which corresponds to the extent to which the concepts are expressed in terms of the system inouts or in terms of the system response. Thus organized, the useful states form a generally triangular shape with the sensors and effectors forming the lower two vertices and the full evaluated set of courses of action the apex. Within the triangle boundaries are numerous processing paths which shortcut the detailed processing, by connecting incomplete levels of analysis to partially defined responses. Shortcuts at different levels of abstraction include reflexes, sensory motor control, rule based behavior, and satisficing. This approach was used in the design of a real time tactical decision aiding system, and in defining an intelligent aiding system for transport pilots.

  18. Near Real-Time Processing of Proteomics Data Using Hadoop.

    PubMed

    Hillman, Chris; Ahmad, Yasmeen; Whitehorn, Mark; Cobley, Andy

    2014-03-01

    This article presents a near real-time processing solution using MapReduce and Hadoop. The solution is aimed at some of the data management and processing challenges facing the life sciences community. Research into genes and their product proteins generates huge volumes of data that must be extensively preprocessed before any biological insight can be gained. In order to carry out this processing in a timely manner, we have investigated the use of techniques from the big data field. These are applied specifically to process data resulting from mass spectrometers in the course of proteomic experiments. Here we present methods of handling the raw data in Hadoop, and then we investigate a process for preprocessing the data using Java code and the MapReduce framework to identify 2D and 3D peaks. PMID:27447310

  19. Real-time image processing architecture for robot vision

    NASA Astrophysics Data System (ADS)

    Persa, Stelian; Jonker, Pieter P.

    2000-10-01

    This paper presents a study of the impact of MMX technology and PIII Streaming SIMD (Single Instruction stream, Multiple Data stream). Extensions in image processing and machine vision application, which, because of their hard real time constrains, is an undoubtedly challenging task. A comparison with traditional scalar code and with other parallel SIMD architecture (IMPA-VISION board) is discussed with emphasis of the particular programming strategies for speed optimization. More precisely we discuss the low level and intermediate level image processing algorithms, which are best suited for parallel SIMD implementation. High-level image processing algorithms are more suitable for parallel implementation on MIMD architectures. While the IMAP-VISION system performs better because of the large number of processing elements, the MMX processor and PIII (with Streaming SIMD Extensions) remains a good candidate for low-level image processing.

  20. Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance

    PubMed Central

    Schiepek, Günter; Aichhorn, Wolfgang; Gruber, Martin; Strunk, Guido; Bachler, Egon; Aas, Benjamin

    2016-01-01

    Objective: The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients' compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific) surveys. Methods: The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results: We found high compliance rates (mean: 78.3%, median: 89.4%) amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion: The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for the assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities). PMID:27199837

  1. Methods for real-time speech processing on Unix

    SciTech Connect

    Romberger, A.

    1982-01-01

    The author discusses computer programming done at the University of California, Berkeley, in support of research work in the area of speech analysis and synthesis. The purpose of this programming is to set up a system for doing real-time speech sampling using the Unix operating system. Two alternative approaches to real time work on Unix are discussed. The first approach is to do the real-time input/output on a secondary (satellite) machine that is not running Unix. The second approach is to do the real-time input/output on the main machine with the aid of special hardware.

  2. Real-time monitoring of intracellular signal transduction in PC12 cells by non-adiabatic tapered optical fiber biosensor

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Asadollahi, A.; Noraeipoor, Z.; Dargahi, L.

    2014-05-01

    Real-time observation of intracellular process of signal transduction is very useful for biomedical and pharmaceutical applications as well as for basic research work of cell biology. For feasible and reagentless observation of intracellular alterations in real time, we examined the use of a nonadiabatic tapered optical fiber (NATOF) biosensor for monitoring of intracellular signal transduction that was mainly translocation of protein kinase C via refractive index change in PC12 cells adhered on tapered fiber sensor without any indicator reagent. PC12 cells were stimulated with KCl . Our results suggest that complex intracellular reactions could be real-time monitored and characterized by NATOF biosensor.

  3. Implementing cascade approach in real-time video stream processing

    NASA Astrophysics Data System (ADS)

    Ermakov, Dmitry M.; Chernushich, Andrey P.

    2005-10-01

    A lot of nowadays machine vision tasks imply real-time video stream processing at rates of order of (25 frames / sec) x (640 x 480 pixels / frame) x (24 bit / pixel) = 184 Megabit / sec and higher. As reasonable estimations show, a very limited number of operations (even quite primitive) is allowed to be applied to each pixel of every video frame being processed in order to realize the processing rate required. Hence implementing algorithms widely exploiting formal methods (e.g. sorts of iterative approaches, transformations in multidimensional feature space etc) over the whole video stream becomes unaffordable. A potential (and practically working) overcome is introducing a cascade approach. From architectural viewpoint cascade processing consists of several predefined stages. Video frame passes through them from the zero stage (original frame) to the final stage (processing results). Some stages can be skipped, and the whole processing can be canceled at any stage. Passing through two sequential stages can be viewed as applying some operation to the information left to be processed. The keystone of cascade approach is designing an optimal sequence in which the simplest operations precede the more complex ones, so that the processing mechanism becomes essentially non-uniform and non-linear in terms of processing rates: the great amount of useless data is discriminated on the initial quick stages while the further analysis exploits smart algorithms over comparatively low data flux. The presentation demonstrates a practical example of cascade approach for the task of airplanes' tail identification numbers recognition.

  4. Real-Time Fault Classification for Plasma Processes

    PubMed Central

    Yang, Ryan; Chen, Rongshun

    2011-01-01

    Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES) is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703–5723) is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success. PMID:22164001

  5. Real-time fault classification for plasma processes.

    PubMed

    Yang, Ryan; Chen, Rongshun

    2011-01-01

    Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES) is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703-5723) is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success.

  6. A real-time optical data processing device

    NASA Technical Reports Server (NTRS)

    Jacobson, A.; Grinberg, J.; Bleha, W.; Miller, L.; Fraas, L.; Myer, G.; Boswell, D.

    1976-01-01

    A novel liquid-crystal electro-optical device useful as a real-time input device in coherent optical data processing is described. The device is a special adaptation of an ac photoactivated liquid-crystal light valve, and utilizes a hybrid field effect (45 deg twisted nematic effect in OFF state and pure optical birefringence of the liquid crystal in ON state). A thin-film sandwich exerts photoelectric control over the optical birefringence of a thin liquid-crystal layer. Liquid-crystal layer thickness is successfully reduced without image degradation. The device offers high resolution (better than 100 lines/mm), contrast (better than 100/1), high speed (10 msec ON, 15 msec OFF), high input sensitivity, low power input, low fabrication cost, and can be operated at below 10 V rms. Preliminary measurements on device performance in level slicing, filtering, contrast reversal, and edge enhancement are under way.

  7. Near Real Time Processing Chain for Suomi NPP Satellite Data

    NASA Astrophysics Data System (ADS)

    Monsorno, Roberto; Cuozzo, Giovanni; Costa, Armin; Mateescu, Gabriel; Ventura, Bartolomeo; Zebisch, Marc

    2014-05-01

    Since 2009, the EURAC satellite receiving station, located at Corno del Renon, in a free obstacle site at 2260 m a.s.l., has been acquiring data from Aqua and Terra NASA satellites equipped with Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The experience gained with this local ground segmenthas given the opportunity of adapting and modifying the processing chain for MODIS data to the Suomi NPP, the natural successor to Terra and Aqua satellites. The processing chain, initially implemented by mean of a proprietary system supplied by Seaspace and Advanced Computer System, was further developed by EURAC's Institute for Applied Remote Sensing engineers. Several algorithms have been developed using MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data to produce Snow Cover, Particulate Matter estimation and Meteo maps. These products are implemented on a common processor structure based on the use of configuration files and a generic processor. Data and products have then automatically delivered to the customers such as the Autonomous Province of Bolzano-Civil Protection office. For the processing phase we defined two goals: i) the adaptation and implementation of the products already available for MODIS (and possibly new ones) to VIIRS, that is one of the sensors onboard Suomi NPP; ii) the use of an open source processing chain in order to process NPP data in Near Real Time, exploiting the knowledge we acquired on parallel computing. In order to achieve the second goal, the S-NPP data received and ingested are sent as input to RT-STPS (Real-time Software Telemetry Processing System) software developed by the NASA Direct Readout Laboratory 1 (DRL) that gives as output RDR files (Raw Data Record) for VIIRS, ATMS (Advanced Technology Micorwave Sounder) and CrIS (Cross-track Infrared Sounder)sensors. RDR are then transferred to a server equipped with CSPP2 (Community Satellite Processing Package) software developed by the University of

  8. Microprocessor Based Real-Time Monitoring of Multiple ECG Signals

    PubMed Central

    Nasipuri, M.; Basu, D.K.; Dattagupta, R.; Kundu, M.; Banerjee, S.

    1987-01-01

    A microprocessor based system capable of realtime monitoring of multiple ECG signals has been described. The system consists of a number of microprocessors connected in a hierarchical fashion and capable of working concurrently on ECG data collected from different channels. The system can monitor different arrhythmic abnormalities for at least 36 patients even for a heart rate of 500 beats/min.

  9. Real Time Phase Noise Meter Based on a Digital Signal Processor

    NASA Technical Reports Server (NTRS)

    Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario

    2006-01-01

    A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.

  10. Real-time SAR processing for search and rescue

    NASA Astrophysics Data System (ADS)

    Mansfield, Arthur W.; Rogers, George W.; Rais, Houra

    1998-09-01

    The most important parameter in Search and Rescue is the time it takes to locate the downed aircraft and rescue the survivors. The resulting requirement for wide-area coverage, fine resolution, and day-night all-weather operation dictates the use of a SAR sensor. The time urgency dictates a real-time or near real-time SAR processor. This paper presents alternative real-time architectures and gives the results of feasibility studies of the enabling technologies, including new work by the authors in the area of SAR data compression.

  11. The Real-Time Processing of Sluiced Sentences

    PubMed Central

    Wolfinger, Katie; Spellman, Lisa; Shapiro, Lewis P.

    2012-01-01

    Ellipsis refers to an element that is absent from the input but whose meaning can nonetheless be recovered from context. In this cross-modal priming study, we examined the online processing of Sluicing, an ellipsis whose antecedent is an entire clause: The handyman threw a book to the programmer but I don’t know which book the handyman threw to the programmerellipsis. To understand such an elliptical construction, the listener arguably must ‘fill in’ the missing material (“the handyman threw___ to the programmer”) based on that which occurs in the antecedent clause. We aimed to determine the point in time in which reconstruction of the sluiced sentence is attempted and whether such a complex antecedent is re-accessed by the ellipsis. Out of the two antecedent constituents for which we probed, only the Object (programmer) was found active in the elliptical clause, confirming that an antecedent is attributed to the sluice in real time. Possible reasons for the non-observation of the Subject (handyman) are considered. We also suggest that ellipses are detected earlier in coordinated than subordinated sentences. PMID:20229060

  12. Process data acquisition: real-time and historical interfaces

    NASA Astrophysics Data System (ADS)

    Rice, Gordon; Moreno, Richard; King, Michael S.

    1997-01-01

    With the advent of touch probe technology, it was discovered that current closed architecture controllers do not provide adequate resources to support the implementation of process data acquisition on the shop floor. At AlliedSignal, a process data acquisition systems has been developed for a flexible manufacturing system utilizing touch probe and customized software which allows fixture and cutting tool related information for an entire process to be captured and stored for off-line analysis. The implementation of this system, the difficulties and pitfalls, will be presented along with the functionality required for an open architecture controller to properly support process data acquisition.

  13. Process data acquisition: Real time and historical interfaces

    SciTech Connect

    Rice, G.; Moreno, R.; King, M.

    1996-11-01

    With the advent of touch probe technology, it was discovered that current closed architecture controllers do not provide adequate resources to support the implementation of process data acquisition on the shop floor. At AlliedSignal Federal Manufacturing & Technologies, a process data acquisition system has been developed for a flexible manufacturing system utilizing touch probes and customized software which allows fixture and cutting tool related information for an entire process to be captured and stored for off-line analysis. The implementation of this system, the difficulties and pitfalls, will be presented along with the functionality required for an open architecture controller to properly support process data acquisition.

  14. Intelligent real-time CCD data processing system based on variable frame rate

    NASA Astrophysics Data System (ADS)

    Chen, Su-ting

    2009-07-01

    In order to meet the need of image shooting with CCD in unmanned aerial vehicles, a real-time high resolution CCD data processing system based on variable frame rate is designed. The system is consisted of three modules: CCD control module, data processing module and data display module. In the CCD control module, real-time flight parameters (e.g. flight height, velocity and longitude) should be received from GPS through UART (Universal Asynchronous Receiver Transmitter) and according to the corresponding flight parameters, the variable frame rate is calculated. Based on the calculated variable frame rate, CCD external synchronization control impulse signal is generated in the control of FPGA and then CCD data is read out. In the data processing module, data segmentation is designed to extract ROI (region of interest), whose resolution is equal to valid data resolution of HDTV standard conforming to SMPTE (1080i). On one hand, Ping-pong SRAM storage controller is designed in FPGA to real-time store ROI data. On the other hand, according to the need of intelligent observing, changeable window position is designed, and a flexible area of interest is obtained. In the real-time display module, a special video encoder is used to accomplish data format conversion. Data after storage is packeted to HDTV format by creating corresponding format information in FPGA. Through inner register configuration, high definition video analog signal is implemented. The entire system has been implemented in FPGA and validated. It has been used in various real-time CCD data processing situations.

  15. A computational approach to real-time image processing for serial time-encoded amplified microscopy

    NASA Astrophysics Data System (ADS)

    Oikawa, Minoru; Hiyama, Daisuke; Hirayama, Ryuji; Hasegawa, Satoki; Endo, Yutaka; Sugie, Takahisa; Tsumura, Norimichi; Kuroshima, Mai; Maki, Masanori; Okada, Genki; Lei, Cheng; Ozeki, Yasuyuki; Goda, Keisuke; Shimobaba, Tomoyoshi

    2016-03-01

    High-speed imaging is an indispensable technique, particularly for identifying or analyzing fast-moving objects. The serial time-encoded amplified microscopy (STEAM) technique was proposed to enable us to capture images with a frame rate 1,000 times faster than using conventional methods such as CCD (charge-coupled device) cameras. The application of this high-speed STEAM imaging technique to a real-time system, such as flow cytometry for a cell-sorting system, requires successively processing a large number of captured images with high throughput in real time. We are now developing a high-speed flow cytometer system including a STEAM camera. In this paper, we describe our approach to processing these large amounts of image data in real time. We use an analog-to-digital converter that has up to 7.0G samples/s and 8-bit resolution for capturing the output voltage signal that involves grayscale images from the STEAM camera. Therefore the direct data output from the STEAM camera generates 7.0G byte/s continuously. We provided a field-programmable gate array (FPGA) device as a digital signal pre-processor for image reconstruction and finding objects in a microfluidic channel with high data rates in real time. We also utilized graphics processing unit (GPU) devices for accelerating the calculation speed of identification of the reconstructed images. We built our prototype system, which including a STEAM camera, a FPGA device and a GPU device, and evaluated its performance in real-time identification of small particles (beads), as virtual biological cells, owing through a microfluidic channel.

  16. Wavelet Transform for Real-Time Detection of Action Potentials in Neural Signals

    PubMed Central

    Quotb, Adam; Bornat, Yannick; Renaud, Sylvie

    2011-01-01

    We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold. PMID:21811455

  17. Wavelet transform for real-time detection of action potentials in neural signals.

    PubMed

    Quotb, Adam; Bornat, Yannick; Renaud, Sylvie

    2011-01-01

    We present a study on wavelet detection methods of neuronal action potentials (APs). Our final goal is to implement the selected algorithms on custom integrated electronics for on-line processing of neural signals; therefore we take real-time computing as a hard specification and silicon area as a price to pay. Using simulated neural signals including APs, we characterize an efficient wavelet method for AP extraction by evaluating its detection rate and its implementation cost. We compare software implementation for three methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet transform (SWT). We evaluate detection rate and implementation cost for detection functions dynamically comparing a signal with an adaptive threshold proportional to its SD, where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different data formats to set an optimal compromise between accuracy and silicon cost. Detection accuracy is evaluated together with false negative and false positive detections. Simulation results show that for on-line AP detection implemented on a configurable digital integrated circuit, APs underneath the noise level can be detected using SWT with a well-selected mother wavelet, combined to an adaptive threshold.

  18. Real-time processing of radar return on a parallel computer

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1992-01-01

    NASA is working with the FAA to demonstrate the feasibility of pulse Doppler radar as a candidate airborne sensor to detect low altitude windshears. The need to provide the pilot with timely information about possible hazards has motivated a demand for real-time processing of a radar return. Investigated here is parallel processing as a means of accommodating the high data rates required. A PC based parallel computer, called the transputer, is used to investigate issues in real time concurrent processing of radar signals. A transputer network is made up of an array of single instruction stream processors that can be networked in a variety of ways. They are easily reconfigured and software development is largely independent of the particular network topology. The performance of the transputer is evaluated in light of the computational requirements. A number of algorithms have been implemented on the transputers in OCCAM, a language specially designed for parallel processing. These include signal processing algorithms such as the Fast Fourier Transform (FFT), pulse-pair, and autoregressive modelling, as well as routing software to support concurrency. The most computationally intensive task is estimating the spectrum. Two approaches have been taken on this problem, the first and most conventional of which is to use the FFT. By using table look-ups for the basis function and other optimizing techniques, an algorithm has been developed that is sufficient for real time. The other approach is to model the signal as an autoregressive process and estimate the spectrum based on the model coefficients. This technique is attractive because it does not suffer from the spectral leakage problem inherent in the FFT. Benchmark tests indicate that autoregressive modeling is feasible in real time.

  19. Real-time synchronization of wireless sensor network by 1-PPS signal

    NASA Astrophysics Data System (ADS)

    Giammarini, Marco; Pieralisi, Marco; Isidori, Daniela; Concettoni, Enrico; Cristalli, Cristina; Fioravanti, Matteo

    2015-05-01

    The use of wireless sensor networks with different nodes is desirable in a smart environment, because the network setting up and installation on preexisting structures can be done without a fixed cabled infrastructure. The flexibility of the monitoring system is fundamental where the use of a considerable quantity of cables could compromise the normal exercise, could affect the quality of acquired signal and finally increase the cost of the materials and installation. The network is composed of several intelligent "nodes", which acquires data from different kind of sensors, and then store or transmit them to a central elaboration unit. The synchronization of data acquisition is the core of the real-time wireless sensor network (WSN). In this paper, we present a comparison between different methods proposed by literature for the real-time acquisition in a WSN and finally we present our solution based on 1-Pulse-Per-Second (1-PPS) signal generated by GPS systems. The sensor node developed is a small-embedded system based on ARM microcontroller that manages the acquisition, the timing and the post-processing of the data. The communications between the sensors and the master based on IEEE 802.15.4 protocol and managed by dedicated software. Finally, we present the preliminary results obtained on a 3 floor building simulator with the wireless sensors system developed.

  20. Ultra-high throughput real-time instruments for capturing fast signals and rare events

    NASA Astrophysics Data System (ADS)

    Buckley, Brandon Walter

    Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and

  1. Real-time observation of signal recognition particle binding to actively translating ribosomes.

    PubMed

    Noriega, Thomas R; Chen, Jin; Walter, Peter; Puglisi, Joseph D

    2014-01-01

    The signal recognition particle (SRP) directs translating ribosome-nascent chain complexes (RNCs) that display a signal sequence to protein translocation channels in target membranes. All previous work on the initial step of the targeting reaction, when SRP binds to RNCs, used stalled and non-translating RNCs. This meant that an important dimension of the co-translational process remained unstudied. We apply single-molecule fluorescence measurements to observe directly and in real-time E. coli SRP binding to actively translating RNCs. We show at physiologically relevant SRP concentrations that SRP-RNC association and dissociation rates depend on nascent chain length and the exposure of a functional signal sequence outside the ribosome. Our results resolve a long-standing question: how can a limited, sub-stoichiometric pool of cellular SRP effectively distinguish RNCs displaying a signal sequence from those that are not? The answer is strikingly simple: as originally proposed, SRP only stably engages translating RNCs exposing a functional signal sequence.

  2. SIMD massively parallel processing system for real-time image processing

    NASA Astrophysics Data System (ADS)

    Chen, Xiaochu; Zhang, Ming; Yao, Qingdong; Liu, Jilin; Ye, Hong; Wu, Song; Li, Dongxiao; Zhang, Yong; Ding, Lei; Yao, Zhongyang; Yang, Weijian; Pan, Qiaohai

    1998-09-01

    This paper will describe the embedded SIMD massively parallel processor that we have developed for real-time image processing applications, such as real-time small target detection and tracking and video processing. The processor array is based on SIMD chip BAP-128 designed by our own, and uses high performance DSP TMS320C31, which can effectively perform serial and floating point calculations, as the host of the SIMD processor array. As a result, the system is able to perform a variety of image processing tasks in real-time. Furthermore, the processor will be connected with a MIMD parallel processor to construct a heterogeneously parallel processor for more complex real- time ATR (Automatic Target Recognition) and computer vision applications.

  3. Pseudo-Real-Time Signal Visualization during Pulsar Observations on the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kelly, C. J.; O'Neil, K.

    2004-12-01

    Pseudo-Real-Time Signal Visualization during Pulsar Observations on the Green Bank Telescope J. Kelly (Rockbridge County Public Schools & NRAO), K. O'Neil (NRAO) When using the Robert C. Byrd Green Bank Telescope (GBT) for pulsar observations, observers need to be able to insure the data reaching the observer is of the highest quality possible. To do this, telescope users need to be able to monitor, in real time, the raw signal intensity of data as it flows in from the GBT. In the summer of 2004 at NRAO-Greenbank, my Research Experience For Teachers project was spent developing this utility. For portability and compatibility, the computer language python was used to build the visualization utility. The major hurdle in developing the python modules was in reading and manipulating the tremendous quantity of unprocessed data acquired during an observation. (The spigot data rate is set to be 25 Mb/s.) The data stream is intercepted by a "spigot" card, buffered and then stored on a hard drive as a series of binary files. The python modules attempt to read, parse and organize these binary files to ultimately produce a simple intensity versus time plot of the data stream. The modules developed run as a loop to update the plot several times per minute. Integrating the knowledge and experience of this research in the classroom involves an introductory unit on radio astronomy and astrophysics. Additionally, students will have the opportunity to analyze data collected from the Crab Nebula Pulsar and experience backend processes such as data folding. These activities will be described. This work was funded by the National Science Foundation RET program.

  4. Real-time bicycle detection at signalized intersections using thermal imaging technology

    NASA Astrophysics Data System (ADS)

    Collaert, Robin

    2013-02-01

    More and more governments and authorities around the world are promoting the use of bicycles in cities, as this is healthy for the bicyclist and improves the quality of life in general. Safety and efficiency of bicyclists has become a major focus. To achieve this, there is a need for a smarter approach towards the control of signalized intersections. Various traditional detection technologies, such as video, microwave radar and electromagnetic loops, can be used to detect vehicles at signalized intersections, but none of these can consistently separate bikes from other traffic, day and night and in various weather conditions. As bikes should get a higher priority and also require longer green time to safely cross the signalized intersection, traffic managers are looking for alternative detection systems that can make the distinction between bicycles and other vehicles near the stop bar. In this paper, the drawbacks of a video-based approach are presented, next to the benefits of a thermal-video-based approach for vehicle presence detection with separation of bicycles. Also, the specific technical challenges are highlighted in developing a system that combines thermal image capturing, image processing and output triggering to the traffic light controller in near real-time and in a single housing.

  5. Three-dimensional fuzzy-directional processing to impulse video color denoising in real time environment

    NASA Astrophysics Data System (ADS)

    Rosales-Silva, Alberto J.; Ponomaryov, Volodymyr; Gallegos-Funes, Francisco

    2009-05-01

    It is presented a robust three dimensional scheme using fuzzy and directional techniques in denoising video color images contaminated by impulsive random noise. This scheme estimates a noise and movement level in local area, detecting edges and fine details in an image video sequence. The proposed approach cares the chromaticity properties in multidimensional and multichannel images. The algorithm was specially designed to reduce computational charge, and its performance is quantified using objective criteria, such as Pick Signal Noise Relation, Mean Absolute Error and Normalized Color Difference, as well visual subjective views. Novel filter shows superiority rendering against other well known algorithms found in the literature. Real-time analysis is realized on Digital Signal Processor to outperform processing capability. The DSP was designed by Texas Instruments for multichannel processing in the multitask process, and permits to improve the performance of several tasks, and at the same time enhancing processing time and reducing computational charge in such a dedicated hardware.

  6. Real-time combining of residual carrier array signals using ML weight estimates

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.; Rodemich, Eugene R.; Dolinar, Samuel J., Jr.

    1992-01-01

    A real-time digital signal combining system for use with array feeds is proposed. The combining system attempts to compensate for signal-to-noise ratio (SNR) loss resulting from antenna deformations induced by gravitational and atmospheric effects. The combining weights are obtained directly from the observed residual carrier samples in each channel using a 'sliding-window' implementation of a maximum-likelihood (ML) parameter estimator. It is shown that with averaging times of about 0.1 s, combining loss for a seven-element array can be limited to about 0.1 dB in a realistic operational environment. This result suggests that the real-time combining system proposed here is capable of recovering virtually all of the signal power captured by the array feed, even in the presence of severe wind gusts and similar disturbances.

  7. An architecture for heuristic control of real-time processes

    NASA Technical Reports Server (NTRS)

    Raulefs, P.; Thorndyke, P. W.

    1987-01-01

    Abstract Process management combines complementary approaches of heuristic reasoning and analytical process control. Management of a continuous process requires monitoring the environment and the controlled system, assessing the ongoing situation, developing and revising planned actions, and controlling the execution of the actions. For knowledge-intensive domains, process management entails the potentially time-stressed cooperation among a variety of expert systems. By redesigning a blackboard control architecture in an object-oriented framework, researchers obtain an approach to process management that considerably extends blackboard control mechanisms and overcomes limitations of blackboard systems.

  8. Algorithm for removing scalp signals from functional near-infrared spectroscopy signals in real time using multidistance optodes

    NASA Astrophysics Data System (ADS)

    Kiguchi, Masashi; Funane, Tsukasa

    2014-11-01

    A real-time algorithm for removing scalp-blood signals from functional near-infrared spectroscopy signals is proposed. Scalp and deep signals have different dependencies on the source-detector distance. These signals were separated using this characteristic. The algorithm was validated through an experiment using a dynamic phantom in which shallow and deep absorptions were independently changed. The algorithm for measurement of oxygenated and deoxygenated hemoglobins using two wavelengths was explicitly obtained. This algorithm is potentially useful for real-time systems, e.g., brain-computer interfaces and neuro-feedback systems.

  9. Real-time implementation of cochlear implant speech processing pipeline on smartphones.

    PubMed

    Parris, Shane; Torlak, Murat; Kehtarnavaz, Nasser

    2014-01-01

    This paper presents the real-time implementation of an adaptive speech processing pipeline for cochlear implants on the smartphone platform. The pipeline is capable of real-time classification of background noise environment and automated tuning of a noise suppression component based upon the detected background noise environment. This pipeline was previously implemented on the FDA-approved PDA platform for cochlear implant studies. The paper discusses the steps taken to achieve the real-time implementation of the pipeline on the smartphone platform. In addition, it includes the real-time timing as well as the noise suppression results when the entire pipeline was run on the smartphone platform.

  10. Derivation of sequential, real-time, process-control programs

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith; Schneider, Fred B.; Budhiraja, Navin

    1991-01-01

    The use of weakest-precondition predicate transformers in the derivation of sequential, process-control software is discussed. Only one extension to Dijkstra's calculus for deriving ordinary sequential programs was found to be necessary: function-valued auxiliary variables. These auxiliary variables are needed for reasoning about states of a physical process that exists during program transitions.

  11. Implementation of real-time digital endoscopic image processing system

    NASA Astrophysics Data System (ADS)

    Song, Chul Gyu; Lee, Young Mook; Lee, Sang Min; Kim, Won Ky; Lee, Jae Ho; Lee, Myoung Ho

    1997-10-01

    Endoscopy has become a crucial diagnostic and therapeutic procedure in clinical areas. Over the past four years, we have developed a computerized system to record and store clinical data pertaining to endoscopic surgery of laparascopic cholecystectomy, pelviscopic endometriosis, and surgical arthroscopy. In this study, we developed a computer system, which is composed of a frame grabber, a sound board, a VCR control board, a LAN card and EDMS. Also, computer system controls peripheral instruments such as a color video printer, a video cassette recorder, and endoscopic input/output signals. Digital endoscopic data management system is based on open architecture and a set of widely available industry standards; namely Microsoft Windows as an operating system, TCP/IP as a network protocol and a time sequential database that handles both images and speech. For the purpose of data storage, we used MOD and CD- R. Digital endoscopic system was designed to be able to store, recreate, change, and compress signals and medical images. Computerized endoscopy enables us to generate and manipulate the original visual document, making it accessible to a virtually unlimited number of physicians.

  12. Real-Time Reconfigurable Interconnections for Parallel Optical Processing

    NASA Astrophysics Data System (ADS)

    McArdle, Neil; Taghizadeh, Mohammad R.

    1995-06-01

    In this letter we describe the advantages of a dynamic optical interconnection system for parallel information processing applications. The system is based on a liquid crystal television which acts as a binary phase-only spatial light modulator. We describe example algorithms where reconfigurable interconnects would be useful and present results of several interconnection topologies which have been implemented.

  13. Method and system for enabling real-time speckle processing using hardware platforms

    NASA Technical Reports Server (NTRS)

    Ortiz, Fernando E. (Inventor); Kelmelis, Eric (Inventor); Durbano, James P. (Inventor); Curt, Peterson F. (Inventor)

    2012-01-01

    An accelerator for the speckle atmospheric compensation algorithm may enable real-time speckle processing of video feeds that may enable the speckle algorithm to be applied in numerous real-time applications. The accelerator may be implemented in various forms, including hardware, software, and/or machine-readable media.

  14. Real-Time On-Board Processing Validation of MSPI Ground Camera Images

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.

    2010-01-01

    The Earth Sciences Decadal Survey identifies a multiangle, multispectral, high-accuracy polarization imager as one requirement for the Aerosol-Cloud-Ecosystem (ACE) mission. JPL has been developing a Multiangle SpectroPolarimetric Imager (MSPI) as a candidate to fill this need. A key technology development needed for MSPI is on-board signal processing to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's Advanced Information Systems Technology (AIST) Program, JPL is solving the real-time data processing requirements to demonstrate, for the first time, how signal data at 95 Mbytes/sec over 16-channels for each of the 9 multiangle cameras in the spaceborne instrument can be reduced on-board to 0.45 Mbytes/sec. This will produce the intensity and polarization data needed to characterize aerosol and cloud microphysical properties. Using the Xilinx Virtex-5 FPGA including PowerPC440 processors we have implemented a least squares fitting algorithm that extracts intensity and polarimetric parameters in real-time, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information.

  15. Position information by signal analysis in real time from resistive anode microchannel plate detector

    NASA Astrophysics Data System (ADS)

    Saha, K.; Benmaimon, R.; Prabhakaran, A.; Rappaport, M. L.; Heber, O.; Schwalm, D.; Zajfman, D.

    2016-07-01

    Resistive anode multichannel plate detectors are extensively used for imaging photons, electrons and ions. We present a method to acquire position information from such detector systems by considering simple parameters of the signals produced from the resistive anode encoder. Our technique is easy to implement and computes position in real time during experiments. Position information can be obtained using our method without the need for dedicated position analyser units.

  16. Semi-real-time monitoring of cracking on couplings by neural network analysis of acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery F.; Shu, Fong; Finlayson, Richard D.; O'Donnell, Bruce W.

    2004-07-01

    This paper presents the results obtained during the development of a semi-real-time monitoring methodology based on Neural Network Pattern Recognition of Acoustic Emission (AE) signals for early detection of cracks in couplings used in aircraft and engine drive systems. AE signals were collected in order to establish a baseline of a gear-testing fixture background noise and its variations due to rotational speed and torque. Also, simulated cracking signals immersed in background noise were collected. EDM notches were machined in the driving gear and the load on the gearbox was increased until damaged was induced. Using these data, a Neural Network Signal Classifier (NNSC) was implemented and tested. The testing showed that the NNSC was capable of correctly identifying six different classes of AE signals corresponding to different gearbox operation conditions. Also, a semi-real-time classification software was implemented. This software includes functions that allow the user to view and classify AE data from a dynamic process as they are recorded at programmable time intervals. The software is capable of monitoring periodic statistics of AE data, which can be used as an indicator of damage presence and severity in a dynamic system. The semi-real-time classification software was successfully tested in situations where a delay of 10 seconds between data acquisition and classification was achieved with a hit rate of 50 hits/second per channel on eight active AE channels.

  17. Real-time garbage collection for list processing

    NASA Technical Reports Server (NTRS)

    Shuler, R. L., Jr. (Inventor)

    1986-01-01

    In a list processing system, small reference counters are maintained in conjunction with memory cells for the purpose of identifying memory cells that become available for re-use. The counters are updated as references to the cells are created and destroyed, and when a counter of a cell is decremented to logical zero the cell is immediately returned to a list of free cells. In those cases where a counter must be incremented beyond the maximum value that can be represented in a small counter, the cell is restructured so that the additional reference count can be represented. The restructuring involves allocating an additional cell, distributing counter, tag, and pointer information among the two cells, and linking both cells appropriately into the existing list structure.

  18. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit

    PubMed Central

    Lee, Kenneth K. C.; Mariampillai, Adrian; Yu, Joe X. Z.; Cadotte, David W.; Wilson, Brian C.; Standish, Beau A.; Yang, Victor X. D.

    2012-01-01

    Abstract: Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second. PMID:22808428

  19. A Real-Time Image Acquisition And Processing System For A RISC-Based Microcomputer

    NASA Astrophysics Data System (ADS)

    Luckman, Adrian J.; Allinson, Nigel M.

    1989-03-01

    A low cost image acquisition and processing system has been developed for the Acorn Archimedes microcomputer. Using a Reduced Instruction Set Computer (RISC) architecture, the ARM (Acorn Risc Machine) processor provides instruction speeds suitable for image processing applications. The associated improvement in data transfer rate has allowed real-time video image acquisition without the need for frame-store memory external to the microcomputer. The system is comprised of real-time video digitising hardware which interfaces directly to the Archimedes memory, and software to provide an integrated image acquisition and processing environment. The hardware can digitise a video signal at up to 640 samples per video line with programmable parameters such as sampling rate and gain. Software support includes a work environment for image capture and processing with pixel, neighbourhood and global operators. A friendly user interface is provided with the help of the Archimedes Operating System WIMP (Windows, Icons, Mouse and Pointer) Manager. Windows provide a convenient way of handling images on the screen and program control is directed mostly by pop-up menus.

  20. Human movement analysis with image processing in real time

    NASA Astrophysics Data System (ADS)

    Fauvet, Eric; Paindavoine, Michel; Cannard, F.

    1991-04-01

    In the field of the human sciences, a lot of applications needs to know the kinematic characteristics of the human movements Psycology is associating the characteristics with the control mechanism, sport and biomechariics are associating them with the performance of the sportman or of the patient. So the trainers or the doctors can correct the gesture of the subject to obtain a better performance if he knows the motion properties. Roherton's studies show the children motion evolution2 . Several investigations methods are able to measure the human movement But now most of the studies are based on image processing. Often the systems are working at the T.V. standard (50 frame per secund ). they permit only to study very slow gesture. A human operator analyses the digitizing sequence of the film manually giving a very expensive, especially long and unprecise operation. On these different grounds many human movement analysis systems were implemented. They consist of: - markers which are fixed to the anatomical interesting points on the subject in motion, - Image compression which is the art to coding picture data. Generally the compression Is limited to the centroid coordinates calculation tor each marker. These systems differ from one other in image acquisition and markers detection.

  1. FPGA based image processing for optical surface inspection with real time constraints

    NASA Astrophysics Data System (ADS)

    Hasani, Ylber; Bodenstorfer, Ernst; Brodersen, Jörg; Mayer, Konrad J.

    2015-02-01

    Today, high-quality printing products like banknotes, stamps, or vouchers, are automatically checked by optical surface inspection systems. In a typical optical surface inspection system, several digital cameras acquire the printing products with fine resolution from different viewing angles and at multiple wavelengths of the visible and also near infrared spectrum of light. The cameras deliver data streams with a huge amount of image data that have to be processed by an image processing system in real time. Due to the printing industry's demand for higher throughput together with the necessity to check finer details of the print and its security features, the data rates to be processed tend to explode. In this contribution, a solution is proposed, where the image processing load is distributed between FPGAs and digital signal processors (DSPs) in such a way that the strengths of both technologies can be exploited. The focus lies upon the implementation of image processing algorithms in an FPGA and its advantages. In the presented application, FPGAbased image-preprocessing enables real-time implementation of an optical color surface inspection system with a spatial resolution of 100 μm and for object speeds over 10 m/s. For the implementation of image processing algorithms in the FPGA, pipeline parallelism with clock frequencies up to 150 MHz together with spatial parallelism based on multiple instantiations of modules for parallel processing of multiple data streams are exploited for the processing of image data of two cameras and three color channels. Due to their flexibility and their fast response times, it is shown that FPGAs are ideally suited for realizing a configurable all-digital PLL for the processing of camera line-trigger signals with frequencies about 100 kHz, using pure synchronous digital circuit design.

  2. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  3. Real-time digital design for an optical coherence tomography acquisition and processing system

    NASA Astrophysics Data System (ADS)

    Ralston, Tyler S.; Mayen, Jose A.; Marks, Dan L.; Boppart, Stephen A.

    2004-07-01

    We present a real-time, multi-dimensional, digital, optical coherence tomography (OCT) acquisition and imaging system. The system consists of conventional OCT optics, a rapid scanning optical delay (RSOD) line to support fast data acquisition rates, and a high-speed A/D converter for sampling the interference waveforms. A 1M-gate Virtex-II field programmable gate array (FPGA) is designed to perform digital down conversion. This is analogous to demodulating and low-pass filtering the continuous time signal. The system creates in-phase and quadrature-phase components using a tunable quadrature mixer. Multistage polyphase finite impulse response (FIR) filtering and down sampling is used to remove unneeded high frequencies. A floating-point digital signal processor (DSP) computes the magnitude and phase shifts. The data is read by a host machine and displayed on screen at real-time rates commensurate with the data acquisition rate. This system offers flexible acquisition and processing parameters for a wide range of multi-dimensional optical microscopy techniques.

  4. In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Shao, Peng; Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger J.

    2013-02-01

    The authors demonstrate in vivo dynamic process imaging using a label-free real-time optical-resolution photoacoustic microscope (OR-PAM). This reflection-mode system takes advantage of a 532-nm fiber laser source with a high pulse repetition rate of up to 600 kHz combined with a fast-scanning mirror system. Microvasculature in SCID mouse ears is imaged at near real-time (0.5 fps) for a 1×1 mm2 field of view (FOV) with micron-scale lateral resolution. We also demonstrate imaging of cardiac-induced microhemodynamics in murine microvasculature at real-time frame-rates (30 fps) over a 250×250 μ FOV using real-time C-scan OR-PAM with ability to provide sustained imaging with near real-time feedback for focusing and positioning.

  5. Real-time dielectric-film thickness measurement system for plasma processing chamber wall monitoring.

    PubMed

    Kim, Jin-Yong; Chung, Chin-Wook

    2015-12-01

    An in-situ real-time processing chamber wall monitoring system was developed. In order to measure the thickness of the dielectric film, two frequencies of small sinusoidal voltage (∼1 V) signals were applied to an electrically floated planar type probe, which is positioned at chamber wall surface, and the amplitudes of the currents and the phase differences between the voltage and current were measured. By using an equivalent sheath circuit model including a sheath capacitance, the dielectric thickness can be obtained. Experiments were performed in various plasma condition, and reliable dielectric film thickness was obtained regardless of the plasma properties. In addition, availability in commercial chamber for plasma enhanced chemical vapor deposition was verified. This study is expected to contribute to the control of etching and deposition processes and optimization of periodic maintenance in semiconductor manufacturing process.

  6. Real-time intelligent pattern recognition algorithm for surface EMG signals

    PubMed Central

    Khezri, Mahdi; Jahed, Mehran

    2007-01-01

    Background Electromyography (EMG) is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG) can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS) integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP) and least mean square (LMS) is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD) and time-frequency representation (TFR). Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA) is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal are time and time

  7. Real-Time Monitoring of Scada Based Control System for Filling Process

    NASA Astrophysics Data System (ADS)

    Soe, Aung Kyaw; Myint, Aung Naing; Latt, Maung Maung; Theingi

    2008-10-01

    This paper is a design of real-time monitoring for filling system using Supervisory Control and Data Acquisition (SCADA). The monitoring of production process is described in real-time using Visual Basic.Net programming under Visual Studio 2005 software without SCADA software. The software integrators are programmed to get the required information for the configuration screens. Simulation of components is expressed on the computer screen using parallel port between computers and filling devices. The programs of real-time simulation for the filling process from the pure drinking water industry are provided.

  8. Real-time massively parallel processing of spectral optical coherence tomography data on graphics processing units

    NASA Astrophysics Data System (ADS)

    Sylwestrzak, Marcin; Szlag, Daniel; Szkulmowski, Maciej; Targowski, Piotr

    2011-06-01

    In this contribution we describe a specialised data processing system for Spectral Optical Coherence Tomography (SOCT) biomedical imaging which utilises massively parallel data processing on a low-cost, Graphics Processing Unit (GPU). One of the most significant limitations of SOCT is the data processing time on the main processor of the computer (CPU), which is generally longer than the data acquisition. Therefore, real-time imaging with acceptable quality is limited to a small number of tomogram lines (A-scans). Recent progress in graphics cards technology gives a promising solution of this problem. The newest graphics processing units allow not only for a very high speed three dimensional (3D) rendering, but also for a general purpose parallel numerical calculations with efficiency higher than provided by the CPU. The presented system utilizes CUDATM graphic card and allows for a very effective real time SOCT imaging. The total imaging speed for 2D data consisting of 1200 A-scans is higher than refresh rate of a 120 Hz monitor. 3D rendering of the volume data build of 10 000 A-scans is performed with frame rate of about 9 frames per second. These frame rates include data transfer from a frame grabber to GPU, data processing and 3D rendering to the screen. The software description includes data flow, parallel processing and organization of threads. For illustration we show real time high resolution SOCT imaging of human skin and eye.

  9. Real-Time Plasma Process Condition Sensing and Abnormal Process Detection

    PubMed Central

    Yang, Ryan; Chen, Rongshun

    2010-01-01

    The plasma process is often used in the fabrication of semiconductor wafers. However, due to the lack of real-time etching control, this may result in some unacceptable process performances and thus leads to significant waste and lower wafer yield. In order to maximize the product wafer yield, a timely and accurately process fault or abnormal detection in a plasma reactor is needed. Optical emission spectroscopy (OES) is one of the most frequently used metrologies in in-situ process monitoring. Even though OES has the advantage of non-invasiveness, it is required to provide a huge amount of information. As a result, the data analysis of OES becomes a big challenge. To accomplish real-time detection, this work employed the sigma matching method technique, which is the time series of OES full spectrum intensity. First, the response model of a healthy plasma spectrum was developed. Then, we defined a matching rate as an indictor for comparing the difference between the tested wafers response and the health sigma model. The experimental results showed that this proposal method can detect process faults in real-time, even in plasma etching tools. PMID:22219683

  10. Handheld 2-channel impedimetric cell counting system with embedded real-time processing

    NASA Astrophysics Data System (ADS)

    Rottigni, A.; Carminati, M.; Ferrari, G.; Vahey, M. D.; Voldman, J.; Sampietro, M.

    2011-05-01

    Lab-on-a-chip systems have been attracting a growing attention for the perspective of miniaturization and portability of bio-chemical assays. Here we present a the design and characterization of a miniaturized, USB-powered, self-contained, 2-channel instrument for impedance sensing, suitable for label-free tracking and real-time detection of cells flowing in microfluidic channels. This original circuit features a signal generator based on a direct digital synthesizer, a transimpedance amplifier, an integrated square-wave lock-in coupled to a Σ▵ ADC converter, and a digital processing platform. Real-time automatic peak detection on two channels is implemented in a FPGA. System functionality has been tested with an electronic resistance modulator to simulate 1% impedance variation produced by cells, reaching a time resolution of 50μs (enabling a count rate of 2000 events/s) with an applied voltage as low as 200mV. Biological experiments have been carried out counting yeast cells. Statistical analysis of events is in agreement with the expected amplitude and time distributions. 2-channel yeast counting has been performed with concomitant dielectrophoretic cell separation, showing that this novel and ultra compact sensing system, thanks to the selectivity of the lock-in detector, is compatible with other AC electrical fields applied to the device.

  11. Real-time image processing for passive mmW imagery

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron; Bonnett, James; Harrity, Charles; Mackrides, Daniel; Dillon, Thomas E.; Martin, Richard D.; Schuetz, Christopher A.; Kelmelis, Eric; Prather, Dennis W.

    2015-05-01

    The transmission characteristics of millimeter waves (mmWs) make them suitable for many applications in defense and security, from airport preflight scanning to penetrating degraded visual environments such as brownout or heavy fog. While the cold sky provides sufficient illumination for these images to be taken passively in outdoor scenarios, this utility comes at a cost; the diffraction limit of the longer wavelengths involved leads to lower resolution imagery compared to the visible or IR regimes, and the low power levels inherent to passive imagery allow the data to be more easily degraded by noise. Recent techniques leveraging optical upconversion have shown significant promise, but are still subject to fundamental limits in resolution and signal-to-noise ratio. To address these issues we have applied techniques developed for visible and IR imagery to decrease noise and increase resolution in mmW imagery. We have developed these techniques into fieldable software, making use of GPU platforms for real-time operation of computationally complex image processing algorithms. We present data from a passive, 77 GHz, distributed aperture, video-rate imaging platform captured during field tests at full video rate. These videos demonstrate the increase in situational awareness that can be gained through applying computational techniques in real-time without needing changes in detection hardware.

  12. A design of real time image capturing and processing system using Texas Instrument's processor

    NASA Astrophysics Data System (ADS)

    Wee, Toon-Joo; Chaisorn, Lekha; Rahardja, Susanto; Gan, Woon-Seng

    2007-09-01

    In this work, we developed and implemented an image capturing and processing system that equipped with capability of capturing images from an input video in real time. The input video can be a video from a PC, video camcorder or DVD player. We developed two modes of operation in the system. In the first mode, an input image from the PC is processed on the processing board (development platform with a digital signal processor) and is displayed on the PC. In the second mode, current captured image from the video camcorder (or from DVD player) is processed on the board but is displayed on the LCD monitor. The major difference between our system and other existing conventional systems is that image-processing functions are performed on the board instead of the PC (so that the functions can be used for further developments on the board). The user can control the operations of the board through the Graphic User Interface (GUI) provided on the PC. In order to have a smooth image data transfer between the PC and the board, we employed Real Time Data Transfer (RTDX TM) technology to create a link between them. For image processing functions, we developed three main groups of function: (1) Point Processing; (2) Filtering and; (3) 'Others'. Point Processing includes rotation, negation and mirroring. Filter category provides median, adaptive, smooth and sharpen filtering in the time domain. In 'Others' category, auto-contrast adjustment, edge detection, segmentation and sepia color are provided, these functions either add effect on the image or enhance the image. We have developed and implemented our system using C/C# programming language on TMS320DM642 (or DM642) board from Texas Instruments (TI). The system was showcased in College of Engineering (CoE) exhibition 2006 at Nanyang Technological University (NTU) and have more than 40 users tried our system. It is demonstrated that our system is adequate for real time image capturing. Our system can be used or applied for

  13. Model-based analysis on the relationship of signal quality to real-time extraction of information in bioprocesses.

    PubMed

    Wechselberger, Patrick; Herwig, Christoph

    2012-01-01

    Quality by design (QbD) is a current structured approach to design processes yielding a quality product. Knowledge and process understanding cannot be achieved without proper experimental data; hence requirements for measurement error and frequency of measurement of bioprocess variables have to be defined. In this contribution, a model-based approach is used to investigate impact factors on calculated rates to predict the obtainable information from real-time measurements (= signal quality). Measurement error, biological activity, and averaging window (= period of observation) were identified as biggest impact factors on signal quality. Moreover, signal quality has been set in context with a quantifiable measure using statistical error testing, which can be used as a benchmark for process analytics and exploitation of data. Results have been validated with data from an E. coli batch process. This approach is useful to get an idea which process dynamics can be observed with a given bioprocess setup and sampling strategy beforehand.

  14. Real-time forecast of aftershocks from a single seismic station signal

    NASA Astrophysics Data System (ADS)

    Lippiello, E.; Cirillo, A.; Godano, G.; Papadimitriou, E.; Karakostas, V.

    2016-06-01

    The evaluation of seismic hazard in the hours following large earthquakes is strongly affected by biases due to difficulties in determining earthquake location. This leads to the huge incompleteness of instrumental catalogs. Here we show that if, on the one hand, the overlap of aftershock coda waves hides many small events, on the other hand, it leads to a well-determined empirical law controlling the decay of the amplitude of the seismic signal at a given site. The fitting parameters of this law can be related to those controlling the temporal decay of the aftershock number, and it is then possible to obtain short-term postseismic occurrence probability from a single recorded seismic signal. We therefore present a novel procedure which, without requiring earthquake location, produces more accurate and almost real-time forecast, in a site of interest, directly from the signal of a seismic station installed at that site.

  15. AUTOMATED CONTROL AND REAL-TIME DATA PROCESSING OF WIRE SCANNER/HALO SCRAPER MEASUREMENTS

    SciTech Connect

    L.A. DAY; J.D. GILPATRICK; ET AL

    2001-06-01

    The Low-Energy Demonstration Accelerator (LEDA), assembled and operating at Los Alamos National Laboratory, provides the platform for obtaining measurements of high-power proton beam-halo formation. Control system software and hardware have been integrated and customized to enable the production of real-time beam-halo profiles. The Experimental Physics and Industrial Control System (EPICS) hosted on a VXI platform, Interactive Data Language (IDL) programs hosted on UNIX platforms, and LabVIEW (LV) Virtual Instruments hosted on a PC platform have been integrated and customized to provide real-time, synchronous motor control, data acquisition, and data analysis of data acquired through specialized DSP instrumentation. These modules communicate through EPICS Channel Access (CA) communication protocol extensions to control and manage execution flow ensuring synchronous data acquisition and real-time processing of measurement data. This paper describes the software integration and management scheme implemented to produce these real-time beam profiles.

  16. Resolving dynamics of cell signaling via real-time imaging of the immunological synapse.

    SciTech Connect

    Stevens, Mark A.; Pfeiffer, Janet R.; Wilson, Bridget S.; Timlin, Jerilyn Ann; Thomas, James L.; Lidke, Keith A.; Spendier, Kathrin; Oliver, Janet M.; Carroll-Portillo, Amanda; Aaron, Jesse S.; Mirijanian, Dina T.; Carson, Bryan D.; Burns, Alan Richard; Rebeil, Roberto

    2009-10-01

    This highly interdisciplinary team has developed dual-color, total internal reflection microscopy (TIRF-M) methods that enable us to optically detect and track in real time protein migration and clustering at membrane interfaces. By coupling TIRF-M with advanced analysis techniques (image correlation spectroscopy, single particle tracking) we have captured subtle changes in membrane organization that characterize immune responses. We have used this approach to elucidate the initial stages of cell activation in the IgE signaling network of mast cells and the Toll-like receptor (TLR-4) response in macrophages stimulated by bacteria. To help interpret these measurements, we have undertaken a computational modeling effort to connect the protein motion and lipid interactions. This work provides a deeper understanding of the initial stages of cellular response to external agents, including dynamics of interaction of key components in the signaling network at the 'immunological synapse,' the contact region of the cell and its adversary.

  17. MIMD (multiple instruction multiple data) multiprocessor system for real-time image processing

    NASA Astrophysics Data System (ADS)

    Pirsch, Peter; Jeschke, Hartwig

    1991-06-01

    Anovel MIMD (Multiple Instruction Multiple Data) based architecture consisting of multiple processing elements (PE) has been developed. This architecture is adapted to real-time processing of sequences of different tasks for local image segments. Each PE contains an arithmetic processing unit (APU), adapted to parallel processing of low level operations, and a high level and control processor (HLCP) for medium and high level operations and control of the PE. This HLCP can be a standard signal processor or a RISC processor. Because of the local control of each PE by the HLCP and a SIMD structure of the APU, the overall system architecture is characterized as MIMD based with a local SIMD structure for low level processing. Due to an overlapped computation and communication the multiprocessor system achieves a linear speedup compared to a single processing element. Main parts of the PE have been realized as two ASICs in a 1.5 jim CMOS-Process. With a system clock rate of 25MHz, each PE provides a peak performance of 400 Mega operations per second (MOPS).

  18. Cytotoxicity and mitogenicity assays with real-time and label-free monitoring of human granulosa cells with an impedance-based signal processing technology intergrating micro-electronics and cell biology.

    PubMed

    Oktem, Ozgur; Bildik, Gamze; Senbabaoglu, Filiz; Lack, Nathan A; Akin, Nazli; Yakar, Feridun; Urman, Defne; Guzel, Yilmaz; Balaban, Basak; Iwase, Akira; Urman, Bulent

    2016-04-01

    A recently developed technology (xCelligence) integrating micro-electronics and cell biology allows real-time, uninterrupted and quantitative analysis of cell proliferation, viability and cytotoxicity by measuring the electrical impedance of the cell population in the wells without using any labeling agent. In this study we investigated if this system is a suitable model to analyze the effects of mitogenic (FSH) and cytotoxic (chemotherapy) agents with different toxicity profiles on human granulosa cells in comparison to conventional methods of assessing cell viability, DNA damage, apoptosis and steroidogenesis. The system generated the real-time growth curves of the cells, and determined their doubling times, mean cell indices and generated dose-response curves after exposure to cytotoxic and mitogenic stimuli. It accurately predicted the gonadotoxicity of the drugs and distinguished less toxic agents (5-FU and paclitaxel) from more toxic ones (cisplatin and cyclophosphamide). This platform can be a useful tool for specific end-point assays in reproductive toxicology.

  19. Real-time GMAW quality classification using an artificial neural network with airborne acoustic signals as inputs

    SciTech Connect

    Matteson, A.; Morris, R.; Tate, R.

    1993-12-31

    The acoustic signal produced by the gas metal arc welding (GMAW) arc contains information about the behavior of the arc column, the molten pool and droplet transfer. It is possible to detect some defect producing conditions from the acoustic signal from the GMAW arc. An intelligent sensor, called the Weld Acoustic Monitor (WAM) has been developed to take advantage of this acoustic information in order to provide real-time quality assessment information for process control. The WAM makes use of an Artificial Neural Network (ANN) to classify the characteristic arc acoustic signals of acceptable and unacceptable welds. The ANN used in the Weld Acoustic Monitor developed its own set of rules for this classification problem by learning a data base of known GMAW acoustic signals.

  20. Novel real-time diagnosis of the freezing process using an ultrasonic transducer.

    PubMed

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-05-04

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from -100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy.

  1. Novel Real-Time Diagnosis of the Freezing Process Using an Ultrasonic Transducer

    PubMed Central

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-01-01

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from −100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629

  2. Novel real-time diagnosis of the freezing process using an ultrasonic transducer.

    PubMed

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-01-01

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from -100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629

  3. Real-Time Sensor Validation, Signal Reconstruction, and Feature Detection for an RLV Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Jankovsky, Amy L.; Fulton, Christopher E.; Binder, Michael P.; Maul, William A., III; Meyer, Claudia M.

    1998-01-01

    A real-time system for validating sensor health has been developed in support of the reusable launch vehicle program. This system was designed for use in a propulsion testbed as part of an overall effort to improve the safety, diagnostic capability, and cost of operation of the testbed. The sensor validation system was designed and developed at the NASA Lewis Research Center and integrated into a propulsion checkout and control system as part of an industry-NASA partnership, led by Rockwell International for the Marshall Space Flight Center. The system includes modules for sensor validation, signal reconstruction, and feature detection and was designed to maximize portability to other applications. Review of test data from initial integration testing verified real-time operation and showed the system to perform correctly on both hard and soft sensor failure test cases. This paper discusses the design of the sensor validation and supporting modules developed at LeRC and reviews results obtained from initial test cases.

  4. Real-time stream processing for active fire monitoring on Landsat 8 direct reception data

    NASA Astrophysics Data System (ADS)

    Bohme, C.; Bouwer, P.; Prinsloo, M. J.

    2015-04-01

    Some remote sensing applications are relatively time insensitive, for others, near-real-time processing (results 30-180 minutes after data reception) offer a viable solution. There are, however, a few applications, such as active wildfire monitoring or ship and airplane detection, where real-time processing and image interpretation offers a distinct advantage. The objective of real-time processing is to provide notifications before the complete satellite pass has been received. This paper presents an automated system for real-time, stream-based processing of data acquired from direct broadcast push-broom sensors for applications that require a high degree of timeliness. Based on this system, a processing chain for active fire monitoring using Landsat 8 live data streams was implemented and evaluated. The real-time processing system, called the FarEarth Observer, is connected to a ground station's demodulator and uses its live data stream as input. Processing is done on variable size image segments assembled from detector lines of the push broom sensor as they are streamed from the satellite, enabling detection of active fires and sending of notifications within seconds of the satellite passing over the affected area, long before the actual acquisition completes. This approach requires performance optimized techniques for radiometric and geometric correction of the sensor data. Throughput of the processing system is kept well above the 400Mbit/s downlink speed of Landsat 8. A latency of below 10 seconds from sensor line acquisition to anomaly detection and notification is achieved. Analyses of geometric and radiometric accuracy and comparisons in latency to traditional near-real-time systems are also presented.

  5. Real-time image processing for non-contact monitoring of dynamic displacements using smartphone technologies

    NASA Astrophysics Data System (ADS)

    Min, Jae-Hong; Gelo, Nikolas J.; Jo, Hongki

    2016-04-01

    The newly developed smartphone application, named RINO, in this study allows measuring absolute dynamic displacements and processing them in real time using state-of-the-art smartphone technologies, such as high-performance graphics processing unit (GPU), in addition to already powerful CPU and memories, embedded high-speed/ resolution camera, and open-source computer vision libraries. A carefully designed color-patterned target and user-adjustable crop filter enable accurate and fast image processing, allowing up to 240fps for complete displacement calculation and real-time display. The performances of the developed smartphone application are experimentally validated, showing comparable accuracy with those of conventional laser displacement sensor.

  6. Investigation of a Real-time Processing System for the NASA Multifrequency Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A study was conducted to investigate the data reduction and processing requirements for the multifrequency microwave radiometer system (MFMR). The objectives were to develop and evaluate algorithms and processing techniques which might provide for dedicated real time or near real time data processing and to develop a configuration design and processor recommendation to accomplish the data reduction. An analysis of the required data reduction and calibration equations was included along with the identification of sources of error which may be present in the (MFMR) data. The definition and evaluation of the significance of effects introduced by aircraft perturbation was given.

  7. Off-axis quantitative phase imaging processing using CUDA: toward real-time applications

    PubMed Central

    Pham, Hoa; Ding, Huafeng; Sobh, Nahil; Do, Minh; Patel, Sanjay; Popescu, Gabriel

    2011-01-01

    We demonstrate real time off-axis Quantitative Phase Imaging (QPI) using a phase reconstruction algorithm based on NVIDIA’s CUDA programming model. The phase unwrapping component is based on Goldstein’s algorithm. By mapping the process of extracting phase information and unwrapping to GPU, we are able to speed up the whole procedure by more than 18.8× with respect to CPU processing and ultimately achieve video rate for mega-pixel images. Our CUDA implementation also supports processing of multiple images simultaneously. This enables our imaging system to support high speed, high throughput, and real-time image acquisition and visualization. PMID:21750757

  8. The real-time realization of detecting weak multi-pulse laser echo signal

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghua; Fan, Guihua; Sun, Huayan

    2014-12-01

    The multi-pulsed laser ranging technology is prominent on improving the maximum measuring range of laser active detection,laser range finder and other long-distance measurement. For all laser echo detection techniques, the weak signal detection is an important step, which aims to increase the detection range. Most algorithms are based on the priori knowledge of laser echo or the improvement of laser power. However, we cannot know or estimate the waveform accurately in many applications. Moreover, these means are difficult to satisfy the real-time needs. The present paper proposes an improved algorithm which extended the signal accumulation algorithm for the high power burst laser. This method is mainly based on signal accumulation and tri-cumulant algorithm which can improve the signal to noise SNR of the weak laser echo; moreover it does not need more prior knowledge of echo. In order to reduce the detection time, the algorithm is realized based on FPGA using signal retiming and parallel pipeline structure. The simulations and experiments results demonstrate that the minimum detecting SNR is -5dB and the maximum detecting time is only less than 1us.

  9. APNEA list mode data acquisition and real-time event processing

    SciTech Connect

    Hogle, R.A.; Miller, P.; Bramblett, R.L.

    1997-11-01

    The LMSC Active Passive Neutron Examinations and Assay (APNEA) Data Logger is a VME-based data acquisition system using commercial-off-the-shelf hardware with the application-specific software. It receives TTL inputs from eighty-eight {sup 3}He detector tubes and eight timing signals. Two data sets are generated concurrently for each acquisition session: (1) List Mode recording of all detector and timing signals, timestamped to 3 microsecond resolution; (2) Event Accumulations generated in real-time by counting events into short (tens of microseconds) and long (seconds) time bins following repetitive triggers. List Mode data sets can be post-processed to: (1) determine the optimum time bins for TRU assay of waste drums, (2) analyze a given data set in several ways to match different assay requirements and conditions and (3) confirm assay results by examining details of the raw data. Data Logger events are processed and timestamped by an array of 15 TMS320C40 DSPs and delivered to an embedded controller (PowerPC604) for interim disk storage. Three acquisition modes, corresponding to different trigger sources are provided. A standard network interface to a remote host system (Windows NT or SunOS) provides for system control, status, and transfer of previously acquired data. 6 figs.

  10. Real-time hybrid joint transform correlator with parallel processing architecture

    NASA Astrophysics Data System (ADS)

    Qin, Yuwen; Ge, Bao-Zhen; Zhang, Yimo; Zhao, Xiao-Dong; Huang, Zhanhua

    1996-12-01

    A real-time hybrid joint transform correlator (JTC) with parallel processing architecture that use two liquid crystal light valves spatial light modulators, two VP32 image boards and two optical wavefront-division multiplexers as the key parts was presented. Using this hybrid JTC< real-time high- efficiency joint transform correlation, high-speed joint transform correlation and four-channel joint transform correlation were realized. The hybrid JTC system has also been used in the domain of morphological complex-valued kernel scale-space image processing. In this paper, the principles of the above experiments are described, experimental results are also given and analyzed.

  11. Real-time Periodic Processing of RT-middleware Utilizing Linux Standard Functionalities

    NASA Astrophysics Data System (ADS)

    Shimizu, Masaharu; Toda, Kengo; Hayashibara, Yasuo; Yamato, Hideaki; Furuta, Takayuki

    A new methodology of real-time periodic processing on RT-middleware based on the Linux standard functionalities is presented in this paper. The central of discussion is on the realization of real-time processing while keeping the reusability of software modules ensured by the RT-middleware framework as well as the portability provided by the Linux development mainstream. In order to show the validity of the proposed approach, two robot systems, including an omnidirectional electric wheelchair steered by haptic joystick, are presented and the discussion about the evaluation result follows from the view point of practicality.

  12. Low-cost real-time infrared scene generation for image projection and signal injection

    NASA Astrophysics Data System (ADS)

    Buford, James A., Jr.; King, David E.; Bowden, Mark H.

    1998-07-01

    As cost becomes an increasingly important factor in the development and testing of Infrared sensors and flight computer/processors, the need for accurate hardware-in-the- loop (HWIL) simulations is critical. In the past, expensive and complex dedicated scene generation hardware was needed to attain the fidelity necessary for accurate testing. Recent technological advances and innovative applications of established technologies are beginning to allow development of cost-effective replacements for dedicated scene generators. These new scene generators are mainly constructed from commercial-off-the-shelf (COTS) hardware and software components. At the U.S. Army Aviation and Missile Command (AMCOM) Missile Research, Development, and Engineering Center (MRDEC), researchers have developed such a dynamic IR scene generator (IRSG) built around COTS hardware and software. The IRSG is used to provide dynamic inputs to an IR scene projector for in-band seeker testing and for direct signal injection into the seeker or processor electronics. AMCOM MRDEC has developed a second generation IRSG, namely IRSG2, using the latest Silicon Graphics Incorporated (SGI) Onyx2 with Infinite Reality graphics. As reported in previous papers, the SGI Onyx Reality Engine 2 is the platform of the original IRSG that is now referred to as IRSG1. IRSG1 has been in operation and used daily for the past three years on several IR projection and signal injection HWIL programs. Using this second generation IRSG, frame rates have increased from 120 Hz to 400 Hz and intensity resolution from 12 bits to 16 bits. The key features of the IRSGs are real time missile frame rates and frame sizes, dynamic missile-to-target(s) viewpoint updated each frame in real-time by a six-degree-of- freedom (6DOF) system under test (SUT) simulation, multiple dynamic objects (e.g. targets, terrain/background, countermeasures, and atmospheric effects), latency compensation, point-to-extended source anti-aliased targets, and

  13. Real-Time Language Processing in School-Age Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Montgomery, James W.

    2006-01-01

    Background:School-age children with specific language impairment (SLI) exhibit slower real-time (i.e. immediate) language processing relative to same-age peers and younger, language-matched peers. Results of the few studies that have been done seem to indicate that the slower language processing of children with SLI is due to inefficient…

  14. Low-cost real-time infrared scene generation for image projection and signal injection

    NASA Astrophysics Data System (ADS)

    Buford, James A., Jr.; King, David E.; Bowden, Mark H.

    1997-07-01

    As cost becomes an increasingly important factor in the development and testing of infrared (IR) sensors and flight computer/processors, the need for accurate hardware-in-the- loop simulations is critical. In the past, expensive and complex dedicated scene generation hardware was needed to attain the fidelity necessary for accurately testing systems under test (SUT). Recent technological advances and innovative applications of established technologies are beginning to allow development of cost effective replacements for dedicated scene generators. These new scene generators are mainly constructed from commercial off-the- shelf (COTS) hardware and software components. At the U.S. Army Missile Command (MICOM) researchers have developed such a dynamic IR scene generator (IRSG) built around COTS hardware and software. The IRSG is being used to provide inputs to an IR scene projector for in-band sensor testing and for direct signal injection into the sensor or processor electronics. Using this `baseline' IRSG, up to 120 frames per second (Hz) of 12-bit intensity images are being generated at 640 by 640 pixel resolution. The IRSG SUT-to- target viewpoint is dynamically updated in real time by a six-degree-of-freedom SUT simulation executing on a facility simulation computer, synchronized with an external signal from the SUT hardware, and compensates for system latency using a special purpose hardware component implemented on a single VME card. Multiple dynamic targets, terrain/backgrounds, countermeasures, and atmospheric effects in real time by the facility simulation computer via a shared memory interface to the IRSG. The `next generation' IRSG is currently under development at MICOM using `next generation' COTS hardware and software. `Next generation' performance specifications are estimated to yield 16-bit intensity, 250 - 300 Hz frame rate, at 1024 X 1024 pixel resolution.

  15. Real-time digital holographic microscopy using the graphic processing unit.

    PubMed

    Shimobaba, Tomoyoshi; Sato, Yoshikuni; Miura, Junya; Takenouchi, Mai; Ito, Tomoyoshi

    2008-08-01

    Digital holographic microscopy (DHM) is a well-known powerful method allowing both the amplitude and phase of a specimen to be simultaneously observed. In order to obtain a reconstructed image from a hologram, numerous calculations for the Fresnel diffraction are required. The Fresnel diffraction can be accelerated by the FFT (Fast Fourier Transform) algorithm. However, real-time reconstruction from a hologram is difficult even if we use a recent central processing unit (CPU) to calculate the Fresnel diffraction by the FFT algorithm. In this paper, we describe a real-time DHM system using a graphic processing unit (GPU) with many stream processors, which allows use as a highly parallel processor. The computational speed of the Fresnel diffraction using the GPU is faster than that of recent CPUs. The real-time DHM system can obtain reconstructed images from holograms whose size is 512 x 512 grids in 24 frames per second.

  16. Improved process control through real-time measurement of mineral content

    SciTech Connect

    Turler, Daniel; Karaca, Murat; Davis, William B.; Giauque, Robert D.; Hopkins, Deborah

    2001-11-02

    In a highly collaborative research and development project with mining and university partners, sensors and data-analysis tools are being developed for rock-mass characterization and real-time measurement of mineral content. Determining mineralogy prior to mucking in an open-pit mine is important for routing the material to the appropriate processing stream. A possible alternative to lab assay of dust and cuttings obtained from drill holes is continuous on-line sampling and real-time x-ray fluorescence (XRF) spectroscopy. Results presented demonstrate that statistical analyses combined with XRF data can be employed to identify minerals and, possibly, different rock types. The objective is to create a detailed three-dimensional mineralogical map in real time that would improve downstream process efficiency.

  17. Real-time multi-camera video acquisition and processing platform for ADAS

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio

    2016-04-01

    The paper presents the design of a real-time and low-cost embedded system for image acquisition and processing in Advanced Driver Assisted Systems (ADAS). The system adopts a multi-camera architecture to provide a panoramic view of the objects surrounding the vehicle. Fish-eye lenses are used to achieve a large Field of View (FOV). Since they introduce radial distortion of the images projected on the sensors, a real-time algorithm for their correction is also implemented in a pre-processor. An FPGA-based hardware implementation, re-using IP macrocells for several ADAS algorithms, allows for real-time processing of input streams from VGA automotive CMOS cameras.

  18. Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing

    SciTech Connect

    Becla, Jacek; Lim, Kian-Tat; Monkewitz, Serge; Nieto-Santisteban, Maria; Thakar, Ani; /Johns Hopkins U.

    2007-11-07

    The Large Synoptic Survey Telescope (LSST) will catalog billions of astronomical objects and trillions of sources, all of which will be stored and managed by a database management system. One of the main challenges is real-time alert generation. To generate alerts, up to 100K new difference detections have to be cross-correlated with the huge historical catalogs, and then further processed to prune false alerts. This paper explains the challenges, the implementation of the LSST Association Pipeline and the database organization strategies we are planning to use to meet the real-time requirements, including data partitioning, parallelization, and pre-loading.

  19. Process for fabricating device structures for real-time process control of silicon doping

    DOEpatents

    Weiner, Kurt H.

    2001-01-01

    Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

  20. Real-time processing of fast-scan cyclic voltammetry (FSCV) data using a field-programmable gate array (FPGA).

    PubMed

    Bozorgzadeh, Bardia; Covey, Daniel P; Heidenreich, Byron A; Garris, Paul A; Mohseni, Pedram

    2014-01-01

    This paper reports the hardware implementation of a digital signal processing (DSP) unit for real-time processing of data obtained by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM), an electrochemical transduction technique for high-resolution monitoring of brain neurochemistry. Implemented on a field-programmable gate array (FPGA), the DSP unit comprises a decimation filter and an embedded processor to process the oversampled FSCV data and obtain in real time a temporal profile of concentration variation along with a chemical signature to identify the target neurotransmitter. Interfaced with an integrated, FSCV-sensing front-end, the DSP unit can successfully process FSCV data obtained by bolus injection of dopamine in a flow cell as well as electrically evoked, transient dopamine release in the dorsal striatum of an anesthetized rat. PMID:25570384

  1. Real-time processing of fast-scan cyclic voltammetry (FSCV) data using a field-programmable gate array (FPGA).

    PubMed

    Bozorgzadeh, Bardia; Covey, Daniel P; Heidenreich, Byron A; Garris, Paul A; Mohseni, Pedram

    2014-01-01

    This paper reports the hardware implementation of a digital signal processing (DSP) unit for real-time processing of data obtained by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM), an electrochemical transduction technique for high-resolution monitoring of brain neurochemistry. Implemented on a field-programmable gate array (FPGA), the DSP unit comprises a decimation filter and an embedded processor to process the oversampled FSCV data and obtain in real time a temporal profile of concentration variation along with a chemical signature to identify the target neurotransmitter. Interfaced with an integrated, FSCV-sensing front-end, the DSP unit can successfully process FSCV data obtained by bolus injection of dopamine in a flow cell as well as electrically evoked, transient dopamine release in the dorsal striatum of an anesthetized rat.

  2. Real-time microstructural and functional imaging and image processing in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Westphal, Volker

    Optical Coherence Tomography (OCT) is a noninvasive optical imaging technique that allows high-resolution cross-sectional imaging of tissue microstructure, achieving a spatial resolution of about 10 mum. OCT is similar to B-mode ultrasound (US) except that it uses infrared light instead of ultrasound. In contrast to US, no coupling gel is needed, simplifying the image acquisition. Furthermore, the fiber optic implementation of OCT is compatible with endoscopes. In recent years, the transition from slow imaging, bench-top systems to real-time clinical systems has been under way. This has lead to a variety of applications, namely in ophthalmology, gastroenterology, dermatology and cardiology. First, this dissertation will demonstrate that OCT is capable of imaging and differentiating clinically relevant tissue structures in the gastrointestinal tract. A careful in vitro correlation study between endoscopic OCT images and corresponding histological slides was performed. Besides structural imaging, OCT systems were further developed for functional imaging, as for example to visualize blood flow. Previously, imaging flow in small vessels in real-time was not possible. For this research, a new processing scheme similar to real-time Doppler in US was introduced. It was implemented in dedicated hardware to allow real-time acquisition and overlayed display of blood flow in vivo. A sensitivity of 0.5mm/s was achieved. Optical coherence microscopy (OCM) is a variation of OCT, improving the resolution even further to a few micrometers. Advances made in the OCT scan engine for the Doppler setup enabled real-time imaging in vivo with OCM. In order to generate geometrical correct images for all the previous applications in real-time, extensive image processing algorithms were developed. Algorithms for correction of distortions due to non-telecentric scanning, nonlinear scan mirror movements, and refraction were developed and demonstrated. This has led to interesting new

  3. Respiratory-Induced Prostate Motion Using Wavelet Decomposition of the Real-Time Electromagnetic Tracking Signal

    SciTech Connect

    Lin, Yuting; Liu, Tian; Yang, Xiaofeng; Wang, Yuenan; Khan, Mohammad K.

    2013-10-01

    Purpose: The objective of this work is to characterize and quantify the impact of respiratory-induced prostate motion. Methods and Materials: Real-time intrafraction motion is observed with the Calypso 4-dimensional nonradioactive electromagnetic tracking system (Calypso Medical Technologies, Inc. Seattle, Washington). We report the results from a total of 1024 fractions from 31 prostate cancer patients. Wavelet transform was used to decompose the signal to extract and isolate the respiratory-induced prostate motion from the total prostate displacement. Results: Our results show that the average respiratory motion larger than 0.5 mm can be observed in 68% of the fractions. Fewer than 1% of the patients showed average respiratory motion of less than 0.2 mm, whereas 99% of the patients showed average respiratory-induced motion ranging between 0.2 and 2 mm. The maximum respiratory range of motion of 3 mm or greater was seen in only 25% of the fractions. In addition, about 2% patients showed anxiety, indicated by a breathing frequency above 24 times per minute. Conclusions: Prostate motion is influenced by respiration in most fractions. Real-time intrafraction data are sensitive enough to measure the impact of respiration by use of wavelet decomposition methods. Although the average respiratory amplitude observed in this study is small, this technique provides a tool that can be useful if one moves to smaller treatment margins (≤5 mm). This also opens ups the possibility of being able to develop patient specific margins, knowing that prostate motion is not unpredictable.

  4. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes

    SciTech Connect

    2004-11-01

    This factsheet describes a research effort to develop an innovative approach to introduce technologies for real-time characterization of sand molds, lost foam patterns, and monitoring of the mold filling process. This will reduce scrap, improve product quality, and save energy.

  5. Real-Time and Post-Processed Orbit Determination and Positioning

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz E. (Inventor); Bertiger, William I. (Inventor); Dorsey, Angela R. (Inventor); Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Miller, Kevin J. (Inventor); Miller, Mark A. (Inventor); Romans, Larry J. (Inventor); Sibthorpe, Anthony J. (Inventor); Weiss, Jan P. (Inventor); Garcia Fernandez, Miquel (Inventor); Gross, Jason (Inventor)

    2015-01-01

    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.

  6. Real-Time and Post-Processed Orbit Determination and Positioning

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz E. (Inventor); Bertiger, William I. (Inventor); Dorsey, Angela R. (Inventor); Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Miller, Kevin J. (Inventor); Miller, Mark A. (Inventor); Romans, Larry J. (Inventor); Sibthorpe, Anthony J. (Inventor); Weiss, Jan P. (Inventor); Garcia Fernandez, Miquel (Inventor); Gross, Jason (Inventor)

    2016-01-01

    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.

  7. Real-time image processing for rapid contaminant detection on broiler carcasses

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Snead, M. Preston

    2004-11-01

    Recently, the imaging research group at Russell Research Center, ARS in Athens, Georgia has developed a real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses. The prototype system includes a common aperture camera with three optical trim filters (515.4, 566.4 and 631-nm wavelength), which were selected by visible/NIR spectroscopy and validated by a hyperspectral imaging system. The preliminary results showed that the multispectral imaging technique can be used effectively for detecting feces (from duodenum, ceca, and colon) and ingesta on the surface of poultry carcasses with a processing speed of 140 birds per minute. The accuracy for the detection of fecal and ingesta contaminates was 96%. However, the system contains many false positives including scabs, feathers, and boundaries. This paper demonstrates calibration of common aperture multispectral imaging hardware and real-time multispectral image processing software. The software design, especially the Unified Modeling Language (UML) design approach was used to develop real-time image processing software for on-line application. The UML models including class, object, activity, sequence, and collaboration diagram were discussed. Both hardware and software for a real-time fecal and ingesta contaminant detection were tested at the pilot-scale poultry processing line.

  8. Role of Text and Student Characteristics in Real-Time Reading Processes across the Primary Grades

    ERIC Educational Resources Information Center

    de Leeuw, Linda; Segers, Eliane; Verhoeven, Ludo

    2016-01-01

    Although much is known about beginning readers using behavioural measures, real-time processes are still less clear. The present study examined eye movements (skipping rate, gaze, look back and second-pass duration) as a function of text-related (difficulty and word class) and student-related characteristics (word decoding, reading comprehension,…

  9. Real time moving object detection using motor signal and depth map for robot car

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Siu, Wan-Chi

    2013-12-01

    Moving object detection from a moving camera is a fundamental task in many applications. For the moving robot car vision, the background movement is 3D motion structure in nature. In this situation, the conventional moving object detection algorithm cannot be use to handle the 3D background modeling effectively and efficiently. In this paper, a novel scheme is proposed by utilizing the motor control signal and depth map obtained from a stereo camera to model the perspective transform matrix between different frames under a moving camera. In our approach, the coordinate relationship between frames during camera moving is modeled by a perspective transform matrix which is obtained by using current motor control signals and the pixel depth value. Hence, the relationship between a static background pixel and the moving foreground corresponding to the camera motion can be related by a perspective matrix. To enhance the robustness of classification, we allowed a tolerance range during the perspective transform matrix prediction and used multi-reference frames to classify the pixel on current frame. The proposed scheme has been found to be able to detect moving objects for our moving robot car efficiently. Different from conventional approaches, our method can model the moving background in 3D structure, without online model training. More importantly, the computational complexity and memory requirement are low making it possible to implement this scheme in real-time, which is even valuable for a robot vision system.

  10. Real-time classification of signals from three-component seismic sensors using neural nets

    SciTech Connect

    Bowman, B.C.; Dowla, F.

    1992-05-05

    Adaptive seismic data acquisition systems with capabilities of signal discrimination and event classification are important in treaty monitoring, proliferation, and earthquake early detection systems. Potential applications include monitoring underground chemical explosions, as well as other military, cultural, and natural activities where characteristics of signals change rapidly and without warning. In these applications, the ability to detect and interpret events rapidly without falling behind the influx of the data is critical. We developed a system for real-time data acquisition, analysis, learning, and classification of recorded events employing some of the latest technology in computer hardware, software, and artificial neural networks methods. The system is able to train dynamically, and updates its knowledge based on new data. The software is modular and hardware-independent; i.e., the front-end instrumentation is transparent to the analysis system. The software is designed to take advantage of the multiprocessing environment of the Unix operating system. The Unix System V shared memory and static RAM protocols for data access and the semaphore mechanism for interprocess communications were used. As the three-component sensor detects a seismic signal, it is displayed graphically on a color monitor using X11/Xlib graphics with interactive screening capabilities. For interesting events, the triaxial signal polarization is computed, a fast Fourier Transform (FFT) algorithm is applied, and the normalized power spectrum is transmitted to a backpropagation neural network for event classification. The system is currently capable of handling three data channels with a sampling rate of 500 Hz, which covers the bandwidth of most seismic events. The system has been tested in laboratory setting with artificial events generated in the vicinity of a three-component sensor.

  11. Real-time classification of signals from three-component seismic sensors using neural nets

    NASA Astrophysics Data System (ADS)

    Bowman, B. C.; Dowla, F.

    1992-05-01

    Adaptive seismic data acquisition systems with capabilities of signal discrimination and event classification are important in treaty monitoring, proliferation, and earthquake early detection systems. Potential applications include monitoring underground chemical explosions, as well as other military, cultural, and natural activities where characteristics of signals change rapidly and without warning. In these applications, the ability to detect and interpret events rapidly without falling behind the influx of the data is critical. We developed a system for real-time data acquisition, analysis, learning, and classification of recorded events employing some of the latest technology in computer hardware, software, and artificial neural networks methods. The system is able to train dynamically, and updates its knowledge based on new data. The software is modular and hardware-independent; i.e., the front-end instrumentation is transparent to the analysis system. The software is designed to take advantage of the multiprocessing environment of the Unix operating system. The Unix System V shared memory and static RAM protocols for data access and the semaphore mechanism for interprocess communications were used. As the three-component sensor detects a seismic signal, it is displayed graphically on a color monitor using X11/Xlib graphics with interactive screening capabilities. For interesting events, the triaxial signal polarization is computed, a fast Fourier Transform (FFT) algorithm is applied, and the normalized power spectrum is transmitted to a backpropagation neural network for event classification. The system is currently capable of handling three data channels with a sampling rate of 500 Hz, which covers the bandwidth of most seismic events. The system has been tested in laboratory setting with artificial events generated in the vicinity of a three-component sensor.

  12. Real-Time Data Processing Systems and Products at the Alaska Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Hansen, R. A.

    2007-05-01

    The Alaska Earthquake Information Center (AEIC) receives data from over 400 seismic sites located within the state boundaries and the surrounding regions and serves as a regional data center. In 2007, the AEIC reported ~20,000 seismic events, with the largest event of M6.6 in Andreanof Islands. The real-time earthquake detection and data processing systems at AEIC are based on the Antelope system from BRTT, Inc. This modular and extensible processing platform allows an integrated system complete from data acquisition to catalog production. Multiple additional modules constructed with the Antelope toolbox have been developed to fit particular needs of the AEIC. The real-time earthquake locations and magnitudes are determined within 2-5 minutes of the event occurrence. AEIC maintains a 24/7 seismologist-on-duty schedule. Earthquake alarms are based on the real- time earthquake detections. Significant events are reviewed by the seismologist on duty within 30 minutes of the occurrence with information releases issued for significant events. This information is disseminated immediately via the AEIC website, ANSS website via QDDS submissions, through e-mail, cell phone and pager notifications, via fax broadcasts and recorded voice-mail messages. In addition, automatic regional moment tensors are determined for events with M>=4.0. This information is posted on the public website. ShakeMaps are being calculated in real-time with the information currently accessible via a password-protected website. AEIC is designing an alarm system targeted for the critical lifeline operations in Alaska. AEIC maintains an extensive computer network to provide adequate support for data processing and archival. For real-time processing, AEIC operates two identical, interoperable computer systems in parallel.

  13. Real-time processing of ASL signs: Delayed first language acquisition affects organization of the mental lexicon.

    PubMed

    Lieberman, Amy M; Borovsky, Arielle; Hatrak, Marla; Mayberry, Rachel I

    2015-07-01

    Sign language comprehension requires visual attention to the linguistic signal and visual attention to referents in the surrounding world, whereas these processes are divided between the auditory and visual modalities for spoken language comprehension. Additionally, the age-onset of first language acquisition and the quality and quantity of linguistic input for deaf individuals is highly heterogeneous, which is rarely the case for hearing learners of spoken languages. Little is known about how these modality and developmental factors affect real-time lexical processing. In this study, we ask how these factors impact real-time recognition of American Sign Language (ASL) signs using a novel adaptation of the visual world paradigm in deaf adults who learned sign from birth (Experiment 1), and in deaf adults who were late-learners of ASL (Experiment 2). Results revealed that although both groups of signers demonstrated rapid, incremental processing of ASL signs, only native signers demonstrated early and robust activation of sublexical features of signs during real-time recognition. Our findings suggest that the organization of the mental lexicon into units of both form and meaning is a product of infant language learning and not the sensory and motor modality through which the linguistic signal is sent and received. PMID:25528091

  14. Real-time processing of ASL signs: Delayed first language acquisition affects organization of the mental lexicon.

    PubMed

    Lieberman, Amy M; Borovsky, Arielle; Hatrak, Marla; Mayberry, Rachel I

    2015-07-01

    Sign language comprehension requires visual attention to the linguistic signal and visual attention to referents in the surrounding world, whereas these processes are divided between the auditory and visual modalities for spoken language comprehension. Additionally, the age-onset of first language acquisition and the quality and quantity of linguistic input for deaf individuals is highly heterogeneous, which is rarely the case for hearing learners of spoken languages. Little is known about how these modality and developmental factors affect real-time lexical processing. In this study, we ask how these factors impact real-time recognition of American Sign Language (ASL) signs using a novel adaptation of the visual world paradigm in deaf adults who learned sign from birth (Experiment 1), and in deaf adults who were late-learners of ASL (Experiment 2). Results revealed that although both groups of signers demonstrated rapid, incremental processing of ASL signs, only native signers demonstrated early and robust activation of sublexical features of signs during real-time recognition. Our findings suggest that the organization of the mental lexicon into units of both form and meaning is a product of infant language learning and not the sensory and motor modality through which the linguistic signal is sent and received.

  15. Acoustic sensor for real-time control for the inductive heating process

    DOEpatents

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  16. Real-time CHF detection from ECG signals using a novel discretization method.

    PubMed

    Orhan, Umut

    2013-10-01

    This study proposes a new method, equal frequency in amplitude and equal width in time (EFiA-EWiT) discretization, to discriminate between congestive heart failure (CHF) and normal sinus rhythm (NSR) patterns in ECG signals. The ECG unit pattern concept was introduced to represent the standard RR interval, and our method extracted certain features from the unit patterns to classify by a primitive classifier. The proposed method was tested on two classification experiments by using ECG records in Physiobank databases and the results were compared to those from several previous studies. In the first experiment, an off-line classification was performed with unit patterns selected from long ECG segments. The method was also used to detect CHF by real-time ECG waveform analysis. In addition to demonstrating the success of the proposed method, the results showed that some unit patterns in a long ECG segment from a heart patient were more suggestive of disease than the others. These results indicate that the proposed approach merits additional research.

  17. Signal-amplification and real-time fluorescence anisotropy detection of apyrase by carbon nanoparticle.

    PubMed

    Liu, Jinhua; Yu, Jing; Chen, Jianrong; Yang, Ronghua; Shih, Kaimin

    2014-05-01

    Carbon nanomaterial combined with aptamer has been developed as an efficient bioanalytical method in sensor design. Herein, depending on carbon nanoparticle (cCNP)-enhanced fluorescence anisotropy (FA), a novel aptamer-based sensor (aptasensor) enabling signal-amplification and real-time detection of apyrase is reported. The foundation of our sensor design based on ATP-aptamer(P) can be adsorbed on the surface of cCNPs, resulting in the increase of FA due to the mass of cCNPs, and P-ATP complex has weak binding ability to cCNPs with minimal change of FA. Apyrase, being an integral membrane protein, can hydrolyze ATP and make P-ATP complex disassemble, and thus lead to the increasing of FA. Therefore, this approach is demonstrated to be a novel candidate for the detection of apyrase, with high sensitivity and selectivity. The linear dynamic range for the concentrations of apyrase is between 0.1 and 0.5 U/μL along with a detection limit of 0.05 U/μL. Furthermore, these results indicated that our design is a flexible and sensitive method for biomolecule analysis, which makes it promising for practical biomolecule analyses.

  18. Massively parallel per-pixel-based zerotree processing architecture for real-time video compression

    NASA Astrophysics Data System (ADS)

    Alagoda, Geoffrey; Rassau, Alexander M.; Eshraghian, Kamran

    2001-11-01

    In the span of a few years, mobile multimedia communication has rapidly become a significant area of research and development constantly challenging boundaries on a variety of technological fronts. Video compression, a fundamental component for most mobile multimedia applications, generally places heavy demands in terms of the required processing capacity. Hardware implementations of typical modern hybrid codecs require realisation of components such as motion compensation, wavelet transform, quantisation, zerotree coding and arithmetic coding in real-time. While the implementation of such codecs using a fast generic processor is possible, undesirable trade-offs in terms of power consumption and speed must generally be made. The improvement in power consumption that is achievable through the use of a slow-clocked massively parallel processing environment, while maintaining real-time processing speeds, should thus not be overlooked. An architecture to realise such a massively parallel solution for a zerotree entropy coder is, therefore, presented in this paper.

  19. A flexible software architecture for scalable real-time image and video processing applications

    NASA Astrophysics Data System (ADS)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2012-06-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility because they are normally oriented towards particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse and inefficient execution on multicore processors. This paper presents a novel software architecture for real-time image and video processing applications which addresses these issues. The architecture is divided into three layers: the platform abstraction layer, the messaging layer, and the application layer. The platform abstraction layer provides a high level application programming interface for the rest of the architecture. The messaging layer provides a message passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of messages. The application layer provides a repository for reusable application modules designed for real-time image and video processing applications. These modules, which include acquisition, visualization, communication, user interface and data processing modules, take advantage of the power of other well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, we present different prototypes and applications to show the possibilities of the proposed architecture.

  20. Near Real Time Review of Instrument Performance using the Airborne Data Processing and Analysis Software Package

    NASA Astrophysics Data System (ADS)

    Delene, D. J.

    2014-12-01

    Research aircraft that conduct atmospheric measurements carry an increasing array of instrumentation. While on-board personnel constantly review instrument parameters and time series plots, there are an overwhelming number of items. Furthermore, directing the aircraft flight takes up much of the flight scientist time. Typically, a flight engineer is given the responsibility of reviewing the status of on-board instruments. While major issues like not receiving data are quickly identified during a flight, subtle issues like low but believable concentration measurements may go unnoticed. Therefore, it is critical to review data after a flight in near real time. The Airborne Data Processing and Analysis (ADPAA) software package used by the University of North Dakota automates the post-processing of aircraft flight data. Utilizing scripts to process the measurements recorded by data acquisition systems enables the generation of data files within an hour of flight completion. The ADPAA Cplot visualization program enables plots to be quickly generated that enable timely review of all recorded and processed parameters. Near real time review of aircraft flight data enables instrument problems to be identified, investigated and fixed before conducting another flight. On one flight, near real time data review resulted in the identification of unusually low measurements of cloud condensation nuclei, and rapid data visualization enabled the timely investigation of the cause. As a result, a leak was found and fixed before the next flight. Hence, with the high cost of aircraft flights, it is critical to find and fix instrument problems in a timely matter. The use of a automated processing scripts and quick visualization software enables scientists to review aircraft flight data in near real time to identify potential problems.

  1. A flexible real-time pulsar processing system for the VLA

    NASA Astrophysics Data System (ADS)

    Demorest, Paul; Butler, Bryan J.; Cordes, James M.; Chatterjee, Shami; Deller, Adam; Dhawan, Vivek; Lazio, Joseph; Majid, Walid A.; Ransom, Scott M.; Wharton, Robert

    2015-01-01

    With its large collecting area, sensitive octave-bandwidth receivers and wide-band digital correlator, the Karl G. Jansky Very Large Array (VLA) has potential to become a useful instrument for radio pulsar science. Most observations of this type are currently performed by large single-dish telescopes (e.g., GBT, Arecibo). In certain cases, an array instrument like the VLA can provide a unique complement to "traditional" single-dish pulsar data. It is also an excellent development platform for planned future large-area, array-based pulsar telescopes.We have developed a new flexible real-time software signal processing system for "phased array" pulsar observing. In this mode, signals from each antenna in the array are coherently summed to form a sensitive single beam on the sky. This is ideal for timing observations in which pulsars with accurately known positions are monitored for years or decades in order to study their binary properties, explore the nature of dense neutron star matter, test general relativity, and possibly directly detect gravitational radiation. Phased array observing can also be used for pulsar searches; the small field-of-view makes it primarily suited for targeted observations of specific areas of interest. Here we describe the system design and current technical capabilities of this system. Phased, summed data from the correlator are sent over ethernet to a computer cluster that performs filterbank, coherent dedispersion, and/or pulse period folding in software. The system utilizes existing VLA computing resources, and no additional hardware costs were required to enable the new capabilites. The software architecture uses code developed for the GUPPI pulsar instrument together with the community-developed DSPSR pulsar signal processing library, both publicly-available open-source software packages. To date, we have demonstrated processing of up to 4 GHz total bandwidth.We also summarize initial observations and results obtained using this

  2. Real-time target detection technology of large view-field infrared image based on multicore DSP parallel processing

    NASA Astrophysics Data System (ADS)

    Sun, Gang; Liu, Songlin; Wang, Weihua; Chen, Zengping

    2013-10-01

    In order to implement real-time detection of hedgehopping target in large view-field infrared (LVIR) image, the paper proposes a fast algorithm flow to extract the target region of interest (ROI). The ground building region was rejected quickly and target ROI was segmented roughly through the background classification. Then the background image containing target ROI was matched with previous frame based on a mean removal normalized product correlation (MRNPC) similarity measure function. Finally, the target motion area was extracted by inter-frame difference in time domain. According to the proposed algorithm flow, this paper designs the high-speed real-time signal processing hardware platform based on FPGA + DSP, and also presents a new parallel processing strategy that called function-level and task-level, which could parallel process LVIR image by multi-core and multi-task. Experimental results show that the algorithm can extract low altitude aero target with complex background in large view effectively, and the new design hardware platform could implement real time processing of the IR image with 50000x288 pixels per second in large view-field infrared search system (LVIRSS).

  3. US GEOLOGICAL SURVEY'S NATIONAL SYSTEM FOR PROCESSING AND DISTRIBUTION OF NEAR REAL-TIME HYDROLOGICAL DATA.

    USGS Publications Warehouse

    Shope, William G.; ,

    1987-01-01

    The US Geological Survey is utilizing a national network of more than 1000 satellite data-collection stations, four satellite-relay direct-readout ground stations, and more than 50 computers linked together in a private telecommunications network to acquire, process, and distribute hydrological data in near real-time. The four Survey offices operating a satellite direct-readout ground station provide near real-time hydrological data to computers located in other Survey offices through the Survey's Distributed Information System. The computerized distribution system permits automated data processing and distribution to be carried out in a timely manner under the control and operation of the Survey office responsible for the data-collection stations and for the dissemination of hydrological information to the water-data users.

  4. Real time polarization sensor image processing on an embedded FPGA/multi-core DSP system

    NASA Astrophysics Data System (ADS)

    Bednara, Marcus; Chuchacz-Kowalczyk, Katarzyna

    2015-05-01

    Most embedded image processing SoCs available on the market are highly optimized for typical consumer applications like video encoding/decoding, motion estimation or several image enhancement processes as used in DSLR or digital video cameras. For non-consumer applications, on the other hand, optimized embedded hardware is rarely available, so often PC based image processing systems are used. We show how a real time capable image processing system for a non-consumer application - namely polarization image data processing - can be efficiently implemented on an FPGA and multi-core DSP based embedded hardware platform.

  5. A portable real-time data processing system for standard meteorological radiosondes

    NASA Technical Reports Server (NTRS)

    Staffanson, F. L.

    1983-01-01

    The UMET-1 is a microprocessor-based portable system for automatic real-time processing of flight data transmitted from the standard RAWINSONDE upper atmosphere meteorological balloonsonde. The first 'target system' is described which was designed to receive data from a mobile tracking and telemetry receiving station (TRADAT), as the balloonsonde ascends to apogee. After balloon-burst, the UMET-1 produces user-ready hardcopy.

  6. A High Speed Mobile Courier Data Access System That Processes Database Queries in Real-Time

    NASA Astrophysics Data System (ADS)

    Gatsheni, Barnabas Ndlovu; Mabizela, Zwelakhe

    A secure high-speed query processing mobile courier data access (MCDA) system for a Courier Company has been developed. This system uses the wireless networks in combination with wired networks for updating a live database at the courier centre in real-time by an offsite worker (the Courier). The system is protected by VPN based on IPsec. There is no system that we know of to date that performs the task for the courier as proposed in this paper.

  7. A Cloud-Based Infrastructure for Near-Real-Time Processing and Dissemination of NPP Data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Valente, E. G.; Chettri, S. S.

    2011-12-01

    We are building a scalable cloud-based infrastructure for generating and disseminating near-real-time data products from a variety of geospatial and meteorological data sources, including the new National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP). Our approach relies on linking Direct Broadcast and other data streams to a suite of scientific algorithms coordinated by NASA's International Polar-Orbiter Processing Package (IPOPP). The resulting data products are directly accessible to a wide variety of end-user applications, via industry-standard protocols such as OGC Web Services, Unidata Local Data Manager, or OPeNDAP, using open source software components. The processing chain employs on-demand computing resources from Amazon.com's Elastic Compute Cloud and NASA's Nebula cloud services. Our current prototype targets short-term weather forecasting, in collaboration with NASA's Short-term Prediction Research and Transition (SPoRT) program and the National Weather Service. Direct Broadcast is especially crucial for NPP, whose current ground segment is unlikely to deliver data quickly enough for short-term weather forecasters and other near-real-time users. Direct Broadcast also allows full local control over data handling, from the receiving antenna to end-user applications: this provides opportunities to streamline processes for data ingest, processing, and dissemination, and thus to make interpreted data products (Environmental Data Records) available to practitioners within minutes of data capture at the sensor. Cloud computing lets us grow and shrink computing resources to meet large and rapid fluctuations in data availability (twice daily for polar orbiters) - and similarly large fluctuations in demand from our target (near-real-time) users. This offers a compelling business case for cloud computing: the processing or dissemination systems can grow arbitrarily large to sustain near-real time data access despite surges in

  8. Comparison of Different Techniques for Processing GNSS Data in Real Time for Tsunami Warning

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Dragert, H.; Lu, Y.; Henton, J.; MacLeod, K.

    2012-12-01

    Real-time processing and dissemination of GNSS derived co-seismic position offsets for tsunami early warning has been under development at the Geological Survey of Canada (NRCan) for the past six years. Using streamed data from the Western Canada Deformation Array (WCDA), results from two variations of Precise Point Positioning (PPP) and two variations of network-based solutions are evaluated: NRCan's real-time PPP software, and two commercial software packages RTD and RTNET, licensed from Geodetics Inc. and GPS Solutions Inc. respectively. Of the two commercial packages, the former provides independent, epoch-by-epoch network solutions, while the latter has the capability to process data using both PPP and Network approaches. There are clear advantages and disadvantages to the independent PPP solutions vs. the network based solutions. PPP solutions (smoothed and un-smoothed) provide position estimates for single stations in a global framework. They are not reliant on 'fixed' reference stations that, if located within the seismogenic zone, will clearly experience co-seismic displacements. Under best-case scenarios, error levels of 1-2 cm horizontal and 3-6cm vertical are achievable for network based solutions whereas PPP solutions with ambiguity resolution are currently somewhat noisier. Both analysis methodologies are critically dependent on data continuity and robust tracking of all available satellites at each site. A clear case is made for the requirement for network based processing capacity for baselines of greater than 150km in order to ensure robust co-seismic displacement estimates during large earthquakes. Results from tests within the WCDA network using the different techniques are presented as well as recommendations for computational and operational improvements. NRCan's real-time web based interface offers the user community with a real-time display of position offset estimates for sites in southwestern coastal British Columbia.

  9. Demonstration plan for real time receiving and processing of flight data from the space transportation system

    NASA Technical Reports Server (NTRS)

    Russell, James W.; Avery, Don E.

    1993-01-01

    This report presents a detailed demonstration test plan for receiving and processing data from experiments being conducted on the Space Transportation System near real time at the NASA Langley Research Center (LaRC). This task can readily be achieved using the Orbital Acceleration Research Experiment (OARE). The Space Shuttle data flow is described including both the payload and the mission data. A description is presented of the OARE instrument which is used to measure low frequency Space Shuttle accelerations in nano-gs. Procedures are shown for obtaining the required mission data and OARE payload data at LaRC. The demonstration test plan schedule and costs are presented. It is recommended that both the OARE data and the pertinent Space Shuttle mission data be received at LaRC over the NASA Communication System (NASCOM) on a near real time basis.

  10. Industrial use of the real time monitor for quality assurance in electron processing

    NASA Astrophysics Data System (ADS)

    Kneeland, D. R.; Nablo, S. V.; Weiss, D. E.; Sinz, T. E.

    1999-07-01

    The performance of a three channel real time radiation monitor, installed on a 250 kV×0.3 m electron sterilizer used for controlled depth of sterilization of medical devices, is reported. The bremsstrahlung generated at the window plane is monitored with good spatial resolution at three locations across the beam, and provides information on the electron current density (dose rate) and the electron energy. Software has been developed for analysis and display of these data in real time so that the dose received by the product, and the energy at which it was treated can be displayed and recorded. The several geometries used for bremsstrahlung detection are discussed, and some calculated low energy distributions are shown. Typical data are presented from an eleven channel unit mounted on a 250 kV×1.6 m processor illustrating its use for process quality assurance. The use of Monitorad® for overall closed-loop processor control is reviewed.

  11. Real time intelligent process control system for thin film solar cell manufacturing

    SciTech Connect

    George Atanasoff

    2010-10-29

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require

  12. Language at Three Timescales: The Role of Real-Time Processes in Language Development and Evolution.

    PubMed

    McMurray, Bob

    2016-04-01

    Evolutionary developmental systems (evo-devo) theory stresses that selection pressures operate on entire developmental systems rather than just genes. This study extends this approach to language evolution, arguing that selection pressure may operate on two quasi-independent timescales. First, children clearly must acquire language successfully (as acknowledged in traditional evo-devo accounts) and evolution must equip them with the tools to do so. Second, while this is developing, they must also communicate with others in the moment using partially developed knowledge. These pressures may require different solutions, and their combination may underlie the evolution of complex mechanisms for language development and processing. I present two case studies to illustrate how the demands of both real-time communication and language acquisition may be subtly different (and interact). The first case study examines infant-directed speech (IDS). A recent view is that IDS underwent cultural to statistical learning mechanisms that infants use to acquire the speech categories of their language. However, recent data suggest is it may not have evolved to enhance development, but rather to serve a more real-time communicative function. The second case study examines the argument for seemingly specialized mechanisms for learning word meanings (e.g., fast-mapping). Both behavioral and computational work suggest that learning may be much slower and served by general-purpose mechanisms like associative learning. Fast-mapping, then, may be a real-time process meant to serve immediate communication, not learning, by augmenting incomplete vocabulary knowledge with constraints from the current context. Together, these studies suggest that evolutionary accounts consider selection pressure arising from both real-time communicative demands and from the need for accurate language development.

  13. Language at Three Timescales: The Role of Real-Time Processes in Language Development and Evolution.

    PubMed

    McMurray, Bob

    2016-04-01

    Evolutionary developmental systems (evo-devo) theory stresses that selection pressures operate on entire developmental systems rather than just genes. This study extends this approach to language evolution, arguing that selection pressure may operate on two quasi-independent timescales. First, children clearly must acquire language successfully (as acknowledged in traditional evo-devo accounts) and evolution must equip them with the tools to do so. Second, while this is developing, they must also communicate with others in the moment using partially developed knowledge. These pressures may require different solutions, and their combination may underlie the evolution of complex mechanisms for language development and processing. I present two case studies to illustrate how the demands of both real-time communication and language acquisition may be subtly different (and interact). The first case study examines infant-directed speech (IDS). A recent view is that IDS underwent cultural to statistical learning mechanisms that infants use to acquire the speech categories of their language. However, recent data suggest is it may not have evolved to enhance development, but rather to serve a more real-time communicative function. The second case study examines the argument for seemingly specialized mechanisms for learning word meanings (e.g., fast-mapping). Both behavioral and computational work suggest that learning may be much slower and served by general-purpose mechanisms like associative learning. Fast-mapping, then, may be a real-time process meant to serve immediate communication, not learning, by augmenting incomplete vocabulary knowledge with constraints from the current context. Together, these studies suggest that evolutionary accounts consider selection pressure arising from both real-time communicative demands and from the need for accurate language development. PMID:26991438

  14. Implementation of a data processing platform for real-time distance measurement with dual-comb lasers

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Xu, Mingfei; Zhou, Qian; Dong, Hao; Li, Xinghui; Wu, Guanhao

    2015-08-01

    Absolute distance measurement with dual femtosecond comb lasers has advantages of wide-range, high-accuracy and fast speed. It combines time-of-flight and interferometric measurement. The novelty of ranging method leads to new challenges in designing the data acquisition and processing hardware system. Currently there are no available real-time data processing system for dual-comb ranging. This paper introduces our recent progress on designing and implementing such a platform. Our platform mainly contains four different function modules. First, a clock module that accept a 250MHz maximum reference clock input was introduced to generate the sample clock for A/D converter, and the module's output clock can be delayed up to 20ns with a resolution of 714ps. Second, a high-speed data acquisition module with a 14-bit resolution and a 125 MSPS maximum sample rate was designed to convert the analog laser pulse signal to digital signal. Third, we built a real-time data processing module that allows an input of 16-bit data in the FPGA to calculate the distance from the digital signal within 83us. Finally, a data transmission module based on a 128MB DDR SDRAM and USB2.0 was added so that we can easily debug the platform in the PC. The performance of our system is evaluated in real-time. The test bench consists of two femtosecond laser sources, an optical fiber interferometer and our data processing system. The repetition frequencies of the two combs are around 50MHz, with frequency difference of 2.5kHz. The center wavelength of laser pulses is 1560nm. The target distance is from 0m to 3m. The experimental results show that our system can output measurement results at the rate of 2500 pts/s, and the measurement deviation is less than 10um.

  15. RF Processing the NLCTA Injector Using Real Time Graphical Vacuum Displays

    NASA Astrophysics Data System (ADS)

    Gold, Saul L.

    1997-05-01

    One of the objectives of the NLCTA is to demonstrate the reliable operation of high peak power X-band RF transmission and acceleration systems. RF processing is an important function in this endeavor. The first klystron, pulse compression (SLEDII) and injector accelerator sections were processed to 50 MW SLED input power with a power multiplication at the output of SLEDII of almost 4. The paper describes RF processing by the use of real time graphical instrumentation that allows the viewing and recording of system vacuum levels and RF breakdown.

  16. Graphic processing unit accelerated real-time partially coherent beam generator

    NASA Astrophysics Data System (ADS)

    Ni, Xiaolong; Liu, Zhi; Chen, Chunyi; Jiang, Huilin; Fang, Hanhan; Song, Lujun; Zhang, Su

    2016-07-01

    A method of using liquid-crystals (LCs) to generate a partially coherent beam in real-time is described. An expression for generating a partially coherent beam is given and calculated using a graphic processing unit (GPU), i.e., the GeForce GTX 680. A liquid-crystal on silicon (LCOS) with 256 × 256 pixels is used as the partially coherent beam generator (PCBG). An optimizing method with partition convolution is used to improve the generating speed of our LC PCBG. The total time needed to generate a random phase map with a coherence width range from 0.015 mm to 1.5 mm is less than 2.4 ms for calculation and readout with the GPU; adding the time needed for the CPU to read and send to LCOS with the response time of the LC PCBG, the real-time partially coherent beam (PCB) generation frequency of our LC PCBG is up to 312 Hz. To our knowledge, it is the first real-time partially coherent beam generator. A series of experiments based on double pinhole interference are performed. The result shows that to generate a laser beam with a coherence width of 0.9 mm and 1.5 mm, with a mean error of approximately 1%, the RMS values needed 0.021306 and 0.020883 and the PV values required 0.073576 and 0.072998, respectively.

  17. Real-Time Joint Streaming Data Processing from Social and Physical Sensors

    NASA Astrophysics Data System (ADS)

    Kropivnitskaya, Y. Y.; Qin, J.; Tiampo, K. F.; Bauer, M.

    2014-12-01

    The results of the technological breakthroughs in computing that have taken place over the last few decades makes it possible to achieve emergency management objectives that focus on saving human lives and decreasing economic effects. In particular, the integration of a wide variety of information sources, including observations from spatially-referenced physical sensors and new social media sources, enables better real-time seismic hazard analysis through distributed computing networks. The main goal of this work is to utilize innovative computational algorithms for better real-time seismic risk analysis by integrating different data sources and processing tools into streaming and cloud computing applications. The Geological Survey of Canada operates the Canadian National Seismograph Network (CNSN) with over 100 high-gain instruments and 60 low-gain or strong motion seismographs. The processing of the continuous data streams from each station of the CNSN provides the opportunity to detect possible earthquakes in near real-time. The information from physical sources is combined to calculate a location and magnitude for an earthquake. The automatically calculated results are not always sufficiently precise and prompt that can significantly reduce the response time to a felt or damaging earthquake. Social sensors, here represented as Twitter users, can provide information earlier to the general public and more rapidly to the emergency planning and disaster relief agencies. We introduce joint streaming data processing from social and physical sensors in real-time based on the idea that social media observations serve as proxies for physical sensors. By using the streams of data in the form of Twitter messages, each of which has an associated time and location, we can extract information related to a target event and perform enhanced analysis by combining it with physical sensor data. Results of this work suggest that the use of data from social media, in conjunction

  18. Multigate transcranial Doppler ultrasound system with real-time embolic signal identification and archival.

    PubMed

    Fan, Lingke; Boni, Enrico; Tortoli, Piero; Evans, David H

    2006-10-01

    An integrated system for acquisition and processing of intracranial and extracranial Doppler signals and automatic embolic signal detection has been developed. The hardware basis of the system is a purpose-built acquisition/processing board that includes a multigate Doppler unit controlled through a computer. The signal-processing engine of the system contains a fast Fourier transform (FFT)-based, spectral-analysis unit and an embolic signal-detection unit using expert system reasoning theory. The system is designed so that up to four receive gates from a single transducer can be used to provide useful reasoning information to the embolic signal-detection unit. Alternatively, two transducers can be used simultaneously, either for bilateral transcranial Doppler (TCD) investigations or for simultaneous intra- and extracranial investigation of different arteries. The structure of the software will allow the future implementation of embolus detection algorithms that use the information from all four channels when a single transducer is used, or of independent embolus detection in two sets of two channels when two transducers are used. The user-friendly system has been tested in-vitro, and it has demonstrated a 93.6% sensitivity for micro-embolic signal (MES) identification. Preliminary in-vivo results also are encouraging. PMID:17036793

  19. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

    SciTech Connect

    Mohamed Abdelrahman; Kenneth Currie

    2010-12-22

    This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

  20. Observations of breakup processes of liquid jets using real-time X-ray radiography

    NASA Technical Reports Server (NTRS)

    Char, J. M.; Kuo, K. K.; Hsieh, K. C.

    1988-01-01

    To unravel the liquid-jet breakup process in the nondilute region, a newly developed system of real-time X-ray radiography, an advanced digital image processor, and a high-speed video camera were used. Based upon recorded X-ray images, the inner structure of a liquid jet during breakup was observed. The jet divergence angle, jet breakup length, and fraction distributions along the axial and transverse directions of the liquid jets were determined in the near-injector region. Both wall- and free-jet tests were conducted to study the effect of wall friction on the jet breakup process.

  1. Neural networks for process scheduling in real-time communication systems.

    PubMed

    Cavalieri, S; Mirabella, O

    1996-01-01

    This paper presents the use of Hopfield-type neural networks for process scheduling in the area of factory automation, where bus-based communication systems, called FieldBuses, are widely used to connect sensors and actuators to the control systems. We show how it overcomes the problem of the computational complexity of the algorithmic solution. The neural model proposed allows several processes to be scheduled simultaneously; the time required is polynomial with respect to the number of processes being scheduled. This feature allows real-time process scheduling and makes it possible for the scheduling table to adapt to changes in process control features. The paper presents the neural model for process scheduling and assesses its computational complexity, pointing out the drastic reduction in the time needed to generate a schedule as compared with the algorithmic scheduling solution. Finally, the authors propose an on-line scheduling strategy based on the neural model which can achieve real-time adaptation of the scheduling table to changes in the manufacturing environment.

  2. VerifEYE: a real-time meat inspection system for the beef processing industry

    NASA Astrophysics Data System (ADS)

    Kocak, Donna M.; Caimi, Frank M.; Flick, Rick L.; Elharti, Abdelmoula

    2003-02-01

    Described is a real-time meat inspection system developed for the beef processing industry by eMerge Interactive. Designed to detect and localize trace amounts of contamination on cattle carcasses in the packing process, the system affords the beef industry an accurate, high speed, passive optical method of inspection. Using a method patented by United States Department of Agriculture and Iowa State University, the system takes advantage of fluorescing chlorophyll found in the animal's diet and therefore the digestive track to allow detection and imaging of contaminated areas that may harbor potentially dangerous microbial pathogens. Featuring real-time image processing and documentation of performance, the system can be easily integrated into a processing facility's Hazard Analysis and Critical Control Point quality assurance program. This paper describes the VerifEYE carcass inspection and removal verification system. Results indicating the feasibility of the method, as well as field data collected using a prototype system during four university trials conducted in 2001 are presented. Two successful demonstrations using the prototype system were held at a major U.S. meat processing facility in early 2002.

  3. Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array

    PubMed Central

    Ustun, Teoman E.; Iftimia, Nicusor V.; Ferguson, R. Daniel; Hammer, Daniel X.

    2008-01-01

    Real-time display of processed Fourier domain optical coherence tomography (FDOCT) images is important for applications that require instant feedback of image information, for example, systems developed for rapid screening or image-guided surgery. However, the computational requirements for high-speed FDOCT image processing usually exceeds the capabilities of most computers and therefore display rates rarely match acquisition rates for most devices. We have designed and developed an image processing system, including hardware based upon a field programmable gated array, firmware, and software that enables real-time display of processed images at rapid line rates. The system was designed to be extremely flexible and inserted in-line between any FDOCT detector and any Camera Link frame grabber. Two versions were developed for spectrometer-based and swept source-based FDOCT systems, the latter having an additional custom high-speed digitizer on the front end but using all the capabilities and features of the former. The system was tested in humans and monkeys using an adaptive optics retinal imager, in zebrafish using a dual-beam Doppler instrument, and in human tissue using a swept source microscope. A display frame rate of 27 fps for fully processed FDOCT images (1024 axial pixels×512 lateral A-scans) was achieved in the spectrometer-based systems. PMID:19045902

  4. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    NASA Astrophysics Data System (ADS)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  5. A real time dynamic data acquisition and processing system for velocity, density, and total temperature fluctuation measurements

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.

    1991-01-01

    The real time Dynamic Data Acquisition and Processing System (DDAPS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAPS replaces both a recording mechanism and a separate data processing system. DDAPS receives input from hot wire anemometers. Amplifiers and filters condition the signals with computer controlled modules. The analog signals are simultaneously digitized and digitally recorded on disk. Automatic acquisition collects necessary calibration and environment data. Hot wire sensitivities are generated and applied to the hot wire data to compute fluctuations. The presentation of the raw and processed data is accomplished on demand. The interface to DDAPS is described along with the internal mechanisms of DDAPS. A summary of operations relevant to the use of the DDAPS is also provided.

  6. A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes

    PubMed Central

    Sibillano, Teresa; Ancona, Antonio; Berardi, Vincenzo; Lugarà, Pietro Mario

    2009-01-01

    In this paper we report on the development of a sensor for real time monitoring of laser welding processes based on spectroscopic techniques. The system is based on the acquisition of the optical spectra emitted from the laser generated plasma plume and their use to implement an on-line algorithm for both the calculation of the plasma electron temperature and the analysis of the correlations between selected spectral lines. The sensor has been patented and it is currently available on the market. PMID:22412317

  7. Enhancing Sensitivity of a Miniature Spectrometer Using a Real-Time Image Processing Algorithm.

    PubMed

    Chandramohan, Sabarish; Avrutsky, Ivan

    2016-05-01

    A real-time image processing algorithm is developed to enhance the sensitivity of a planar single-mode waveguide miniature spectrometer with integrated waveguide gratings. A novel approach of averaging along the arcs in a curved coordinate system is introduced which allows for collecting more light, thereby enhancing the sensitivity. The algorithm is tested using CdSeS/ZnS quantum dots drop casted on the surface of a single-mode waveguide. Measurements indicate that a monolayer of quantum dots is expected to produce guided mode attenuation approximately 11 times above the noise level.

  8. Real time video processing software for the analysis of endoscopic guided-biopsies

    NASA Astrophysics Data System (ADS)

    Ordoñez, C.; Bouchet, A.; Pastore, J.; Blotta, E.

    2011-12-01

    The severity in Barrett esophagus disease is, undoubtedly, the possibility of its malignization. To make an early diagnosis in order to avoid possible complications, it is absolutely necessary collect biopsies to make a histological analysis. This should be done under endoscopic control to avoid mucus areas that may co-exist within the columnar epithelial, which could lead to a false diagnosis. This paper presents a video processing software in real-time in order to delineate and enhance areas of interest to facilitate the work of the expert.

  9. Raman Based Process Monitor for Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    SciTech Connect

    Bryan, S.; Levitskaia, T.; Schlahta, St.

    2008-07-01

    A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval. (authors)

  10. Raman Based Process Monitor For Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Schlahta, Stephan N.

    2008-05-27

    ABSTRACT A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval.

  11. Real-time blood flow visualization using the graphics processing unit

    PubMed Central

    Yang, Owen; Cuccia, David; Choi, Bernard

    2011-01-01

    Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ∼10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark. PMID:21280915

  12. Real-time blood flow visualization using the graphics processing unit

    NASA Astrophysics Data System (ADS)

    Yang, Owen; Cuccia, David; Choi, Bernard

    2011-01-01

    Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ~10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark.

  13. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.

    PubMed

    Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David

    2013-01-01

    Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be

  14. Image corruption detection in diffusion tensor imaging for post-processing and real-time monitoring.

    PubMed

    Li, Yue; Shea, Steven M; Lorenz, Christine H; Jiang, Hangyi; Chou, Ming-Chung; Mori, Susumu

    2013-01-01

    Due to the high sensitivity of diffusion tensor imaging (DTI) to physiological motion, clinical DTI scans often suffer a significant amount of artifacts. Tensor-fitting-based, post-processing outlier rejection is often used to reduce the influence of motion artifacts. Although it is an effective approach, when there are multiple corrupted data, this method may no longer correctly identify and reject the corrupted data. In this paper, we introduce a new criterion called "corrected Inter-Slice Intensity Discontinuity" (cISID) to detect motion-induced artifacts. We compared the performance of algorithms using cISID and other existing methods with regard to artifact detection. The experimental results show that the integration of cISID into fitting-based methods significantly improves the retrospective detection performance at post-processing analysis. The performance of the cISID criterion, if used alone, was inferior to the fitting-based methods, but cISID could effectively identify severely corrupted images with a rapid calculation time. In the second part of this paper, an outlier rejection scheme was implemented on a scanner for real-time monitoring of image quality and reacquisition of the corrupted data. The real-time monitoring, based on cISID and followed by post-processing, fitting-based outlier rejection, could provide a robust environment for routine DTI studies.

  15. A real-time signal combining system for Ka-band feed arrays using maximum-likelihood weight estimates

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Rodemich, E. R.

    1990-01-01

    A real-time digital signal combining system for use with Ka-band feed arrays is proposed. The combining system attempts to compensate for signal-to-noise ratio (SNR) loss resulting from antenna deformations induced by gravitational and atmospheric effects. The combining weights are obtained directly from the observed samples by using a sliding-window implementation of a vector maximum-likelihood parameter estimator. It is shown that with averaging times of about 0.1 second, combining loss for a seven-element array can be limited to about 0.1 dB in a realistic operational environment. This result suggests that the real-time combining system proposed here is capable of recovering virtually all of the signal power captured by the feed array, even in the presence of severe wind gusts and similar disturbances.

  16. Real-time processing in picture naming in adults who stutter: ERP evidence

    PubMed Central

    Maxfield, Nathan D.; Morris, Kalie; Frisch, Stefan A.; Morphew, Kathryn; Constantine, Joseph L.

    2014-01-01

    Objective The aim was to compare real-time language/cognitive processing in picture naming in adults who stutter (AWS) versus typically-fluent adults (TFA). Methods Participants named pictures preceded by masked prime words. Primes and target picture labels were Identical or mismatched. Priming effects on naming and picture-elicited ERP activity were analyzed. Vocabulary knowledge correlations with these measures were assessed. Results Priming improved naming RTs and accuracy in both groups. RTs were longer for AWS, and correlated positively with receptive vocabulary in TFA. Electrophysiologically, posterior-P1 amplitude negatively correlated with expressive vocabulary in TFA versus receptive vocabulary in AWS. Frontal/temporal-P1 amplitude correlated positively with expressive vocabulary in AWS. Identity priming enhanced frontal/posterior-N2 amplitude in both groups, and attenuated P280 amplitude in AWS. N400 priming was topographically-restricted in AWS. Conclusions Results suggest that conceptual knowledge was perceptually-grounded in expressive vocabulary in TFA versus receptive vocabulary in AWS. Poorer expressive vocabulary in AWS was potentially associated with greater suppression of irrelevant conceptual information. Priming enhanced N2-indexed cognitive control and visual attention in both groups. P280-indexed focal attention attenuated with priming in AWS only. Topographically-restricted N400 priming suggests that lemma/word form connections were weaker in AWS. Significance Real-time language/cognitive processing in picture naming operates differently in AWS. PMID:24910149

  17. Real-time investigation of nucleic acids phosphorylation process using molecular beacons.

    PubMed

    Tang, Zhiwen; Wang, Kemin; Tan, Weihong; Ma, Changbei; Li, Jun; Liu, Lingfeng; Guo, Qiuping; Meng, Xiangxian

    2005-01-01

    Phosphorylation of nucleic acids is an indispensable process to repair strand interruption of nucleic acids. We have studied the process of phosphorylation using molecular beacon (MB) DNA probes in real-time and with high selectivity. The MB employed in this method is devised to sense the product of a 'phosphorylation-ligation' coupled enzyme reaction. Compared with the current assays, this novel method is convenient, fast, selective, highly sensitive and capable of real-time monitoring in a homogenous solution. The preference of T4 polynucleotide kinase (T4 PNK) has been investigated using this approach. The results revealed that a single-stranded oligonucleotide containing guanine at the 5' termini is most preferred, while those utilizing cytosine in this location are least preferred. The preference of (T)9 was reduced greatly when phosphoryl was modified at the 5' end, implying that T4 PNK could discern the phosphorylated/unphosphorylated oligonucleotides. The increase of oligonucleotide DNA length leads to an enhancement in preference. A fast and accurate method for assaying the kinase activity of T4 PNK has been developed with a wide linear detection range from 0.002 to 4.0 U/ml in 3 min. The effects of certain factors, such as NTP, ADP, (NH4)2SO4 and Na2HPO4, on phosphorylation have been investigated. This novel approach enables us to investigate the interactions between proteins and nucleic acids in a homogenous solution, such as those found in DNA repair or in drug development.

  18. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    PubMed

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion. PMID:12961909

  19. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    PubMed

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  20. Real-Time Detection Methods to Monitor TRU Compositions in UREX+Process Streams

    SciTech Connect

    McDeavitt, Sean; Charlton, William; Indacochea, J Ernesto; taleyarkhan, Rusi; Pereira, Candido

    2013-03-01

    The U.S. Department of Energy has developed advanced methods for reprocessing spent nuclear fuel. The majority of this development was accomplished under the Advanced Fuel Cycle Initiative (AFCI), building on the strong legacy of process development R&D over the past 50 years. The most prominent processing method under development is named UREX+. The name refers to a family of processing methods that begin with the Uranium Extraction (UREX) process and incorporate a variety of other methods to separate uranium, selected fission products, and the transuranic (TRU) isotopes from dissolved spent nuclear fuel. It is important to consider issues such as safeguards strategies and materials control and accountability methods. Monitoring of higher actinides during aqueous separations is a critical research area. By providing on-line materials accountability for the processes, covert diversion of the materials streams becomes much more difficult. The importance of the nuclear fuel cycle continues to rise on national and international agendas. The U.S. Department of Energy is evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The objective of this consortium was to develop real time detection methods to monitor the efficacy of the UREX+ process and to safeguard the separated

  1. Real-time scattered light dark-field microscopic imaging of the dynamic degradation process of sodium dimethyldithiocarbamate

    NASA Astrophysics Data System (ADS)

    Lei, Gang; Gao, Peng Fei; Liu, Hui; Huang, Cheng Zhi

    2015-12-01

    Single nanoparticle analysis (SNA) technique with the aid of a dark-field microscopic imaging (iDFM) technique has attracted wide attention owing to its high sensitivity. Considering that the degradation of pesticides can bring about serious problems in food and the environment, and that the real-time monitoring of the dynamic degradation process of pesticides can help understand and define their degradation mechanisms, herein we real-time monitored the decomposition dynamics of sodium dimethyldithiocarbamate (NaDDC) under neutral and alkaline conditions by imaging single silver nanoparticles (AgNPs) under a dark-field microscope (DFM); the localized surface plasmon resonance (LSPR) scattering signals were measured at a single nanoparticle level. As a result, the chemical mechanism of the degradation of NaDDC under neutral and alkaline conditions was proposed, and the inhibition effects of metal ions including Zn(ii) and Cu(ii) were investigated in order to understand the decomposition process in different environments. It was found that Cu(ii) forms the most stable complex with NaDDC with a stoichiometric ratio of 1 : 2, which greatly reduces the toxicity.Single nanoparticle analysis (SNA) technique with the aid of a dark-field microscopic imaging (iDFM) technique has attracted wide attention owing to its high sensitivity. Considering that the degradation of pesticides can bring about serious problems in food and the environment, and that the real-time monitoring of the dynamic degradation process of pesticides can help understand and define their degradation mechanisms, herein we real-time monitored the decomposition dynamics of sodium dimethyldithiocarbamate (NaDDC) under neutral and alkaline conditions by imaging single silver nanoparticles (AgNPs) under a dark-field microscope (DFM); the localized surface plasmon resonance (LSPR) scattering signals were measured at a single nanoparticle level. As a result, the chemical mechanism of the degradation of Na

  2. All-IP-Ethernet architecture for real-time sensor-fusion processing

    NASA Astrophysics Data System (ADS)

    Hiraki, Kei; Inaba, Mary; Tezuka, Hiroshi; Tomari, Hisanobu; Koizumi, Kenichi; Kondo, Shuya

    2016-03-01

    Serendipter is a device that distinguishes and selects very rare particles and cells from huge amount of population. We are currently designing and constructing information processing system for a Serendipter. The information processing system for Serendipter is a kind of sensor-fusion system but with much more difficulties: To fulfill these requirements, we adopt All IP based architecture: All IP-Ethernet based data processing system consists of (1) sensor/detector directly output data as IP-Ethernet packet stream, (2) single Ethernet/TCP/IP streams by a L2 100Gbps Ethernet switch, (3) An FPGA board with 100Gbps Ethernet I/F connected to the switch and a Xeon based server. Circuits in the FPGA include 100Gbps Ethernet MAC, buffers and preprocessing, and real-time Deep learning circuits using multi-layer neural networks. Proposed All-IP architecture solves existing problem to construct large-scale sensor-fusion systems.

  3. Demonstration of real-time monitoring of a photolithographic exposure process using chemical ionization mass spectrometry

    SciTech Connect

    Mowry, C.D.

    1998-02-01

    Silicon wafers are coated with photoresist and exposed to ultraviolet (UV) light in a laboratory to simulate typical conditions expected in an actual semiconductor manufacturing process tool. Air is drawn through the exposure chamber and analyzed using chemical ionization mass spectrometry (CI/MS). Species that evaporate or outgas from the wafer are thus detected. The purpose of such analyses is to determine the potential of CI/MS as a real-time process monitoring tool. Results demonstrate that CI/MS can remotely detect the products evolved before, during, and after wafer UV exposure; and that the quantity and type of products vary with the photoresist coated on the wafer. Such monitoring could provide semiconductor manufacturers benefits in quality control and process analysis. Tool and photoresist manufacturers could also realize benefits from this measurement technique with respect to new tool, method, or photoresist development. The benefits realized can lead to improved device yields and reduced product and development costs.

  4. Improved radar data processing algorithms for quantitative rainfall estimation in real time.

    PubMed

    Krämer, S; Verworn, H R

    2009-01-01

    This paper describes a new methodology to process C-band radar data for direct use as rainfall input to hydrologic and hydrodynamic models and in real time control of urban drainage systems. In contrast to the adjustment of radar data with the help of rain gauges, the new approach accounts for the microphysical properties of current rainfall. In a first step radar data are corrected for attenuation. This phenomenon has been identified as the main cause for the general underestimation of radar rainfall. Systematic variation of the attenuation coefficients within predefined bounds allows robust reflectivity profiling. Secondly, event specific R-Z relations are applied to the corrected radar reflectivity data in order to generate quantitative reliable radar rainfall estimates. The results of the methodology are validated by a network of 37 rain gauges located in the Emscher and Lippe river basins. Finally, the relevance of the correction methodology for radar rainfall forecasts is demonstrated. It has become clearly obvious, that the new methodology significantly improves the radar rainfall estimation and rainfall forecasts. The algorithms are applicable in real time.

  5. Real-time network security situation visualization and threat assessment based on semi-Markov process

    NASA Astrophysics Data System (ADS)

    Chen, Junhua

    2013-03-01

    To cope with a large amount of data in current sensed environments, decision aid tools should provide their understanding of situations in a time-efficient manner, so there is an increasing need for real-time network security situation awareness and threat assessment. In this study, the state transition model of vulnerability in the network based on semi-Markov process is proposed at first. Once events are triggered by an attacker's action or system response, the current states of the vulnerabilities are known. Then we calculate the transition probabilities of the vulnerability from the current state to security failure state. Furthermore in order to improve accuracy of our algorithms, we adjust the probabilities that they exploit the vulnerability according to the attacker's skill level. In the light of the preconditions and post-conditions of vulnerabilities in the network, attack graph is built to visualize security situation in real time. Subsequently, we predict attack path, recognize attack intention and estimate the impact through analysis of attack graph. These help administrators to insight into intrusion steps, determine security state and assess threat. Finally testing in a network shows that this method is reasonable and feasible, and can undertake tremendous analysis task to facilitate administrators' work.

  6. Processing real-time stereo video for an autonomous robot using disparity maps and sensor fusion

    NASA Astrophysics Data System (ADS)

    Rosselot, Donald W.; Hall, Ernest L.

    2004-10-01

    The Bearcat "Cub" Robot is an interactive, intelligent, Autonomous Guided Vehicle (AGV) designed to serve in unstructured environments. Recent advances in computer stereo vision algorithms that produce quality disparity and the availability of low cost high speed camera systems have simplified many of tasks associated with robot navigation and obstacle avoidance using stereo vision. Leveraging these benefits, this paper describes a novel method for autonomous navigation and obstacle avoidance currently being implemented on the UC Bearcat Robot. The core of this approach is the synthesis of multiple sources of real-time data including stereo image disparity maps, tilt sensor data, and LADAR data with standard contour, edge, color, and line detection methods to provide robust and intelligent obstacle avoidance. An algorithm is presented with Matlab code to process the disparity maps to rapidly produce obstacle size and location information in a simple format, and features cancellation of noise and correction for pitch and roll. The vision and control computers are clustered with the Parallel Virtual Machine (PVM) software. The significance of this work is in presenting the methods needed for real time navigation and obstacle avoidance for intelligent autonomous robots.

  7. Software-Based Real-Time Acquisition and Processing of PET Detector Raw Data.

    PubMed

    Goldschmidt, Benjamin; Schug, David; Lerche, Christoph W; Salomon, André; Gebhardt, Pierre; Weissler, Bjoern; Wehner, Jakob; Dueppenbecker, Peter M; Kiessling, Fabian; Schulz, Volkmar

    2016-02-01

    In modern positron emission tomography (PET) readout architectures, the position and energy estimation of scintillation events (singles) and the detection of coincident events (coincidences) are typically carried out on highly integrated, programmable printed circuit boards. The implementation of advanced singles and coincidence processing (SCP) algorithms for these architectures is often limited by the strict constraints of hardware-based data processing. In this paper, we present a software-based data acquisition and processing architecture (DAPA) that offers a high degree of flexibility for advanced SCP algorithms through relaxed real-time constraints and an easily extendible data processing framework. The DAPA is designed to acquire detector raw data from independent (but synchronized) detector modules and process the data for singles and coincidences in real-time using a center-of-gravity (COG)-based, a least-squares (LS)-based, or a maximum-likelihood (ML)-based crystal position and energy estimation approach (CPEEA). To test the DAPA, we adapted it to a preclinical PET detector that outputs detector raw data from 60 independent digital silicon photomultiplier (dSiPM)-based detector stacks and evaluated it with a [(18)F]-fluorodeoxyglucose-filled hot-rod phantom. The DAPA is highly reliable with less than 0.1% of all detector raw data lost or corrupted. For high validation thresholds (37.1 ± 12.8 photons per pixel) of the dSiPM detector tiles, the DAPA is real time capable up to 55 MBq for the COG-based CPEEA, up to 31 MBq for the LS-based CPEEA, and up to 28 MBq for the ML-based CPEEA. Compared to the COG-based CPEEA, the rods in the image reconstruction of the hot-rod phantom are only slightly better separable and less blurred for the LS- and ML-based CPEEA. While the coincidence time resolution (∼ 500 ps) and energy resolution (∼12.3%) are comparable for all three CPEEA, the system sensitivity is up to 2.5 × higher for the LS- and ML-based CPEEA

  8. Field Installation and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    NASA Astrophysics Data System (ADS)

    Zimakov, Leonid; Jackson, Michael; Passmore, Paul; Raczka, Jared; Alvarez, Marcos; Barrientos, Sergio

    2015-04-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chilean National Network. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and, using the Trimble Pivot™ SeismoGeodetic App, the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized package. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording element includes an ANSS Class A, force balance triaxial accelerometer with the latest, low power, 24-bit A/D converter, which produces high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol with back fill capability providing data integrity between the field and the processing center. The SG160-09 has been installed in the seismic station close to the area of the Iquique earthquake of April 1, 2014, in northern Chile, a seismically prone area at the current time. The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the National Seismological Center in Santiago for real-time data processing using Earthworm / Early Bird software. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot software suite. Data from the SG160-09 system was

  9. A Real-time Auto-detection Method for Random Telegraph Signal (RTS) Noise Detection in CMOS Active pixel sensors

    NASA Astrophysics Data System (ADS)

    Zheng, R.; Zhao, R.; Ma, Y.; Li, B.; Wei, X.; Wang, J.; Gao, W.; Wei, T.; Gao, D.; Hu, Y.

    2015-07-01

    CMOS Active pixel sensors (CMOS APS) are attractive for use in the innermost layers of charged particle trackers, due to their good tradeoffs among the key performances. However, CMOS APS can be greatly influenced by random telegraph signal (RTS) noise, which can cause particle tracking or energy calculation failures. In-depth research of pixels' RTS behavior stimulates the interest of the methods for RTS noise detection, reconstruction and parameters extraction. In this paper, a real-time auto-detection method is proposed, using real-time Gaussian noise standard deviation as the detection threshold. Experimental results show that, compared with current methods using signal standard deviation as the thresholds, the proposed method is more sensitive in multi-level RTS detection and more effective in the case of RTS noise degradation.

  10. PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals

    PubMed Central

    Marchan-Hernandez, Juan Fernando; Camps, Adriano; Rodriguez-Alvarez, Nereida; Bosch-Lluis, Xavier; Ramos-Perez, Isaac; Valencia, Enric

    2008-01-01

    Signals from Global Navigation Satellite Systems (GNSS) were originally conceived for position and speed determination, but they can be used as signals of opportunity as well. The reflection process over a given surface modifies the properties of the scattered signal, and therefore, by processing the reflected signal, relevant geophysical data regarding the surface under study (land, sea, ice…) can be retrieved. In essence, a GNSS-R receiver is a multi-channel GNSS receiver that computes the received power from a given satellite at a number of different delay and Doppler bins of the incoming signal. The first approaches to build such a receiver consisted of sampling and storing the scattered signal for later post-processing. However, a real-time approach to the problem is desirable to obtain immediately useful geophysical variables and reduce the amount of data. The use of FPGA technology makes this possible, while at the same time the system can be easily reconfigured. The signal tracking and processing constraints made necessary to fully design several new blocks. The uniqueness of the implemented system described in this work is the capability to compute in real-time Delay-Doppler maps (DDMs) either for four simultaneous satellites or just one, but with a larger number of bins. The first tests have been conducted from a cliff over the sea and demonstrate the successful performance of the instrument to compute DDMs in real-time from the measured reflected GNSS/R signals. The processing of these measurements shall yield quantitative relationships between the sea state (mainly driven by the surface wind and the swell) and the overall DDM shape. The ultimate goal is to use the DDM shape to correct the sea state influence on the L-band brightness temperature to improve the retrieval of the sea surface salinity (SSS).

  11. Real time explosive hazard information sensing, processing, and communication for autonomous operation

    SciTech Connect

    Versteeg, Roelof J.; Few, Douglas A.; Kinoshita, Robert A.; Johnson, Douglas; Linda, Ondrej

    2015-12-15

    Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

  12. Real time explosive hazard information sensing, processing, and communication for autonomous operation

    DOEpatents

    Versteeg, Roelof J; Few, Douglas A; Kinoshita, Robert A; Johnson, Doug; Linda, Ondrej

    2015-02-24

    Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

  13. Multithreaded real-time 3D image processing software architecture and implementation

    NASA Astrophysics Data System (ADS)

    Ramachandra, Vikas; Atanassov, Kalin; Aleksic, Milivoje; Goma, Sergio R.

    2011-03-01

    Recently, 3D displays and videos have generated a lot of interest in the consumer electronics industry. To make 3D capture and playback popular and practical, a user friendly playback interface is desirable. Towards this end, we built a real time software 3D video player. The 3D video player displays user captured 3D videos, provides for various 3D specific image processing functions and ensures a pleasant viewing experience. Moreover, the player enables user interactivity by providing digital zoom and pan functionalities. This real time 3D player was implemented on the GPU using CUDA and OpenGL. The player provides user interactive 3D video playback. Stereo images are first read by the player from a fast drive and rectified. Further processing of the images determines the optimal convergence point in the 3D scene to reduce eye strain. The rationale for this convergence point selection takes into account scene depth and display geometry. The first step in this processing chain is identifying keypoints by detecting vertical edges within the left image. Regions surrounding reliable keypoints are then located on the right image through the use of block matching. The difference in the positions between the corresponding regions in the left and right images are then used to calculate disparity. The extrema of the disparity histogram gives the scene disparity range. The left and right images are shifted based upon the calculated range, in order to place the desired region of the 3D scene at convergence. All the above computations are performed on one CPU thread which calls CUDA functions. Image upsampling and shifting is performed in response to user zoom and pan. The player also consists of a CPU display thread, which uses OpenGL rendering (quad buffers). This also gathers user input for digital zoom and pan and sends them to the processing thread.

  14. Near Real-Time Processing and Archiving of GPS Surveys for Crustal Motion Monitoring

    NASA Astrophysics Data System (ADS)

    Crowell, B. W.; Bock, Y.

    2008-12-01

    We present an inverse instantaneous RTK method for rapidly processing and archiving GPS data for crustal motion surveys that gives positional accuracy similar to traditional post-processing methods. We first stream 1 Hz data from GPS receivers over Bluetooth to Verizon XV6700 smartphones equipped with Geodetics, Inc. RTD Rover software. The smartphone transmits raw receiver data to a real-time server at the Scripps Orbit and Permanent Array Center (SOPAC) running RTD Pro. At the server, instantaneous positions are computed every second relative to the three closest base stations in the California Real Time Network (CRTN), using ultra-rapid orbits produced by SOPAC, the NOAATrop real-time tropospheric delay model, and ITRF2005 coordinates computed by SOPAC for the CRTN stations. The raw data are converted on-the-fly to RINEX format at the server. Data in both formats are stored on the server along with a file of instantaneous positions, computed independently at each observation epoch. The single-epoch instantaneous positions are continuously transmitted back to the field surveyor's smartphone, where RTD Rover computes a median position and interquartile range for each new epoch of observation. The best-fit solution is the last median position and is available as soon as the survey is completed. We describe how we used this method to process 1 Hz data from the February, 2008 Imperial Valley GPS survey of 38 geodetic monuments established by Imperial College, London in the 1970's, and previously measured by SOPAC using rapid-static GPS methods in 1993, 1999 and 2000, as well as 14 National Geodetic Survey (NGS) monuments. For redundancy, each monument was surveyed for about 15 minutes at least twice and at staggered intervals using two survey teams operating autonomously. Archiving of data and the overall project at SOPAC is performed using the PGM software, developed by the California Spatial Reference Center (CSRC) for the National Geodetic Survey (NGS). The

  15. Processing, Cataloguing and Distribution of Uas Images in Near Real Time

    NASA Astrophysics Data System (ADS)

    Runkel, I.

    2013-08-01

    can be checked and interpreted in near real-time. For sensible areas it gives you the possibility to inform remote decision makers or interpretation experts in order to provide them situations awareness, wherever they are. For monitoring and inspection tasks it speeds up the process of data capture and data interpretation. The fully automated workflow of data pre-processing, data georeferencing, data cataloguing and data dissemination in near real time was developed based on the Intergraph products ERDAS IMAGINE, ERDAS APOLLO and GEOSYSTEMS METAmorph!IT. It is offered as adaptable solution by GEOSYSTEMS GmbH.

  16. Intensity Maps Production Using Real-Time Joint Streaming Data Processing From Social and Physical Sensors

    NASA Astrophysics Data System (ADS)

    Kropivnitskaya, Y. Y.; Tiampo, K. F.; Qin, J.; Bauer, M.

    2015-12-01

    Intensity is one of the most useful measures of earthquake hazard, as it quantifies the strength of shaking produced at a given distance from the epicenter. Today, there are several data sources that could be used to determine intensity level which can be divided into two main categories. The first category is represented by social data sources, in which the intensity values are collected by interviewing people who experienced the earthquake-induced shaking. In this case, specially developed questionnaires can be used in addition to personal observations published on social networks such as Twitter. These observations are assigned to the appropriate intensity level by correlating specific details and descriptions to the Modified Mercalli Scale. The second category of data sources is represented by observations from different physical sensors installed with the specific purpose of obtaining an instrumentally-derived intensity level. These are usually based on a regression of recorded peak acceleration and/or velocity amplitudes. This approach relates the recorded ground motions to the expected felt and damage distribution through empirical relationships. The goal of this work is to implement and evaluate streaming data processing separately and jointly from both social and physical sensors in order to produce near real-time intensity maps and compare and analyze their quality and evolution through 10-minute time intervals immediately following an earthquake. Results are shown for the case study of the M6.0 2014 South Napa, CA earthquake that occurred on August 24, 2014. The using of innovative streaming and pipelining computing paradigms through IBM InfoSphere Streams platform made it possible to read input data in real-time for low-latency computing of combined intensity level and production of combined intensity maps in near-real time. The results compare three types of intensity maps created based on physical, social and combined data sources. Here we correlate

  17. Real-time model based process monitoring of enzymatic biodiesel production.

    PubMed

    Price, Jason; Nordblad, Mathias; Woodley, John M; Huusom, Jakob K

    2015-01-01

    In this contribution we extend our modelling work on the enzymatic production of biodiesel where we demonstrate the application of a Continuous-Discrete Extended Kalman Filter (a state estimator). The state estimator is used to correct for mismatch between the process data and the process model for Fed-batch production of biodiesel. For the three process runs investigated, using a single tuning parameter, qx  = 2 × 10(-2) which represents the uncertainty in the process model, it was possible over the entire course of the reaction to reduce the overall mean and standard deviation of the error between the model and the process data for all of the five measured components (triglycerides, diglycerides, monoglycerides, fatty acid methyl esters, and free fatty acid). The most significant reduction for the three process runs, were for the monoglyceride and free fatty acid concentration. For those components, there was over a ten-fold decrease in the overall mean error for the state estimator prediction compared with the predictions from the pure model simulations. It is also shown that the state estimator can be used as a tool for detection of outliers in the measurement data. For the enzymatic biodiesel process, given the infrequent and sometimes uncertain measurements obtained we see the use of the Continuous-Discrete Extended Kalman Filter as a viable tool for real time process monitoring.

  18. A Real-Time Optical Tracking and Measurement Processing System for Flying Targets

    PubMed Central

    Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu

    2014-01-01

    Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control. PMID:24987748

  19. A real-time optical tracking and measurement processing system for flying targets.

    PubMed

    Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu

    2014-01-01

    Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control.

  20. The application of digital computers to near-real-time processing of flutter test data

    NASA Technical Reports Server (NTRS)

    Hurley, S. R.

    1976-01-01

    Procedures used in monitoring, analyzing, and displaying flight and ground flutter test data are presented. These procedures include three digital computer programs developed to process structural response data in near real time. Qualitative and quantitative modal stability data are derived from time history response data resulting from rapid sinusoidal frequency sweep forcing functions, tuned-mode quick stops, and pilot induced control pulses. The techniques have been applied to both fixed and rotary wing aircraft, during flight, whirl tower rotor systems tests, and wind tunnel flutter model tests. An hydraulically driven oscillatory aerodynamic vane excitation system utilized during the flight flutter test programs accomplished during Lockheed L-1011 and S-3A development is described.

  1. Counting People and Recognizing Wheelchairs at Elevator Lobby by Real-Time Image Processing

    NASA Astrophysics Data System (ADS)

    Uchidate, Hikaru; Inoda, Ryosuke; Tsuji, Toshiaki; Abe, Shigeru

    This paper proposes a real-time image processing system for wheelchair recognition at elevator lobby. This system extracts objects with frame difference method. From the image of extracted objects, heads of people are detected by the Hough transform. Vertical shooting from ceiling improves the performance of people counting since the detected head has high roundness and occlusion of people is prevented. Two feature quantities are introduced to recognize wheelchairs. They are the area value and the ratio of traveling length to vertical length. Since these quantities require a method for drawing the contour line. This paper proposes a new simple method to draw a contour line. The effectiveness of this system is confirmed through experiments.

  2. Real-time gesture interface based on event-driven processing from stereo silicon retinas.

    PubMed

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael; Park, Paul K J; Shin, Chang-Woo; Ryu, Hyunsurk Eric; Kang, Byung Chang

    2014-12-01

    We propose a real-time hand gesture interface based on combining a stereo pair of biologically inspired event-based dynamic vision sensor (DVS) silicon retinas with neuromorphic event-driven postprocessing. Compared with conventional vision or 3-D sensors, the use of DVSs, which output asynchronous and sparse events in response to motion, eliminates the need to extract movements from sequences of video frames, and allows significantly faster and more energy-efficient processing. In addition, the rate of input events depends on the observed movements, and thus provides an additional cue for solving the gesture spotting problem, i.e., finding the onsets and offsets of gestures. We propose a postprocessing framework based on spiking neural networks that can process the events received from the DVSs in real time, and provides an architecture for future implementation in neuromorphic hardware devices. The motion trajectories of moving hands are detected by spatiotemporally correlating the stereoscopically verged asynchronous events from the DVSs by using leaky integrate-and-fire (LIF) neurons. Adaptive thresholds of the LIF neurons achieve the segmentation of trajectories, which are then translated into discrete and finite feature vectors. The feature vectors are classified with hidden Markov models, using a separate Gaussian mixture model for spotting irrelevant transition gestures. The disparity information from stereovision is used to adapt LIF neuron parameters to achieve recognition invariant of the distance of the user to the sensor, and also helps to filter out movements in the background of the user. Exploiting the high dynamic range of DVSs, furthermore, allows gesture recognition over a 60-dB range of scene illuminance. The system achieves recognition rates well over 90% under a variety of variable conditions with static and dynamic backgrounds with naïve users. PMID:25420246

  3. Side-scan sonar mapping: Pseudo-real-time processing and mosaicking techniques

    SciTech Connect

    Danforth, W.W.; Schwab, W.C.; O'Brien, T.F. ); Karl, H. )

    1990-05-01

    The US Geological Survey (USGS) surveyed 1,000 km{sup 2} of the continental shelf off San Francisco during a 17-day cruise, using a 120-kHz side-scan sonar system, and produced a digitally processed sonar mosaic of the survey area. The data were processed and mosaicked in real time using software developed at the Lamont-Doherty Geological Observatory and modified by the USGS, a substantial task due to the enormous amount of data produced by high-resolution side-scan systems. Approximately 33 megabytes of data were acquired every 1.5 hr. The real-time sonar images were displayed on a PC-based workstation and the data were transferred to a UNIX minicomputer where the sonar images were slant-range corrected, enhanced using an averaging method of desampling and a linear-contrast stretch, merged with navigation, geographically oriented at a user-selected scale, and finally output to a thermal printer. The hard-copy output was then used to construct a mosaic of the survey area. The final product of this technique is a UTM-projected map-mosaic of sea-floor backscatter variations, which could be used, for example, to locate appropriate sites for sediment sampling to ground truth the sonar imagery while still at sea. More importantly, reconnaissance surveys of this type allow for the analysis and interpretation of the mosaic during a cruise, thus greatly reducing the preparation time needed for planning follow-up studies of a particular area.

  4. Multi-Isotope Process (MIP) Monitor: A Near-Real-Time Monitor For Reprocessing Facilities

    SciTech Connect

    Schwantes, Jon M.; Douglas, Matthew; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard

    2008-06-01

    INTRODUCTION The threat of protracted diversion of Pu from commercial reprocessing operations is perhaps the greatest concern to national and international agencies tasked with safeguarding these facilities. While it is generally understood that a method for direct monitoring of process on-line and in near-real time (NRT) would be the best defense against protracted diversion scenarios, an effective method with these qualities has yet to be developed. Here, we attempt to bridge this gap by proposing an on-line NRT process monitoring method that should be sensitive to minor alterations in process conditions and compatible with small, easily deployable, detection systems. This Approach is known as the Multi-Isotope Process (MIP) Monitor and involves the determination and recognition of the contaminant pattern within a process stream for a suite of indicator (radioactive) elements present in the spent fuel as a function of process variables. Utilization of a suite of radio-elements, including ones with multiple oxidation states, decreases the likelihood that attempts to divert Pu by altering the ReDox environment within the process would go undetected. In addition, by identifying gamma-emitting indicator isotopes, this Approach might eliminate the need for bulky neutron detection systems, relying instead on small, portable, high-resolution gamma detectors easily deployable throughout the facility.

  5. Algorithm for real-time detection of signal patterns using phase synchrony: an application to an electrode array

    NASA Astrophysics Data System (ADS)

    Sadeghi, Saman; MacKay, William A.; van Dam, R. Michael; Thompson, Michael

    2011-02-01

    Real-time analysis of multi-channel spatio-temporal sensor data presents a considerable technical challenge for a number of applications. For example, in brain-computer interfaces, signal patterns originating on a time-dependent basis from an array of electrodes on the scalp (i.e. electroencephalography) must be analyzed in real time to recognize mental states and translate these to commands which control operations in a machine. In this paper we describe a new technique for recognition of spatio-temporal patterns based on performing online discrimination of time-resolved events through the use of correlation of phase dynamics between various channels in a multi-channel system. The algorithm extracts unique sensor signature patterns associated with each event during a training period and ranks importance of sensor pairs in order to distinguish between time-resolved stimuli to which the system may be exposed during real-time operation. We apply the algorithm to electroencephalographic signals obtained from subjects tested in the neurophysiology laboratories at the University of Toronto. The extension of this algorithm for rapid detection of patterns in other sensing applications, including chemical identification via chemical or bio-chemical sensor arrays, is also discussed.

  6. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

    PubMed

    Hill, N Jeremy; Gupta, Disha; Brunner, Peter; Gunduz, Aysegul; Adamo, Matthew A; Ritaccio, Anthony; Schalk, Gerwin

    2012-01-01

    methods for collecting recording ECoG, and demonstrate how to use these signals for important real-time applications such as clinical mapping and brain-computer interfacing. Our example uses the BCI2000 software platform and the SIGFRIED method, an application for real-time mapping of brain functions. This procedure yields information that clinicians can subsequently use to guide the complex and laborious process of functional mapping by electrical stimulation. PREREQUISITES AND PLANNING: Patients with drug-resistant partial epilepsy may be candidates for resective surgery of an epileptic focus to minimize the frequency of seizures. Prior to resection, the patients undergo monitoring using subdural electrodes for two purposes: first, to localize the epileptic focus, and second, to identify nearby critical brain areas (i.e., eloquent cortex) where resection could result in long-term functional deficits. To implant electrodes, a craniotomy is performed to open the skull. Then, electrode grids and/or strips are placed on the cortex, usually beneath the dura. A typical grid has a set of 8 x 8 platinum-iridium electrodes of 4 mm diameter (2.3 mm exposed surface) embedded in silicon with an inter-electrode distance of 1cm. A strip typically contains 4 or 6 such electrodes in a single line. The locations for these grids/strips are planned by a team of neurologists and neurosurgeons, and are based on previous EEG monitoring, on a structural MRI of the patient's brain, and on relevant factors of the patient's history. Continuous recording over a period of 5-12 days serves to localize epileptic foci, and electrical stimulation via the implanted electrodes allows clinicians to map eloquent cortex. At the end of the monitoring period, explantation of the electrodes and therapeutic resection are performed together in one procedure. In addition to its primary clinical purpose, invasive monitoring also provides a unique opportunity to acquire human ECoG data for neuroscientific research

  7. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

    PubMed

    Hill, N Jeremy; Gupta, Disha; Brunner, Peter; Gunduz, Aysegul; Adamo, Matthew A; Ritaccio, Anthony; Schalk, Gerwin

    2012-06-26

    methods for collecting recording ECoG, and demonstrate how to use these signals for important real-time applications such as clinical mapping and brain-computer interfacing. Our example uses the BCI2000 software platform and the SIGFRIED method, an application for real-time mapping of brain functions. This procedure yields information that clinicians can subsequently use to guide the complex and laborious process of functional mapping by electrical stimulation. PREREQUISITES AND PLANNING: Patients with drug-resistant partial epilepsy may be candidates for resective surgery of an epileptic focus to minimize the frequency of seizures. Prior to resection, the patients undergo monitoring using subdural electrodes for two purposes: first, to localize the epileptic focus, and second, to identify nearby critical brain areas (i.e., eloquent cortex) where resection could result in long-term functional deficits. To implant electrodes, a craniotomy is performed to open the skull. Then, electrode grids and/or strips are placed on the cortex, usually beneath the dura. A typical grid has a set of 8 x 8 platinum-iridium electrodes of 4 mm diameter (2.3 mm exposed surface) embedded in silicon with an inter-electrode distance of 1cm. A strip typically contains 4 or 6 such electrodes in a single line. The locations for these grids/strips are planned by a team of neurologists and neurosurgeons, and are based on previous EEG monitoring, on a structural MRI of the patient's brain, and on relevant factors of the patient's history. Continuous recording over a period of 5-12 days serves to localize epileptic foci, and electrical stimulation via the implanted electrodes allows clinicians to map eloquent cortex. At the end of the monitoring period, explantation of the electrodes and therapeutic resection are performed together in one procedure. In addition to its primary clinical purpose, invasive monitoring also provides a unique opportunity to acquire human ECoG data for neuroscientific research

  8. A feedback control system for real-time formant estimation. I--Static and dynamic analysis for sinusoidal input signals.

    PubMed

    Zierhofer, C M; Hochmair, E S

    1993-09-01

    This paper presents a novel analog scheme suitable for the real-time estimation of formant frequencies. Formant tracking is based on a feedback technique which uses both the amplitude and phase characteristics of two stagger-tuned bandpass filters to give an improved dynamic behavior. The implementation of the system requires a small number of components, and is practical for low-power applications. An analysis of the static and dynamic behavior is given for sinusoidal input signals. The transient response is independent of the amplitude level of the input signal. The system is designed for second formant detection in a cochlear prosthesis system.

  9. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit.

    PubMed

    Watanabe, Yuuki; Itagaki, Toshiki

    2009-01-01

    Fourier domain optical coherence tomography (FD-OCT) requires resampling of spectrally resolved depth information from wavelength to wave number, and the subsequent application of the inverse Fourier transform. The display rates of OCT images are much slower than the image acquisition rates due to processing speed limitations on most computers. We demonstrate a real-time display of processed OCT images using a linear-in-wave-number (linear-k) spectrometer and a graphics processing unit (GPU). We use the linear-k spectrometer with the combination of a diffractive grating with 1200 lines/mm and a F2 equilateral prism in the 840-nm spectral region to avoid calculating the resampling process. The calculations of the fast Fourier transform (FFT) are accelerated by the GPU with many stream processors, which realizes highly parallel processing. A display rate of 27.9 frames/sec for processed images (2048 FFT size x 1000 lateral A-scans) is achieved in our OCT system using a line scan CCD camera operated at 27.9 kHz. PMID:20059237

  10. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuuki; Itagaki, Toshiki

    2009-11-01

    Fourier domain optical coherence tomography (FD-OCT) requires resampling of spectrally resolved depth information from wavelength to wave number, and the subsequent application of the inverse Fourier transform. The display rates of OCT images are much slower than the image acquisition rates due to processing speed limitations on most computers. We demonstrate a real-time display of processed OCT images using a linear-in-wave-number (linear-k) spectrometer and a graphics processing unit (GPU). We use the linear-k spectrometer with the combination of a diffractive grating with 1200 lines/mm and a F2 equilateral prism in the 840-nm spectral region to avoid calculating the resampling process. The calculations of the fast Fourier transform (FFT) are accelerated by the GPU with many stream processors, which realizes highly parallel processing. A display rate of 27.9 frames/sec for processed images (2048 FFT size×1000 lateral A-scans) is achieved in our OCT system using a line scan CCD camera operated at 27.9 kHz.

  11. A real-time GNSS-R system based on software-defined radio and graphics processing units

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Amagai, Jun; Aida, Masanori; Narita, Hideki

    2012-04-01

    Reflected signals of the Global Navigation Satellite System (GNSS) from the sea or land surface can be utilized to deduce and monitor physical and geophysical parameters of the reflecting area. Unlike most other remote sensing techniques, GNSS-Reflectometry (GNSS-R) operates as a passive radar that takes advantage from the increasing number of navigation satellites that broadcast their L-band signals. Thereby, most of the GNSS-R receiver architectures are based on dedicated hardware solutions. Software-defined radio (SDR) technology has advanced in the recent years and enabled signal processing in real-time, which makes it an ideal candidate for the realization of a flexible GNSS-R system. Additionally, modern commodity graphic cards, which offer massive parallel computing performances, allow to handle the whole signal processing chain without interfering with the PC's CPU. Thus, this paper describes a GNSS-R system which has been developed on the principles of software-defined radio supported by General Purpose Graphics Processing Units (GPGPUs), and presents results from initial field tests which confirm the anticipated capability of the system.

  12. Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes.

    PubMed

    Pinto-Lopera, Jesús Emilio; S T Motta, José Mauricio; Absi Alfaro, Sadek Crisostomo

    2016-09-15

    Associated to the weld quality, the weld bead geometry is one of the most important parameters in welding processes. It is a significant requirement in a welding project, especially in automatic welding systems where a specific width, height, or penetration of weld bead is needed. This paper presents a novel technique for real-time measuring of the width and height of weld beads in gas metal arc welding (GMAW) using a single high-speed camera and a long-pass optical filter in a passive vision system. The measuring method is based on digital image processing techniques and the image calibration process is based on projective transformations. The measurement process takes less than 3 milliseconds per image, which allows a transfer rate of more than 300 frames per second. The proposed methodology can be used in any metal transfer mode of a gas metal arc welding process and does not have occlusion problems. The responses of the measurement system, presented here, are in a good agreement with off-line data collected by a common laser-based 3D scanner. Each measurement is compare using a statistical Welch's t-test of the null hypothesis, which, in any case, does not exceed the threshold of significance level α = 0.01, validating the results and the performance of the proposed vision system.

  13. Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes

    PubMed Central

    Pinto-Lopera, Jesús Emilio; S. T. Motta, José Mauricio; Absi Alfaro, Sadek Crisostomo

    2016-01-01

    Associated to the weld quality, the weld bead geometry is one of the most important parameters in welding processes. It is a significant requirement in a welding project, especially in automatic welding systems where a specific width, height, or penetration of weld bead is needed. This paper presents a novel technique for real-time measuring of the width and height of weld beads in gas metal arc welding (GMAW) using a single high-speed camera and a long-pass optical filter in a passive vision system. The measuring method is based on digital image processing techniques and the image calibration process is based on projective transformations. The measurement process takes less than 3 milliseconds per image, which allows a transfer rate of more than 300 frames per second. The proposed methodology can be used in any metal transfer mode of a gas metal arc welding process and does not have occlusion problems. The responses of the measurement system, presented here, are in a good agreement with off-line data collected by a common laser-based 3D scanner. Each measurement is compare using a statistical Welch’s t-test of the null hypothesis, which, in any case, does not exceed the threshold of significance level α = 0.01, validating the results and the performance of the proposed vision system. PMID:27649198

  14. Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes.

    PubMed

    Pinto-Lopera, Jesús Emilio; S T Motta, José Mauricio; Absi Alfaro, Sadek Crisostomo

    2016-01-01

    Associated to the weld quality, the weld bead geometry is one of the most important parameters in welding processes. It is a significant requirement in a welding project, especially in automatic welding systems where a specific width, height, or penetration of weld bead is needed. This paper presents a novel technique for real-time measuring of the width and height of weld beads in gas metal arc welding (GMAW) using a single high-speed camera and a long-pass optical filter in a passive vision system. The measuring method is based on digital image processing techniques and the image calibration process is based on projective transformations. The measurement process takes less than 3 milliseconds per image, which allows a transfer rate of more than 300 frames per second. The proposed methodology can be used in any metal transfer mode of a gas metal arc welding process and does not have occlusion problems. The responses of the measurement system, presented here, are in a good agreement with off-line data collected by a common laser-based 3D scanner. Each measurement is compare using a statistical Welch's t-test of the null hypothesis, which, in any case, does not exceed the threshold of significance level α = 0.01, validating the results and the performance of the proposed vision system. PMID:27649198

  15. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization

    NASA Astrophysics Data System (ADS)

    Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L.; Wang, Xueding; Liu, Xiaojun

    2013-08-01

    Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.

  16. Real-time image processing system for automated visual inspection applications

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Pais, Cassiano P.; Freitas, Jose C. A.; Rodrigues, Fernando C.

    1993-01-01

    In many potential machine vision applications, the biggest constraint to its industrial use is the cost of the image processing hardware. In fact, there are many visual tasks performed by human operators that could be easily automated. However, it is very difficult to find in the market a vision system with the adequate relation between cost and performance. Most of the image processing systems need too much time to process one image, or have a very high cost. We present an architecture that was developed for surveillance purposes and that we are applying to several applications, namely to the semi-conductor industry and to flexible manufacture. The hardware was conceived in a modular approach with real time performance in each module. Cascading of several modules can produce different image processing functions with an image or data, being generated in every frame of video. The low cost of the hardware together with its very high performance, allow many different industrial applications in particular in the field of industrial automation. The results obtained with the industrial prototypes are presented in two applications and other possible applications are in progress.

  17. Whisper: Tracing the Spatiotemporal Process of Information Diffusion in Real Time.

    PubMed

    Cao, Nan; Lin, Yu-Ru; Sun, Xiaohua; Lazer, D; Liu, Shixia; Qu, Huamin

    2012-12-01

    When and where is an idea dispersed? Social media, like Twitter, has been increasingly used for exchanging information, opinions and emotions about events that are happening across the world. Here we propose a novel visualization design, "Whisper", for tracing the process of information diffusion in social media in real time. Our design highlights three major characteristics of diffusion processes in social media: the temporal trend, social-spatial extent, and community response of a topic of interest. Such social, spatiotemporal processes are conveyed based on a sunflower metaphor whose seeds are often dispersed far away. In Whisper, we summarize the collective responses of communities on a given topic based on how tweets were retweeted by groups of users, through representing the sentiments extracted from the tweets, and tracing the pathways of retweets on a spatial hierarchical layout. We use an efficient flux line-drawing algorithm to trace multiple pathways so the temporal and spatial patterns can be identified even for a bursty event. A focused diffusion series highlights key roles such as opinion leaders in the diffusion process. We demonstrate how our design facilitates the understanding of when and where a piece of information is dispersed and what are the social responses of the crowd, for large-scale events including political campaigns and natural disasters. Initial feedback from domain experts suggests promising use for today's information consumption and dispersion in the wild.

  18. Real-time GPU-accelerated processing and volumetric display for wide-field laser-scanning optical-resolution photoacoustic microscopy

    PubMed Central

    Kang, Heesung; Lee, Sang-Won; Lee, Eun-Soo; Kim, Se-Hwa; Lee, Tae Geol

    2015-01-01

    Fast signal processing and real-time displays are essential for practical imaging modality in various fields of applications. However, the imaging speed in optical-resolution photoacoustic microscopy (OR-PAM), in particular, depends on factors such as the pulse repetition rate of the laser, scanning method, field of view (FOV), and signal processing time. In the past, efforts to increase acquisition speed either focused on developing new scanning methods or using lasers with higher pulse repetition rates. However, high-speed signal processing is also important for real-time volumetric display in OR-PAM. In this study, we carried out parallel signal processing using a graphics processing unit (GPU) to enable fast signal processing and wide-field real-time displays in laser-scanning OR-PAM. The average total GPU processing time for a B-mode PAM image was approximately 1.35 ms at a display speed of 480 fps when the data samples were acquired with 736 (axial) × 500 (lateral) points/B-mode-frame at a pulse repetition rate of 300 kHz. In addition, we successfully displayed maximum amplitude projection images of a mouse’s ear as volumetric images with an FOV of 3 mm × 3 mm (500 × 500 pixels) at 1.02 s, corresponding to 0.98 fps. PMID:26713184

  19. MOVIE: a hardware building block for software-only real-time video processing

    NASA Astrophysics Data System (ADS)

    Barzic, Ronan; Bouville, Christian; Charot, Francois; Le Fol, Gwendal; Lemonnier, Pascal; Wagner, Charles

    1996-03-01

    The goal of the MOVIE VLSI chip is to facilitate the development of software-only solutions for real time video processing applications. This chip can be seen as a building block for SIMD arrays of processing elements and its architecture has been designed so as to facilitate high level language programming. The basic architecture building block associates a sub-array of computational processors with a I/O processor. A module can be seen as a small linear, systolic-like array of processing elements, connected at each end to the I/O processor. The module can communicate with its two nearest neighbors via two communication ports. The chip architecture also includes three 16-bit video ports. One important aspect in the programming environment is the C-stolic programming language. C-stolic is a C-like language augmented with parallel constructs which allow to differentiate between the array controller variables (scalar variables) and the local variables in the array structure (systolic variables). A statement operating on systolic variables implies a simultaneous execution on all the cells of the structure. Implementation examples of MOVIE-based architectures dealing with video compression algorithms are given.

  20. Real-time on-line monitoring of process water for low concentrations of bacteria

    NASA Astrophysics Data System (ADS)

    Adams, John A.; McCarty, David; Crousore, Kristina

    2006-03-01

    Naturally occurring outbreaks of bacteria have the potential to contaminate process water used in semiconductor manufacturing. Bacteria are normally filtered out in the water treatment process, however contamination can still occur from biofilm growth, filter or media break-through, and air vectors. Because there is seldom a residual disinfectant and system sanitation is intermittent, the manufacturer must rely on point of use filters to prevent contamination at critical points in the process. Particle counters in the distribution system can tell when the number of particles is increasing but cannot discriminate bacteria from small silica particles and often are unable to detect smaller gram-negative particles. If an on-line multi-angle light scattering system is used in place of particle counters or in conjunction with them, then the discrimination between silica particles and bacteria can be made and the proper action taken in the distribution system to help identify the contamination source, improve preventative maintenance, and ultimately increase yields. This paper describes the multi-angle light scattering method of detecting bacteria with the BioSentry TM system to provide an effective real-time on-line water monitoring sensor.

  1. Dynamic Engagement of Cognitive Control Modulates Recovery From Misinterpretation During Real-Time Language Processing.

    PubMed

    Hsu, Nina S; Novick, Jared M

    2016-04-01

    Speech unfolds swiftly, yet listeners keep pace by rapidly assigning meaning to what they hear. Sometimes, though, initial interpretations turn out to be wrong. How do listeners revise misinterpretations of language input moment by moment to avoid comprehension errors? Cognitive control may play a role by detecting when processing has gone awry and then initiating behavioral adjustments accordingly. However, no research to date has investigated a cause-and-effect interplay between cognitive-control engagement and the overriding of erroneous interpretations in real time. Using a novel cross-task paradigm, we showed that Stroop-conflict detection, which mobilizes cognitive-control procedures, subsequently facilitates listeners' incremental processing of temporarily ambiguous spoken instructions that induce brief misinterpretation. When instructions followed incongruent Stroop items, compared with congruent Stroop items, listeners' eye movements to objects in a scene reflected more transient consideration of the false interpretation and earlier recovery of the correct one. Comprehension errors also decreased. Cognitive-control engagement therefore accelerates sentence-reinterpretation processes, even as linguistic input is still unfolding. PMID:26957521

  2. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    PubMed

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  3. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    PubMed Central

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  4. Real-Time Analysis of Endogenous Wnt Signalling in 3D Mesenchymal Stromal Cells.

    PubMed

    Saleh, Fatima; Carstairs, Alice; Etheridge, S Leah; Genever, Paul

    2016-01-01

    Wnt signalling has been implicated in the regulation of stem cell self-renewal and differentiation; however, the majority of in vitro studies are carried out using monolayer 2D culture techniques. Here, we used mesenchymal stromal cell (MSC) EGFP reporter lines responsive to Wnt pathway activation in a 3D spheroid culture system to mimic better the in vivo environment. Endogenous Wnt signalling was then investigated under basal conditions and when MSCs were induced to undergo osteogenic and adipogenic differentiation. Interestingly, endogenous Wnt signalling was only active during 3D differentiation whereas 2D cultures showed no EGFP expression throughout an extended differentiation time-course. Furthermore, exogenous Wnt signalling in 3D adipogenic conditions inhibited differentiation compared to unstimulated controls. In addition, suppressing Wnt signalling by Dkk-1 restored and facilitated adipogenic differentiation in MSC spheroids. Our findings indicate that endogenous Wnt signalling is active and can be tracked in 3D MSC cultures where it may act as a molecular switch in adipogenesis. The identification of the signalling pathways that regulate MSCs in a 3D in vivo-like environment will advance our understanding of the molecular mechanisms that control MSC fate. PMID:27668000

  5. Real-Time Analysis of Endogenous Wnt Signalling in 3D Mesenchymal Stromal Cells

    PubMed Central

    Saleh, Fatima; Etheridge, S. Leah

    2016-01-01

    Wnt signalling has been implicated in the regulation of stem cell self-renewal and differentiation; however, the majority of in vitro studies are carried out using monolayer 2D culture techniques. Here, we used mesenchymal stromal cell (MSC) EGFP reporter lines responsive to Wnt pathway activation in a 3D spheroid culture system to mimic better the in vivo environment. Endogenous Wnt signalling was then investigated under basal conditions and when MSCs were induced to undergo osteogenic and adipogenic differentiation. Interestingly, endogenous Wnt signalling was only active during 3D differentiation whereas 2D cultures showed no EGFP expression throughout an extended differentiation time-course. Furthermore, exogenous Wnt signalling in 3D adipogenic conditions inhibited differentiation compared to unstimulated controls. In addition, suppressing Wnt signalling by Dkk-1 restored and facilitated adipogenic differentiation in MSC spheroids. Our findings indicate that endogenous Wnt signalling is active and can be tracked in 3D MSC cultures where it may act as a molecular switch in adipogenesis. The identification of the signalling pathways that regulate MSCs in a 3D in vivo-like environment will advance our understanding of the molecular mechanisms that control MSC fate. PMID:27668000

  6. Real-Time Analysis of Endogenous Wnt Signalling in 3D Mesenchymal Stromal Cells

    PubMed Central

    Saleh, Fatima; Etheridge, S. Leah

    2016-01-01

    Wnt signalling has been implicated in the regulation of stem cell self-renewal and differentiation; however, the majority of in vitro studies are carried out using monolayer 2D culture techniques. Here, we used mesenchymal stromal cell (MSC) EGFP reporter lines responsive to Wnt pathway activation in a 3D spheroid culture system to mimic better the in vivo environment. Endogenous Wnt signalling was then investigated under basal conditions and when MSCs were induced to undergo osteogenic and adipogenic differentiation. Interestingly, endogenous Wnt signalling was only active during 3D differentiation whereas 2D cultures showed no EGFP expression throughout an extended differentiation time-course. Furthermore, exogenous Wnt signalling in 3D adipogenic conditions inhibited differentiation compared to unstimulated controls. In addition, suppressing Wnt signalling by Dkk-1 restored and facilitated adipogenic differentiation in MSC spheroids. Our findings indicate that endogenous Wnt signalling is active and can be tracked in 3D MSC cultures where it may act as a molecular switch in adipogenesis. The identification of the signalling pathways that regulate MSCs in a 3D in vivo-like environment will advance our understanding of the molecular mechanisms that control MSC fate.

  7. The MODIS Rapid Response Project: Near-Real-Time Processing for Fire Monitoring and Other Applications

    NASA Astrophysics Data System (ADS)

    Descloitres, J.; Justice, C.; Sohlberg, R.; Giglio, L.; Schmaltz, J.; Seaton, J.; Davies, D.; Anyamba, A.; Hansen, M.; Carroll, M.; Sullivan, M.

    2003-12-01

    The Moderate-resolution Imaging Spectroradiometer (MODIS) instrument on board the Terra and Aqua satellites offers an unprecedented combination of daily spatial coverage, spatial resolution, and spectral characteristics. These capabilities make MODIS ideal to observe a variety of rapid events: active fires, floods, smoke transport, dust storms, severe storms, iceberg calving, and volcanic eruptions. The MODIS Rapid Response System (http://rapidfire.sci.gsfc.nasa.gov) was developed at NASA's Goddard Space Flight Center to provide a rapid response to those events, with initial emphasis on active fire detection and 250m-resolution imagery. MODIS data for most of the Earth's land surface is processed just a few hours after data acquisition. A collaboration between NASA, the University of Maryland and the U.S.D.A. Forest Service has been developed to provide fire information derived from MODIS to federal fire managers. Active fire locations in the conterminous United States are produced by the MODIS Rapid Response System and communicated to the Forest Service within a few minutes of production. The MODIS Rapid Response processing was also adapted to Direct Broadcast to reduce the product turn-around to just minutes after data acquisition regionally. MODIS active fire locations are used by the Forest Service to generate regional fire maps over the United States, updated twice daily and provided to the fire managers to help them allocate firefighting resources. Active fire locations are also distributed in near-real-time to the Global Observation of Forest Cover (G.O.F.C.) user community through a web interface integrating MODIS active fire locations and Geographic Information System (G.I.S.) datasets. The suite of MODIS rapid fire products is currently being complemented with a Smoke Index product and a Burned Area product that will represent two new key tools available to the fire community. Finally a new collaboration with the U.S.D.A. Foreign Agricultural Service was

  8. A cortical architecture on parallel hardware for motion processing in real time.

    PubMed

    Pauwels, Karl; Krüger, Norbert; Lappe, Markus; Wörgötter, Florentin; Van Hulle, Marc M

    2010-01-01

    Walking through a crowd or driving on a busy street requires monitoring your own movement and that of others. The segmentation of these other, independently moving, objects is one of the most challenging tasks in vision as it requires fast and accurate computations for the disentangling of independent motion from egomotion, often in cluttered scenes. This is accomplished in our brain by the dorsal visual stream relying on heavy parallel-hierarchical processing across many areas. This study is the first to utilize the potential of such design in an artificial vision system. We emulate large parts of the dorsal stream in an abstract way and implement an architecture with six interdependent feature extraction stages (e.g., edges, stereo, optical flow, etc.). The computationally highly demanding combination of these features is used to reliably extract moving objects in real time. This way-utilizing the advantages of parallel-hierarchical design-we arrive at a novel and powerful artificial vision system that approaches richness, speed, and accuracy of visual processing in biological systems.

  9. Lysosome triggered near-infrared fluorescence imaging of cellular trafficking processes in real time

    PubMed Central

    Grossi, Marco; Morgunova, Marina; Cheung, Shane; Scholz, Dimitri; Conroy, Emer; Terrile, Marta; Panarella, Angela; Simpson, Jeremy C.; Gallagher, William M.; O'Shea, Donal F.

    2016-01-01

    Bioresponsive NIR-fluorophores offer the possibility for continual visualization of dynamic cellular processes with added potential for direct translation to in vivo imaging. Here we show the design, synthesis and lysosome-responsive emission properties of a new NIR fluorophore. The NIR fluorescent probe design differs from typical amine functionalized lysosomotropic stains with off/on fluorescence switching controlled by a reversible phenol/phenolate interconversion. Emission from the probe is shown to be highly selective for the lysosomes in co-imaging experiments using a HeLa cell line expressing the lysosomal-associated membrane protein 1 fused to green fluorescent protein. The responsive probe is capable of real-time continuous imaging of fundamental cellular processes such as endocytosis, lysosomal trafficking and efflux in 3D and 4D. The advantage of the NIR emission allows for direct translation to in vivo tumour imaging, which is successfully demonstrated using an MDA-MB-231 subcutaneous tumour model. This bioresponsive NIR fluorophore offers significant potential for use in live cellular and in vivo imaging, for which currently there is a deficit of suitable molecular fluorescent tools. PMID:26927507

  10. The role of parallelism in the real-time processing of anaphora

    PubMed Central

    Poirier, Josée; Walenski, Matthew; Shapiro, Lewis P.

    2012-01-01

    Parallelism effects refer to the facilitated processing of a target structure when it follows a similar, parallel structure. In coordination, a parallelism-related conjunction triggers the expectation that a second conjunct with the same structure as the first conjunct should occur. It has been proposed that parallelism effects reflect the use of the first structure as a template that guides the processing of the second. In this study, we examined the role of parallelism in real-time anaphora resolution by charting activation patterns in coordinated constructions containing anaphora, Verb-Phrase Ellipsis (VPE) and Noun-Phrase Traces (NP-traces). Specifically, we hypothesised that an expectation of parallelism would incite the parser to assume a structure similar to the first conjunct in the second, anaphora-containing conjunct. The speculation of a similar structure would result in early postulation of covert anaphora. Experiment 1 confirms that following a parallelism-related conjunction, first-conjunct material is activated in the second conjunct. Experiment 2 reveals that an NP-trace in the second conjunct is posited immediately where licensed, which is earlier than previously reported in the literature. In light of our findings, we propose an intricate relation between structural expectations and anaphor resolution. PMID:23741080

  11. Near Real Time VIIRS EDR Products Via Direct Broadcast Using the Community Satellite Processing Package (CSPP)

    NASA Astrophysics Data System (ADS)

    Cureton, G. P.; Mindock, S.; Martin, G.; Garcia, R.; Strabala, K.; Davies, J.; Bearson, N.; Gumley, L.; Huang, A.

    2014-12-01

    The Cooperative Institute for Meteorological Satellite Studies (CIMSS) has a long history of supporting the Direct Broadcast (DB) community for various sensors, recently with the International MODIS/AIRS Processing Package (IMAPP) for the NASA EOS polar orbiters Terra and Aqua. CIMSS has continued this effort into the NPP/JPSS (previously NPOESS) era with the development of the Community Satellite Processing Package (CSPP), supporting the VIIRS, CrIS and ATMS sensors on the Suomi National Polar-orbiting Partnership (Suomi NPP) spacecraft. Within CSPP, the Visible Infrared Imaging Radiometer Suite (VIIRS) Environmental Data Record (EDR) products are based on the NOAA Operational products as implemented by Raytheon in the Algorithm Development Library (ADL), packaged for use in a Direct Broadcast environment. Examples of near real time usage of various VIIRS EDR products are given, with a focus on products obtained using CSPP (which include the Cloud Mask, Active Fires, Aerosol Optical Thickness, Sea Surface Temperature, Surface Reflectance, Vegetation Index, Surface Type and Land Surface Temperature products).

  12. Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays.

    PubMed

    Seidel, Diana; Obendorf, Janine; Englich, Beate; Jahnke, Heinz-Georg; Semkova, Vesselina; Haupt, Simone; Girard, Mathilde; Peschanski, Marc; Brüstle, Oliver; Robitzki, Andrea A

    2016-12-15

    In today's neurodevelopment and -disease research, human neural stem/progenitor cell-derived networks represent the sole accessible in vitro model possessing a primary phenotype. However, cultivation and moreover, differentiation as well as maturation of human neural stem/progenitor cells are very complex and time-consuming processes. Therefore, techniques for the sensitive non-invasive, real-time monitoring of neuronal differentiation and maturation are highly demanded. Using impedance spectroscopy, the differentiation of several human neural stem/progenitor cell lines was analyzed in detail. After development of an optimum microelectrode array for reliable and sensitive long-term monitoring, distinct cell-dependent impedimetric parameters that could specifically be associated with the progress and quality of neuronal differentiation were identified. Cellular impedance changes correlated well with the temporal regulation of biomolecular progenitor versus mature neural marker expression as well as cellular structure changes accompanying neuronal differentiation. More strikingly, the capability of the impedimetric differentiation monitoring system for the use as a screening tool was demonstrated by applying compounds that are known to promote neuronal differentiation such as the γ-secretase inhibitor DAPT. The non-invasive impedance spectroscopy-based measurement system can be used for sensitive and quantitative monitoring of neuronal differentiation processes. Therefore, this technique could be a very useful tool for quality control of neuronal differentiation and moreover, for neurogenic compound identification and industrial high-content screening demands in the field of safety assessment as well as drug development.

  13. Real-Time Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals from Paralysed Patients.

    PubMed

    Fukuma, Ryohei; Yanagisawa, Takufumi; Saitoh, Youichi; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Sugata, Hisato; Yokoi, Hiroshi; Hirata, Masayuki; Kamitani, Yukiyasu; Yoshimine, Toshiki

    2016-01-01

    Neuroprosthetic arms might potentially restore motor functions for severely paralysed patients. Invasive measurements of cortical currents using electrocorticography have been widely used for neuroprosthetic control. Moreover, magnetoencephalography (MEG) exhibits characteristic brain signals similar to those of invasively measured signals. However, it remains unclear whether non-invasively measured signals convey enough motor information to control a neuroprosthetic hand, especially for severely paralysed patients whose sensorimotor cortex might be reorganized. We tested an MEG-based neuroprosthetic system to evaluate the accuracy of using cortical currents in the sensorimotor cortex of severely paralysed patients to control a prosthetic hand. The patients attempted to grasp with or open their paralysed hand while the slow components of MEG signals (slow movement fields; SMFs) were recorded. Even without actual movements, the SMFs of all patients indicated characteristic spatiotemporal patterns similar to actual movements, and the SMFs were successfully used to control a neuroprosthetic hand in a closed-loop condition. These results demonstrate that the slow components of MEG signals carry sufficient information to classify movement types. Successful control by paralysed patients suggests the feasibility of using an MEG-based neuroprosthetic hand to predict a patient's ability to control an invasive neuroprosthesis via the same signal sources as the non-invasive method. PMID:26904967

  14. Real-Time Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals from Paralysed Patients

    PubMed Central

    Fukuma, Ryohei; Yanagisawa, Takufumi; Saitoh, Youichi; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Sugata, Hisato; Yokoi, Hiroshi; Hirata, Masayuki; Kamitani, Yukiyasu; Yoshimine, Toshiki

    2016-01-01

    Neuroprosthetic arms might potentially restore motor functions for severely paralysed patients. Invasive measurements of cortical currents using electrocorticography have been widely used for neuroprosthetic control. Moreover, magnetoencephalography (MEG) exhibits characteristic brain signals similar to those of invasively measured signals. However, it remains unclear whether non-invasively measured signals convey enough motor information to control a neuroprosthetic hand, especially for severely paralysed patients whose sensorimotor cortex might be reorganized. We tested an MEG-based neuroprosthetic system to evaluate the accuracy of using cortical currents in the sensorimotor cortex of severely paralysed patients to control a prosthetic hand. The patients attempted to grasp with or open their paralysed hand while the slow components of MEG signals (slow movement fields; SMFs) were recorded. Even without actual movements, the SMFs of all patients indicated characteristic spatiotemporal patterns similar to actual movements, and the SMFs were successfully used to control a neuroprosthetic hand in a closed-loop condition. These results demonstrate that the slow components of MEG signals carry sufficient information to classify movement types. Successful control by paralysed patients suggests the feasibility of using an MEG-based neuroprosthetic hand to predict a patient’s ability to control an invasive neuroprosthesis via the same signal sources as the non-invasive method. PMID:26904967

  15. Accessible high performance computing solutions for near real-time image processing for time critical applications

    NASA Astrophysics Data System (ADS)

    Bielski, Conrad; Lemoine, Guido; Syryczynski, Jacek

    2009-09-01

    High Performance Computing (HPC) hardware solutions such as grid computing and General Processing on a Graphics Processing Unit (GPGPU) are now accessible to users with general computing needs. Grid computing infrastructures in the form of computing clusters or blades are becoming common place and GPGPU solutions that leverage the processing power of the video card are quickly being integrated into personal workstations. Our interest in these HPC technologies stems from the need to produce near real-time maps from a combination of pre- and post-event satellite imagery in support of post-disaster management. Faster processing provides a twofold gain in this situation: 1. critical information can be provided faster and 2. more elaborate automated processing can be performed prior to providing the critical information. In our particular case, we test the use of the PANTEX index which is based on analysis of image textural measures extracted using anisotropic, rotation-invariant GLCM statistics. The use of this index, applied in a moving window, has been shown to successfully identify built-up areas in remotely sensed imagery. Built-up index image masks are important input to the structuring of damage assessment interpretation because they help optimise the workload. The performance of computing the PANTEX workflow is compared on two different HPC hardware architectures: (1) a blade server with 4 blades, each having dual quad-core CPUs and (2) a CUDA enabled GPU workstation. The reference platform is a dual CPU-quad core workstation and the PANTEX workflow total computing time is measured. Furthermore, as part of a qualitative evaluation, the differences in setting up and configuring various hardware solutions and the related software coding effort is presented.

  16. Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals.

    PubMed

    Robinson, Neethu; Zaidi, Ali Danish; Rana, Mohit; Prasad, Vinod A; Guan, Cuntai; Birbaumer, Niels; Sitaram, Ranganatha

    2016-01-01

    Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain-Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM), so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity. PMID:27467528

  17. Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals

    PubMed Central

    Rana, Mohit; Prasad, Vinod A.; Guan, Cuntai; Birbaumer, Niels; Sitaram, Ranganatha

    2016-01-01

    Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain–Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM), so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity. PMID:27467528

  18. Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals.

    PubMed

    Robinson, Neethu; Zaidi, Ali Danish; Rana, Mohit; Prasad, Vinod A; Guan, Cuntai; Birbaumer, Niels; Sitaram, Ranganatha

    2016-01-01

    Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain-Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM), so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity.

  19. Coherent time-stretch transformation for real-time capture of wideband signals.

    PubMed

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-01

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.

  20. Coherent time-stretch transformation for real-time capture of wideband signals.

    PubMed

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-01

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection. PMID:24104036

  1. Real-time nonlinear finite element analysis for surgical simulation using graphics processing units.

    PubMed

    Taylor, Zeike A; Cheng, Mario; Ourselin, Sébastien

    2007-01-01

    Clinical employment of biomechanical modelling techniques in areas of medical image analysis and surgical simulation is often hindered by conflicting requirements for high fidelity in the modelling approach and high solution speeds. We report the development of techniques for high-speed nonlinear finite element (FE) analysis for surgical simulation. We employ a previously developed nonlinear total Lagrangian explicit FE formulation which offers significant computational advantages for soft tissue simulation. However, the key contribution of the work is the presentation of a fast graphics processing unit (GPU) solution scheme for the FE equations. To the best of our knowledge this represents the first GPU implementation of a nonlinear FE solver. We show that the present explicit FE scheme is well-suited to solution via highly parallel graphics hardware, and that even a midrange GPU allows significant solution speed gains (up to 16.4x) compared with equivalent CPU implementations. For the models tested the scheme allows real-time solution of models with up to 16000 tetrahedral elements. The use of GPUs for such purposes offers a cost-effective high-performance alternative to expensive multi-CPU machines, and may have important applications in medical image analysis and surgical simulation. PMID:18051120

  2. Real-time measurements of crystallization processes in viscoelastic polymeric photonic crystals

    NASA Astrophysics Data System (ADS)

    Snoswell, David R. E.; Finlayson, Chris E.; Zhao, Qibin; Baumberg, Jeremy J.

    2015-11-01

    We present a study of the dynamic shear ordering of viscoelastic photonic crystals, based on core-shell polymeric composite particles. Using an adapted shear-cell arrangement, the crystalline ordering of the material under conditions of oscillatory shear is interrogated in real time, through both video imaging and from the optical transmission spectra of the cell. In order to gain a deeper understanding of the macroscopic influences of shear on the crystallization process in this solvent-free system, the development of bulk ordering is studied as a function of the key parameters including duty cycle and shear-strain magnitude. In particular, optimal ordering is observed from a prerandomized sample at shear strains of around 160%, for 1-Hz oscillations. This ordering reaches completion over time scales of order 10 s. These observations suggest significant local strains are needed to drive nanoparticles through energy barriers, and that local creep is needed to break temporal symmetry in such high-viscosity nanoassemblies. Crystal shear-melting effects are also characterized under conditions of constant shear rate. These quantitative experiments aim to stimulate the development of theoretical models which can deal with the strong local particle interactions in this system.

  3. ISPATOM: A Generic Real-Time Data Processing Tool Without Programming

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam

    2007-01-01

    Information Sharing Protocol Advanced Tool of Math (ISPATOM) is an application program allowing for the streamlined generation of comps, which subscribe to streams of incoming telemetry data, perform any necessary computations on the data, then send the data to other programs for display and/or further processing in NASA mission control centers. Heretofore, the development of comps was difficult, expensive, and time-consuming: Each comp was custom written manually, in a low-level computing language, by a programmer attempting to follow requirements of flight controllers. ISPATOM enables a flight controller who is not a programmer to write a comp by simply typing in one or more equation( s) at a command line or retrieving the equation(s) from a text file. ISPATOM then subscribes to the necessary input data, performs all of necessary computations, and sends out the results. It sends out new results whenever the input data change. The use of equations in ISPATOM is no more difficult than is entering equations in a spreadsheet. The time involved in developing a comp is thus limited to the time taken to decide on the necessary equations. Thus, ISPATOM is a real-time dynamic calculator.

  4. Real-time image processing of TOF range images using a reconfigurable processor system

    NASA Astrophysics Data System (ADS)

    Hussmann, S.; Knoll, F.; Edeler, T.

    2011-07-01

    During the last years, Time-of-Flight sensors achieved a significant impact onto research fields in machine vision. In comparison to stereo vision system and laser range scanners they combine the advantages of active sensors providing accurate distance measurements and camera-based systems recording a 2D matrix at a high frame rate. Moreover low cost 3D imaging has the potential to open a wide field of additional applications and solutions in markets like consumer electronics, multimedia, digital photography, robotics and medical technologies. This paper focuses on the currently implemented 4-phase-shift algorithm in this type of sensors. The most time critical operation of the phase-shift algorithm is the arctangent function. In this paper a novel hardware implementation of the arctangent function using a reconfigurable processor system is presented and benchmarked against the state-of-the-art CORDIC arctangent algorithm. Experimental results show that the proposed algorithm is well suited for real-time processing of the range images of TOF cameras.

  5. Real-time PCR monitoring of signal transduction related genes involved in water stress tolerance mechanism of sunflower.

    PubMed

    Roche, Jane; Hewezi, Tarek; Bouniols, Andrée; Gentzbittel, Laurent

    2009-02-01

    The study deals with the quantitative expression pattern of genes involved in signaling transduction pathways in response to water stress in leaves and embryos of a water stress tolerant genotype compared to a non-tolerant genotype using real-time quantitative PCR. The experiment was conducted in the field. The results showed a high quantitative up-regulation of genes belonging to protein kinase, phosphatase and transcription factor pathways (from two to 70 fold) only in leaves of the tolerant genotype compared to the non-tolerant genotype. Moreover, genes related to the protein kinase pathway were down-regulated in leaves of the non-tolerant genotype. On the contrary, in seeds, our study showed that the positive regulation of genes related to the signal transduction pathway observed in leaves of the tolerant genotype is turned off, suggesting different transcriptional control of signaling water stress in reproductive organs compared to vegetative organs. PMID:19054682

  6. Real-time monitoring of calcification process by Sporosarcina pasteurii biofilm.

    PubMed

    Harris, Dustin; Ummadi, Jyothir Ganesh; Thurber, Andrew R; Allau, Yvan; Verba, Circe; Colwell, Frederick; Torres, Marta E; Koley, Dipankar

    2016-05-10

    Sporosarcina pasteurii is known to produce calcite or biocement in the presence of urea and Ca(2+). Herein, we report the use of novel ultramicrosensors such as pH, Ca(2+), and redox sensors, along with a scanning electrochemical microscope (SECM), to monitor a real-time, bacteria-mediated urea hydrolysis process and subsequent changes in morphology due to CaCO3 precipitation. We report that the surface pH of a live biofilm changed rapidly from 7.4 to 9.2 within 2 min, whereas similar fast depletion (10 min) of Ca(2+) was observed from 85 mM to 10 mM in the presence of a high urea (10 g L(-1)) brine solution at 23 °C. Both the pH and the Ca(2+) concentration profiles were extended up to 600 μm from the biofilm surface, whereas the bulk chemical composition of the brine solution remained constant over the entire 4 h of SECM experiments. In addition, we observed a change in biofilm surface morphology and an increase in overall biofilm height of 50 μm after 4 h of precipitation. Electron microscopy confirmed the changes in surface morphology and formation of CaCO3 crystals. Development of the Ca(2+) profile took 10 min, whereas that of the pH profile took 2 min. This finding indicates that the initial urea hydrolysis process is fast and limited by urease or number of bacteria, whereas later CaCO3 formation and growth of crystals is a slow chemical process. The ultramicrosensors and approaches employed here are capable of accurately characterizing bioremediation on temporal and spatial scales pertinent to the microbial communities and the processes they mediate. PMID:26939806

  7. Real-time detection of undersea mines: a complete screening and acoustic fusion processing system

    NASA Astrophysics Data System (ADS)

    Sacramone, Anthony; Desai, Mukund N.

    1999-08-01

    A complete mine detection/classification (D/C) system has been specified and implemented, which runs in real-time, and has been exercised on the latest available dual-frequency side-scan sonar acoustic image sets. The compete DC system is comprised of a collection of algorithms that has been developed and evolved at Draper Laboratory over the past decade. The detection process consists of image normalization, enhancement, segmentation, and feature extraction algorithms. The enhancement algorithm is a variant of a Markov Random Field based anomaly screener developed in FY-94. The feature that were extracted were those derived in FY-93. A distance constrained matching algorithm, which was developed in FY-95, is used to generate a list of high and low frequency fused tokens. The classification process involves the evaluation of a hierarchy of three multi-layer perceptron neural networks: HF, LF, and HF/LF fused. Research performed in FY-95 also concentrated on the development of several variants of information fusion with hierarchical neural networks. The 'discriminant-combining' variant of fusion was selected as part of this DC system. In addition, a classification post- processing and decision node statistic modification step, which was developed in FY-96, was included. This paper will describe the algorithm that were implemented. However, the emphasis will be on the performance results of processing the latest available side-scan imagery, comparison of single sensor vs dual-frequency sensor results, and the issues that were encountered while exercising the DC system on the new data set.

  8. Optimal swab processing recovery method for detection of bioterrorism-related Francisella tularensis by real-time PCR.

    PubMed

    Walker, Roblena E; Petersen, Jeannine M; Stephens, Kenyatta W; Dauphin, Leslie A

    2010-10-01

    Francisella tularensis, the etiological agent of tularemia, is regarded as a potential bioterrorism agent. The advent of bioterrorism has heightened awareness of the need for validated methods for processing environmental samples. In this study we determined the optimal method for processing environmental swabs for the recovery and subsequent detection of F. tularensis by the use of real-time PCR assays. Four swab processing recovery methods were compared: heat, sonication, vortexing, and the Swab Extraction Tube System (SETS). These methods were evaluated using cotton, foam, polyester and rayon swabs spiked with six pathogenic strains of F. tularensis. Real-time PCR analysis using a multi-target 5'nuclease assay for F. tularensis showed that the use of the SETS method resulted in the best limit of detection when evaluated using multiple strains of F. tularensis. We demonstrated also that the efficiency of F. tularensis recovery from swab specimens was not equivalent for all swab processing methodologies and, thus, that this variable can affect real-time PCR assay sensitivity. The effectiveness of the SETS method was independent of the automated DNA extraction method and real-time PCR platforms used. In conclusion, diagnostic laboratories can now potentially incorporate the SETS method into specimen processing protocols for the rapid and efficient detection of F. tularensis by real-time PCR during laboratory bioterrorism-related investigations.

  9. Instantaneous Real-Time Kinematic Decimeter-Level Positioning with BeiDou Triple-Frequency Signals over Medium Baselines

    PubMed Central

    He, Xiyang; Zhang, Xiaohong; Tang, Long; Liu, Wanke

    2015-01-01

    Many applications, such as marine navigation, land vehicles location, etc., require real time precise positioning under medium or long baseline conditions. In this contribution, we develop a model of real-time kinematic decimeter-level positioning with BeiDou Navigation Satellite System (BDS) triple-frequency signals over medium distances. The ambiguities of two extra-wide-lane (EWL) combinations are fixed first, and then a wide lane (WL) combination is reformed based on the two EWL combinations for positioning. Theoretical analysis and empirical analysis is given of the ambiguity fixing rate and the positioning accuracy of the presented method. The results indicate that the ambiguity fixing rate can be up to more than 98% when using BDS medium baseline observations, which is much higher than that of dual-frequency Hatch-Melbourne-Wübbena (HMW) method. As for positioning accuracy, decimeter level accuracy can be achieved with this method, which is comparable to that of carrier-smoothed code differential positioning method. Signal interruption simulation experiment indicates that the proposed method can realize fast high-precision positioning whereas the carrier-smoothed code differential positioning method needs several hundreds of seconds for obtaining high precision results. We can conclude that a relatively high accuracy and high fixing rate can be achieved for triple-frequency WL method with single-epoch observations, displaying significant advantage comparing to traditional carrier-smoothed code differential positioning method. PMID:26703614

  10. Instantaneous Real-Time Kinematic Decimeter-Level Positioning with BeiDou Triple-Frequency Signals over Medium Baselines.

    PubMed

    He, Xiyang; Zhang, Xiaohong; Tang, Long; Liu, Wanke

    2015-01-01

    Many applications, such as marine navigation, land vehicles location, etc., require real time precise positioning under medium or long baseline conditions. In this contribution, we develop a model of real-time kinematic decimeter-level positioning with BeiDou Navigation Satellite System (BDS) triple-frequency signals over medium distances. The ambiguities of two extra-wide-lane (EWL) combinations are fixed first, and then a wide lane (WL) combination is reformed based on the two EWL combinations for positioning. Theoretical analysis and empirical analysis is given of the ambiguity fixing rate and the positioning accuracy of the presented method. The results indicate that the ambiguity fixing rate can be up to more than 98% when using BDS medium baseline observations, which is much higher than that of dual-frequency Hatch-Melbourne-Wübbena (HMW) method. As for positioning accuracy, decimeter level accuracy can be achieved with this method, which is comparable to that of carrier-smoothed code differential positioning method. Signal interruption simulation experiment indicates that the proposed method can realize fast high-precision positioning whereas the carrier-smoothed code differential positioning method needs several hundreds of seconds for obtaining high precision results. We can conclude that a relatively high accuracy and high fixing rate can be achieved for triple-frequency WL method with single-epoch observations, displaying significant advantage comparing to traditional carrier-smoothed code differential positioning method. PMID:26703614

  11. Physical processes and real-time chemical measurement of the insect olfactory environment.

    PubMed

    Riffell, Jeffrey A; Abrell, Leif; Hildebrand, John G

    2008-07-01

    Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems.

  12. Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment

    PubMed Central

    Abrell, Leif; Hildebrand, John G.

    2009-01-01

    Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems. PMID:18548311

  13. Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography

    SciTech Connect

    Schotte, Friedrich; Cho, Hyun Sun; Kaila, Ville R.I.; Kamikubo, Hironari; Dashdorj, Naranbaatar; Henry, Eric R.; Graber, Timothy J.; Henning, Robert; Wulff, Michael; Hummer, Gerhard; Kataoka, Mikio; Anfinrud, Philip A.

    2012-11-06

    To understand how signaling proteins function, it is necessary to know the time-ordered sequence of events that lead to the signaling state. We recently developed on the BioCARS 14-IDB beamline at the Advanced Photon Source the infrastructure required to characterize structural changes in protein crystals with near-atomic spatial resolution and 150-ps time resolution, and have used this capability to track the reversible photocycle of photoactive yellow protein (PYP) following trans-to-cis photoisomerization of its p-coumaric acid (pCA) chromophore over 10 decades of time. The first of four major intermediates characterized in this study is highly contorted, with the pCA carbonyl rotated nearly 90° out of the plane of the phenolate. A hydrogen bond between the pCA carbonyl and the Cys69 backbone constrains the chromophore in this unusual twisted conformation. Density functional theory calculations confirm that this structure is chemically plausible and corresponds to a strained cis intermediate. This unique structure is short-lived (~600 ps), has not been observed in prior cryocrystallography experiments, and is the progenitor of intermediates characterized in previous nanosecond time-resolved Laue crystallography studies. The structural transitions unveiled during the PYP photocycle include trans/cis isomerization, the breaking and making of hydrogen bonds, formation/relaxation of strain, and gated water penetration into the interior of the protein. This mechanistically detailed, near-atomic resolution description of the complete PYP photocycle provides a framework for understanding signal transduction in proteins, and for assessing and validating theoretical/computational approaches in protein biophysics.

  14. Real-Time Cardiac Arrhythmia Detection Using WOLA Filterbank Analysis of EGM Signals

    NASA Astrophysics Data System (ADS)

    Sheikhzadeh, Hamid; Brennan, Robert L.; So, Simon

    2007-12-01

    Novel methods of cardiac rhythm detection are proposed that are based on time-frequency analysis by a weighted overlap-add (WOLA) oversampled filterbank. Cardiac signals are obtained from intracardiac electrograms and decomposed into the time-frequency domain and analyzed by parallel peak detectors in selected frequency subbands. The coherence (synchrony) of the subband peaks is analyzed and employed to detect an optimal peak sequence representing the beat locations. By further analysis of the synchrony of the subband beats and the periodicity and regularity of the optimal beat, various possible cardiac events (including fibrillation, flutter, and tachycardia) are detected. The Ann Arbor Electrogram Library is used to evaluate the proposed detection method in clean and in additive noise. The evaluation results show that the method never misses any episode of fibrillation or flutter in clean or in noise and is robust to far-field R-wave interference. Furthermore, all other misclassification errors were within the acceptable limits.

  15. Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems.

    PubMed

    Fernandez-Llatas, Carlos; Lizondo, Aroa; Monton, Eduardo; Benedi, Jose-Miguel; Traver, Vicente

    2015-11-30

    The definition of efficient and accurate health processes in hospitals is crucial for ensuring an adequate quality of service. Knowing and improving the behavior of the surgical processes in a hospital can improve the number of patients that can be operated on using the same resources. However, the measure of this process is usually made in an obtrusive way, forcing nurses to get information and time data, affecting the proper process and generating inaccurate data due to human errors during the stressful journey of health staff in the operating theater. The use of indoor location systems can take time information about the process in an unobtrusive way, freeing nurses, allowing them to engage in purely welfare work. However, it is necessary to present these data in a understandable way for health professionals, who cannot deal with large amounts of historical localization log data. The use of process mining techniques can deal with this problem, offering an easily understandable view of the process. In this paper, we present a tool and a process mining-based methodology that, using indoor location systems, enables health staff not only to represent the process, but to know precise information about the deployment of the process in an unobtrusive and transparent way. We have successfully tested this tool in a real surgical area with 3613 patients during February, March and April of 2015.

  16. Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems

    PubMed Central

    Fernandez-Llatas, Carlos; Lizondo, Aroa; Monton, Eduardo; Benedi, Jose-Miguel; Traver, Vicente

    2015-01-01

    The definition of efficient and accurate health processes in hospitals is crucial for ensuring an adequate quality of service. Knowing and improving the behavior of the surgical processes in a hospital can improve the number of patients that can be operated on using the same resources. However, the measure of this process is usually made in an obtrusive way, forcing nurses to get information and time data, affecting the proper process and generating inaccurate data due to human errors during the stressful journey of health staff in the operating theater. The use of indoor location systems can take time information about the process in an unobtrusive way, freeing nurses, allowing them to engage in purely welfare work. However, it is necessary to present these data in a understandable way for health professionals, who cannot deal with large amounts of historical localization log data. The use of process mining techniques can deal with this problem, offering an easily understandable view of the process. In this paper, we present a tool and a process mining-based methodology that, using indoor location systems, enables health staff not only to represent the process, but to know precise information about the deployment of the process in an unobtrusive and transparent way. We have successfully tested this tool in a real surgical area with 3613 patients during February, March and April of 2015. PMID:26633395

  17. Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems.

    PubMed

    Fernandez-Llatas, Carlos; Lizondo, Aroa; Monton, Eduardo; Benedi, Jose-Miguel; Traver, Vicente

    2015-01-01

    The definition of efficient and accurate health processes in hospitals is crucial for ensuring an adequate quality of service. Knowing and improving the behavior of the surgical processes in a hospital can improve the number of patients that can be operated on using the same resources. However, the measure of this process is usually made in an obtrusive way, forcing nurses to get information and time data, affecting the proper process and generating inaccurate data due to human errors during the stressful journey of health staff in the operating theater. The use of indoor location systems can take time information about the process in an unobtrusive way, freeing nurses, allowing them to engage in purely welfare work. However, it is necessary to present these data in a understandable way for health professionals, who cannot deal with large amounts of historical localization log data. The use of process mining techniques can deal with this problem, offering an easily understandable view of the process. In this paper, we present a tool and a process mining-based methodology that, using indoor location systems, enables health staff not only to represent the process, but to know precise information about the deployment of the process in an unobtrusive and transparent way. We have successfully tested this tool in a real surgical area with 3613 patients during February, March and April of 2015. PMID:26633395

  18. An efficient VLSI implementation of on-line recursive ICA processor for real-time multi-channel EEG signal separation.

    PubMed

    Shih, Wei-Yeh; Liao, Jui-Chieh; Huang, Kuan-Ju; Fang, Wai-Chi; Cauwenberghs, Gert; Jung, Tzyy-Ping

    2013-01-01

    This paper presents an efficient VLSI implementation of on-line recursive ICA (ORICA) processor for real-time multi-channel EEG signal separation. The proposed design contains a system control unit, a whitening unit, a singular value decomposition unit, a floating matrix multiply unit and, and an ORICA weight training unit. Because the input sample rate of the ORICA processor is 128 Hz, the ORICA processor should produce independent components before the next sample is input in 1/128 s. Under the timing constraints of commutating multi-channel ORICA in real time, the design of the ORICA processor is a mixed architecture, which is designed as different hardware parallelism according to the complexity of processing units. The shared arithmetic processing unit and shared register can reduce hardware complexity and power consumption. The proposed design is implemented used TSMC 90 nm CMOS technology with 8-channel EEG processing in 128 Hz sample rate of raw data and consumes 2.827 mW at 50 MHz clock rate. The performance of the proposed design is also shown to reach 0.0078125 s latency after each EEG sample time, and the average correlation coefficient between the original source signals and extracted ORICA signals for each 1 s frame is 0.9763.

  19. Development of earthquake early warning system using real time signal of broadband seismogram

    SciTech Connect

    Gunawan, Hendar; Puspito, Nanang T.; Ibrahim, Gunawan; Harjadi, Prih

    2012-06-20

    Earthquake pose serious threat of live and properties for urban area near subduction zone offshore and active fault on land. Jakarta and Bandung is an example of big city that no system of Earthquake early warning (EEW) event very high urbanization, and has many important infra structure in the area. The capital city is potentially high risk ground shaking. EEW can be usefull tool for reducing earthquake hazard, if spatial relation between cities and earthquake source is favorable for such warning and their citizens are properly trained to response early warning message. An EEW and rapid response system can provide the critical information needed to minimized lost of live and property and direct rescue. Earthquake ground shaking with magnitude M>6.0 from zone of Megathrust, southern of West Java should potentially damage in the area of west java especially Bandung and Jakarta City. This research development of EEW parameter such as amplitude displacement (Pd), rapid magnitude determination (M) and Peak ground Velocity (PGV). We explore the practical approach to EEW with the use of Broadband seismogram signal. Time effective EEW which epicenter from megathrust zone has potential to provide EEW in the area of west java such as Jakarta first ground shaking more or less 60 second later and strong shaking 118 second after EEW Alarm on CISI Station. EEW notification at potentially damage in the area of west java can be predicted from the characteristic of Pd > 0.5 cm, M> 6 and PGV > 10 cm/sec. GIS as a tool for presentation of hazard mapping in the affected area.

  20. A State-of-the-Art Review of the Real-Time Computer-Aided Study of the Writing Process

    ERIC Educational Resources Information Center

    Abdel Latif, Muhammad M.

    2008-01-01

    Writing researchers have developed various methods for investigating the writing process since the 1970s. The early 1980s saw the occurrence of the real-time computer-aided study of the writing process that relies on the protocols generated by recording the computer screen activities as writers compose using the word processor. This article…

  1. Real-time detection of focal position of workpiece surface during laser processing using diffractive beam samplers

    NASA Astrophysics Data System (ADS)

    Cao, Binh Xuan; Hoang, PhuongLe; Ahn, Sanghoon; Kim, Jeng-o.; Sohn, Hyonkee; Noh, Jiwhan

    2016-11-01

    The real-time fabrication of microgrooves on a curved surface using a laser beam, without preprogramming their shapes into the machining instructions, is a major challenge in laser processing owing to limitations associated with the real-time detection of the focal position. A new approach using a sampled fraction of the beam from a diffractive beam sampler (DBS) is therefore presented in order to overcome this limitation. By considering the sampled fraction of the beam an analysis of the results allows for precise positioning of the specimen for focal-point identification. This allows for the determination of the focus for a broad variety of laser types and laser powers, thereby providing stringent focusing conditions with high numerical apertures. This approach is easy to implement, inexpensive, independent of the roughness or granularity of the workpieces, and more importantly does not require auxiliary lasers and displacement sensors for real-time measurement during the fabrication process.

  2. A real-time and self-calibrating algorithm based on triaxial accelerometer signals for the detection of human posture and activity.

    PubMed

    Curone, Davide; Bertolotti, Gian Mario; Cristiani, Andrea; Secco, Emanuele Lindo; Magenes, Giovanni

    2010-07-01

    Assessment of human activity and posture with triaxial accelerometers provides insightful information about the functional ability: classification of human activities in rehabilitation and elderly surveillance contexts has been already proposed in the literature. In the meanwhile, recent technological advances allow developing miniaturized wearable devices, integrated within garments, which may extend this assessment to novel tasks, such as real-time remote surveillance of workers and emergency operators intervening in harsh environments. We present an algorithm for human posture and activity-level detection, based on the real-time processing of the signals produced by one wearable triaxial accelerometer. The algorithm is independent of the sensor orientation with respect to the body. Furthermore, it associates to its outputs a "reliability" value, representing the classification quality, in order to launch reliable alarms only when effective dangerous conditions are detected. The system was tested on a customized device to estimate the computational resources needed for real-time functioning. Results exhibit an overall 96.2% accuracy when classifying both static and dynamic activities.

  3. Excimer laser activation of ultra-shallow junctions in doped Si: Modeling, experiments and real time process monitoring

    NASA Astrophysics Data System (ADS)

    Semmar, Nadjib; Darif, Mohamed; Millon, Eric; Petit, Agnès; Etienne, Hasnaa; Delaporte, Philippe

    2012-07-01

    This work concerns the ALDIP (Laser Activation of Doping agents Implanted by Plasma immersion) project that was a successful collaboration with Ion Beam Services (IBS) corporation, the "Lasers, Plasmas and Photonic Processes" (LP3) laboratory and the GREMI laboratory. The aim of this work is to control the melted thickness (i.e. junction thickness in the range 10-100 nm) by the Real Time Reflectivity (TRR) monitoring during the Laser Thermal Processing (LTP). The LTP is achieved by using a KrF laser beam (248 nm, 27 ns) with a homogeneous 'Top-Hat' space distribution to induce a selective melting and the resolidification of the doped Si:B samples on few nanometers. This recrystallization is conducted here after the pre-amorphisation process resulting from the ionic implantation of Si (PIII IBS implanter). Thus, all the studied samples are partially amorphized and boron doped. TRR method allows the accurate evaluation of the melting threshold, the duration of the melting phase, and the maximum melted thickness. Obtained results versus laser fluence are shown in the new case of under vacuum treatment. In order to calibrate the TRR method (to determine the intensity and the profile of the TRR signal versus the melting depth), we have used the secondary ion mass spectrometry (TOF-SIMS) analysis. This technique gives the doping agents profile versus the depth before and after LTP and confirms also the melting kinetics from TRR results.

  4. Graphics processing unit-accelerated real-time compressive sensing spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2015-03-01

    In this paper, we systematically demonstrate two real-time CS SD OCT systems based on a conventional desktop having three GPUs. The first one takes fast Fourier transform (FFT) as the sensing technique and under-sampled linear wavenumber spectral sampling as input data, while the second one uses non-uniform fast Fourier transform (NUFFT) and under-sampled nonlinear wavenumber spectral sampling, respectively. The maximum reconstruction speed of 72k and 33.5k A-line/s were achieved for these two systems, respectively, with A-scan size 2048. It is >100 times faster than the C++ implementation and >400 times faster than the MATLAB implementation. Finally, we present real-time dispersion compensated image reconstruction for both systems.

  5. Digital processing to improve image quality in real-time neutron radiography

    NASA Astrophysics Data System (ADS)

    Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    1985-01-01

    Real-time neutron radiography (NTV) has been used for practical applications at the Kyoto University Reactor (KUR). At present, however, the direct image from the TV system is still poor in resolution and low in contrast. In this paper several image improvements are demonstrated, such as a frame summing technique, which are effective in increasing image quality in neutron radiography. Image integration before the A/D converter has a beneficial effect on image quality and the high quality image reveals details invisible in direct images, such as: small holes by a reversed image, defects in a neutron converter screen through a high quality image, a moving object in a contoured image, a slight difference between two low-contrast images by a subtraction technique, and so on. For the real-time application a contouring operation and an averaging approach can also be utilized effectively.

  6. An Open-Source Hardware and Software System for Acquisition and Real-Time Processing of Electrophysiology during High Field MRI

    PubMed Central

    Purdon, Patrick L.; Millan, Hernan; Fuller, Peter L.; Bonmassar, Giorgio

    2008-01-01

    Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open source system for simultaneous electrophysiology and fMRI featuring low-noise (< 0.6 uV p-p input noise), electromagnetic compatibility for MRI (tested up to 7 Tesla), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has used in human EEG/fMRI studies at 3 and 7 Tesla examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3 Tesla fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level. PMID:18761038

  7. Real-time monitoring and control of the plasma hearth process

    SciTech Connect

    Power, M.A.; Carney, K.P.; Peters, G.G.

    1996-05-01

    A distributed monitoring and control system is proposed for a plasma hearth, which will be used to decompose hazardous organic materials, encapsulate actinide waste in an obsidian-like slag, and reduce storage volume of actinide waste. The plasma hearth will be installed at ANL-West with the assistance of SAIC. Real-time monitoring of the off-gas system is accomplished using a Sun Workstation and embedded PCs. LabWindows/CVI software serves as the graphical user interface.

  8. A Low-Power Integrated Smart Sensor with on-Chip Real-Time Image Processing Capabilities

    NASA Astrophysics Data System (ADS)

    Barbaro, Massimo; Raffo, Luigi

    2005-12-01

    A low-power, CMOS retina with real-time, pixel-level processing capabilities is presented. Features extraction and edge-enhancement are implemented with fully programmable 1D Gabor convolutions. An equivalent computation rate of 3 GOPS is obtained at the cost of very low-power consumption ([InlineEquation not available: see fulltext.][InlineEquation not available: see fulltext.]W per pixel), providing real-time performances ([InlineEquation not available: see fulltext.] microseconds for overall computation,[InlineEquation not available: see fulltext.]). Experimental results from the first realized prototype show a very good matching between measures and expected outputs.

  9. A neuron-inspired computational architecture for spatiotemporal visual processing: real-time visual sensory integration for humanoid robots.

    PubMed

    Holzbach, Andreas; Cheng, Gordon

    2014-06-01

    In this article, we present a neurologically motivated computational architecture for visual information processing. The computational architecture's focus lies in multiple strategies: hierarchical processing, parallel and concurrent processing, and modularity. The architecture is modular and expandable in both hardware and software, so that it can also cope with multisensory integrations - making it an ideal tool for validating and applying computational neuroscience models in real time under real-world conditions. We apply our architecture in real time to validate a long-standing biologically inspired visual object recognition model, HMAX. In this context, the overall aim is to supply a humanoid robot with the ability to perceive and understand its environment with a focus on the active aspect of real-time spatiotemporal visual processing. We show that our approach is capable of simulating information processing in the visual cortex in real time and that our entropy-adaptive modification of HMAX has a higher efficiency and classification performance than the standard model (up to ∼+6%).

  10. Real-time process monitoring and temperature mapping of a 3D polymer printing process

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Love, Lonnie J.; Rowe, John C.

    2013-05-01

    An extended-range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation of the parts as they are being fabricated. The IR camera was also used to map the temperature within the build volume of the oven. The development of the temperature map of the oven provides insight into the global temperature variation within the oven that may lead to understanding variations in the properties of parts as a function of build location within the oven. The observation of the temperature variation of a part during construction provides insight into how the deposition process itself creates temperature distributions, which can lead to failure.

  11. Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process

    SciTech Connect

    Dinwiddie, Ralph Barton; Love, Lonnie J; Rowe, John C

    2013-01-01

    An extended range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation inside the system as parts are being fabricated, as well as quantify the temperature of a part during fabrication. The IR camera was used to map the temperature within the build volume of the oven and surface temperature measurement of a part as it was being manufactured. The development of the temperature map of the oven provides insight into the global temperature variation within the oven that may lead to understanding variations in the properties of parts as a function of location. The observation of the temperature variation of a part that fails during construction provides insight into how the deposition process itself impacts temperature distribution within a single part leading to failure.

  12. Novel development tool for software pipeline optimization for VLIW-DSPs used in real-time image processing

    NASA Astrophysics Data System (ADS)

    Fuertler, Johannes; Mayer, Konrad J.; Krattenthaler, Werner; Bajla, Ivan

    2003-04-01

    Although the hardware platform is often seen as the most important element of real-time imaging systems, software optimization can also provide remarkable reduction of overall computational costs. The recommended code development flow for digital signal processors based on the TMS320C6000(TM) architecture usually involves three phases: development of C code, refinement of C code, and programming linear assembly code. Each step requires a different level of knowledge of processor internals. The developer is not directly involved in the automatic scheduling process. In some cases, however, this may result in unacceptable code performance. A better solution can be achieved by scheduling the assembly code by hand. Unfortunately, scheduling of software pipelines by hand not only requires expert skills but is also time consuming, and moreover, prone to errors. To overcome these drawbacks we have designed an innovative development tool - the Software Pipeline Optimization Tool (SPOT(TM)). The SPOT is based on visualization of the scheduled assembly code by a two-dimensional interactive schedule editor, which is equipped with feedback mechanisms deduced from analysis of data dependencies and resource allocation conflicts. The paper addresses optimization techniques available by the application of the SPOT. Furthermore, the benefit of the SPOT is documented by more than 20 optimized image processing algorithms.

  13. Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit.

    PubMed

    Van der Jeught, Sam; Bradu, Adrian; Podoleanu, Adrian Gh

    2010-01-01

    Fourier domain optical coherence tomography (FD-OCT) requires either a linear-in-wavenumber spectrometer or a computationally heavy software algorithm to recalibrate the acquired optical signal from wavelength to wavenumber. The first method is sensitive to the position of the prism in the spectrometer, while the second method drastically slows down the system speed when it is implemented on a serially oriented central processing unit. We implement the full resampling process on a commercial graphics processing unit (GPU), distributing the necessary calculations to many stream processors that operate in parallel. A comparison between several recalibration methods is made in terms of performance and image quality. The GPU is also used to accelerate the fast Fourier transform (FFT) and to remove the background noise, thereby achieving full GPU-based signal processing without the need for extra resampling hardware. A display rate of 25 framessec is achieved for processed images (1,024 x 1,024 pixels) using a line-scan charge-coupled device (CCD) camera operating at 25.6 kHz. PMID:20614994

  14. Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit

    NASA Astrophysics Data System (ADS)

    van der Jeught, Sam; Bradu, Adrian; Podoleanu, Adrian Gh.

    2010-05-01

    Fourier domain optical coherence tomography (FD-OCT) requires either a linear-in-wavenumber spectrometer or a computationally heavy software algorithm to recalibrate the acquired optical signal from wavelength to wavenumber. The first method is sensitive to the position of the prism in the spectrometer, while the second method drastically slows down the system speed when it is implemented on a serially oriented central processing unit. We implement the full resampling process on a commercial graphics processing unit (GPU), distributing the necessary calculations to many stream processors that operate in parallel. A comparison between several recalibration methods is made in terms of performance and image quality. The GPU is also used to accelerate the fast Fourier transform (FFT) and to remove the background noise, thereby achieving full GPU-based signal processing without the need for extra resampling hardware. A display rate of 25 frames/sec is achieved for processed images (1024×1024 pixels) using a line-scan charge-coupled device (CCD) camera operating at 25.6 kHz.

  15. Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit.

    PubMed

    Van der Jeught, Sam; Bradu, Adrian; Podoleanu, Adrian Gh

    2010-01-01

    Fourier domain optical coherence tomography (FD-OCT) requires either a linear-in-wavenumber spectrometer or a computationally heavy software algorithm to recalibrate the acquired optical signal from wavelength to wavenumber. The first method is sensitive to the position of the prism in the spectrometer, while the second method drastically slows down the system speed when it is implemented on a serially oriented central processing unit. We implement the full resampling process on a commercial graphics processing unit (GPU), distributing the necessary calculations to many stream processors that operate in parallel. A comparison between several recalibration methods is made in terms of performance and image quality. The GPU is also used to accelerate the fast Fourier transform (FFT) and to remove the background noise, thereby achieving full GPU-based signal processing without the need for extra resampling hardware. A display rate of 25 framessec is achieved for processed images (1,024 x 1,024 pixels) using a line-scan charge-coupled device (CCD) camera operating at 25.6 kHz.

  16. Control-oriented modeling and real-time control for the ozone dosing process of drinking water treatment.

    PubMed

    Wang, Dongsheng; Li, Shihua; Zhou, Xingpeng

    2013-03-01

    Ozonation is one of the most important steps during drinking water treatment. To improve the efficiency of ozonation and to stabilize the quality of the treated water, control-oriented modeling and a real-time control method for the ozone dosing process are developed in this study. Compared with existing ozonation models developed by bench-scale and pilot-scale batch experiments, the model reported herein is control-oriented and based on plant-scale batch experiments. A real-time control strategy for maintaining a constant ozone exposure is attempted to meet primary disinfection requirements. An internal model control scheme is proposed to maintain a constant ozone exposure by adjusting the ozone dosage. The proposed real-time control method can cope with changing water quality, water flow rate, and process operational conditions. Both simulations and experimental studies have been carried out and implemented for the ozone dosing process control system, and the results demonstrate the effectiveness and practicality of this real-time control method.

  17. DSPACE hardware architecture for on-board real-time image/video processing in European space missions

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Donati, Massimiliano; Fanucci, Luca; Odendahl, Maximilian; Leupers, Reiner; Errico, Walter

    2013-02-01

    The on-board data processing is a vital task for any satellite and spacecraft due to the importance of elaborate the sensing data before sending them to the Earth, in order to exploit effectively the bandwidth to the ground station. In the last years the amount of sensing data collected by scientific and commercial space missions has increased significantly, while the available downlink bandwidth is comparatively stable. The increasing demand of on-board real-time processing capabilities represents one of the critical issues in forthcoming European missions. Faster and faster signal and image processing algorithms are required to accomplish planetary observation, surveillance, Synthetic Aperture Radar imaging and telecommunications. The only available space-qualified Digital Signal Processor (DSP) free of International Traffic in Arms Regulations (ITAR) restrictions faces inadequate performance, thus the development of a next generation European DSP is well known to the space community. The DSPACE space-qualified DSP architecture fills the gap between the computational requirements and the available devices. It leverages a pipelined and massively parallel core based on the Very Long Instruction Word (VLIW) paradigm, with 64 registers and 8 operational units, along with cache memories, memory controllers and SpaceWire interfaces. Both the synthesizable VHDL and the software development tools are generated from the LISA high-level model. A Xilinx-XC7K325T FPGA is chosen to realize a compact PCI demonstrator board. Finally first synthesis results on CMOS standard cell technology (ASIC 180 nm) show an area of around 380 kgates and a peak performance of 1000 MIPS and 750 MFLOPS at 125MHz.

  18. Safety surrogate histograms (SSH): A novel real-time safety assessment of dilemma zone related conflicts at signalized intersections.

    PubMed

    Ghanipoor Machiani, Sahar; Abbas, Montasir

    2016-11-01

    Drivers' indecisiveness in dilemma zones (DZ) could result in crash-prone situations at signalized intersections. DZ is to the area ahead of an intersection in which drivers encounter a dilemma regarding whether to stop or proceed through the intersection when the signal turns yellow. An improper decision to stop by the leading driver, combined with the following driver deciding to go, can result in a rear-end collision, unless the following driver recognizes a collision is imminent and adjusts his or her behavior at or shortly after the onset of yellow. Considering the significance of DZ-related crashes, a comprehensive safety measure is needed to characterize the level of safety at signalized intersections. In this study, a novel safety surrogate measure was developed utilizing real-time radar field data. This new measure, called safety surrogate histogram (SSH), captures the degree and frequency of DZ-related conflicts at each intersection approach. SSH includes detailed information regarding the possibility of crashes, because it is calculated based on the vehicles conflicts. An example illustrating the application of the new methodology at two study sites in Virginia is presented and discussed, and a comparison is provided between SSH and other DZ-related safety surrogate measures mentioned in the literature. The results of the study reveal the efficacy of the SSH as complementary to existing surrogate measures.

  19. Simple Image Processing Techniques For The Contrast Enhancement Of Real-Time Digital Speckle Pattern Interferometry Fringes

    NASA Astrophysics Data System (ADS)

    Ganesan, A. R.; Kothiyal, M. P.; Sirohi, Rajpal S.

    1989-09-01

    Some simple image processing techniques are suggested that can be used for enhancing the contrast of real-time digital speckle pattern interferometry fringes. The techniques have been developed for the commercial Intellect 100 image processing system interfaced to a PDP-1 1 /23+ microcomputer, but they can be adapted to any commercial image processing system with slight modifications, if necessary, depending on the hardware configuration of the system.

  20. Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets.

    PubMed

    Zang, Emerson; Brandes, Susanne; Tovar, Miguel; Martin, Karin; Mech, Franziska; Horbert, Peter; Henkel, Thomas; Figge, Marc Thilo; Roth, Martin

    2013-09-21

    The majority of today's antimicrobial therapeutics is derived from secondary metabolites produced by Actinobacteria. While it is generally assumed that less than 1% of Actinobacteria species from soil habitats have been cultivated so far, classic screening approaches fail to supply new substances, often due to limited throughput and frequent rediscovery of already known strains. To overcome these restrictions, we implement high-throughput cultivation of soil-derived Actinobacteria in microfluidic pL-droplets by generating more than 600,000 pure cultures per hour from a spore suspension that can subsequently be incubated for days to weeks. Moreover, we introduce triggered imaging with real-time image-based droplet classification as a novel universal method for pL-droplet sorting. Growth-dependent droplet sorting at frequencies above 100 Hz is performed for label-free enrichment and extraction of microcultures. The combination of both cultivation of Actinobacteria in pL-droplets and real-time detection of growing Actinobacteria has great potential in screening for yet unknown species as well as their undiscovered natural products.

  1. On-chip image-processing algorithm for real-time CCD-based star trackers and wavefront sensors

    NASA Astrophysics Data System (ADS)

    Chmielowski, Marek

    1994-05-01

    In this paper, we describe on-chip and off-chip image-processing algorithms utilizing the internal architecture of recently developed CCD sensors to provide high-speed readout of selected portions of the imager or accelerated scanning of an entire CCD frame. Image-processing time comparable to the star-tracker sensor exposure time and to the characteristic time of the atmospheric fluctuations (10 ms) has been achieved. On-chip image processing is particularly suitable for space or ground-based real-time applications (position determination, tip-tilt correctors, wavefront sensing for adaptive optics systems) where the speed of acquisition and processing data from the 'regions of interest' is critical. An example of a star tracker (based on the Texas Instruments TC217 CCD image sensor) for space applications capable of providing real-time multiple position updates with high angular resolution is given and achieved performance is discussed.

  2. Real-time monitoring and massive inversion of source parameters of very long period seismic signals: An application to Stromboli Volcano, Italy

    USGS Publications Warehouse

    Auger, E.; D'Auria, L.; Martini, M.; Chouet, B.; Dawson, P.

    2006-01-01

    We present a comprehensive processing tool for the real-time analysis of the source mechanism of very long period (VLP) seismic data based on waveform inversions performed in the frequency domain for a point source. A search for the source providing the best-fitting solution is conducted over a three-dimensional grid of assumed source locations, in which the Green's functions associated with each point source are calculated by finite differences using the reciprocal relation between source and receiver. Tests performed on 62 nodes of a Linux cluster indicate that the waveform inversion and search for the best-fitting signal over 100,000 point sources require roughly 30 s of processing time for a 2-min-long record. The procedure is applied to post-processing of a data archive and to continuous automatic inversion of real-time data at Stromboli, providing insights into different modes of degassing at this volcano. Copyright 2006 by the American Geophysical Union.

  3. A parallel real-time computing-cluster implementation of spotlight SAR processing

    NASA Astrophysics Data System (ADS)

    Mathew, Bipin; Rabinkin, Daniel

    2005-05-01

    The high resolution imaging capability of Synthetic Aperture Radar (SAR) is largely unaffected by atmospheric conditions and has proven to be an indispensable asset in a variety of military and civilian applications. Application of SAR methodology for real-time imaging however carries with it the large computational complexity and storage requirements of the image-forming algorithms. Recently however, the rapidly diminishing cost of computing hardware and the related ascent of cluster-based computing, has made parallelization of these algorithms an appealing area of investigation. This paper describes a parallel SAR processor developed at MIT Lincoln Laboratory. Several novel technologies were employed in it's implementation, including pMatlab which is a parallel extension of standard Matlab that is also being developed at MIT Lincoln Laboratory. These technologies will be described later in the document. We begin with a brief description of the basic SAR algorithm.

  4. Architecture For The Optimization Of A Machining Process In Real Time Through Rule-Based Expert System

    NASA Astrophysics Data System (ADS)

    Serrano, Rafael; González, Luis Carlos; Martín, Francisco Jesús

    2009-11-01

    Under the project SENSOR-IA which has had financial funding from the Order of Incentives to the Regional Technology Centers of the Counsil of Innovation, Science and Enterprise of Andalusia, an architecture for the optimization of a machining process in real time through rule-based expert system has been developed. The architecture consists of an acquisition system and sensor data processing engine (SATD) from an expert system (SE) rule-based which communicates with the SATD. The SE has been designed as an inference engine with an algorithm for effective action, using a modus ponens rule model of goal-oriented rules.The pilot test demonstrated that it is possible to govern in real time the machining process based on rules contained in a SE. The tests have been done with approximated rules. Future work includes an exhaustive collection of data with different tool materials and geometries in a database to extract more precise rules.

  5. Sensor based real-time process monitoring for ultra-precision manufacturing processes with non-linearity and non-stationarity

    NASA Astrophysics Data System (ADS)

    Beyca, Omer Faruk

    This research investigates methodologies for real-time process monitoring in ultra-precision manufacturing processes, specifically, chemical mechanical planarization (CMP) and ultra-precision machining (UPM), are investigated in this dissertation. The three main components of this research are as follows: (1) developing a predictive modeling approaches for early detection of process anomalies/change points, (2) devising approaches that can capture the non-Gaussian and non-stationary characteristics of CMP and UPM processes, and (3) integrating multiple sensor data to make more reliable process related decisions in real-time. In the first part, we establish a quantitative relationship between CMP process performance, such as material removal rate (MRR) and data acquired from wireless vibration sensors. Subsequently, a non-linear sequential Bayesian analysis is integrated with decision theoretic concepts for detection of CMP process end-point for blanket copper wafers. Using this approach, CMP polishing end-point was detected within a 5% error rate. Next, a non-parametric Bayesian analytical approach is utilized to capture the inherently complex, non-Gaussian, and non-stationary sensor signal patterns observed in CMP process. An evolutionary clustering analysis, called Recurrent Nested Dirichlet Process (RNDP) approach is developed for monitoring CMP process changes using MEMS vibration signals. Using this novel signal analysis approach, process drifts are detected within 20 milliseconds and is assessed to be 3-7 times faster than traditional SPC charts. This is very beneficial to the industry from an application standpoint, because, wafer yield losses will be mitigated to a great extent, if the onset of CMP process drifts can be detected timely and accurately. Lastly, a non-parametric Bayesian modeling approach, termed Dirichlet Process (DP) is combined with a multi-level hierarchical information fusion technique for monitoring of surface finish in UPM process

  6. Real-time feedback control using online attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy for continuous flow optimization and process knowledge.

    PubMed

    Skilton, Ryan A; Parrott, Andrew J; George, Michael W; Poliakoff, Martyn; Bourne, Richard A

    2013-10-01

    The use of automated continuous flow reactors is described, with real-time online Fourier transform infrared spectroscopy (FT-IR) analysis to enable rapid optimization of reaction yield using a self-optimizing feedback algorithm. This technique has been applied to the solvent-free methylation of 1-pentanol with dimethyl carbonate using a γ-alumina catalyst. Calibration of the FT-IR signal was performed using gas chromatography to enable quantification of yield over a wide variety of flow rates and temperatures. The use of FT-IR as a real-time analytical technique resulted in an order of magnitude reduction in the time and materials required compared to previous studies. This permitted a wide exploration of the parameter space to provide process understanding and validation of the optimization algorithms. PMID:24067568

  7. Real-time Identification and Control of Satellite Signal Impairments Solution and Application of the Stratonovich Equation Part 1. Theoretical Development

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2016-01-01

    As satellite communications systems become both more complex and reliant with respect to their operating environment, it has become imperative to be able to identify, during real-time operation, the onset of one or more impairments to the quality of overall communications system integrity. One of the most important aspects to monitor of a satellite link operating within the Earth's atmosphere is the signal fading due to the occurrence of rain and/or phase scintillations. This, of course, must be done in the presence of the associated measurement uncertainty or potentially faulty measurement equipment such as in the Advanced Communication Technology Satellite (ACTS) experiment. In the present work, an approach originally suggested in 1991, and apparently still considered iconoclastic, will be significantly developed and applied to the satellite communications link on which the deleterious composite signal fade is the result of one or many component fade mechanisms. Through the measurement (with the attendant uncertainty or 'error' in the measurement) of such a composite fading satellite signal, it is desired to extract the level of each of the individual fading mechanisms so they can be appropriately mitigated before they impact the overall performance of the communications network. Rather than employing simple-minded deterministic filtering to the real-time fading, the present approach is built around all the models and/or descriptions used to describe the individual fade components, including their dynamic evolution. The latter is usually given by a first-order Langevin equation. This circumstance allows the description of the associated temporal transition probability densities of each of the component processes. By using this description, along with the real-time measurements of the composite fade (along with the measurement errors), one can obtain statistical estimates of the levels of each of the component fading mechanisms as well as their predicted values

  8. Model-driven requirements engineering (MDRE) for real-time ultra-wide instantaneous bandwidth signal simulation

    NASA Astrophysics Data System (ADS)

    Chang, Daniel Y.; Rowe, Neil C.

    2013-05-01

    While conducting a cutting-edge research in a specific domain, we realize that (1) requirements clarity and correctness are crucial to our success [1], (2) hardware is hard to change, most work is in software requirements development, coding and testing [2], (3) requirements are constantly changing, so that configurability, reusability, scalability, adaptability, modularity and testability are important non-functional attributes [3], (4) cross-domain knowledge is necessary for complex systems [4], and (5) if our research is successful, the results could be applied to other domains with similar problems. In this paper, we propose to use model-driven requirements engineering (MDRE) to model and guide our requirements/development, since models are easy to understand, execute, and modify. The domain for our research is Electronic Warfare (EW) real-time ultra-wide instantaneous bandwidth (IBW1) signal simulation. The proposed four MDRE models are (1) Switch-and-Filter architecture, (2) multiple parallel data bit streams alignment, (3) post-ADC and pre-DAC bits re-mapping, and (4) Discrete Fourier Transform (DFT) filter bank. This research is unique since the instantaneous bandwidth we are dealing with is in gigahertz range instead of conventional megahertz.

  9. Detection by real time PCR of walnut allergen coding sequences in processed foods.

    PubMed

    Linacero, Rosario; Ballesteros, Isabel; Sanchiz, Africa; Prieto, Nuria; Iniesto, Elisa; Martinez, Yolanda; Pedrosa, Mercedes M; Muzquiz, Mercedes; Cabanillas, Beatriz; Rovira, Mercè; Burbano, Carmen; Cuadrado, Carmen

    2016-07-01

    A quantitative real-time PCR (RT-PCR) method, employing novel primer sets designed on Jug r 1, Jug r 3, and Jug r 4 allergen-coding sequences, was set up and validated. Its specificity, sensitivity, and applicability were evaluated. The DNA extraction method based on CTAB-phenol-chloroform was best for walnut. RT-PCR allowed a specific and accurate amplification of allergen sequence, and the limit of detection was 2.5pg of walnut DNA. The method sensitivity and robustness were confirmed with spiked samples, and Jug r 3 primers detected up to 100mg/kg of raw walnut (LOD 0.01%, LOQ 0.05%). Thermal treatment combined with pressure (autoclaving) reduced yield and amplification (integrity and quality) of walnut DNA. High hydrostatic pressure (HHP) did not produce any effect on the walnut DNA amplification. This RT-PCR method showed greater sensitivity and reliability in the detection of walnut traces in commercial foodstuffs compared with ELISA assays.

  10. Detection by real time PCR of walnut allergen coding sequences in processed foods.

    PubMed

    Linacero, Rosario; Ballesteros, Isabel; Sanchiz, Africa; Prieto, Nuria; Iniesto, Elisa; Martinez, Yolanda; Pedrosa, Mercedes M; Muzquiz, Mercedes; Cabanillas, Beatriz; Rovira, Mercè; Burbano, Carmen; Cuadrado, Carmen

    2016-07-01

    A quantitative real-time PCR (RT-PCR) method, employing novel primer sets designed on Jug r 1, Jug r 3, and Jug r 4 allergen-coding sequences, was set up and validated. Its specificity, sensitivity, and applicability were evaluated. The DNA extraction method based on CTAB-phenol-chloroform was best for walnut. RT-PCR allowed a specific and accurate amplification of allergen sequence, and the limit of detection was 2.5pg of walnut DNA. The method sensitivity and robustness were confirmed with spiked samples, and Jug r 3 primers detected up to 100mg/kg of raw walnut (LOD 0.01%, LOQ 0.05%). Thermal treatment combined with pressure (autoclaving) reduced yield and amplification (integrity and quality) of walnut DNA. High hydrostatic pressure (HHP) did not produce any effect on the walnut DNA amplification. This RT-PCR method showed greater sensitivity and reliability in the detection of walnut traces in commercial foodstuffs compared with ELISA assays. PMID:26920302

  11. Advancement of Solidification Processing Technology Through Real Time X-Ray Transmission Microscopy: Sample Preparation

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Curreri, P. A.

    1996-01-01

    Two types of samples were prepared for the real time X-ray transmission microscopy (XTM) characterization. In the first series directional solidification experiments were carried out to evaluate the critical velocity of engulfment of zirconia particles in the Al and Al-Ni eutectic matrix under ground (l-g) conditions. The particle distribution in the samples was recorded on video before and after the samples were directionally solidified. In the second series samples of the above two type of composites were prepared for directional solidification runs to be carried out on the Advanced Gradient Heating Facility (AGHF) aboard the space shuttle during the LMS mission in June 1996. X-ray microscopy proved to be an invaluable tool for characterizing the particle distribution in the metal matrix samples. This kind of analysis helped in determining accurately the critical velocity of engulfment of ceramic particles by the melt interface in the opaque metal matrix composites. The quality of the cast samples with respect to porosity and instrumented thermocouple sheath breakage or shift could be easily viewed and thus helped in selecting samples for the space shuttle experiments. Summarizing the merits of this technique it can be stated that this technique enabled the use of cast metal matrix composite samples since the particle location was known prior to the experiment.

  12. An on-line video image processing system for real-time neutron radiography

    NASA Astrophysics Data System (ADS)

    Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    1983-09-01

    The neutron radiography system installed at the E-2 experimental hole of the KUR (Kyoto University Reactor) has been used for some NDT applications in the nuclear field. The on-line video image processing system of this facility is introduced in this paper. A 0.5 mm resolution in images was obtained by using a super high quality TV camera developed for X-radiography viewing a NE-426 neutron-sensitive scintillator. The image of the Ne-426 on a CRT can be observed directly and visually, thus many test samples can be sequentially observed when necessary for industrial purposes. The video image signals from the TV camera are digitized, with a 33 ms delay, through a video A/D converter (ADC) and can be stored in the image bufer (32KB DRAM) of a microcomputer (Z-80) system. The digitized pictures are taken with 16 levels of gray scale and resolved to 240×256 picture elements (pixels) on a monochrome CRT, with the capability also to display 16 distinct colors on a RGB video display. The direct image of this system could be satisfactory for penetrating the side plates to test MTR type reactor fuels and for the investigation of moving objects.

  13. Real-Time Parameter Estimation Method Applied to a MIMO Process and its Comparison with an Offline Identification Method

    SciTech Connect

    Kaplanoglu, Erkan; Safak, Koray K.; Varol, H. Selcuk

    2009-01-12

    An experiment based method is proposed for parameter estimation of a class of linear multivariable systems. The method was applied to a pressure-level control process. Experimental time domain input/output data was utilized in a gray-box modeling approach. Prior knowledge of the form of the system transfer function matrix elements is assumed to be known. Continuous-time system transfer function matrix parameters were estimated in real-time by the least-squares method. Simulation results of experimentally determined system transfer function matrix compare very well with the experimental results. For comparison and as an alternative to the proposed real-time estimation method, we also implemented an offline identification method using artificial neural networks and obtained fairly good results. The proposed methods can be implemented conveniently on a desktop PC equipped with a data acquisition board for parameter estimation of moderately complex linear multivariable systems.

  14. [Real-time automatic cloud detection during the process of taking aerial photographs].

    PubMed

    Gao, Xian-Jun; Wan, You-Chuan; Zheng, Shun-Yi; Yang, Yuan-Wei

    2014-07-01

    The present paper adopted a method based on the spectrum signatures with thresholds to detect cloud. Through analyzing the characteristic in the aspect of spectrum signatures of cloud, two effective signatures were explored, one was brightness signature I and the other was normalized difference signature P. Combined with corresponding thresholds, each spectrum condition can detect some cloud pixels. By composing the union of two spectrum conditions together, cloud can be detected more completely. In addition, the threshold was also very important to the accuracy of the detection result. In order to detect cloud efficiently, correctly and automatically, this paper proposed a new strategy about the assignment of thresholds to acquire suitable thresholds. Firstly, the images should be classified into three kinds of types which were images with no cloud, with thin cloud and with thick cloud. Secondly, different assignment methods of automatic thresholds of signatures would be adopted according to different types of images. For images with thick cloud, they would be further classified into three kinds by another standard and assigned by different thresholds integrated by automatic thresholds from other spectrum signatures. The automatic thresholds were acquired by Otsu algorithm and an improved Otsu algorithm. For images with thin cloud, the cloud would be detected by score algorithm. Due to this flexible strategy, cloud in images can be detected rightly and if there isn't cloud in images the detection will be null to show that there is no cloud. Compared to the detection results of other different methods, the contrast results show that the efficiency of the detection method proposed in this paper is high and the accuracy satisfies the demand of real-time evaluation and the application range is wider.

  15. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  16. Advanced real-time bus system for concurrent data paths used in high-performance image processing

    NASA Astrophysics Data System (ADS)

    Brodersen, Jorg; Palkovich, Roland; Landl, Dieter; Furtler, Johannes; Dulovits, Martin

    2004-05-01

    In this paper we present a new bus protocol satisfying extreme real time demands. It has been applied to a high performance quality inspection system which can involve up to eight sensors of various types. Thanks to the modular configuration this multi-sensor inspection system acts on the outside as a single sensor image processing system. In general, image processing systems comprise three basic functions (i) image acquisition, (ii) image processing and (iii) output of processed data. The data transfers for these three fundamental functions can be accomplished either by individual bus systems or by a single bus. In case of using a single bus the system complexity of the implementation, i.e. Development of protocols, hardware employment and EMC technical considerations, is far smaller. An important goal of the new protocol design is to support extremely fast communication between individual processing modules. For example, the input data (image acquisition) is transferred in real time to individual processing modules. Concurrent to this communication the processed data are being transferred to the output module. Therefore, the key function of this protocol is to realize concurrent data paths (data rates over 1.2 Gbit/s) by using principles of pipeline architectures and methods of time division multiplex. Moreover, the new bus protocol enables concurrent data transfers via a single bus system. In this paper the function of the new bus protocol including hardware layout and innovative bus arbiter are described in details.

  17. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  18. A Flexible Pilot-Scale Setup for Real-Time Studies in Process Systems Engineering

    ERIC Educational Resources Information Center

    Panjapornpon, Chanin; Fletcher, Nathan; Soroush, Masoud

    2006-01-01

    This manuscript describes a flexible, pilot-scale setup that can be used for training students and carrying out research in process systems engineering. The setup allows one to study a variety of process systems engineering concepts such as design feasibility, design flexibility, control configuration selection, parameter estimation, process and…

  19. Fusion of product and process data: Batch-mode and real-time streaming

    SciTech Connect

    Vincent De Sapio; Spike Leonard

    1999-12-01

    In today's DP product realization enterprise it is imperative to reduce the design-to-fabrication cycle time and cost while improving the quality of DP parts (reducing defects). Much of this challenge resides in the inherent gap between the product and process worlds. The lack of seamless, bi-directional flow of information prevents true concurrency in the product realization world. This report addresses a framework for product-process data fusion to help achieve next generation product realization. A fundamental objective is to create an open environment for multichannel observation of process date, and subsequent mapping of that data onto product geometry. In addition to the sensor-based observation of manufacturing processes, model-based process data provides an important complement to empirically acquired data. Two basic groups of manufacturing models are process physics, and machine kinematics and dynamics. Process physics addresses analytical models that describe the physical phenomena of the process itself. Machine kinematic and dynamic models address the mechanical behavior of the processing equipment. As a secondary objective, an attempt has been made in this report to address part of the model-based realm through the development of an open object-oriented library and toolkit for machine kinematics and dynamics. Ultimately, it is desirable to integrate design definition, with all types of process data; both sensor-based and model-based. Collectively, the goal is to allow all disciplines within the product realization enterprise to have a centralized medium for the fusion of product and process data.

  20. Real-time water treatment process control with artificial neural networks

    SciTech Connect

    Zhang, Q.; Stanley, S.J.

    1999-02-01

    With more stringent requirements being placed on water treatment performance, operators need a reliable tool to optimize the process control in the treatment plant. In the present paper, one such tool is presented, which is a process control system built with the artificial neural network (ANN) modeling approach. The coagulation, flocculation, and sedimentation processes involve many complex physical and chemical phenomena and thus are difficult to model for process control with traditional methods. Proposed is the use of a neural network process control system for the coagulation, flocculation, and sedimentation processes. Presented is a review of influential control parameters and control requirements for these processes followed by the development of a feed forward neural network control scheme. A neural network process model was built based on nearly 2,000 sets of process control data. This model formed the major component of a software controller and was found to consistently predict the optimum alum and power activated carbon doses for different control actions. With minor modifications, the approach illustrated can be used for building control models for other water treatment processes.

  1. Pixel Perfect: a real-time image processing system for biology

    SciTech Connect

    Perrine, Kenneth A.; Hopkins, Derek F.; Lamarche, Brian L.; Budge, Scott E.; Sowa, Marianne B.

    2005-09-16

    Scientific visioning systems often rely upon pixel-perfect precision to produce meaningful data. Cutting-edge equipment used in the study of cell signaling is no exception; proper image alignment is critical for successful experiments. Biologists at Pacific Northwest National Laboratory put together a special multi-spectral confocal microscope that was capable of producing live images of cells and proteins in two simultaneous spectral channels. But there was a problem: the dual images resembled poorly registered Sunday comics and were unusable. This article describes how the biologists worked with programmers to fix the difficulty and make the microscope a truly useful and unique device.

  2. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    PubMed

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry.

  3. Development of a Real-Time Pulse Processing Algorithm for TES-Based X-Ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Tan, Hui; Hennig, Wolfgang; Warburton, William K.; Doriese, W. Bertrand; Kilbourne, Caroline A.

    2011-01-01

    We report here a real-time pulse processing algorithm for superconducting transition-edge sensor (TES) based x-ray microcalorimeters. TES-based. microca1orimeters offer ultra-high energy resolutions, but the small volume of each pixel requires that large arrays of identical microcalorimeter pixe1s be built to achieve sufficient detection efficiency. That in turn requires as much pulse processing as possible must be performed at the front end of readout electronics to avoid transferring large amounts of data to a host computer for post-processing. Therefore, a real-time pulse processing algorithm that not only can be implemented in the readout electronics but also achieve satisfactory energy resolutions is desired. We have developed an algorithm that can be easily implemented. in hardware. We then tested the algorithm offline using several data sets acquired with an 8 x 8 Goddard TES x-ray calorimeter array and 2x16 NIST time-division SQUID multiplexer. We obtained an average energy resolution of close to 3.0 eV at 6 keV for the multiplexed pixels while preserving over 99% of the events in the data sets.

  4. Real-time atmospheric imaging and processing with hybrid adaptive optics and hardware accelerated lucky-region fusion (LRF) algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Jony Jiang; Carhart, Gary W.; Beresnev, Leonid A.; Aubailly, Mathieu; Jackson, Christopher R.; Ejzak, Garrett; Kiamilev, Fouad E.

    2014-09-01

    Atmospheric turbulences can significantly deteriorate the performance of long-range conventional imaging systems and create difficulties for target identification and recognition. Our in-house developed adaptive optics (AO) system, which contains high-performance deformable mirrors (DMs) and the fast stochastic parallel gradient decent (SPGD) control mechanism, allows effective compensation of such turbulence-induced wavefront aberrations and result in significant improvement on the image quality. In addition, we developed advanced digital synthetic imaging and processing technique, "lucky-region" fusion (LRF), to mitigate the image degradation over large field-of-view (FOV). The LRF algorithm extracts sharp regions from each image obtained from a series of short exposure frames and fuses them into a final improved image. We further implemented such algorithm into a VIRTEX-7 field programmable gate array (FPGA) and achieved real-time video processing. Experiments were performed by combining both AO and hardware implemented LRF processing technique over a near-horizontal 2.3km atmospheric propagation path. Our approach can also generate a universal real-time imaging and processing system with a general camera link input, a user controller interface, and a DVI video output.

  5. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    PubMed

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. PMID:25395159

  6. Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Evrard, A.; Boulle, N.; Lutfalla, G. S.

    Over the past few years there has been a considerable development of DNA amplification by polymerase chain reaction (PCR), and real-time PCR has now superseded conventional PCR techniques in many areas, e.g., the quantification of nucleic acids and genotyping. This new approach is based on the detection and quantification of a fluorescent signal proportional to the amount of amplicons generated by PCR. Real-time detection is achieved by coupling a thermocycler with a fluorimeter. This chapter discusses the general principles of quantitative real-time PCR, the different steps involved in implementing the technique, and some examples of applications in medicine. The polymerase chain reaction (PCR) provides a way of obtaining a large number of copies of a double-stranded DNA fragment of known sequence. This DNA amplification technique, developed in 1985 by K. Mullis (Cetus Corporation), saw a spectacular development over the space of a few years, revolutionising the methods used up to then in molecular biology. Indeed, PCR has many applications, such as the detection of small amounts of DNA, cloning, and quantitative analysis (assaying), each of which will be discussed further below.

  7. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  8. Real-time display on SD-OCT using a linear-in-wavenumber spectrometer and a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuuki; Itagaki, Toshiki

    2010-02-01

    We demonstrated a real-time display of processed OCT images using a linear-in-wavenumber (linear-k) spectrometer and a graphics processing unit (GPU). We used the linear-k spectrometer with optimal combination of a diffractive grating with 1200 lines/mm and a F2 equilateral prism in the 840 nm spectral region, to avoid calculating the re-sampling process. The calculations of the FFT (fast Fourier transform) were accelerated by the low cost GPU with many stream processors, which realized highly parallel processing. A display rate of 27.9 frames per second for processed images (2048 FFT size × 1000 lateral A-scans) was achieved in our OCT system using a line scan CCD camera operated at 27.9 kHz.

  9. Evaluating Mobile Graphics Processing Units (GPUs) for Real-Time Resource Constrained Applications

    SciTech Connect

    Meredith, J; Conger, J; Liu, Y; Johnson, J

    2005-11-11

    Modern graphics processing units (GPUs) can provide tremendous performance boosts for some applications beyond what a single CPU can accomplish, and their performance is growing at a rate faster than CPUs as well. Mobile GPUs available for laptops have the small form factor and low power requirements suitable for use in embedded processing. We evaluated several desktop and mobile GPUs and CPUs on traditional and non-traditional graphics tasks, as well as on the most time consuming pieces of a full hyperspectral imaging application. Accuracy remained high despite small differences in arithmetic operations like rounding. Performance improvements are summarized here relative to a desktop Pentium 4 CPU.

  10. A real-time imaging system for rapid processing of radioactive DNA samples

    NASA Astrophysics Data System (ADS)

    McGann, W. J.; McConchie, L.; Entine, G.

    1990-12-01

    A new, high-resolution nuclear-imaging detector system is described which substantially improves the speed of detection of radioactively labeled DNA samples. Ultimately this system will be made compatible with a fully automated DNA processing system to aid in the isolation and harvesting of DNA clones in the human genome.

  11. Options for new real-time image-processing architectures in cardiovascular systems

    NASA Astrophysics Data System (ADS)

    Albers, Rob; Boosten, Marcel; de With, Peter H. N.

    2007-03-01

    Low-dose X-ray imaging, diagnosis by image analysis and multi-modal medical imaging are example aspects that lead to more advanced image processing algorithms and the corresponding platforms on which they have to be executed. In this paper, we investigate the applicability of commercially available off-the-shelf components for a new computing platform. In the analysis, we will comply to some specific use cases. In cardiovascular minimal invasive surgery, physicians require low-latency imaging applications, as their actions must be directly visible on the screen. Typical image-processing algorithms in this domain are based on multi-resolution decomposition, noise reduction, image analysis and enhancement techniques. We have compared various solutions for possible processing architectures. The most interesting technology areas for constituting a new architecture are presented and we discuss the mapping of the use cases onto the various architectural proposals. Results show that a heterogeneous architecture gives the highest potential for current and upcoming image-processing applications. However, hardware and software solutions to support low-latency, high-bandwidth image streaming and an efficient concurrent distribution of functionality still need further development. This validates a clear direction for the future, which is based on modeling streaming computing architectures and special interconnect infrastructures.

  12. Asking or Telling--Real-time Processing of Prosodically Distinguished Questions and Statements.

    PubMed

    Heeren, Willemijn F L; Bibyk, Sarah A; Gunlogson, Christine; Tanenhaus, Michael K

    2015-12-01

    We introduce a targeted language game approach using the visual world, eye-movement paradigm to assess when and how certain intonational contours affect the interpretation of utterances. We created a computer-based card game in which elliptical utterances such as "Got a candy" occurred with a nuclear contour most consistent with a yes-no question (H* H-H%) or a statement (L* L-L%). In Experiment I we explored how such contours are integrated online. In Experiment 2 we studied the expectations listeners have for how intonational contours signal intentions: do these reflect linguistic categories or rapid adaptation to the paradigm? Prosody had an immediate effect on interpretation, as indexed by the pattern and timing of fixations. Moreover, the association between different contours and intentions was quite robust in the absence of clear syntactic cues to sentence type, and was not due to rapid adaptation. Prosody had immediate effects on interpretation even though there was a construction-based bias to interpret "got a" as a question. Taken together, we believe this paradigm will provide further insights into how intonational contours and their phonetic realization interact with other cues to sentence type in online comprehension. PMID:27483741

  13. In-situ real time monitoring of the polymerization in gel-cast ceramic processes

    SciTech Connect

    Ahuja, S.; Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Raptis, A.C.; Omatete, O.O.

    1996-08-01

    Gelcasting requires making a mixture of a slurry of ceramic powder in a solution of organic monomers and casting it in a mold. Gelcasting is different from injection molding in that it separates mold filling from setting during conversion of the ceramic slurry to a formed green part. In this work, NMR spectroscopy and imaging were used for in-situ monitoring of the gelation process and gelcasting of alumina. {sup 1}H NMR spectra and images are obtained during polymerization of a mixture of soluble reactive acrylamide monomers. Polymerization was initiated by adding an initiator and an accelerator to form long- chain, crosslinked polymers. Multidimensional NMR imaging was used for in-situ monitoring of the process and for verification of homogeneous polymerization. Comparison of the modeled intensities with acquired images shows a direction extraction of T{sub 1} data from the images.

  14. Monitoring of dynamic microbiological processes using real-time flow cytometry.

    PubMed

    Arnoldini, Markus; Heck, Tobias; Blanco-Fernández, Alfonso; Hammes, Frederik

    2013-01-01

    We describe a straightforward approach to continuously monitor a variety of highly dynamic microbiological processes in millisecond resolution with flow cytometry, using standard bench-top instrumentation. Four main experimental examples are provided, namely: (1) green fluorescent protein expression by antibiotic-stressed Escherichia coli, (2) fluorescent labeling of heat-induced membrane damage in an autochthonous freshwater bacterial community, (3) the initial growth response of late stationary E. coli cells inoculated into fresh growth media, and (4) oxidative disinfection of a mixed culture of auto-fluorescent microorganisms. These examples demonstrate the broad applicability of the method to diverse biological experiments, showing that it allows the collection of detailed, time-resolved information on complex processes. PMID:24244624

  15. Non-destructive Real Time Monitoring of the Laser Welding Process

    NASA Astrophysics Data System (ADS)

    Sebestova, Hana; Chmelickova, Hana; Nozka, Libor; Moudry, Jiri

    2012-05-01

    Laser welding is a high power density technology of materials joining that has many advantages in comparison with conventional fusion welding methods, for example, high accuracy, flexibility, repeatability and especially very narrow heat-affected zone which results in minimal workpiece distortions. Since it is still quite expensive technology, minimal spoilage is required. Effective system of quality control and processing parameters optimization must be established to reduce total costs, which is particularly required in industrial production. In this article some results of pulsed Nd:YAG laser welding process monitoring based on the measurement of plasma electron temperature are presented. The ability of designed sensor to detect weld penetration depth has been demonstrated. Plasma spectral lines intensities measurement can discover gap instabilities as well as local sheet thickness reduction.

  16. Monitoring of Dynamic Microbiological Processes Using Real-Time Flow Cytometry

    PubMed Central

    Arnoldini, Markus; Heck, Tobias; Blanco-Fernández, Alfonso; Hammes, Frederik

    2013-01-01

    We describe a straightforward approach to continuously monitor a variety of highly dynamic microbiological processes in millisecond resolution with flow cytometry, using standard bench-top instrumentation. Four main experimental examples are provided, namely: (1) green fluorescent protein expression by antibiotic-stressed Escherichia coli, (2) fluorescent labeling of heat-induced membrane damage in an autochthonous freshwater bacterial community, (3) the initial growth response of late stationary E. coli cells inoculated into fresh growth media, and (4) oxidative disinfection of a mixed culture of auto-fluorescent microorganisms. These examples demonstrate the broad applicability of the method to diverse biological experiments, showing that it allows the collection of detailed, time-resolved information on complex processes. PMID:24244624

  17. Development of image processing LSI "SuperVchip" for real-time vision systems

    NASA Astrophysics Data System (ADS)

    Muramatsu, Shoji; Kobayashi, Yoshiki; Otsuka, Yasuo; Shojima, Hiroshi; Tsutsumi, Takayuki; Imai, Toshihiko; Yamada, Shigeyoshi

    2002-03-01

    A new image processing LSI SuperVchip with high-performance computing power has been developed. The SuperVchip has powerful capability for vision systems as follows: 1. General image processing by 3x3, 5x5, 7x7 kernel for high speed filtering function. 2. 16-parallel gray search engine units for robust template matching. 3. 49 block matching Pes to calculate the summation of the absolution difference in parallel for stereo vision function. 4. A color extraction unit for color object recognition. The SuperVchip also has peripheral function of vision systems, such as video interface, PCI extended interface, RISC engine interface and image memory controller on a chip. Therefore, small and high performance vision systems are realized via SuperVchip. In this paper, the above specific circuits are presented, and an architecture of a vision device equipped with SuperVchip and its performance are also described.

  18. Image processing algorithm design and implementation for real-time autonomous inspection of mixed waste

    SciTech Connect

    Schalkoff, R.J.; Shaaban, K.M.; Carver, A.E.

    1996-12-31

    The ARIES {number_sign}1 (Autonomous Robotic Inspection Experimental System) vision system is used to acquire drum surface images under controlled conditions and subsequently perform autonomous visual inspection leading to a classification as `acceptable` or `suspect`. Specific topics described include vision system design methodology, algorithmic structure,hardware processing structure, and image acquisition hardware. Most of these capabilities were demonstrated at the ARIES Phase II Demo held on Nov. 30, 1995. Finally, Phase III efforts are briefly addressed.

  19. LANDSAT digital data processing: A near real-time application. [Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Bohn, C.; Stuart, L.; Hill, J.

    1975-01-01

    An application of rapid generation of classed digital images from LANDSAT-1 was demonstrated and its feasibility evaluated by NASA in conjunction with the Environmental Protection Agency (EPA), Texas A and M University (TAMU), and the Cousteau Society. The primary purpose was to show that satellite data could be processed and transmitted to the Calypso, which was used as a research vessel, in time for use in directing it to specific locations of possible plankton upwellings, sediment, or other anomalies in the coastal water areas along the Gulf of Mexico.

  20. XSTREAM: A Highly Efficient High Speed Real-time Satellite Data Acquisition and Processing System using Heterogeneous Computing

    NASA Astrophysics Data System (ADS)

    Pramod Kumar, K.; Mahendra, P.; Ramakrishna rReddy, V.; Tirupathi, T.; Akilan, A.; Usha Devi, R.; Anuradha, R.; Ravi, N.; Solanki, S. S.; Achary, K. K.; Satish, A. L.; Anshu, C.

    2014-11-01

    In the last decade, the remote sensing community has observed a significant growth in number of satellites, sensors and their resolutions, thereby increasing the volume of data to be processed each day. Satellite data processing is a complex and time consuming activity. It consists of various tasks, such as decode, decrypt, decompress, radiometric normalization, stagger corrections, ephemeris data processing for geometric corrections etc., and finally writing of the product in the form of an image file. Each task in the processing chain is sequential in nature and has different computing needs. Conventionally the processes are cascaded in a well organized workflow to produce the data products, which are executed on general purpose high-end servers / workstations in an offline mode. Hence, these systems are considered to be ineffective for real-time applications that require quick response and just-intime decision making such as disaster management, home land security and so on. This paper discusses anovel approach to processthe data online (as the data is being acquired) using a heterogeneous computing platform namely XSTREAM which has COTS hardware of CPUs, GPUs and FPGA. This paper focuses on the process architecture, re-engineering aspects and mapping of tasks to the right computing devicewithin the XSTREAM system, which makes it an ideal cost-effective platform for acquiring, processing satellite payload data in real-time and displaying the products in original resolution for quick response. The system has been tested for IRS CARTOSAT and RESOURCESAT series of satellites which have maximum data downlink speed of 210 Mbps.

  1. Real-time garbage collection for list processing using restructured cells for increased reference counter size

    NASA Technical Reports Server (NTRS)

    Shuler, Jr., Robert L. (Inventor)

    1990-01-01

    In a list processing system, small reference counters are maintained in conjunction with memory cells for the purpose of identifying memory cells that become available for re-use. The counters are updated as references to the cells are created and destroyed, and when a counter of a cell is decremented to logical zero the cell is immediately returned to a list of free cells. In those cases where a counter must be incremented beyond the maximum value that can be represented in a small counter, the cell is restructured so that the additional reference count can be represented. The restructuring involves allocating an additional cell, distributing counter, tag, and pointer information among the two cells, and linking both cells appropriately into the existing list structure.

  2. Two dimensional recursive digital filters for near real time image processing

    NASA Technical Reports Server (NTRS)

    Olson, D.; Sherrod, E.

    1980-01-01

    A program was designed toward the demonstration of the feasibility of using two dimensional recursive digital filters for subjective image processing applications that require rapid turn around. The concept of the use of a dedicated minicomputer for the processor for this application was demonstrated. The minicomputer used was the HP1000 series E with a RTE 2 disc operating system and 32K words of memory. A Grinnel 256 x 512 x 8 bit display system was used to display the images. Sample images were provided by NASA Goddard on a 800 BPI, 9 track tape. Four 512 x 512 images representing 4 spectral regions of the same scene were provided. These images were filtered with enhancement filters developed during this effort.

  3. General-Purpose Front End for Real-Time Data Processing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    FRONTIER is a computer program that functions as a front end for any of a variety of other software of both the artificial intelligence (AI) and conventional data-processing types. As used here, front end signifies interface software needed for acquiring and preprocessing data and making the data available for analysis by the other software. FRONTIER is reusable in that it can be rapidly tailored to any such other software with minimum effort. Each component of FRONTIER is programmable and is executed in an embedded virtual machine. Each component can be reconfigured during execution. The virtual-machine implementation making FRONTIER independent of the type of computing hardware on which it is executed.

  4. Detection of almond allergen coding sequences in processed foods by real time PCR.

    PubMed

    Prieto, Nuria; Iniesto, Elisa; Burbano, Carmen; Cabanillas, Beatriz; Pedrosa, Mercedes M; Rovira, Mercè; Rodríguez, Julia; Muzquiz, Mercedes; Crespo, Jesus F; Cuadrado, Carmen; Linacero, Rosario

    2014-06-18

    The aim of this work was to develop and analytically validate a quantitative RT-PCR method, using novel primer sets designed on Pru du 1, Pru du 3, Pru du 4, and Pru du 6 allergen-coding sequences, and contrast the sensitivity and specificity of these probes. The temperature and/or pressure processing influence on the ability to detect these almond allergen targets was also analyzed. All primers allowed a specific and accurate amplification of these sequences. The specificity was assessed by amplifying DNA from almond, different Prunus species and other common plant food ingredients. The detection limit was 1 ppm in unprocessed almond kernels. The method's robustness and sensitivity were confirmed using spiked samples. Thermal treatment under pressure (autoclave) reduced yield and amplificability of almond DNA; however, high-hydrostatic pressure treatments did not produced such effects. Compared with ELISA assay outcomes, this RT-PCR showed higher sensitivity to detect almond traces in commercial foodstuffs. PMID:24857239

  5. Use of miniature magnetic sensors for real-time control of the induction heating process

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  6. InSAR processing for volcano monitoring and other near-real time applications

    NASA Astrophysics Data System (ADS)

    Spaans, Karsten; Hooper, Andrew

    2016-04-01

    Radar interferometry (InSAR, interferometric synthetic aperture radar) is routinely used to measure surface deformation prior to, during, and after volcanic events, although not in a monitoring capacity. The improved data availability of some current satellite missions presents us with the opportunity to do just that. We present here a fast and flexible algorithm to estimate coherence and select points on an interferogram-by-interferogram basis, which overcomes limitations of the conventional boxcar ensemble method in areas of marginal coherence. Time series methods, which offer an alternative way to select coherent points, are typically slow, and do not allow for insertion of new data without reprocessing the entire data set. Our new algorithm calculates the coherence for each point based on an ensemble of points with similar amplitude behavior throughout the data set. The points that behave similarly are selected prior to new images being acquired, on the assumption that the behavior of these nearby points does not change rapidly through time. The resulting coherence estimate is superior in resolution and noise level to the boxcar method. In contrast to most other time series methods, we select a different set of coherent points for each interferogram, avoiding the selection compromise inherent to other time series methods. The relative simplicity of this strategy compared to other time series techniques means we can process new images in about 1 h for a typical setup.

  7. A convenient method of preparing gene vector for real time monitoring transfection process based on the quantum dots

    SciTech Connect

    Zhang, Hai-Li; Zhang, Ming-Zhen; Li, Xiang-Yong; Wan, Min; Li, Yong-Qiang; Zhang, Rong-Ying; Zhao, Yuan-Di

    2012-11-15

    Highlights: ► An easy and direct way to prepare QDs–DNA complexes was developed. ► Surface charge of QDs was tuned with different ratio of amino and glycolate. ► Transfection efficiency was dependent on the surface zeta potentials of QDs. ► Cellular toxicity of this gene vectors is much lower than commercial liposome. ► Whole intracellular behavior of QDs–DNA complexes can be monitored in real time. -- Abstract: Nanoparticle carrier has been developed by combining water-soluble quantum dots and plasmid DNA expressed enhanced green fluorescent protein (EGFP) in a convenient and direct way. First the QDs with different surface charges were obtained by coating with amino and carboxyl terminals at different ratios. Then plasmid DNA was conjugated to QDs via electrostatic interaction. The resultant QDs–DNA complexes showed enhanced resistance to DNase I digestion. The following transfection experiments demonstrated that the transfection efficiency was dependent on the surface charges on QDs. The real time imaging of the transfection process showed that the nanoparticles experienced binding, penetrating the cell membrane and entering cytoplasm in the first 6 h of transfection. The green fluorescence of EGFP began to appear after 18 h transfection and plasmid DNA was fully expressed in the following 6 h. This new QDs–DNA platform showed great potential as new gene delivery carrier.

  8. Real-time measuring system design and application of thermal expansion displacement during resistance spot welding process

    NASA Astrophysics Data System (ADS)

    Li, YongBing; Xu, Jun; Chen, GuanLong; Lin, ZhongQin

    2005-12-01

    Resistance spot welding (RSW) technology is the most important joining method in auto-body manufacturing. Quality of spot weld not only determines reliability and safety of cars, but also has an important influence on assembly variation of auto-body. Many welding quality parameters, such as welding current, electric resistance, electrode pressure, and thermal expansion displacement, had been proposed to monitoring and controlling spot weld quality, in which thermal expansion displacement was thought as a very promising method. But the measurement of dynamic displacement encounters many difficulties in measuring precision, measuring speed and sensor installation, which limit the usage of this method. This paper introduced a kind of laser displacement sensor made in OMRON to overcome the limitations of displacement measuring precision and measuring speed, and at the same time designed an ingenious fixture to mount the sensor to welding gun. Calibration experiments showed that the fixture reduced vibration introduced by pneumatic welding gun and interference between sensor and welding gun, and have a good linearity with standard clearance gauge. Based on this measuring system, dynamic thermal expansion displacement during RSW process was real-time monitored. Analysis found thermal expansion displacement can be used to real-time distinguish weld quality, such as small nugget, splash.

  9. Real-time multi-signal frequency tracking with a bank of notch filters to estimate the respiratory rate from the ECG.

    PubMed

    Mirmohamadsadeghi, Leila; Vesin, Jean-Marc

    2016-09-01

    Measuring the instantaneous frequency of a signal rapidly and accurately is essential in many applications. However, the instantaneous frequency by definition is a parameter difficult to determine. Fourier-based methods introduce estimation delays as computations are performed in a time-window. Instantaneous methods based on the Hilbert transform lack robustness. State-of-the-art adaptive filters yield accurate estimates, however, with an adaptation delay. In this study we propose an algorithm based on short length-3 FIR notch filters to estimate the instantaneous frequency of a signal at each sample, in a real-time manner and with very low delay. The output powers of a bank of the above-mentioned filters are used in a recursive weighting scheme to estimate the dominant frequency of the input. This scheme has been extended to process multiple inputs containing a common frequency by introducing an additional weighting scheme upon the inputs. The algorithm was tested on synthetic data and then evaluated on real biomedical data, i.e. the estimation of the respiratory rate from the electrocardiogram. It was shown that the proposed method provided more accurate estimates with less delay than those of state-of-the-art methods. By virtue of its simplicity and good performance, the proposed method is a worthy candidate to be used in biomedical applications, for example in health monitoring developments based on portable and automatic devices. PMID:27510318

  10. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  11. Real-time data transmission, processing, and dissemination of GPS dropwindsonde data from the NASA Global Hawk unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Black, M. L.; Wick, G. A.; Spackman, J. R.; Hock, T.; Hood, R.

    2011-12-01

    Global Positioning System (GPS) dropwindsondes (dropsonde) designed by the National Center for Atmospheric Research (NCAR) have been used on National Oceanic and Atmospheric Administration (NOAA) aircraft since 1996 to study and provide real-time vertical profiles of winds and thermodynamics within Tropical Cyclones (TC) and their atmospheric environment to forecasters and scientists. Operational and research aircraft from other agencies such as the Air Force, Navy, and the National Aeronautics and Space Administration (NASA) have since used these instruments, deployed from aircraft to provide invaluable data for use in numerical weather models and for scientific projects as part of their observing systems. The GPS dropsondes are now used routinely by the U. S. Government, universities, and other countries to observe and study a wide range of atmospheric phenomena. NOAA finalized a contract with NCAR to design and build a dropsonde system for the NASA Global Hawk autonomous (unmanned) aircraft to be used initially during the NASA (TC) Genesis and Rapid Intensification Processes (GRIP) field campaign held during the late summer of 2010. This was the first time that a dropsonde system was designed to be installed on a fully autonomous aircraft. This concept provided numerous engineering obstacles but the potential for positive impacts for the scientific and operational community made the effort worthwhile. The system was installed and tested during GRIP but some engineering problems prevented it from being used fully during the experiment. NCAR engineers overcame these obstacles and the dropsonde system was ready for final testing in early 2011. The Global Hawk completed several successful test and science flights with the dropsonde system from February to March 2011. Three science flights, designed specifically to test and validate the dropsonde system on the GH as part of the NOAA Winter Storms and Atmospheric Rivers (WISPAR) experiment, were conducted in the

  12. Comparison of Real-Time PCR Signal-Amplified In Situ Hybridization and Conventional PCR for Detection and Quantification of Human Papillomavirus in Archival Cervical Cancer Tissue

    PubMed Central

    Biedermann, Karin; Dandachi, Nadia; Trattner, Maria; Vogl, Georgia; Doppelmayr, Hildegard; Moré, Elena; Staudach, Alfons; Dietze, Otto; Hauser-Kronberger, Cornelia

    2004-01-01

    Archival paraffin-embedded tumor specimens offer a wealth of information for both cancer research and for routine clinical applications. However, the use of formalin-fixed, paraffin-embedded specimens for quantitative real-time PCR is not yet a standard diagnostic method in many laboratories, in particular for the quantification of human papillomavirus (HPV). Particularly high-risk HPV types are involved in almost 100% of the carcinogenesis of cervical cancer. We compared the diagnostic applicability and sensitivity of real-time PCR to that of chromogenic tyramide-signal-amplified in situ hybridization and conventional PCR for the detection of HPV from archival tissue in 164 cases of carcinoma in situ and cervical cancer. Furthermore, we examined whether the viral load of HPV is of prognostic relevance. Our findings indicate that patients in tumor stage I with a lower viral load of HPV type 16 (HPV16; up to 1,000 copies/ng of DNA) had a significantly better survival than HPV 16-negative patients (P = 0.037). We observed a greater sensitivity of both real-time PCR and conventional PCR for the detection of HPV16 and -18 compared to signal amplified in situ hybridization. We found a considerable concordance between HPV16 (κ = 0.661) and HPV18 (κ = 0.781) status as measured by real-time PCR and conventional PCR, indicating similar sensitivities. We recognized an inhibitory effect of formalin fixation and paraffin embedding on the evaluation of real-time PCR quantification. PMID:15297527

  13. A real time, FEM based optimal control algorithm and its implementation using parallel processing hardware (transistors) in a microprocessor environment

    NASA Technical Reports Server (NTRS)

    Patten, William Neff

    1989-01-01

    There is an evident need to discover a means of establishing reliable, implementable controls for systems that are plagued by nonlinear and, or uncertain, model dynamics. The development of a generic controller design tool for tough-to-control systems is reported. The method utilizes a moving grid, time infinite element based solution of the necessary conditions that describe an optimal controller for a system. The technique produces a discrete feedback controller. Real time laboratory experiments are now being conducted to demonstrate the viability of the method. The algorithm that results is being implemented in a microprocessor environment. Critical computational tasks are accomplished using a low cost, on-board, multiprocessor (INMOS T800 Transputers) and parallel processing. Progress to date validates the methodology presented. Applications of the technique to the control of highly flexible robotic appendages are suggested.

  14. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells.

    PubMed

    Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W; Gautier, Virginie W

    2015-01-01

    We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.

  15. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells

    PubMed Central

    Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W.; Gautier, Virginie W.

    2015-01-01

    We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip. PMID:26485569

  16. An engineered approach to stem cell culture: automating the decision process for real-time adaptive subculture of stem cells.

    PubMed

    Ker, Dai Fei Elmer; Weiss, Lee E; Junkers, Silvina N; Chen, Mei; Yin, Zhaozheng; Sandbothe, Michael F; Huh, Seung-il; Eom, Sungeun; Bise, Ryoma; Osuna-Highley, Elvira; Kanade, Takeo; Campbell, Phil G

    2011-01-01

    Current cell culture practices are dependent upon human operators and remain laborious and highly subjective, resulting in large variations and inconsistent outcomes, especially when using visual assessments of cell confluency to determine the appropriate time to subculture cells. Although efforts to automate cell culture with robotic systems are underway, the majority of such systems still require human intervention to determine when to subculture. Thus, it is necessary to accurately and objectively determine the appropriate time for cell passaging. Optimal stem cell culturing that maintains cell pluripotency while maximizing cell yields will be especially important for efficient, cost-effective stem cell-based therapies. Toward this goal we developed a real-time computer vision-based system that monitors the degree of cell confluency with a precision of 0.791±0.031 and recall of 0.559±0.043. The system consists of an automated phase-contrast time-lapse microscope and a server. Multiple dishes are sequentially imaged and the data is uploaded to the server that performs computer vision processing, predicts when cells will exceed a pre-defined threshold for optimal cell confluency, and provides a Web-based interface for remote cell culture monitoring. Human operators are also notified via text messaging and e-mail 4 hours prior to reaching this threshold and immediately upon reaching this threshold. This system was successfully used to direct the expansion of a paradigm stem cell population, C2C12 cells. Computer-directed and human-directed control subcultures required 3 serial cultures to achieve the theoretical target cell yield of 50 million C2C12 cells and showed no difference for myogenic and osteogenic differentiation. This automated vision-based system has potential as a tool toward adaptive real-time control of subculturing, cell culture optimization and quality assurance/quality control, and it could be integrated with current and developing robotic cell

  17. Determination of breath isoprene allows the identification of the expiratory fraction of the propofol breath signal during real-time propofol breath monitoring.

    PubMed

    Hornuss, Cyrill; Dolch, Michael E; Janitza, Silke; Souza, Kimberly; Praun, Siegfried; Apfel, Christian C; Schelling, Gustav

    2013-10-01

    Real-time measurement of propofol in the breath may be used for routine clinical monitoring. However, this requires unequivocal identification of the expiratory phase of the respiratory propofol signal as only expiratory propofol reflects propofol blood concentrations. Determination of CO2 breath concentrations is the current gold standard for the identification of expiratory gas but usually requires additional equipment. Human breath also contains isoprene, a volatile organic compound with low inspiratory breath concentration and an expiratory concentration plateau. We investigated whether breath isoprene could be used similarly to CO2 to identify the expiratory fraction of the propofol breath signal. We investigated real-time breath data obtained from 40 study subjects during routine anesthesia. Propofol, isoprene, and CO2 breath concentrations were determined by a combined ion molecule reaction/electron impact mass spectrometry system. The expiratory propofol signal was identified according to breath CO2 and isoprene concentrations and presented as median of intervals of 30 s duration. Bland-Altman analysis was applied to detect differences (bias) in the expiratory propofol signal extracted by the two identification methods. We investigated propofol signals in a total of 3,590 observation intervals of 30 s duration in the 40 study subjects. In 51.4 % of the intervals (1,844/3,590) both methods extracted the same results for expiratory propofol signal. Overall bias between the two data extraction methods was -0.12 ppb. The lower and the upper limits of the 95 % CI were -0.69 and 0.45 ppb. Determination of isoprene breath concentrations allows the identification of the expiratory propofol signal during real-time breath monitoring.

  18. Microcomputer-based artificial vision support system for real-time image processing for camera-driven visual prostheses

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; You, Cindy X.; Tarbell, Mark A.

    2010-01-01

    It is difficult to predict exactly what blind subjects with camera-driven visual prostheses (e.g., retinal implants) can perceive. Thus, it is prudent to offer them a wide variety of image processing filters and the capability to engage these filters repeatedly in any user-defined order to enhance their visual perception. To attain true portability, we employ a commercial off-the-shelf battery-powered general purpose Linux microprocessor platform to create the microcomputer-based artificial vision support system (μAVS2) for real-time image processing. Truly standalone, μAVS2 is smaller than a deck of playing cards, lightweight, fast, and equipped with USB, RS-232 and Ethernet interfaces. Image processing filters on μAVS2 operate in a user-defined linear sequential-loop fashion, resulting in vastly reduced memory and CPU requirements during execution. μAVS2 imports raw video frames from a USB or IP camera, performs image processing, and issues the processed data over an outbound Internet TCP/IP or RS-232 connection to the visual prosthesis system. Hence, μAVS2 affords users of current and future visual prostheses independent mobility and the capability to customize the visual perception generated. Additionally, μAVS2 can easily be reconfigured for other prosthetic systems. Testing of μAVS2 with actual retinal implant carriers is envisioned in the near future.

  19. Microcomputer-based artificial vision support system for real-time image processing for camera-driven visual prostheses.

    PubMed

    Fink, Wolfgang; You, Cindy X; Tarbell, Mark A

    2010-01-01

    It is difficult to predict exactly what blind subjects with camera-driven visual prostheses (e.g., retinal implants) can perceive. Thus, it is prudent to offer them a wide variety of image processing filters and the capability to engage these filters repeatedly in any user-defined order to enhance their visual perception. To attain true portability, we employ a commercial off-the-shelf battery-powered general purpose Linux microprocessor platform to create the microcomputer-based artificial vision support system (microAVS(2)) for real-time image processing. Truly standalone, microAVS(2) is smaller than a deck of playing cards, lightweight, fast, and equipped with USB, RS-232 and Ethernet interfaces. Image processing filters on microAVS(2) operate in a user-defined linear sequential-loop fashion, resulting in vastly reduced memory and CPU requirements during execution. MiccroAVS(2) imports raw video frames from a USB or IP camera, performs image processing, and issues the processed data over an outbound Internet TCP/IP or RS-232 connection to the visual prosthesis system. Hence, microAVS(2) affords users of current and future visual prostheses independent mobility and the capability to customize the visual perception generated. Additionally, microAVS(2) can easily be reconfigured for other prosthetic systems. Testing of microAVS(2) with actual retinal implant carriers is envisioned in the near future. PMID:20210459

  20. X-ray beam modulation, image acquisition and real-time processing in region-of-interest fluoroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Chang-Ying Joseph

    2000-07-01

    Region of interest (ROI) fluoroscopy is a technique whereby a partially attenuating filter with an aperture in the center is placed in the x-ray beam between the source and the patient The part of the x-ray beam going through the filter aperture un-attenuated is used to project the main features of interest in the patient to form the ROI in each fluoroscopic image. The periphery of the image is formed by the projection of the features needed only for reference using the part of the attenuated x-ray beam passing through the filter. This technique can substantially reduce patient and staff dose and improve the image quality in the ROI of the image. By using Gd for the filter material, it is even possible to improve the x-ray attenuation contrast in the periphery. However, real-time image processing is needed to compensate for the x-ray intensity attenuation in the periphery so that the brightness in the two parts of the fluoroscopic image is linearity is restored. Based on the method of binary masks, a system was developed to perform the real-time image processing with the flexibility to accommodate both the horizontal and vertical movement of the imaging chain relative to the patient. A binary mask is a binary image used to define those regions in the fluoroscopic image which should be processed and those which should not. A method of binary mask generation was proposed so the region defined as not to be processed in the binary mask maintains as close a resemblance as possible to the ROI of the fluoroscopic image. The construction method for the look-up table used for the processing of the periphery and its dependence on physical quantities were described and studied. An algorithm for constantly tracking the change of the ROI in the fluoroscopic images and selecting the proper corresponding binary mask was developed. The quality of the processed ROI fluoroscopic images such as brightness, contrast and noise were evaluated and compared using test phantoms. The test

  1. A real-time characterization method to rapidly optimize molecular beacon signal for sensitive nucleic acids analysis.

    PubMed

    Hsieh, Albert Tsung-Hsi; Pan, Patrick J; Lee, Abraham P

    2014-05-01

    This research demonstrates an integrated microfluidic titration assay to characterize the cation concentrations in working buffer to rapidly optimize the signal-to-noise ratio (SNR) of molecular beacons (MBs). The "Microfluidic Droplet Array Titration Assay" (MiDATA) integrated the functions of sample dilution, sample loading, sample mixing, fluorescence analysis, and re-confirmation functions all together in a one-step process. It allows experimentalists to arbitrarily change sample concentration and acquire SNR measurements instantaneously. MiDATA greatly reduces sample dilution time, number of samples needed, sample consumption, and the total titration time. The maximum SNR of molecular beacons is achieved by optimizing the concentrations of the monovalent and divalent cation (i.e., Mg(2+) and K(+)) of the working buffer. MiDATA platform is able to reduce the total consumed reagents to less than 50 μL, and decrease the assay time to less than 30 min. The SNR of the designated MB is increased from 20 to 126 (i.e., enhanced the signal 630 %) using the optimal concentration of MgCl2 and KCl determined by MiDATA. This novel microfluidics-based titration method is not only useful for SNR optimization of molecular beacons but it also can be a general method for a wide range of fluorescence resonance energy transfer (FRET)-based molecular probes.

  2. A GPU based real-time image processing for an axis-symmetrical optical laser triangulation system

    NASA Astrophysics Data System (ADS)

    Buschinelli, Pedro D. V.; Landeira, Gabriel A. B.; Kohler, Christian; Albertazzi, Armando; Teixeira da Silva, Guilherme B.

    2012-10-01

    An axis-symmetrical optical laser triangulation system was developed by the authors to measure the inner geometry of long pipes used in the oil industry. It has a special optical configuration able to acquire shape information of the inner geometry of a section of a pipe from a single image frame. It uses a radial light sheet and conical triangulation to measure the inner geometry of pipes in cylindrical coordinates. A set of equally spaced images of 1024 x 1024 pixels is acquired at 50 Hz while the device is moved along the pipe's axis. The measured geometry is analyzed to identify defects like corrosion damage. A GPU based processing algorithm has been developed to make the system able to process these images and display the geometrical/measurement result in real-time. The algorithm implements an adaptive threshold filter and a light intensity peak search using a graphic processing unit programming architecture (CUDA). Prior to the parallel algorithms (called kernels) a texture data type is used to remap the image, converting from polar to Cartesian coordinates, mapping angular and radial values in a 2D pixel data matrix. Radial lines are only scanned in a limited range (256 pixels) between a minimum and a maximum radius value. The achieved image processing frequency is about 470 frames per second (FPS) using a notebook equipped with a GTX 285m graphics card.

  3. Real-time Signal-to-noise Ratio (SNR) Estimation for BPSK and QPSK Modulation Using the Active Communications Channel

    NASA Technical Reports Server (NTRS)

    Manning, Robert M. (Inventor)

    2007-01-01

    Method and apparatus for estimating signal-to-noise ratio (SNR) gamma of a composite input signal e(t) on a phase modulated (e.g., BPSK) communications link. A first demodulator receives the composite input signal and a stable carrier signal and outputs an in-phase output signal; a second demodulator receives the composite input signal and a phase-shifted version of the carrier signal and outputs a quadrature-phase output signal; and phase error theta(sub E)(t) contained within the composite input signal e(t) is calculated from the outputs of the first and second demodulators. A time series of statistically independent phase error measurements theta(sub E)(t(sub 1)), theta (sub E)(t(sub 2)),..., theta (sub E)(t(sub k)) is obtained from the composite input signal subtending a time interval delta t = t(sub k) - t(sub 1) whose value is small enough such that gamma(t) and sigma(t) can be taken to be constant in delta t. A biased estimate gamma(sup *) for the signal-to-noise ratio (SNR) gamma if the composite input signal is calculated using maximum likelihood (ML) estimation techniques, and an unbiased estimate gamma(sup ^) for the signal-to-noise ratio (SNR) gamma of the composite input signal is determined from the biased estimate gamma(sup *), such as by use of a look-up table.

  4. Real Time Estimation Of Object Spectrocolorimettic Features

    NASA Astrophysics Data System (ADS)

    Petrov, Peter V.; Lukarsky, Christo D.; Christov, Victor V.; Grancharov, Parashkev A.; Arshinkova, Iren I.

    1989-03-01

    The results obtained in the development of a laboratory prototype of intelligent spectrometric system with real time digital signal processing are shown in this paper. The system is acombination of visible range spectrophotometer and focussing holographic grid with photodiode linear structure, i.e.the sensor, real time digital signal processing controller and display processor for gray level visualization, together with PC/XT controlLing computer. The twodimesional adaptive differential pulse code modulator with simultaneous correction of sensor dark current introduced into the real time controller allows the registration of measurments with resolution of 10 bit/el and real time data compression 2.5 times. During computation of colorimetric estimations or wideband photo-metric compression the possibilities for express analysis increase together with the enhancement of the signal-to-noise ratio. The system control and the visualization of spectral and colorimetric features in the data flux is made with personal computer together with display processor with resolution 512x512x8 and interactive software. It may be used for ground-based and onboard complexes.

  5. Real-time inspection by submarine images

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Zingaretti, Primo; Conte, Giuseppe

    1996-10-01

    A real-time application of computer vision concerning tracking and inspection of a submarine pipeline is described. The objective is to develop automatic procedures for supporting human operators in the real-time analysis of images acquired by means of cameras mounted on underwater remotely operated vehicles (ROV) Implementation of such procedures gives rise to a human-machine system for underwater pipeline inspection that can automatically detect and signal the presence of the pipe, of its structural or accessory elements, and of dangerous or alien objects in its neighborhood. The possibility of modifying the image acquisition rate in the simulations performed on video- recorded images is used to prove that the system performs all necessary processing with an acceptable robustness working in real-time up to a speed of about 2.5 kn, widely greater than that the actual ROVs and the security features allow.

  6. The Near Real Time Data Processing System For GPS Radio Occultation Data From Champ At Gfz Potsdam

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Wickert, J.; Marquardt, Ch.; Beyerle, G.; Reigber, Ch.; Wehrenpfennig, A.

    GPS radio occultation measurements onboard low earth orbiting satellites (CHAMP) offer a prominent method for global and continuous monitoring of the Earth's atmo- sphere. Data assimilation studies using radio occultation data have already shown that this new type of remote sensing technique improves the accuracy of global and re- gional weather analyses and predictions. The use of products obtained from radio occultation data as, e.g., refractivity, tem- perature, or humidity profiles, by weather service centers requires an operational data processing system generating and delivering data products automatically within a 3 hour time limit. Since one year such a near real time data processing system is oper- ated at GFZ Potsdam with radio occultation data from the German satellite CHAMP (Challenging Minisatellite Payload). This system, the CHAMP Atmospheric Processor (CAP), will be introduced. The con- trolling and scientific components including ground infrastructure, data flow and soft- ware modules are discussed. CAP is designed to be easily extendable by additional scientific modules or input data. Thus, it also allows for an extension to other single- or multi-satellite occultation missions as, e.g., GRACE to be launched in March 2002. By end of April 2002 more than 50.000 occultations will be recorded. Extensive statis- tics as daily and monthly averages of processed occultations and global distributions of occultation events from one year of CHAMP radio occultation data will be presented.

  7. Real-Time Data Display

    NASA Technical Reports Server (NTRS)

    Pedings, Marc

    2007-01-01

    RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.

  8. NEAR-REAL-TIME MEASUREMENT OF TRACE VOLATILE ORGANIC COMPOUNDS FROM COMBUSTION PROCESSES USING AN ON-LINE GAS CHROMATOGRAPH

    EPA Science Inventory

    The U.S. EPA's current regulatory approach for combustion and incineration sources emphasizes the use of real-time continuous emission monitors (CEMs) for particulate, Metals, and volatile, semivolatile, and of nonvolatile organic compounds to monitor source emissions. Currently...

  9. Novel One-Tube-One-Step Real-Time Methodology for Rapid Transcriptomic Biomarker Detection: Signal Amplification by Ternary Initiation Complexes.

    PubMed

    Fujita, Hiroto; Kataoka, Yuka; Tobita, Seiji; Kuwahara, Masayasu; Sugimoto, Naoki

    2016-07-19

    We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.

  10. Novel One-Tube-One-Step Real-Time Methodology for Rapid Transcriptomic Biomarker Detection: Signal Amplification by Ternary Initiation Complexes.

    PubMed

    Fujita, Hiroto; Kataoka, Yuka; Tobita, Seiji; Kuwahara, Masayasu; Sugimoto, Naoki

    2016-07-19

    We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases. PMID:27347743

  11. An alternative quantitative acoustical and electrical method for detection of cell adhesion process in real-time.

    PubMed

    Le Guillou-Buffello, Delphine; Gindre, Marcel; Johnson, Paul; Laugier, Pascal; Migonney, Véronique

    2011-04-01

    Sauerbrey [(1956), Z Phys 55:206-222] showed that the shift in resonance frequency of thickness shear mode (TSM) of a quartz crystal sensor is proportional to the mass, which is deposited on it. However, new powerful electrical circuits were developed that are capable of operating TSM quartz crystal sensors in fluids which enabled this method to be introduced into electrochemical and biological applications. These applications include the detection of virus capsids, bacteria, mammalian cells, the interaction of DNA and RNA with complementary strands, specific recognition of protein ligands by immobilized receptors, and last but not least the study of complete immunosensors. Piezoelectric quartz transducers allow a label-free identification of molecules; they are more than mass sensors since the biosensor response is also influenced by the surface charge of adsorbed proteins, interfacial phenomena, surface roughness and viscoelastic properties of the adhered biomaterial. These new characteristics have recently been used to investigate cell, liposome, and protein adhesion onto surfaces, thus permitting the rapid determination of morphological cell changes as a response to pharmacological substances, and changes in the water content of biopolymers avoiding of time-consuming methods. We validated an alternative quantitative acoustical engineering for cell adhesion process monitored by the TSM. Shear acoustical results (motional resistance) are further correlated to cell counting procedures and are sensitive of adhesion processes in real-time.

  12. Parallel processing of real-time dynamic systems simulation on OSCAR (Optimally SCheduled Advanced multiprocessoR)

    NASA Technical Reports Server (NTRS)

    Kasahara, Hironori; Honda, Hiroki; Narita, Seinosuke

    1989-01-01

    Parallel processing of real-time dynamic systems simulation on a multiprocessor system named OSCAR is presented. In the simulation of dynamic systems, generally, the same calculation are repeated every time step. However, we cannot apply to Do-all or the Do-across techniques for parallel processing of the simulation since there exist data dependencies from the end of an iteration to the beginning of the next iteration and furthermore data-input and data-output are required every sampling time period. Therefore, parallelism inside the calculation required for a single time step, or a large basic block which consists of arithmetic assignment statements, must be used. In the proposed method, near fine grain tasks, each of which consists of one or more floating point operations, are generated to extract the parallelism from the calculation and assigned to processors by using optimal static scheduling at compile time in order to reduce large run time overhead caused by the use of near fine grain tasks. The practicality of the scheme is demonstrated on OSCAR (Optimally SCheduled Advanced multiprocessoR) which has been developed to extract advantageous features of static scheduling algorithms to the maximum extent.

  13. Real-time vision systems

    SciTech Connect

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  14. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.

    PubMed

    Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi

    2011-11-01

    Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks.

  15. Real-time processing of dual band HD video for maintaining operational effectiveness in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Parker, Steve C. J.; Hickman, Duncan L.; Smith, Moira I.

    2015-05-01

    Effective reconnaissance, surveillance and situational awareness, using dual band sensor systems, require the extraction, enhancement and fusion of salient features, with the processed video being presented to the user in an ergonomic and interpretable manner. HALO™ is designed to meet these requirements and provides an affordable, real-time, and low-latency image fusion solution on a low size, weight and power (SWAP) platform. The system has been progressively refined through field trials to increase its operating envelope and robustness. The result is a video processor that improves detection, recognition and identification (DRI) performance, whilst lowering operator fatigue and reaction times in complex and highly dynamic situations. This paper compares the performance of HALO™, both qualitatively and quantitatively, with conventional blended fusion for operation in degraded visual environments (DVEs), such as those experienced during ground and air-based operations. Although image blending provides a simple fusion solution, which explains its common adoption, the results presented demonstrate that its performance is poor compared to the HALO™ fusion scheme in DVE scenarios.

  16. Real-time estimation and detection of non-linearity in bio-signals using wireless brain-computer interface.

    PubMed

    Ganesan, S; Victoire, T Aruldoss Albert; Vijayalakshmy, G

    2014-01-01

    In this paper, the work is mainly concentrated on removing non-linear parameters to make the physiological signals more linear and reducing the complexity of the signals. This paper discusses three different types of techniques that can be successfully utilised to remove non-linear parameters in EEG and ECG. (i) Transformation technique using Discrete Walsh-Hadamard Transform (DWHT); (ii) application of fuzzy logic control and (iii) building the Adaptive Neuro-Fuzzy Inference System (ANFIS) model for fuzzy. This work has been inspired by the need to arrive at an efficient, simple, accurate and quicker method for analysis of bio-signal. PMID:24589837

  17. Real time automated inspection

    DOEpatents

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  18. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  19. Real-time Data Processing and Visualization for the Airborne Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Hoese, D.; Garcia, R. K.; Smith, W. L.; Weisz, E.; Tobin, D. C.; Best, F. A.; Knuteson, R. O.; Sullivan, D. V.; Barnes, C. M.; Van Gilst, D. P.

    2015-12-01

    The Hurricane and Severe Storm Sentinel (HS3) is a five-year NASA mission targeted to enhance the understanding of the formation and evolution of hurricanes in the Atlantic basin. Measurements were made from two NASA Global Hawk Unmanned Aircraft Systems (UAS) during the 2012 through 2014 hurricane seasons, with flights conducted from the NASA Wallops Flight Facility. The Global Hawk aircraft are capable of high altitude flights with durations of up to 30 hours, which allow extensive observations over distant storms, not typically possible with manned aircraft. The two NASA Global Hawks were equipped with instrument suites to study the storm environment, and inner core structure and processes, respectively. The Scanning High-resolution Interferometer Sounder (S-HIS), designed and built by the University of Wisconsin (UW) Space Science and Engineering Center (SSEC), measures emitted thermal radiation at high spectral resolution between 3.3 and 18 microns. The radiance measurements are used to obtain temperature and water vapor profiles of the Earth's atmosphere. The S-HIS spatial resolution is 2 km at nadir, across a 40 km ground swath from a nominal altitude of 20 kilometers. Since 1998, the S-HIS has participated in 33 field campaigns and has proven to be extremely dependable, effective, and highly accurate. It has flown on the NASA ER-2, DC-8, Proteus, WB-57, and Global Hawk airborne platforms. The UW S-HIS infrared sounder instrument is equipped with a real-time ground data processing system capable of delivering atmospheric profiles, radiance data, and engineering status to mission support scientists - all within less than one minute from the time of observation. This ground data processing system was assembled by a small team using existing software and proven practical techniques similar to a satellite ground system architecture. This summary outlines the design overview for the system and illustrates the data path, content, and outcomes.

  20. Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems.

    PubMed

    Hugues-Salas, E; Giddings, R P; Jin, X Q; Wei, J L; Zheng, X; Hong, Y; Shu, C; Tang, J M

    2011-02-14

    The feasibility of utilising low-cost, un-cooled vertical cavity surface-emitting lasers (VCSELs) as intensity modulators in real-time optical OFDM (OOFDM) transceivers is experimentally explored, for the first time, in terms of achievable signal bit rates, physical mechanisms limiting the transceiver performance and performance robustness. End-to-end real-time transmission of 11.25 Gb/s 64-QAM-encoded OOFDM signals over simple intensity modulation and direct detection, 25 km SSMF PON systems is experimentally demonstrated with a power penalty of 0.5 dB. The low extinction ratio of the VCSEL intensity-modulated OOFDM signal is identified to be the dominant factor determining the maximum obtainable transmission performance. Experimental investigations indicate that, in addition to the enhanced transceiver performance, adaptive power loading can also significantly improve the system performance robustness to variations in VCSEL operating conditions. As a direct result, the aforementioned capacity versus reach performance is still retained over a wide VCSEL bias (driving) current (voltage) range of 4.5 mA to 9 mA (275 mVpp to 320 mVpp). This work is of great value as it demonstrates the possibility of future mass production of cost-effective OOFDM transceivers for PON applications.

  1. Real-time direct cell concentration and viability determination using a fully automated microfluidic platform for standalone process monitoring.

    PubMed

    Nunes, P S; Kjaerulff, S; Dufva, M; Mogensen, K B

    2015-06-21

    The industrial production of cells has a large unmet need for greater process monitoring, in addition to the standard temperature, pH and oxygen concentration determination. Monitoring the cell health by a vast range of fluorescence cell-based assays can greatly improve the feedback control and thereby ensure optimal cell production, by prolonging the fermentation cycle and increasing the bioreactor output. In this work, we report on the development of a fully automated microfluidic system capable of extracting samples directly from a bioreactor, diluting the sample, staining the cells, and determining the total cell and dead cells concentrations, within a time frame of 10.3 min. The platform consists of custom made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample to waste liquid management and image cytometry-based detection. The total concentration of cells is determined by brightfield microscopy, while fluorescence detection is used to detect propidium iodide stained non-viable cells. This method can be incorporated into facilities with bioreactors to monitor the cell concentration and viability during the cultivation process. Here, we demonstrate the microfluidic system performance by monitoring in real time the cell concentration and viability of yeast extracted directly from an in-house made bioreactor. This is the first demonstration of using the Dean drag force, generated due to the implementation of a curved microchannel geometry in conjunction with high flow rates, to promote passive mixing of cell samples and thus homogenization of the diluted cell plug. The autonomous operation of the fluidics furthermore allows implementation of intelligent protocols for administering air bubbles from the bioreactor in the microfluidic system, so that these will be guided away from the imaging region, thereby significantly improving both the robustness of the system and the quality of the data. PMID:25923294

  2. Real-time studies of surface roughness development and reticulation mechanism of advanced photoresist materials during plasma processing

    NASA Astrophysics Data System (ADS)

    Pal, A. R.; Bruce, R. L.; Weilnboeck, F.; Engelmann, S.; Lin, T.; Kuo, M.-S.; Phaneuf, R.; Oehrlein, G. S.

    2009-01-01

    Surface roughness development of photoresist (PR) films during low pressure plasma etching has been studied using real-time laser light scattering from photoresist materials along with ellipsometric and atomic force microscopy (AFM) characterization. We show that evolution of the intensity of light scattered from a film surface can be used to study the development of surface roughness for a wide range of roughness starting from subnanometer to few hundred nanometers. Laser light scattering in combination with ellipsometry and AFM is also used to study the reticulation mechanism of 193 and 248 nm PRs during argon plasma processing. We employ a three-layer model (modified layer, rough layer, and bulk film) of the modified PR surface (193 and 248 nm PRs) to simulate and understand the behavior of ellipsometric Ψ-Δ trajectories. Bruggeman's effective medium approximation is employed to study the roughness that develops on the surface after reticulation. When the glass transition temperature of the organic materials is reached during Ar plasma processing, the PR films reticulate and roughness develops rapidly. Roughness development is more pronounced for 248 nm PR than for 193 nm PR. Simulation of Ψ-Δ shows that the growth of roughness is accompanied by strong expansion in the materials, which is stronger for 248 nm PR than 193 nm PR. The leading factors responsible for reticulation are found to be compressive stress that develops in the modified surface layer as it is created along with strong molecular chain motion and expansion of the material when the temperature is increased past the glass transition temperature. Reticulation leads to a significantly different surface morphology for 248 nm PR as compared to 193 nm PR and can be related to differences in molecular structure and composition leading to different responses when a modified surface layer is formed by ion bombardment accompanying plasma etching.

  3. Real-time direct cell concentration and viability determination using a fully automated microfluidic platform for standalone process monitoring.

    PubMed

    Nunes, P S; Kjaerulff, S; Dufva, M; Mogensen, K B

    2015-06-21

    The industrial production of cells has a large unmet need for greater process monitoring, in addition to the standard temperature, pH and oxygen concentration determination. Monitoring the cell health by a vast range of fluorescence cell-based assays can greatly improve the feedback control and thereby ensure optimal cell production, by prolonging the fermentation cycle and increasing the bioreactor output. In this work, we report on the development of a fully automated microfluidic system capable of extracting samples directly from a bioreactor, diluting the sample, staining the cells, and determining the total cell and dead cells concentrations, within a time frame of 10.3 min. The platform consists of custom made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample to waste liquid management and image cytometry-based detection. The total concentration of cells is determined by brightfield microscopy, while fluorescence detection is used to detect propidium iodide stained non-viable cells. This method can be incorporated into facilities with bioreactors to monitor the cell concentration and viability during the cultivation process. Here, we demonstrate the microfluidic system performance by monitoring in real time the cell concentration and viability of yeast extracted directly from an in-house made bioreactor. This is the first demonstration of using the Dean drag force, generated due to the implementation of a curved microchannel geometry in conjunction with high flow rates, to promote passive mixing of cell samples and thus homogenization of the diluted cell plug. The autonomous operation of the fluidics furthermore allows implementation of intelligent protocols for administering air bubbles from the bioreactor in the microfluidic system, so that these will be guided away from the imaging region, thereby significantly improving both the robustness of the system and the quality of the data.

  4. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  5. RASSP signal processing architectures

    NASA Astrophysics Data System (ADS)

    Shirley, Fred; Bassett, Bob; Letellier, J. P.

    1995-06-01

    The rapid prototyping of application specific signal processors (RASSP) program is an ARPA/tri-service effort to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are specified, designed, documented, manufactured, and supported. The domain of embedded signal processing was chosen because it is important to a variety of military and commercial applications as well as for the challenge it presents in terms of complexity and performance demands. The principal effort is being performed by two major contractors, Lockheed Sanders (Nashua, NH) and Martin Marietta (Camden, NJ). For both, improvements in methodology are to be exercised and refined through the performance of individual 'Demonstration' efforts. The Lockheed Sanders' Demonstration effort is to develop an infrared search and track (IRST) processor. In addition, both contractors' results are being measured by a series of externally administered (by Lincoln Labs) six-month Benchmark programs that measure process improvement as a function of time. The first two Benchmark programs are designing and implementing a synthetic aperture radar (SAR) processor. Our demonstration team is using commercially available VME modules from Mercury Computer to assemble a multiprocessor system scalable from one to hundreds of Intel i860 microprocessors. Custom modules for the sensor interface and display driver are also being developed. This system implements either proprietary or Navy owned algorithms to perform the compute-intensive IRST function in real time in an avionics environment. Our Benchmark team is designing custom modules using commercially available processor ship sets, communication submodules, and reconfigurable logic devices. One of the modules contains multiple vector processors optimized for fast Fourier transform processing. Another module is a fiberoptic interface that accepts high-rate input data from the sensors and provides video-rate output data to a

  6. Real-time monitoring of cAMP response element binding protein signaling in porcine granulosa cells modulated by ovarian factors.

    PubMed

    He, Pei Jian; Fujimoto, Yasunori; Yamauchi, Nobuhiko; Hattori, Masa-Aki

    2006-10-01

    The present study was performed to establish a real-time monitoring of the cAMP response element binding protein (CREB) signalling using granulosa cells, and to assess the modulation of CREB activity by potential ovarian autocrine/paracrine and oocyte-derived factors. Granulosa cells were isolated from porcine follicles and cultured for 2 days, and then transfected with CRE-containing pGL3. The cells were directly stimulated or cultured with FSH, LH, forskolin, or a permeable cAMP analog, and/or IGF-I, EGF, bFGF, TGF-beta2 or TNF-alpha, or cumulus-oocyte complex (COCs) for the real-time monitoring of CREB signaling. The activation pattern of CREB signaling consisted of three distinct phases, i.e., burst, attenuation and refractory. In contrast to FSH, LH, and forskolin, a cAMP analog induced the prolonged activation, although three distinct phases were observed at its high concentration. Of all the autocrine/paracrine factors, only IGF-I slightly induced CREB activity. On the other hand, TGF-beta2 and TNF-alpha significantly repressed FSH-stimulated transcriptional activation of CREB by 30% (P < 0.05) and 45% (P < 0.05), respectively. Additionally, coculture with COCs caused a significant suppression of transcriptional activation of CREB signaling stimulated by FSH. These results indicate that ovarian autocrine/paracrine factors such as IGF-I, TGF-beta2, TNF-alpha and oocyte-derived factors modulate the CREB signaling. The present study provides a new approach for direct signaling study on transcription factors under the influences of potential factors.

  7. Inline real-time near-infrared granule moisture measurements of a continuous granulation-drying-milling process.

    PubMed

    Chablani, Lipika; Taylor, Michael K; Mehrotra, Amit; Rameas, Patrick; Stagner, William C

    2011-12-01

    The purpose of this research was to use inline real-time near-infrared (NIR) to measure the moisture content of granules manufactured using a commercial production scale continuous twin-screw granulator fluid-bed dryer milling process. A central composite response surface statistical design was used to study the effect of inlet air temperature and dew point on granule moisture content. The NIR moisture content was compared to Karl Fischer (KF) and loss on drying (LOD) moisture determinations. Using multivariate analysis, the data showed a statistically significant correlation between the conventional methods and NIR. The R(2) values for predicted moisture content by NIR versus KF and predicted moisture values by NIR versus LOD were 0.94 (p < 0.00001) and 0.85 (p < 0.0002), respectively. The adjusted R(2) for KF versus LOD correlation was 0.85 (p < 0.0001). Analysis of the response surface design data showed that inlet air temperature over a range of 35-55°C had a significant linear impact on granule moisture content as measured by predicted NIR (adjusted R(2) = 0.84, p < 0.02), KF (adjusted R(2) = 0.91, p < 0.0001), and LOD (adjusted R(2) = 0.85, p < 0.0006). The inlet air dew point range of 10-20°C did not have a significant impact on any of the moisture measurements.

  8. Real-time monitoring of the mitophagy process by a photostable fluorescent mitochondrion-specific bioprobe with AIE characteristics.

    PubMed

    Zhang, Weijie; Kwok, Ryan T K; Chen, Yilong; Chen, Sijie; Zhao, Engui; Yu, Chris Y Y; Lam, Jacky W Y; Zheng, Qichang; Tang, Ben Zhong

    2015-05-28

    An isothiocyanate-functionalized tetraphenylethene is synthesized and used as a fluorescent bioprobe for mitochondrion imaging with high specificity and photostability. The covalent conjugation of the bioprobe to mitochondrial proteins endows it with high resistance to microenvironmental changes, enabling it for real-time monitoring of mitophagy.

  9. Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data

    EPA Science Inventory

    Real-time aerosol black carbon (BC) data, presented at time resolutions on the order of seconds to minutes, is desirable in field and source characterization studies measuring rapidly varying concentrations of BC. The Optimized Noise-reduction Averaging (ONA) algorithm has been d...

  10. Optimizing the real-time automatic location of the events produced in Romania using an advanced processing system

    NASA Astrophysics Data System (ADS)

    Neagoe, Cristian; Grecu, Bogdan; Manea, Liviu

    2016-04-01

    National Institute for Earth Physics (NIEP) operates a real time seismic network which is designed to monitor the seismic activity on the Romanian territory, which is dominated by the intermediate earthquakes (60-200 km) from Vrancea area. The ability to reduce the impact of earthquakes on society depends on the existence of a large number of high-quality observational data. The development of the network in recent years and an advanced seismic acquisition are crucial to achieving this objective. The software package used to perform the automatic real-time locations is Seiscomp3. An accurate choice of the Seiscomp3 setting parameters is necessary to ensure the best performance of the real-time system i.e., the most accurate location for the earthquakes and avoiding any false events. The aim of this study is to optimize the algorithms of the real-time system that detect and locate the earthquakes in the monitored area. This goal is pursued by testing different parameters (e.g., STA/LTA, filters applied to the waveforms) on a data set of representative earthquakes of the local seismicity. The results are compared with the locations from the Romanian Catalogue ROMPLUS.

  11. TH-C-17A-01: Imaging Sensor Comparison for Real-Time Cherenkov Signal Detection From Tissue for Treatment Verification

    SciTech Connect

    Andreozzi, J; Zhang, R; Glaser, A; Pogue, B; Jarvis, L; Gladstone, D

    2014-06-15

    Purpose: To identify the optimum imaging sensor for a clinical system that would provide real-time imaging of the surface beam profile on patients as novel visual information to radiation therapy technologists, and more rapidly collect clinical data for large-scale studies of Cherenkov applications in radiotherapy. Methods: Four camera types, CMOS, CCD, ICCD and EMICCD, were tested to determine proficiency in the detection of Cherenkov signal in the clinical radiotherapy setting, and subsequent maximum supportable frame rate. Where possible, time-gating between the trigger signal from the LINAC and the intensifiers was implemented to detect signal with room lighting conditions comparable to patient treatment scenarios. A solid water phantom was imaged by the EM-ICCD and ICCD to evaluate the minimum number of accumulations-on-chip required for adequate Cherenkov detection, defined as >200% electron counts per pixel over background signal. Additionally, an ICCD and EM-ICCD were used clinically to image patients undergoing whole-breast radiation therapy, to understand the impact of the resolution limitation of the EM-ICCD. Results: The intensifier-coupled cameras performed best at imaging Cherenkov signal, even with room lights on, which is essential for patient comfort. The tested EM-ICCD was able to support single-shot imaging and frame rates of 30 fps, however, the current maximum resolution of 512 × 512 pixels was restricting. The ICCD used in current clinical trials was limited to 4.7 fps at a 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths (30% QE vs current 7%) promises 16 fps at the same resolution at lower cost than the EM-ICCD. Conclusion: The ICCD with the better red wavelength QE intensifier was determined to be the best suited commercial-off-the-shelf camera to detect real-time Cherenkov signal and provide the best potential for real-time display of radiation dose on the skin

  12. Label-Free and Real-Time Detection of Antigen-Antibody Capture Processes Using the Oblique-Incidence Reflectivity Difference Technique

    NASA Astrophysics Data System (ADS)

    He, Li-Ping; Dai, Jun; Sun, Yue; Wang, Jing-Yi; Lü, Hui-Bin; Wang, Shu-Fang; Jin, Kui-Juan; Zhou, Yue-Liang; Yang, Guo-Zhen

    2012-07-01

    We successfully label-free and real-time detect the capture processes of human immunoglobulin G (IgG)/goat anti-human IgG and mouse IgG/goat anti-mouse IgG antigen-antibody pairs with different concentrations using the oblique-incidence reflectivity difference (OIRD) method, and obtain the interaction kinetics curves and the interaction times. The experimental results prove that the OIRD method is a promising technique for label-free and real-time detection of the biomolecular interaction processes and achieving the quantitative information of interaction kinetics.

  13. Real-Time Processing of ASL Signs: Delayed First Language Acquisition Affects Organization of the Mental Lexicon

    ERIC Educational Resources Information Center

    Lieberman, Amy M.; Borovsky, Arielle; Hatrak, Marla; Mayberry, Rachel I.

    2015-01-01

    Sign language comprehension requires visual attention to the linguistic signal and visual attention to referents in the surrounding world, whereas these processes are divided between the auditory and visual modalities for spoken language comprehension. Additionally, the age-onset of first language acquisition and the quality and quantity of…

  14. Processing electrophysiological signals for the monitoring of alertness

    NASA Technical Reports Server (NTRS)

    Lai, D. C.

    1974-01-01

    Mathematical techniques are described for processing EEG signals associated with varying states of alertness. Fast algorithms for implementing real-time computations of alertness estimates were developed. A realization of the phase-distortionless digital filter is presented which approaches real-time filtering and a transform for EEG signals. This transform provides information for the alertness estimates and can be performed in real time. A statistical test for stationarity in EEG signals is being developed that will provide a method for determining the duration of the EEG signals necessary for estimating the short-time power or energy spectra for nonstationary analysis of EEG signals.

  15. Real-time measurement of quorum-sensing signal autoinducer 3OC6HSL by a FRET-based nanosensor.

    PubMed

    Zhang, Chang; Ye, Bang-Ce

    2014-05-01

    Quorum sensing (QS) is involved in many important biological functions such as luminescence, antibiotic production, and biofilm formation. The autoinducer N-(3-oxo-hexanoyl)-L-homoserine lactone (3OC6HSL) plays a significant role in the QS system of the marine bacterium Vibrio fischeri. Tracing 3OC6HSL would be significant in studies related to QS signal transduction. Traditional detection of QS signaling molecules has relied on bacterial reporter strains and high-performance liquid chromatography, which are time consuming and have low sensitivity. Because 3OC6HSL binding to LuxR from V. fischeri causes a conformational change, we developed a genetically encoded biosensor based on Förster resonance energy transfer (FRET) by inserting LuxR between the FRET pair YFP/CFP. The detection limit of the sensor was 100 μM. We attained an optimized sensor with 70 % Δratio increase by screening different hydrophobic linkers, and demonstrated the feasibility of this sensor for visualizing 3OC6HSL both in vitro and in vivo.

  16. Real-time in Situ Signal-to-noise Ratio Estimation for the Assessment of Operational Communications Links

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2002-01-01

    The work presented here formulates the rigorous statistical basis for the correct estimation of communication link SNR of a BPSK, QPSK, and for that matter, any M-ary phase-modulated digital signal from what is known about its statistical behavior at the output of the receiver demodulator. Many methods to accomplish this have been proposed and implemented in the past but all of them are based on tacit and unwarranted assumptions and are thus defective. However, the basic idea is well founded, i.e., the signal at the output of a communications demodulator has convolved within it the prevailing SNR characteristic of the link. The acquisition of the SNR characteristic is of the utmost importance to a communications system that must remain reliable in adverse propagation conditions. This work provides a correct and consistent mathematical basis for the proper statistical 'deconvolution' of the output of a demodulator to yield a measure of the SNR. The use of such techniques will alleviate the need and expense for a separate propagation link to assess the propagation conditions prevailing on the communications link. Furthermore, they are applicable for every situation involving the digital transmission of data over planetary and space communications links.

  17. Going to space: Implementation of spatial input data processing in real-time flood forecasting in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Vlasak, T.; Krejci, J.; Danhelka, J.

    2009-04-01

    Real-time forecasting systems were developed and used in the Czech Republic since late 90's. AquaLog forecasting system is used for forecasting in the Czech part of the Elbe river basin. AquaLog uses SAC-SMA for rainfall-runoff modeling and SNOW17 for modeling of snow cover accumulation and melting. There are about 150 forecasting profiles (computed sub-basins). Data input pre-processing module AquaBase for data quality check and correction. Previous version of AquaBase and AquaLog (ver.5) operated in the scale of basins using time-series of observed precipitation and temperature to compute MAP and MAT based on Thiessen polygons method for basins of typical size of 200-500 km2 (basins were internally divided into 2-4 computation units based on elevation to simulate more precisely the snow cover). New version of AquaBase (ver.6) process data into regular 1 km grid offering to choose between several interpolating techniques: - Inverse distance weighted (IDW) with optional value of power parameter, number of stations and diameter in km to be taken into account - IDW quadrant (IDWq) using only the nearest station from every quadrant of space (optional power parameter and diameter applicable) - IDW and temperature gradient (for temperature only) correcting the interpolated value according to optional vertical temperature gradient and elevation difference among used stations (optional power parameter and diameter applicable) - Krigging with optional parameters - Co-krigging with optional parameters - Use of radar-raingauge dynamically combined field product AquaBase ver.6 enables editing of precipitation and temperature field by implementing pseudo-gauges anywhere in the space and editing its values. AquaLog computation unit were changed to small sub-basins of typical size of 10 to 15 km2 and specific unit hydrographs were derived for every sub-basin. MAP and MAT based on grid analysis in AquaBase environment input every particular sub-basin. Long time runoff simulation

  18. Systolic processor for signal processing

    SciTech Connect

    Frank, G.A.; Greenawalt, E.M.; Kulkarni, A.V.

    1982-01-01

    A systolic array is a natural architecture for a high-performance signal processor, in part because of the extensive use of inner-product operations in signal processing. The modularity and simple interconnection of systolic arrays promise to simplify the development of cost-effective, high-performance, special-purpose processors. ESL incorporated has built a proof of concept model of a systolic processor. It is flexible enough to permit experimentation with a variety of algorithms and applications. ESL is exploring the application of systolic processors to image- and signal-processing problems. This paper describes this experimental system and some of its applications to signal processing. ESL is also pursuing new types of systolic architectures, including the VLSI implementation of systolic cells for solving systems of linear equations. These new systolic architectures allow the real-time design of adaptive filters. 14 references.

  19. Cortical representation of spatiotemporal pattern of firing evoked by echolocation signals: population encoding of target features in real time.

    PubMed

    Palakal, M J; Wong, D

    1999-07-01

    Target perception in echolocating bats entails the generation of an acoustic image of the target in the auditory cortex. By integrating information conveyed in the sequence of acoustic echoes, the population of cortical neurons in hypothesized to encode different target features based on its spatiotemporal pattern of neural-spike firing during the course of echolocation. A biologically plausible approach to the cortical representation of target features is employed by using electrophysiological data recorded from the auditory cortex of the FM bat, Myotis lucifugus. A single-neuron model of delay-sensitive neurons is first approximated by the formulation of a Gaussian function with different variables to represent the delay-tuning properties of individual cortical neurons. A cortical region consisting of delay-sensitive neurons organized topographically according to best frequency (i.e., tontopically organized) is then modeled with multiple layers of the single-neuron model. A mechanism is developed to represent and encode the responses of these neurons based on time-dependent, incoming echo signals. The time-varying responses of the population of neurons are mapped spatially on the auditory-cortical surface as a cortical response map (CORMAP). The model is tested using phantom targets with single and multiple glints. These simulation results provide further validation of the current auditory framework as a biomimetic mechanism for capturing time-varying, acoustic stimuli impinging in the bat's ears, and the neural representation of acoustic stimulus features by saptiotemporal-firing patterns in the cortical population. PMID:10420638

  20. Successful Validation of Sample Processing and Quantitative Real-Time PCR Capabilities on the International Space Station

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Jung, Jimmy; Tran, Luan; Boone, Travis; Almeida, Eduardo; Schonfeld, Julie

    2016-01-01

    ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. The WetLab-2 Project is supported by the Research Integration Office in the ISS Program.

  1. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects. PMID:23518739

  2. Real-time high-resolution vascular ultrasound using frequency domain interferometry with the ROI-division process.

    PubMed

    Taki, Hirofumi; Sakamoto, Takuya; Taki, Kousuke; Yamakawa, Makoto; Shiina, Tsuyoshi; Kudo, Motoi; Sato, Toru

    2013-01-01

    We have proposed a high-range-resolution ultrasound imaging method for human carotid artery using an adaptive beamforming technique based on frequency domain interferometry (FDI). The method assumes that the received signal consists of multiple echoes of targets and noise, where the waveform of each echo is similar to that of the reference signal. In this study, we examine the dependence of the echo waveform on the target depth, and investigate the proper measurement-range for the FDI imaging method using a reference signal. Furthermore, we propose a ROI-division process, where each sub-ROI has a proper measurement-range for the application of the FDI imaging method. Simulation and experimental results show the efficiency of the ROI-division process in improving the image quality of human carotid artery acquired using the FDI imaging method. We believe that the modified FDI imaging method with the ROI-division process has the potential to facilitate significant progress in the detection of vessel stenosis and in the assessment of cardiovascular disease risk.

  3. Barrow real-time sea ice mass balance data: ingestion, processing, dissemination and archival of multi-sensor data

    NASA Astrophysics Data System (ADS)

    Grimes, J.; Mahoney, A. R.; Heinrichs, T. A.; Eicken, H.

    2012-12-01

    Sensor data can be highly variable in nature and also varied depending on the physical quantity being observed, sensor hardware and sampling parameters. The sea ice mass balance site (MBS) operated in Barrow by the University of Alaska Fairbanks (http://seaice.alaska.edu/gi/observatories/barrow_sealevel) is a multisensor platform consisting of a thermistor string, air and water temperature sensors, acoustic altimeters above and below the ice and a humidity sensor. Each sensor has a unique specification and configuration. The data from multiple sensors are combined to generate sea ice data products. For example, ice thickness is calculated from the positions of the upper and lower ice surfaces, which are determined using data from downward-looking and upward-looking acoustic altimeters above and below the ice, respectively. As a data clearinghouse, the Geographic Information Network of Alaska (GINA) processes real time data from many sources, including the Barrow MBS. Doing so requires a system that is easy to use, yet also offers the flexibility to handle data from multisensor observing platforms. In the case of the Barrow MBS, the metadata system needs to accommodate the addition of new and retirement of old sensors from year to year as well as instrument configuration changes caused by, for example, spring melt or inquisitive polar bears. We also require ease of use for both administrators and end users. Here we present the data and processing steps of using sensor data system powered by the NoSQL storage engine, MongoDB. The system has been developed to ingest, process, disseminate and archive data from the Barrow MBS. Storing sensor data in a generalized format, from many different sources, is a challenging task, especially for traditional SQL databases with a set schema. MongoDB is a NoSQL (not only SQL) database that does not require a fixed schema. There are several advantages using this model over the traditional relational database management system (RDBMS

  4. [Dynamic Pulse Signal Processing and Analyzing in Mobile System].

    PubMed

    Chou, Yongxin; Zhang, Aihua; Ou, Jiqing; Qi, Yusheng

    2015-09-01

    In order to derive dynamic pulse rate variability (DPRV) signal from dynamic pulse signal in real time, a method for extracting DPRV signal was proposed and a portable mobile monitoring system was designed. The system consists of a front end for collecting and wireless sending pulse signal and a mobile terminal. The proposed method is employed to extract DPRV from dynamic pulse signal in mobile terminal, and the DPRV signal is analyzed both in the time domain and the frequency domain and also with non-linear method in real time. The results show that the proposed method can accurately derive DPRV signal in real time, the system can be used for processing and analyzing DPRV signal in real time.

  5. Real-Time Processing of Gender-Marked Articles by Native and Non-Native Spanish-Speaking Children and Adults

    ERIC Educational Resources Information Center

    Lew-Williams, Casey

    2009-01-01

    Six experiments explored how native and non-native Spanish speakers process article-noun sequences in real time, using eye movements as a response measure. Can listeners use gender-marked articles ("la" and "el", the feminine and masculine forms of "the") to rapidly identify familiar and novel nouns? In Experiment 1, adults who learned Spanish as…

  6. The Availability of Semantic and Syntactic Information and Their Use as a Structural Predictor in the Real-Time Processing of L1 and L2 Korean

    ERIC Educational Resources Information Center

    Shin, Eun Young

    2012-01-01

    The goal of this dissertation is to investigate the real-time sentence processing of Korean both by native speakers and learners in terms of the availability and the effectiveness of different types of information in the structural prediction. Built on the crosslinguistically contrastive findings between Japanese in Yoshida (2006) and Chinese in…

  7. Graphics processing unit aided highly stable real-time spectral-domain optical coherence tomography at 1375 nm based on dual-coupled-line subtraction

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2013-04-01

    We have proposed and demonstrated a highly stable spectral-domain optical coherence tomography (SD-OCT) system based on dual-coupled-line subtraction. The proposed system achieved an ultrahigh axial resolution of 5 μm by combining four kinds of spectrally shifted superluminescent diodes at 1375 nm. Using the dual-coupled-line subtraction method, we made the system insensitive to fluctuations of the optical intensity that can possibly arise in various clinical and experimental conditions. The imaging stability was verified by perturbing the intensity by bending an optical fiber, our system being the only one to reduce the noise among the conventional systems. Also, the proposed method required less computational complexity than conventional mean- and median-line subtraction. The real-time SD-OCT scheme was implemented by graphics processing unit aided signal processing. This is the first reported reduction method for A-line-wise fixed-pattern noise in a single-shot image without estimating the DC component.

  8. Real-Time Moire Holography

    NASA Astrophysics Data System (ADS)

    Soares, O. D. D.; Lage, A. I. V. S.

    1986-08-01

    Interferometric techniques including hologrametry, both classical and electronic, present high sensitivity making difficult its practical use in real-time. The introduction of the differencial concept as moire evaluation techniques permits to use with advantage an arbitrary reference pattern within the correlation range. The carrier spatial spectrum can be directly the interferogram fringe pattern instead of the original interference pattern of wavelength dimensional scale. A moire techniques is in itself an optical processing method reducing evaluation time which is advantageous when real-time response is desired from hybrid metrological systems. The moire evaluation is performed via a dynamical digital memory that executes arithmetic operations on two frames temporally in sequence, at TV rate. These characteristics of the moire evaluation techniques can be implemented on a real-time holographic (or speckle based) hybrid system with great practical advantage for dynamical studies.

  9. Real-time radiography

    SciTech Connect

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  10. A Generic Framework for Real-Time Multi-Channel Neuronal Signal Analysis, Telemetry Control, and Sub-Millisecond Latency Feedback Generation

    PubMed Central

    Zrenner, Christoph; Eytan, Danny; Wallach, Avner; Thier, Peter; Marom, Shimon

    2010-01-01

    Distinct modules of the neural circuitry interact with each other and (through the motor-sensory loop) with the environment, forming a complex dynamic system. Neuro-prosthetic devices seeking to modulate or restore CNS function need to interact with the information flow at the level of neural modules electrically, bi-directionally and in real-time. A set of freely available generic tools is presented that allow computationally demanding multi-channel short-latency bi-directional interactions to be realized in in vivo and in vitro preparations using standard PC data acquisition and processing hardware and software (Mathworks Matlab and Simulink). A commercially available 60-channel extracellular multi-electrode recording and stimulation set-up connected to an ex vivo developing cortical neuronal culture is used as a model system to validate the method. We demonstrate how complex high-bandwidth (>10 MBit/s) neural recording data can be analyzed in real-time while simultaneously generating specific complex electrical stimulation feedback with deterministically timed responses at sub-millisecond resolution. PMID:21060803

  11. Real-time sonography

    SciTech Connect

    Fleischey, A.C.; James, A.E. Jr.

    1984-01-01

    This textbook acquaints the reader with normal and pathologic anatomy as depicted on dynamic or real-time scanning. Chapters are organized by specialty, such as abdominal, urologic, or pediatric. The text is illustrated with still-frame images and line drawings. The drawings show important areas of interest and provide graphic notation as to where and in what orientation the scan was obtained.

  12. Validation of end-point and real-time PCR methods for the rapid detection of soy allergen in processed products.

    PubMed

    Espineira, Montserrat; Herrero, Beatriz; Vieites, Juan M; Santaclara, Francisco J

    2010-04-01

    This work describes the development and validation of two PCR methods, end-point and real-time PCR, for the detection of soy protein in a wide rage of foodstuffs. These techniques are reliable and sensitive, allowing detection of trace amounts of soybean in processed products. TaqMan real-time PCR was the simpler and more rapid process, with a higher potential for automation and, therefore, currently the most suitable screening method. To verify correct operation of the proposed methodology, ELISA was used for quantitative determination of soy protein. In addition, 35 meat, fish and bakery processed products, which could potentially contain soy but was not declared on the label, were tested for the presence of soy DNA using the proposed methods. The methodologies will be valuable in issues regarding the presence of soy protein in processed products, especially in verifying labelling and security regulations to protect consumer's rights.

  13. Real-time video codec using reversible wavelets

    NASA Astrophysics Data System (ADS)

    Huang, Gen Dow; Chiang, David J.; Huang, Yi-En; Cheng, Allen

    2003-04-01

    This paper describes the hardware implementation of a real-time video codec using reversible Wavelets. The TechSoft (TS) real-time video system employs the Wavelet differencing for the inter-frame compression based on the independent Embedded Block Coding with Optimized Truncation (EBCOT) of the embedded bit stream. This high performance scalable image compression using EBCOT has been selected as part of the ISO new image compression standard, JPEG2000. The TS real-time video system can process up to 30 frames per second (fps) of the DVD format. In addition, audio signals are also processed by the same design for the cost reduction. Reversible Wavelets are used not only for the cost reduction, but also for the lossless applications. Design and implementation issues of the TS real-time video system are discussed.

  14. The XH-map algorithm: A method to process stereo video to produce a real-time obstacle map

    NASA Astrophysics Data System (ADS)

    Rosselot, Donald; Hall, Ernest L.

    2005-10-01

    This paper presents a novel, simple and fast algorithm to produce a "floor plan" obstacle map in real time using video. The XH-map algorithm is a transformation of stereo vision data in disparity map space into a two dimensional obstacle map space using a method that can be likened to a histogram reduction of image information. The classic floor-ground background noise problem is addressed with a simple one-time semi-automatic calibration method incorporated into the algorithm. This implementation of this algorithm utilizes the Intel Performance Primitives library and OpenCV libraries for extremely fast and efficient execution, creating a scaled obstacle map from a 480x640x256 stereo pair in 1.4 milliseconds. This algorithm has many applications in robotics and computer vision including enabling an "Intelligent Robot" robot to "see" for path planning and obstacle avoidance.

  15. Using FPGAs to Implement DSP Algorithms in Real Time for Gamma Spectroscopy Instruments

    SciTech Connect

    Bushart, B.

    1999-08-31

    Today's DSPs are capable of handling audio processing or even real time video processing; however, when the sample rate is equal to or exceeds the DSP instruction clock rate it becomes impossible to perform real time signal processing. The Savannah River Technology Center has developed a nearly all-digital radiation instrument that incorporates a single integer processor, as well as an FPGA.

  16. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry

    PubMed Central

    Smith, Amanda R.; Garris, Paul A.; Casto, Joseph M.

    2015-01-01

    Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of

  17. Real-time scene generator

    NASA Astrophysics Data System (ADS)

    Lord, Eric; Shand, David J.; Cantle, Allan J.

    1996-05-01

    This paper describes the techniques which have been developed for an infra-red (IR) target, countermeasure and background image generation system working in real time for HWIL and Trial Proving applications. Operation is in the 3 to 5 and 8 to 14 micron bands. The system may be used to drive a scene projector (otherwise known as a thermal picture synthesizer) or for direct injection into equipment under test. The provision of realistic IR target and countermeasure trajectories and signatures, within representative backgrounds, enables the full performance envelope of a missile system to be evaluated. It also enables an operational weapon system to be proven in a trials environment without compromising safety. The most significant technique developed has been that of line by line synthesis. This minimizes the processing delays to the equivalent of 1.5 frames from input of target and sightline positions to the completion of an output image scan. Using this technique a scene generator has been produced for full closed loop HWIL performance analysis for the development of an air to air missile system. Performance of the synthesis system is as follows: 256 * 256 pixels per frame; 350 target polygons per frame; 100 Hz frame rate; and Gouraud shading, simple reflections, variable geometry targets and atmospheric scaling. A system using a similar technique has also bee used for direct insertion into the video path of a ground to air weapon system in live firing trials. This has provided realistic targets without degrading the closed loop performance. Delay of the modified video signal has been kept to less than 5 lines. The technique has been developed using a combination of 4 high speed Intel i860 RISC processors in parallel with the 4000 series XILINX field programmable gate arrays (FPGA). Start and end conditions for each line of target pixels are prepared and ordered in the I860. The merging with background pixels and output shading and scaling is then carried out in

  18. Evaluation of DNA colony hybridization and real-time PCR for detection of Vibrio parahaemolyticus and Vibrio vulnificus in postharvest-processed oysters.

    PubMed

    Jones, Jessica L; Noe, Kathy E; Byars, Robin; Depaola, Angelo

    2009-10-01

    The applicability of real-time PCR was examined for detection of vibrios from postharvest-processed (PHP) oysters to allow for a more rapid assay and higher sample throughput than currently used. During June to October 2004, 68 PHP oyster samples were collected directly from PHP firms or from retail markets across the United States. PHP oysters were examined to determine the effectiveness of treatments in the reduction of vibrio levels and to compare the analytical methods utilized. The latter is the focus of the data presented here. Each sample was analyzed for Vibrio parahaemolyticus and V. vulnificus by using a 2-dilution, three-tube most-probable-number (MPN) and a 25-g presence/absence enrichment in alkaline peptone water. Following 6-h and overnight enrichment, aliquots from each MPN tube and the 25-g sample were streaked onto selective media and tested by real-time PCR. Colonies from the selective agar were confirmed as V. parahaemolyticus or V. vulnificus by DNA colony hybridization. DNA hybridization and real-time PCR results for each MPN tube and the 25-g enrichment at both time points were analyzed individually for each organism. The methods were in agreement for 857 (95%) of 901 and for 882 (98%) of 903 tubes for detection of V. parahaemolyticus and V. vulnificus, respectively. Overall, there was 96% agreement between real-time and DNA colony hybridization. The results obtained by real-time PCR were comparable to those from DNA colony hybridization, but analysis time was significantly reduced for the detection of vibrios in PHP-treated oysters.

  19. Reactance and resistance: main properties to follow the cell differentiation process in Bacillus thuringiensis by dielectric spectroscopy in real time.

    PubMed

    Dinorín-Téllez-Girón, Jabel; Delgado-Macuil, Raúl Jacobo; Larralde Corona, Claudia Patricia; Martínez Montes, Francisco Javier; de la Torre Martínez, Mayra; López-Y-López, Víctor Eric

    2015-07-01

    During growth, Bacillus thuringiensis presents three phases: exponential phase (EP), transition state (TS), and sporulation phase (SP). In order to form a dormant spore and to synthesize delta-endotoxins during SP, bacteria must undergo a cellular differentiation process initiated during the TS. Dielectric spectroscopy is a technique that can be utilized for continuous and in situ monitoring of the cellular state. In order to study on-line cell behavior in B. thuringiensis cultures, we conducted a number of batch cultures under different conditions, by scanning 200 frequencies from 42 Hz to 5 MHz and applying fixed current and voltage of 20 mA and 5 V DC, respectively. The resulting signals included Impedance (Z), Angle phase (Deg), Voltage (V), Current (I), Conductance (G), Reactance (X), and Resistance (R). Individual raw data relating to observed dielectric property profiles were correlated with the different growth phases established using data from cellular growth, cry1Ac gene expression, and free spores obtained with conventional techniques and fermentation parameters. Based on these correlations, frequencies of 0.1, 0.5, and 1.225 MHz were selected for the purpose of measuring dielectric properties in independent batch cultures, at a fixed frequency. X and R manifest more propitious behavior in relation to EP, TS, SP, and spore release, due to particular changes in their signals. Interestingly, these profiles underwent pronounced changes during EP and TS that were not noticed when using conventional methods, but were indicative of the beginning of the B. thuringiensis cell differentiation process.

  20. A rapid and accurate quantification method for real-time dynamic analysis of cellular lipids during microalgal fermentation processes in Chlorella protothecoides with low field nuclear magnetic resonance.

    PubMed

    Wang, Tao; Liu, Tingting; Wang, Zejian; Tian, Xiwei; Yang, Yi; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-05-01

    The rapid and real-time lipid determination can provide valuable information on process regulation and optimization in the algal lipid mass production. In this study, a rapid, accurate and precise quantification method of in vivo cellular lipids of Chlorella protothecoides using low field nuclear magnetic resonance (LF-NMR) was newly developed. LF-NMR was extremely sensitive to the algal lipids with the limits of the detection (LOD) of 0.0026g and 0.32g/L in dry lipid samples and algal broth, respectively, as well as limits of quantification (LOQ) of 0.0093g and 1.18g/L. Moreover, the LF-NMR signal was specifically proportional to the cellular lipids of C. protothecoides, thus the superior regression curves existing in a wide detection range from 0.02 to 0.42g for dry lipids and from 1.12 to 8.97gL(-1) of lipid concentration for in vivo lipid quantification were obtained with all R(2) higher than 0.99, irrespective of the lipid content and fatty acids profile variations. The accuracy of this novel method was further verified to be reliable by comparing lipid quantification results to those obtained by GC-MS. And the relative standard deviation (RSD) of LF-NMR results were smaller than 2%, suggesting the precision of this method. Finally, this method was successfully used in the on-line lipid monitoring during the algal lipid fermentation processes, making it possible for better understanding of the lipid accumulation mechanism and dynamic bioprocess control. PMID:26948045

  1. Faster and cleaner real-time pure shift NMR experiments

    NASA Astrophysics Data System (ADS)

    Mauhart, Johannes; Glanzer, Simon; Sakhaii, Peyman; Bermel, Wolfgang; Zangger, Klaus

    2015-10-01

    Real-time pure shift experiments provide highly resolved proton NMR spectra which do not require any special processing. Although being more sensitive than their pseudo 2D counterparts, their signal intensities per unit time are still far below regular NMR spectra. In addition, scalar coupling evolution during the individual data chunks produces decoupling sidebands. Here we show that faster and cleaner real-time pure shift spectra can be obtained through the implementation of two parameter alterations. Variation of the FID chunk lengths between individual transients significantly suppresses decoupling sidebands for any kind of real-time pure shift spectra and thus allows for example the analysis of minor components in compound mixtures. Shifting the excitation frequency between individual scans of real-time slice-selective pure shift spectra increases their sensitivity obtainable in unit time by allowing faster repetitions of acquisitions.

  2. Signal processing in ultrasound. [for diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Le Croissette, D. H.; Gammell, P. M.

    1978-01-01

    Signal is the term used to denote the characteristic in the time or frequency domain of the probing energy of the system. Processing of this signal in diagnostic ultrasound occurs as the signal travels through the ultrasonic and electrical sections of the apparatus. The paper discusses current signal processing methods, postreception processing, display devices, real-time imaging, and quantitative measurements in noninvasive cardiology. The possibility of using deconvolution in a single transducer system is examined, and some future developments using digital techniques are outlined.

  3. Real-time detection of hydrogen peroxide using microelectrodes in an ultrasonic enhanced heterogeneous Fenton process catalyzed by ferrocene.

    PubMed

    Lin, Jun; Xin, Qing; Gao, Xiumin

    2015-07-01

    Microelectrodes were used for real-time detection of hydrogen peroxide (H2O2) in a heterogeneous sono-Fenton system with ferrocene as the catalyst. The working mechanism of reactive blue 13 decolorization in a heterogeneous sono-Fenton system was investigated. Ultrasonic irradiation showed no effect on decolorization when used alone and did not enhance decolorization in the H2O2 system (43.0 % for H2O2 vs. 48.1 % for US+H2O2). However, a system with the presence of Fenton-like reagents achieved complete decolorization. Decolorization was greatly accelerated by the addition of ultrasonic irradiation. Thorough decolorization was achieved in 20 min in the heterogeneous sono-Fenton system, which was 30 min faster than in the heterogeneous Fenton system. Based on the data collected by microelectrodes, accelerated decomposition of H2O2 was also observed. Ultrasonic irradiation aided the ferrocene catalyst in liberating more •OH from Fenton reactions, leading to the faster decolorization.

  4. Multihit two-dimensional charged-particle imaging system with real-time image processing at 1000 frames/s

    NASA Astrophysics Data System (ADS)

    Horio, Takuya; Suzuki, Toshinori

    2009-01-01

    A high-speed imaging system developed for two-dimensional counting of charged particles is presented. Microchannel plates coupled with a phosphor screen of a short emission lifetime (<1 μs) are used to visualize the two-dimensional positions of charged-particle impacts, and the image on the phosphor screen is captured with a 1 kHz complementary metal oxide semiconductor (CMOS) image sensor (512×512 pixels). A multistage image intensifier consisting of the first and second generation devices was used to compensate for the low sensitivity of CMOS. The centers of gravity (COG) of individual light spots in each image frame are calculated in real time by a field programmable gate array circuit. The performance of this system is tested by time-resolved photoelectron imaging (TR-PEI) of NO using (1+1') resonance enhanced multiphoton ionization via the A Σ2+ state with a femtosecond laser operated at 1 kHz. The new system enabled COG detection for more than ten particles in each frame at 1 kHz and achieved an extremely high degree of accuracy in the measurement of photoelectron angular distributions in TR-PEI.

  5. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures.

    PubMed

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R

    2012-02-23

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  6. Real-time data processing and magnetic field pitch angle estimation of the JET motional Stark effect diagnostic based on Kalman filtering

    SciTech Connect

    Coelho, R.; Alves, D. [Instituto de Plasmas e Fusao Nuclear, Associacao Euratom Hawkes, N.; Brix, M. [Euratom Collaboration: JET EFDA Contributors

    2009-06-15

    A novel technique for the real-time measurement of the magnetic field pitch angle in JET discharges using the motional Stark effect diagnostic is presented. Kalman filtering techniques are adopted to estimate the amplitude of the avalanche photodiode signals' harmonics that are relevant for the pitch angle calculation. The proposed technique {l_brace}for extended technical details of the generic algorithm see [R. Coelho and D. Alves, IEEE Trans. Plasma Sci. 37, 164 (2009)]{r_brace} is shown to be much more robust and provides less noisy estimates than an equivalent lock-in amplifier scheme, in particular when dealing with edge localized modes.

  7. Exploring the Potential of an Isotopic N2O Analyzer to Observe Soil Biogeochemical Processes in Real-time

    NASA Astrophysics Data System (ADS)

    Jorgensen, R.; Koyama, A.; von Fischer, J. C.; Gupta, M.

    2012-12-01

    We evaluated the potential applications of an Isotopic Nitrous Oxide (N2O) Analyzer (Los Gatos Research), which can measure isotopic values of N2O (δ15Nα, δ15Nβ, δ15N and δ18O) as well as [N2O] at real-time. The analyzer can provide continuous and precise measurements of the isotopic values with a quantum cascade laser along with cavity enhanced laser absorption spectroscopy technique. We evaluated the analyzer by quantifying N2O produced from soils and sediments, N2O dissolved in water, and a N2O standard for δ15N and δ18O. In quantifying N2O production from soils, we used four soils collected from diverse grassland sites across the North American Great Plains. In this lobe of the study, we investigated the relationship between N2O production rates and soil water content (SWC) by manipulating soil water levels in a lab setting. We hypothesized that N2O production rates would be positively correlated with SWC because we expected denitrification to be a more important N2O source than nitrification. Consistent with this hypothesis, we observed that soils adjusted at high SWC (20 to 50%) produced significant N2O. Parallel experiments using 15N labeling (15NH4+ and 15NO3-) suggested that N2O from the soils with high SWC was produced mostly via denitrification. Most of the soils adjusted with low SWC (10 to 20%) produced little N2O. When we observed measurable N2O from one soil with low SWC, the 15N labeling experiment suggested that N2O was produced via nitrification. Our measurements demonstrate that the Isotopic N2O Analyzer can be a powerful tool to investigate N2O dynamics in various materials, such as soils and water, in different environmental settings.

  8. Real-time optical wireless transmissions of digital TV signals using white InGaN LEDs grown with an asymmetric quantum barrier.

    PubMed

    Tsai, Chia-Lung; Chen, Yen-Jen

    2015-10-19

    The feasibility of using InGaN LEDs grown with asymmetric barrier layer (ABL) as transmitters in visible light communications is investigated experimentally. Compared with normal LEDs, the improvement in the spontaneous emission rate due to enhanced carrier localization and better uniformity of carrier distribution in ABL-containing MQWs leads to the fabricated LEDs can exhibit a 32.6% (@ 350 mA) increase in emission intensity and a 10.5% increase in modulation bandwidth. After eliminating the slow-responding phosphorescent components emitting from the phosphor-converted white LEDs, an open eye-diagram at 180 Mb/s is demonstrated over a distance of 100 cm in directed line-of-sight optical links. With the use of proposed LEDs, real-time transmissions of digital TV signals over a moderate distance (~100 cm) in free space is shown to be available in a 150 Mbit/s white LED-based optical link with conventional on-off keying modulation. PMID:26480463

  9. Real time Faraday spectrometer

    DOEpatents

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  10. Real-Time Revolution?

    PubMed

    Berlin, Joey

    2016-03-01

    Austin Regional Clinic (ARC) physicians and officials know patient feedback is important, but getting patients to provide it can be a challenge. A pilot program of a new, real-time feedback system provided ARC patients a high-tech convenience previous attempts lacked and produced participation numbers dwarfing those past efforts. ARC's initial results with the system, in which patients answer five to seven questions on a computer tablet and can leave free-text comments, were so successful the clinic is already planning to expand it to all of its locations by the end of June.

  11. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  12. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.

    PubMed

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  13. Real-time parallel processing of grammatical structure in the fronto-striatal system: a recurrent network simulation study using reservoir computing.

    PubMed

    Hinaut, Xavier; Dominey, Peter Ford

    2013-01-01

    Sentence processing takes place in real-time. Previous words in the sentence can influence the processing of the current word in the timescale of hundreds of milliseconds. Recent neurophysiological studies in humans suggest that the fronto-striatal system (frontal cortex, and striatum--the major input locus of the basal ganglia) plays a crucial role in this process. The current research provides a possible explanation of how certain aspects of this real-time processing can occur, based on the dynamics of recurrent cortical networks, and plasticity in the cortico-striatal system. We simulate prefrontal area BA47 as a recurrent network that receives on-line input about word categories during sentence processing, with plastic connections between cortex and striatum. We exploit the homology between the cortico-striatal system and reservoir computing, where recurrent frontal cortical networks are the reservoir, and plastic cortico-striatal synapses are the readout. The system is trained on sentence-meaning pairs, where meaning is coded as activation in the striatum corresponding to the roles that different nouns and verbs play in the sentences. The model learns an extended set of grammatical constructions, and demonstrates the ability to generalize to novel constructions. It demonstrates how early in the sentence, a parallel set of predictions are made concerning the meaning, which are then confirmed or updated as the processing of the input sentence proceeds. It demonstrates how on-line responses to words are influenced by previous words in the sentence, and by previous sentences in the discourse, providing new insight into the neurophysiology of the P600 ERP scalp response to grammatical complexity. This demonstrates that a recurrent neural network can decode grammatical structure from sentences in real-time in order to generate a predictive representation of the meaning of the sentences. This can provide insight into the underlying mechanisms of human cortico

  14. High-performance liquid chromatography coupled to direct analysis in real time mass spectrometry: investigations on gradient elution and influence of complex matrices on signal intensities.

    PubMed

    Beissmann, Susanne; Buchberger, Wolfgang; Hertsens, Robert; Klampfl, Christian W

    2011-08-01

    Direct analysis in real time (DART) time-of-flight mass spectrometry (TOF-MS) has been tested for its suitability as a detector for gradient elution HPLC. Thereby a strong dependency of signal intensity on the amount of organic solvent present in the eluent could be observed. Adding a make-up liquid (iso-propanol) post-column to the HPLC effluent greatly enhanced detection limits for early eluting compounds. Limits of detection achieved employing this approach were in the range of 7-27 μg L(-1) for the parabene test mixture and 15-87 μg L(-1) for the pharmaceuticals. In further investigations DART ionization was compared to several other widely used atmospheric pressure ionization methods with respect to signal suppression phenomena occurring in when samples with problematic matrices are analyzed. For this purpose extracts from environmental and waste water samples were selected as model matrices which were subsequently spiked with a set of six substances commonly present in personal care products as well as six pharmaceuticals at concentration levels between 100 μg L(-1) and 500 μg L(-1) corresponding to 100 ng L(-1) and 500 ng L(-1) respectively in the original sample. With ionization suppression of less than 11% for most analytes investigated, DART ionization showed similar to even somewhat superior behavior compared to atmospheric pressure chemical ionization (APCI) and atmospheric pressure photo ionization (APPI) for the Danube river water extract; for the more challenging matrix of the sewage plant effluent extract DART provided better results with ion suppression being less than 11% for 9 out of 12 analytes while values for APCI were lying between 20% and >90%. Electrospray ionization (ESI) was much more affected by suppression effects than DART with values between 26% and 80% for Danube river water; in combination with the sewage plant effluent matrix suppression >50% was observed for all analytes.

  15. Real-time exploitation system

    NASA Astrophysics Data System (ADS)

    Riedel, Richard D.

    1998-11-01

    The proliferation and technology advances of digital sensors for reconnaissance imaging require a commensurate increase in the productivity of ground-based exploitation system to process the increased volume of remotely-sensed data. Systems to support this level of production, themselves, must have significantly reduced development and life-cycle costs from previously installed systems. For cost, growth, and integration advantages, reconnaissance exploitation systems should be designed to maximize Commercial-Off-The-Shelf (COTS) hardware and software. As an example, the Real-Time Exploitation System is a state-of-the-art system for photo interpretation and exploitation of real-time digital reconnaissance imagery. Using COTS hardware, the system is able to receive imagery at rates greater than 80 Mpixels/sec; perform detailed interpretation, exploitation and report generation, and; disseminate reports to intelligence users over secure networks. New technologies have been applied in workflow management, database management, and user interfaces to provide the image analyst with superior analysis tools and access to other intelligence data sources. Photogrammetric functions are also provided for monoscopic and stereoscopic imagery. These functions provide greater geographic accuracy than is achievable in most reconnaissance exploitation systems. The Real-Time Exploitation System significantly reduces timelines for the analysis and report generation process, and significantly increases the quality and accuracy of reports.

  16. Software engineering aspects of real-time programming concepts

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1986-08-01

    Real-time programming is a discipline of great importance not only in process control, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other. The second part deals with structuring and modularization of technical processes to build reliable and maintainable real time systems. Software-quality and software engineering aspects are considered throughout the paper.

  17. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  18. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  19. Design of a portable, intrinsically safe multichannel acquisition system for high-resolution, real-time processing HD-sEMG.

    PubMed

    Barone, Umberto; Merletti, Roberto

    2013-08-01

    A compact and portable system for real-time, multichannel, HD-sEMG acquisition is presented. The device is based on a modular, multiboard approach for scalability and to optimize power consumption for battery operating mode. The proposed modular approach allows us to configure the number of sEMG channels from 64 to 424. A plastic-optical-fiber-based 10/100 Ethernet link is implemented on a field-programmable gate array (FPGA)-based board for real-time, safety data transmission toward a personal computer or laptop for data storage and offline analysis. The high-performance A/D conversion stage, based on 24-bit ADC, allows us to automatically serialize the samples and transmits them on a single SPI bus connecting a sequence of up to 14 ADC chips in chain mode. The prototype is configured to work with 64 channels and a sample frequency of 2.441 ksps (derived from 25-MHz clock source), corresponding to a real data throughput of 3 Mbps. The prototype was assembled to demonstrate the available features (e.g., scalability) and evaluate the expected performances. The analog front end board could be dynamically configured to acquire sEMG signals in monopolar or single differential mode by means of FPGA I/O interface. The system can acquire continuously 64 channels for up to 5 h with a lightweight battery pack of 7.5 Vdc/2200 mAh. A PC-based application was also developed, by means of the open source Qt Development Kit from Nokia, for prototype characterization, sEMG measurements, and real-time visualization of 2-D maps.

  20. Proof of Concept Simulations of the Multi-Isotope Process Monitor: An Online, Nondestructive, Near-Real-Time Safeguards Monitor for Nuclear Fuel Reprocessing Facilities

    SciTech Connect

    Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard; Schwantes, Jon M.

    2011-02-11

    The International Atomic Energy Agency (IAEA) will require the development of advanced technologies to effectively safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of nondestructive, near-real-time, autonomous process monitoring. This paper describes recent results from model simulations designed to test the Multi-Isotope Process (MIP) monitor, a novel approach to safeguarding reprocessing plants. The MIP monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in near-real-time. Three computer models including ORIGEN-ARP, AMUSE, and SYNTH were used in series to predict spent nuclear fuel composition, estimate element partitioning during separation, and simulate spectra from product and raffinate streams using a variety of gamma detectors, respectively. Simulations were generated for fuel with various irradiation histories and under a variety of plant operating conditions. Principal component analysis (PCA) was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup, and cooling time. Hierarchical cluster analysis (HCA) and partial least squares (PLS) were also used in the analysis. The MIP monitor was found to be sensitive to induced variations of several operating parameters including distinguishing ±2.5% variation from normal process acid concentrations. The ability of PLS to predict burnup levels from simulated spectra was also demonstrated to be within 3.5% of measured values.

  1. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures

    NASA Astrophysics Data System (ADS)

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.

    2012-03-01

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in realtime by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  2. Development of a visiometric process analyzer for real-time monitoring of bottom spray fluid-bed coating.

    PubMed

    Liew, Celine Valeria; Wang, Li Kun; Wan Sia Heng, Paul

    2010-01-01

    Particle recirculation within the partition column is a major source of process variability in the bottom spray fluid-bed coating process. However, its locality and complex nature make it hidden from the operator. The aim of this study was to take snapshots of the process by employing a visiometric process analyzer based on high-speed imaging and ensemble correlation particle image velocimetry (PIV) to quantify particle recirculation. High-speed images of particles within the partition column of a bottom spray fluid-bed coater were captured and studied by morphological image processing and ensemble correlation PIV. Particle displacement probability density function (PDF) obtained from ensemble correlation PIV was consistent with validation experiments using an image tracking method. Particle displacement PDF was further resolved into particle velocity magnitude and particle velocity orientation histograms, which gave information about particle recirculation probability, thus quantifying the main source of process variability. Deeper insights into particle coating process were obtained and better control of coat uniformity can thus be achieved with use of the proposed visiometric process analyzer. The concept of visiometric process analyzers was proposed and their potential applications in pharmaceutical processes were further discussed. PMID:19504576

  3. Large detector array and real-time processing and elemental image projection of X-ray and proton microprobe fluorescence data

    NASA Astrophysics Data System (ADS)

    Ryan, C. G.; Siddons, D. P.; Moorhead, G.; Kirkham, R.; Dunn, P. A.; Dragone, A.; De Geronimo, G.

    2007-07-01

    A detector concept is described that integrates a large solid-angle detector array developed at Brookhaven National Laboratory and a high speed pipelined parallel processing engine developed at CSIRO for machine vision, with an embedded implementation of the Dynamic Analysis method for fluorescence spectra deconvolution and image projection, to yield a detection system capable of energy-dispersive detection, spectral deconvolution and real-time elemental imaging at ˜10 8 events per second for PIXE elemental imaging using the nuclear microprobe and SXRF elemental imaging using the synchrotron X-ray microprobe.

  4. DART® Tsunameter Retrospective and Real-Time Data: A Reflection on 10 Years of Processing in Support of Tsunami Research and Operations

    NASA Astrophysics Data System (ADS)

    Mungov, George; Eblé, Marie; Bouchard, Richard

    2013-09-01

    In the early 1980s, the United States National Oceanic and Atmospheric Administration Pacific Marine Environmental Laboratory established the fundamentals of the contemporary tsunameter network deployed throughout the world oceans. The decades of technological and scientific advancements that followed led to a robust network that now provides real-time deep-ocean tsunami observations routinely incorporated into operational procedures of tsunami warning centers around the globe. All aspects of the network, from research to operations, to data archive and dissemination, are conducted collaboratively between the National Data Buoy Center, the Pacific Marine Environmental Laboratory, and the National Geophysical Data Center, with oversight by the National Weather Service. The National Data Buoy Center manages and conducts all operational network activities and distributes real-time data to the public. The Pacific Marine Environmental Laboratory provides the research component in support of modeling and network enhancements for improved forecasting capability. The National Geophysical Data Center is responsible for the processing, archiving, and distribution of all retrospective data and integrates DART® tsunameter data with the National Geophysical Data Center global historical tsunami database. The role each agency plays in collecting, processing, and disseminating observations of deep-ocean bottom pressure is presented along with brief descriptions of data processing procedures. Specific examples of challenges and the approaches taken to address these are discussed. National Geophysical Data Center newly developed and available tsunami event web pages are briefly described and demonstrated with processed data for both the Tohoku 11 March 2011 and the Haiti 12 January 2010 tsunami events.

  5. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring.

    PubMed

    Möltgen, C-V; Herdling, T; Reich, G

    2013-11-01

    This study demonstrates an approach, using science-based calibration (SBC), for direct coating thickness determination on heart-shaped tablets in real-time. Near-Infrared (NIR) spectra were collected during four full industrial pan coating operations. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film up to a film thickness of 28 μm. The application of SBC permits the calibration of the NIR spectral data without using costly determined reference values. This is due to the fact that SBC combines classical methods to estimate the coating signal and statistical methods for the noise estimation. The approach enabled the use of NIR for the measurement of the film thickness increase from around 8 to 28 μm of four independent batches in real-time. The developed model provided a spectroscopic limit of detection for the coating thickness of 0.64 ± 0.03 μm root-mean square (RMS). In the commonly used statistical methods for calibration, such as Partial Least Squares (PLS), sufficiently varying reference values are needed for calibration. For thin non-functional coatings this is a challenge because the quality of the model depends on the accuracy of the selected calibration standards. The obvious and simple approach of SBC eliminates many of the problems associated with the conventional statistical methods and offers an alternative for multivariate calibration.

  6. [Near infrared spectroscopy on-line and real-time monitoring of alcohol precipitation process of reduning injection].

    PubMed

    Wang, Yong-Xiang; Mi, Hui-Juan; Zhang, Chuan-Li; Su, Guang; Bi, Yu-An; Wang, Zhen-Zhong; Xiao, Wei

    2014-12-01

    Near infrared (NIR) spectroscopy as a kind of rapid process analysis technology has been successfully applied in Chinese medicine pharmaceutical process. In this research, the technology was adopted to establish the rapid quantitative analysis models of main indicators from the Lonicera japonica and Artemisia annua alcohol precipitation process of Reduning injection. On-line NIR spectra of 142 samples from alcohol precipitation process were collected and the content of main indicators for each sample were detected through off-line HPLC. With eliminating outliers, determination of spectra pretreatment method and selecting optimal band, the NIR quantitative calibration model for each indicator was established using partial least squares (PLS). These models were used to predict the unknown samples from precipitation process of Reduning injection to achieve the goal of rapid detection. The results showed that the models were ideal. The correlation coefficients of models for neochlorogenic acid, chlorogenic acid, 4-O-caffeoylquinic acid and secoxyloganin were 0.973 872, 0.985 449, 0.975 509 and 0.979 790, respectively and their relative standard errors of prediction (RSEP) were 2.922 49%, 2.341 37%, 2.930 40% and 2.184 60%, respectively. This study indicated that the NIR quantitative calibration model showed good stability and precision, and it can be used in rapid quantitative detection of main indicators of efficacy in order to on-line monitor the alcohol precipitation process of Reduning injection. PMID:25911810

  7. THE MULTI-ISOTOPE PROCESS (MIP) MONITOR: A NEAR-REAL-TIME, NON-DESTRUCTIVE, INDICATOR OF SPENT NUCLEAR FUEL REPROCESSING CONDITIONS

    SciTech Connect

    Schwantes, Jon M.; Orton, Christopher R.; Fraga, Carlos G.; Douglas, Matthew; Christensen, Richard

    2010-05-07

    Researchers from Pacific Northwest National Laboratory and The Ohio State University are working to develop a system for monitoring spent nuclear fuel reprocessing facilities on-line, non-destructively, and in near-real-time. This method, known as the Multi-Isotope Process (MIP) Monitor, is based upon the measurement of distribution patterns of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. Signatures from these indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to patterns representing "normal" process conditions using multivariate pattern recognition software. By targeting gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, high-resolution gamma detectors that may be easily deployed throughout an existing facility. In addition, utilization of a suite of radio-elements, including ones with multiple oxidation states, increases the likelihood that attempts to divert material via process manipulation would be detected. Proof-of-principle modeling exercises simulating changes in acid strength have been completed and the results are promising. Laboratory validation is currently under way and significant results are available. The latest experimental results, along with an overview of the method will be presented.

  8. MONITORING SPENT NUCLEAR FUEL REPROCESSING CONDITIONS NON-DESTRUCTIVELY AND IN NEAR-REAL-TIME USING THE MULTI-ISOTOPE PROCESS (MIP) MONITOR

    SciTech Connect

    Orton, Christopher R.; Fraga, Carlos G.; Douglas, Matthew; Christensen, Richard; Schwantes, Jon M.

    2010-05-07

    Researchers from Pacific Northwest National Laboratory and The Ohio State University are working to develop a system for monitoring spent nuclear fuel reprocessing facilities on-line, nondestructively, and in near-real-time. This method, known as the Multi-Isotope Process (MIP) Monitor, is based upon the measurement of distribution patterns of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. Signatures from these indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to patterns representing "normal" process conditions using multivariate pattern recognition software. By targeting gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, high-resolution gamma detectors that may be easily deployed throughout an existing facility. In addition, utilization of a suite of radio-elements, including ones with multiple oxidation states, increases the likelihood that attempts to divert material via process manipulation would be detected. Proof-of-principle modeling exercises simulating changes in acid strength have been completed and the results are promising. Laboratory testing is currently under way and significant results are available. Recent experimental results, along with an overview of the method are presented.

  9. Prototype COBRA near-real-time processor

    NASA Astrophysics Data System (ADS)

    Earp, Samuel L.; Marshall, J. W.; Anthony, E. R.

    1996-05-01

    The U.S. Marine Corps COBRA countermine surveillance program has developed, as a risk- reduction alternative, a near real-time processor for the output of the COBRA multispectral camera. This processor has been tested using approximately 13.5 hours of video data from the COBRA DT-0 developmental test, representing approximately 243,000 frames of multispectral data. The results have been very encouraging--the system is robust and the minefield detection performance has met the goals of the COBRA program. The MITRE COBRA prototype processor is built from commercial-off-the-shelf VME bus technology. Video capture is provided by a Transtech TDM 435 capture/display VME card. Control is performed on a GMSV64 Super Sparc card that resides in two VME slots. The compute engine consists of two Pentek 4270 Quad TMS320C40 digital signal processing boards. There are two additional 6U VME boards to provide fast SCSI IO. The system is capable of capturing, digitizing and processing the COBRA data stream at between one-eighth and one-half real-time, depending on processing options. The nominal compute power of the system is 2.2 GOPS, 450 MFLOPS. The system is easily upgradeable due to the open architecture--one proposed upgrade will be to increase the number of available TMS320C40 processors to sixteen, providing real-time performance without compromising the current investment in software and hardware. The software for the system is primarily written in C, with hand-optimized assembler code for portions of the compute kernel. The algorithm that is implemented is based on the MITRE minefield detection algorithm detailed at AeroSense '95. The system development required a registration algorithm--this was the only algorithm development that was performed, the rest of the algorithms coming from previous MITRE effort on the COBRA program. Lessons learned from the development and upgrade/test plans will be presented.

  10. Characterizing the Processes for Navigating Internet Health Information Using Real-Time Observations: A Mixed-Methods Approach

    PubMed Central

    Paterniti, Debora A; Wilson, Machelle; Bell, Robert A; Chan, Man Shan; Villareal, Chloe C; Nguyen, Hien Huy; Kravitz, Richard L

    2015-01-01

    Background Little is known about the processes people use to find health-related information on the Internet or the individual characteristics that shape selection of information-seeking approaches. Objective Our aim was to describe the processes by which users navigate the Internet for information about a hypothetical acute illness and to identify individual characteristics predictive of their information-seeking strategies. Methods Study participants were recruited from public settings and agencies. Interested individuals were screened for eligibility using an online questionnaire. Participants listened to one of two clinical scenarios—consistent with influenza or bacterial meningitis—and then conducted an Internet search. Screen-capture video software captured Internet search mouse clicks and keystrokes. Each step of the search was coded as hypothesis testing (etiology), evidence gathering (symptoms), or action/treatment seeking (behavior). The coded steps were used to form a step-by-step pattern of each participant’s information-seeking process. A total of 78 Internet health information seekers ranging from 21-35 years of age and who experienced barriers to accessing health care services participated. Results We identified 27 unique patterns of information seeking, which were grouped into four overarching classifications based on the number of steps taken during the search, whether a pattern consisted of developing a hypothesis and exploring symptoms before ending the search or searching an action/treatment, and whether a pattern ended with action/treatment seeking. Applying dual-processing theory, we categorized the four overarching pattern classifications as either System 1 (41%, 32/78), unconscious, rapid, automatic, and high capacity processing; or System 2 (59%, 46/78), conscious, slow, and deliberative processing. Using multivariate regression, we found that System 2 processing was associated with higher education and younger age. Conclusions We

  11. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip.

    PubMed

    Lei, Kin Fong; Chen, Kuan-Hao; Tsui, Po-Hsiang; Tsang, Ngan-Ming

    2013-01-01

    Blood coagulation is an extremely complicated and dynamic physiological process. Monitoring of blood coagulation is essential to predict the risk of hemorrhage and thrombosis during cardiac surgical procedures. In this study, a high throughput microfluidic chip has been developed for the investigation of the blood coagulation process under temperature and hematocrit variations. Electrical impedance of the whole blood was continuously recorded by on-chip electrodes in contact with the blood sample during coagulation. Analysis of the impedance change of the blood was conducted to investigate the characteristics of blood coagulation process and the starting time of blood coagulation was defined. The study of blood coagulation time under temperature and hematocrit variations was shown a good agreement with results in the previous clinical reports. The electrical impedance measurement for the definition of blood coagulation process provides a fast and easy measurement technique. The microfluidic chip was shown to be a sensitive and promising device for monitoring blood coagulation process even in a variety of conditions. It is found valuable for the development of point-of-care coagulation testing devices that utilizes whole blood sample in microliter quantity.

  12. A deep look into the spray coating process in real-time-the crucial role of x-rays.

    PubMed

    Roth, Stephan V

    2016-10-12

    Tailoring functional thin films and coating by rapid solvent-based processes is the basis for the fabrication of large scale high-end applications in nanotechnology. Due to solvent loss of the solution or dispersion inherent in the installation of functional thin films and multilayers the spraying and drying processes are strongly governed by non-equilibrium kinetics, often passing through transient states, until the final structure is installed. Therefore, the challenge is to observe the structural build-up during these coating processes in a spatially and time-resolved manner on multiple time and length scales, from the nanostructure to macroscopic length scales. During installation, the interaction of solid-fluid interfaces and between the different layers, the flow and evaporation themselves determine the structure of the coating. Advanced x-ray scattering methods open a powerful pathway for observing the involved processes in situ, from the spray to the coating, and allow for gaining deep insight in the nanostructuring processes. This review first provides an overview over these rapidly evolving methods, with main focus on functional coatings, organic photovoltaics and organic electronics. Secondly the role and decisive advantage of x-rays is outlined. Thirdly, focusing on spray deposition as a rapidly emerging method, recent advances in investigations of spray deposition of functional materials and devices via advanced x-ray scattering methods are presented.

  13. A deep look into the spray coating process in real-time-the crucial role of x-rays.

    PubMed

    Roth, Stephan V

    2016-10-12

    Tailoring functional thin films and coating by rapid solvent-based processes is the basis for the fabrication of large scale high-end applications in nanotechnology. Due to solvent loss of the solution or dispersion inherent in the installation of functional thin films and multilayers the spraying and drying processes are strongly governed by non-equilibrium kinetics, often passing through transient states, until the final structure is installed. Therefore, the challenge is to observe the structural build-up during these coating processes in a spatially and time-resolved manner on multiple time and length scales, from the nanostructure to macroscopic length scales. During installation, the interaction of solid-fluid interfaces and between the different layers, the flow and evaporation themselves determine the structure of the coating. Advanced x-ray scattering methods open a powerful pathway for observing the involved processes in situ, from the spray to the coating, and allow for gaining deep insight in the nanostructuring processes. This review first provides an overview over these rapidly evolving methods, with main focus on functional coatings, organic photovoltaics and organic electronics. Secondly the role and decisive advantage of x-rays is outlined. Thirdly, focusing on spray deposition as a rapidly emerging method, recent advances in investigations of spray deposition of functional materials and devices via advanced x-ray scattering methods are presented. PMID:27537198

  14. Context sensitive formulations of antenna pattern correction and side lobe compensation for NOSS/LAMMR real time processing

    NASA Technical Reports Server (NTRS)

    Chin, R. T.; Beaudet, P. R.

    1981-01-01

    Large antenna multi-channel microwave radiometer (LAMMR) software specifications were written for LAMMR ground processing. There is a need to determine more computationally-efficient antenna temperature correction methods in compensating side lobe contributions especially near continents, islands and weather fronts. One of the major conclusions was that the antenna pattern corrections (APC) processes did not accomplish the implied goals of compensating for the antenna side lobe influences on brightness temperature. A-priori knowledge of land/water locations was shown to be needed and had to be incorporated in a context sensitive APC process if the artifacts caused by land presence is to be avoided. The high temperatures in land regions can severely bias the lower ocean response.

  15. Residential Real-time Price Response Simulation

    SciTech Connect

    Widergren, Steven E.; Subbarao, Krishnappa; Chassin, David P.; Fuller, Jason C.; Pratt, Robert G.

    2011-10-10

    The electric industry is gaining experience with innovative price responsive demand pilots and limited roll-outs to customers. One of these pilots is investigating real-time pricing signals to engage end-use systems and local distributed generation and storage in a distributed optimization process. Attractive aspects about the approach include strong scalability characteristics, simplified interfaces between automation devices, and the adaptability to integrate a wide variety of devices and systems. Experience in this nascent field is revealing a rich array of for engineering decisions and the application of complexity theory. To test the decisions, computer simulations are used to reveal insights about design, demand elasticity, and the limits of response (including consumer fatigue). Agent-based approaches lend themselves well in the simulation to modeling the participation and interaction of each piece of equipment on a distribution feeder. This paper discusses rate design and simulation experiences at the distribution feeder level where consumers and their HVAC systems and water heaters on a feeder receive real-time pricing signals.

  16. Real-time adaptive video image enhancement

    NASA Astrophysics Data System (ADS)

    Garside, John R.; Harrison, Chris G.

    1999-07-01

    As part of a continuing collaboration between the University of Manchester and British Aerospace, a signal processing array has been constructed to demonstrate that it is feasible to compensate a video signal for the degradation caused by atmospheric haze in real-time. Previously reported work has shown good agreement between a simple physical model of light scattering by atmospheric haze and the observed loss of contrast. This model predicts a characteristic relationship between contrast loss in the image and the range from the camera to the scene. For an airborne camera, the slant-range to a point on the ground may be estimated from the airplane's pose, as reported by the inertial navigation system, and the contrast may be obtained from the camera's output. Fusing data from these two streams provides a means of estimating model parameters such as the visibility and the overall illumination of the scene. This knowledge allows the same model to be applied in reverse, thus restoring the contrast lost to atmospheric haze. An efficient approximation of range is vital for a real-time implementation of the method. Preliminary results show that an adaptive approach to fitting the model's parameters, exploiting the temporal correlation between video frames, leads to a robust implementation with a significantly accelerated throughput.

  17. Reorganization of Functional and Effective Connectivity during Real-Time fMRI-BCI Modulation of Prosody Processing

    ERIC Educational Resources Information Center

    Rota, Giuseppina; Handjaras, Giacomo; Sitaram, Ranganatha; Birbaumer, Niels; Dogil, Grzegorz

    2011-01-01

    Mechanisms of cortical reorganization underlying the enhancement of speech processing have been poorly investigated. In the present study, we addressed changes in functional and effective connectivity induced in subjects who learned to deliberately increase activation in the right inferior frontal gyrus (rIFG), and improved their ability to…

  18. Real-time observation of dynamic process of oxygen vacancy migration in cerium oxides under electric field

    SciTech Connect

    Li, Xiaomin; Qi, Kuo; Sun, Muhua; Huang, Qianming; Xu, Zhi E-mail: xdbai@iphy.ac.cn; Wang, Wenlong; Bai, Xuedong E-mail: xdbai@iphy.ac.cn

    2015-11-23

    The dynamic process of oxygen vacancy migration driven by the external electric field is directly observed at atomic scale in the cerium oxides (CeO{sub 2}) thin film by in-situ transmission electron microscopy method. When a bias voltage of a proper value is applied across the CeO{sub 2} film, the oxygen vacancies are formed near the interface of CeO{sub 2}/anode, followed by their migration along the direction of the external electric field. The structural modulation occurs in the [110] zone axis due to the ordering of oxygen vacancies. The migration of oxygen vacancies results in the reversible structural transformation, i.e., releasing and storing oxygen processes in CeO{sub 2}, which is of great significance for the ionic and electronic applications of the cerium oxides materials, such as oxygen pump, gas sensor, resistive random access memory, etc.

  19. Image processing with cellular nonlinear networks implemented on field-programmable gate arrays for real-time applications in nuclear fusion

    NASA Astrophysics Data System (ADS)

    Palazzo, S.; Murari, A.; Vagliasindi, G.; Arena, P.; Mazon, D.; de Maack, A.; Jet-Efda Contributors

    2010-08-01

    In the past years cameras have become increasingly common tools in scientific applications. They are now quite systematically used in magnetic confinement fusion, to the point that infrared imaging is starting to be used systematically for real-time machine protection in major devices. However, in order to guarantee that the control system can always react rapidly in case of critical situations, the time required for the processing of the images must be as predictable as possible. The approach described in this paper combines the new computational paradigm of cellular nonlinear networks (CNNs) with field-programmable gate arrays and has been tested in an application for the detection of hot spots on the plasma facing components in JET. The developed system is able to perform real-time hot spot recognition, by processing the image stream captured by JET wide angle infrared camera, with the guarantee that computational time is constant and deterministic. The statistical results obtained from a quite extensive set of examples show that this solution approximates very well an ad hoc serial software algorithm, with no false or missed alarms and an almost perfect overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale for 8 bit 496×560-sized images. Moreover, in our implementation, the computational time, besides being deterministic, is practically independent of the number of iterations performed by the CNN—unlike software CNN implementations.

  20. Real-time PCR detection and quantification of elephantid DNA: species identification for highly processed samples associated with the ivory trade.

    PubMed

    Wozney, Kristyne Michelle; Wilson, Paul J

    2012-06-10

    The ivory industry is the single most serious threat to global elephant populations. A highly sensitive, species-specific real-time PCR assay has been developed to detect and quantify African elephant (Loxodonta africana), Asian elephant (Elephas maximus) and Woolly Mammoth (Mammuthus primigenius) mitochondrial DNA from highly processed samples involved in the international ivory trade. This assay is especially useful for highly processed samples where there are no distinguishing morphological features to identify the species of origin. Using species-specific Taqman(®) probes targeting a region of the mitochondrial cytochrome b gene, we developed an assay that can be used to positively identify samples containing elephant or Woolly mammoth DNA faster and more cost-effectively than traditional sequencing methods. Furthermore, this assay provides a diagnostic result based on probe hybridization that eliminates ambiguities associated with traditional DNA sequence protocols involving low template DNA. The real-time method is highly sensitive, producing accurate and reproducible results in samples with as few as 100 copies of template DNA. This protocol can be applied to the enforcement of the Convention on the International Trade of Endangered Species (CITES), when positive identification of species from illegally traded products is required by conservation officers in wildlife forensic cases.

  1. Enhancing quality of carbon nanotubes through a real-time controlled CVD process with application to next-generation nanosystems

    NASA Astrophysics Data System (ADS)

    Laxminarayana, Karthik; Jalili, Nader

    2004-07-01

    Nanocrystals and nanostructures will be the building blocks for future materials that will exhibit enhanced or entirely new combinations of properties with tremendous opportunity for novel technologies that can have far-reaching impact on our society. It is, however, realized that a major challenge for the near future is the design, synthesis and integration of nanostructures to develop functional nanosystems. In view of this, this exploratory research seeks to facilitate the development of a controlled and deterministic framework for nanomanufacturing of nanotubes as the most suitable choice among nanostructures for a plethora of potential applications in areas such as nanoelectronic devices, biological probes, fuel cell electrodes, supercapacitors and filed emission devices. Specifically, this paper proposes to control and maintain the most common nanotube growth parameters (i.e., reaction temperature and gas flow rate) through both software and hardware modifications. The influence of such growth parameters in a CVD process on some of the most vital and crucial aspects of nanotubes (e.g., length, diameter, yield, growth rate and structure) can be utilized to arrive at some unique and remarkable properties for the nanotubes. The objective here is, therefore, to control the process parameters to pinpoint accuracy, which would enable us to fabricate nanotubes having the desired properties and thereby maximize their ability to function at its fullest potential. To achieve this and in order to provide for experimental validation of the proposed research program, an experimental test-bed using the nanotube processing test chamber and a mechatronics workstation are being constructed.

  2. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools.

    PubMed

    De Beer, T R M; Vercruysse, P; Burggraeve, A; Quinten, T; Ouyang, J; Zhang, X; Vervaet, C; Remon, J P; Baeyens, W R G

    2009-09-01

    The aim of the present study was to examine the complementary properties of Raman and near infrared (NIR) spectroscopy as PAT tools for the fast, noninvasive, nondestructive and in-line process monitoring of a freeze drying process. Therefore, Raman and NIR probes were built in the freeze dryer chamber, allowing simultaneous process monitoring. A 5% (w/v) mannitol solution was used as model for freeze drying. Raman and NIR spectra were continuously collected during freeze drying (one Raman and NIR spectrum/min) and the spectra were analyzed using principal component analysis (PCA) and multivariate curve resolution (MCR). Raman spectroscopy was able to supply information about (i) the mannitol solid state throughout the entire process, (ii) the endpoint of freezing (endpoint of mannitol crystallization), and (iii) several physical and chemical phenomena occurring during the process (onset of ice nucleation, onset of mannitol crystallization). NIR spectroscopy proved to be a more sensitive tool to monitor the critical aspects during drying: (i) endpoint of ice sublimation and (ii) monitoring the release of hydrate water during storage. Furthermore, via NIR spectroscopy some Raman observations were confirmed: start of ice nucleation, end of mannitol crystallization and solid state characteristics of the end product. When Raman and NIR monitoring were performed on the same vial, the Raman signal was saturated during the freezing step caused by reflected NIR light reaching the Raman detector. Therefore, NIR and Raman measurements were done on a different vial. Also the importance of the position of the probes (Raman probe above the vial and NIR probe at the bottom of the sidewall of the vial) in order to obtain all required critical information is outlined. Combining Raman and NIR spectroscopy for the simultaneous monitoring of freeze drying allows monitoring almost all critical freeze drying process aspects. Both techniques do not only complement each other, they also

  3. Representing number in the real-time processing of agreement: self-paced reading evidence from Arabic.

    PubMed

    Tucker, Matthew A; Idrissi, Ali; Almeida, Diogo

    2015-01-01

    In the processing of subject-verb agreement, non-subject plural nouns following a singular subject sometimes "attract" the agreement with the verb, despite not being grammatically licensed to do so. This phenomenon generates agreement errors in production and an increased tendency to fail to notice such errors in comprehension, thereby providing a window into the representation of grammatical number in working memory during sentence processing. Research in this topic, however, is primarily done in related languages with similar agreement systems. In order to increase the cross-linguistic coverage of the processing of agreement, we conducted a self-paced reading study in Modern Standard Arabic. We report robust agreement attraction errors in relative clauses, a configuration not particularly conducive to the generation of such errors for all possible lexicalizations. In particular, we examined the speed with which readers retrieve a subject controller for both grammatical and ungrammatical agreeing verbs in sentences where verbs are preceded by two NPs, one of which is a local non-subject NP that can act as a distractor for the successful resolution of subject-verb agreement. Our results suggest that the frequency of errors is modulated by the kind of plural formation strategy used on the attractor noun: nouns which form plurals by suffixation condition high rates of attraction, whereas nouns which form their plurals by internal vowel change (ablaut) generate lower rates of errors and reading-time attraction effects of smaller magnitudes. Furthermore, we show some evidence that these agreement attraction effects are mostly contained in the right tail of reaction time distributions. We also present modeling data in the ACT-R framework which supports a view of these ablauting patterns wherein they are differentially specified for number and evaluate the consequences of possible representations for theories of grammar and parsing.

  4. Representing number in the real-time processing of agreement: self-paced reading evidence from Arabic

    PubMed Central

    Tucker, Matthew A.; Idrissi, Ali; Almeida, Diogo

    2015-01-01

    In the processing of subject-verb agreement, non-subject plural nouns following a singular subject sometimes “attract” the agreement with the verb, despite not being grammatically licensed to do so. This phenomenon generates agreement errors in production and an increased tendency to fail to notice such errors in comprehension, thereby providing a window into the representation of grammatical number in working memory during sentence processing. Research in this topic, however, is primarily done in related languages with similar agreement systems. In order to increase the cross-linguistic coverage of the processing of agreement, we conducted a self-paced reading study in Modern Standard Arabic. We report robust agreement attraction errors in relative clauses, a configuration not particularly conducive to the generation of such errors for all possible lexicalizations. In particular, we examined the speed with which readers retrieve a subject controller for both grammatical and ungrammatical agreeing verbs in sentences where verbs are preceded by two NPs, one of which is a local non-subject NP that can act as a distractor for the successful resolution of subject-verb agreement. Our results suggest that the frequency of errors is modulated by the kind of plural formation strategy used on the attractor noun: nouns which form plurals by suffixation condition high rates of attraction, whereas nouns which form their plurals by internal vowel change (ablaut) generate lower rates of errors and reading-time attraction effects of smaller magnitudes. Furthermore, we show some evidence that these agreement attraction effects are mostly contained in the right tail of reaction time distributions. We also present modeling data in the ACT-R framework which supports a view of these ablauting patterns wherein they are differentially specified for number and evaluate the consequences of possible representations for theories of grammar and parsing. PMID:25914651

  5. A lightweight messaging-based distributed processing and workflow execution framework for real-time and big data analysis

    NASA Astrophysics Data System (ADS)

    Laban, Shaban; El-Desouky, Aly

    2014-05-01

    To achieve a rapid, simple and reliable parallel processing of different types of tasks and big data processing on any compute cluster, a lightweight messaging-based distributed applications processing and workflow execution framework model is proposed. The framework is based on Apache ActiveMQ and Simple (or Streaming) Text Oriented Message Protocol (STOMP). ActiveMQ , a popular and powerful open source persistence messaging and integration patterns server with scheduler capabilities, acts as a message broker in the framework. STOMP provides an interoperable wire format that allows framework programs to talk and interact between each other and ActiveMQ easily. In order to efficiently use the message broker a unified message and topic naming pattern is utilized to achieve the required operation. Only three Python programs and simple library, used to unify and simplify the implementation of activeMQ and STOMP protocol, are needed to use the framework. A watchdog program is used to monitor, remove, add, start and stop any machine and/or its different tasks when necessary. For every machine a dedicated one and only one zoo keeper program is used to start different functions or tasks, stompShell program, needed for executing the user required workflow. The stompShell instances are used to execute any workflow jobs based on received message. A well-defined, simple and flexible message structure, based on JavaScript Object Notation (JSON), is used to build any complex workflow systems. Also, JSON format is used in configuration, communication between machines and programs. The framework is platform independent. Although, the framework is built using Python the actual workflow programs or jobs can be implemented by any programming language. The generic framework can be used in small national data centres for processing seismological and radionuclide data received from the International Data Centre (IDC) of the Preparatory Commission for the Comprehensive Nuclear

  6. Real-time processing of gender-marked articles by native and non-native Spanish speakers

    PubMed Central

    Lew-Williams, Casey; Fernald, Anne

    2010-01-01

    Three experiments using online processing measures explored whether native and non-native Spanish-speaking adults use gender-marked articles to identify referents of target nouns more rapidly, as shown previously with 3-year-old children learning Spanish as L1 (Lew-Williams & Fernald, 2007). In Experiment 1, participants viewed familiar objects with names of either the same or different grammatical gender while listening to Spanish sentences referring to one object. L1 adults, like L1 children, oriented to the target more rapidly on different-gender trials, when the article was informative about noun identity; however, L2 adults did not. Experiments 2 and 3 controlled for frequency of exposure to article-noun pairs by using novel nouns. L2 adults could not exploit gender information when different article-noun pairs were used in teaching and testing. Experience-related factors may influence how L1 adults and children and L2 adults—who learned Spanish at different ages and in different settings—use grammatical gender in realtime processing. PMID:21076648

  7. Modularized architecture of address generation units suitable for real-time processing MR data on an FPGA.

    PubMed

    Li, Limin; Wyrwicz, Alice M

    2016-06-01

    In this paper, we describe a modular approach to the design of an Address Generation Unit (AGU). The approach consists of development of a generic Address Generation Core (AGC) as a basic building block and the construction of an AGU from the AGCs. We illustrate this concept with AGUs capable of handling 2D- and 3D-structured data, and as well as their setup for executing 2D and 3D FFT algorithms on a Field Programmable Gate Array (FPGA). The AGUs developed using our proposed method are simple and easily expandable. Furthermore, they can potentially support irregularly structured data which are often generated from the wide variety of pulse sequences in magnetic resonance imaging. Our experimental results show that these AGUs are capable of generating addresses with a user-predefined pattern automatically at the speed of one address per clock cycle and operate at clock rates up to 80 MHz. They can operate concurrently with other processes and thus do not introduce additional operation latencies. Although we focus on applying the developed AGUs to executing 2D and 3D FFT, we expect that the modular design method should have much wider applications.

  8. Modularized architecture of address generation units suitable for real-time processing MR data on an FPGA

    NASA Astrophysics Data System (ADS)

    Li, Limin; Wyrwicz, Alice M.

    2016-06-01

    In this paper, we describe a modular approach to the design of an Address Generation Unit (AGU). The approach consists of development of a generic Address Generation Core (AGC) as a basic building block and the construction of an AGU from the AGCs. We illustrate this concept with AGUs capable of handling 2D- and 3D-structured data, and as well as their setup for executing 2D and 3D FFT algorithms on a Field Programmable Gate Array (FPGA). The AGUs developed using our proposed method are simple and easily expandable. Furthermore, they can potentially support irregularly structured data which are often generated from the wide variety of pulse sequences in magnetic resonance imaging. Our experimental results show that these AGUs are capable of generating addresses with a user-predefined pattern automatically at the speed of one address per clock cycle and operate at clock rates up to 80 MHz. They can operate concurrently with other processes and thus do not introduce additional operation latencies. Although we focus on applying the developed AGUs to executing 2D and 3D FFT, we expect that the modular design method should have much wider applications.

  9. Modularized architecture of address generation units suitable for real-time processing MR data on an FPGA.

    PubMed

    Li, Limin; Wyrwicz, Alice M

    2016-06-01

    In this paper, we describe a modular approach to the design of an Address Generation Unit (AGU). The approach consists of development of a generic Address Generation Core (AGC) as a basic building block and the construction of an AGU from the AGCs. We illustrate this concept with AGUs capable of handling 2D- and 3D-structured data, and as well as their setup for executing 2D and 3D FFT algorithms on a Field Programmable Gate Array (FPGA). The AGUs developed using our proposed method are simple and easily expandable. Furthermore, they can potentially support irregularly structured data which are often generated from the wide variety of pulse sequences in magnetic resonance imaging. Our experimental results show that these AGUs are capable of generating addresses with a user-predefined pattern automatically at the speed of one address per clock cycle and operate at clock rates up to 80 MHz. They can operate concurrently with other processes and thus do not introduce additional operation latencies. Although we focus on applying the developed AGUs to executing 2D and 3D FFT, we expect that the modular design method should have much wider applications. PMID:27370457

  10. Label-Free and Real-Time Monitor of Binding and Dissociation Processes between Protein A and Swine IgG by Oblique-Incidence Reflectivity Difference Method

    NASA Astrophysics Data System (ADS)

    He, Li-Ping; Liu, Shuang; Dai, Jun; Wu, Lin; Liu, Guo-Zhen; Wei, Han-Fu; Lu, Hui-Bin; Jin, Kui-Juan; Yang, Guo-Zhen

    2015-02-01

    Life science has a need for detection methods that are label-free and real-time. In this paper, we have selected staphylococcal protein A (SPA) and swine immunoglobulin G (IgG), and monitor the bindings between SPA and swine IgG with different concentrations, as well as the dissociations of SPA-swine IgG complex in different pH values of phosphate buffer by oblique-incidence reflectivity difference (OIRD) in a label-free and real-time fashion. We obtain the ON and OFF reaction dynamic curves corresponding to the bindings and dissociations of SPA and swine IgG. Through our analysis of the experimental results, we have been able to obtain the damping coefficients and the dissociation time of SPA and swine IgG for different pH values of the phosphate buffer. The results prove that the OIRD technique is a competing method for monitoring the dynamic processes of biomolecule interaction and achieving the quantitative information of reaction kinetics.

  11. Duplex real-time qRT-PCR for the detection of hepatitis A virus in water and raspberries using the MS2 bacteriophage as a process control.

    PubMed

    Blaise-Boisseau, Sandra; Hennechart-Collette, Catherine; Guillier, Laurent; Perelle, Sylvie

    2010-06-01

    Hepatitis A virus (HAV) infection is the leading worldwide cause of acute viral hepatitis. An important aspect of viral control is rapid diagnosis. Epidemiological studies have linked hepatitis A outbreaks to the consumption of drinking water or soft fruits exposed to faecal contamination. Real-time reverse transcriptase PCR (qRT-PCR) is now widely used for detecting RNA viruses in food samples. Efficiency of viral concentration, nucleic acid extraction and the presence of potential inhibitors of the RT-PCR reaction must be monitored to prevent false negative results. In this study, the MS2 bacteriophage used as a process control was detected simultaneously with HAV in a one-step duplex real-time qRT-PCR. The assay was developed for testing water and raspberries. Adding MS2 showed no loss of sensitivity for HAV detection in water and raspberry samples. The limit of detection of HAV with this new approach was 10PFU for 1.5L of bottled water, 100PFU for 1.5L of tap water, 50PFU for 25g of fresh raspberries and 100PFU for 25g of frozen raspberries. The data show that the MS2 offers a very reliable and simple way to monitor false-negative results, making it a valuable tool in the routine diagnostics laboratory.

  12. Investigating the effect of processing parameters on pharmaceutical tablet disintegration using a real-time particle imaging approach.

    PubMed

    Rajkumar, Arthi D; Reynolds, Gavin K; Wilson, David; Wren, Stephen; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    Tablet disintegration is a fundamental parameter that is tested in vitro before a product is released to the market, to give confidence that the tablet will break up in vivo and that active drug will be available for absorption. Variations in tablet properties cause variation in disintegration behaviour. While the standardised pharmacopeial disintegration test can show differences in the speed of disintegration of different tablets, it does not give any mechanistic information about the underlying cause of the difference. With quantifiable disintegration data, and consequently an improved understanding into tablet disintegration, a more knowledge-based approach could be applied to the research and development of future tablet formulations. The aim of the present research was to introduce an alternative method which will enable a better understanding of tablet disintegration using a particle imaging approach. A purpose-built flow cell was employed capable of online observation of tablet disintegration, which can provide information about the changing tablet dimensions and the particles released with time. This additional information can improve the understanding of how different materials and process parameters affect tablet disintegration. Standard USP analysis was also carried out to evaluate and determine whether the flow cell method can suitably differentiate the disintegration behaviour of tablets produced using different processing parameters. Placebo tablets were produced with varying ratios of insoluble and soluble filler (mannitol and MCC, respectively) so that the effect of variation in the formulation can be investigated. To determine the effect of the stress applied during granulation and tableting on tablet disintegration behaviour, analysis was carried out on tablets produced using granular material compressed at 20 or 50bar, where a tableting load of either 15 or 25kN was used. By doing this the tablet disintegration was examined in terms of the

  13. Label-free, real-time detection of the dynamic processes of protein degradation using oblique-incidence reflectivity difference method

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhu, J. H.; He, L. P.; Dai, J.; Lu, H. B.; Wu, L.; Jin, K. J.; Yang, G. Z.; Zhu, H.

    2014-04-01

    Based on the requirements for studying the dynamic process of proteinase action substrates in life science, we selected six random proteins including 1L-10, SCGB2A2, CENPQ, GST, HK1, KLHL7, as well as five different concentrations of 1L-10 proteins of 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml, and 0.0625 mg/ml, and fabricated two types of substrate protein microarrays, respectively. We detected the dynamic processes of proteins degraded by proteinase K using oblique-incidence reflectivity difference (OIRD) method in a label-free and real-time manner. We obtained the relevant degradation velocities and the degradation time. The experimental results demonstrate that OIRD has the ability to study proteinase action substrates which is out of reach of label methods and is expected to offer opportunities to determine protease-substrate relationships on the systems biology level.

  14. Development of a real-time PCR and a sandwich ELISA for detection of potentially allergenic trace amounts of peanut (Arachis hypogaea) in processed foods.

    PubMed

    Stephan, Oliver; Vieths, Stefan

    2004-06-16

    Hidden allergens in food products are, especially for peanut-allergic consumers, a serious problem because even low amounts (approximately 200 microg) of peanut can elicit allergic reactions. Undeclared peanut traces can be found in processed food products, because contaminations with peanut during production processes are frequent. To minimize the risk of such cross-contaminations, it is necessary to develop sensitive analytical methods for the detection of hidden allergens in foods. For this approach we developed two peanut-specific assays based on the detection of peanut protein by specific antibodies (sandwich ELISA) and by the detection of peanut-specific DNA (part of the coding region of Ara h 2) by a real-time PCR. Both tests did not show any cross-reactivity with 22 common food ingredients (cereals, nuts, legumes), and the limit of detection is <10 ppm peanut in processed foods. Thirty-three random samples of food products were tested for the presence of peanut to compare both assay types with each other and to evaluate the percentage of foods on the German market that are contaminated with peanut traces. We found that four products (13.3%) without peanut in the list of ingredients contained peanut protein in a range from 1 to 74 ppm peanut protein and that the results of both tests correlated well. The real-time PCR was able to detect one more positive sample than the sandwich ELISA. In conclusion, both assays are sensitive and specific tools for the detection of hidden allergens in processed foods.

  15. The LAA real-time benchmarks

    SciTech Connect

    Block, R.K.; Krischer, W.; Lone, S.

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  16. Generation and transmission of 85.4 Gb/s real-time 16QAM coherent optical OFDM signals over 400 km SSMF with preamble-less reception.

    PubMed

    Bouziane, Rachid; Schmogrow, Rene; Hillerkuss, D; Milder, P A; Koos, C; Freude, W; Leuthold, J; Bayvel, P; Killey, R I

    2012-09-10

    This paper presents a real-time, coherent optical OFDM transmitter based on a field programmable gate array implementation. The transmitter uses 16QAM mapping and runs at 28 GSa/s achieving a data rate of 85.4 Gb/s on a single polarization. A cyclic prefix of 25% of the symbol duration is added enabling dispersion-tolerant transmission over up to 400 km of SSMF. This is the first transmission experiment performed with a real-time OFDM transmitter running at data rates higher than 40 Gb/s. A key aspect of the paper is the introduction of a novel method for OFDM symbol synchronization without relying on training symbols. Unlike conventional preamble-based synchronization methods which perform cross-correlations at regular time intervals and let the system run freely in between, the proposed method performs synchronization in a continuous manner ensuring correct symbol alignment at all times. PMID:23037279

  17. RISMA: A Rule-based Interval State Machine Algorithm for Alerts Generation, Performance Analysis and Monitoring Real-Time Data Processing

    NASA Astrophysics Data System (ADS)

    Laban, Shaban; El-Desouky, Aly

    2013-04-01

    The monitoring of real-time systems is a challenging and complicated process. So, there is a continuous need to improve the monitoring process through the use of new intelligent techniques and algorithms for detecting exceptions, anomalous behaviours and generating the necessary alerts during the workflow monitoring of such systems. The interval-based or period-based theorems have been discussed, analysed, and used by many researches in Artificial Intelligence (AI), philosophy, and linguistics. As explained by Allen, there are 13 relations between any two intervals. Also, there have also been many studies of interval-based temporal reasoning and logics over the past decades. Interval-based theorems can be used for monitoring real-time interval-based data processing. However, increasing the number of processed intervals makes the implementation of such theorems a complex and time consuming process as the relationships between such intervals are increasing exponentially. To overcome the previous problem, this paper presents a Rule-based Interval State Machine Algorithm (RISMA) for processing, monitoring, and analysing the behaviour of interval-based data, received from real-time sensors. The proposed intelligent algorithm uses the Interval State Machine (ISM) approach to model any number of interval-based data into well-defined states as well as inferring them. An interval-based state transition model and methodology are presented to identify the relationships between the different states of the proposed algorithm. By using such model, the unlimited number of relationships between similar large numbers of intervals can be reduced to only 18 direct relationships using the proposed well-defined states. For testing the proposed algorithm, necessary inference rules and code have been designed and applied to the continuous data received in near real-time from the stations of International Monitoring System (IMS) by the International Data Centre (IDC) of the Preparatory

  18. Real-time, high frequency QRS electrocardiograph