Science.gov

Sample records for real-time ultrasound elastography

  1. Real-time quasi-static ultrasound elastography

    PubMed Central

    Treece, Graham; Lindop, Joel; Chen, Lujie; Housden, James; Prager, Richard; Gee, Andrew

    2011-01-01

    Ultrasound elastography is a technique used for clinical imaging of tissue stiffness with a conventional ultrasound machine. It was first proposed two decades ago, but active research continues in this area to the present day. Numerous clinical applications have been investigated, mostly related to cancer imaging, and though these have yet to prove conclusive, the technique has seen increasing commercial and clinical interest. This paper presents a review of the most widely adopted, non-quantitative, techniques focusing on technical innovations rather than clinical applications. The review is not intended to be exhaustive, concentrating instead on placing the various techniques in context according to the authors' perspective of the field. PMID:22866230

  2. System for robot-assisted real-time laparoscopic ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Billings, Seth; Deshmukh, Nishikant; Kang, Hyun Jae; Taylor, Russell; Boctor, Emad M.

    2012-02-01

    Surgical robots provide many advantages for surgery, including minimal invasiveness, precise motion, high dexterity, and crisp stereovision. One limitation of current robotic procedures, compared to open surgery, is the loss of haptic information for such purposes as palpation, which can be very important in minimally invasive tumor resection. Numerous studies have reported the use of real-time ultrasound elastography, in conjunction with conventional B-mode ultrasound, to differentiate malignant from benign lesions. Several groups (including our own) have reported integration of ultrasound with the da Vinci robot, and ultrasound elastography is a very promising image guidance method for robotassisted procedures that will further enable the role of robots in interventions where precise knowledge of sub-surface anatomical features is crucial. We present a novel robot-assisted real-time ultrasound elastography system for minimally invasive robot-assisted interventions. Our system combines a da Vinci surgical robot with a non-clinical experimental software interface, a robotically articulated laparoscopic ultrasound probe, and our GPU-based elastography system. Elasticity and B-mode ultrasound images are displayed as picture-in-picture overlays in the da Vinci console. Our system minimizes dependence on human performance factors by incorporating computer-assisted motion control that automatically generates the tissue palpation required for elastography imaging, while leaving high-level control in the hands of the user. In addition to ensuring consistent strain imaging, the elastography assistance mode avoids the cognitive burden of tedious manual palpation. Preliminary tests of the system with an elasticity phantom demonstrate the ability to differentiate simulated lesions of varied stiffness and to clearly delineate lesion boundaries.

  3. Improving B mode ultrasound evaluation of breast lesions with real-time ultrasound elastography--a clinical approach.

    PubMed

    Tan, S M; Teh, H S; Mancer, J F Kent; Poh, W T

    2008-06-01

    Ultrasound elastography using the extended combined auto-correlation method of tissue elasticity allows for real-time strain image visualisation using a free-hand probe with concurrent conventional B mode imaging. Four hundred and fifteen consecutive women with 550 breast lesions confirmed on B mode ultrasound were assessed with elastography using the elasticity score. There were 119 malignant and 431 benign lesions. The elastography sensitivity was 78.0%, specificity was 98.5% and overall accuracy was 93.8%. The median score for malignancy was 5 and that for benign lesions was 2. There was good correlation with B mode BIRADS category. 98.6% of lesions with an elasticity score of 2 or below (95%CI=96.8-99.4) were benign. BIRADS 3 lesions with an elasticity score of 2 or below may be re-classified as BIRADS 2 lesions. We found that 15.3% of BIRADS 2 and 3 lesions with an elasticity score of 3 were malignant. Real-time ultrasound elastography is user-friendly with a high accuracy rate, thereby improving B mode ultrasound assessment.

  4. Real-time ultrasound elastography: an assessment of enlarged cervical lymph nodes.

    PubMed

    Lo, Wu-Chia; Cheng, Po-Wen; Wang, Chi-Te; Liao, Li-Jen

    2013-09-01

    To determine the efficacy of real-time elastography (RTE), compared with our previously proposed prediction model, in the detection of malignancy in cervical lymph nodes (LNs). One hundred and thirty-one patients underwent ultrasound-guided fine needle aspiration biopsy (ultrasound FNAB) after ultrasound and RTE evaluation. The formula of the RTE scoring system was a four-point visual scale, based on a previously determined model. The formula of the prediction model was: [Formula: see text]. An extended model was constructed with four previous predictors and elasticity scores, using a logistic regression model. Final histology revealed 77 benign and 54 malignant LNs. In the elasticity score system, sensitivity was 66.7 %, specificity was 57.1 %, the positive predictive value (PPV) was 52.2 % and the negative predictive value (NPV) was 71.0 %. In the prediction model system, sensitivity was 79.6 %, specificity was 92.2 %, the PPV was 87.8 % and the NPV was 86.6 %. When the extended and the original model were compared, the areas under the receiver operating characteristic curve (c-statistic) was 0.94 and 0.95, respectively (P > 0.05). Qualitative RTE offers no additional value over conventional ultrasound in predicting malignancy in cervical LNs. • An ultrasound system can help in the assessment of cervical lymph nodes. • Grey-scale and power Doppler ultrasound remain fundamental for neck nodal evaluation. • Qualitative real-time elastography provided no additional value compared with current prediction models.

  5. Real-time elastography of the prostate.

    PubMed

    Junker, D; De Zordo, T; Quentin, M; Ladurner, M; Bektic, J; Horniger, W; Jaschke, W; Aigner, F

    2014-01-01

    Palpation of organs is one of the oldest clinical examination techniques, for instance, if you think of the palpation of the breast or the digital rectal examination of the prostate, where hard palpable regions are suspicious for cancer. This is the basic principle of real-time elastography, an ultrasound technique, which is able to visualise tissue elasticity. Since prostate cancer features an increased stiffness due to the higher cell and vessel density than the normal surrounding tissue, real-time elastography has been used for several years for prostate cancer detection. This review introduces the different techniques of ultrasound elastography and furthermore summarises its limitations and potentials.

  6. Real-Time Elastography of the Prostate

    PubMed Central

    Junker, D.; De Zordo, T.; Quentin, M.; Ladurner, M.; Bektic, J.; Horniger, W.; Jaschke, W.; Aigner, F.

    2014-01-01

    Palpation of organs is one of the oldest clinical examination techniques, for instance, if you think of the palpation of the breast or the digital rectal examination of the prostate, where hard palpable regions are suspicious for cancer. This is the basic principle of real-time elastography, an ultrasound technique, which is able to visualise tissue elasticity. Since prostate cancer features an increased stiffness due to the higher cell and vessel density than the normal surrounding tissue, real-time elastography has been used for several years for prostate cancer detection. This review introduces the different techniques of ultrasound elastography and furthermore summarises its limitations and potentials. PMID:24967334

  7. Correlates of mammographic density in B-mode ultrasound and real time elastography.

    PubMed

    Jud, Sebastian Michael; Häberle, Lothar; Fasching, Peter A; Heusinger, Katharina; Hack, Carolin; Faschingbauer, Florian; Uder, Michael; Wittenberg, Thomas; Wagner, Florian; Meier-Meitinger, Martina; Schulz-Wendtland, Rüdiger; Beckmann, Matthias W; Adamietz, Boris R

    2012-07-01

    The aim of our study involved the assessment of B-mode imaging and elastography with regard to their ability to predict mammographic density (MD) without X-rays. Women, who underwent routine mammography, were prospectively examined with additional B-mode ultrasound and elastography. MD was assessed quantitatively with a computer-assisted method (Madena). The B-mode and elastography images were assessed by histograms with equally sized gray-level intervals. Regression models were built and cross validated to examine the ability to predict MD. The results of this study showed that B-mode imaging and elastography were able to predict MD. B-mode seemed to give a more accurate prediction. R for B-mode image and elastography were 0.67 and 0.44, respectively. Areas in the B-mode images that correlated with mammographic dense areas were either dark gray or of intermediate gray levels. Concerning elastography only the gray levels that represent extremely stiff tissue correlated positively with MD. In conclusion, ultrasound seems to be able to predict MD. Easy and cheap utilization of regular breast ultrasound machines encourages the use of ultrasound in larger case-control studies to validate this method as a breast cancer risk predictor. Furthermore, the application of ultrasound for breast tissue characterization could enable comprehensive research concerning breast cancer risk and breast density in young and pregnant women.

  8. Initial experience with real-time elastography using an ultrasound bronchoscope for the evaluation of mediastinal lymph nodes.

    PubMed

    Andreo García, Felipe; Centeno Clemente, Carmen Ángela; Sanz Santos, José; Barturen Barroso, Ángel; Hernández Gallego, Alba; Ruiz Manzano, Juan

    2015-02-01

    Real-time elastography performed during endoscopic ultrasonography is a relatively new method for characterizing tissue stiffness, and has been used successfully as a predictor of malignancy in mediastinal lymph nodes. This case report describes our practical experience with this technique using an ultrasound bronchoscope to examine mediastinal lymph nodes. We present a case of sectorial endobronchial ultrasound and the first published case of endoscopic ultrasound elastography using ultrasound bronchoscope in two patients with non-small cell lung carcinoma. Qualitative tissue color pattern was obtained in both cases and correlated with pathological evaluation. The initial feasibility results are promising and suggest that ultrasound bronchoscopy techniques, such as guided nodal staging, merit additional studies. It may be important to categorize the risk of malignancy to facilitate sampling decisions.

  9. [Differential diagnostic value of real-time tissue elastography and three dimensional ultrasound imaging in breast lumps].

    PubMed

    Li, M H; Liu, Y; Liu, L S; Li, P X; Chen, Q

    2016-05-24

    To investigate the real-time tissue elastography and 3D contrast-enhanced ultrasonography(CEUS) in breast lumps differential diagnostic value. A total of 126 patients (180 lumps) with breast mass were retrospectively analyzed from December 2012 to December 2014 in Tumor Hospital Affiliated To Xinjiang Medical University.All patients were divided into three groups by using stratified random method.Each group was detected by real-time tissue elastography, 3D CEUS and two joint inspection.Each group of 42 cases (60 lumps) was confirmed by the pathological results as gold standard.Diagnostic sensitivity, specificity and coincidence rate of different methods were compared. The benign masses of ultrasound contrast showed the punctate, linear and nodular enhancement, and the border of enhancement was smooth.The malignant tumors were mainly dominated by uneven and high enhancement. There was no statistical difference in sensitivity, specificity and coincidence rate between elastography group and 3D CEUS group (64.7% vs 73.5%, 69.2% vs 76.9%, 66.7% vs 75.0%, all P>0.05). The sensitivity, specificity and coincidence rate of two joint inspection group were higher than those of elastography group and 3D CEUS group, the differences were statistically significant (97.1%, 92.3% and 98.3% , all P<0.05). 3D CEUS combined with real-time tissue elastography is of high value in the diagnosis of breast masses.

  10. Real time endoscopic ultrasound elastography and strain ratio in the diagnosis of solid pancreatic lesions

    PubMed Central

    Okasha, Hussein; Elkholy, Shaimaa; El-Sayed, Ramy; Wifi, Mohamed-Naguib; El-Nady, Mohamed; El-Nabawi, Walid; El-Dayem, Waleed A; Radwan, Mohamed I; Farag, Ali; El-sherif, Yahya; Al-Gemeie, Emad; Salman, Ahmed; El-Sherbiny, Mohamed; El-Mazny, Ahmed; Mahdy, Reem E

    2017-01-01

    AIM To evaluate the accuracy of the elastography score combined to the strain ratio in the diagnosis of solid pancreatic lesions (SPL). METHODS A total of 172 patients with SPL identified by endoscopic ultrasound were enrolled in the study to evaluate the efficacy of elastography and strain ratio in differentiating malignant from benign lesions. The semi quantitative score of elastography was represented by the strain ratio method. Two areas were selected, area (A) representing the region of interest and area (B) representing the normal area. Area (B) was then divided by area (A). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated by comparing diagnoses made by elastography, strain ratio and final diagnoses. RESULTS SPL were shown to be benign in 49 patients and malignant in 123 patients. Elastography alone had a sensitivity of 99%, a specificity of 63%, and an accuracy of 88%, a PPV of 87% and an NPV of 96%. The best cut-off level of strain ratio to obtain the maximal area under the curve was 7.8 with a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and an accuracy of 88%. Another estimated cut off strain ratio level of 3.8 had a higher sensitivity of 99% and NPV of 96%, but with less specificity, PPV and accuracy 53%, 84% and 86%, respectively. Adding both elastography to strain ratio resulted in a sensitivity of 98%, specificity of 77%, PPV of 91%, NPV of 95% and accuracy of 92% for the diagnosis of SPL. CONCLUSION Combining elastography to strain ratio increases the accuracy of the differentiation of benign from malignant SPL. PMID:28932088

  11. Real time endoscopic ultrasound elastography and strain ratio in the diagnosis of solid pancreatic lesions.

    PubMed

    Okasha, Hussein; Elkholy, Shaimaa; El-Sayed, Ramy; Wifi, Mohamed-Naguib; El-Nady, Mohamed; El-Nabawi, Walid; El-Dayem, Waleed A; Radwan, Mohamed I; Farag, Ali; El-Sherif, Yahya; Al-Gemeie, Emad; Salman, Ahmed; El-Sherbiny, Mohamed; El-Mazny, Ahmed; Mahdy, Reem E

    2017-08-28

    To evaluate the accuracy of the elastography score combined to the strain ratio in the diagnosis of solid pancreatic lesions (SPL). A total of 172 patients with SPL identified by endoscopic ultrasound were enrolled in the study to evaluate the efficacy of elastography and strain ratio in differentiating malignant from benign lesions. The semi quantitative score of elastography was represented by the strain ratio method. Two areas were selected, area (A) representing the region of interest and area (B) representing the normal area. Area (B) was then divided by area (A). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated by comparing diagnoses made by elastography, strain ratio and final diagnoses. SPL were shown to be benign in 49 patients and malignant in 123 patients. Elastography alone had a sensitivity of 99%, a specificity of 63%, and an accuracy of 88%, a PPV of 87% and an NPV of 96%. The best cut-off level of strain ratio to obtain the maximal area under the curve was 7.8 with a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and an accuracy of 88%. Another estimated cut off strain ratio level of 3.8 had a higher sensitivity of 99% and NPV of 96%, but with less specificity, PPV and accuracy 53%, 84% and 86%, respectively. Adding both elastography to strain ratio resulted in a sensitivity of 98%, specificity of 77%, PPV of 91%, NPV of 95% and accuracy of 92% for the diagnosis of SPL. Combining elastography to strain ratio increases the accuracy of the differentiation of benign from malignant SPL.

  12. Application of high-resolution ultrasound, real-time elastography, and contrast-enhanced ultrasound in differentiating solid thyroid nodules

    PubMed Central

    Zhang, Yu-Zhi; Xu, Ting; Gong, Hai-Yan; Li, Cui-Ying; Ye, Xin-Hua; Lin, Hong-Jun; Shen, Mei-Ping; Duan, Yu; Yang, Tao; Wu, Xiao-Hong

    2016-01-01

    Abstract High-resolution ultrasound (HRUS) is a sensitive tool for identifying thyroid nodules. Real-time elastography (RTE) and contrast-enhanced ultrasound (CEUS) are newly developed methods which could measure tissue elasticity and perfusion features. The aim of the present study was to evaluate and compare the diagnostic efficiency of HRUS, RTE, CEUS and their combined use in the differentiation of benign and malignant solid thyroid nodules. In total, 111 consecutive patients with 145 thyroid nodules who were scheduled for surgery were included in the study. All of them underwent HRUS, RTE, and CEUS examination. The independent ultrasound (US) predictors for malignancy were determined and quantified using logistic regression analysis, based on which a risk-scoring model was established for each method. The diagnostic efficiency of each method was assessed by receiver operating characteristic (ROC) curve analysis. HRUS showed the best diagnostic efficiency among the 3 US methods, with 74.6% sensitivity and 87.8% specificity. CEUS had higher sensitivity (85.7%), whereas RTE alone did not show much advantage. Combined use of RTE and HRUS increased the sensitivity (92.1%). The HRUS-RTE-CEUS combination could increase both the sensitivity and specificity (87.3%, 91.5%), with the best AUC (0.935) among all the methods. The overall diagnostic value of HRUS in predicting malignancy is the best among the 3 US methods. Combined use of RTE and CEUS and HRUS could improve the diagnostic efficiency for solid thyroid nodules. PMID:27828854

  13. Real-time 1-D/2-D transient elastography on a standard ultrasound scanner using mechanically induced vibration.

    PubMed

    Azar, Reza Zahiri; Dickie, Kris; Pelissier, Laurent

    2012-10-01

    Transient elastography has been well established in the literature as a means of assessing the elasticity of soft tissue. In this technique, tissue elasticity is estimated from the study of the propagation of the transient shear waves induced by an external or internal source of vibration. Previous studies have focused mainly on custom single-element transducers and ultrafast scanners which are not available in a typical clinical setup. In this work, we report the design and implementation of a transient elastography system on a standard ultrasound scanner that enables quantitative assessment of tissue elasticity in real-time. Two new custom imaging modes are introduced that enable the system to image the axial component of the transient shear wave, in response to an externally induced vibration, in both 1-D and 2-D. Elasticity reconstruction algorithms that estimate the tissue elasticity from these transient waves are also presented. Simulation results are provided to show the advantages and limitations of the proposed system. The performance of the system is also validated experimentally using a commercial elasticity phantom.

  14. An evaluation of ocular elasticity using real-time ultrasound elastography in primary open-angle glaucoma.

    PubMed

    Agladioglu, Kadir; Pekel, Gökhan; Altintas Kasikci, Seher; Yagci, Ramazan; Kiroglu, Yilmaz

    2016-01-01

    The aim of this study was to compare sonoelastographic findings in the retina-choroid-sclera (RCS) complex and vitreous in glaucomatous and healthy eyes. For this cross-sectional comparative study, 20 patients with primary open-angle glaucoma and 20 healthy volunteers were recruited. Ultrasound elastography measurements were taken with a sonographic scanner of the RCS complex, anterior vitreous (AV), posterior vitreous (PV), retrobulbar fat tissue (RFT), optic disc (OD) and optic nerve (ON) in each eye. The elasticity index of the RCS complex, RFT, OD, ON, AV and PV was similar in both groups (p  >  0.05), although the AV/PV strain ratio in the group of patients with glaucoma was significantly higher (p  =  0.04). Glaucoma increases the AV/PV strain ratio. In providing reproducible and consistent values, the real-time elastography (RTE) technique may be helpful in elucidating the mechanisms of glaucoma in some aspects. This study can help to evaluate the elasticity of the RCS complex and vitreous in glaucomatous eyes with RTE.

  15. Noninvasive assessment of the activity of the shoulder girdle muscles using ultrasound real-time tissue elastography.

    PubMed

    Ishikawa, Hiroaki; Muraki, Takayuki; Sekiguchi, Yusuke; Ishijima, Takahiro; Morise, Shuhei; Yamamoto, Nobuyuki; Itoi, Eiji; Izumi, Shin-Ichi

    2015-10-01

    The purpose of this study was to clarify whether the activity of the shoulder girdle muscles could be estimated by measuring the elasticity of these muscles under several levels of muscle contraction through ultrasound real-time tissue elastography (RTE). Ten healthy men performed submaximal voluntary contractions (MVC) in each manual muscle testing position for the middle deltoid, upper trapezius, supraspinatus, levator scapulae, and rhomboid major. The elasticity of these muscles was measured using ultrasound RTE during the task. The strain ratio of the muscle to an acoustic coupler was calculated as an assessment index of the muscle elasticity. Higher strain ratio values imply lower elasticity. In addition, the electromyographic activity was recorded from surface electrodes attached only to the middle deltoid and upper trapezius. The strain ratios were negatively correlated with the normalized root mean square values for the middle deltoid (r=-0.659, p<0.001) and upper trapezius (r=-0.554, p<0.001). The strain ratios of all the muscles decreased with an increase from 10% MVC force to 30% MVC force. Ultrasound RTE may be useful for noninvasively assessing the activity of the shoulder girdle muscles at certain shoulder positions with low levels of muscle contraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: a feasibility study.

    PubMed

    Yanagisawa, O; Niitsu, M; Kurihara, T; Fukubayashi, T

    2011-09-01

    To assess the feasibility of ultrasound real-time tissue elastography (RTE) for measuring exercise-induced changes in muscle hardness and to compare the findings of RTE with those of a tissue hardness meter for semi-quantitative assessment of the hardness of exercised muscles. Nine male participants performed an arm-curl exercise. RTE measurements were performed by manually applying repetitive compression with the transducer on the scan position before exercise, immediately after exercise, and at 30 min after exercise; strain ratios between muscle and a reference material (hydrogel) were calculated (muscle strain/material strain). A tissue hardness meter was also used to evaluate muscle hardness. The intraclass correlation coefficients (ICCs) for the three repeated measurements at each measurement time were calculated to evaluate the intra-observer reproducibility of each technique. Immediately after exercise, the strain ratio and the value obtained using the tissue hardness meter significantly decreased (from 1.65 to 1.35) and increased (from 51.8 to 54.3), respectively. Both parameters returned to their pre-exercise value 30 min after exercise. The ICCs of the RTE (and the ICCs of the muscle hardness meter) were 0.971 (0.816) before exercise, 0.939 (0.776) immediately after exercise, and 0.959 (0.882) at 30 min after exercise. Similar to the muscle hardness meter, RTE revealed the exercise-induced changes of muscle hardness semi-quantitatively. The intra-observer reproducibility of RTE was very high at each measurement time. These findings suggest that RTE is a clinically useful technique for assessing hardness of specific exercised muscles. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. Real-time elastography for the detection of prostate cancer.

    PubMed

    Salomon, Georg; Schiffmann, Jonas

    2014-03-01

    The lack of reliable imaging tools in detecting prostate cancer makes a random biopsy still the standard of care to detect prostate cancer. To reduce the number of cores during a biopsy and therefore the risk of biopsy-related complications, an imaging tool which provides reliable guided biopsies is required. Transrectal real-time elastography has shown to have the ability to visualize prostate cancer foci to some extent. In addition to the conventional B-mode image of transrectal ultrasound, it adds information about the stiffness of the prostate tissue. This review highlights the most important studies on elastography to follow the improvements in techniques and to outline the ability to detect prostate cancer and guide biopsies.

  18. A pilot study evaluating real-time shear wave ultrasound elastography of miscellaneous non-nodal neck masses in a routine head and neck ultrasound clinic.

    PubMed

    Bhatia, Kunwar S S; Yuen, Edmund H Y; Cho, Carmen C M; Tong, Cina S L; Lee, Yolanda Y P; Ahuja, Anil T

    2012-06-01

    A pilot study was performed to evaluate shear wave ultrasound elastography (SWE) for miscellaneous non-nodal/salivary/thyroid neck lesions. Forty-six lesions undergoing conventional sonography also underwent SWE. Elastic moduli from the stiffest areas in lesions were correlated with diagnosis. Forty lesions were benign (9 lipomas, 8 lymphatic/venous vascular malformations, 7 thyroglossal duct cysts, 4 branchial cleft cysts, 4 abscesses/phlegmons, 3 neurogenic tumors and 1 each of paraganglioma, sebaceous cyst, pseudotumor, hypertrophic scar, ranula) and 6 were malignant (1 malignant fibrous histiocytoma, 2 primary squamous cell carcinomas and 3 intramuscular metastases [2 squamous cell carcinomas, 1 malignant melanoma]).Median stiffness of malignant lesions (226.4 kPa, range 55.6 to 300.0) was higher than benign lesions (28.3 kPa, range 4.0 to 300.0) (p < 0.001). SWE cut-off with highest accuracy (174.4 kPa) achieved 83.3% sensitivity and 97.5% specificity, and the cut-off with 100% sensitivity (55.6 kPa) achieved 75% specificity. All malignant lesions were suspected on conventional sonography. The preliminary data indicate that SWE is feasible for miscellaneous neck lesions. SWE would not have altered management in terms of detecting undisclosed malignancies, although as a quantitative technique, it may increase the diagnostic confidence of less experienced operators performing head and neck ultrasound. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Mechanics of ultrasound elastography

    PubMed Central

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  20. A class of kernel based real-time elastography algorithms.

    PubMed

    Kibria, Md Golam; Hasan, Md Kamrul

    2015-08-01

    In this paper, a novel real-time kernel-based and gradient-based Phase Root Seeking (PRS) algorithm for ultrasound elastography is proposed. The signal-to-noise ratio of the strain image resulting from this method is improved by minimizing the cross-correlation discrepancy between the pre- and post-compression radio frequency signals with an adaptive temporal stretching method and employing built-in smoothing through an exponentially weighted neighborhood kernel in the displacement calculation. Unlike conventional PRS algorithms, displacement due to tissue compression is estimated from the root of the weighted average of the zero-lag cross-correlation phases of the pair of corresponding analytic pre- and post-compression windows in the neighborhood kernel. In addition to the proposed one, the other time- and frequency-domain elastography algorithms (Ara et al., 2013; Hussain et al., 2012; Hasan et al., 2012) proposed by our group are also implemented in real-time using Java where the computations are serially executed or parallely executed in multiple processors with efficient memory management. Simulation results using finite element modeling simulation phantom show that the proposed method significantly improves the strain image quality in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and mean structural similarity (MSSIM) for strains as high as 4% as compared to other reported techniques in the literature. Strain images obtained for the experimental phantom as well as in vivo breast data of malignant or benign masses also show the efficacy of our proposed method over the other reported techniques in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. [Real-time elastography in the diagnosis of prostate cancer: personal experience].

    PubMed

    Romagnoli, Andrea; Autieri, Gaspare; Centrella, Danilo; Gastaldi, Christian; Pedaci, Giuseppe; Rivolta, Lorenzo; Pozzi, Emilio; Anghileri, Alessio; Cerabino, Maurizio; Bianchi, Carlo Maria; Roggia, Alberto

    2010-01-01

    Prostate cancer is the most common cancer in men. In the future, a significant further increase in the incidence of prostate cancer is expected. The indication to perform a prostate biopsy is digital rectal examination suspicious for prostate cancer, total prostate specific antigen (PSA) value, free PSA/total PSA ratio, PSA density and PSA velocity, and an evidence of hypoechoic area at transrectal ultrasound scan. Unfortunately the specificity and sensibility are still poor. The aim of this retrospective study is to evaluate the specificity and sensibility of real time elastography versus ultrasound transrectal B-mode scan. We retrospectively evaluated 108 pts. having undergone TRUS-guided transrectal prostate biopsy (10 samples). The indication for biopsy is: digital rectal examination, total prostate specific antigen (PSA) value, PSA ratio, PSA density and PSA velocity suspicious for prostate cancer, and/or an evidence of hypoechoic area at transrectal ultrasound scan, and/or hard area at real-time elastography. The mean age of patients is 66.8 years, mean PSA 6.5 ng/mL, and mean ratio 16.5%. We compared the histopathological findings of needle prostate biopsies with the results of transrectal ultrasound and transrectal real-time elastography. 32/108 (29.6%) pts. were positive for prostate cancer (mean Gleason score 7.08), mean PSA 14 ng/mL and mean ratio 9.5%. Transrectal ultrasound scan shows a sensibility of 69% and specificity of 68%. Transrectal ultrasound scan shows a VPP of 51.4%. Transrectal ultrasound scan shows a VPN of 80.9%. Real-time elastography shows a sensibility of 56% and specificity of 85.7%. Real-time elastography shows a VPP of 60.1%. Real-time elastography shows a VPN of 83%. Elastography has a significantly higher specificity for the detection of prostate cancer than the conventionally used examinations including DRE and TRUS. It is a useful real-time diagnostic method because it is not invasive, and simultaneous evaluation is possible

  2. Intravascular ultrasound elastography.

    PubMed

    van der Steen, A F; de Korte, C L; Céspedes, E I

    1998-10-01

    Intravascular Ultrasound Blastography. The response of a tissue to mechanical excitation is a function of its mechanical properties. Excitation can be dynamic or quasistatic in nature. The response (e.g. displacement, velocity, compression) can be measured via ultrasound. This is the main principle underlying ultrasound elasticity imaging, sonoelasticity imaging, or ultrasound elastography. It is of great interest to know the local hardness of vessel wall and plaques. Intravascular elastography yields information unavailable or inconclusive if obtained from IVUS alone and thus contributes to more correct diagnosis. Potentially it can be used for therapy guidance. During the last decade several working groups used elastography in intravascular applications with varying success. In this paper we discuss the various approaches by different working groups. Focus will be on the approach of the Rotterdam group. Using a 30 MHz IVUS catheter, RF data are acquired from vessels in vitro at different intraluminal pressures. Local tissue displacement estimation by cross-correlation is followed by computation of the local strain. The resulting image supplies local information on the elastic properties of the vessel and plaque with high spatial resolution. Feasibility and usefulness are shown by means of phantom measurements. Furthermore, initial in vitro results of femoral arteries and correlation with histology are discussed. Phantom data show that the elastograms reveal information not presented by the echogram. In vitro artery data prove that in principle elastography is capable of identifying plaque composition where echography fails.

  3. Ultrasound elastography for musculoskeletal applications

    PubMed Central

    Drakonaki, E E; Allen, G M; Wilson, D J

    2012-01-01

    Ultrasound elastography (EUS) is a method to assess the mechanical properties of tissue, by applying stress and detecting tissue displacement using ultrasound. There are several EUS techniques used in clinical practice; strain (compression) EUS is the most common technique that allows real-time visualisation of the elastographic map on the screen. There is increasing evidence that EUS can be used to measure the mechanical properties of musculoskeletal tissue in clinical practice, with the future potential for early diagnosis to both guide and monitor therapy. This review describes the various EUS techniques available for clinical use, presents the published evidence on musculoskeletal applications of EUS and discusses the technical issues, limitations and future perspectives of this method in the assessment of the musculoskeletal system. PMID:23091287

  4. Introduction to ultrasound elastography

    PubMed Central

    Dobruch-Sobczak, Katarzyna

    2016-01-01

    For centuries tissue palpation has been an important diagnostic tool. During palpation, tumors are felt as tissues harder than the surrounding tissues. The significance of palpation is related to the relationship between mechanical properties of different tissue lesions. The assessment of tissue stiffness through palpation is based on the fact that mechanical properties of tissues are changing as a result of various diseases. A higher tissue stiffness translates into a higher elasticity modulus. In the 90's, ultrasonography was extended by the option of examining the stiffness of tissue by estimating the difference in backscattering of ultrasound in compressed and non-compressed tissue. This modality is referred to as the static, compression elastography and is based on tracking the deformation of tissue subjected to the slowly varying compression through the recording of the backscattered echoes. The displacement is estimated using the methods of cross-correlation between consecutive ultrasonic lines of examined tissue, so calculating the degree of similarity of ultrasonic echoes acquired from tissue before and after the compression was applied. The next step in the development of ultrasound palpation was to apply the local remote tissue compression by using the acoustic radiation force generated through the special beam forming of the ultrasonic beam probing the tissue. The acoustic radiation force causes a slight deformation the tissue thereby forming a shear wave propagating in the tissue at different speeds dependent on the stiffness of the tissue. Shear wave elastography, carries great hopes in the field of quantitative imaging of tissue lesions. This article describes the physical basis of both elastographic methods: compression elastography and shear wave elastography. PMID:27446596

  5. New real-time strain imaging concepts using diagnostic ultrasound.

    PubMed

    Pesavento, A; Lorenz, A; Siebers, S; Ermert, H

    2000-06-01

    Two real-time strain imaging concepts and systems are presented. Both systems are based on a conventional ultrasound scanner that is connected to a PC with an A/D converter card for real-time data acquisition of rf data. Differential strain between successively acquired rf frames are estimated using phase root seeking. The first concept uses a special real-time implementation of manual elastography. In the second concept, denoted 'vibrography', the static compression is replaced by low-frequency axial vibration of the probe, still operating in quasistatic acquisition mode. The properties of both concepts are discussed with regard to noise and motion artefacts, and it is shown, using simulations and phantom experiments, that both imaging concepts yield the same kind of strain images. Vibrography has the advantage that no manual compression has to be applied, total compression can be very low and some motion artefacts are better suppressed.

  6. New real-time strain imaging concepts using diagnostic ultrasound

    NASA Astrophysics Data System (ADS)

    Pesavento, A.; Lorenz, A.; Siebers, S.; Ermert, H.

    2000-06-01

    Two real-time strain imaging concepts and systems are presented. Both systems are based on a conventional ultrasound scanner that is connected to a PC with an A/D converter card for real-time data acquisition of rf data. Differential strain between successively acquired rf frames are estimated using phase root seeking. The first concept uses a special real-time implementation of manual elastography. In the second concept, denoted `vibrography', the static compression is replaced by low-frequency axial vibration of the probe, still operating in quasistatic acquisition mode. The properties of both concepts are discussed with regard to noise and motion artefacts, and it is shown, using simulations and phantom experiments, that both imaging concepts yield the same kind of strain images. Vibrography has the advantage that no manual compression has to be applied, total compression can be very low and some motion artefacts are better suppressed.

  7. Compression Real-time Elastography for Evaluation of Salivary Gland Lesions: A Meta-analysis.

    PubMed

    Li, Changtian; Zhang, Changsheng; Li, Nan; Li, Junlai

    2016-05-01

    To evaluate the performance of compression real-time elastography for differentiation between benign and malignant salivary gland lesions. A systematic literature database search was conducted. Pooled sensitivity, specificity, positive likelihood ratio (LR+), and negative likelihood ratio (LR-) values for real-time elastography were analyzed. Summary receiver operating characteristic (ROC) curves were also constructed. Heterogeneity was evaluated by χ(2) and I(2) tests. I(2) > 50% or P < .05 indicated heterogeneity, and then a random-effects model was applied. A Deek funnel plot was used to assess publication bias. Fagan plot analysis was performed to evaluate the clinical utility of real-time elastography. When heterogeneity was found, subgroup analyses were used to explore the sources of heterogeneity. A sensitivity analysis was conducted by omitting 1 study at a time and examining the influence of each individual study on the overall results. Nine articles with 581 lesions were included. The pooled sensitivity and specificity of real-time elastography for differentiation between benign and malignant lesions were 76% (95% confidence interval [CI], 65%-85%; 95% prediction interval [PI], 29%-95%) and 73% (95% CI, 62%-81%; 95% PI, 24%-96%), respectively. The LR+ and LR- were 2.81 (95% CI, 1.79-4.39; 95% PI, 0.65-12.16) and 0.33 (95% CI, 0.20-0.55; 95% PI, 0.07-1.69). The area under the ROC curve was 0.81 (95% CI, 0.77-0.84). No publication bias was detected, according to the Deek funnel plot (P = .51). The Fagan plot showed that when pretest probabilities were 25%, 50%, and 75%, positive posttest probabilities were 48%, 74%, and 89%, and negative probabilities were 10%, 25%, and 50%. Real-time elastography is a novel supplementary adjunct to conventional sonography for evaluation of salivary gland lesions. However, its overall accuracy is less promising, and biopsy may still be necessary in routine clinical practice. © 2016 by the American Institute of Ultrasound

  8. JSUM ultrasound elastography practice guidelines: pancreas.

    PubMed

    Hirooka, Yoshiki; Kuwahara, Takamichi; Irisawa, Atsushi; Itokawa, Fumihide; Uchida, Hiroki; Sasahira, Naoki; Kawada, Natsuko; Itoh, Yuya; Shiina, Tsuyoshi

    2015-04-01

    Ultrasound elastography is a relatively new diagnostic technique for measuring the elasticity (hardness) of tissue. Eleven years have passed since the debut of elastography. Various elastography devices are currently being marketed by manufacturers under different names. Pancreatic elastography can be used not only with transabdominal ultrasonography but also with endoscopic ultrasonography, but some types of elastography are difficult to perform for the pancreas. These guidelines aim to classify the various types of elastography into two major categories depending on the differences in the physical quantity (strain, shear wave), and to present the evidence for pancreatic elastography and how to use pancreatic elastography in the present day. But the number of reports on ultrasound elastography for the pancreas is still small, and there are no reports on some elastography devices for the pancreas. Therefore, these guidelines do not recommend methods of imaging and analysis by elastography device.

  9. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.

  10. Real-time elastography for detecting prostate cancer: preliminary experience.

    PubMed

    Pallwein, Leo; Mitterberger, Michael; Struve, Peter; Pinggera, Germar; Horninger, Wolfgang; Bartsch, Georg; Aigner, Friedrich; Lorenz, Andreas; Pedross, Florian; Frauscher, Ferdinand

    2007-07-01

    To assess the use of real-time elastography (RTE) for detecting prostate cancer in patients scheduled for radical prostatectomy (RP), as most solid tumours differ in their consistency from the deriving tissue, and RTE might offer a new tool for cancer detection. We examined 15 patients (mean age 56 years, sd 6.2, range 46-71) with RTE, using an ultrasonography (US) system with a 7.5-MHz transrectal probe as a transducer. RTE is capable of visualizing displacements between pairs of US images of tissues when placed under axial compression. The stiffness of the lesion was displayed from blue (soft) to black (hard). Hard lesions with a diameter of > or = 5 mm were considered as malignant. All patients had the diagnosis of prostate cancer confirmed by biopsy and had a mean (range) prostate specific antigen (PSA) level of 4.6 (1.4-16.1) ng/mL; all were scheduled for RP. US was performed by two investigators and interpreted by consensus. Cancer location and size was determined in the RTE mode only. One pathologist classified tumour location, grade and stage. The RTE findings were compared with the pathological findings. There were no major complications during RP in any patient; all had a pT2 tumour on histopathological examination, the Gleason score was 5-9 and the mean (range) tumour size 1.1 (0.6-2.5) cm. Thirty-five foci of prostate cancer were present at the pathological evaluation; multiple foci were found in 11 of the 15 glands. RTE detected 28 of 35 cancer foci (sensitivity 80%). The per-patient analysis showed that RTE detected at least one cancer area in each of the 15 patients. Only four sites with false-positive findings on RTE and no histopathological correlation were detected; these findings were obtained in the first five patients (period of learning). RTE can be used to visualize differences in tissue elasticity. Our results show that RTE allows the detection of prostate cancer and estimation of tumour location and size. RTE of the prostate is a new

  11. Development of a model based on biochemical, real-time tissue elastography and ultrasound data for the staging of liver fibrosis and cirrhosis in patients with chronic hepatitis B

    PubMed Central

    Xu, Shi-Hao; Li, Qiao; Hu, Yuan-Ping; Ying, Li

    2016-01-01

    The liver fibrosis index (LFI), based on real-time tissue elastography (RTE), is a method currently used to assess liver fibrosis. However, this method may not consistently distinguish between the different stages of fibrosis, which limits its accuracy. The aim of the present study was to develop novel models based on biochemical, RTE and ultrasound data for predicting significant liver fibrosis and cirrhosis. A total of 85 consecutive patients with chronic hepatitis B (CHB) were prospectively enrolled and underwent a liver biopsy and RTE. The parameters for predicting significant fibrosis and cirrhosis were determined by conducting multivariate analyses. The splenoportal index (SPI; P=0.002) and LFI (P=0.023) were confirmed as independent predictors of significant fibrosis. Using multivariate analyses for identifying parameters that predict cirrhosis, significant differences in γ-glutamyl transferase (GGT; P=0.049), SPI (P=0.002) and LFI (P=0.001) were observed. Based on these observations, the novel model LFI-SPI score (LSPS) was developed to predict the occurrence of significant liver fibrosis, with an area under receiver operating characteristic curves (AUROC) of 0.87. The diagnostic accuracy of the LSPS model was superior to that of the LFI (AUROC=0.76; P=0.0109), aspartate aminotransferase-to-platelet ratio index (APRI; AUROC=0.64; P=0.0031), fibrosis-4 index (FIB-4; AUROC= 0.67; P= 0.0044) and FibroScan (AUROC=0.68; P=0.0021) models. In addition, the LFI-SPI-GGT score (LSPGS) was developed for the purposes of predicting liver cirrhosis, demonstrating an AUROC value of 0.93. The accuracy of LSPGS was similar to that of FibroScan (AUROC=0.85; P=0.134), but was superior to LFI (AUROC= 0.81; P= 0.0113), APRI (AUROC= 0.67; P<0.0001) and FIB-4 (AUROC=0.719; P=0.0005). In conclusion, the results of the present study suggest that the use of LSPS and LSPGS may complement current methods of diagnosing significant liver fibrosis and cirrhosis in patients with CHB

  12. Clinical experience with real-time ultrasound

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Wolfman, Neil T.; Covitz, Wesley

    1995-05-01

    After testing the extended multimedia interface (EMMI) product which is an asynchronous transmission mode (ATM) user to network interface (UNI) of AT&T at the Society for Computer Applications in Radiology conference in Winston-Salem, the Department of Radiology together with AT&T are implementing a tele-ultrasound system to combine real- time ultrasound with the static imaging features of more traditional digital ultrasound systems. Our current ultrasound system archives digital images to an optical disk system. Static images are sent using our digital radiology systems. This could be transferring images from one digital imaging and communications (DICOM)-compliant machine to another, or the current image transfer methodologies. The prototype of a live ultrasound system using the EMMI demonstrated the feasibility of doing live ultrasound. We now are developing the scenarios using a mix of the two methodologies. Utilizing EMMI technology, radiologists at the BGSM review at a workstation both static images and real-time scanning done by a technologist on patients at a remote site in order to render on-line primary diagnosis. Our goal is to test the feasibility of operating an ultrasound laboratory at a remote site utilizing a trained technologist without the necessity of having a full-time radiologist at that site. Initial plans are for a radiologist to review an initial set of static images on a patient taken by the technologist. If further scanning is required, the EMMI is used to transmit real-time imaging and audio using the audio input of a standard microphone system and the National Television Standards Committee (NTSC) output of the ultrasound equipment from the remote site to the radiologist in the department review station. The EMMI digitally encodes this data and places it in an ATM format. This ATM data stream goes to the GCNS2000 and then to the other EMMI where the ATM data stream is decoded into the live studies and voice communication which are then

  13. Real-time virtual Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Khoshniat, Mahdieh; Thorne, Meghan L.; Poepping, Tamie L.; Holdsworth, David W.; Steinman, David A.

    2004-04-01

    Doppler ultrasound (DUS) is widely used to diagnose and plan treatments for vascular diseases, but the relationship between complex blood flow dynamics and the observed DUS signal is not completely understood. In this paper, we demonstrate that Doppler ultrasound can be realistically simulated in a real-time manner via the coupling of a known, previously computed velocity field with a simple model of the ultrasound physics. In the present case a 3D computational fluid dynamics (CFD) model of physiologically pulsatile flow a stenosed carotid bifurcation was interrogated using a sample volume of known geometry and power distribution. Velocity vectors at points within the sample volume were interpolated using a fast geometric search algorithm and, using the specified US probe characteristics and orientation, converted into Doppler shifts for subsequent display as a Doppler spectrogram or color DUS image. The important effect of the intrinsic spectral broadening was simulated by convolving the velocity at each point within the sample volume by a triangle function whose width was proportional to velocity. A spherical sample volume with a Gaussian power distribution was found to be adequate for producing realistic Doppler spectrogram in regions of uniform, jet, and recirculation flow. Fewer than 1000 points seeded uniformly within a radius comprising more than 99% of the total power were required, allowing spectra to be generated from high resolution CFD data at 100Hz frame rates on an inexpensive desktop workstation.

  14. Real-time elastography for the diagnosis of prostate cancer: evaluation of elastographic moving images.

    PubMed

    Miyagawa, Tomoaki; Tsutsumi, Masakazu; Matsumura, Takeshi; Kawazoe, Natsui; Ishikawa, Satoru; Shimokama, Tatsuro; Miyanaga, Naoto; Akaza, Hideyuki

    2009-06-01

    Elastography is a technique for detecting the stiffness of tissues. We applied elastography for the diagnosis of prostate cancer and evaluated the usefulness of elastography for prostate biopsy. The subjects of this study were 311 patients who underwent elastography during prostate needle biopsy at Hitachi General Hospital. Strain images obtained during compression of the prostate tissue were displayed on a monitor and recorded on the computer. The elastographic moving images (EMI) were evaluated retrospectively. The evaluable images and biopsy results were compared in terms of the feasibility and accuracy. The median patient age was 67 years (range 50-85 years), the median serum level of prostate-specific antigen was 8.4 ng/ml (range 0.3-82.5 ng/ml) and the median prostate volume was 42.6 ml (range 12-150 ml). Among the 311 patients, prostate cancer was detected in 95 patients (30%) by biopsy. The diagnostic sensitivity was 37.9% for digital rectal examination (DRE) and 59.0% for transrectal ultrasonography (TRUS), whereas it was 72.6% for elastography and 89.5% for the combination of TRUS and elastography. Elastography-positive EMIs with negative biopsies were eventually determined to be due to benign prostatic hyperplasia. Elastography has a significantly higher sensitivity for the detection of prostate cancer than the conventionally used examinations including DRE and TRUS. It is a useful real-time diagnostic method because it is not invasive, and simultaneous evaluation is possible while performing TRUS.

  15. Dynamic programming on a tree for ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Shams, Roozbeh; Boily, Mathieu; Martineau, Paul A.; Rivaz, Hassan

    2016-04-01

    Ultrasound Elastography is an emerging imaging technique that allows estimation of the mechanical characteristics of tissue. Two issues that need to be addressed before widespread use of elastography in clinical environments are real time constraints and deteriorating effects of signal decorrelation between pre- and post-compression images. Previous work has used Dynamic Programming (DP) to estimate tissue deformation. However, in case of large signal decorrelation, DP can fail. In this paper we, have proposed a novel solution to this problem by solving DP on a tree instead of a single Radio-Frequency line. Formulation of DP on a tree allows exploiting significantly more information, and as such, is more robust and accurate. Our results on phantom and in-vivo human data show that DP on tree significantly outperforms traditional DP in ultrasound elastography.

  16. Real-time elastography in the assessment of liver fibrosis: a review of qualitative and semi-quantitative methods for elastogram analysis.

    PubMed

    Paparo, Francesco; Corradi, Francesco; Cevasco, Luca; Revelli, Matteo; Marziano, Andrea; Molini, Lucio; Cenderello, Giovanni; Cassola, Giovanni; Rollandi, Gian Andrea

    2014-09-01

    Despite its invasiveness, liver biopsy is still considered the gold standard for the assessment of hepatic fibrosis. Non-invasive ultrasound-based techniques are increasingly employed to assess parenchymal stiffness and the progression of chronic diffuse liver diseases. Real-time elastography is a rapidly evolving technique that can reveal the elastic properties of tissues. This review examines qualitative and semi-quantitative methods developed for analysis of real-time liver elastograms, to estimate parenchymal stiffness and, indirectly, the stage of fibrosis. Qualitative analysis is the most immediate approach for elastogram analysis, but this method increases intra- and inter-observer variability, which is seen as a major limitation of real-time elastography. Semi-quantitative methods include analysis of the histogram derived from color-coded maps, as well as calculation of the elastic ratio and fibrosis index. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Ultrasound elastography: principles, techniques, and clinical applications.

    PubMed

    Dewall, Ryan J

    2013-01-01

    Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.

  18. Real-time elastography in the diagnosis of prostate tumor.

    PubMed

    Ferrari, F S; Scorzelli, A; Megliola, A; Drudi, F M; Trovarelli, S; Ponchietti, R

    2009-03-01

    Sommario SCOPO: Verificare il guadagno diagnostico dell'elastosonografia transrettale real-time (RTE) rispetto alla ecografia transrettale B-mode nel rilievo del tumore prostatico in una popolazione di pazienti con sospetto di neoplasia. MATERIALI E METODI: Ottantaquattro pazienti con sospetto clinico-laboratoristico di tumore prostatico sono stati valutati mediante ecografia transrettale, elastosonografia e biopsia transperineale. RISULTATI: L'esame bioptico è stato considerato lo standard di riferimento. Nella valutazione per paziente, la sensibilità dell'ecografia B-mode è stata del 56%; la specificità dell'80%; il valore predittivo positivo (VPP) del 70%, il valore predittivo negativo (VPN) del 67%. Nella valutazione sul totale dei prelievi bioptici la sensibilità è stata del 33%, la specificità del 92%, il VPP del 69%, il VPN del 73%. La RTE ha ottenuto i seguenti risultati nella valutazione per paziente: sensibilità 51%, specificità 75%, VPP 64% e VPN 64%. Nella valutazione sul totale dei prelievi bioptici: sensibilità 36%, specificità 93%, VPP 72%, VPN 74%. Confrontando i valori di accuratezza dell'ecografia B-mode e della RTE per i tumori della zona periferica, è stata trovata una differenza significativa. Nella valutazione sul totale dei prelievi bioptici della zona periferica la sensibilità dell'ecografia B-mode è stata del 48%, la specificità dell'81%, il VPP del 75%, il VPN del 58%. La RTE ha ottenuto i seguenti valori: sensibilità 66%, specificità 78%, VPP 77%, VPN 67%. CONCLUSIONI: La RTE rappresenta un valore aggiunto all'ecografia B-mode. Ha presentato un'accuratezza superiore rispetto all'esame B-mode nella valutazione della prostata periferica e nella possibilità di indirizzare i prelievi bioptici.

  19. The role of real-time elastography in the evaluation of post chemotherapy hepatotoxicity in children with cancer.

    PubMed

    Mărginean, Cristina Oana; Baghiu, Maria Despina; Branzaniuc, Klara; Chinceşan, Mihaela; Adrienne, Horvath; Buzoianu, Anca; Mărginean, C

    2011-01-01

    The drugs hepatotoxicity represents a major problem of the iatrogenic pathology, with various manifestations, directly through the hepatotoxic effect or through idiosycrasy reactions. The hepatic affection induced by chemotherapy appears in children in cases of prolonged therapy, chronic diseases, or other associated conditions. Hepatotoxicity clinically develops through hepatic disorder, cholestatic or mixed hepato-cholestatic manifestations and systematic affection. There are no specific hystological or biochemical characteristics for diagnostic of hepatotoxicity. The international criteria for asessing the hepatotoxicity includes the bilirubin, the transaminasis, GGT, FA, albumin and the flow on the vein. It has been noticed that these parameters are not enough for the right assesssment of the chemotherapics' hepatotoxicity. Thus it is required the abdominal ultrasonography and computerised tomography for the identification of billiary tract, vascularisation, associated conditions and the degree of fibrosis; also, the hepatic biopsy may be necessary. The ultrasound elastography is a method which can give information related to the elasticity/stiffness of the examined tissue and degree of fibrosis. Acustic radiation force imaging(ARFI) is an elastographic method which allows valid, accurate and flexible evaluation of liver stiffness, a quantification with a strong correlation with the fibrosis stage, not influenced by steatosis. In conclusion, the hepatic toxicity showed by alterated hepatic biochemical tests and by symptomes of hepatopathy needs a proper appreciation of the hepatic modifications, which can be obtained through hepatic biopsy or by assessing the hepatic elasticity through elastography. Thus, real-time elastography is an useful tool in assessing the chemotherapics hepatotoxicity in children with cancer.

  20. Real time ultrasound tomography of the adult brain.

    PubMed

    Smith, S W; von Ramm, O T; Kisslo, J A; Thurstone, F L

    1978-01-01

    Initial clinical results are reported from a new real time, 2-dimensional ultrasound scanner modified for adult cephalic applications. An optimized transducer design and the use of the dynamically focused phased array imaging system have resulted in ultrasound tomograms of the brain which are significant improvements over previous attempts. Horizontal and coronal images of the ventricles, the corpus callosum and other midline structures are routinely displayed in a 45 degrees sector format. In addition, pulsating cerebral arteries are displayed in real time. Quantitative information can be obtained concerning cerebral vascular patency by using the selectable M-mode feature of this system. The results indicate that real time ultrasound tomography has potential for clinical application.

  1. Real-time elastography as a noninvasive assessment of liver fibrosis in chronic hepatitis C Egyptian patients: a prospective study

    PubMed Central

    Mobarak, Lamiaa; Nabeel, Mohammed M.; Hassan, Ehsan; Omran, Dalia; Zakaria, Zeinab

    2016-01-01

    Background Hepatitis C virus is a worldwide problem. Noninvasive methods for liver fibrosis assessment as ultrasound-based approaches have emerged to replace liver biopsy. The aim of this study was to evaluate the diagnostic accuracy of real-time elastography (RTE) in the assessment of liver fibrosis in patients with chronic hepatitis C (CHC), compared with transient elastography and liver biopsy. Methods RTE, FibroScan and liver biopsy were performed in 50 CHC patients. In addition, aspartate aminotransferase to platelet ratio index (APRI) and routine laboratory values were included in the analysis. Results RTE was able to diagnose significant hepatic fibrosis (F ≥2) according to METAVIR scoring system at cut-off value of 2.49 with sensitivity 100%, specificity 66%, and area under the receiver-operating characteristics (AUROC) 0.8. FibroScan was able to predict significant fibrosis at cut-off value 7.5 KPa with sensitivity 88%, specificity 100%, and AUROC 0.94.APRI was able to predict significant hepatic fibrosis (F ≥2) with sensitivity 54%, specificity 80%, and AUROC 0.69. There was a significant positive correlation between the FibroScan score and RTE score (r=0.6, P=0.001). Conclusions Although FibroScan is superior in determining significant hepatic fibrosis, our data suggest that RTE may be a useful and promising noninvasive method for liver fibrosis assessment in CHC patients especially in cases with technical limitations for FibroScan. PMID:27366038

  2. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study.

    PubMed

    Ferraioli, Giovanna; Tinelli, Carmine; Dal Bello, Barbara; Zicchetti, Mabel; Filice, Gaetano; Filice, Carlo

    2012-12-01

    Real-time shear wave elastography (SWE) is a novel, noninvasive method to assess liver fibrosis by measuring liver stiffness. This single-center study was conducted to assess the accuracy of SWE in patients with chronic hepatitis C (CHC), in comparison with transient elastography (TE), by using liver biopsy (LB) as the reference standard. Consecutive patients with CHC scheduled for LB by referring physicians were studied. One hundred and twenty-one patients met inclusion criteria. On the same day, real-time SWE using the ultrasound (US) system, Aixplorer (SuperSonic Imagine S.A., Aix-en-Provence, France), TE using FibroScan (Echosens, Paris, France), and US-assisted LB were consecutively performed. Fibrosis was staged according to the METAVIR scoring system. Analyses of receiver operating characteristic (ROC) curve were performed to calculate optimal area under the ROC curve (AUROC) for F0-F1 versus F2-F4, F0- F2 versus F3-F4, and F0-F3 versus F4 for both real-time SWE and TE. Liver stiffness values increased in parallel with degree of liver fibrosis, both with SWE and TE. AUROCs were 0.92 (95% confidence interval [CI]: 0.85-0.96) for SWE and 0.84 (95% CI: 0.76-0.90) for TE (P = 0.002), 0.98 (95% CI: 0.94-1.00) for SWE and 0.96 (95% CI: 0.90-0.99) for TE (P = 0.14), and 0.98 (95% CI: 0.93-1.00) for SWE and 0.96 (95% CI: 0.91-0.99) for TE (P = 0.48), when comparing F0-F1 versus F2- F4, F0- F2 versus F3-F4, and F0 -F3 versus F4, respectively. The results of this study show that real-time SWE is more accurate than TE in assessing significant fibrosis (≥ F2). With respect to TE, SWE has the advantage of imaging liver stiffness in real time while guided by a B-mode image. Thus, the region of measurement can be guided with both anatomical and tissue stiffness information. Copyright © 2012 American Association for the Study of Liver Diseases.

  3. Pulmonary ultrasound elastography: a feasibility study with phantoms and ex-vivo tissue

    NASA Astrophysics Data System (ADS)

    Nguyen, Man Minh; Xie, Hua; Paluch, Kamila; Stanton, Douglas; Ramachandran, Bharat

    2013-03-01

    Elastography has become widely used for minimally invasive diagnosis in many tumors as seen with breast, liver and prostate. Among different modalities, ultrasound-based elastography stands out due to its advantages including being safe, real-time, and relatively low-cost. While lung cancer is the leading cause of cancer mortality among both men and women, the use of ultrasound elastography for lung cancer diagnosis has hardly been investigated due to the limitations of ultrasound in air. In this work, we investigate the use of static-compression based endobronchial ultrasound elastography by a 3D trans-oesophageal echocardiography (TEE) transducer for lung cancer diagnosis. A water-filled balloon was designed to 1) improve the visualization of endobronchial ultrasound and 2) to induce compression via pumping motion inside the trachea and bronchiole. In a phantom study, we have successfully generated strain images indicating the stiffness difference between the gelatin background and agar inclusion. A similar strain ratio was confirmed with Philips ultrasound strain-based elastography product. For ex-vivo porcine lung study, different tissue ablation methods including chemical injection, Radio Frequency (RF) ablation, and direct heating were implemented to achieve tumor-mimicking tissue. Stiff ablated lung tissues were obtained and detected with our proposed method. These results suggest the feasibility of pulmonary elastography to differentiate stiff tumor tissue from normal tissue.

  4. Comparison of Diagnostic Accuracy of Real-Time Elastography and Shear Wave Elastography in Differentiation Malignant From Benign Thyroid Nodules.

    PubMed

    Tian, Wuguo; Hao, Shuai; Gao, Bo; Jiang, Yan; Zhang, Shu; Guo, Lingji; Gu, Lingji; Luo, Donglin

    2015-12-01

    Thyroid nodules are relatively more prevalent in iodine-deficiency area, and the incidence increased sharply in the past decade in these areas. Workup of malignant from benign nodules in clinic was the main problem for managing thyroid nodules.An overall search for the articles about the diagnostic performance of real-time elastography (RTE) and shear wave elastography (SWE) before April 2015 in the databases of PubMed, Embase, and Google scholar. The pooled sensitivity, specificity, and summary receiver operating characteristic (SROC) curve were obtained from individual studies with a random-effects model. Subgroup and meta-regression analysis were also performed.Fifty-six studies involved in 2621 malignant nodules and 7380 benign nodules were contained in our meta-analysis. The pooled sensitivity and specificity of RTE was 83.0% and 81.2%, which is higher than SWE (sensitivity: 78.7%, specificity: 80.5%). The areas under the SROC curve of RTE and SWE were 0.885 and 0.842 respectively. RTE had higher diagnostic value for Caucasians than Asians. Stran ratio (SR) assessment had higher diagnostic performance than elasticity score (ES) system. Similarly, it had higher diagnostic value when malignant nodules were more than 50.In summary, the results revealed that RTE had higher diagnostic performance than SWE in differentiating malignant from benign nodules. However, future international multicenter studies in the region of thyroid risk need to further assess the diagnostic performance of RTE.

  5. Development of a Wireless and Near Real-Time 3D Ultrasound Strain Imaging System.

    PubMed

    Chen, Zhaohong; Chen, Yongdong; Huang, Qinghua

    2016-04-01

    Ultrasound elastography is an important medical imaging tool for characterization of lesions. In this paper, we present a wireless and near real-time 3D ultrasound strain imaging system. It uses a 3D translating device to control a commercial linear ultrasound transducer to collect pre-compression and post-compression radio-frequency (RF) echo signal frames. The RF frames are wirelessly transferred to a high-performance server via a local area network (LAN). A dynamic programming strain estimation algorithm is implemented with the compute unified device architecture (CUDA) on the graphic processing unit (GPU) in the server to calculate the strain image after receiving a pre-compression RF frame and a post-compression RF frame at the same position. Each strain image is inserted into a strain volume which can be rendered in near real-time. We take full advantage of the translating device to precisely control the probe movement and compression. The GPU-based parallel computing techniques are designed to reduce the computation time. Phantom and in vivo experimental results demonstrate that our system can generate strain volumes with good quality and display an incrementally reconstructed volume image in near real-time.

  6. Evaluation of normal and pathological Achilles tendon by real-time shear wave elastography.

    PubMed

    Petrescu, Pompiliu HoraŢiu; Izvernariu, Dragoş Andrei; Iancu, Cătălina; Dinu, Gabriel Ovidiu; Crişan, Dan; Popescu, Simona Alina; Şirli, Roxana Lucia Denisa; Nistor, Bogdan Mihai; RăuŢia, Ion Călin; Lăzureanu, Dorela CodruŢa; Dema, Sorin; Prejbeanu, Ion Radu; Sporea, Ioan

    2016-01-01

    Tendinopathy covers a range of several tendon conditions, mostly caused by overuse but at least in Achilles tendon pathology, favored by obesity, diabetes, inflammatory and autoimmune conditions. Subclinical tendon pathology is difficult to diagnose, as magnetic resonance imaging (MRI) examinations are sometimes inconclusive and not cost-effective. Elastography is an ultrasound examination method that uses mechanical impulses to produce shear waves in the tissue of interest, then measures the tissue displacement and calculates the shear wave speed or the elastic modulus of the examined tissue. We have used B-mode ultrasonography and shear wave elastography on 80 Achilles tendons from healthy volunteers with or without tendon pathology history, and correlated the data obtained with the clinical parameters of the volunteers, such as age, body mass index (BMI) and sports practice. We have shown that there is no significant correlation between the elastic modulus of the Achilles tendon and age, sports practice and body mass index with the exception of the correlation between the elastic modulus of the right Achilles tendon in men and age. Shear wave elastography has proved to be cost-effective for the evaluation of the Achilles tendon in healthy volunteers and was able to monitor the evolution of one patient with old tendon rupture treated by surgery. It can complete MRI investigation and it can replace B-mode ultrasonography particularly in monitoring the post-surgery evolution.

  7. Wireless communication of real-time ultrasound data and control

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2015-03-01

    The Internet of Things (IoT) is expected to grow to 26 billion connected devices by 2020, plus the PC, smart phone, and tablet segment that includes mobile Health (mHealth) connected devices is projected to account for another 7.3 billion units by 2020. This paper explores some of the real-time constraints on the data-flow and control of a wireless connected ultrasound machine. The paper will define an ultrasound server and the capabilities necessary for real-time use of the device. The concept of an ultrasound server wirelessly (or over any network) connected to multiple lightweight clients on devices like an iPad, iPhone, or Android-based tablet, smartphone and other network-attached displays (i.e., Google Glass) is explored. Latency in the ultrasound data stream is one of the key areas to measure and to focus on keeping as small as possible (<30ms) so that the ultrasound operator can see what is at the probe at that moment, instead of where the probe was a short period earlier. By keeping the latency less than 30ms, the operator will feel like the data he sees on the wireless connected devices is running in real-time with the operator. The second parameter is the management of bandwidth. At minimum we need to be able to see 20 frames-per- second. It is possible to achieve ultrasound in triplex mode at >20 frames-per-second on a properly configured wireless network. The ultrasound server needs to be designed to accept multiple ultrasound data clients and multiple control clients. A description of the server and some of its key features will be described.

  8. Prostate clinical study of a full inversion unconstrained ultrasound elastography technique

    NASA Astrophysics Data System (ADS)

    Mousavi, S. Reza; Sadeghi-Naini, Ali; Czarnota, Gregory J.; Samani, Abbas

    2014-03-01

    Prostate cancer detection at early stages is crucial for desirable treatment outcome. Among available imaging modalities, ultrasound (US) elastography is being developed as an effective clinical tool for prostate cancer diagnosis. Current clinical US elastography systems utilise strain imaging where tissue strain images are generated to approximate the tissue elastic modulus distribution. While strain images can be generated in real-time fashion, they lack the accuracy necessary for having desirable sensitivity and specificity. To improve strain imaging, full inversion based elastography techniques were proposed. Among these techniques, a constrained elastography technique was developed which showed promising results as long as the tumor and prostate geometry can be obtained accurately from the imaging modality used in conjunction with the elastography system. This requirement is not easy to fulfill, especially with US imaging. To address this issue, we present an unconstrained full inversion prostate elastography method in conjunction with US imaging where knowledge of tissue geometry is not necessary. One of the reasons that full inversion elastography techniques have not been routinely used in the clinic is lack of clinical validation studies. To our knowledge, no quasistatic full inversion based prostate US elastography technique has been applied in vivo before. In this work, the proposed method was applied to clinical prostate data and reconstructed elasticity images were compared to corresponding annotated histopathology images which is the first quasi-static full inversion based prostate US elastography technique applied successfully in vivo. Results demonstrated a good potential for clinical utility of the proposed method.

  9. Towards real-time registration of 4D ultrasound images.

    PubMed

    Foroughi, Pezhman; Abolmaesumi, Purang; Hashtrudi-Zaad, Keyvan

    2006-01-01

    In this paper, we demonstrate a method for fast registration of sequences of 3D liver images, which could be used for the future real-time applications. In our method, every image is elastically registered to a so called fixed ultrasound image exploiting the information from previous registration. A few feature points are automatically selected, and tracked inside the images, while the deformation of other points are extrapolated with respect to the tracked points employing a fast free-form approach. The main intended application of the proposed method is real-time tracking of tumors for radiosurgery. The algorithm is evaluated on both naturally and artificially deformed images. Experimental results show that for around 85 percent accuracy, the process of tracking is completed very close to real time.

  10. Monitoring radiofrequency ablation using real-time ultrasound Nakagami imaging combined with frequency and temporal compounding techniques.

    PubMed

    Zhou, Zhuhuang; Wu, Shuicai; Wang, Chiao-Yin; Ma, Hsiang-Yang; Lin, Chung-Chih; Tsui, Po-Hsiang

    2015-01-01

    Gas bubbles induced during the radiofrequency ablation (RFA) of tissues can affect the detection of ablation zones (necrosis zone or thermal lesion) during ultrasound elastography. To resolve this problem, our previous study proposed ultrasound Nakagami imaging for detecting thermal-induced bubble formation to evaluate ablation zones. To prepare for future applications, this study (i) created a novel algorithmic scheme based on the frequency and temporal compounding of Nakagami imaging for enhanced ablation zone visualization, (ii) integrated the proposed algorithm into a clinical scanner to develop a real-time Nakagami imaging system for monitoring RFA, and (iii) investigated the applicability of Nakagami imaging to various types of tissues. The performance of the real-time Nakagami imaging system in visualizing RFA-induced ablation zones was validated by measuring porcine liver (n = 18) and muscle tissues (n = 6). The experimental results showed that the proposed algorithm can operate on a standard clinical ultrasound scanner to monitor RFA in real time. The Nakagami imaging system effectively monitors RFA-induced ablation zones in liver tissues. However, because tissue properties differ, the system cannot visualize ablation zones in muscle fibers. In the future, real-time Nakagami imaging should be focused on the RFA of the liver and is suggested as an alternative monitoring tool when advanced elastography is unavailable or substantial bubbles exist in the ablation zone.

  11. Monitoring Radiofrequency Ablation Using Real-Time Ultrasound Nakagami Imaging Combined with Frequency and Temporal Compounding Techniques

    PubMed Central

    Zhou, Zhuhuang; Wu, Shuicai; Wang, Chiao-Yin; Ma, Hsiang-Yang; Lin, Chung-Chih; Tsui, Po-Hsiang

    2015-01-01

    Gas bubbles induced during the radiofrequency ablation (RFA) of tissues can affect the detection of ablation zones (necrosis zone or thermal lesion) during ultrasound elastography. To resolve this problem, our previous study proposed ultrasound Nakagami imaging for detecting thermal-induced bubble formation to evaluate ablation zones. To prepare for future applications, this study (i) created a novel algorithmic scheme based on the frequency and temporal compounding of Nakagami imaging for enhanced ablation zone visualization, (ii) integrated the proposed algorithm into a clinical scanner to develop a real-time Nakagami imaging system for monitoring RFA, and (iii) investigated the applicability of Nakagami imaging to various types of tissues. The performance of the real-time Nakagami imaging system in visualizing RFA-induced ablation zones was validated by measuring porcine liver (n = 18) and muscle tissues (n = 6). The experimental results showed that the proposed algorithm can operate on a standard clinical ultrasound scanner to monitor RFA in real time. The Nakagami imaging system effectively monitors RFA-induced ablation zones in liver tissues. However, because tissue properties differ, the system cannot visualize ablation zones in muscle fibers. In the future, real-time Nakagami imaging should be focused on the RFA of the liver and is suggested as an alternative monitoring tool when advanced elastography is unavailable or substantial bubbles exist in the ablation zone. PMID:25658424

  12. Dynamic multiplanar real time ultrasound guided infraclavicular subclavian vein catheterization.

    PubMed

    Zhong, Xin; Hamill, Mark; Collier, Bryan; Bradburn, Eric; Ferrara, John

    2015-06-01

    Ultrasound guided vascular access has been well-characterized as a safe and effective technique for internal jugular and femoral vein catheterization. However, there is limited experience with the use of ultrasound to access the infraclavicular subclavian vein. Multiple ultrasound techniques do exist to identify the subclavian vein, but real time access is limited by vessel identification in a single planar view. To overcome this limitation, a novel technique of ultrasound guided infraclavicular subclavian vein catheterization using a real time multiplanar approach has been developed. The initial experience with this approach is described. A single surgeon used combined oblique, transverse, and longitudinal views along with Doppler color flow images to both define the infraclavicular anatomy and to obtain subclavian vein access in 42 adult patients (20 M/22 F and 22 L/20 R) with a mean body mass index of 29.2 (range = 18.9-55.4). Chest x-ray was obtained to confirm position and to rule out pneumothorax. Subclavian vein cannulation was achieved in 100 per cent of patients; subsequent catheterization was successful in 92.9 per cent. The number of attempts required for cannulation averaged 1.3 (range = 1-5), and decreased after a five patient learning curve. No patient developed a pneumothorax, hematoma, or cannula malposition. Ultrasound guided multiplanar infraclavicular subclavian vein access appears to be a safe and effective adjunct for central line placement.

  13. Real-time 4D ultrasound mosaicing and visualization.

    PubMed

    Brattain, Laura J; Howe, Robert D

    2011-01-01

    Intra-cardiac 3D ultrasound imaging has enabled new minimally invasive procedures. Its narrow field of view, however, limits its efficacy in guiding beating heart procedures where geometrically complex and spatially extended moving anatomic structures are often involved. In this paper, we present a system that performs electrocardiograph gated 4D mosaicing and visualization of 3DUS volumes. Real-time operation is enabled by GPU implementation. The method is validated on phantom and porcine heart data.

  14. A motion estimation refinement framework for real-time tissue axial strain estimation with freehand ultrasound.

    PubMed

    Zhou, Yongjin; Zheng, Yong-Ping

    2010-09-01

    Ultrasound elastography has become a wellknown optional imaging method for the diagnosis of tissue abnormalities in various body parts. It images the elasticity of compliant tissues by estimating the local displacements and strains using pre- and post-compression RF echo signals. In this paper, taking the RF signal as image intensity and RF samples as pixels, we present a motion estimation framework to compute the axial tissue displacements and strains. This method takes advantage of both the block matching algorithm (BMA) and local optical flow techniques. For two frames of RF signals, coarse motion estimates are first computed using BMA. The motion estimates obtained are then used to warp the first frame toward the second one, thus making the warped frame more spatially correlated to the second one. Next, the Lucas-Kanade optical flow method is employed to compute the residual motion between the warped frame and the original second frame, with inherent sub-pixel precision. Finally, the displacements from the two steps are combined. The warp-and-refine procedure can be iterated if the residual motion is larger than a predefined empirical threshold. To test its feasibility, we first applied the method to simulated data. The results show that our method is robust to relatively large motions and is capable of generating accurate motion estimation with subsample spatial resolution. These methods have been deployed and are being tested on a commercialized ultrasound machine that previously did not have elastography functions. Quality real-time display of elastography along with freehand scanning has been accomplished. The proposed framework provides an alternative method for motion estimation with good performance, and it can potentially be improved using hardware to realize the BMA.

  15. Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System

    PubMed Central

    Kim, Jeesu; Park, Sara; Jung, Yuhan; Chang, Sunyeob; Park, Jinyong; Zhang, Yumiao; Lovell, Jonathan F.; Kim, Chulhong

    2016-01-01

    Photoacoustic imaging has attracted interest for its capacity to capture functional spectral information with high spatial and temporal resolution in biological tissues. Several photoacoustic imaging systems have been commercialized recently, but they are variously limited by non-clinically relevant designs, immobility, single anatomical utility (e.g., breast only), or non-programmable interfaces. Here, we present a real-time clinical photoacoustic and ultrasound imaging system which consists of an FDA-approved clinical ultrasound system integrated with a portable laser. The system is completely programmable, has an intuitive user interface, and can be adapted for different applications by switching handheld imaging probes with various transducer types. The customizable photoacoustic and ultrasound imaging system is intended to meet the diverse needs of medical researchers performing both clinical and preclinical photoacoustic studies. PMID:27731357

  16. Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System.

    PubMed

    Kim, Jeesu; Park, Sara; Jung, Yuhan; Chang, Sunyeob; Park, Jinyong; Zhang, Yumiao; Lovell, Jonathan F; Kim, Chulhong

    2016-10-12

    Photoacoustic imaging has attracted interest for its capacity to capture functional spectral information with high spatial and temporal resolution in biological tissues. Several photoacoustic imaging systems have been commercialized recently, but they are variously limited by non-clinically relevant designs, immobility, single anatomical utility (e.g., breast only), or non-programmable interfaces. Here, we present a real-time clinical photoacoustic and ultrasound imaging system which consists of an FDA-approved clinical ultrasound system integrated with a portable laser. The system is completely programmable, has an intuitive user interface, and can be adapted for different applications by switching handheld imaging probes with various transducer types. The customizable photoacoustic and ultrasound imaging system is intended to meet the diverse needs of medical researchers performing both clinical and preclinical photoacoustic studies.

  17. Endoscopic Ultrasound Elastography: Current Clinical Use in Pancreas.

    PubMed

    Mondal, Utpal; Henkes, Nichole; Patel, Sandeep; Rosenkranz, Laura

    2016-08-01

    Elastography is a newer technique for the assessment of tissue elasticity using ultrasound. Cancerous tissue is known to be stiffer (hence, less elastic) than corresponding healthy tissue, and as a result, could be identified in an elasticity-based imaging. Ultrasound elastography has been used in the breast, thyroid, and cervix to differentiate malignant from benign neoplasms and to guide or avoid unnecessary biopsies. In the liver, elastography has enabled a noninvasive and reliable estimate of fibrosis. Endoscopic ultrasound has become a robust diagnostic and therapeutic tool for the management of pancreatic diseases. The addition of elastography to endoscopic ultrasound enabled further characterization of pancreas lesions, and several European and Asian studies have reported encouraging results. The current clinical role of endoscopic ultrasound elastography in the management of pancreas disorders and related literature are reviewed.

  18. Real-time simulator for intravascular ultrasound (IVUS)

    NASA Astrophysics Data System (ADS)

    Abkai, Ciamak; Becherer, Nico; Hesser, Jürgen; Männer, Reinhard

    2007-03-01

    Intravascular Ultrasound (IVUS) plays a significant role in diagnostics of atherosclerotic diseases. Simulation of imaging techniques promises a better understanding of the physical background and segmentation strategies. Most simulation approaches describe ultrasonic backscattering using wave-equation based simplifications. More complicated real-time simulation techniques are not available so far. In this paper, we present an empirical model derived from wave-equations given by the Rayleigh integration method. According to boundary conditions and weak scatterers, a hybrid approach including the Beer-Lambert law to model attenuation is introduced. Scatterers are described by a 4D vessel-system model based on elastic tubes. Sophisticated discretization and numerical simplifications in addition to a highly optimized implementation of the model yields a real-time and realistic IVUS simulation with 20 frames/s on a 3.2 GHz Pentium 4 PC.

  19. Real Time Fast Ultrasound Imaging Technology and Possible Applications

    NASA Astrophysics Data System (ADS)

    Cruza, J. F.; Perez, M.; Moreno, J. M.; Fritsch, C.

    In this work, a novel hardware architecture for fast ultrasound imaging based on FPGA devices is proposed. A key difference over other approaches is the unlimited scalability in terms of active channels without performance losses. Acquisition and processing tasks share the same hardware, eliminating communication bottlenecks with smaller size and power losses. These features make this system suitable to implement the most demanding imaging applications, like 3D Phased Array, Total Focusing Method, Vector Doppler, Image Compounding, High Speed Part Scanning and advanced elastographic techniques. A single medium sized FPGA allows beamforming up to 200 scan lines simultaneously, which is enough to perform most of the above mentioned applications in strict real time.

  20. Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 1, Principles and Techniques

    PubMed Central

    Tang, An; Cloutier, Guy; Szeverenyi, Nikolaus M.; Sirlin, Claude B.

    2016-01-01

    Objective The purpose of this article is to provide an overview of ultrasound and magnetic resonance elastography, including a glossary of relevant terminology, a classification of elastography techniques, and a discussion of their respective strengths and limitations. Conclusion Elastography is an emerging technique for the non-invasive assessment of mechanical tissue properties. These techniques report metrics related to tissue stiffness such as shear wave speed, magnitude of the complex shear modulus, and Young’s modulus. PMID:25905647

  1. Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness

    PubMed Central

    Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan

    2014-01-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780

  2. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness.

    PubMed

    Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S; Chen, Shigao; An, Kai-Nan

    2014-11-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research.

  3. A new 5-grading score in the diagnosis of prostate cancer with real-time elastography.

    PubMed

    Xu, Guang; Feng, Lijing; Yao, Minghua; Wu, Jian; Guo, Lehang; Yao, Xudong; Zhao, Lixia; Xu, Huixiong; Wu, Rong

    2014-01-01

    To evaluate the clinical significance of transrectal real-time elastography (TRTE) in diagnosis of prostate cancer (PCA). 195 patients with an elevated PSA level were enrolled in the study. A novel 5-grading score of prostate outer gland was applied by TRTE imaging. Receiver-operating characteristic curve (ROC) analyses were performed to assess the diagnostic performance of TRTE score. TRTE scores in patients with PCA and benign condition were 3.20 ± 1.11 (range: 1-5) and 2.24 ± 1.01 (range: 1-4), respectively (P < 0.001). The best cutoff value of TRTE score was 3, and the sensitivity, specificity, accuracy in the diagnosis were 68.6% (35/51), 69.4% (100/144) and 69.2% (135/195), respectively. The accuracy of TRTE in volume ≤ 30 ml group was significantly higher than that in the volume ≥ 50 ml group and the 30-50 ml group (76.9% vs. 65.0% and 76.9% vs. 71.4%, both P < 0.001). Accuracy of TRTE score was higher for those with PSA ranged 4-10 ng/ml than those with PSA > 10 ng/ml (85.3% vs. 66.7%, P = 0.002). TRTE score, a novel semi-quantitative assessment of patients' prostate stiffness, can be served as a useful screening method for patients suspicious of PCA, especially those only having an elevated PSA level.

  4. Ultrasound elastography in tendon pathology: state of the art.

    PubMed

    Domenichini, Romain; Pialat, Jean-Baptiste; Podda, Andrea; Aubry, Sébastien

    2017-08-01

    Elastography assesses the biomechanical and structural properties of tissues by measuring their stiffness. Despite promising results, elastography has not yet earned its place in the daily practice of musculoskeletal radiologists. The purpose of this article is to present and examine the data available to date on ultrasound elastography of the tendons through a review of the literature to provide musculoskeletal radiologists with an overview that may help them better understand and use elastography routinely. The most common techniques in ultrasound elastography are described. Then, the aspects of the physiologic and pathologic tendon are presented and discussed. One must make this technique one's own to better apprehend its contribution to the musculoskeletal imaging field, while bearing in mind that further research will be required before admitting elastography as a reliable and validated tool able to optimize our daily clinical practice.

  5. Accuracy of localization of prostate lesions using manual palpation and ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Kut, Carmen; Schneider, Caitlin; Carter-Monroe, Naima; Su, Li-Ming; Boctor, Emad; Taylor, Russell

    2009-02-01

    Purpose: To compare the accuracy of detecting tumor location and size in the prostate using both manual palpation and ultrasound elastography (UE). Methods: Tumors in the prostate were simulated using both synthetic and ex vivo tissue phantoms. 25 participants were asked to provide the presence, size and depth of these simulated lesions using manual palpation and UE. Ultrasound images were captured using a laparoscopic ultrasound probe, fitted with a Gore-Tetrad transducer with frequency of 7.5 MHz and a RF capture depth of 4-5 cm. A MATLAB GUI application was employed to process the RF data for ex vivo phantoms, and to generate UE images using a cross-correlation algorithm. Ultrasonix software was used to provide real time elastography during laparoscopic palpation of the synthetic phantoms. Statistical analyses were performed based on a two-tailed, student t-test with α = 0.05. Results: UE displays both a higher accuracy and specificity in tumor detection (sensitivity = 84%, specificity = 74%). Tumor diameters and depths are better estimated using ultrasound elastography when compared with manual palpation. Conclusions: Our results indicate that UE has strong potential in assisting surgeons to intra-operatively evaluate the tumor depth and size. We have also demonstrated that ultrasound elastography can be implemented in a laparoscopic environment, in which manual palpation would not be feasible. With further work, this application can provide accurate and clinically relevant information for surgeons during prostate resection.

  6. A miniature real-time volumetric ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Nikoozadeh, Amin; Oralkan, Omer; Ergun, Arif S.; Karaman, Mustafa; Khuri-Yakub, Butrus T.

    2005-04-01

    Progress made in the development of a miniature real-time volumetric ultrasound imaging system is presented. This system is targeted for use in a 5-mm endoscopic channel and will provide real-time, 30-mm deep, volumetric images. It is being developed as a clinically useful device, to demonstrate a means of integrating the front-end electronics with the transducer array, and to demonstrate the advantages of the capacitive micromachined ultrasonic transducer (CMUT) technology for medical imaging. Presented here is the progress made towards the initial implementation of this system, which is based on a two-dimensional, 16x16 CMUT array. Each CMUT element is 250 um by 250 um and has a 5 MHz center frequency. The elements are connected to bond pads on the back side of the array with 400-um long through-wafer interconnects. The transducer array is flip-chip bonded to a custom-designed integrated circuit that comprises the front-end electronics. The result is that each transducer element is connected to a dedicated pulser and low-noise preamplifier. The pulser generates 25-V, 100-ns wide, unipolar pulses. The preamplifier has an approximate transimpedance gain of 500 kOhm and 3-dB bandwidth of 10 MHz. In the first implementation of the system, one element at a time can be selected for transmit and receive and thus synthetic aperture images can be generated. In future implementations, 16 channels will be active at a given time. These channels will connect to an FPGA-based data acquisition system for real-time image reconstruction.

  7. Real-time and interactive virtual Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Hirji, Samira; Downey, Donal B.; Holdsworth, David W.; Steinman, David A.

    2005-04-01

    This paper describes our "virtual" Doppler ultrasound (DUS) system, in which colour DUS (CDUS) images and DUS spectrograms are generated on-the-fly and displayed in real-time in response to position and orientation cues provided by a magnetically tracked handheld probe. As the presence of complex flow often confounds the interpretation of Doppler ultrasound data, this system will serve to be a fundamental tool for training sonographers and gaining insight into the relationship between ambiguous DUS images and complex blood flow dynamics. Recently, we demonstrated that DUS spectra could be realistically simulated in real-time, by coupling a semi-empirical model of the DUS physics to a 3-D computational fluid dynamics (CFD) model of a clinically relevant flow field. Our system is an evolution of this approach where a motion-tracking device is used to continuously update the origin and orientation of a slice passing through a CFD model of a stenosed carotid bifurcation. After calibrating our CFD model onto a physical representation of a human neck, virtual CDUS images from an instantaneous slice are then displayed at a rate of approximately 15 Hz by simulating, on-the-fly, an array of DUS spectra and colour coding the resulting spectral mean velocity using a traditional Doppler colour scale. Mimicking a clinical examination, the operator can freeze the CDUS image on-screen, and a spectrogram corresponding to the selected sample volume location is rendered at a higher frame rate of at least 30 Hz. All this is achieved using an inexpensive desktop workstation and commodity graphics card.

  8. Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System

    PubMed Central

    Deshmukh, Nishikant P.; Kang, Hyun Jae; Billings, Seth D.; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images. PMID:25541954

  9. Principles and clinical application of ultrasound elastography for diffuse liver disease

    PubMed Central

    2014-01-01

    Accurate assessment of the degree of liver fibrosis is important for estimating prognosis and deciding on an appropriate course of treatment for cases of chronic liver disease (CLD) with various etiologies. Because of the inherent limitations of liver biopsy, there is a great need for non-invasive and reliable tests that accurately estimate the degree of liver fibrosis. Ultrasound (US) elastography is considered a non-invasive, convenient, and precise technique to grade the degree of liver fibrosis by measuring liver stiffness. There are several commercial types of US elastography currently in use, namely, transient elastography, acoustic radiation force impulse imaging, supersonic shear-wave imaging, and real-time tissue elastography. Although the low reproducibility of measurements derived from operator-dependent performance remains a significant limitation of US elastography, this technique is nevertheless useful for diagnosing hepatic fibrosis in patients with CLD. Likewise, US elastography may also be used as a convenient surveillance method that can be performed by physicians at the patients’ bedside to enable the estimation of the prognosis of patients with fatal complications related to CLD in a non-invasive manner. PMID:25038804

  10. In vivo real-time volumetric synthetic aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Bouzari, Hamed; Rasmussen, Morten F.; Brandt, Andreas H.; Stuart, Matthias B.; Nikolov, Svetoslav; Jensen, Jørgen A.

    2015-03-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological. This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° × 90° field-of-view was achieved. data were obtained using a 3.5 MHz 32 × 32 elements 2-D phased array transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak-temporal-average intensity for parallel beam-forming (PB) are 0.83 and 377.5mW/cm2, and for SA are 0.48 and 329.5mW/cm2. A human kidney was volumetrically imaged with SA and PB techniques simultaneously. Two radiologists for evaluation of the volumetric SA were consulted by means of a questionnaire on the level of details perceivable in the beam-formed images. The comparison was against PB based on the in vivo data. The feedback from the domain experts indicates that volumetric SA images internal body structures with a better contrast resolution compared to PB at all positions in the entire imaged volume. Furthermore, the autocovariance of a homogeneous area in the in vivo SA data, had 23.5% smaller width at the half of its maximum value compared to PB.

  11. Real-time elastography in the detection of prostate cancer in patients with raised PSA level.

    PubMed

    Kapoor, Atul; Kapoor, Aprajita; Mahajan, Goldaa; Sidhu, Bholla Singh

    2011-09-01

    The study was done to evaluate the role of real-time elastosonography (ES) in the detection of prostate cancer (PCa) in 50 consecutive patients with raised PSA level and to determine whether ES can be of use to perform a targeted biopsy. Fifty consecutive patients with raised PSA levels underwent transrectal ultrasound (TRUS) and ES examination. ES images with adequate compression and a quality factor of more than 50% were analyzed for areas of increased glandular stiffness. The ES findings were correlated with the targeted and 10-core biopsy and sensitivity, specificity calculated on per patient and per core basis. ES showed a sensitivity and specificity of 91.7% and 86.8% on per patient basis, respectively, with a false positive rate of 13%. The calculated sensitivity and specificity on per core basis of ES targeted biopsy was 72.5% and 100% compared with 100% and 81% of 10-core systematic biopsy group. The study concludes that combining ES with TRUS significantly improves the sensitivity to detect carcinoma prostate in patients with raised PSA, however, ES is unable to differentiate PCa from chronic prostatitis. The use of ES for targeted biopsy also improves the specificity over a 10-core systematic biopsy. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  12. Elastography: A New Ultrasound and MRI Procedure

    SciTech Connect

    Pavan, Theo Z.; Vieira, Silvio L.; Carneiro, Antonio A. O.

    2008-08-11

    Elastography is an imaging technique whereby local tissue strains are estimated from small displacements of internal tissue structure. These displacements are generated from a weak, quasi-static or dynamic stress field. Displacement evaluation through ultrasound is based on time delay estimation between speckle patterns of echo maps acquired for different levels of tissue deformation. A classical model of deformation is applying a quasi-static compression on a sample during echoes acquisition. The elastogram map corresponds to the spatial derivation of the displacement map. By magnetic resonance, the displacement is evaluated from a map of phase acquired using a sequence gradient echo synchronized with a mechanical end sinusoidal excitation. The map of shear elastic modulus is obtained from the phase map.

  13. Elastography: A New Ultrasound and MRI Procedure

    NASA Astrophysics Data System (ADS)

    Pavan, Theo Z.; Vieira, Sílvio L.; Carneiro, Antônio. A. O.

    2008-08-01

    Elastography is an imaging technique whereby local tissue strains are estimated from small displacements of internal tissue structure. These displacements are generated from a weak, quasi-static or dynamic stress field. Displacement evaluation through ultrasound is based on time delay estimation between speckle patterns of echo maps acquired for different levels of tissue deformation. A classical model of deformation is applying a quasi-static compression on a sample during echoes acquisition. The elastogram map corresponds to the spatial derivation of the displacement map. By magnetic resonance, the displacement is evaluated from a map of phase acquired using a sequence gradient echo synchronized with a mechanical end sinusoidal excitation. The map of shear elastic modulus is obtained from the phase map.

  14. Global Time-Delay Estimation in Ultrasound Elastography.

    PubMed

    Hashemi, Hoda Sadat; Rivaz, Hassan

    2017-10-01

    A critical step in quasi-static ultrasound elastography is the estimation of time delay between two frames of radio-frequency (RF) data that are obtained while the tissue is undergoing deformation. This paper presents a novel technique for time-delay estimation (TDE) of all samples of RF data simultaneously, thereby exploiting all the information in RF data for TDE. A nonlinear cost function that incorporates similarity of RF data intensity and prior information of displacement continuity is formulated. Optimization of this function involves searching for TDE of all samples of the RF data, rendering the optimization intractable with conventional techniques given that the number of variables can be approximately one million. Therefore, the optimization problem is converted to a sparse linear system of equations, and is solved in real time using a computationally efficient optimization technique. We call our method GLobal Ultrasound Elastography (GLUE), and compare it to dynamic programming analytic minimization (DPAM) and normalized cross correlation (NCC) techniques. Our simulation results show that the contrast-to-noise ratio (CNR) values of the axial strain maps are 4.94 for NCC, 14.62 for DPAM, and 26.31 for GLUE. Our results on experimental data from tissue mimicking phantoms show that the CNR values of the axial strain maps are 1.07 for NCC, 16.01 for DPAM, and 18.21 for GLUE. Finally, our results on in vivo data show that the CNR values of the axial strain maps are 3.56 for DPAM and 13.20 for GLUE.

  15. Utility of Real-Time Shear Wave Elastography in the Assessment of Testicular Torsion

    PubMed Central

    Xiang, Feixiang; Song, Yue; Yu, Cheng; Zhang, Yanrong; Ramdhany, Sachin; Wang, Jing

    2015-01-01

    Real-time shear-wave elastography (SWE) is a newly developed method which can obtain the stiffness of tissues and organs based on tracking of shear wave propagation through a structure. Several studies have demonstrated its potential in the differentiation between diseased and normal tissue in clinical practices, however the applicability to testicular disease has not been well elucidated. We investigated the feasibility and reproducibility of SWE in the detection of testicular torsion. This prospective study comprised 15 patients with complete testicular torsion. Results obtained from SWE along with conventional gray-scale and color Doppler sonography and post-operative pathology were compared. The results revealed that (i) the size of injured testis was increased and the twisted testis parenchyma was heterogeneous. The blood flow signals in injured testis were barely visible or absent; (ii) The Young’s modulus, including Emean, Emax, Emin and SD values in the border area of torsional testis were higher than those of normal testis (Emean, 78.07±9.01kPa vs 22.0±5.10kPa; Emax,94.07±6.53kPa vs 27.87±5.78kPa; Emin, 60.73±7.84 kPa vs 18.90±4.39kPa; SD, 7.67±0.60 kPa vs 2.30±0.36 kPa, [P<0.05]); The Emax and SD values in the central area of the torsional testis were higher than the corresponding area of the normal testis (Emax, 8.23±0.30 kPa vs 3.97±0.95kPa; SD, 1.5±0.26kPa vs 0.67±0.35kPa,[P<0.05]) and Emin values was lower than those of normal testicles(0.93±0.51kPa vs 1.6±0.36kPa; [P<0.05]); (iii) The Young's modulus measurement between two physicians showed good agreement. The pathological findings were accordance with SWE measurement. SWE is a non-invasive, convenient and high reproducible method and may serve as an important alternative tool in the diagnosis and monitoring the progression of the acute scrotums, in additional to conventional Doppler sonography. PMID:26382244

  16. [Radiology Update Ultrasound Elastography – Quintessence for the Primary Care Physician].

    PubMed

    Franckenberg, Sabine; Gubler, Christoph; Frauenfelder, Thomas; Rominger, Marga

    2016-02-03

    Ultrasound elastography visualizes and measures elasticity of tissue. Depending on the methods there are four types of elastography: strain elastography (SE), transient elastography (TE), acoustic radiation force impulse imaging (ARFI) and shear wave elastography (SWE). Due to the fact that pathological changes in the tissue in most of the cases mean a lower elasticity, ultrasound elastography is able to diagnose diseases such as liver fibrosis, liver cirrhosis, to help in the diagnosis of suspicious lesions in mamma, prostate and thyroid gland. So far, ultrasound elastography is not yet able to replace other standardized diagnostic tools but can add valuable diagnostic information.

  17. Robust real-time instrument tracking in ultrasound images

    NASA Astrophysics Data System (ADS)

    Ortmaier, Tobias; Vitrani, Marie-Aude; Morel, Guillaume; Pinault, Samuel

    2005-04-01

    Minimally invasive surgery in combination with ultrasound (US) imaging imposes high demands on the surgeon's hand-eye-coordination capabilities. A possible solution to reduce these requirements is minimally invasive robotic surgery in which the instrument is guided by visual servoing towards the goal defined by the surgeon in the US image. This approach requires robust tracking of the instrument in the US image sequences which is known to be difficult due to poor image quality. This paper presents algorithms and results of first tracking experiments. Adaptive thresholding based on Otsu's method allows to cope with large intensity variations of the instrument echo. Median filtering of the binary image and subsequently applied morphological operations suppress noise and echo artefacts. A fast run length code based labelling algorithm allows for real-time labelling of the regions. A heuristic exploiting region size and region velocity helps to overcome ambiguities. The overall computation time is less than 20 ms per frame on a standard PC. The tracking algorithm requires no information about texture and shape which are known to be very unreliable in US image sequences. Experimental results for two different instrument materials (polyvinyl chloride and polyurethane) are given, showing the performance of the proposed approach. Choosing the appropriate material, trajectories are smooth and only few outliers occur.

  18. Real-Time Ellipsometry-Based Transmission Ultrasound Imaging

    SciTech Connect

    Kallman, J S; Poco, J F; Ashby, A E

    2007-02-14

    Ultrasonic imaging is a valuable tool for non-destructive evaluation and medical diagnosis. Reflection mode is exclusively used for medical imaging, and is most frequently used for nondestructive evaluation (NDE) because of the relative speed of acquisition. Reflection mode imaging is qualitative, yielding little information about material properties, and usually only about material interfaces. Transmission imaging can be used in 3D reconstructions to yield quantitative information: sound speed and attenuation. Unfortunately, traditional scanning methods of acquiring transmission data are very slow, requiring on the order of 20 minutes per image. The sensing of acoustic pressure fields as optical images can significantly speed data acquisition. An entire 2D acoustic pressure field can be acquired in under a second. The speed of data acquisition for a 2D view makes it feasible to obtain multiple views of an object. With multiple views, 3D reconstruction becomes possible. A fast, compact (no big magnets or accelerators), inexpensive, 3D imaging technology that uses no ionizing radiation could be a boon to the NDE and medical communities. 2D transmission images could be examined in real time to give the ultrasonic equivalent of a fluoroscope, or accumulated in such a way as to acquire phase and amplitude data over multiple views for 3D reconstruction (for breast cancer imaging, for example). Composite panels produced for the aircraft and automobile industries could be inspected in near real time, and inspection of attenuating materials such as ceramics and high explosives would be possible. There are currently three optical-readout imaging transmission ultrasound technologies available. One is based on frustrated total internal reflection (FTIR) [1,2], one on Fabry-Perot interferometry [3], and another on critical angle modulation [4]. Each of these techniques has its problems. The FTIR based system cannot currently be scaled to large aperture sizes, the Fabry

  19. Ultrasound elastography: efficient estimation of tissue displacement using an affine transformation model

    NASA Astrophysics Data System (ADS)

    Hashemi, Hoda Sadat; Boily, Mathieu; Martineau, Paul A.; Rivaz, Hassan

    2017-03-01

    Ultrasound elastography entails imaging mechanical properties of tissue and is therefore of significant clinical importance. In elastography, two frames of radio-frequency (RF) ultrasound data that are obtained while the tissue is undergoing deformation, and the time-delay estimate (TDE) between the two frames is used to infer mechanical properties of tissue. TDE is a critical step in elastography, and is challenging due to noise and signal decorrelation. This paper presents a novel and robust technique TDE using all samples of RF data simultaneously. We assume tissue deformation can be approximated by an affine transformation, and hence call our method ATME (Affine Transformation Model Elastography). The affine transformation model is utilized to obtain initial estimates of axial and lateral displacement fields. The affine transformation only has six degrees of freedom (DOF), and as such, can be efficiently estimated. A nonlinear cost function that incorporates similarity of RF data intensity and prior information of displacement continuity is formulated to fine-tune the initial affine deformation field. Optimization of this function involves searching for TDE of all samples of the RF data. The optimization problem is converted to a sparse linear system of equations, which can be solved in real-time. Results on simulation are presented for validation. We further collect RF data from in-vivo patellar tendon and medial collateral ligament (MCL), and show that ATME can be used to accurately track tissue displacement.

  20. Management of rotator cuff calcific tendinosis guided by ultrasound elastography.

    PubMed

    Lin, Yen-Huai; Chiou, Hong-Jen; Wang, Hsin-Kai; Lai, Yi-Chen; Chou, Yi-Hong; Chang, Cheng-Yen

    2015-10-01

    Ultrasound (US) elastography can provide information about the hardness of calcification and might help decide treatment strategy. The purpose of this study was to evaluate the hardness of the calcific area within rotator cuffs by US elastography as an aid for the selection of aspiration or fine-needle repeated puncture for the treatment of rotator cuff calcific tendinosis. This prospective study included 39 patients (32 males, 7 females; mean age, 52.9 years) who received US elastography and gray-scale ultrasonography before US-guided treatment for rotator cuff calcific tendinosis. The morphology of the calcifications was classified as arc, fragmented, nodular, and cystic types. US elastography using virtual touch imaging (acoustic radiation force impulse) technique was performed to examine the calcified region to obtain an elastogram that was graded dark, intermediate, or bright. The hardness of the calcifications were recorded, and graded as hard, sand-like, or fluid-like tactile patterns during the US-guided treatment, and the tactile patterns were compared with the results of US elastography and gray-scale ultrasonography. Though the morphologies of the calcifications were significantly related to the tactile pattern of the needle punctures (p < 0.001), gray-scale US could not accurately demonstrate the hardness of the calcifications. With the aid of elastography, the fluid-like tactile pattern could be predicted well as a nondark pattern by elastography (p < 0.001). Ultrasound elastography is a useful modality for evaluation of rotator cuff calcific tendinosis, and as an aid to guide management. If elastography shows the calcified area as a non-dark pattern, then fine-needle aspiration should be performed. Copyright © 2015. Published by Elsevier Taiwan.

  1. Ultrasound elastography assessment of the median nerve in leprosy patients.

    PubMed

    Nogueira-Barbosa, Marcello H; Lugão, Helena B; Gregio-Júnior, Everaldo; Crema, Michel D; Kobayashi, Mariana T T; Frade, Marco A C; Pavan, Theo Z; Carneiro, Antonio A O

    2017-09-01

    We sought to compare median nerve elasticity between leprosy patients (LPs) and healthy volunteers (HVs) using ultrasound elastography (UE). Two radiologists independently measured the strain ratio of the median nerve/flexor digitorum superficialis muscle (MN/FDSM) of 18 LP and 18 HV using real-time freehand UE. Statistical analysis included intra-class correlation coefficients (ICC) and Mann-Whitney test. The MN/FDSM strain ratios of the LP and HV were 2.66 ± 1.30 and 3.52 ± 0.93, respectively (P <  0.05). We observed a significantly lower MN/FDSM strain ratio in LP with reactions (types 1 and 2 cutaneous reactions associated with or without neuritis) (2.30 ± 0.91) compared with LP without reactions (3.60 ± 1.70). We found no significant differences between HV and LP without reactions. The intra- and inter-observer ICCs were 0.50 (95% confidence interval [CI], 0.11-0.72) and 0.34 (95% CI, 0.28-0.52), respectively. MN/FDSM strain ratios were significantly lower in LP with reactions. UE may be useful for nerve elasticity evaluation in leprosy. Muscle Nerve 56: 393-398, 2017. © 2016 Wiley Periodicals, Inc.

  2. Ultrasound elastography of the prostate: state of the art.

    PubMed

    Correas, J-M; Tissier, A-M; Khairoune, A; Khoury, G; Eiss, D; Hélénon, O

    2013-05-01

    Prostate cancer is the cancer exhibiting the highest incidence rate and it appears as the second cause of cancer death in men, after lung cancer. Prostate cancer is difficult to detect, and the treatment efficacy remains limited despite the increase use of biological tests (prostate-specific antigen [PSA] dosage), the development of new imaging modalities, and the use of invasive procedures such as biopsy. Ultrasound elastography is a novel imaging technique capable of mapping tissue stiffness of the prostate. It is known that prostatic cancer tissue is often harder than healthy tissue (information used by digital rectal examination [DRE]). Two elastography techniques have been developed based on different principles: first, quasi-static (or strain) technique, and second, shear wave technique. The tissue stiffness information provided by US elastography should improve the detection of prostate cancer and provide guidance for biopsy. Prostate elastography provides high sensitivity for detecting prostate cancer and shows high negative predictive values, ensuring that few cancers will be missed. US elastography should become an additional method of imaging the prostate, complementing the conventional transrectal ultrasound and MRI. This technique requires significant training (especially for quasi-static elastography) to become familiar with acquisition process, acquisition technique, characteristics and limitations, and to achieve correct diagnoses. Copyright © 2013 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  3. Prostate cancer detection with real-time elastography using a bi-plane transducer: comparison with step section radical prostatectomy pathology.

    PubMed

    Zhu, Yunkai; Chen, Yaqing; Qi, Tingyue; Jiang, Jun; Qi, Jun; Yu, Yongjiang; Yao, Xiaohong; Guan, Wenbin

    2014-04-01

    To evaluate elastography using a bi-plane transducer for localizing prostate cancer (PCa) in patients scheduled for radical prostatectomy (RP), in comparison with step section pathological analysis. Fifty-six consecutive PCa patients underwent real-time elastography examination with a bi-plane transducer before RP. Transverse elastographic images were obtained from the apex to the base by slightly compressing and releasing the prostate tissue using the probe. The diagnostic performance of elastography was evaluated in correlation with step section RP histopathology. In 56 PCa patients, gray-scale ultrasonography detected at least one lesion in 36 patients, whereas elastography detected at least one lesion in 53 patients (P = 0.001). The overall sensitivity, specificity and accuracy of elastography in depicting tumor lesions were 67.6, 89.5 and 82.7 %, respectively. The detection rate of a PCa lesion with elastography was best in the left posterior region, followed by the right posterior region. Elastography was more sensitive in detecting PCa lesions with higher Gleason scores, diameter >5 mm and extracapsular extension. The additional use of elastography with the bi-plane transducer can improve PCa detection rate by providing more information about tissue stiffness within the prostate gland.

  4. A novel fast full inversion based breast ultrasound elastography technique.

    PubMed

    Karimi, Hirad; Fenster, Aaron; Samani, Abbas

    2013-04-07

    Cancer detection and classification have been the focus of many imaging and therapeutic research studies. Elastography is a non-invasive technique to visualize suspicious soft tissue areas where tissue stiffness is used as image contrast mechanism. In this study, a breast ultrasound elastography system including software and hardware is proposed. Unlike current elastography systems that image the tissue strain and present it as an approximation to relative tissue stiffness, this system is capable of imaging the breast absolute Young's modulus in fast fashion. To improve the quality of elastography images, a novel system consisting of two load cells has been attached to the ultrasound probe. The load cells measure the breast surface forces to be used for calculating the tissue stress distribution throughout the breast. To facilitate fast imaging, this stress calculation is conducted by an accelerated finite element method. Acquired tissue displacements and surface force data are used as input to the proposed Young's modulus reconstruction technique. Numerical and tissue mimicking phantom studies were conducted for validating the proposed system. These studies indicated that fast imaging of breast tissue absolute Young's modulus using the proposed ultrasound elastography system is feasible. The tissue mimicking phantom study indicated that the system is capable of providing reliable absolute Young's modulus values for both normal tissue and tumour as the maximum Young's modulus reconstruction error was less than 6%. This demonstrates that the proposed system has a good potential to be used for clinical breast cancer assessment.

  5. A novel fast full inversion based breast ultrasound elastography technique

    NASA Astrophysics Data System (ADS)

    Karimi, Hirad; Fenster, Aaron; Samani, Abbas

    2013-04-01

    Cancer detection and classification have been the focus of many imaging and therapeutic research studies. Elastography is a non-invasive technique to visualize suspicious soft tissue areas where tissue stiffness is used as image contrast mechanism. In this study, a breast ultrasound elastography system including software and hardware is proposed. Unlike current elastography systems that image the tissue strain and present it as an approximation to relative tissue stiffness, this system is capable of imaging the breast absolute Young’s modulus in fast fashion. To improve the quality of elastography images, a novel system consisting of two load cells has been attached to the ultrasound probe. The load cells measure the breast surface forces to be used for calculating the tissue stress distribution throughout the breast. To facilitate fast imaging, this stress calculation is conducted by an accelerated finite element method. Acquired tissue displacements and surface force data are used as input to the proposed Young’s modulus reconstruction technique. Numerical and tissue mimicking phantom studies were conducted for validating the proposed system. These studies indicated that fast imaging of breast tissue absolute Young’s modulus using the proposed ultrasound elastography system is feasible. The tissue mimicking phantom study indicated that the system is capable of providing reliable absolute Young’s modulus values for both normal tissue and tumour as the maximum Young’s modulus reconstruction error was less than 6%. This demonstrates that the proposed system has a good potential to be used for clinical breast cancer assessment.

  6. Ultrasound Elastography: Review of Techniques and Clinical Applications

    PubMed Central

    Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.

    2017-01-01

    Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467

  7. Is real-time elastography helpful to differentiate acute from subacute deep venous thrombosis? A preliminary study.

    PubMed

    Aslan, Ahmet; Barutca, Hakan; Ayaz, Ercan; Aslan, Mine; Kocaaslan, Cemal; Inan, Ibrahim; Sahin, Sinan; Yıkılmaz, Ali

    2017-09-22

    To detect and characterize changes in stiffness of thrombus in patients with acute and subacute deep venous thrombosis (DVT) by using real-time elastography (RTE). Fifty-eight patients with acute or subacute DVT were prospectively evaluated by B-mode sonography (US), color Doppler US (CDUS), and RTE. Two radiologists evaluated the thrombus echogenicity, compressibility, and recanalization of the affected vein, and thrombus stiffness in consensus. The thrombi were classified into 3 groups as soft, intermediate, and hard on RTE images. The final study group consisted of 30 patients with acute DVT, among whom 10 were women (33%), and 19 patients with subacute DVT, among whom 6 were women (32%). The presence of hypoechoic thrombus, incompressible vein, and absence of recanalization on US and CDUS were significantly associated with acute DVT (P < .001 for all variables). The differences in elasticity pattern of the thrombi between acute and subacute DVT were not significant (P = .202). Venous thrombus hardens with age; however, elastography pattern on RTE, in its present form, may not be able to differentiate acute DVT from subacute DVT. © 2017 Wiley Periodicals, Inc.

  8. High-resolution imaging with a real-time synthetic aperture ultrasound system: a phantom study

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Labyed, Yassin; Simonetti, Francesco; Williamson, Michael; Rosenberg, Robert; Heintz, Philip; Sandoval, Daniel

    2011-03-01

    It is difficult for ultrasound to image small targets such as breast microcalcifications. Synthetic aperture ultrasound imaging has recently developed as a promising tool to improve the capabilities of medical ultrasound. We use two different tissueequivalent phantoms to study the imaging capabilities of a real-time synthetic aperture ultrasound system for imaging small targets. The InnerVision ultrasound system DAS009 is an investigational system for real-time synthetic aperture ultrasound imaging. We use the system to image the two phantoms, and compare the images with those obtained from clinical scanners Acuson Sequoia 512 and Siemens S2000. Our results show that synthetic aperture ultrasound imaging produces images with higher resolution and less image artifacts than Acuson Sequoia 512 and Siemens S2000. In addition, we study the effects of sound speed on synthetic aperture ultrasound imaging and demonstrate that an accurate sound speed is very important for imaging small targets.

  9. Endoscopic ultrasound elastography: Current status and future perspectives.

    PubMed

    Cui, Xin-Wu; Chang, Jian-Min; Kan, Quan-Cheng; Chiorean, Liliana; Ignee, Andre; Dietrich, Christoph F

    2015-12-21

    Elastography is a new ultrasound modality that provides images and measurements related to tissue stiffness. Endoscopic ultrasound (EUS) has played an important role in the diagnosis and management of numerous abdominal and mediastinal diseases. Elastography by means of EUS examination can assess the elasticity of tumors in the proximity of the digestive tract that are hard to reach with conventional transcutaneous ultrasound probes, such as pancreatic masses and mediastinal or abdominal lymph nodes, thus improving the diagnostic yield of the procedure. Results from previous studies have promised benefits for EUS elastography in the differential diagnosis of lymph nodes, as well as for assessing masses with pancreatic or gastrointestinal (GI) tract locations. It is important to mention that EUS elastography is not considered a modality that can replace biopsy. However, it may be a useful adjunct, improving the accuracy of EUS-fine needle aspiration biopsy (EUS-FNAB) by selecting the most suspicious area to be targeted. Even more, it may be useful for guiding further clinical management when EUS-FNAB is negative or inconclusive. In the present paper we will discuss the current knowledge of EUS elastography, including the technical aspects, along with its applications in the differential diagnosis between benign and malignant solid pancreatic masses and lymph nodes, as well as its aid in the differentiation between normal pancreatic tissues and chronic pancreatitis. Moreover, the emergent indication and future perspectives are summarized, such as the benefit of EUS elastography in EUS-guided fine needle aspiration biopsy, and its uses for characterization of lesions in liver, biliary tract, adrenal glands and GI tract.

  10. Ultrasound Elastography--Review of Techniques and Its Clinical Applications in Pediatrics--Part 2.

    PubMed

    Zaleska-Dorobisz, Urszula; Pawluś, Aleksander; Szymańska, Kinga; Łasecki, Mateusz; Ziajkiewicz, Marcin

    2015-01-01

    Sonoelastography is a novel technique that uses ultrasound waves to assess the elasticity of tissues noninvasively. It provides an ultrasound-based method to detect and display the relative stiffness of tissue. The main principle of sonoelastography is the measurement of tissue distortion in response to external compression. Changes in elasticity and tissues deformation elicited by compression are measured, processed and then shown in real time presentation with color-coded elastograms. Most of the elastography applications are well known and have been described in detail in adults, e.g. evaluation of liver fibrosis or thyroid nodules. Similarly, most of sonoelastographic studies are based on groups of adults. The purpose of this review article is to bring this technology closer to pediatric clinicians and to summarize some of its current clinical applications that are being pursued. In this part we take into consideration utility of elastography in evaluation pathologies of musculoskeletal system, lymphatic nodes, thyroid, kidneys in pediatric patients and also elastography of placenta.

  11. Real-time images of tidal recruitment using lung ultrasound.

    PubMed

    Tusman, Gerardo; Acosta, Cecilia M; Nicola, Marco; Esperatti, Mariano; Bohm, Stephan H; Suarez-Sipmann, Fernando

    2015-12-01

    Ventilator-induced lung injury is a form of mechanical damage leading to a pulmonary inflammatory response related to the use of mechanical ventilation enhanced by the presence of atelectasis. One proposed mechanism of this injury is the repetitive opening and closing of collapsed alveoli and small airways within these atelectatic areas-a phenomenon called tidal recruitment. The presence of tidal recruitment is difficult to detect, even with high-resolution images of the lungs like CT scan. The purpose of this article is to give evidence of tidal recruitment by lung ultrasound. A standard lung ultrasound inspection detected lung zones of atelectasis in mechanically ventilated patients. With a linear probe placed in the intercostal oblique position. We observed tidal recruitment within atelectasis as an improvement in aeration at the end of inspiration followed by the re-collapse at the end of expiration. This mechanism disappeared after the performance of a lung recruitment maneuver. Lung ultrasound was helpful in detecting the presence of atelectasis and tidal recruitment and in confirming their resolution after a lung recruitment maneuver.

  12. Evaluation of Liver Stiffness After Radioembolization by Real-Time ShearWave™ Elastography: Preliminary Study

    SciTech Connect

    Bas, Ahmet; Samanci, Cesur; Gulsen, Fatih Cantasdemir, Murat; Kabasakal, Levent; Kantarci, Fatih; Numan, Furuzan

    2015-08-15

    PurposeTo evaluate the effect of ShearWave™ elastography (SWE) for the assessment of liver fibrosis after radioembolization (RE) in patients with liver malignancies.Materials and MethodsWe prospectively examined the effects of SWE before and after RE in 17 adult patients, from June 2012 to September 2013. All patients underwent SWE within 1 month before and 3 months (96.3 ± 22.9 days) after RE. Measurements were taken in segments III, IV, V, and VI (lateral/medial left lobe and anterior/posterior right lobe, respectively). Liver stiffness was studied in the 39 treated segments.ResultsThe mean stiffness of liver tissue according to the pre-RE SWE measurements was not different from the post-RE SWE measurements in the segments that did not undergo RE. Conversely, segments treated with RE were significantly stiffer according to the post-RE SWE measurements (mean SWE 17.4 kPa) than according to the baseline measurements (7.0 kPa) (p < 0.001). Patients with hepatocellular carcinoma and preexisting infection with hepatitis B and C viruses had higher pre-embolization stiffness, and the post-embolization stiffness of the treated segments in these patients was higher than that in the remainder of the study population.ConclusionThese data suggest that SWE measurements of liver stiffness increase as early as the third month after RE. SWE could be used as a noninvasive complementary imaging method for preliminary assessment of liver fibrosis before and after RE.

  13. Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: a multicenter study.

    PubMed

    Giovannini, Marc; Thomas, Botelberge; Erwan, Bories; Christian, Pesenti; Fabrice, Caillol; Benjamin, Esterni; Geneviève, Monges; Paolo, Arcidiacono; Pierre, Deprez; Robert, Yeung; Walter, Schimdt; Hanz, Schrader; Carl, Szymanski; Christoph, Dietrich; Pierre, Eisendrath; Jean-Luc, Van Laethem; Jacques, Devière; Peter, Vilmann; Andrian, Saftoiu

    2009-04-07

    To evaluate the ability of endoscopic ultrasound (EUS) elastography to distinguish benign from malignant pancreatic masses and lymph nodes. A multicenter study was conducted and included 222 patients who underwent EUS examination with assessment of a pancreatic mass (n = 121) or lymph node (n = 101). The classification as benign or malignant, based on the real time elastography pattern, was compared with the classification based on the B-mode EUS images and with the final diagnosis obtained by EUS-guided fine needle aspiration (EUS-FNA) and/or by surgical pathology. An interobserver study was performed. The sensitivity and specificity of EUS elastography to differentiate benign from malignant pancreatic lesions are 92.3% and 80.0%, respectively, compared to 92.3% and 68.9%, respectively, for the conventional B-mode images. The sensitivity and specificity of EUS elastography to differentiate benign from malignant lymph nodes was 91.8% and 82.5%, respectively, compared to 78.6% and 50.0%, respectively, for the B-mode images. The kappa coefficient was 0.785 for the pancreatic masses and 0.657 for the lymph nodes. EUS elastography is superior compared to conventional B-mode imaging and appears to be able to distinguish benign from malignant pancreatic masses and lymph nodes with a high sensitivity, specificity and accuracy. It might be reserved as a second line examination to help characterise pancreatic masses after negative EUS-FNA and might increase the yield of EUS-FNA for lymph nodes.

  14. FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Dandekar, Omkar S.; Shekhar, Raj

    2005-02-01

    Three-dimensional ultrasonic imaging, especially the emerging real-time version of it, is particularly valuable in medical applications such as echocardiography, obstetrics and surgical navigation. A known problem with ultrasound images is their high level of speckle noise. Anisotropic diffusion filtering has been shown to be effective in enhancing the visual quality of 3D ultrasound images and as preprocessing prior to advanced image processing. However, due to its arithmetic complexity and the sheer size of 3D ultrasound images, it is not possible to perform online, real-time anisotropic diffusion filtering using standard software implementations. We present an FPGA-based architecture that allows performing anisotropic diffusion filtering of 3D images at acquisition rates, thus enabling the use of this filtering technique in real-time applications, such as visualization, registration and volume rendering.

  15. Feasibility study: real-time 3-D ultrasound imaging of the brain.

    PubMed

    Smith, Stephen W; Chu, Kengyeh; Idriss, Salim F; Ivancevich, Nikolas M; Light, Edward D; Wolf, Patrick D

    2004-10-01

    We tested the feasibility of real-time, 3-D ultrasound (US) imaging in the brain. The 3-D scanner uses a matrix phased-array transducer of 512 transmit channels and 256 receive channels operating at 2.5 MHz with a 15-mm diameter footprint. The real-time system scans a 65 degrees pyramid, producing up to 30 volumetric scans per second, and features up to five image planes as well as 3-D rendering, 3-D pulsed-wave and color Doppler. In a human subject, the real-time 3-D scans produced simultaneous transcranial horizontal (axial), coronal and sagittal image planes and real-time volume-rendered images of the gross anatomy of the brain. In a transcranial sheep model, we obtained real-time 3-D color flow Doppler scans and perfusion images using bolus injection of contrast agents into the internal carotid artery.

  16. Diagnostic value of real-time elastography in the assessment of hepatic fibrosis in patients with liver iron overload.

    PubMed

    Paparo, Francesco; Cevasco, Luca; Zefiro, Daniele; Biscaldi, Ennio; Bacigalupo, Lorenzo; Balocco, Manuela; Pongiglione, Marta; Banderali, Simone; Forni, Gian Luca; Rollandi, Gian Andrea

    2013-12-01

    The objective of our prospective monocentric work was to determine the diagnostic value of real-time elastography (RTE) in the assessment of liver fibrosis in patients with iron overload, using transient elastography (TE) as reference standard. Sixty-seven consecutive patients with MRI detectable iron overload (T2*<6.3 ms) were enrolled. TE and RTE were performed on the same day as MRI. Elastograms were acquired by an experienced operator and analyzed by calculating the elastic ratio between perihepatic soft tissues and liver parenchyma. An elliptical ROI of 1cm(2) (Z1) was positioned in the liver parenchyma and a smaller elliptical ROI of 2mm(2) (Z2) was positioned in a homogeneously soft (red) region of the diaphragm, which was considered as internal control to calculate the elastic ratio Z2/Z1. Seven patients were excluded because of invalid TE or RTE examinations. The remaining 60 patients were 57% males and 43% females (mean age: 42 [21-76] years), including 37 homozygous-β-thalassemics, 13 patients with β-thalassemia intermedia, 6 with primary hemochromatosis, and 4 with myelodysplastic syndrome. Increasing elastic ratios were significantly correlated with increasing TE values (r=0.645, 95% CI 0.468-0.772, P<0.0001). The mean elastic ratios for each METAVIR group were as follows: F0/1 = 1.9 ± 0.4; F2 = 2.2 ± 0.4; F3 = 2.9 ± 0.5; F4 = 3.2 ± 0.4. The diagnostic accuracy of RTE for F ≥ 2 evaluated by AUC-ROC analysis was 0.798 (95% CI 0.674-0.890). The diagnostic accuracy of RTE for F ≥ 3 was 0.909 (95% CI 0.806-0.968). At a cut-off ≥ 2.75, RTE showed a sensitivity of 70% (95% CI 45.7-88.1) and a specificity of 97.5% (95% CI 86.8-99.9). In patients with MRI-detectable liver iron-overload RTE allows to discriminate between F0/1-F2 and F3-F4 with a reasonable diagnostic accuracy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses.

    PubMed

    Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin; Janssen, Jan; Hocke, Michael; Larsen, Michael; Iglesias-Garcia, Julio; Arcidiacono, Paolo; Will, Uwe; Giovannini, Marc; Dietrich, Cristoph F; Havre, Roald; Gheorghe, Cristian; McKay, Colin; Gheonea, Dan Ionuţ; Ciurea, Tudorel

    2012-01-01

    By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural network analysis. We performed a prospective, blinded, multicentric study at of 258 patients (774 recordings from EUS elastography) who were diagnosed with chronic pancreatitis (n = 47) or pancreatic adenocarcinoma (n = 211) from 13 tertiary academic medical centers in Europe (the European EUS Elastography Multicentric Study Group). We used postprocessing software analysis to compute individual frames of elastography movies recorded by retrieving hue histogram data from a dynamic sequence of EUS elastography into a numeric matrix. The data then were analyzed in an extended neural network analysis, to automatically differentiate benign from malignant patterns. The neural computing approach had 91.14% training accuracy (95% confidence interval [CI], 89.87%-92.42%) and 84.27% testing accuracy (95% CI, 83.09%-85.44%). These results were obtained using the 10-fold cross-validation technique. The statistical analysis of the classification process showed a sensitivity of 87.59%, a specificity of 82.94%, a positive predictive value of 96.25%, and a negative predictive value of 57.22%. Moreover, the corresponding area under the receiver operating characteristic curve was 0.94 (95% CI, 0.91%-0.97%), which was significantly higher than the values obtained by simple mean hue histogram analysis, for which the area under the receiver operating characteristic was 0.85. Use of the artificial intelligence methodology via artificial neural networks supports the medical decision process, providing fast and accurate diagnoses. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Real-time monitoring of high-intensity focused ultrasound thermal therapy using the manifold learning method.

    PubMed

    Rangraz, Parisa; Behnam, Hamid; Sobhebidari, Pooya; Tavakkoli, Jahan

    2014-12-01

    High-intensity focused ultrasound (HIFU) induces thermal lesions by increasing the tissue temperature in a tight focal region. The main ultrasound imaging techniques currently used to monitor HIFU treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation and elastography-based methods. The present study was carried out on ex vivo animal tissue samples, in which backscattered radiofrequency (RF) signals were acquired in real time at time instances before, during and after HIFU treatment. The manifold learning algorithm, a non-linear dimensionality reduction method, was applied to RF signals whichconstruct B-mode images to detect the HIFU-induced changes among the image frames obtained during HIFU treatment. In this approach, the embedded non-linear information in the region of interest of sequential images is represented in a 2-D manifold with the Isomap algorithm, and each image is depicted as a point on the reconstructed manifold. Four distinct regions are chosen in the manifold corresponding to the four phases of HIFU treatment (before HIFU treatment, during HIFU treatment, immediately after HIFU treatment and 10-min after HIFU treatment). It was found that disorganization of the points is achieved by increasing the acoustic power, and if the thermal lesion has been formed, the regions of points related to pre- and post-HIFU significantly differ. Moreover, the manifold embedding was repeated on 2-D moving windows in RF data envelopes related to pre- and post-HIFU exposure data frames. It was concluded that if mean values of the points related to pre- and post-exposure frames in the reconstructed manifold are estimated, and if the Euclidean distance between these two mean values is calculated and the sliding window is moved and this procedure is repeated for the whole image, a new image based on the Euclidean distance can be formed in which the HIFU thermal lesion is detectable.

  19. Real time image-based tracking of 4D ultrasound data.

    PubMed

    Øye, Ola Kristoffer; Wein, Wolfgang; Ulvang, Dag Magne; Matre, Knut; Viola, Ivan

    2012-01-01

    We propose a methodology to perform real time image-based tracking on streaming 4D ultrasound data, using image registration to deduce the positioning of each ultrasound frame in a global coordinate system. Our method provides an alternative approach to traditional external tracking devices used for tracking probe movements. We compare the performance of our method against magnetic tracking on phantom and liver data, and show that our method is able to provide results in agreement with magnetic tracking.

  20. Elasticity-based three dimensional ultrasound real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Matinfar, Mohammad; Ahmad, Omar; Rivaz, Hassan; Choti, Michael; Taylor, Russell H.

    2009-02-01

    Volumetric ultrasound imaging has not gained wide recognition, despite the availability of real-time 3D ultrasound scanners and the anticipated potential of 3D ultrasound imaging in diagnostic and interventional radiology. Their use, however, has been hindered by the lack of real-time visualization methods that are capable of producing high quality 3D rendering of the target/surface of interest. Volume rendering is a known visualization method, which can display clear surfaces out of the acquired volumetric data, and has an increasing number of applications utilizing CT and MRI data. The key element of any volume rendering pipeline is the ability to classify the target/surface of interest by setting an appropriate opacity function. Practical and successful real-time 3D ultrasound volume rendering can be achieved in Obstetrics and Angio applications where setting these opacity functions can be done rapidly, and reliably. Unfortunately, 3D ultrasound volume rendering of soft tissues is a challenging task due to the presence of significant amount of noise and speckle. Recently, several research groups have shown the feasibility of producing 3D elasticity volume from two consecutive 3D ultrasound scans. This report describes a novel volume rendering pipeline utilizing elasticity information. The basic idea is to compute B-mode voxel opacity from the rapidly calculated strain values, which can also be mixed with conventional gradient based opacity function. We have implemented the volume renderer using GPU unit, which gives an update rate of 40 volume/sec.

  1. Technical feasibility of real-time elastography to assess the peri-oral region in patients affected by systemic sclerosis.

    PubMed

    Cannaò, Paola Maria; Vinci, Valeriano; Caviggioli, Fabio; Klinger, Marco; Orlandi, Davide; Sardanelli, Francesco; Serafini, Giovanni; Sconfienza, Luca Maria

    2014-12-01

    To evaluate the technical feasibility of real-time elastography (RTE) to assess the stiffness of the skin of the peri-oral region in patients affected by systemic sclerosis (SSc). Six female patients affected by SSc (median age = 52 years) presenting with microstomia and six healthy controls matched for age and sex underwent RTE evaluation of the peri-oral region. Two operators with different experience evaluated the stiffness of the peri-oral region placing the probe in four different positions: parasagittal left (PL), parasagittal right (PR), upper axial (UA), lower axial (LA). Color map was converted into a semi-quantitative scale in which blue = 1, green = 2 and red = 3. Thus, each subject had a variable score ranging from 4 (four positions × value = 1) and 12 (four positions × value = 3). Mann-Whitney U and k statistics were used. RTE demonstrated that the skin of the peri-oral region of patients affected by SSc was stiffer than that of controls, both overall (6;4-6 [median; 25-75th percentile] vs. 11;9-11, p < 0.001) and for each probe position (PL = 1;1-2 vs. 2;2-3, PR = 1;1-2 vs. 2;2-3, UA = 1;1-2 vs. 2;2-3; LA = 1;1-1 vs. 3;3-3, p ≤ 0.011 for all). Interobserver reproducibility was excellent both overall and for each probe position (k = 1). RTE is a feasible modality to assess peri-oral region skin stiffness with excellent interobserver reproducibility. Further studies on a larger cohort of patients including more clinical data and measures are warranted to confirm our initial results.

  2. Non-invasive assessment of liver fibrosis in a rat model: shear wave elasticity imaging versus real-time elastography.

    PubMed

    Lin, Sen-Hao; Ding, Hong; Mao, Feng; Xue, Li-Yun; Lv, Wei-Wei; Zhu, Hong-Guang; Huang, Bei-Jian; Wang, Wen-Ping

    2013-07-01

    The purpose of this study was to investigate the diagnostic value of shear wave elasticity imaging (SWEI) and real-time elastography (RTE) in liver fibrosis induced by dimethylnitrosamine (DMN) and to compare the accuracy of these methods. Seventy male Wistar rats given a single intra-peritoneal injection of DMN and 10 control rats given a saline injection underwent SWEI and RTE to determine their shear wave velocity (V(s)) and liver fibrosis (LF) index, respectively. Correlations between V(s) or the LF index and histologic stage of liver fibrosis (S0-S4) were analyzed, and the diagnostic values of the techniques were assessed using a receiver operating characteristic curve. A positive correlation was found between V(s) and stage of liver fibrosis (r = 0.947, p < 0.001) and between LF index and stage (S) of liver fibrosis (r = 0.662, p < 0.001). For Vs, the areas under the receiver operating characteristic curve for the diagnosis of fibrosis, S ≥ S1, S ≥ S2, S ≥ S3 and S = S4, were 0.983, 0.995, 0.999 and 0.964, respectively; for the LF index, the values were 0.871, 0.887, 0.761 and 0.839, respectively (all p < 0.001). Vs and the LF index values in rats with severe inflammatory activity were significantly higher than those in controls (p < 0.001). In conclusion, positive correlations exist between V(s) or the LF index and the severity of liver fibrosis in rats. Vs is more accurate than the LF index in predicting liver fibrosis in rats. However, severe inflammatory activity may reduce the accuracy of both techniques.

  3. Determination of the Elasticity of Breast Tissue during the Menstrual Cycle Using Real-Time Shear Wave Elastography.

    PubMed

    Li, Xiang; Wang, Jian-Nan; Fan, Zhi-Ying; Kang, Shu; Liu, Yan-Jun; Zhang, Yi-Xia; Wang, Xue-Mei

    2015-12-01

    We examined breast tissue elasticity during the menstrual cycle using real-time shear wave elastography (RT-SWE), a recent technique developed for soft tissue imaging. Written informed consent for RT-SWE was obtained from all eligible patients, who were healthy women aged between 19 and 52 y. Young's moduli of the breast tissue in the early follicular, late phase and luteal phase were compared. There were no significant differences in the mean, maximum and minimum elasticity values (Emean, Emax and Emin) and standard deviation (ESD). RT-SWE of glandular tissue revealed that ESD was increased in the early follicular phase compared with the luteal phase. Means ± SD of Emin, Emax and Emean in glandular tissue were 5.174 ± 2.138, 8.308 ± 3.166 and 6.593 ± 2.510, respectively, and in adipose tissue, 3.589 ± 2.083, 6.733 ± 3.522 and 4.857 ± 2.564, respectively. There were no significant differences in stiffness between glandular and adipose tissues throughout the menstrual cycle, but glandular tissue stiffness was lower in the luteal phase than in the early follicular phase. On the basis of these observations in normal healthy women, we believe we have obtained sufficient information to establish the baseline changes in human breast elasticity during the menstrual cycle. In the future, we intend to compare the elasticity values of healthy breast tissue with those of breast tissue affected by various pathologies. Our results reveal the significant potential of RT-SWE in the rapid and non-invasive clinical diagnosis of breast diseases, such as breast cancers.

  4. Ultrasound Elastography--Review of Techniques and Its Clinical Applications in Pediatrics--Part 1.

    PubMed

    Pawluś, Aleksander; Sokołowska-Dąbek, Dąbrówka; Szymańska, Kinga; Inglot, Marcin S; Zaleska-Dorobisz, Urszula

    2015-01-01

    Sonoelastography is a novel technique that uses ultrasound waves to assess the elasticity of tissues noninvasively. It provides an ultrasound-based method to detect and display the relative stiffness of tissue. The main principle of sonoelastography is the measurement of tissue distortion in response to external compression. Changes in elasticity and tissue deformation elicited by compression are measured, processed and then shown in real time presentation with color-coded elastograms. One of the most important applications of sonoelastography is the evaluation of liver diseases, mainly liver fibrosis assessment and staging. Although in terms of definite diagnosis the liver biopsy still remains the golden standard, elastography seems to be a very inexpensive, repeatable and noninvasive method to evaluate most of liver conditions. The technique is also applicable in detection and differential diagnosis of focal lesions. It provides better imaging information and therefore more accurate evaluation of the lesions nature, e.g. in liver, lymphatic nodes or thyroid gland. Most of the applications mentioned above are well known and have been described in details in adults. Similarly, most of sonoelastographic studies are based on groups of adults. The purpose of this review article is to bring this technology closer to pediatric clinicians and to summarize some of its current clinical applications that are being pursued. In this part we focus on utility of elastography in liver assessment in pediatric patients.

  5. Combination of real-time elastography and urine prostate cancer gene 3 (PCA3) detects more than 97% of significant prostate cancers.

    PubMed

    Nygård, Yngve; Haukaas, Svein A; Waage, Jo E R; Halvorsen, Ole J; Gravdal, Karsten; Frugård, Jannicke; Akslen, Lars A; Beisland, Christian

    2013-06-01

    The prostate cancer gene 3 (PCA3) score in urine is a promising biomarker for prostate cancer. Real-time elastography (RTE) is a well-documented ultrasound modality. The objective of this study was to evaluate the ability to detect significant cancer foci in the prostate with these methods alone and in combination. From September 2009 to September 2010, 40 patients planned for radical prostatectomy underwent a PCA3 urine test and RTE before operation. A Hitachi EUB-8500 with prostate end-fire transrectal probe was used. The PCA3 score was evaluated with a standard cut-off value of 35. RTE was evaluated in correlation with whole-mount section pathology. Three patients fulfilled the criteria for insignificant prostate cancer and were excluded from the study. The PCA3 score was increased in 26 patients (70%). RTE identified at least one tumour in 33 out of 37 patients (89%). RTE detected the largest tumour in 27 out of 37 patients (73%). More than one cancer was present in 29 patients and RTE identified more than one tumour in 13 of these. The RTE was false positive in four patients. The PCA3 score was increased in three out of four false-negative RTE patients. By combining both methods, 36 out of 37 patients (97%) with significant prostate cancer were detected. The combination of PCA3 score and RTE detected 97% of significant prostate cancers. The combinative use of RTE and PCA3 will be further investigated in an unselected series of men with suspected prostate cancer.

  6. A real-time measure of cavitation induced tissue disruption by ultrasound imaging backscatter reduction.

    PubMed

    Hall, Timothy L; Fowlkes, J Brian; Cain, Charles A

    2007-03-01

    A feedback method for obtaining real-time information on the mechanical disruption of tissue through ultrasound cavitation is presented. This method is based on a substantial reduction in ultrasound imaging backscatter from the target volume as the tissue structure is broken down. Ex-vivo samples of porcine liver were exposed to successive high-intensity ultrasound pulses at a low duty cycle to induce mechanical disruption of tissue parenchyma through cavitation (referred to as histotripsy). At the conclusion of treatment, B-scan imaging backscatter was observed to have decreased by 22.4 +/- 2.3 dB in the target location. Treated samples of tissue were found to contain disrupted tissue corresponding to the imaged hypoechoic volume with no remaining discernable structure and a sharp boundary. The observed, substantial backscatter reduction may be an effective feedback mechanism for assessing treatment efficacy in ultrasound surgery using pulsed ultrasound to create cavitation.

  7. Principles and applications of a dynamically focused phased array real time ultrasound system.

    PubMed

    Morgan, C L; Trought, W S; Clark, W M; Von Ramm, O T; Thurstone, F L

    1978-12-01

    The physical principles and clinical applications of a high-resolution, dynamically focused phased-array real time ultrasound are described. Advantages of the real time technique include rapid survey capability, efficient selection of an appropriate tomographic plane, identification of pulsating structures, and dynamic studies. The capabilities of a high resolution phased array with extended dynamic focusing to a range of 15-20 cm are demonstrated in vascular, abdominal, and obstetric imaging. Appropriate clinical examples showing normal and pathological anatomy are presented. Comparisons with conventional B scans are illustrated.

  8. Update on ultrasound elastography: miscellanea. Prostate, testicle, musculo-skeletal.

    PubMed

    Correas, J M; Drakonakis, E; Isidori, A M; Hélénon, O; Pozza, C; Cantisani, V; Di Leo, N; Maghella, F; Rubini, A; Drudi, F M; D'ambrosio, F

    2013-11-01

    Nowadays ultrasound elastosonography is an established technique, although with limited clinical application, used to assess tissue stiffness, which is a parameter that in most cases is associated with malignancy. However, although a consistent number of articles have been published about several applications of elastosonography, its use in certain human body districts is still not well defined. In this paper we write on the use of elastosonography in prostate, testicle and musculo-skeletal apparatus. We report and compare the work of several authors, different type of elastosonography (shear wave, strain elastography, etc.) and instrumental data obtained in the study of both benign and malignant lesions.

  9. A real-time remote video streaming platform for ultrasound imaging.

    PubMed

    Ahmadi, Mehdi; Gross, Warren J; Kadoury, Samuel

    2016-08-01

    Ultrasound is a viable imaging technology in remote and resources-limited areas. Ultrasonography is a user-dependent skill which depends on a high degree of training and hands-on experience. However, there is a limited number of skillful sonographers located in remote areas. In this work, we aim to develop a real-time video streaming platform which allows specialist physicians to remotely monitor ultrasound exams. To this end, an ultrasound stream is captured and transmitted through a wireless network into remote computers, smart-phones and tablets. In addition, the system is equipped with a camera to track the position of the ultrasound probe. The main advantage of our work is using an open source platform for video streaming which gives us more control over streaming parameters than the available commercial products. The transmission delays of the system are evaluated for several ultrasound video resolutions and the results show that ultrasound videos close to the high-definition (HD) resolution can be received and displayed on an Android tablet with the delay of 0.5 seconds which is acceptable for accurate real-time diagnosis.

  10. Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo

    NASA Astrophysics Data System (ADS)

    Song, Liang; Maslov, Konstantin; Shung, K. Kirk; Wang, Lihong V.

    2010-03-01

    With a refined ultrasound-array-based real-time photoacoustic microscopy (UA-PAM) system, we demonstrate the feasibility of noninvasive in vivo imaging of human pulsatile dynamics. The system, capable of real-time B-scan imaging at 50 Hz and high-speed 3-D imaging, is validated by imaging the subcutaneous microvasculature in rats and humans. After the validation, a human artery around the palm-wrist area is imaged, and its pulsatile dynamics, including the arterial pulsatile motion and changes in hemoglobin concentration, is monitored with 20-ms B-scan imaging temporal resolution. To our knowledge, this is the first demonstration of real-time photoacoustic imaging of human physiological dynamics. Our results show that UA-PAM can potentially enable many new possibilities for studying functional and physiological dynamics in both preclinical and clinical imaging settings.

  11. Real-time needle guidance with photoacoustic and laser-generated ultrasound probes

    NASA Astrophysics Data System (ADS)

    Colchester, Richard J.; Mosse, Charles A.; Nikitichev, Daniil I.; Zhang, Edward Z.; West, Simeon; Beard, Paul C.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2015-03-01

    Detection of tissue structures such as nerves and blood vessels is of critical importance during many needle-based minimally invasive procedures. For instance, unintentional injections into arteries can lead to strokes or cardiotoxicity during interventional pain management procedures that involve injections in the vicinity of nerves. Reliable detection with current external imaging systems remains elusive. Optical generation and reception of ultrasound allow for depth-resolved sensing and they can be performed with optical fibers that are positioned within needles used in clinical practice. The needle probe developed in this study comprised separate optical fibers for generating and receiving ultrasound. Photoacoustic generation of ultrasound was performed on the distal end face of an optical fiber by coating it with an optically absorbing material. Ultrasound reception was performed using a high-finesse Fabry-Pérot cavity. The sensor data was displayed as an M-mode image with a real-time interface. Imaging was performed on a biological tissue phantom.

  12. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.

    PubMed

    Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming

    2015-01-01

    Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time.

  13. Occult spinal dysraphism in infants: screening with high-resolution real-time ultrasound.

    PubMed

    Scheible, W; James, H E; Leopold, G R; Hilton, S V

    1983-03-01

    Spinal dysraphism refers to incomplete embryologic development of the dorsal midline. Frequently it is not clinically obvious, and lack of treatment can lead to progressive neurological damage. Early diagnosis of occult defects can allow appropriate surgical intervention and prevent neurological deficits. The authors have used high-resolution real-time ultrasound to screen infants with various cutaneous lumbosacral markers, all of whom were at risk of occult spinal dysraphism. Preliminary results suggest that ultrasound is a reliable screening procedure and could obviate the need for more costly and invasive tests.

  14. Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction

    PubMed Central

    Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.

    2008-01-01

    Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321

  15. Real-Time Ultrasound-Guided Spinal Anaesthesia: A Prospective Observational Study of a New Approach

    PubMed Central

    Conroy, P. H.; Luyet, C.; McCartney, C. J.; McHardy, P. G.

    2013-01-01

    Identification of the subarachnoid space has traditionally been achieved by either a blind landmark-guided approach or using prepuncture ultrasound assistance. To assess the feasibility of performing spinal anaesthesia under real-time ultrasound guidance in routine clinical practice we conducted a single center prospective observational study among patients undergoing lower limb orthopaedic surgery. A spinal needle was inserted unassisted within the ultrasound transducer imaging plane using a paramedian approach (i.e., the operator held the transducer in one hand and the spinal needle in the other). The primary outcome measure was the success rate of CSF acquisition under real-time ultrasound guidance with CSF being located in 97 out of 100 consecutive patients within median three needle passes (IQR 1–6). CSF was not acquired in three patients. Subsequent attempts combining landmark palpation and pre-puncture ultrasound scanning resulted in successful spinal anaesthesia in two of these patients with the third patient requiring general anaesthesia. Median time from spinal needle insertion until intrathecal injection completion was 1.2 minutes (IQR 0.83–4.1) demonstrating the feasibility of this technique in routine clinical practice. PMID:23365568

  16. Real-time 3D ultrasound imaging of infant tongue movements during breast-feeding.

    PubMed

    Burton, Pat; Deng, Jing; McDonald, Daren; Fewtrell, Mary S

    2013-09-01

    Whether infants use suction or peristaltic tongue movements or a combination to extract milk during breast-feeding is controversial. The aims of this pilot study were 1] to evaluate the feasibility of using 3D ultrasound scanning to visualise infant tongue movements; and 2] to ascertain whether peristaltic tongue movements could be demonstrated during breast-feeding. 15 healthy term infants, aged 2 weeks to 4 months were scanned during breast-feeding, using a real-time 3D ultrasound system, with a 7 MHz transducer placed sub-mentally. 1] The method proved feasible, with 72% of bi-plane datasets and 56% of real-time 3D datasets providing adequate coverage [>75%] of the infant tongue. 2] Peristaltic tongue movement was observed in 13 of 15 infants [83%] from real-time or reformatted truly mid-sagittal views under 3D guidance. This is the first study to demonstrate the feasibility of using 3D ultrasound to visualise infant tongue movements during breast-feeding. Peristaltic infant tongue movement was present in the majority of infants when the image plane was truly mid-sagittal but was not apparent if the image was slightly off the mid-sagittal plane. This should be considered in studies investigating the relative importance of vacuum and peristalsis for milk transfer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A new shear wave imaging system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Xiao, Yang; Qian, Ming; Zheng, Hairong

    2015-08-01

    Ultrasound elastography is able to provide a non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) technique is a quantitative method for tissue stiffness assessment. However, traditional SWI implementations cannot acquire 2D quantitative images of tissue elasticity distribution. In this study, a new shear wave imaging system is proposed and evaluated. Detailed delineation of hardware and image processing algorithms are presented. Programmable devices are selected to support flexible control of the system and the image processing algorithms. Analytic signal based cross-correlation method and a Radon transform based shear wave speed determination method are proposed with parallel computation ability. Tissue mimicking phantom imaging, and in vitro imaging measurements are conducted to demonstrate the performance of the proposed system. The system has the ability to provide a new choice for quantitative mapping of the tissue elasticity, and has good potential to be implemented into commercial ultrasound scanner.

  18. Correlation between indocyanine green (ICG) patterns and real-time elastography images in lower extremity lymphedema patients.

    PubMed

    Hayashi, Nobuko; Yamamoto, Takumi; Hayashi, Akitatsu; Yoshimatsu, Hidehiko

    2015-11-01

    Indocyanine green (ICG) lymphography is becoming a popular modality, but unfortunately it is not available in all institutions. Elastography is a relatively new ultrasonographic technique to evaluate tissue elasticity, which visualizes fluid retention as a red region in lymphedema patients. The aim of this study was to evaluate the correlation between elastography and ICG lymphology. Thirty-six legs in 18 patients with secondary lower extremity lymphedema (LEL) and 20 legs in 10 healthy volunteers were examined using elastography. Thirty-six legs in 18 secondary LEL patients were examined using ICG lymphography. Elastography was performed on both legs at the following three sites: medial thigh (MT), medial leg (ML), and anterior ankle (AA). The area of the red region in the subcutaneous tissue demonstrated by elastography was calculated using Image software. ICG lymphography findings were classified into the following four patterns: linear (ICG1), splash (ICG2), stardust (ICG3), and diffuse (ICG4) patterns. As ICG pattern progressed, the red region area was likely to increase. There was a correlation between ICG patterns and red region area according to the severity at bilateral MT (rs = 0.665), ML (rs = 0.623), and AA (rs = 0.668). Significant difference was demonstrated among group means of the red region area by analysis of variance (healthy vs. ICG1 vs. ICG2 vs. ICG3 vs. ICG 4: 14.4 ± 5.7 vs. 15.1 ± 10.3 vs. 25.2 ± 6.2 vs. 30.8 ± 9.4 vs. 35.0 ± 2.8; P < 0.001). The area of the red region in the subcutaneous tissue shown using elastography, which represents fluid, increases with the aggravation of lymphedema demonstrated by ICG patterns. As elastography is performed by ultrasonography, which is available in most institutions, elastography could be a useful alternative evaluation for lymphedema severity when ICG lymphography is not available. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd

  19. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography.

    PubMed

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki

    2012-01-01

    Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young's moduli of seven tissue-mimicking materials (in vitro; Young's modulus range, 20-80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young's modulus ratio of two reference materials, one hard and one soft (Young's moduli of 7 and 30 kPa, respectively), the Young's moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young's moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young's moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified.

  20. Registration of Real-Time 3-D Ultrasound to Tomographic Images of the Abdominal Aorta.

    PubMed

    Brekken, Reidar; Iversen, Daniel Høyer; Tangen, Geir Arne; Dahl, Torbjørn

    2016-08-01

    The purpose of this study was to develop an image-based method for registration of real-time 3-D ultrasound to computed tomography (CT) of the abdominal aorta, targeting future use in ultrasound-guided endovascular intervention. We proposed a method in which a surface model of the aortic wall was segmented from CT, and the approximate initial location of this model relative to the ultrasound volume was manually indicated. The model was iteratively transformed to automatically optimize correspondence to the ultrasound data. Feasibility was studied using data from a silicon phantom and in vivo data from a volunteer with previously acquired CT. Through visual evaluation, the ultrasound and CT data were seen to correspond well after registration. Both aortic lumen and branching arteries were well aligned. The processing was done offline, and the registration took approximately 0.2 s per ultrasound volume. The results encourage further patient studies to investigate accuracy, robustness and clinical value of the approach.

  1. Ultrasound Vascular Elastography as a Tool for Assessing Atherosclerotic Plaques – A Systematic Literature Review

    PubMed Central

    Mahmood, B.; Ewertsen, C.; Carlsen, J.; Nielsen, M. B.

    2016-01-01

    Atherosclerosis is a widespread disease that accounts for nearly 3-quarters of deaths due to cardiovascular disease. Ultrasound elastography might be able to reliably identify characteristics associated with vulnerable plaques. There is a need for the evaluation of elastography and its ability to distinguish between vulnerable and stable plaques. The aim of this paper is to provide an overview of the literature on vascular elastography. A systematic search of the available literature for studies using elastography for assessing atherosclerotic plaques was conducted using the MEDLINE, Embase, Cochrane Library and Web of Science databases. A standardized template was used to extract relevant data following the PRISMA 2009 checklist. 20 articles were included in this paper. The studies were heterogeneous. All studies reported that elastography was a feasible technique and provided additional information compared to B-mode ultrasound alone. Most studies reported higher strain values for vulnerable plaques. Ultrasound elastography has potential as a clinical tool in the assessment of atherosclerotic plaques. Elastography is able to distinguish between different plaque types, but there is considerable methodological variation between studies. There is a need for larger studies in a clinical setting to determine the full potential of elastography. PMID:27896334

  2. Real-time numerical simulation of Doppler ultrasound in the presence of nonaxial flow.

    PubMed

    Khoshniat, Mahdieh; Thorne, Meghan L; Poepping, Tamie L; Hirji, Samira; Holdsworth, David W; Steinman, David A

    2005-04-01

    Numerical simulations of Doppler ultrasound (DUS) relying on computational fluid dynamics (CFD) models of nonaxial flow have traditionally employed detailed (but computationally intensive) models of the DUS physics, or have sacrificed much of the physics in the interest of computational or conceptual simplicity. In this paper, we present a compromise between these extremes, with the objective of simulating the essential characteristics of DUS spectrograms in a real-time manner. Specifically, a precomputed pulsatile CFD velocity field is interrogated at some number, N, of discrete points distributed spatially within a sample volume of prescribed geometry and power distribution and temporally within a prescribed sampling window. Intrinsic spectral broadening is accounted for by convolving each of the point velocities with a semiempirical broadening function. Real-time performance is facilitated through the use of an efficient algorithm for interpolating the unstructured CFD data. A spherical sample volume with Gaussian power distribution, N = 1000 sampling points, and quadratic broadening function are shown to be adequate for simulating, at frame rates of 86 Hz on a 1.5 GHz desktop workstation, realistic-looking spectrograms at representative locations within a stenosed carotid bifurcation model. Via qualitative comparisons with matched in vitro data, these simulated spectrograms are shown to mimic the distinctive spectral envelopes, broadening and power characteristics associated with common carotid, stenotic jet and poststenotic recirculating flows. We conclude that the complex interaction between Doppler ultrasound and complicated clinically relevant blood flow dynamics can be simulated in real time via this relatively straightforward semiempirical approach.

  3. Use of Ultrasound Elastography in the Assessment of the Musculoskeletal System

    PubMed Central

    Paluch, Łukasz; Nawrocka-Laskus, Ewa; Wieczorek, Janusz; Mruk, Bartosz; Frel, Małgorzata; Walecki, Jerzy

    2016-01-01

    Summary This article presents possible applications of ultrasound elastography in musculoskeletal imaging based on the available literature, as well as the possibility of extending indications for the use of elastography in the future. Ultrasound elastography (EUS) is a new method that shows structural changes in tissues following application of physical stress. Elastography techniques have been widely used to assess muscles and tendons in vitro since the early parts of the twentieth century. Only recently with the advent of new technology and creation of highly specialized ultrasound devices, has elastography gained widespread use in numerous applications. The authors performed a search of the Medline/PubMed databases for original research and reviewed publications on the application of ultrasound elastography for musculoskeletal imaging. All publications demonstrate possible uses of ultrasound elastography in examinations of the musculoskeletal system. The most widely studied areas include the muscles, tendons and rheumatic diseases. There are also reports on the employment in vessel imaging. The main limitation of elastography as a technique is above all the variability of applied pressure during imaging, which is operator-dependent. It would therefore be reasonable to provide clear guidelines on the technique applied, as well as clear indications for performing the test. It is important to develop methods for creating artifact-free, closed-loop, compression-decompression cycles. The main advantages include cost-effectiveness, short duration of the study, non-invasive nature of the procedure, as well as a potentially broader clinical availability. There are no clear guidelines with regard to indications as well as examination techniques. Ultrasound elastography is a new and still poorly researched method. We conclude, however, that it can be widely used in the examinations of musculoskeletal system. Therefore, it is necessary to conduct large, multi

  4. Real-time prediction of mediastinal lymph node malignancy by endobronchial ultrasound.

    PubMed

    Shafiek, Hanaa; Fiorentino, Federico; Peralta, Alejandro David; Serra, Enrique; Esteban, Blanca; Martinez, Rocío; Noguera, Maria Angels; Moyano, Pere; Sala, Ernest; Sauleda, Jaume; Cosío, Borja G

    2014-06-01

    To evaluate the utility of different ultrasonographic (US) features in differentiating benign and malignant lymph node (LN) by endobronchial ultrasound (EBUS) and validate a score for real-time clinical application. 208 mediastinal LN acquired from 141 patients were analyzed. Six different US criteria were evaluated (short axis ≥10 mm, shape, margin, echogenicity, and central hilar structure [CHS], and presence of hyperechoic density) by two observers independently. A simplified score was generated where the presence of margin distinction, round shape and short axis ≥10 mm were scored as 1 and heterogeneous echogenicity and absence of CHS were scored as 1.5. The score was evaluated prospectively for real-time clinical application in 65 LN during EBUS procedure in 39 patients undertaken by two experienced operators. These criteria were correlated with the histopathological results and the sensitivity, specificity, positive and negative predictive values (PPV and NPV) were calculated. Both heterogenicity and absence of CHS had the highest sensitivity and NPV (≥90%) for predicting LN malignancy with acceptable inter-observer agreement (92% and 87% respectively). On real-time application, the sensitivity and specificity of the score >5 were 78% and 86% respectively; only the absence of CHS, round shape and size of LN were significantly associated with malignant LN. Combination of different US criteria can be useful for prediction of mediastinal LN malignancy and valid for real-time clinical application. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  5. Interlaced photoacoustic and ultrasound imaging system with real-time coregistration for ovarian tissue characterization.

    PubMed

    Alqasemi, Umar; Li, Hai; Yuan, Guangqian; Kumavor, Patrick; Zanganeh, Saeid; Zhu, Quing

    2014-01-01

    Coregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue. We present the coregistered US and photoacoustic imaging system structure, the optimal design of the PC interfacing software, and the reconfigurable field programmable gate array operation and optimization. Phantom experiments of system lateral resolution and axial sensitivity evaluation, examples of the real-time scanning of a tumor-bearing mouse, and ex vivo human ovaries studies are demonstrated.

  6. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity.

    PubMed

    Herr, Michael D; Hogeman, Cynthia S; Koch, Dennis W; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A

    2010-05-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system.

  7. Interlaced photoacoustic and ultrasound imaging system with real-time coregistration for ovarian tissue characterization

    PubMed Central

    Alqasemi, Umar; Li, Hai; Yuan, Guangqian; Kumavor, Patrick; Zanganeh, Saeid; Zhu, Quing

    2014-01-01

    Abstract. Coregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue. We present the coregistered US and photoacoustic imaging system structure, the optimal design of the PC interfacing software, and the reconfigurable field programmable gate array operation and optimization. Phantom experiments of system lateral resolution and axial sensitivity evaluation, examples of the real-time scanning of a tumor-bearing mouse, and ex vivo human ovaries studies are demonstrated. PMID:25069009

  8. A programmable real-time system for development and test of new ultrasound investigation methods.

    PubMed

    Ricci, Stefano; Boni, Enrico; Guidi, Francesco; Morganti, Tiziano; Tortoli, Piero

    2006-10-01

    In vitro and/or in vivo experimental tests represent a crucial phase in the development of new ultrasound (US) investigation methods for biomedical applications. Such tests frequently are made difficult by the lack of flexibility of general purpose instruments and commercial US machines typically available in research laboratories. This paper presents a novel, real-time development system specifically designed for US research purposes. Main features of the system are the limited dimensions (it is based on a single electronic board), the capability of transmitting arbitrary waveforms to two probes, of storing the received radio-frequency (RF) echo data in a file and/or of processing them in real-time according to programmable algorithms. As an example of application, results of simultaneous hemodynamic and mechanic investigations in human arteries are reported. However, the high system flexibility and portability make it suitable for a large class of US applications.

  9. Interlaced photoacoustic and ultrasound imaging system with real-time coregistration for ovarian tissue characterization

    NASA Astrophysics Data System (ADS)

    Alqasemi, Umar; Li, Hai; Yuan, Guangqian; Kumavor, Patrick; Zanganeh, Saeid; Zhu, Quing

    2014-07-01

    Coregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue. We present the coregistered US and photoacoustic imaging system structure, the optimal design of the PC interfacing software, and the reconfigurable field programmable gate array operation and optimization. Phantom experiments of system lateral resolution and axial sensitivity evaluation, examples of the real-time scanning of a tumor-bearing mouse, and ex vivo human ovaries studies are demonstrated.

  10. Abdominal and obstetric applications of a dynamically focused phased array real time ultrasound system.

    PubMed

    Morgan, C L; Trought, W S; von Ramm, O T; Thurstone, F L

    1980-05-01

    Abdominal and obstetric applications of a dynamically focused phased array real time ultrasonic system are described. This work was performed utilising both the Thaumascan (two-dimensional, high resolution, actual time, ultrasound, multi-element array scanner) and the first commercial unit based on this system, the Grumman RT-400. Examples of normal and pathological anatomy are presented from over 300 examinations performed to date, including a series of 28 abdominal aortic aneurysms studied with the RT-400. Following electronic alterations in the Thaumascan with resultant improvement in the grey scale, prospective analyses in 86 obstetric and 23 abdominal examinations were undertaken. These studies indicate that fetal, intra-uterine, and abdominal structures can be rapidly and consistently imaged. The value of real time ultrasonic scanning in obstetric and abdominal examinations is illustrated. The principles of dynamically focused phased arrays are described, and the merits and limitations of these systems are discussed.

  11. Real-time 3D target tracking in MRI guided focused ultrasound ablations in moving tissues.

    PubMed

    Ries, Mario; de Senneville, Baudouin Denis; Roujol, Sébastien; Berber, Yasmina; Quesson, Bruno; Moonen, Chrit

    2010-12-01

    Magnetic resonance imaging-guided high intensity focused ultrasound is a promising method for the noninvasive ablation of pathological tissue in abdominal organs such as liver and kidney. Due to the high perfusion rates of these organs, sustained sonications are required to achieve a sufficiently high temperature elevation to induce necrosis. However, the constant displacement of the target due to the respiratory cycle render continuous ablations challenging, since dynamic repositioning of the focal point is required. This study demonstrates subsecond 3D high intensity focused ultrasound-beam steering under magnetic resonance-guidance for the real-time compensation of respiratory motion. The target is observed in 3D space by coupling rapid 2D magnetic resonance-imaging with prospective slice tracking based on pencil-beam navigator echoes. The magnetic resonance-data is processed in real-time by a computationally efficient reconstruction pipeline, which provides the position, the temperature and the thermal dose on-the-fly, and which feeds corrections into the high intensity focused ultrasound-ablator. The effect of the residual update latency is reduced by using a 3D Kalman-predictor for trajectory anticipation. The suggested method is characterized with phantom experiments and verified in vivo on porcine kidney. The results show that for update frequencies of more than 10 Hz and latencies of less then 114 msec, temperature elevations can be achieved, which are comparable to static experiments. Copyright © 2010 Wiley-Liss, Inc.

  12. Real-time simulation of ultrasound refraction phenomena using ray-trace based wavefront construction method.

    PubMed

    Szostek, Kamil; Piórkowski, Adam

    2016-10-01

    Ultrasound (US) imaging is one of the most popular techniques used in clinical diagnosis, mainly due to lack of adverse effects on patients and the simplicity of US equipment. However, the characteristics of the medium cause US imaging to imprecisely reconstruct examined tissues. The artifacts are the results of wave phenomena, i.e. diffraction or refraction, and should be recognized during examination to avoid misinterpretation of an US image. Currently, US training is based on teaching materials and simulators and ultrasound simulation has become an active research area in medical computer science. Many US simulators are limited by the complexity of the wave phenomena, leading to intensive sophisticated computation that makes it difficult for systems to operate in real time. To achieve the required frame rate, the vast majority of simulators reduce the problem of wave diffraction and refraction. The following paper proposes a solution for an ultrasound simulator based on methods known in geophysics. To improve simulation quality, a wavefront construction method was adapted which takes into account the refraction phenomena. This technique uses ray tracing and velocity averaging to construct wavefronts in the simulation. Instead of a geological medium, real CT scans are applied. This approach can produce more realistic projections of pathological findings and is also capable of providing real-time simulation.

  13. Real-time 3-d intracranial ultrasound with an endoscopic matrix array transducer.

    PubMed

    Light, Edward D; Mukundan, Srinivasan; Wolf, Patrick D; Smith, Stephen W

    2007-08-01

    A transducer originally designed for transesophageal echocardiography (TEE) was adapted for real-time volumetric endoscopic imaging of the brain. The transducer consists of a 36 x 36 array with an interelement spacing of 0.18 mm. There are 504 transmitting and 252 receive channels placed in a regular pattern in the array. The operating frequency is 4.5 MHz with a -6 dB bandwidth of 30%. The transducer is fabricated on a 10-layer flexible circuit from Microconnex (Snoqualmie, WA, USA). The purpose of this study is to evaluate the clinical feasibility of real-time 3-D intracranial ultrasound with this device. The Volumetrics Medical Imaging (Durham, NC, USA) 3-D scanner was used to obtain images in a canine model. A transcalvarial acoustic window was created under general anesthesia in the animal laboratory by placing a 10-mm burr hole in the high parietal calvarium of a 50-kg canine subject. The burr-hole was placed in a left parasagittal location to avoid the sagittal sinus, and the transducer was placed against the intact dura mater for ultrasound imaging. Images of the lateral ventricles were produced, including real-time 3-D guidance of a needle puncture of one ventricle. In a second canine subject, contrast-enhanced 3-D Doppler color flow images were made of the cerebral vessels including the complete Circle of Willis. Clinical applications may include real-time 3-D guidance of cerebrospinal fluid extraction from the lateral ventricles and bedside evaluation of critically ill patients where computed tomography and magnetic resonance imaging techniques are unavailable.

  14. Ultrasound research scanner for real-time synthetic aperture data acquisition.

    PubMed

    Jensen, Jørgen Arendt; Holm, Ole; Jensen, Lars Joost; Bendsen, Henrik; Nikolov, Svetoslav Ivanov; Tomov, Borislav Gueorguiev; Munk, Peter; Hansen, Martin; Salomonsen, Kent; Hansen, Johnny; Gormsen, Kim; Pedersen, Henrik Møller; Gammelmark, Kim L

    2005-05-01

    Conventional ultrasound systems acquire ultrasound data sequentially one image line at a time. The architecture of these systems is therefore also sequential in nature and processes most of the data in a sequential pipeline. This often makes it difficult to implement radically different imaging strategies on the platforms and makes the scanners less accessible for research purposes. A system designed for imaging research flexibility is the prime concern. The possibility of sending out arbitrary signals and the storage of data from all transducer elements for 5 to 10 seconds allows clinical evaluation of synthetic aperture and 3D imaging. This paper describes a real-time system specifically designed for research purposes. The system can acquire multichannel data in real-time from multi-element ultrasound transducers, and can perform some real-time processing on the acquired data. The system is capable of performing real-time beamforming for conventional imaging methods using linear, phased, and convex arrays. Image acquisition modes can be intermixed, and this makes it possible to perform initial trials in a clinical environment with new imaging modalities for synthetic aperture imaging, 2D and 3D B-mode, and velocity imaging using advanced coded emissions. The system can be used with 128-element transducers and can excite 128 transducer elements and receive and sample data from 64 channels simultaneously at 40 MHz with 12-bit precision. Two-to-one multiplexing in receive can be used to cover 128 receive channels. Data can be beamformed in real time using the system's 80 signal processing units, or it can be stored directly in RAM. The system has 16 Gbytes RAM and can, thus, store more than 3.4 seconds of multichannel data. It is fully software programmable and its signal processing units can also be reconfigured under software control. The control of the system is done over a 100-Mbits/s Ethernet using C and Matlab. Programs for doing, e.g., B-mode imaging can be

  15. Integrated Interventional Devices For Real Time 3D Ultrasound Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Smith, Stephen W.; Lee, Warren; Gentry, Kenneth L.; Pua, Eric C.; Light, Edward D.

    2006-05-01

    Two recent advances have expanded the potential of medical ultrasound: the introduction of real-time 3-D ultrasound imaging with catheter, transesophageal and laparoscopic probes and the development of interventional ultrasound therapeutic systems for focused ultrasound surgery, ablation and ultrasound enhanced drug delivery. This work describes devices combining both technologies. A series of transducer probes have been designed, fabricated and tested including: 1) a 12 French side scanning catheter incorporating a 64 element matrix array for imaging at 5MHz and a piston ablation transducer operating at 10 MHz. 2) a 14 Fr forward-scanning catheter integrating a 112 element 2-D array for imaging at 5 MHz encircled by an ablation annulus operating at 10 MHz. Finite element modeling was then used to simulate catheter annular and linear phased array transducers for ablation. 3) Linear phased array transducers were built to confirm the finite element analysis at 4 and 8 MHz including a mechanically focused 86 element 9 MHz array which transmits an ISPTA of 29.3 W/cm2 and creates a lesion in 2 minutes. 4) 2-D arrays of 504 channels operating at 5 MHz have been developed for transesophageal and laparascopic 3D imaging as well as therapeutic heating. All the devices image the heart anatomy including atria, valves, septa and en face views of the pulmonary veins.

  16. GPU-accelerated 3D mipmap for real-time visualization of ultrasound volume data.

    PubMed

    Kwon, Koojoo; Lee, Eun-Seok; Shin, Byeong-Seok

    2013-10-01

    Ultrasound volume rendering is an efficient method for visualizing the shape of fetuses in obstetrics and gynecology. However, in order to obtain high-quality ultrasound volume rendering, noise removal and coordinates conversion are essential prerequisites. Ultrasound data needs to undergo a noise filtering process; otherwise, artifacts and speckle noise cause quality degradation in the final images. Several two-dimensional (2D) noise filtering methods have been used to reduce this noise. However, these 2D filtering methods ignore relevant information in-between adjacent 2D-scanned images. Although three-dimensional (3D) noise filtering methods are used, they require more processing time than 2D-based methods. In addition, the sampling position in the ultrasonic volume rendering process has to be transformed between conical ultrasound coordinates and Cartesian coordinates. We propose a 3D-mipmap-based noise reduction method that uses graphics hardware, as a typical 3D mipmap requires less time to be generated and less storage capacity. In our method, we compare the density values of the corresponding points on consecutive mipmap levels and find the noise area using the difference in the density values. We also provide a noise detector for adaptively selecting the mipmap level using the difference of two mipmap levels. Our method can visualize 3D ultrasound data in real time with 3D noise filtering.

  17. Thyroid imaging: comparison of high-resolution real-time ultrasound and computed tomography

    SciTech Connect

    Radecki, P.D.; Arger, P.H.; Arenson, R.L.; Jennings, A.S.; Coleman, B.G.; Mintz, M.C.; Kressel, H.Y.

    1984-10-01

    High-resolution real-time ultrasound (US) and computed tomography (CT) were compared in 48 patients with a clinical diagnosis of thyroid abnormality and also correlated with biopsy or surgery. The modalities were considered comparable in 38 cases (79%), while CT was superior in 5 and US in 5. Both techniques lacked histopathological specificity. CT appears to be advantageous in detecting substernal thyroid extension and confirming thyroiditis, while the ability of US to detect small nodules makes it the procedure of choice in evaluating suspected intrinsic thyroid abnormalities.

  18. Predicting target displacements using ultrasound elastography and finite element modeling.

    PubMed

    op den Buijs, Jorn; Hansen, Hendrik H G; Lopata, Richard G P; de Korte, Chris L; Misra, Sarthak

    2011-11-01

    Soft tissue displacements during minimally invasive surgical procedures may cause target motion and subsequent misplacement of the surgical tool. A technique is presented to predict target displacements using a combination of ultrasound elastography and finite element (FE) modeling. A cubic gelatin/agar phantom with stiff targets was manufactured to obtain pre- and post-loading ultrasound radio frequency (RF) data from a linear array transducer. The RF data were used to compute displacement and strain images, from which the distribution of elasticity was reconstructed using an inverse FE-based approach. The FE model was subsequently used to predict target displacements upon application of different boundary and loading conditions to the phantom. The influence of geometry was investigated by application of the technique to a breast-shaped phantom. The distribution of elasticity in the phantoms as determined from the strain distribution agreed well with results from mechanical testing. Upon application of different boundary and loading conditions to the cubic phantom, the FE model-predicted target motion were consistent with ultrasound measurements. The FE-based approach could also accurately predict the displacement of the target upon compression and indentation of the breast-shaped phantom. This study provides experimental evidence that organ geometry and boundary conditions surrounding the organ are important factors influencing target motion. In future work, the technique presented in this paper could be used for preoperative planning of minimally invasive surgical interventions.

  19. Real-Time Ultrasound Segmentation, Analysis and Visualisation of Deep Cervical Muscle Structure.

    PubMed

    Cunningham, Ryan J; Harding, Peter J; Loram, Ian D

    2017-02-01

    Despite widespread availability of ultrasound and a need for personalised muscle diagnosis (neck/back pain-injury, work related disorder, myopathies, neuropathies), robust, online segmentation of muscles within complex groups remains unsolved by existing methods. For example, Cervical Dystonia (CD) is a prevalent neurological condition causing painful spasticity in one or multiple muscles in the cervical muscle system. Clinicians currently have no method for targeting/monitoring treatment of deep muscles. Automated methods of muscle segmentation would enable clinicians to study, target, and monitor the deep cervical muscles via ultrasound. We have developed a method for segmenting five bilateral cervical muscles and the spine via ultrasound alone, in real-time. Magnetic Resonance Imaging (MRI) and ultrasound data were collected from 22 participants (age: 29.0±6.6, male: 12). To acquire ultrasound muscle segment labels, a novel multimodal registration method was developed, involving MRI image annotation, and shape registration to MRI-matched ultrasound images, via approximation of the tissue deformation. We then applied polynomial regression to transform our annotations and textures into a mean space, before using shape statistics to generate a texture-to-shape dictionary. For segmentation, test images were compared to dictionary textures giving an initial segmentation, and then we used a customized Active Shape Model to refine the fit. Using ultrasound alone, on unseen participants, our technique currently segments a single image in [Formula: see text] to over 86% accuracy (Jaccard index). We propose this approach is applicable generally to segment, extrapolate and visualise deep muscle structure, and analyse statistical features online.

  20. Software-based approach toward vendor independent real-time photoacoustic imaging using ultrasound beamformed data

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Huang, Howard; Lei, Chen; Kim, Younsu; Boctor, Emad M.

    2017-03-01

    Photoacoustic (PA) imaging has shown its potential for many clinical applications, but current research and usage of PA imaging are constrained by additional hardware costs to collect channel data, as the PA signals are incorrectly processed in existing clinical ultrasound systems. This problem arises from the fact that ultrasound systems beamform the PA signals as echoes from the ultrasound transducer instead of directly from illuminated sources. Consequently, conventional implementations of PA imaging rely on parallel channel acquisition from research platforms, which are not only slow and expensive, but are also mostly not approved by the FDA for clinical use. In previous studies, we have proposed the synthetic-aperture based photoacoustic re-beamformer (SPARE) that uses ultrasound beamformed radio frequency (RF) data as the input, which is readily available in clinical ultrasound scanners. The goal of this work is to implement the SPARE beamformer in a clinical ultrasound system, and to experimentally demonstrate its real-time visualization. Assuming a high pulsed repetition frequency (PRF) laser is used, a PZT-based pseudo PA source transmission was synchronized with the ultrasound line trigger. As a result, the frame-rate increases when limiting the image field-of-view (FOV), with 50 to 20 frames per second achieved for FOVs from 35 mm to 70 mm depth, respectively. Although in reality the maximum PRF of laser firing limits the PA image frame rate, this result indicates that the developed software is capable of displaying PA images with the maximum possible frame-rate for certain laser system without acquiring channel data.

  1. Impact of real-time ultrasound guidance on complications of percutaneous dilatational tracheostomy: a propensity score analysis.

    PubMed

    Rajajee, Venkatakrishna; Williamson, Craig A; West, Brady T

    2015-04-29

    Recent studies have demonstrated the feasibility of real-time ultrasound guidance during percutaneous dilatational tracheostomy, including in patients with risk factors such as coagulopathy, cervical spine immobilization and morbid obesity. Use of real-time ultrasound guidance has been shown to improve the technical accuracy of percutaneous dilatational tracheostomy; however, it is unclear if there is an associated reduction in complications. Our objective was to determine whether the peri-procedural use of real-time ultrasound guidance is associated with a reduction in complications of percutaneous dilatational tracheostomy using a propensity score analysis. This study reviewed all percutaneous dilatational tracheostomies performed in an 8-year period in a neurocritical care unit. Percutaneous dilatational tracheostomies were typically performed by trainees under guidance of the attending intensivist. Bronchoscopic guidance was used for all procedures with addition of real-time ultrasound guidance at the discretion of the attending physician. Real-time ultrasound guidance was used to guide endotracheal tube withdrawal, guide tracheal puncture, identify guidewire entry level and confirm bilateral lung sliding. The primary outcome was a composite of previously defined complications including (among others) bleeding, infection, loss of airway, inability to complete procedure, need for revision, granuloma and early dislodgement. Propensity score analysis was used to ensure that the relationship of not using real-time ultrasound guidance with the probability of an adverse outcome was examined within groups of patients having similar covariate profiles. Covariates included were age, gender, body mass index, diagnosis, Acute Physiology and Chronic Health Evaluation II score, timing of tracheostomy, positive end-expiratory pressure and presence of risk factors including coagulopathy, cervical spine immobilization and prior tracheostomy. A total of 200 patients underwent

  2. Real-time three-dimensional ultrasound visualization of erection and artificial coitus.

    PubMed

    Deng, Jing; Hall-Craggs, Margaret A; Pellerin, D; Linney, Alfred D; Lees, William R; Rodeck, Charles H; Todd-Pokropek, Andrew

    2006-04-01

    To investigate the feasibility of imaging penile erection and coitus in real time and in three dimensions, a 'Live' three-dimensional (3-D) ultrasound system was used to acquire the volume of interest at 25 Hz from five healthy men. Water baths and gel-made artificial vaginas were devised to facilitate the 3-D scans without the probe being in direct contact with the penis. For the first volunteer scanned with the water bath alone, the penis failed to erect within 30 min. For the other four volunteers, the 'vagina' successfully initiated and maintained the erection and allowed artificial intercourse. Results have shown that the 'Live' 3-D ultrasound and minimally compressive imaging techniques together can offer an objective means for visualizing erection and coitus in spatial totality and temporal reality. They can be further developed to reveal more reliable details about the dynamic morphology, improving scientific understanding of sexual activities and clinical management of related problems.

  3. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    NASA Astrophysics Data System (ADS)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  4. Ultrasound scoring in combination with ultrasound elastography for differentiating benign and malignant thyroid nodules.

    PubMed

    Shao, Jun; Shen, Ye; Lü, Jieqiong; Wang, Jianming

    2015-08-01

    The aim of this study was to evaluate the value of ultrasound scores obtained by conventional ultrasonography and ultrasound elastography in the differentiation of benign and malignant thyroid nodules in Chinese patients. This study included 297 patients who were referred for surgery for compressive symptoms or suspicion of malignancy. Five hundred and twelve thyroid nodules were examined by ultrasonography. The final diagnosis was based on histological findings. A seven-point ultrasound scoring system based on conventional ultrasonography and a five-point scoring system based on ultrasound elastography were applied independently or in combination. The receiver operating characteristic (ROC) curves were graphed, and the areas under the curves (AUCs) were compared using the χ(2) -test. Solid composition, hypo-echoic appearance, an irregular or blurred margin, an aspect ratio ≥1, intranodular blood flow and presence of microcalcifications were significant predictors of malignant thyroid nodules. The AUC (95% CI) was 0·9067 (0·8817-0·9318) for the ultrasound scores based on conventional ultrasonography and 0·9080 (0·8842-0·9317) for the elasticity scores. The combination of these two scoring systems provided good accuracy with an AUC (95% CI) of 0·9415 (0·9223-0·9606), which was significantly higher than that obtained with the conventional ultrasound scores (χ(2)  = 36·03, P < 0·001) or the elasticity scores (χ(2)  = 12·80, P < 0·001) individually. When we set the cut-point to ≥5, the sensitivity and specificity were 85·22% and 87·38%, respectively. Elastography in combination with conventional ultrasonography is a promising imaging-based approach that can assist in the differential diagnosis of thyroid cancer. © 2014 John Wiley & Sons Ltd.

  5. Real-Time Classification of Hand Motions Using Ultrasound Imaging of Forearm Muscles.

    PubMed

    Akhlaghi, Nima; Baker, Clayton A; Lahlou, Mohamed; Zafar, Hozaifah; Murthy, Karthik G; Rangwala, Huzefa S; Kosecka, Jana; Joiner, Wilsaan M; Pancrazio, Joseph J; Sikdar, Siddhartha

    2016-08-01

    Surface electromyography (sEMG) has been the predominant method for sensing electrical activity for a number of applications involving muscle-computer interfaces, including myoelectric control of prostheses and rehabilitation robots. Ultrasound imaging for sensing mechanical deformation of functional muscle compartments can overcome several limitations of sEMG, including the inability to differentiate between deep contiguous muscle compartments, low signal-to-noise ratio, and lack of a robust graded signal. The objective of this study was to evaluate the feasibility of real-time graded control using a computationally efficient method to differentiate between complex hand motions based on ultrasound imaging of forearm muscles. Dynamic ultrasound images of the forearm muscles were obtained from six able-bodied volunteers and analyzed to map muscle activity based on the deformation of the contracting muscles during different hand motions. Each participant performed 15 different hand motions, including digit flexion, different grips (i.e., power grasp and pinch grip), and grips in combination with wrist pronation. During the training phase, we generated a database of activity patterns corresponding to different hand motions for each participant. During the testing phase, novel activity patterns were classified using a nearest neighbor classification algorithm based on that database. The average classification accuracy was 91%. Real-time image-based control of a virtual hand showed an average classification accuracy of 92%. Our results demonstrate the feasibility of using ultrasound imaging as a robust muscle-computer interface. Potential clinical applications include control of multiarticulated prosthetic hands, stroke rehabilitation, and fundamental investigations of motor control and biomechanics.

  6. Imaging feedback of histotripsy treatments using ultrasound shear wave elastography.

    PubMed

    Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A

    2012-06-01

    Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young's modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young's modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions' Young's modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and

  7. Clinical real-time photoacoustic/ultrasound imaging system at POSTECH

    NASA Astrophysics Data System (ADS)

    Kim, Jeesu; Park, Sara; Jung, Yuhan; Zhang, Yumiao; Lovell, Jonathan F.; Kim, Chulhong

    2016-03-01

    We have successfully developed a clinical real-time photoacoustic/ultrasound (PA/US) imaging system. The PA/US imaging system was adapted with a FDA approved commercial US imaging system and a portable pulsed laser system. All image processing and display tasks were performed in real-time by using a graphical processing unit of the US imaging system. We have tested performances of the system by measuring maximum penetration depth, noise equivalent sensitivity, and axial resolution of contrast agent deposited microtubes under chicken breast tissues. By adapting various US transducers (i.e., linear, convex, phased, and endocavity), adaptable capability of the system was verified. In addition, volumetric PA/US imaging was performed by applying a linear scanning along an elevational direction. We have successfully acquired volumetric PA/US images of human forearms in vivo. We believe that the developed clinical real-time PA/US imaging system can be utilized in various preclinical and clinical studies in the near future.

  8. Two-dimensional shear-wave elastography on conventional ultrasound scanners with time-aligned sequential tracking (TAST) and comb-push ultrasound shear elastography (CUSE).

    PubMed

    Song, Pengfei; Macdonald, Michael; Behler, Russell; Lanning, Justin; Wang, Michael; Urban, Matthew; Manduca, Armando; Zhao, Heng; Callstrom, Matthew; Alizad, Azra; Greenleaf, James; Chen, Shigao

    2015-02-01

    Two-dimensional shear-wave elastography presents 2-D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2-D shear-wave elastography on conventional ultrasound scanners, however, is challenging because of the low tracking pulse-repetition-frequency (PRF) of these systems. Although some clinical and research platforms support software beamforming and plane-wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2-D shear-wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a time-aligned sequential tracking (TAST) method for shear-wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high-PRF shear-wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The comb-push ultrasound shear elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave SNR and facilitate robust reconstructions of 2-D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner. A phantom study showed that the shear-wave speed measurements from the conventional ultrasound scanner were in good agreement with the values measured from other 2-D shear wave imaging technologies. An inclusion phantom study showed that the conventional ultrasound scanner had comparable performance to a state-of-the-art shear-wave imaging system in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the conventional ultrasound

  9. Real-time Implementation of a Dual-Mode Ultrasound Array System: In Vivo Results

    PubMed Central

    Casper, Andrew J.; Liu, Dalong; Ballard, John R.; Ebbini, Emad S.

    2013-01-01

    A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array and modular multi-channel transmitter/receiver. It is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays (FPGA) and graphical processing units (GPU) is used to enable real-time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small and large animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA’s ability to form anatomically-correct images with sufficient contrast in an extended field of view (FOV) around its geometric center. In addition, high frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during HIFU exposures with 45 – 50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its fnumber and bandwidth with well behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound. PMID:23708766

  10. Towards clinical prostate ultrasound elastography using full inversion approach.

    PubMed

    Mousavi, Seyed Reza; Sadeghi-Naini, Ali; Czarnota, Gregory J; Samani, Abbas

    2014-03-01

    Various types of cancers including prostate cancer are known to be associated with biological changes that lead to tissue stiffening. Digital rectal examination is based on manually palpating the prostate tissue via the rectum. This test lacks sufficient accuracy required for early diagnosis which is necessary for effective management of prostate cancer. To develop an effective prostate cancer diagnostic technique, the authors propose an imaging technique that maps the distribution of the relative prostate tissue's elasticity modulus. Unlike digital rectal examination, this technique is quantitative, capable of accurately detecting small prostate lesions that cannot be sensed by manual palpation, and its accuracy is independent of the physician's experience. The proposed technique is a quasistatic elastography technique which uses ultrasound imaging to acquire tissue displacements resulting from transrectal ultrasound mechanical stimulation. The system involves a standard ultrasound imaging unit with accessibility to its radiofrequency data. The displacements are used as data for the tissue elasticity reconstruction. This reconstruction does not require tissue segmentation and is based on physics governing tissue mechanics. It is formulated using an inverse problem framework where elastic tissue deformation equations are fully inverted using an iterative scheme where each iteration involves stress calculation followed by elastic modulus updating until convergence is achieved.In silico and tissue mimicking phantom studies were conducted to validate the proposed technique, followed by a clinical pilot study involving two prostate cancer patients with whole-mount histopathology analysis on prostatectomy specimens to confirm a cancer location. The phantom studies demonstrated robustness and reasonably high accuracy of the proposed method. Obtained Young's modulus ratios indicated reconstruction errors of less than 12%. Reconstructed elastic modulus images of the two

  11. Real-time sound speed correction using golden section search to enhance ultrasound imaging quality

    NASA Astrophysics Data System (ADS)

    Yoon, Chong Ook; Yoon, Changhan; Yoo, Yangmo; Song, Tai-Kyong; Chang, Jin Ho

    2013-03-01

    In medical ultrasound imaging, high-performance beamforming is important to enhance spatial and contrast resolutions. A modern receive dynamic beamfomer uses a constant sound speed that is typically assumed to 1540 m/s in generating receive focusing delays [1], [2]. However, this assumption leads to degradation of spatial and contrast resolutions particularly when imaging obese patients or breast since the sound speed is significantly lower than the assumed sound speed [3]; the true sound speed in the fatty tissue is around 1450 m/s. In our previous study, it was demonstrated that the modified nonlinear anisotropic diffusion is capable of determining an optimal sound speed and the proposed method is a useful tool to improve ultrasound image quality [4], [5]. In the previous study, however, we utilized at least 21 iterations to find an optimal sound speed, which may not be viable for real-time applications. In this paper, we demonstrates that the number of iterations can be dramatically reduced using the GSS(golden section search) method with a minimal error. To evaluate performances of the proposed method, in vitro experiments were conducted with a tissue mimicking phantom. To emulate a heterogeneous medium, the phantom was immersed in the water. From the experiments, the number of iterations was reduced from 21 to 7 with GSS method and the maximum error of the lateral resolution between direct and GSS was less than 1%. These results indicate that the proposed method can be implemented in real time to improve the image quality in the medical ultrasound imaging.

  12. Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography

    PubMed Central

    Hernandez-Andrade, Edgar; Hassan, Sonia S; Ahn, Hyunyoung; Korzeniewski, Steven J.; Yeo, Lami; Chaiworapongsa, Tinnakorn; Romero, Roberto

    2014-01-01

    Objective To evaluate cervical stiffness during pregnancy using ultrasound-derived elastography, a method used to estimate the average tissue displacement (strain) on a defined region of interest when oscillatory compression is applied. Methods Strain was calculated in two regions of interest, the endocervical canal and the entire cervix, from three anatomical planes of the cervix: mid-sagittal in the plane used for cervical length measurement, and in cross-sectional planes located at the internal and external cervical os. Associations between strain values, method of ascertainment and patient characteristics were assessed using linear mixed models to account for within-subject correlation. Inter-rater agreement in defining the degree of cervical stiffness was evaluated in 120 regions of interest acquired by two operators in 20 patients. Results A total of 1557 strain estimations were performed in 262 patients at 8-40 weeks of gestation. Adjusting for other sources of variation, 1) cervical tissue strain estimates obtained in the endocervical canal were on average 33% greater than those obtained in the entire cervix; 2) measures obtained in the cross-sectional plane of the external cervical os and sagittal plane were 45% and 13% greater compared to those measured in the cross-sectional plane of the internal cervical os, respectively; 3) mean strain rate was 14% and 5% greater among multiparous women with and without a history of preterm delivery compared to nulliparous women, respectively, and was on average 13% greater among women with a cervical length between 25-30mm compared to those with a cervical length >30mm; and 4) cervical tissue strain was more strongly associated with cervical length than with gestational age. Conclusion Semiquantitative elastography can be employed to evaluate changes in cervical stiffness during pregnancy. PMID:23151941

  13. Three-dimensional volume off-line analysis as compared to real-time ultrasound for assessing adnexal masses.

    PubMed

    Alcázar, Juan Luis; Iturra, Alberto; Sedda, Federica; Aubá, María; Ajossa, Silvia; Guerriero, Stefano; Jurado, Matías

    2012-03-01

    To assess the agreement between three-dimensional volume off-line analysis as compared to real-time ultrasound for assessing adnexal masses. Ninety-nine non-consecutive women diagnosed as having an adnexal mass were assessed by transvaginal power Doppler ultrasound. One single examiner performed all ultrasound examinations. Based on the examiner's subjective evaluation using gray scale and Doppler ultrasound findings a presumptive diagnosis (benign or malignant) was provided after real-time ultrasound was performed. Once real-time was done a 3D volume of the adnexal mass was acquired and stored by this examiner. Two examiners, unaware of the real-time ultrasound results, evaluated the 3D volumes using multiplanar display and virtual navigation and also had to provide a presumptive diagnosis (benign or malignant). These two examiners, like the first one, had information about patient's age, menopausal status and complaints. All women underwent surgery or were followed-up until cyst resolution. Histologic diagnosis was used as gold standard. Cysts that resolved spontaneously were considered as benign for analytical purposes. The Kappa index was used to assess the agreement between real time ultrasound and 3D volume analysis. Sensitivity and specificity of both methods were calculated and compared using McNemar test. Forty-one masses were malignant and 58 were benign. Agreement between real-time ultrasound and 3D volume analysis was good for both off-line examiners (Kappa index: 0.82, 95% CI: 0.70-0.93 and 0.78, 95% CI: 0.65-0.90). Sensitivities for real-time ultrasound and 3D volume analyses were 100%, 93% and 90%, respectively (p>0.05). Specificities for real-time ultrasound and 3D volume analyses were 91%, 84% and 86%, respectively (p>0.05). Off-line 3D volume analysis may be a useful method for assessing adnexal masses, showing a good agreement with real-time ultrasound and having a similar diagnostic performance. Copyright © 2011 Elsevier Ireland Ltd. All

  14. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  15. Demonstration of novel, secure, real-time, portable ultrasound transmission from an austere international location.

    PubMed

    Ogedegbe, Chinwe; Morchel, Herman; Hazelwood, Vikki; Hassler, Cynthia; Feldman, Joseph

    2012-01-01

    There is not sufficient access to medical care or medical expertise in many parts of the world. An innovative telemedicine system has been developed to provide expert medical guidance to field caregivers [who have less medical expertise but can reach the patient population in need]. Real-time ultrasound video images have been securely transmitted from the Dominican Republic to Hackensack University Medical Center, Hackensack NJ (HackensackUMC), while the expert physician at HackensackUMC maintained direct voice communication with the field caregiver. Utilizing a portable ultrasound machine (Sonosite) integrated with portable broadcasting device (LiveU), extended Focused Assessment Sonography in Trauma (e-FAST) examinations were performed on healthy volunteers and transmitted via the local cellular network. Additionally, two e-FAST examinations were conducted from a remote location without cellular coverage and transmitted via broad ground area network (BGAN) satellites. The demonstration took the technology "out of the lab" and into a real life, austere environment. The conditions of the Dominican Republic ultrasound mission provided experience on how to manage and utilize this innovative technology in areas where reliable communications and medical coverage are not readily available. The resilient transmission capabilities coupled with the security features deem this portable Telesonography (TS) equipment highly useful in the telemedicine forefront by offering healthcare in underdeveloped areas as well as potentially enhancing throughput in disaster situations.

  16. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid.

    PubMed

    Cosgrove, David; Barr, Richard; Bojunga, Joerg; Cantisani, Vito; Chammas, Maria Cristina; Dighe, Manjiri; Vinayak, Sudhir; Xu, Jun-Mei; Dietrich, Christoph F

    2017-01-01

    The World Federation for Ultrasound in Medicine and Biology (WFUMB) has produced guidelines for the use of elastography techniques including basic science, breast and liver. Here we present elastography in thyroid diseases. For each available technique, procedure, reproducibility, results and limitations are analyzed and recommendations are given. Finally, recommendations are given based on the level of evidence of the published literature and on the WFUMB expert group's consensus. The document has a clinical perspective and is aimed at assessing the usefulness of elastography in the management of thyroid diseases.

  17. Remote ultrasound palpation for robotic interventions using absolute elastography.

    PubMed

    Schneider, Caitlin; Baghani, Ali; Rohling, Robert; Salcudean, Septimiu

    2012-01-01

    Although robotic surgery has addressed many of the challenges presented by minimally invasive surgery, haptic feedback and the lack of knowledge of tissue stiffness is an unsolved problem. This paper presents a system for finding the absolute elastic properties of tissue using a freehand ultrasound scanning technique, which utilizes the da Vinci Surgical robot and a custom 2D ultrasound transducer for intraoperative use. An external exciter creates shear waves in the tissue, and a local frequency estimation method computes the shear modulus. Results are reported for both phantom and in vivo models. This system can be extended to any 6 degree-of-freedom tracking method and any 2D transducer to provide real-time absolute elastic properties of tissue.

  18. Real-Time Shear Wave versus Transient Elastography for Predicting Fibrosis: Applicability, and Impact of Inflammation and Steatosis. A Non-Invasive Comparison

    PubMed Central

    Poynard, Thierry; Pham, Tam; Perazzo, Hugo; Munteanu, Mona; Luckina, Elena; Elaribi, Djamel; Ngo, Yen; Bonyhay, Luminita; Seurat, Noemie; Legroux, Muriel; Ngo, An; Deckmyn, Olivier; Thabut, Dominique; Ratziu, Vlad; Lucidarme, Olivier

    2016-01-01

    Background and Aims Real-time shear wave elastography (2D-SWE) is a two-dimensional transient elastography and a competitor as a biomarker of liver fibrosis in comparison with the standard reference transient elastography by M probe (TE-M). The aims were to compare several criteria of applicability, and to assess inflammation and steatosis impact on elasticity values, two unmet needs. Methods We took FibroTest as the fibrosis reference and ActiTest and SteatoTest as quantitative estimates of inflammation and steatosis. After standardization of estimates, analyses used curve fitting, quantitative Lin concordance coefficient [LCC], and multivariate logistic regression. Results A total of 2,251 consecutive patients were included. We validated the predetermined 0.2 kPa cut-off as a too low minimal elasticity value identifying not-reliable 2D-SWE results (LCC with FibroTest = 0.0281[-0.119;0.175]. Other criteria, elasticity CV, body mass index and depth of measures were not sufficiently discriminant. The applicability of 2D-SWE (95%CI) 89.6%(88.2–90.8), was significantly higher than that of TE, 85.6%(84.0–87.0; P<0.0001). In patients with non-advanced fibrosis (METAVIR F0F1F2), elasticity values estimated by 2D-SWE was less impacted by inflammation and steatosis than elasticity value estimated by TE-M: LCC (95%CI) 0.039 (0.021;0.058) vs 0.090 (0.068;0.112;P<0.01) and 0.105 (0.068;0.141) vs 0.192 (0.153;0.230; P<0.01) respectively. The three analyses methods gave similar results. Conclusions Elasticity results including very low minimal signal in the region of interest should be considered not reliable. 2D-SWE had a higher applicability than TE, the reference elastography, with less impact of inflammation and steatosis especially in patients with non-advanced fibrosis, as presumed by blood tests. Trial Registration ClinicalTrials.gov NCT01927133 PMID:27706177

  19. Real-time 3-D ultrasound scan conversion using a multicore processor.

    PubMed

    Zhuang, Bo; Shamdasani, Vijay; Sikdar, Siddhartha; Managuli, Ravi; Kim, Yongmin

    2009-07-01

    Real-time 3-D ultrasound scan conversion (SC) in software has not been practical due to its high computation and I/O data handling requirements. In this paper, we describe software-based 3-D SC with high volume rates using a multicore processor, Cell. We have implemented both 3-D SC approaches: 1) the separable 3-D SC where two 2-D coordinate transformations in orthogonal planes are performed in sequence and 2) the direct 3-D SC where the coordinate transformation is directly handled in 3-D. One Cell processor can scan-convert a 192 x 192 x 192 16-bit volume at 87.8 volumes/s with the separable 3-D SC algorithm and 28 volumes/s with the direct 3-D SC algorithm.

  20. Real-time ultrasound brain perfusion imaging with analysis of microbubble replenishment in acute MCA stroke.

    PubMed

    Kern, Rolf; Diels, Anna; Pettenpohl, Johanna; Kablau, Micha; Brade, Joachim; Hennerici, Michael G; Meairs, Stephen

    2011-08-01

    Real-time ultrasound perfusion imaging (rt-UPI) allows visualization of microbubbles flowing through the cerebral microvasculature. We hypothesized that analysis of microbubble tissue replenishment would enable for characterization of perfusion deficits in acute middle cerebral artery (MCA) territory stroke. Twenty-three patients (mean age 70.2 ± 13.2 years, 9 weeks) were included. Sequential images of bubble replenishment were acquired by transcranial rt-UPI at low mechanical index immediately after microbubble destruction. Different parameters were calculated from regions of interest (ROIs): real-time time to peak (rt-TTP), rise rate (β), and plateau (A) of acoustic intensity, and A × β was used as an index of blood flow. Results were compared with diffusion-weighted and perfusion magnetic resonance imaging. Parameters of rt-UPI had lower values in ROIs of ischemic as compared with normal tissue (β=0.58 ± 0.40 versus 1.25 ± 0.83; P=0.001; A=1.44 ± 1.75 versus 2.63 ± 2.31; P=0.05; A × β=1.14 ± 2.25 versus 2.98 ± 2.70; P=0.01). Real-time time to peak was delayed in ischemic tissue (11.43 ± 2.67 versus 8.88 ± 1.66 seconds; P<0.001). From the analysis of receiver operating characteristic curves, β and A × β had the largest areas under the curve with optimal cutoff values of β<0.76 and A × β<1.91. We conclude that rt-UPI with analysis of microbubble replenishment correctly identifies ischemic brain tissue in acute MCA stroke.

  1. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    PubMed Central

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave

  2. Toward a generic real-time compression correction framework for tracked ultrasound.

    PubMed

    Pheiffer, Thomas S; Miga, Michael I

    2015-11-01

    Tissue compression during ultrasound imaging leads to error in the location and geometry of subsurface targets during soft tissue interventions. We present a novel compression correction method, which models a generic block of tissue and its subsurface tissue displacements resulting from application of a probe to the tissue surface. The advantages of the new method are that it can be realized independent of preoperative imaging data and is capable of near-video framerate compression compensation for real-time guidance. The block model is calibrated to the tip of any tracked ultrasound probe. Intraoperative digitization of the tissue surface is used to measure the depth of compression and provide boundary conditions to the biomechanical model of the tissue. The tissue displacement field solution of the model is inverted to nonrigidly transform the ultrasound images to an estimation of the tissue geometry prior to compression. This method was compared to a previously developed method using a patient-specific model and within the context of simulation, phantom, and clinical data. Experimental results with gel phantoms demonstrated that the proposed generic method reduced the mock tumor margin modified Hausdorff distance (MHD) from 5.0 ± 1.6 to 2.1 ± 0.7 mm and reduced mock tumor centroid alignment error from 7.6 ± 2.6 to 2.6 ± 1.1mm. The method was applied to a clinical case and reduced the in vivo tumor margin MHD error from 5.4 ± 0.1 to 2.9 ± 0.1mm, and the centroid alignment error from 7.2 ± 0.2 to 3.8 ± 0.4 mm. The correction method was found to effectively improve alignment of ultrasound and tomographic images and was more efficient compared to a previously proposed correction.

  3. Toward a generic real-time compression correction framework for tracked ultrasound

    PubMed Central

    Pheiffer, Thomas S.; Miga, Michael I.

    2016-01-01

    Purpose Tissue compression during ultrasound imaging leads to error in the location and geometry of subsurface targets during soft tissue interventions. We present a novel compression correction method, which models a generic block of tissue and its subsurface tissue displacements resulting from application of a probe to the tissue surface. The advantages of the new method are that it can be realized independent of preoperative imaging data and is capable of near-video framerate compression compensation for real-time guidance. Methods The block model is calibrated to the tip of any tracked ultrasound probe. Intraoperative digitization of the tissue surface is used to measure the depth of compression and provide boundary conditions to the biomechanical model of the tissue. The tissue displacement field solution of the model is inverted to nonrigidly transform the ultrasound images to an estimation of the tissue geometry prior to compression. This method was compared to a previously developed method using a patient-specific model and within the context of simulation, phantom, and clinical data. Results Experimental results with gel phantoms demonstrated that the proposed generic method reduced the mock tumor margin modified Hausdorff distance (MHD) from 5.0 ± 1.6 to 2.1 ± 0.7 mm and reduced mock tumor centroid alignment error from 7.6 ± 2.6 to 2.6 ± 1.1 mm. The method was applied to a clinical case and reduced the in vivo tumor margin MHD error from 5.4 ± 0.1 to 2.9 ± 0.1 mm, and the centroid alignment error from 7.2 ± 0.2 to 3.8 ± 0.4 mm. Conclusions The correction method was found to effectively improve alignment of ultrasound and tomographic images and was more efficient compared to a previously proposed correction. PMID:25903777

  4. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.

    PubMed

    Piscaglia, F; Salvatore, V; Mulazzani, L; Cantisani, V; Schiavone, C

    2016-02-01

    measuring both liver 13 and spleen stiffness, which is a new application of elastography 14, of interest for the prediction of the degree of portal hypertension 15 16.Nowadays other companies have started producing equipment with pSWE technology, but only very few articles have been published so far, for instance describing the use of Philips(®) equipment, which was the second to provide pSWE. These articles show preliminary good results also in comparison with TE 17 18. Not enough evidence is currently available in the literature about the elastographic performance of the products most recently introduced to the market. Furthermore, with some products the shear wave velocities generated by a single ultrasound acoustic push pulse can be measured in a bidimensional area (a box in the range of 2 - 3 cm per side) rather than in a single small point, producing a so-called bidimensional 2D-SWE 1. The stiffness is depicted in color within the area and refreshing of the measurement occurs every 1 - 2 seconds. Once the best image is acquired, the operator chooses a Region Of Interest (ROI) within the color box, where the mean stiffness is then calculated. 2D-SWE can be performed as a "one shot" technique or as a semi-"real-time" technique for a few seconds (at about 1 frame per second) in order to obtain a stable elastogram. With either technique, there should be no motion/breathing during image acquisition. A bidimensional averaged area should overcome the limitation of pSWE to inadvertently investigate small regions of greater or lesser stiffness than average. A shear wave quality indicator could be useful to provide real-time feedback and optimize placement of the sampling ROIs, a technology recently presented by Toshiba(®), but which is still awaiting validation in the literature.Supersonic Imagine by Aixplorer(®) which works with a different modality of insonation and video analysis compared to the the previously-mentioned three techniques (i. e., transient

  5. Reliability and Validity of Quantifying Absolute Muscle Hardness Using Ultrasound Elastography

    PubMed Central

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki

    2012-01-01

    Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young’s moduli of seven tissue-mimicking materials (in vitro; Young’s modulus range, 20–80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young’s modulus ratio of two reference materials, one hard and one soft (Young’s moduli of 7 and 30 kPa, respectively), the Young’s moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young’s moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young’s moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified. PMID:23029231

  6. Backfat thickness and longissimus dorsi real-time ultrasound measurements in light lambs.

    PubMed

    Esquivelzeta, C; Casellas, J; Fina, M; Piedrafita, J

    2012-12-01

    The aim of this study was to assess the accuracy of ultrasound measurements for predicting carcass traits in 124 Spanish pascual-type lambs (13 to 16 kg carcass weight). Ultrasound images were taken transversal and longitudinal to the vertebral column and at thoracic (TV; between 12th and 13th ribs) and lumbar (LV; between first and second lumbar vertebrae) locations. Skin thickness, subcutaneous backfat thickness (BFT), and depth (DLD), width (WLD), and area (ALD) of longissimus dorsi were obtained with ImageJ 1.42q software. After slaughter, BFT (TV, 2.30 ± 0.06 mm; LV, 2.46 ± 0.06 mm), DLD (TV, 2.47 ± 0.03 cm; LV, 2.48 ± 0.03 cm), WLD (TV, 4.50 ± 0.04 cm; LV, 4.60 ± 0.04 cm), and ALD (TV, 9.96 ± 0.12 cm(2); LV, 10.19 ± 0.13 cm(2)) were directly measured on the lamb carcass. Correlations between ultrasound and direct carcass measurements were greater than 0.61 for DLD, WLD, and ALD (P < 0.05) whereas they fluctuated between 0.32 and 0.60 for BFT (P < 0.05); moreover, correlations were significantly (P < 0.05) greater for transversal than for longitudinal views. In a similar way, linear regression analyses suggested a moderate underestimation for BFT and lumbar DLD when using real-time ultrasound technologies whereas WLD, ALD, and thoracic DLD suffered from under- and overestimation for small and large values of carcass traits, respectively. After decomposing the mean square prediction error (MSPE) for the different ultrasound measurements, we found that the error due to disturbance contributed most to the MSPE followed by the error of central tendency and the error due to regression. The SE of prediction (SEP) was also calculated as an additional precision indicator, obtaining estimates less than that in previous studies with larger lambs. In conclusion, transversal ultrasound measurements at the thoracic and lumbar levels could be a useful tool for predicting DLD, WLD, and ALD in light lambs, perhaps suffering from worse prediction properties when

  7. Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Kuo, Nathanael; Kang, Hyun Jae; Song, Danny Y.; Kang, Jin U.; Boctor, Emad M.

    2012-06-01

    Prostate brachytherapy is a popular prostate cancer treatment option that involves the permanent implantation of radioactive seeds into the prostate. However, contemporary brachytherapy procedure is limited by the lack of an imaging system that can provide real-time seed-position feedback. While many other imaging systems have been proposed, photoacoustic imaging has emerged as a potential ideal modality to address this need, since it could easily be incorporated into the current ultrasound system used in the operating room. We present such a photoacoustic imaging system built around a clinical ultrasound system to achieve the task of visualizing and localizing seeds. We performed several experiments to analyze the effects of various parameters on the appearance of brachytherapy seeds in photoacoustic images. We also imaged multiple seeds in an ex vivo dog prostate phantom to demonstrate the possibility of using this system in a clinical setting. Although still in its infancy, these initial results of a photoacoustic imaging system for the application of prostate brachytherapy seed localization are highly promising.

  8. Ultrasound assessment of endothelial function in real-time (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Faita, Francesco; Gemignani, Vincenzo; Demi, Marcello

    2005-04-01

    The characterization of the endothelial function is one of the most attractive research topics in modern vascular medicine. The evaluation of the flow-mediated vasodilation (FMD) of the brachial artery is a widely used measurement technique. Despite its widespread use, this technique has some limitations due to the difficulties in obtaining an accurate measurement of such a small vessel (3 to 5 mm) by using ultrasounds. The system we present in this paper can automatically measure the diameter of the artery with high accuracy on each image of a video sequence. Furthermore, it processes the data in real-time, thus providing the physician with an immediate response while the examination is still in progress. The main part of the system is a video processing board based on a state-of-the-art digital signal processor (DSP). The board acquires the video signal generated by the ultrasound equipment which furnishes a longitudinal section of the artery vessel. For each image, the DSP automatically locates the two borders of the vessel and subsequently computes the diameter. The algorithm used to automatically locate the borders of the vessel is based on a new operator of edge detection which was derived from the first absolute central moment. Tests in many clinical centers proved that the system provides very accurate measurements and is a remarkable step forward toward a more systematic evaluation of the FMD.

  9. Case study: could ultrasound and elastography visualized densified areas inside the deep fascia?

    PubMed

    Luomala, Tuulia; Pihlman, Mika; Heiskanen, Jouko; Stecco, Carla

    2014-07-01

    Many manual techniques describe palpable changes in the subcutaneous tissue. Many manual therapists have perceived palpable tissue stiffness and how it changes after treatment. No clear demonstration exists of the presence of specific alterations in the subcutaneous tissue and even less a visualization of their changes following manual therapy. This case study visualizes by ultrasound and elastography an alteration of the deep fascia in a 40-year-old male with subacute pain in the calf area. Ultrasound and elastography permits visualization of gliding, echogenicity and elasticity of deep fascia and their changes, after manual therapy (Fascial Manipulation(©)). This study suggests the possible use of the ultrasound and elastography to furnish a more objective picture of the "sensations" that are commonly reported by manual therapists, and which supports clinicians in the diagnosis of the myofascial pain.

  10. Towards real-time 3D ultrasound planning and personalized 3D printing for breast HDR brachytherapy treatment.

    PubMed

    Poulin, Eric; Gardi, Lori; Fenster, Aaron; Pouliot, Jean; Beaulieu, Luc

    2015-03-01

    Two different end-to-end procedures were tested for real-time planning in breast HDR brachytherapy treatment. Both methods are using a 3D ultrasound (3DUS) system and a freehand catheter optimization algorithm. They were found fast and efficient. We demonstrated a proof-of-concept approach for personalized real-time guidance and planning to breast HDR brachytherapy treatments. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Measurement of muscle architecture concurrently with muscle hardness using ultrasound strain elastography.

    PubMed

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Takahashi, Hideyuki

    2014-09-01

    The B-mode ultrasound image that can measure muscle architecture is displayed side by side with the ultrasound strain elastogram that can assess muscle hardness. Consequently, muscle architecture can be measured concurrently with muscle hardness using ultrasound strain elastography. To demonstrate the measurement of muscle architecture concurrently with muscle hardness using ultrasound strain elastography. Concurrent measurements of muscle architectural parameters (muscle thickness, pennation angle, and fascicle length) and muscle hardness of the medial gastrocnemius were performed with ultrasound strain elastography. Separate measurements of the muscle architectural parameters were also performed for use as reference values for the concurrent measurements. Both types of measurements were performed twice at 20° dorsiflexion, neutral position, and 30° plantar flexion. Coefficients of variance of the muscle architectural parameters obtained from the concurrent measurements (≤7.6%) were significantly higher than those obtained from the separate measurements (≤2.4%) (all P < 0.05). Intraclass correlation coefficients of the architectural parameters were lower in the concurrent measurements (≥0.74) than in the separate measurements (≥0.97). However, there were no significant differences in any muscle architectural parameters between the concurrent and separate measurements (all P > 0.05). The use of ultrasound strain elastography for the concurrent measurement of muscle architecture and muscle hardness is feasible. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Are portable bladder scanning and real-time ultrasound accurate measures of bladder volume in postnatal women?

    PubMed

    Mathew, S; Horne, A W; Murray, L S; Tydeman, G; McKinley, C A

    2007-08-01

    Real-time ultrasound and portable bladder scanners are commonly used instead of catheterisation to determine bladder volumes in postnatal women but it is not known whether these are accurate. Change in bladder volumes measured by ultrasound and portable scanners were compared with actual voided volume (VV) in 100 postnatal women. The VV was on average 41 ml (CI 29 - 54 ml) higher than that measured by ultrasound, and 33 ml (CI 17 - 48 ml) higher than that measured by portable scanners. Portable scanner volumes were 9 ml (CI -8 - 26 ml) higher than those measured by ultrasound. Neither method is an accurate tool for detecting bladder volume in postnatal women.

  13. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    NASA Astrophysics Data System (ADS)

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; de Jong, N.; Vos, H. J.

    2015-10-01

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. "superharmonic" imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which `signal' denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  14. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    SciTech Connect

    Peruzzini, D.; Viti, J.; Tortoli, P.; Verweij, M. D.; Jong, N. de; Vos, H. J.

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  15. Real-Time MRI Navigated Ultrasound for Preoperative Tumor Evaluation in Breast Cancer Patients: Technique and Clinical Implementation.

    PubMed

    Park, Ah Young; Seo, Bo Kyoung

    2016-01-01

    Real-time magnetic resonance imaging (MRI) navigated ultrasound is an image fusion technique to display the results of both MRI and ultrasonography on the same monitor. This system is a promising technique to improve lesion detection and analysis, to maximize advantages of each imaging modality, and to compensate the disadvantages of both MRI and ultrasound. In evaluating breast cancer stage preoperatively, MRI and ultrasound are the most representative imaging modalities. However, sometimes difficulties arise in interpreting and correlating the radiological features between these two different modalities. This pictorial essay demonstrates the technical principles of the real-time MRI navigated ultrasound, and clinical implementation of the system in preoperative evaluation of tumor extent, multiplicity, and nodal status in breast cancer patients.

  16. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography

    NASA Astrophysics Data System (ADS)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella

    2017-08-01

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  17. Validity of Measurement of Shear Modulus by Ultrasound Shear Wave Elastography in Human Pennate Muscle

    PubMed Central

    Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide

    2015-01-01

    Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe’s principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction. PMID:25853777

  18. Novel Ultrasound Guidance System for Real-time Central Venous Cannulation: Safety and Efficacy

    PubMed Central

    Ferre, Robinson M.; Mercier, Mark

    2014-01-01

    Introduction Real-time ultrasound guidance is considered to be the standard of care for central venous access for non-emergent central lines. However, adoption has been slow, in part because of the technical challenges and time required to become proficient. The AxoTrack® system (Soma Access Systems, Greenville, SC) is a novel ultrasound guidance system recently cleared for human use by the United States Food and Drug Administration (FDA). Methods After FDA clearance, the AxoTrack® system was released to three hospitals in the United States. Physicians and nurse practitioners who work in the intensive care unit or emergency department and who place central venous catheters were trained to use the AxoTrack® system. De-identified data about central lines placed in living patients with the AxoTrack® system was prospectively gathered at each of the three hospitals for quality assurance purposes. After institutional review board approval, we consolidated the data for the first five months of use for retrospective review. Results The AxoTrack® system was used by 22 different health care providers in 50 consecutive patients undergoing central venous cannulation (CVC) from September 2012 to February 2013. All patients had successful CVC with the guidance of the AxoTrack® system. All but one patient (98%) had successful cannulation on the first site attempted. There were no reported complications, including pneumothorax, hemothorax, arterial puncture or arterial cannulation. Conclusion The AxoTrack® system was a safe and effective means of CVC that was used by a variety of health care practitioners. PMID:25035764

  19. Lung Ultrasound Surface Wave Elastography: A Pilot Clinical Study.

    PubMed

    Zhang, Xiaoming; Osborn, Thomas; Zhou, Boran; Meixner, Duane; Kinnick, Randall R; Bartholmai, Brian; Greenleaf, James F; Kalra, Sanjay

    2017-09-01

    A lung ultrasound surface wave elastography (LUSWE) technique is developed to measure superficial lung tissue elastic properties. The purpose of this paper was to translate LUSWE into clinical studies for assessing patients with interstitial lung disease (ILD) and present the pilot data from lung measurements on 10 healthy subjects and 10 patients with ILD. ILD includes multiple lung disorders in which the lung tissue is distorted and stiffened by tissue fibrosis. Chest radiography and computed tomography are the most commonly used techniques for assessing lung disease, but they are associated with radiation and cannot directly measure lung elastic properties. LUSWE provides a noninvasive and nonionizing technique to measure the elastic properties of superficial lung tissue. LUSWE was used to measure regions of both lungs through six intercostal spaces for patients and healthy subjects. The data are presented as wave speed at 100, 150, and 200 Hz at the six intercostal spaces. As an example, the surface wave speeds are, respectively, 1.88 ± 0.11 m/s at 100 Hz, 2.74 ± 0.26 m/s at 150 Hz, and 3.62 ± 0.13 m/s at 200 Hz for a healthy subject in the upper right lung; this is in comparison to measurements from an ILD patient of 3.3 ± 0.37 m/s at 100 Hz, 4.38 ± 0.33 m/s at 150 Hz, and 5.24 ± 0.44 m/s at 200 Hz in the same lung space. Significant differences in wave speed between healthy subjects and ILD patients were found. LUSWE is a safe and noninvasive technique which may be useful for assessing ILD.

  20. Real-time Focused Ultrasound Surgery (FUS) Monitoring Using Harmonic Motion Imaging (HMI)

    SciTech Connect

    Maleke, Caroline; Konofagou, Elisa E.

    2009-04-14

    Monitoring changes in tissue mechanical properties to optimally control thermal exposure is important in thermal therapies. The amplitude-modulated (AM) harmonic motion imaging (HMI) for focused ultrasound (HMIFU) technique is a radiation force technique, which has the capability of tracking tissue stiffness during application of an oscillatory force. The feasibility of HMIFU for assessing mechanical tissue properties has been previously demonstrated. In this paper, a confocal transducer, combining a 4.5 MHz FUS transducer and a 3.3 MHz phased array imaging transducer, was used. The FUS transducer was driven by AM wave at 15 Hz with an acoustic intensity (I{sub spta}) was equal to 1050 W/cm{sup 2}. A lowpass digital filter was used to remove the spectrum of the higher power beam prior to displacement estimation. The resulting axial tissue displacement was estimated using 1D cross-correlation with a correlation window of 2 mm and a 92.5% overlap. A thermocouple was also used to measure the temperature near the ablated region. 2D HMI-images from six-bovine-liver specimens indicated the onset of coagulation necrosis through changes in amplitude displacement after coagulation due to its simultaneous probing and heating capability. The HMI technique can thus be used to monitor temperature-related stiffness changes of tissues during thermal therapies in real-time, i.e., without interrupting or modifying the treatment protocol.

  1. Real-time contrast enhanced ultrasound imaging of focal splenic lesions.

    PubMed

    Li, Wei; Liu, Guangjian; Wang, Wei; Wang, Zhu; Huang, Yang; Xu, ZuoFeng; Xie, XiaoYan; Lu, MingDe

    2014-04-01

    To investigate the imaging features of focal splenic lesions (FSLs) on contrast-enhanced ultrasound (CEUS). Thirty two patients with FSLs proved by pathology were retrospectively analyzed. CEUS was performed using intravenous bolus injection of 2.4 ml sulfur hexafluoride-filled microbubble contrast agent and real time scanning. There were hemangioma (n=7), lymphoma (n=8), true cyst (n=3), infarction (n=4), hematolymphangioma (n=2), metastasis tumor (n=2), and one for each of the following entities extramedullary hemopoiesis, hamartoma, tuberculosis, Langerhans' cell histiocytosis, inflammatory pseudotumor and myxofibrosarcoma. Among 21 benign lesions, 4 infarctions and 3 cysts presented non-enhancement throughout CEUS scanning, and the other 14 lesions displayed various enhancement levels with 6 (42.9%) hyper-enhancement, 2 (14.3%) iso-enhancement and 6 (42.9%) hypo-enhancement in arterial phase and 11 (78.6%) hypo-enhancement, 1 (7.1%) iso-enhancement and 2 (14.3%) hyper-enhancement in late phase, respectively. The enhancement pattern included 9 (64.3%) homogeneous, 4 (28.6%) heterogeneous and 1 (7.1%) rim-like enhancement. As for the malignant FSLs, all the lesions became completely or extensively hypo-enhancement during the late phase no matter their vascularity during arterial phase. The CEUS features reported in this series may enrich the knowledge for CEUS characterization of FSLs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Using the automated biopsy gun with real-time ultrasound for native renal biopsy.

    PubMed

    Ori, Yaacov; Neuman, Haim; Chagnac, Avry; Siegal, Annette; Tobar, Ana; Itkin, Maxim; Gafter, Uzi; Korzets, Asher

    2002-09-01

    The use of an automated biopsy system for renal biopsy has recently gained popularity, but its safety in single functioning kidneys is unclear. To report our experience with the automated system for closed renal biopsy during a 5 year period. Eighty-five patients underwent percutaneous native renal biopsy with the automated biopsy gun (16G needle) under real-time ultrasound. They were chronologically divided into two groups: 41 patients (group A), using an older ultrasound machine; and 44 patients (group B), using a newer ultrasound machine. Nine patients biopsied with a manual 14G Tru-cut needle served as the control (group C). The number of "attempted" passes at the kidney was 4.0 +/- 0.1 in group B, 4.7 +/- 0.3 in group A (P < 0.05 vs. group B), and 5.8 +/- 0.5 in group C (P < 0.01 vs. group B). The number of successful passes did not differ (3.3 +/- 0.1, 3.3 +/- 0.1, 3.1 +/- 0.2). The ratio of "attempted/successful" was 1.28 +/- 0.07 in group B, 1.95 +/- 0.38 in A, and 1.90 +/- 0.21 in C (P < 0.01 vs. B). The number of glomeruli obtained was similar in the three groups. Adequate tissue was obtained in 95%, 98%, and 100%, respectively. Hemoglobin decreased by 4.3 +/- 1.1% in group B, 6.9 +/- 1.3% in group A, and 11.3 +/- 1.8% in group C (P < 0.05 vs. B). Perinephric/subcapsular hematoma occurred in 5 patients (11.4%) in group A (2 taking aspirin), in 2 patients (4.9%) in group B, and in none in group C. The necessity for blood transfusion post-biopsy was similar in all groups. Four of five patients with single functioning kidneys (one in group A and four in group B) had uneventful biopsies, and adequate tissue was obtained in three. The use of the automated biopsy gun is effective, safe and has a low rate of major complications. It may be used safely in single functioning kidneys.

  3. Value of Strain Elastography Ultrasound in Differentiation of Breast Masses and Histopathologic Correlation

    PubMed Central

    Atabey, Aysun Okar; Arıbal, Erkin; Ergelen, Rabia; Kaya, Handan

    2014-01-01

    Objective US elastography is an emerging technique that can be used during breast US examination. The increasing awareness of breast cancer led to an increase in mammography and breast US examinations. The specificity of these techniques is not high enough to prevent unnecessary biopsies. There is still a need for a more specific technique that can overcome this problem. This study aimed to evaluate the value of strain elastography in breast lesions. Materials and Methods In this study, 110 lesions of 96 patients were evaluated with strain elastography. Five score system was used for lesion scoring. The histopathologic results of lesions were obtained and were accepted as gold standard. The sensitivity, specificity, PPV and NPV of the technique were calculated. Histopathologic and strain elastography results were correlated. Results The sensitivity of US strain elastography was calculated as 83%, the specificity as 89%, the positive predictive value as 79% and the negative predictive value as 91%. There were no score 1 lesions. All score 2 lesions were benign. Score 5 had the highest true positivity rate. Conclusion We believe that ultrasound elastography is an effective imaging technique that can be used as an adjunct for differential diagnosis, prior to the decision to biopsy a lesion in certain cases.

  4. Accuracy of ultrasound elastography in the diagnosis of thyroid cancer in a low-risk population.

    PubMed

    Vidal-Casariego, A; López-González, L; Jiménez-Pérez, A; Ballesteros-Pomar, M D; Kyriakos, G; Urioste-Fondo, A; Álvarez-San Martín, R; Cano-Rodríguez, I; Jiménez-García de la Marina, J M

    2012-11-01

    Stiffness has been associated to malignancy in prostate and breast, as well as thyroid. Ultrasound elastography objectively measures tissue elasticity, and previous studies have described it as a high sensitivity and specificity technique for the detection of malignant thyroid nodules in high-risk populations. The aim was to assess the accuracy of elastography in a population with low risk of malignancy. 128 consecutive patients with nodular goiter were recruited. Elastography and ultrasound-guided fine-needle aspiration were performed. When malignancy was suspected by citology, surgery was recommended. Thyroid nodules were classified by elastography according the criteria described by Ueno, and an alternative classification. Sensitivity, specificity, predictive values, and odds ratio were calculated. Most patients were female, aged 56.1 year, with single nodule (52.0%) or multinodular goiter (45.6%), and a few thyroiditis (2.4%). The majority of nodules were mostly elastic. Fine-needle aspiration found 86% of benign nodules, 9.3% of indeterminate, and 4.7% possibly malignant. After surgery, 3 malignant nodules were confirmed, all of them being papillary carcinomas. All the malignant nodules were mostly elastic, as well as 75% of indeterminate nodules. Low values of sensitivity and specificity were found for elastic nodules being benign and hard nodules malignant. In a low-risk population for thyroid cancer, elastography lacks accuracy for the diagnosis of malignant nodules. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  5. Ultrasound-based elastography for the diagnosis of portal hypertension in cirrhotics

    PubMed Central

    Şirli, Roxana; Sporea, Ioan; Popescu, Alina; Dănilă, Mirela

    2015-01-01

    Progressive fibrosis is encountered in almost all chronic liver diseases. Its clinical signs are diagnostic in advanced cirrhosis, but compensated liver cirrhosis is harder to diagnose. Liver biopsy is still considered the reference method for staging the severity of fibrosis, but due to its drawbacks (inter and intra-observer variability, sampling errors, unequal distribution of fibrosis in the liver, and risk of complications and even death), non-invasive methods were developed to assess fibrosis (serologic and elastographic). Elastographic methods can be ultrasound-based or magnetic resonance imaging-based. All ultrasound-based elastographic methods are valuable for the early diagnosis of cirrhosis, especially transient elastography (TE) and acoustic radiation force impulse (ARFI) elastography, which have similar sensitivities and specificities, although ARFI has better feasibility. TE is a promising method for predicting portal hypertension in cirrhotic patients, but it cannot replace upper digestive endoscopy. The diagnostic accuracy of using ARFI in the liver to predict portal hypertension in cirrhotic patients is debatable, with controversial results in published studies. The accuracy of ARFI elastography may be significantly increased if spleen stiffness is assessed, either alone or in combination with liver stiffness and other parameters. Two-dimensional shear-wave elastography, the ElastPQ technique and strain elastography all need to be evaluated as predictors of portal hypertension. PMID:26556985

  6. Ultrasound-Based Carotid Elastography for Detection of Vulnerable Atherosclerotic Plaques Validated by Magnetic Resonance Imaging.

    PubMed

    Huang, Chengwu; Pan, Xiaochang; He, Qiong; Huang, Manwei; Huang, Lingyun; Zhao, Xihai; Yuan, Chun; Bai, Jing; Luo, Jianwen

    2016-02-01

    Ultrasound-based carotid elastography has been developed to estimate the mechanical properties of atherosclerotic plaques. The objective of this study was to evaluate the in vivo capability of carotid elastography in vulnerable plaque detection using high-resolution magnetic resonance imaging as reference. Ultrasound radiofrequency data of 46 carotid plaques from 29 patients (74 ± 5 y old) were acquired and inter-frame axial strain was estimated with an optical flow method. The maximum value of absolute strain rate for each plaque was derived as an indicator for plaque classification. Magnetic resonance imaging of carotid arteries was performed on the same patients to classify the plaques into stable and vulnerable groups for carotid elastography validation. The maximum value of absolute strain rate was found to be significantly higher in vulnerable plaques (2.15 ± 0.79 s(-1), n = 27) than in stable plaques (1.21 ± 0.37 s(-1), n = 19) (p < 0.0001). Receiver operating characteristic curve analysis was performed, and the area under the curve was 0.848. Therefore, the in vivo capability of carotid elastography to detect vulnerable plaques, validated by magnetic resonance imaging, was proven, revealing the potential of carotid elastography as an important tool in atherosclerosis assessment and stroke prevention.

  7. Considering Angle Selection When Using Ultrasound Electrode Displacement Elastography to Evaluate Radiofrequency Ablation of Tissues

    PubMed Central

    Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu

    2014-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347

  8. Ultrasound simulation of real-time temperature estimation during radiofrequency ablation using finite element models.

    PubMed

    Daniels, M J; Jiang, J; Varghese, T

    2008-03-01

    Radiofrequency ablation is the most common minimally invasive therapy used in the United States to treat hepatocellular carcinoma and liver metastases. The ability to perform real-time temperature imaging while a patient is undergoing ablation therapy may help reduce the high recurrence rates following ablation therapy. Ultrasound echo signals undergo time shifts with increasing temperature due to sound speed and thermal expansion, which are tracked using both 1D cross correlation and 2D block matching based speckle tracking methods. In this paper, we present a quantitative evaluation of the accuracy and precision of temperature estimation using the above algorithms on both simulated and experimental data. A finite element analysis simulation of radiofrequency ablation of hepatic tissue was developed. Finite element analysis provides a method to obtain the exact temperature distribution along with a mapping of the tissue displacement due to thermal expansion. These local displacement maps were combined with the displacement due to speed of sound changes and utilized to generate ultrasound radiofrequency frames at specified time increments over the entire ablation procedure. These echo signals provide an ideal test-bed to evaluate the performance of both speckle tracking methods, since the estimated temperature results can be compared directly to the exact finite element solution. Our results indicate that the 1D cross-correlation (CC) method underestimates the cumulative displacement by 0.20mm, while the underestimation with 2D block matching (BM) is about 0.14 mm after 360 s of ablation. The 1D method also overestimates the size of the ablated region by 5.4% when compared to 2.4% with the 2D method after 720 s of ablation. Hence 2D block matching provides better tracking of temperature variations when compared to the 1D cross-correlation method over the entire duration of the ablation procedure. In addition, results obtained using 1D cross-correlation diverge from

  9. Real time studies of Elastic Moduli Pu Aging using Resonant Ultrasound Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maiorov, Boris

    Elastic moduli are fundamental thermodynamic susceptibilities that connect directly to thermodynamics, electronic structure and give important information about mechanical properties. To determine the time evolution of the elastic properties in 239Pu and it Ga alloys, is imperative to study its phase stability and self-irradiation damage process. The most-likely sources of these changes include a) ingrowth of radioactive decay products like He and U, b) the introduction of radiation damage, c) δ-phase instabilities towards α-Pu or to Pu3Ga. The measurement of mechanical resonance frequencies can be made with extreme precision and used to compute the elastic moduli without corrections giving important insight in this problem. Using Resonant Ultrasound Spectroscopy, we measured the time dependence of the mechanical resonance frequencies of fine-grained polycrystalline δ-phase 239Pu, from 300K up to 480K. At room temperature, the shear modulus shows an increase in time (stiffening), but the bulk modulus decreases (softening). These are the first real-time measurements of room temperature aging of the elastic moduli, and the changes are consistent with elastic moduli measurements performed on 44 year old δ-Pu. As the temperature is increased, the rate of change increases exponentially, with both moduli becoming stiffer with time. For T>420K an abrupt change in the time dependence is observed indicating that the bulk and shear moduli have opposite rates of change. Our measurements provide a basis for ruling out the decomposition of δ-Pu towards α-Pu or Pu3Ga, and indicate a complex defect-related scenario from which we are gathering important clues.

  10. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    NASA Astrophysics Data System (ADS)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  11. Fluorescent Microscope System to Monitor Real-Time Interactions between Focused Ultrasound, Echogenic Drug Delivery Vehicles, and Live Cell Membranes

    PubMed Central

    Ibsen, Stuart; Benchimol, Michael; Esener, Sadik

    2012-01-01

    Rapid development in the field of ultrasound triggered drug delivery has made it essential to study the real-time interaction between the membranes of live cells and the membranes of echogenic delivery vehicles under exposure to focused ultrasound. The objective of this work was to design an analysis system that combined fluorescent imagining, high speed videography, and definable pulse sequences of focused ultrasound to allow for real time observations of both cell and vehicle membranes. Documenting the behavior of the membranes themselves has not previously been possible due to limitations with existing optical systems used to understand the basic physics of microbubble/ultrasound interaction and the basic interaction between microbubbles and cells. The performance of this new system to monitor membrane behavior was demonstrated by documenting the modes of vehicle fragmentation at different ultrasound intensity levels. At 1.5 MPa the membranes were shown to completely fragment while at intensities below 1 MPa there is a popping and slow unfolding. The interaction between these vehicles and cell membranes was also documented by the removal of fluorescent particles from the surfaces of live cells out to 20 μm from the microbubble location. The fluid flow created by microstreaming around ensonated microbubbles was documented at video recording speeds from 60 to 18,000 frames per second. This information about membrane behavior allows the chemical and physical properties of the drug delivery vehicle to be designed along with the ultrasound pulse sequence to cause the most efficient drug delivery. PMID:22749476

  12. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.

    PubMed

    Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao

    2016-09-01

    Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and

  13. Quasi-static elastography and its application in investigation of focused ultrasound induced tissue lesions

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Ling, Tao; Shen, Yong; Wang, Yan; Zheng, Hairong; Li, Faqi

    2012-10-01

    Monitoring of Focused Ultrasound (FUS) therapy has always been a key factor for a successful therapy. Although B-mode ultrasound has long been used for monitoring FUS therapy, the gray scale changes can not precisely reflect the lesion formation inside the tissue, while MR thermometry is considered to be too expensive. In this study, elastography had been performed using a commercial ultrasound system to investigate lesions produced by FUS irradiation in vitro. Several motion detection algorithms had been performed to improve the motion detection accuracy in the elastography. The effects of different algorithms on the motion detection accuracy were compared. Experimental results on the FUS induced lesion in swine muscle were introduced. The results indicated that lesions induced by small dosage of FUS inside the tissue can be successfully detected, which has a profound clinical meaning for the monitoring of FUS therapy.

  14. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  15. Ultrasound elastography of ethanol-induced hepatic lesions: in vitro study.

    PubMed

    Cui, Li-gang; Shao, Jin-hua; Wang, Jin-rui; Bai, Jing; Zhang, Yi-zhuo

    2009-06-01

    To study the value of ultrasound elastography in evaluation of ethanol-induced lesions of liver. Alcohol with a dose of 2 ml was injected into a fresh porcine liver under ultrasound guidance to create stiff necrosis. Then freehand elastography of the lesion from the identical scan plane was obtained with SONOLINE Antares system using VF10-5 probe at about every 30 seconds till 6 minutes later. The original high quality radiofrequency data were acquired through an ultrasound research interface which was provided by the ultrasound system. Then, corresponding elastograms were produced offline using cross-correlation technique and compared with gross pathology findings. Gray-scale sonogram showed a hyperechoic area with acoustic shadow below appeared immediately after alcohol injection. The hyperechoic area tended to be diffuse and its boundary to be illegible with time. On the contrary, the ethanol-induced lesion in elastogram appeared as a low strain hard region surrounded by high strain soft hepatic tissues, with clear but irregular boundaries. Sequential elastograms with the sketched lesion boundaries showed that the lesion area increased in the first 3 minutes after ethanol injection, and then reached a plateau which corresponding to gross specimen. Ultrasound elastography is capable of detecting and evaluating the diffusion of ethanol-induced hepatic lesion, and more sensitive and accurate than routine sonography.

  16. Reliability Criteria for Liver Stiffness Measurements with Real-Time 2D Shear Wave Elastography in Different Clinical Scenarios of Chronic Liver Disease.

    PubMed

    Thiele, M; Madsen, B S; Procopet, B; Hansen, J F; Møller, L M S; Detlefsen, S; Berzigotti, A; Krag, A

    2016-06-07

    Purpose: Liver stiffness measurement by real-time 2-dimensional shear wave elastography (2D-SWE) lacks universal reliability criteria. We sought to assess whether previously published 2D-SWE reliability criteria for portal hypertension were applicable for the evaluation of liver fibrosis and cirrhosis, and to look for criteria that minimize the risk of misclassification in this setting. Materials and Methods: In a biopsy-controlled diagnostic study, we obtained five 2D-SWE measurements of optimal image quality. Correctly classified cases of fibrosis and cirrhosis were compared to misclassified cases. We compared reliability predictors (standard deviation (SD), SD/mean, size of region of interest (ROI) and difference between a single measurement and the patient's median) with those obtained in a prior study on clinically significant portal hypertension. Results: We obtained 678 2D-SWE measurements from 142 patients. Overall, the variability in liver stiffness within single 2D-SWE measurements was low (SD = 1.1 ± 1.5kPa; SD/mean = 12 ± 9 %). Intra-observer analysis showed almost perfect concordance (intraclass correlation coefficient = 0.95; 95 % CI 0.94 - 0.96; average difference from median = 0.4 ± 0.9kPa). For the diagnosis of cirrhosis, a smaller SD (optimally ≤ 1.75 kPa) and larger ROI size (optimally ≥ 18 mm) were associated with higher accuracy. Similarly, within the published cohort of patients assessed for portal hypertension, a low variability of measurements was associated with high reliability. Conclusion: A high quality 2D-SWE elastogram ensures low variability and high reliability, regardless of indication. We recommend aiming for a combination of low standard deviation and large ROI.

  17. SU-E-J-205: Monte Carlo Modeling of Ultrasound Probes for Real-Time Ultrasound Image-Guided Radiotherapy

    SciTech Connect

    Hristov, D; Schlosser, J; Bazalova, M; Chen, J

    2014-06-01

    Purpose: To quantify the effect of ultrasound (US) probe beam attenuation for radiation therapy delivered under real-time US image guidance by means of Monte Carlo (MC) simulations. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their CT images in the EGSnrc BEAMnrc and DOSXYZnrc codes. Due to the metal parts, the probes were scanned in a Tomotherapy machine with a 3.5 MV beam. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2–8.0 g/cm{sup 3}. Beam attenuation due to the probes was measured in a solid water phantom for a 6 MV and 15 MV 15x15 cm{sup 2} beam delivered on a Varian Trilogy linear accelerator. The dose was measured with the PTW-729 ionization chamber array at two depths and compared to MC simulations. The extreme case beam attenuation expected in robotic US image guided radiotherapy for probes in upright position was quantified by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities were 4.6 and 4.2 g/cm{sup 3} in the C5-2 and X6-1 probe, respectively. Gamma analysis of the simulated and measured doses revealed that over 98% of measurement points passed the 3%/3mm criteria for both probes and measurement depths. The extreme attenuation for probes in upright position was found to be 25% and 31% for the C5-2 and X6-1 probe, respectively, for both 6 and 15 MV beams at 10 cm depth. Conclusion: MC models of two US probes used for real-time image guidance during radiotherapy have been built. As a Result, radiotherapy treatment planning with the imaging probes in place can now be performed. J Schlosser is an employee of SoniTrack Systems, Inc. D Hristov has financial interest in SoniTrack Systems, Inc.

  18. Ultrasound Shear Wave Elastography: A Novel Method to Evaluate Bladder Pressure.

    PubMed

    Sturm, Renea M; Yerkes, Elizabeth B; Nicholas, Jennifer L; Snow-Lisy, Devon; Diaz Saldano, Dawn; Gandor, P Lacy; Halline, Christopher G; Rosoklija, Ilina; Rychlik, Karen; Johnson, Emilie K; Cheng, Earl Y

    2017-03-31

    Children with bladder dysfunction resulting in increased storage pressure are at risk for renal deterioration. The current gold standard for evaluation of bladder pressure is urodynamics, an invasive test requiring catheterization. We evaluated ultrasound shear wave elastography as a novel means of assessing bladder biomechanical properties associated with increased bladder pressure. Concurrent shear wave elastography and urodynamics were performed. Ultrasound shear wave elastography images were obtained of the anterior and posterior wall when empty and at 25%, 50%, 75% and 100% expected bladder capacity, and end fill volume. Regions of interest were confirmed by a pediatric radiologist. Bladder cohorts were defined as compliant (capacity detrusor pressure less than 25 cm H2O) and noncompliant (25 cm H2O or greater). Pearson correlation coefficients and a mixed effects model evaluated the relationship between shear wave speed and detrusor pressure, compliance and normalized compliance. An unpaired t-test was used for between cohort analyses. In all 23 subjects mean shear wave speed of the anterior and posterior bladder walls significantly correlated with detrusor pressure throughout filling. When comparing compliant and noncompliant bladders, mean shear wave speed and detrusor shear wave speed of the anterior wall significantly increased with filling of noncompliant bladders. Shear wave speed remained at baseline levels in compliant bladders. Mean shear wave speed of the anterior wall was significantly correlated with compliance and normalized compliance. Ultrasound shear wave elastography bladder measurements correlate well with bladder storage pressure, and shear wave speed measurements differ between compliant and noncompliant bladders. This is the first known study to demonstrate that shear wave elastography is promising as a bedside modality for the assessment of bladder dysfunction in children. Copyright © 2017 American Urological Association Education and

  19. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging

    PubMed Central

    Pysz, Marybeth A.; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Purpose To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. Materials and methods The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. Results MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Conclusion Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts. PMID:22535383

  20. Subject-specific real-time respiratory liver motion compensation method for ultrasound-MRI/CT fusion imaging.

    PubMed

    Yang, Minglei; Ding, Hui; Kang, Jingang; Zhu, Lei; Wang, Guangzhi

    2015-05-01

    Ultrasound-MRI/CT fusion imaging is widely used in minimal invasive surgeries, such as liver biopsy and tumor ablation. However, respiration-induced quasi-periodic liver motion and deformation cause unacceptable misalignment of the fusion images (i.e., fusion error). A subject-specific liver motion model based on skin-mounted position sensor and corresponding ultrasound liver image sequence was developed to compensate for liver motion. External surrogate respiratory motion signal is used to predict internal liver motion. An electromagnetic position sensor fixed on abdominal skin is introduced to track the respiratory motion, and 2D ultrasound images are used to track the liver motion synchronously. Based on these measurements, a subject-specific model describing the relationship of respiratory skin motion and internal liver motion is built and applied in real time (ultrasound-MRI/CT fusion imaging system) to predict and to compensate for the liver motion due to respiratory movement. Feasibility experiments and clinical trials were carried out on a phantom and eight volunteers. Qualitative and quantitative analyses and visual inspections performed by experienced clinicians show that the proposed model could effectively compensate for the liver motion, and the ratio of motion-compensated fusion error to the original varied from 10 % (0.96/9.40 mm) to 28 % (2.90/10.22 mm). An online liver motion modeling and compensation method was developed that provides surgeons with stable and accurate multimodality fusion images in real time.

  1. Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction.

    PubMed

    Shinohara, Minoru; Sabra, Karim; Gennisson, Jean-Luc; Fink, Mathias; Tanter, Mickaél

    2010-09-01

    A stand-alone ultrasound shear wave imaging technology has been developed to quantify and visualize Young's modulus distribution by remotely applying ultrasound radiation force and tracking the resulting microvibrations in soft tissues with ultrafast ultrasound imaging. We report the first preliminary data that detected the distribution of local muscle stiffness within and between resting and contracting muscles at different muscle lengths with this technology. This technique may assist clinicians in characterizing muscle injuries or neuromuscular disorders.

  2. Real-time registration of video with ultrasound using stereo disparity

    NASA Astrophysics Data System (ADS)

    Wang, Jihang; Horvath, Samantha; Stetten, George; Siegel, Mel; Galeotti, John

    2012-02-01

    Medical ultrasound typically deals with the interior of the patient, with the exterior left to the original medical imaging modality, direct human vision. For the human operator scanning the patient, the view of the external anatomy is essential for correctly locating the ultrasound probe on the body and making sense of the resulting ultrasound images in their proper anatomical context. The operator, after all, is not expected to perform the scan with his eyes shut. Over the past decade, our laboratory has developed a method of fusing these two information streams in the mind of the operator, the Sonic Flashlight, which uses a half silvered mirror and miniature display mounted on an ultrasound probe to produce a virtual image within the patient at its proper location. We are now interested in developing a similar data fusion approach within the ultrasound machine itself, by, in effect, giving vision to the transducer. Our embodiment of this concept consists of an ultrasound probe with two small video cameras mounted on it, with software capable of locating the surface of an ultrasound phantom using stereo disparity between the two video images. We report its first successful operation, demonstrating a 3D rendering of the phantom's surface with the ultrasound data superimposed at its correct relative location. Eventually, automated analysis of these registered data sets may permit the scanner and its associated computational apparatus to interpret the ultrasound data within its anatomical context, much as the human operator does today.

  3. NOTE: The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields

    NASA Astrophysics Data System (ADS)

    Shaw, Adam; Nunn, John

    2010-06-01

    In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45° to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 °C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible.

  4. Incidence of posterior wall penetration during internal jugular vein cannulation: A comparison of two techniques using real-time ultrasound

    PubMed Central

    Srinivasan, Shrikanth; Govil, Deepak; Gupta, Sachin; Patel, Sweta; Jagadeesh, KN; Tomar, Deeksha Singh

    2017-01-01

    Background and Aims: The true incidence of penetration of the posterior wall (through-and-through puncture) of the internal jugular vein (IJV) during cannulation is unknown. This may have implications if there is hematoma formation, penetration and/or inadvertent cannulation of an underlying carotid artery. This study compared the incidence of posterior wall puncture during IJV cannulation using ultrasound guidance versus traditional landmarks-guided technique. Methods: One hundred and seventy adult patients admitted to a gastro-liver Intensive Care Unit who required central venous lines were randomly divided into Group A: IJV cannulation using anatomical landmark-guided technique and Group B: IJV cannulation using real-time ultrasound guidance. In both groups, a second investigator followed the needle path using real-time ultrasound. The incidence of posterior wall puncture, number of attempts for successful cannulation, incidence of inadvertent arterial punctures and occurrence of complications such as hematoma formation and pneumothorax were recorded. Results: Significantly more (37/80, 46%) patients in Group A had posterior wall puncture compared to 19/90 (21%) in Group B. Incidence of arterial puncture was 8/80 (10%) in Group A, 5/90 (5.5%) in Group B. The number of attempts for venous cannulation and hematoma formation was significantly less in Group B. Conclusion: Real-time ultrasound-guided IJV cannulation significantly reduces but does not wholly eliminate the incidence of posterior venous wall penetrations. It also significantly reduces the incidence of inadvertent arterial punctures and number of attempts for successful cannulation. PMID:28405038

  5. Measuring of Gastric Emptying in Egyptian Pediatric Patients with Portal Hypertension by Using Real-time Ultrasound

    PubMed Central

    Fahmy, Mona E.; Osman, Mahmoud A.; Mahmoud, Rehab A.; Mohamed, Lamiaa K.; Seif-elnasr, Khaled I.; Eskander, Ayman E.

    2012-01-01

    Background/Aim: Among the various methods for evaluating gastric emptying, the real-time ultrasound is safe, does not require intubation, or rely on either radiologic or radionuclide technique. The aim of our work was to measure the gastric emptying in pediatric patients with portal hypertension by using the real-time ultrasound. Patients and Methods: Forty patients with portal hypertension with mean age 7 ± 2.8 years and 20 healthy children as a control group underwent gastric emptying study by using real-time ultrasound. The cross-sectional area of the gastric antrum was measured in the fasting state and then each subject was allowed to drink tap water then calculated by using formula area (π longitudinal × anteroposterior diameter/4). The intragastric volume was assumed to be directly proportional to the cross-sectional area of the antrum. Results: The mean gastric emptying half-time volume was significantly delayed in portal hypertension patients (40 ± 6.8 min) compared with the control subjects (27.1 ± 3.6) min (P<0.05). Patients with extrahepatic portal vein obstruction had significant delayed gastric emptying in comparison to patients with portal hypertension due to other etiologies (36.14 ± 4.9 vs 44.41 ± 6.04 min; P<0.01). Conclusion: Ultrasound is a noninvasive and a reliable method for measuring gastric emptying in pediatric patients. Gastric emptying was significantly delayed in patients with portal hypertension. Etiology of portal hypertension may influence gastric emptying time in patients with chronic liver disease. PMID:22249091

  6. Evaluation of Neoadjuvant Chemotherapy Response in Women with Locally Advanced Breast Cancer Using Ultrasound Elastography1

    PubMed Central

    Falou, Omar; Sadeghi-Naini, Ali; Prematilake, Sameera; Sofroni, Ervis; Papanicolau, Naum; Iradji, Sara; Jahedmotlagh, Zahra; Lemon-Wong, Sharon; Pignol, Jean-Philippe; Rakovitch, Eileen; Zubovits, Judit; Spayne, Jacqueline; Dent, Rebecca; Trudeau, Maureen; Boileau, Jean Francois; Wright, Frances C; Yaffe, Martin J; Czarnota, Gregory J

    2013-01-01

    PURPOSE: Ultrasound elastography is a new imaging technique that can be used to assess tissue stiffness. The aim of this study was to investigate the potential of ultrasound elastography for monitoring treatment response of locally advanced breast cancer patients undergoing neoadjuvant therapy. METHODS: Fifteen women receiving neoadjuvant chemotherapy had the affected breast scanned before, 1, 4, and 8 weeks following therapy initiation, and then before surgery. Changes in elastographic parameters related to tissue biomechanical properties were then determined and compared to clinical and pathologic tumor response after mastectomy. RESULTS: Patients who responded to therapy demonstrated a significant decrease (P < .05) in strain ratios and strain differences 4 weeks after treatment initiation compared to non-responding patients. Mean strain ratio and mean strain difference for responders was 81 ± 3% and 1 ± 17% for static regions of interest (ROIs) and 81 ± 3% and 6 ± 18% for dynamic ROIs, respectively. In contrast, these parameters were 102±2%, 110±17%, 101±4%, and 109±30% for non-responding patients, respectively. Strain ratio using static ROIs was found to be the best predictor of treatment response, with 100% sensitivity and 100% specificity obtained 4 weeks after starting treatment. CONCLUSIONS: These results suggest that ultrasound elastography can be potentially used as an early predictor of tumor therapy response in breast cancer patients. PMID:23418613

  7. Evaluation of neoadjuvant chemotherapy response in women with locally advanced breast cancer using ultrasound elastography.

    PubMed

    Falou, Omar; Sadeghi-Naini, Ali; Prematilake, Sameera; Sofroni, Ervis; Papanicolau, Naum; Iradji, Sara; Jahedmotlagh, Zahra; Lemon-Wong, Sharon; Pignol, Jean-Philippe; Rakovitch, Eileen; Zubovits, Judit; Spayne, Jacqueline; Dent, Rebecca; Trudeau, Maureen; Boileau, Jean Francois; Wright, Frances C; Yaffe, Martin J; Czarnota, Gregory J

    2013-02-01

    Ultrasound elastography is a new imaging technique that can be used to assess tissue stiffness. The aim of this study was to investigate the potential of ultrasound elastography for monitoring treatment response of locally advanced breast cancer patients undergoing neoadjuvant therapy. Fifteen women receiving neoadjuvant chemotherapy had the affected breast scanned before, 1, 4, and 8 weeks following therapy initiation, and then before surgery. Changes in elastographic parameters related to tissue biomechanical properties were then determined and compared to clinical and pathologic tumor response after mastectomy. Patients who responded to therapy demonstrated a significant decrease (P < .05) in strain ratios and strain differences 4 weeks after treatment initiation compared to non-responding patients. Mean strain ratio and mean strain difference for responders was 81 ± 3% and 1 ± 17% for static regions of interest (ROIs) and 81 ± 3% and 6 ± 18% for dynamic ROIs, respectively. In contrast, these parameters were 102±2%, 110±17%, 101±4%, and 109±30% for non-responding patients, respectively. Strain ratio using static ROIs was found to be the best predictor of treatment response, with 100% sensitivity and 100% specificity obtained 4 weeks after starting treatment. These results suggest that ultrasound elastography can be potentially used as an early predictor of tumor therapy response in breast cancer patients.

  8. TRANSVERSUS ABDOMINIS ELASTICITY DURING VARIOUS EXERCISES: A SHEAR WAVE ULTRASOUND ELASTOGRAPHY STUDY.

    PubMed

    Hirayama, Kuniaki; Akagi, Ryota; Moniwa, Yuki; Okada, Junichi; Takahashi, Hideyuki

    2017-08-01

    Although the transversus abdominis (TrA) is considered to play a significant role in maintaining trunk stability, there is little information regarding the type of exercise that best facilitates the development of tension in the TrA. Muscle elasticity shows a strong association with muscle tension. Shear wave ultrasound elastography provides a means by which the tension of TrA can be noninvasively estimated, by quantifying it's elasticity. The purpose of this study was to examine the TrA elasticity during several exercises as measured by shear wave ultrasound elastography, and to determine which of the studied exercises demonstrated the greatest tension. Ten healthy men performed abdominal hollowing, abdominal bracing, a hanging deadlift, elbow-toe plank with contralateral arm and leg lift, and back bridge with single leg lift. During these exercises, TrA elasticity was measured using ultrasound elastography. The same measurements were performed at rest before and after these exercises. No significant difference was found for rest conditions measured before and after the exercises (p = 0.63). Abdominal bracing showed a significantly higher elasticity value than the other exercises (p < 0.05), except for hanging deadlift. Among the exercises, abdominal bracing was the exercise that elevated the TrA tension the most. The present results also suggested that hanging deadlift also produced comparably high TrA tension with abdominal bracing. 2c.

  9. TRANSVERSUS ABDOMINIS ELASTICITY DURING VARIOUS EXERCISES: A SHEAR WAVE ULTRASOUND ELASTOGRAPHY STUDY

    PubMed Central

    Akagi, Ryota; Moniwa, Yuki; Okada, Junichi; Takahashi, Hideyuki

    2017-01-01

    Background Although the transversus abdominis (TrA) is considered to play a significant role in maintaining trunk stability, there is little information regarding the type of exercise that best facilitates the development of tension in the TrA. Muscle elasticity shows a strong association with muscle tension. Shear wave ultrasound elastography provides a means by which the tension of TrA can be noninvasively estimated, by quantifying it's elasticity. Purpose The purpose of this study was to examine the TrA elasticity during several exercises as measured by shear wave ultrasound elastography, and to determine which of the studied exercises demonstrated the greatest tension. Methods Ten healthy men performed abdominal hollowing, abdominal bracing, a hanging deadlift, elbow–toe plank with contralateral arm and leg lift, and back bridge with single leg lift. During these exercises, TrA elasticity was measured using ultrasound elastography. The same measurements were performed at rest before and after these exercises. Result No significant difference was found for rest conditions measured before and after the exercises (p = 0.63). Abdominal bracing showed a significantly higher elasticity value than the other exercises (p < 0.05), except for hanging deadlift. Conclusion Among the exercises, abdominal bracing was the exercise that elevated the TrA tension the most. The present results also suggested that hanging deadlift also produced comparably high TrA tension with abdominal bracing. Level of Evidence 2c PMID:28900566

  10. Object detection in ultrasound elastography for use in HIFU treatment of cancer

    NASA Astrophysics Data System (ADS)

    Huang, Alex; Mankani, Soumya; Choo, Chang

    2014-03-01

    High intensity focused ultrasound (HIFU), has applications in treating various cancers, such as prostate, liver and breast cancer. In order for HIFU to be effective and efficient it needs to be guided by an imaging modality. While there are several options for guiding HIFU treatment, one of the most promising is ultrasound elastography. Current commercial devices use Brightness-Mode (B-mode) imaging or MRI, and are manual processes. Ultrasound elastography, allows complete automation of HIFU treatment due to the enhanced image, that elastography provides. The elastic image provides more information and less noise. To show that segmentation was possible on elastic images, nine algorithms were implemented in matlab and used on three distinct images for object detection. The three images used, have varying properties regarding object intensity and placement, as well as different noise patterns. Using PSNR, to gauge the effectiveness of each algorithm, it was shown that segmentation was possible on all images using different algorithms. The bilateral-shock-bilateral algorithm proved to be an overall effective algorithm in every situation with a PSNR of 83.87db on the phantom image. The segmentation results clearly highlight any object in the images. Future work includes fine tuning the algorithm with different phantom images and in-vivo images to distinguish between noise and desired object.

  11. Magnetic Resonance Thermometry at 7T for Real-Time Monitoring and Correction of Ultrasound Induced Mild Hyperthermia

    PubMed Central

    Fite, Brett Z.; Liu, Yu; Kruse, Dustin E.; Caskey, Charles F.; Walton, Jeffrey H.; Lai, Chun-Yen; Mahakian, Lisa M.; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W.

    2012-01-01

    While Magnetic Resonance Thermometry (MRT) has been extensively utilized for non-invasive temperature measurement, there is limited data on the use of high field (≥7T) scanners for this purpose. MR-guided Focused Ultrasound (MRgFUS) is a promising non-invasive method for localized hyperthermia and drug delivery. MRT based on the temperature sensitivity of the proton resonance frequency (PRF) has been implemented in both a tissue phantom and in vivo in a mouse Met-1 tumor model, using partial parallel imaging (PPI) to speed acquisition. An MRgFUS system capable of delivering a controlled 3D acoustic dose during real time MRT with proportional, integral, and derivative (PID) feedback control was developed and validated. Real-time MRT was validated in a tofu phantom with fluoroptic temperature measurements, and acoustic heating simulations were in good agreement with MR temperature maps. In an in vivo Met-1 mouse tumor, the real-time PID feedback control is capable of maintaining the desired temperature with high accuracy. We found that real time MR control of hyperthermia is feasible at high field, and k-space based PPI techniques may be implemented for increasing temporal resolution while maintaining temperature accuracy on the order of 1°C. PMID:22536396

  12. Improved image guidance technique for minimally invasive mitral valve repair using real-time tracked 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Rankin, Adam; Moore, John; Bainbridge, Daniel; Peters, Terry

    2016-03-01

    In the past ten years, numerous new surgical and interventional techniques have been developed for treating heart valve disease without the need for cardiopulmonary bypass. Heart valve repair is now being performed in a blood-filled environment, reinforcing the need for accurate and intuitive imaging techniques. Previous work has demonstrated how augmenting ultrasound with virtual representations of specific anatomical landmarks can greatly simplify interventional navigation challenges and increase patient safety. These techniques often complicate interventions by requiring additional steps taken to manually define and initialize virtual models. Furthermore, overlaying virtual elements into real-time image data can also obstruct the view of salient image information. To address these limitations, a system was developed that uses real-time volumetric ultrasound alongside magnetically tracked tools presented in an augmented virtuality environment to provide a streamlined navigation guidance platform. In phantom studies simulating a beating-heart navigation task, procedure duration and tool path metrics have achieved comparable performance to previous work in augmented virtuality techniques, and considerable improvement over standard of care ultrasound guidance.

  13. [Mobile hospital -real time mobile telehealthcare system with ultrasound and CT van using high-speed satellite communication-].

    PubMed

    Takizawa, Masaomi; Miyashita, Toyohisa; Murase, Sumio; Kanda, Hirohito; Karaki, Yoshiaki; Yagi, Kazuo; Ohue, Toru

    2003-01-01

    A real-time telescreening system is developed to detect early diseases for rural area residents using two types of mobile vans with a portable satellite station. The system consists of a satellite communication system with 1.5Mbps of the JCSAT-1B satellite, a spiral CT van, an ultrasound imaging van with two video conference system, a DICOM server and a multicast communication unit. The video image and examination image data are transmitted from the van to hospitals and the university simultaneously. Physician in the hospital observes and interprets exam images from the van and watches the video images of the position of ultrasound transducer on screenee in the van. After the observation images, physician explains a results of the examination by the video conference system. Seventy lung CT screening and 203 ultrasound screening were done from March to June 2002. The trial of this real time screening suggested that rural residents are given better healthcare without visit to the hospital. And it will open the gateway to reduce the medical cost and medical divide between city area and rural area.

  14. Real-time 3D ultrasound fetal image enhancment techniques using motion-compensated frame rate up-conversion

    NASA Astrophysics Data System (ADS)

    Lee, Gun-Ill; Park, Rae-Hong; Song, Young-Seuk; Kim, Cheol-An; Hwang, Jae-Sub

    2003-05-01

    In this paper, we present a motion compensated frame rate up-conversion method for real-time three-dimensional (3-D) ultrasound fetal image enhancement. The conventional mechanical scan method with one-dimensional (1-D) array converters used for 3-D volume data acquisition has a slow frame rate of multi-planar images. This drawback is not an issue for stationary objects, however in ultrasound images showing a fetus of more than about 25 weeks, we perceive abrupt changes due to fast motions. To compensate for this defect, we propose the frame rate up-conversion method by which new interpolated frames are inserted between two input frames, giving smooth renditions to human eyes. More natural motions can be obtained by frame rate up-conversion. In the proposed algorithm, we employ forward motion estimation (ME), in which motion vectors (MVs) ar estimated using a block matching algorithm (BMA). To smooth MVs over neighboring blocks, vector median filtering is performed. Using these smoothed MVs, interpolated frames are reconstructed by motion compensation (MC). The undesirable blocking artifacts due to blockwise processing are reduced by block boundary filtering using a Gaussian low pass filter (LPF). The proposed method can be used in computer aided diagnosis (CAD), where more natural 3-D ultrasound images are displayed in real-time. Simulation results with several real test sequences show the effectiveness of the proposed algorithm.

  15. Application of the advanced communications technology satellite to teleradiology and real-time compressed ultrasound video telemedicine.

    PubMed

    Stewart, B K; Carter, S J; Cook, J N; Abbe, B S; Pinck, D; Rowberg, A H

    1999-05-01

    The authors have investigated the application of the NASA Advanced Communications Technology Satellite (ACTS) to teleradiology and telemedicine using the Jet Propulsion Laboratory (JPL)-developed ACTS Mobile Terminal (AMT) uplink. In this experiment, bidirectional 128, 256, and 384 kbps satellite links were established between the ACTS/AMT, the ACTS in geosynchronous orbit, and the downlink terrestrial terminal at JPL. A terrestrial Integrated Digital Services Network (ISDN) link was established from JPL to the University of Washington Department of Radiology to complete the bidirectional connection. Ultrasound video imagery was compressed in real-time using video codecs adhering to the International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) Recommendation H.261. A 16 kbps in-band audio channel was used throughout. A five-point Likert scale was used to evaluate the quality of the compressed ultrasound imagery at the three transmission bandwidths (128, 256, and 384 kbps). The central question involved determination of the bandwidth requirements to provide sufficient spatial and contrast resolution for the remote visualization of fine- and low-contrast objects. The 384 kbps bandwidth resulted in only slight tiling artifact and fuzziness owing to the quantizer step size; however, these motion artifacts were rapidly resolved in time at this bandwidth. These experiments have demonstrated that real-time compressed ultrasound video imagery can be transmitted over multiple ISDN line bandwidth links with sufficient temporal, contrast, and spatial resolution for clinical diagnosis of multiple disease and pathology states to provide subspecialty consultation and educational at a distance.

  16. Differences in liver stiffness values obtained with new ultrasound elastography machines and Fibroscan: A comparative study.

    PubMed

    Piscaglia, Fabio; Salvatore, Veronica; Mulazzani, Lorenzo; Cantisani, Vito; Colecchia, Antonio; Di Donato, Roberto; Felicani, Cristina; Ferrarini, Alessia; Gamal, Nesrine; Grasso, Valentina; Marasco, Giovanni; Mazzotta, Elena; Ravaioli, Federico; Ruggieri, Giacomo; Serio, Ilaria; Sitouok Nkamgho, Joules Fabrice; Serra, Carla; Festi, Davide; Schiavone, Cosima; Bolondi, Luigi

    2017-07-01

    Whether Fibroscan thresholds can be immediately adopted for none, some or all other shear wave elastography techniques has not been tested. The aim of the present study was to test the concordance of the findings obtained from 7 of the most recent ultrasound elastography machines with respect to Fibroscan. Sixteen hepatitis C virus-related patients with fibrosis ≥2 and having reliable results at Fibroscan were investigated in two intercostal spaces using 7 different elastography machines. Coefficients of both precision (an index of data dispersion) and accuracy (an index of bias correction factors expressing different magnitudes of changes in comparison to the reference) were calculated. Median stiffness values differed among the different machines as did coefficients of both precision (range 0.54-0.72) and accuracy (range 0.28-0.87). When the average of the measurements of two intercostal spaces was considered, coefficients of precision significantly increased with all machines (range 0.72-0.90) whereas of accuracy improved more scatteredly and by a smaller degree (range 0.40-0.99). The present results showed only moderate concordance of the majority of elastography machines with the Fibroscan results, preventing the possibility of the immediate universal adoption of Fibroscan thresholds for defining liver fibrosis staging for all new machines. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  17. Passive Markers for Tracking Surgical Instruments in Real-Time 3-D Ultrasound Imaging

    PubMed Central

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E.

    2013-01-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts. PMID:22042148

  18. Passive markers for tracking surgical instruments in real-time 3-D ultrasound imaging.

    PubMed

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E

    2012-03-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts.

  19. Imaging of implant needles for real-time HDR-brachytherapy prostate treatment using biplane ultrasound transducers.

    PubMed

    Siebert, Frank-André; Hirt, Markus; Niehoff, Peter; Kovács, György

    2009-08-01

    Ultrasound imaging is becoming increasingly important in prostate brachytherapy. In high-dose-rate (HDR) real-time planning procedures the definition of the implant needles is often performed by transrectal ultrasound. This article describes absolute measurements of the visibility and accuracy of manual detection of implant needle tips and compares measurement results of different biplane ultrasound systems in transversal and longitudinal (i.e., sagittal) ultrasound modes. To obtain a fixed coordinate system and stable conditions the measurements were carried out in a water tank using a dedicated marker system. Needles were manually placed in the phantom until the observer decided by the real-time ultrasound image that the zero position was reached. A comparison of three different ultrasound systems yielded an offset between 0.8 and 3.1 mm for manual detection of the needle tip in ultrasound images by one observer. The direction of the offset was discovered to be in the proximal direction, i.e., the actual needle position was located more distally compared to the ultrasound-based definition. In the second part of the study, the ultrasound anisotropy of trocar implant needles is reported. It was shown that the integrated optical density in a region of interest around the needle tip changes with needle rotation. Three peaks were observed with a phase angle of 120 degrees. Peaks appear not only in transversal but also in longitudinal ultrasound images, with a phase shift of 60 degrees. The third section of this study shows results of observer dependent influences on needle tip detection in sagittal ultrasound images considering needle rotation. These experiments were carried out using the marker system in a water tank. The needle tip was placed exactly at the position z=0 mm. It was found that different users tend to differently interpret the same ultrasound images. The needle tip was manually detected five times in the ultrasound images by three experienced observers

  20. Using real-time ultrasound to teach living anatomy: an alternative model for large classes.

    PubMed

    Stringer, Mark D; Duncan, Lynda J; Samalia, Latika

    2012-09-07

    Ultrasound is a safe, non-invasive and versatile imaging modality used widely in clinical practice. Several studies have reported using ultrasound imaging to supplement teaching of clinical anatomy to medical students but most have attempted to teach basic ultrasound skills in addition to normal sonographic anatomy. These small group teaching sessions are labour intensive and need appropriate resourcing of equipment and personnel. We report experience of an alternative approach suitable for large classes with more limited resources. A single 1-hour ultrasound demonstration of 'living anatomy' of the abdomen, pelvis and neck was conducted using a young female model as the subject. Scans were performed by an experienced sonographer with images projected on to a large lecture theatre screen; medical student interaction was encouraged by two clinical anatomists. Anonymous evaluation of 152 returned questionnaires (greater than and equal to 63% response rate) showed that more than 80% of respondents considered the session had stimulated and improved their understanding of anatomy. Whilst this method of teaching anatomy using ultrasound does not offer hands-on experience, it does provide students with an introduction to the clinical utility of ultrasound and, by focusing on anatomic findings rather than the acquisition of technical imaging skills, reinforces the learning of clinical anatomy.

  1. On the potential of ultrasound elastography for pressure ulcer early detection

    PubMed Central

    Deprez, Jean-François; Brusseau, Elisabeth; Fromageau, Jérémie; Cloutier, Guy; Basset, Olivier

    2011-01-01

    Purpose Pressure ulcers are areas of soft tissue breakdown induced by a sustained mechanical stress that damages the skin and underlying tissues. They represent a considerable burden to the society in terms of health care and cost. Yet, techniques for prevention and detection of pressure ulcers still remain very limited. In this article, the authors investigated the potential of ultrasound elastography for pressure ulcer early detection. Elastography is an imaging technique providing local information on biological tissue mechanical properties. It is relevant for pressure ulcer detection as this pathology is associated with a gradual stiffening of damaged tissues, beginning in the deeper tissues and progressing toward the skin surface. Methods A 2D ultrasound elastography method was proposed and its ability in terms of pressure ulcer detection was validated through numerical simulations and physical acquisitions on pressure ulcer mimicking phantoms. In vivo experiments on a rat model are also reported. A maintained pressure was applied on the animal thigh, with a view to generate a pressure ulcer, and ultrasound data were acquired and processed before and after application of this pressure. Results Numerical simulations demonstrated that a pressure ulcer can theoretically be detected at a very early stage with ultrasound elastography. Even when the ulcer region was characterized by a low stiffening (ratio of 1.8 relative to normal tissues), the corresponding elastogram clearly underlined the pathological area. This observation was confirmed by the results obtained on a physical phantom mimicking a pressure ulcer at an early stage. Computed elastograms showed strain differences between areas mimicking healthy and pathological tissues. Results corresponding to in vivo experiments revealed a difference in the way tissues behaved before and after the pressure was applied on the animal thigh, which strongly suggests the presence of a pathological area. Conclusions

  2. Automatic Segmentation and Probe Guidance for Real-Time Assistance of Ultrasound-Guided Femoral Nerve Blocks.

    PubMed

    Smistad, Erik; Iversen, Daniel Høyer; Leidig, Linda; Lervik Bakeng, Janne Beate; Johansen, Kaj Fredrik; Lindseth, Frank

    2017-01-01

    Ultrasound-guided regional anesthesia can be challenging, especially for inexperienced physicians. The goal of the proposed methods is to create a system that can assist a user in performing ultrasound-guided femoral nerve blocks. The system indicates in which direction the user should move the ultrasound probe to investigate the region of interest and to reach the target site for needle insertion. Additionally, the system provides automatic real-time segmentation of the femoral artery, the femoral nerve and the two layers fascia lata and fascia iliaca. This aids in interpretation of the 2-D ultrasound images and the surrounding anatomy in 3-D. The system was evaluated on 24 ultrasound acquisitions of both legs from six subjects. The estimated target site for needle insertion and the segmentations were compared with those of an expert anesthesiologist. Average target distance was 8.5 mm with a standard deviation of 2.5 mm. The mean absolute differences of the femoral nerve and the fascia segmentations were about 1-3 mm.

  3. Real-time hand-held ultrasound medical-imaging device based on a new digital quadrature demodulation processor.

    PubMed

    Levesque, Philippe; Sawan, Mohamad

    2009-08-01

    A fully hardware-based real-time digital wideband quadrature demodulation processor based on the Hilbert transform is proposed to process ultrasound radio frequency signals. The presented architecture combines 2 finite impulse response (FIR) filters to process in-phase and quadrature signals and includes a piecewise linear approximation architecture that performs the required square root operations. The proposed implementation enables flexibility to support different transducers with its ability to load on-the-fly different FIR filter coefficient sets. The complexity and accuracy of the demodulator processor are analyzed with simulated RF data; a normalized residual sum-of-squares cost function is used for comparison with the Matlab Hilbert function. Three implementations are integrated into a hand-held ultrasound system for experimental accuracy and performance evaluation. Real-time images were acquired from a reference phantom, demonstrating the feasibility of using the presented architecture to perform real-time digital quadrature demodulation of ultrasonic signal echoes. Experimental results show that the implementation, using only 2942 slices and 3 dedicated digital multipliers of a low-cost and low-power field-programmable gate array (FPGA) is accurate relative to a comparable software- based system; axial and lateral resolution of 1 mm and 2 mm, respectively, were obtained with a 12-mm piezoelectric transducer without postprocessing. Because the processing and sampling rates are the same, high-frequency ultrasound signals can be processed as well. For a 15-frame-per-second display, the hand-held ultrasonic imaging-processing core (FPGA, memory) requires only 45 mW (dynamic) when using a 5-MHz single-element piezoelectric transducer.

  4. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

    SciTech Connect

    Zahnd, Guillaume; Salles, Sébastien; Liebgott, Hervé; Vray, Didier; Sérusclat, André; Moulin, Philippe

    2015-02-15

    Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time during image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.

  5. The use of 2D ultrasound elastography for measuring tendon motion and strain.

    PubMed

    Chernak Slane, Laura; Thelen, Darryl G

    2014-02-07

    The goal of the current study was to investigate the fidelity of a 2D ultrasound elastography method for the measurement of tendon motion and strain. Ultrasound phantoms and ex vivo porcine flexor tendons were cyclically stretched to 4% strain while cine ultrasound radiofrequency (RF) data and video data were simultaneously collected. 2D ultrasound elastography was used to estimate tissue motion and strain from RF data, and surface tissue motion and strain were separately estimated using digital image correlation (DIC). There were strong correlations (R(2)>0.97) between DIC and RF measurements of phantom displacement and strain, and good agreement in estimates of peak phantom strain (DIC: 3.5±0.2%; RF: 3.7±0.1%). For tendon, elastographic estimates of displacement profiles also correlated well with DIC measurements (R(2)>0.92), and exhibited similar estimated peak tendon strain (DIC: 2.6±1.4%; RF: 2.2±1.3%). Elastographic tracking with B-Mode images tended to under-predict peak strain for both the phantom and tendon. This study demonstrates the capacity to use quantitative elastographic techniques to measure tendon displacement and strain within an ultrasound image window. The approach may be extendible to in vivo use on humans, which would allow for the non-invasive analysis of tendon deformation in both normal and pathological states. © 2013 Elsevier Ltd. All rights reserved.

  6. The Use of 2D Ultrasound Elastography for Measuring Tendon Motion and Strain

    PubMed Central

    Slane, Laura Chernak; Thelen, Darryl G.

    2014-01-01

    The goal of the current study was to investigate the fidelity of a 2D ultrasound elastography method for the measurement of tendon motion and strain. Ultrasound phantoms and ex vivo porcine flexor tendons were cyclically stretched to 4% strain while cine ultrasound radiofrequency (RF) data and video data were simultaneously collected. 2D ultrasound elastography was used to estimate tissue motion and strain from RF data, and surface tissue motion and strain were separately estimated using digital image correlation (DIC). There were strong correlations (R2 > 0.97) between DIC and RF measurements of phantom displacement and strain, and good agreement in estimates of peak phantom strain (DIC: 3.5 ± 0.2%; RF: 3.7 ± 0.1%). For tendon, elastographic estimates of displacement profiles also correlated well with DIC measurements (R2 > 0.92), and exhibited similar estimated peak tendon strain (DIC: 2.6 ± 1.4%; RF: 2.2 ± 1.3%). Elastographic tracking with B-Mode images tended to under-predict peak strain for both the phantom and tendon. This study demonstrates the capacity to use quantitative elastographic techniques to measure tendon displacement and strain within an ultrasound image window. The approach may be extendible to in vivo use on humans, which would allow for the non-invasive analysis of tendon deformation in both normal and pathological states. PMID:24388164

  7. Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series

    PubMed Central

    Lekht, Ilya; Brauner, Noah; Bakhsheshian, Joshua; Chang, Ki-Eun; Gulati, Mittul; Shiroishi, Mark S.; Grant, Edward G.; Christian, Eisha; Zada, Gabriel

    2016-01-01

    OBJECTIVE Intraoperative contrast-enhanced ultrasound (iCEUS) offers dynamic imaging and provides functional data in real time. However, no standardized protocols or validated quantitative data exist to guide its routine use in neurosurgery. The authors aimed to provide further clinical data on the versatile application of iCEUS through a technical note and illustrative case series. METHODS Five patients undergoing craniotomies for suspected tumors were included. iCEUS was performed using a contrast agent composed of lipid shell microspheres enclosing perflutren (octafluoropropane) gas. Perfusion data were acquired through a time-intensity curve analysis protocol obtained using iCEUS prior to biopsy and/or resection of all lesions. RESULTS Three primary tumors (gemistocytic astrocytoma, glioblastoma multiforme, and meningioma), 1 metastatic lesion (melanoma), and 1 tumefactive demyelinating lesion (multiple sclerosis) were assessed using real-time iCEUS. No intraoperative complications occurred following multiple administrations of contrast agent in all cases. In all neoplastic cases, iCEUS replicated enhancement patterns observed on preoperative Gd-enhanced MRI, facilitated safe tumor de-bulking by differentiating neoplastic tissue from normal brain parenchyma, and helped identify arterial feeders and draining veins in and around the surgical cavity. Intraoperative CEUS was also useful in guiding a successful intraoperative needle biopsy of a cerebellar tumefactive demyelinating lesion obtained during real-time perfusion analysis. CONCLUSIONS Intraoperative CEUS has potential for safe, real-time, dynamic contrast-based imaging for routine use in neurooncological surgery and image-guided biopsy. Intraoperative CEUS eliminates the effect of anatomical distortions associated with standard neuronavigation and provides quantitative perfusion data in real time, which may hold major implications for intraoperative diagnosis, tissue differentiation, and quantification of

  8. 3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance

    PubMed Central

    Chen, Alvin I.; Balter, Max L.; Maguire, Timothy J.; Yarmush, Martin L.

    2016-01-01

    This paper presents a portable imaging device designed to detect peripheral blood vessels for cannula insertion that are otherwise difficult to visualize beneath the skin. The device combines near infrared stereo vision, ultrasound, and real-time image analysis to map the 3D structure of subcutaneous vessels. We show that the device can identify adult forearm vessels and be used to guide manual insertions in tissue phantoms with increased first-stick accuracy compared to unassisted cannulation. We also demonstrate that the system may be coupled with a robotic manipulator to perform automated, image-guided venipuncture. PMID:27981261

  9. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    PubMed

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Tendon motion and strain patterns evaluated with two-dimensional ultrasound elastography

    PubMed Central

    Chernak, Laura A.; Thelen, Darryl G.

    2012-01-01

    The purpose of this study was to evaluate the use of 2D ultrasound elastography to assess tendon tissue motion and strains under axial loading conditions. Four porcine flexor tendons were cyclically loaded to 4% peak strain using a servo hydraulic test system. An ultrasound transducer was positioned to image a longitudinal cross-section of the tendon during loading. Ultrasound radiofrequency (RF) data were collected at 63 frames per second simultaneously with applied force and crosshead displacement. A grid of nodes was manually positioned on an ultrasound image of the unloaded tendon. Small kernels (2 × 1 mm) centered at each node were then cross-correlated with search regions centered at corresponding nodal locations in the subsequent frame. Frame-to-frame nodal displacements were defined as the values that maximized the normalized cross-correlations. This process was repeated across all frames in the loading cycle, providing a measurement of the 2D trajectories of tissue motion through out the loading cycle. The high resolution displacement measures along the RF beam direction were spatially differentiated to estimate the transverse (relative to tend on fibers) tissue strains. The nodal displacements obtained using this method were very repeatable, with average along-fiber trajectories that were highly correlated (r2>0.98) with the prescribed crosshead displacements. The elastography transverse strains were also repeatable and were consistent with average transverse strains estimated via changes in tendon width. The apparent Poisson’s ratios (0.82-1.64) exceeded the incompressibility limit, but are comparable to values found for tendon in prior experimental and computational studies. The results demonstrate that 2D ultrasound elastography is a promising approach for noninvasively assessing localized tissue motion and strain patterns. PMID:22939179

  11. Treatment of great auricular neuralgia with real-time ultrasound-guided great auricular nerve block

    PubMed Central

    Jeon, Younghoon; Kim, Saeyoung

    2017-01-01

    Abstract Rationale: The great auricular nerve can be damaged by the neck surgery, tumor, and long-time pressure on the neck. But, great auricular neuralgia is very rare condition. It was managed by several medication and landmark-based great auricular nerve block with poor prognosis. Patient concerns: A 25-year-old man presented with a pain in the left lateral neck and auricle. Diagnosis: He was diagnosed with great auricular neuralgia. Interventions: His pain was not reduced by medication. Therefore, the great auricular nerve block with local anesthetics and steroid was performed under ultrasound guidance. Outcomes: Ultrasound guided great auricular nerve block alleviated great auricular neuralgia. Lessons: This medication-resistant great auricular neuralgia was treated by the ultrasound guided great auricular nerve block with local anesthetic agent and steroid. Therefore, great auricular nerve block can be a good treatment option of medication resistant great auricular neuralgia. PMID:28328811

  12. Photoacoustic elastography.

    PubMed

    Hai, Pengfei; Yao, Junjie; Li, Guo; Li, Chiye; Wang, Lihong V

    2016-02-15

    Elastography can noninvasively map the elasticity distribution in biological tissue, which can potentially be used to reveal disease conditions. In this Letter, we have demonstrated photoacoustic elastography by using a linear-array photoacoustic computed tomography system. The feasibility of photoacoustic elastography was first demonstrated by imaging the strains of single-layer and bilayer gelatin phantoms with various stiffness values. The measured strains agreed well with theoretical values, with an average error of less than 5.2%. Next, in vivo photoacoustic elastography was demonstrated on a mouse leg, where the fat and muscle distribution was mapped based on the elasticity contrast. We confirmed the photoacoustic elastography results by ultrasound elastography performed simultaneously.

  13. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients

    NASA Astrophysics Data System (ADS)

    Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao

    2017-01-01

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  14. Ultrasound Elastography for Estimation of Regional Strain of Multilayered Hydrogels and Tissue-Engineered Cartilage

    PubMed Central

    Chung, Chen-Yuan; Heebner, Joseph; Baskaran, Harihara; Welter, Jean F.; Mansour, Joseph M.

    2015-01-01

    Tissue-engineered (TE) cartilage constructs tend to develop inhomogeneously, thus, to predict the mechanical performance of the tissue, conventional biomechanical testing, which yields average material properties, is of limited value. Rather, techniques for evaluating regional and depth-dependent properties of TE cartilage, preferably non-destructively, are required. The purpose of this study was to build upon our previous results and to investigate the feasibility of using ultrasound elastography to non-destructively assess the depth-dependent biomechanical characteristics of TE cartilage while in a sterile bioreactor. As a proof-of-concept, and to standardize an assessment protocol, a well-characterized three-layered hydrogel construct was used as a surrogate for TE cartilage, and was studied under controlled incremental compressions. The strain field of the construct predicted by elastography was then validated by comparison with a poroelastic finite-element analysis (FEA). On average, the differences between the strains predicted by elastography and the FEA were within 10%. Subsequently engineered cartilage tissue was evaluated in the same test fixture. Results from these examinations showed internal regions where the local strain was 1–2 orders of magnitude greater than that near the surface. These studies document the feasibility of using ultrasound to evaluate the mechanical behaviors of maturing TE constructs in a sterile environment. PMID:26077987

  15. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients.

    PubMed

    Nenadic, Ivan Z; Qiang, Bo; Urban, Matthew W; Zhao, Heng; Sanchez, William; Greenleaf, James F; Chen, Shigao

    2017-01-21

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  16. External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE): Application in Liver Fibrosis Staging

    PubMed Central

    Zhao, Heng; Song, Pengfei; Meixner, Duane D.; Kinnick, Randall R.; Callstrom, Matthew R.; Sanchez, William; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.

    2014-01-01

    Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A two-dimensional (2D) shear wave speed map was reconstructed from each individual shear wave field, and a final 2D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver Magnetic Resonance Elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging. PMID:25020066

  17. Ultrasound Elastography for Estimation of Regional Strain of Multilayered Hydrogels and Tissue-Engineered Cartilage.

    PubMed

    Chung, Chen-Yuan; Heebner, Joseph; Baskaran, Harihara; Welter, Jean F; Mansour, Joseph M

    2015-12-01

    Tissue-engineered (TE) cartilage constructs tend to develop inhomogeneously, thus, to predict the mechanical performance of the tissue, conventional biomechanical testing, which yields average material properties, is of limited value. Rather, techniques for evaluating regional and depth-dependent properties of TE cartilage, preferably non-destructively, are required. The purpose of this study was to build upon our previous results and to investigate the feasibility of using ultrasound elastography to non-destructively assess the depth-dependent biomechanical characteristics of TE cartilage while in a sterile bioreactor. As a proof-of-concept, and to standardize an assessment protocol, a well-characterized three-layered hydrogel construct was used as a surrogate for TE cartilage, and was studied under controlled incremental compressions. The strain field of the construct predicted by elastography was then validated by comparison with a poroelastic finite-element analysis (FEA). On average, the differences between the strains predicted by elastography and the FEA were within 10%. Subsequently engineered cartilage tissue was evaluated in the same test fixture. Results from these examinations showed internal regions where the local strain was 1-2 orders of magnitude greater than that near the surface. These studies document the feasibility of using ultrasound to evaluate the mechanical behaviors of maturing TE constructs in a sterile environment.

  18. "Filarial dance sign" real-time ultrasound diagnosis of filarial oophoritis.

    PubMed

    Panditi, Surekha; Shelke, Ashwini G; Thummalakunta, Laxmi Narasimha Praveen

    2016-10-01

    Filariasis is a parasitic disease caused by Filarial nematodes (Wuchereria bancrofti, Brugia malayi, and Brugia timori) that commonly causes lymphatic obstruction resulting in edema and increase in the size of the affected organ. Filariasis is diagnosed by identifying microfilariae on Giemsa stain. The immunochromatographic card test is diagnostic. Ultrasound is the imaging modality of choice for detecting adult filarial worms/microfilaria in the lymphatic system, which are responsible for the classic "filarial dance sign" caused by twirling movements of the microfilariae. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 44:500-501, 2016. © 2016 Wiley Periodicals, Inc.

  19. Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque at speed of video-rate level

    NASA Astrophysics Data System (ADS)

    Hui, Jie; Cao, Yingchun; Zhang, Yi; Kole, Ayeeshik; Wang, Pu; Yu, Guangli; Eakins, Gregory; Sturek, Michael; Chen, Weibiao; Cheng, Ji-Xin

    2017-03-01

    Intravascular photoacoustic-ultrasound (IVPA-US) imaging is an emerging hybrid modality for the detection of lipidladen plaques by providing simultaneous morphological and lipid-specific chemical information of an artery wall. The clinical utility of IVPA-US technology requires real-time imaging and display at speed of video-rate level. Here, we demonstrate a compact and portable IVPA-US system capable of imaging at up to 25 frames per second in real-time display mode. This unprecedented imaging speed was achieved by concurrent innovations in excitation laser source, rotary joint assembly, 1 mm IVPA-US catheter, differentiated A-line strategy, and real-time image processing and display algorithms. By imaging pulsatile motion at different imaging speeds, 16 frames per second was deemed to be adequate to suppress motion artifacts from cardiac pulsation for in vivo applications. Our lateral resolution results further verified the number of A-lines used for a cross-sectional IVPA image reconstruction. The translational capability of this system for the detection of lipid-laden plaques was validated by ex vivo imaging of an atherosclerotic human coronary artery at 16 frames per second, which showed strong correlation to gold-standard histopathology.

  20. Endoscopic ultrasound in the diagnosis of acinar cell carcinoma of the pancreas: contrast-enhanced endoscopic ultrasound, endoscopic ultrasound elastography, and pathological correlation.

    PubMed

    Chantarojanasiri, Tanyaporn; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Yamamura, Takeshi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ishigami, Masatoshi; Watanabe, Osamu; Nakaguro, Masato; Shimoyama, Yoshie; Nakamura, Shigeo; Goto, Hidemi

    2016-11-01

    We report a case series of five patients with pancreatic acinar cell carcinoma who received surgical treatment and compared the preoperative contrast-enhanced endoscopic ultrasound (EUS) and EUS elastography patterns with the surgical specimens. The contrast-enhanced EUS indicated vascular tumors with gradual enhancement in four patients and a hypovascular tumor in one patient. The elastography indicated an elastic score of 3 (hard lesion with softer border) in two patients and a score of 5 (hard lesion, which included the surrounding area) in two patients. In tumors with an elastic score of 5, the pathology exhibited abundant hyalinizing fibrous stroma or massive tumor invasion to the surrounding tissue. We concluded that acinar cell carcinoma of the pancreas has various patterns of EUS contrast-enhancement and elastography, depending on the pathologic phenotype.

  1. Endoscopic ultrasound in the diagnosis of acinar cell carcinoma of the pancreas: contrast-enhanced endoscopic ultrasound, endoscopic ultrasound elastography, and pathological correlation

    PubMed Central

    Chantarojanasiri, Tanyaporn; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Yamamura, Takeshi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ishigami, Masatoshi; Watanabe, Osamu; Nakaguro, Masato; Shimoyama, Yoshie; Nakamura, Shigeo; Goto, Hidemi

    2016-01-01

    We report a case series of five patients with pancreatic acinar cell carcinoma who received surgical treatment and compared the preoperative contrast-enhanced endoscopic ultrasound (EUS) and EUS elastography patterns with the surgical specimens. The contrast-enhanced EUS indicated vascular tumors with gradual enhancement in four patients and a hypovascular tumor in one patient. The elastography indicated an elastic score of 3 (hard lesion with softer border) in two patients and a score of 5 (hard lesion, which included the surrounding area) in two patients. In tumors with an elastic score of 5, the pathology exhibited abundant hyalinizing fibrous stroma or massive tumor invasion to the surrounding tissue. We concluded that acinar cell carcinoma of the pancreas has various patterns of EUS contrast-enhancement and elastography, depending on the pathologic phenotype. PMID:27853750

  2. In vivo feasibility of real-time monitoring of focused ultrasound surgery (FUS) using harmonic motion imaging (HMI).

    PubMed

    Maleke, Caroline; Konofagou, Elisa E

    2010-01-01

    In this study, the Harmonic Motion Imaging for Focused Ultrasound (HMIFU) technique is applied to monitor changes in mechanical properties of tissues during thermal therapy in a transgenic breast cancer mouse model in vivo. An HMIFU system, composed of a 4.5-MHz focused ultrasound (FUS) and a 3.3-MHz phased-array imaging transducer, was mechanically moved to image and ablate the entire tumor. The FUS transducer was driven by an amplitude-modulated (AM) signal at 15 Hz. The acoustic intensity ( I(spta)) was equal to 1050 W/cm(2) at the focus. A digital low-pass filter was used to filter out the spectrum of the FUS beam and its harmonics prior to displacement estimation. The resulting axial displacement was estimated using 1-D cross-correlation on the acquired RF signals. Results from two mice with eight lesions formed in each mouse (16 lesions total) showed that the average peak-to-peak displacement amplitude before and after lesion formation was respectively equal to 17.34 +/- 1.34 microm and 10.98 +/- 1.82 microm ( p < 0.001). Cell death was also confirmed by hematoxylin and eosin histology. HMI displacement can be used to monitor the relative tissue stiffness changes in real time during heating so that the treatment procedure can be performed in a time-efficient manner. The HMIFU system may, therefore, constitute a cost-efficient and reliable alternative for real-time monitoring of thermal ablation.

  3. Three-dimensional electrode displacement elastography using the Siemens C7F2 fourSight four-dimensional ultrasound transducer.

    PubMed

    Bharat, Shyam; Fisher, Ted G; Varghese, Tomy; Hall, Timothy J; Jiang, Jingfeng; Madsen, Ernest L; Zagzebski, James A; Lee, Fred T

    2008-08-01

    Because ablation therapy alters the elastic modulus of tissues, emerging strain imaging methods may enable clinicians for the first time to have readily available, cost-effective, real-time guidance to identify the location and boundaries of thermal lesions. Electrode displacement elastography is a method of strain imaging tailored specifically to ultrasound-guided electrode-based ablative therapies (e.g., radio-frequency ablation). Here tissue deformation is achieved by applying minute perturbations to the unconstrained end of the treatment electrode, resulting in localized motion around the end of the electrode embedded in tissue. In this article, we present a method for three-dimensional (3D) elastographic reconstruction from volumetric data acquired using the C7F2 fourSight four-dimensional ultrasound transducer, provided by Siemens Medical Solutions USA, Inc. (Issaquah, WA, USA). Lesion reconstruction is demonstrated for a spherical inclusion centered in a tissue-mimicking phantom, which simulates a thermal lesion embedded in a normal tissue background. Elastographic reconstruction is also performed for a thermal lesion created in vitro in canine liver using radio-frequency ablation. Postprocessing is done on the acquired raw radio-frequency data to form surface-rendered 3D elastograms of the inclusion. Elastographic volume estimates of the inclusion compare reasonably well with the actual known inclusion volume, with 3D electrode displacement elastography slightly underestimating the true inclusion volume.

  4. Detection and Measurement of Stones With Ultrasound Strain Elastography: A Phantom Study.

    PubMed

    Li, Qian; Chen, Lei; Halpern, Elkan F; Samir, Anthony E

    2015-12-01

    The sonoelastographic appearances of stones in a phantom were evaluated in this study. Ten stones were embedded into a tissue-mimicking meat phantom. The stone axial (vertical) and transverse (horizontal) dimensions measured by an electronic digital caliper, gray-scale ultrasound, and strain elastography (SE) were compared in 5 groups with stones embedded at different depths. In this study, physically measured axial and transverse stone dimensions were 1.17 to 6.86 and 1.30 to 11.15 mm, respectively. Strain elastography showed a characteristic 3-layer pattern associated with stones, comprising a superficial transition region, a hard region, and a deep transition region. As SE data were available in group 5, only data of groups 1 to 4 were analyzed. Compared with physical measurements, measurement mean errors of SE horizontal and SE vertical dimensions ranged from -0.20 to 0.42 mm and from -1.28 to -0.05 mm, respectively, in the 4 groups. Paired t testing demonstrated a significant horizontal dimension measurement error difference between B mode and SE method in group 4 (0.44 vs -0.20 mm, P < 0.05; F = 1.18, P > 0.05), but not in the other groups. Strain elastography horizontal dimension measurement error was not statistically correlated with stone size in the 4 groups. Strain elastography vertical dimension measurement error significantly correlated with stone size only in group 4 (P < 0.05). Preliminary results indicate that stone horizontal and vertical dimensions can be measured using SE in a soft tissue phantom, including when shadowing precludes measurement of vertical dimension on conventional 2-dimensional ultrasound. These results provide substantial motivation to further investigate SE as a modality to image stones in clinical practice.

  5. Real-time correction of beamforming time delay errors in abdominal ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Rigby, K. W.

    2000-04-01

    The speed of sound varies with tissue type, yet commercial ultrasound imagers assume a constant sound speed. Sound speed variation in abdominal fat and muscle layers is widely believed to be largely responsible for poor contrast and resolution in some patients. The simplest model of the abdominal wall assumes that it adds a spatially varying time delay to the ultrasound wavefront. The adequacy of this model is controversial. We describe an adaptive imaging system consisting of a GE LOGIQ 700 imager connected to a multi- processor computer. Arrival time errors for each beamforming channel, estimated by correlating each channel signal with the beamsummed signal, are used to correct the imager's beamforming time delays at the acoustic frame rate. A multi- row transducer provides two-dimensional sampling of arrival time errors. We observe significant improvement in abdominal images of healthy male volunteers: increased contrast of blood vessels, increased visibility of the renal capsule, and increased brightness of the liver.

  6. Quantification of Right and Left Ventricular Function With Real-Time Three-Dimensional Ultrasound

    DTIC Science & Technology

    2007-11-02

    But it is very delicate to increase the maximum number of iterations in every case since the septum wall that separates the two cavities very often...as the medial axis as developed by Pizer and Stetten [12]. V. CONCLUSION Quantification of RV and LV volumes with 2D ultrasound transducers is...the American Society of Echocardiography, vol. 14, pp. 275-284, 2001. [12] G. D. Stetten and S. M. Pizer, “ Medial -node models to identify and

  7. A-scan ultrasound system for real-time puncture safety assessment during percutaneous nephrolithotomy

    NASA Astrophysics Data System (ADS)

    Rodrigues, Pedro L.; Rodrigues, Nuno F.; Fonseca, Jaime C.; von Krüger, M. A.; Pereira, W. C. A.; Vilaça, João. L.

    2015-03-01

    Background: Kidney stone is a major universal health problem, affecting 10% of the population worldwide. Percutaneous nephrolithotomy is a first-line and established procedure for disintegration and removal of renal stones. Its surgical success depends on the precise needle puncture of renal calyces, which remains the most challenging task for surgeons. This work describes and tests a new ultrasound based system to alert the surgeon when undesirable anatomical structures are in between the puncture path defined through a tracked needle. Methods: Two circular ultrasound transducers were built with a single 3.3-MHz piezoelectric ceramic PZT SN8, 25.4 mm of radius and resin-epoxy matching and backing layers. One matching layer was designed with a concave curvature to work as an acoustic lens with long focusing. The A-scan signals were filtered and processed to automatically detect reflected echoes. Results: The transducers were mapped in water tank and tested in a study involving 45 phantoms. Each phantom mimics different needle insertion trajectories with a percutaneous path length between 80 and 150 mm. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Conclusions: This new solution may alert the surgeon about anatomical tissues changes during needle insertion, which may decrease the need of X-Ray radiation exposure and ultrasound image evaluation during percutaneous puncture.

  8. Computer tomography urography assisted real-time ultrasound-guided percutaneous nephrolithotomy on renal calculus.

    PubMed

    Fang, You-Qiang; Wu, Jie-Ying; Li, Teng-Cheng; Zheng, Hao-Feng; Liang, Guan-Can; Chen, Yan-Xiong; Hong, Xiao-Bin; Cai, Wei-Zhong; Zang, Zhi-Jun; Di, Jin-Ming

    2017-06-01

    This study aimed to assess the role of pre-designed route on computer tomography urography (CTU) in the ultrasound-guided percutaneous nephrolithotomy (PCNL) for renal calculus.From August 2013 to May 2016, a total of 100 patients diagnosed with complex renal calculus in our hospital were randomly divided into CTU group and control group (without CTU assistance). CTU was used to design a rational route for puncturing in CTU group. Ultrasound was used in both groups to establish a working trace in the operation areas. Patients' perioperative parameters and postoperative complications were recorded.All operations were successfully performed, without transferring to open surgery. Time of channel establishment in CTU group (6.5 ± 4.3 minutes) was shorter than the control group (10.0 ± 6.7 minutes) (P = .002). In addition, there was shorter operation time, lower rates of blood transfusion, secondary operation, and less establishing channels. The incidence of postoperative complications including residual stones, sepsis, severe hemorrhage, and perirenal hematoma was lower in CTU group than in control group.Pre-designing puncture route on CTU images would improve the puncturing accuracy, lessen establishing channels as well as improve the security in the ultrasound-guided PCNL for complex renal calculus, but at the cost of increased radiation exposure.

  9. Real-time intravascular ultrasound/photoacoustic imaging system with omni-directional light excitation

    NASA Astrophysics Data System (ADS)

    Hsieh, Bao-Yu; Li, Pai-Chi

    2012-02-01

    Photoacoustic (PA) imaging has been investigated for intravascular applications. One of the main challenges is that the imaging frame rate is limited by the pulse repetition frequency (PRF), thus making real-time imaging difficult with most high-power solid-state pulse lasers. The goal of this study is to combine omni-directional optical excitation with a ring array transducer for high-frame-rate imaging, so that the image frame rate is the same as the laser PRF. In the preliminary study, we developed a real-time integrated IVUS/IVPA imaging system by modifying an IVUS system in combination with a high-speed Nd:YLF pulsed laser. In addition, an optical fiber with axicon-like distal tip is designed for omni-directional excitation. In this design, a PA image is acquired without rotating the laser light. The imaging frame rate of this integrated imaging system is 19 fps. Both US and PA images are recorded at the same time and co-registered in the fusion image. The US/PA images of tungsten wire, black tube and rabbit's atherosclerotic aorta were acquired with this integrated system to evaluate its imaging performance. The lateral/axial -6 dB resolution of US image is 2.56°/62.4μm. Resolution of PA imaging is 3.76°/91.5μm. The imaging system was also utilized to acquire IVUS/IVPA images of atherosclerotic rabbit's aorta in ex vivo study.

  10. Shear Wave Elastography May Add a New Dimension to Ultrasound Evaluation of Thyroid Nodules: Case Series with Comparative Evaluation

    PubMed Central

    Slapa, Rafal Z.; Piwowonski, Antoni; Jakubowski, Wieslaw S.; Bierca, Jacek; Szopinski, Kazimierz T.; Slowinska-Srzednicka, Jadwiga; Migda, Bartosz; Mlosek, R. Krzysztof

    2012-01-01

    Although elastography can enhance the differential diagnosis of thyroid nodules, its diagnostic performance is not ideal at present. Further improvements in the technique and creation of robust diagnostic criteria are necessary. The purpose of this study was to compare the usefulness of strain elastography and a new generation of elasticity imaging called supersonic shear wave elastography (SSWE) in differential evaluation of thyroid nodules. Six thyroid nodules in 4 patients were studied. SSWE yielded 1 true-positive and 5 true-negative results. Strain elastography yielded 5 false-positive results and 1 false-negative result. A novel finding appreciated with SSWE, were punctate foci of increased stiffness corresponding to microcalcifications in 4 nodules, some not visible on B-mode ultrasound, as opposed to soft, colloid-inspissated areas visible on B-mode ultrasound in 2 nodules. This preliminary paper indicates that SSWE may outperform strain elastography in differentiation of thyroid nodules with regard to their stiffness. SSWE showed the possibility of differentiation of high echogenic foci into microcalcifications and inspissated colloid, adding a new dimension to thyroid elastography. Further multicenter large-scale studies of thyroid nodules evaluating different elastographic methods are warranted. PMID:22685685

  11. Contrast enhanced ultrasound by real-time spatiotemporal filtering of ultrafast images

    NASA Astrophysics Data System (ADS)

    Desailly, Yann; Tissier, Anne-Marie; Correas, Jean-Michel; Wintzenrieth, Frédéric; Tanter, Mickaël; Couture, Olivier

    2017-01-01

    Contrast enhanced ultrasound (CEUS) takes advantage of the nonlinear behaviour of injected microbubbles. If these contrast techniques yield good specificity between bubbles and tissues, they suffer some drawbacks, inherently linked to their dependence on nonlinear content. In recent years, plane-wave ultrasound reached frame rates of up to 20 000 fps. In this study we propose a linear technique for CEUS that takes advantage of these very high frame rates to separate bubbles from tissue without requiring nonlinearities. Data-driven spatiotemporal filtering operations are used to separate different features in the image on the basis of coherence both in space and time. Such filter recently proved to improve Doppler sensitivity (Demene et al 2015 IEEE Trans. Med. Imaging 34 2271-85). In contrast with bubbles, even slow moving ones, tissues are highly coherent both in space and time. Therefore, singular value decomposition (SVD) seems to be a powerful tool for the separation of contrast agents and tissues. In this paper, we apply SVD processing to linear ultrafast ultrasound images for CEUS Doppler. The contrast levels reached by this technique were compared to those of a nonlinear gold standard sequence (PMPI Doppler) through a flow phantom study. The SVD technique reached contrast-to-tissue ratios (CTR) up to 10 dB higher in vitro, and proved to be robust in terms of probe motion and slow flow. A trial was also conducted on a transplanted human kidney, already imaged by means of power Doppler (Claudon et al 1999 Am. J. Roentgenol. 173 41-6) and microbubbles (Kay et al 2009 Clin. Radiol. 64 1081-7). Contrast levels yielded by the SVD technique measured up to 13 dB higher than those of PMPI Doppler.

  12. Real-time Ultrasound Assessment of Astronaut Spinal Anatomy and Disorders on the International Space Station.

    PubMed

    Garcia, Kathleen M; Harrison, Michael F; Sargsyan, Ashot E; Ebert, Douglas; Dulchavsky, Scott A

    2017-09-29

    Back pain is one of the most common conditions of astronauts during spaceflight and is hypothesized to be attributed to pathologic anatomic changes. Ultrasound (US) represents the only available imaging modality on the International Space Station, but a formal US protocol for imaging the structures of the spinal column does not exist. This investigation developed a method of acquiring diagnostic-quality images of the anterior lumbar and cervical regions of the spine during long-duration spaceflight. Comprehensive spinal US examinations were conducted on 7 long-duration spaceflight astronauts before flight, in flight, and after flight and compared to preflight and postflight magnetic resonance imaging data. In-flight scans were conducted after just-in-time training assisted by remote expert tele-US guidance. Novice users were able to obtain diagnostic-quality spinal images with a 92.5% success rate. Thirty-three anomalous or pathologic findings were identified during the preflight US analysis, and at least 14 new findings or progressions were identified during the postflight US analysis. Common findings included disk desiccation, osteophytes, and qualitative changes in the intervertebral disk height and angle. Ultrasound has proven efficacy as a portable and versatile diagnostic imaging modality under austere conditions. We demonstrated a potential role for US to evaluate spinal integrity and alterations in the extreme environment of space on the International Space Station. Further investigations should be performed to corroborate this imaging technique and to create a larger database related to in-flight spinal conditions during long-duration spaceflight. © 2017 by the American Institute of Ultrasound in Medicine.

  13. Head and neck ultrasound: technical advances, novel applications and the role of elastography.

    PubMed

    McQueen, A S; Bhatia, K S

    2017-10-03

    High-resolution ultrasound (US) provides superb anatomical detail in the superficial anatomy of the neck and has become the first-line imaging investigation for neck lumps and a crucial component of clinical pathways. In this article, a wide range of advances in neck US are described with a focus on the emerging role of ultrasound elastography. Selected examples of clinical utility are presented across a spectrum of scenarios with discussion of newer applications, service delivery, and training issues. The changing role of the neck ultrasound practitioner and the future of the technique in the head and neck are considered. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  14. 5D interactive real time Doppler ultrasound visualization of the heart

    NASA Astrophysics Data System (ADS)

    Heid, Volker; Evers, Harald; Henn, Christian; Glombitza, Gerald; Meinzer, Hans-Peter

    2000-04-01

    Heart valve insufficiencies can optimally be assessed using transesophageal, triggered, three-dimensional ultrasound imaging. The dynamic ultrasound data contain morphological as well as functional components which are recorded and displayed simultaneously. It allows the visualization of intracardiac motion which is an important parameter to detect abnormal flow caused by defect valves. A realtime reconstruction is desired to get a spatial impression on the one hand and to interactively clip parts of the volume on the other hand. OpenGL Volumizer is used for visualization. Scalability of the visualization was tested with respect to different workstations and graphics resources using a Multipipe Utility library (MPU). The combination of both APIs enables a visualization of volumetric and functional data with frame rates up to 10 frames per second. By using the proposed method, it is possible to visualize the jet in the original color-coding which is employed during a conventional two- dimensional examination for displaying the velocity values. A good scalability from low cost up to high end graphic workstations is given by the use of the MPU. The quality of the resulting 3D images allows exact differentiation of heart valve insufficiencies to support the diagnostic procedure.

  15. SIMULTANEOUS BILATERAL REAL-TIME 3-D TRANSCRANIAL ULTRASOUND IMAGING AT 1 MHZ THROUGH POOR ACOUSTIC WINDOWS

    PubMed Central

    Lindsey, Brooks D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2013-01-01

    Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%–29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging—the ultrasound brain helmet—and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field. PMID:23415287

  16. Registration of real-time 3-D ultrasound images of the heart for novel 3-D stress echocardiography.

    PubMed

    Shekhar, Raj; Zagrodsky, Vladimir; Garcia, Mario J; Thomas, James D

    2004-09-01

    Stress echocardiography is a routinely used clinical procedure to diagnose cardiac dysfunction by comparing wall motion information in prestress and poststress ultrasound images. Incomplete data, complicated imaging protocols and misaligned prestress and poststress views, however, are known limitations of conventional stress echocardiography. We discuss how the first two limitations are overcome via the use of real-time three-dimensional (3-D) ultrasound imaging, an emerging modality, and have called the new procedure "3-D stress echocardiography." We also show that the problem of misaligned views can be solved by registration of prestress and poststress 3-D image sequences. Such images are misaligned because of variations in placing the ultrasound transducer and stress-induced anatomical changes. We have developed a technique to temporally align 3-D images of the two sequences first and then to spatially register them to rectify probe placement error while preserving the stress-induced changes. The 3-D spatial registration is mutual information-based. Image registration used in conjunction with 3-D stress echocardiography can potentially improve the diagnostic accuracy of stress testing.

  17. Simultaneous bilateral real-time 3-d transcranial ultrasound imaging at 1 MHz through poor acoustic windows.

    PubMed

    Lindsey, Brooks D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2013-04-01

    Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%-29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging-the ultrasound brain helmet-and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field.

  18. Ultrasound elastography assessment of bone/soft tissue interface

    NASA Astrophysics Data System (ADS)

    Parmar, Biren J.; Yang, Xu; Chaudhry, Anuj; Shafeeq Shajudeen, Peer; Nair, Sanjay P.; Weiner, Bradley K.; Tasciotti, Ennio; Krouskop, Thomas A.; Righetti, Raffaella

    2016-01-01

    We report on the use of elastographic imaging techniques to assess the bone/soft tissue interface, a region that has not been previously investigated but may provide important information about fracture and bone healing. The performance of axial strain elastograms and axial shear strain elastograms at the bone/soft tissue interface was studied ex vivo on intact and fractured canine and ovine tibias. Selected ex vivo results were corroborated on intact sheep tibias in vivo. The elastography results were statistically analyzed using elastographic image quality tools. The results of this study demonstrate distinct patterns in the distribution of the normalized local axial strains and axial shear strains at the bone/soft tissue interface with respect to the background soft tissue. They also show that the relative strength and distribution of the elastographic parameters change in the presence of a fracture and depend on the degree of misalignment between the fracture fragments. Thus, elastographic imaging modalities might be used in the future to obtain information regarding the integrity of bones and to assess the severity of fractures, alignment of bone fragments as well as to follow bone healing.

  19. The ultrasound elastography inverse problem and the effective criteria.

    PubMed

    Aghajani, Atefeh; Haghpanahi, Mohammad; Nikazad, Touraj

    2013-11-01

    The elastography (elasticity imaging) is one of the recent state-of-the-art methods for diagnosis of abnormalities in soft tissue. The idea is based on the computation of the tissue elasticity distribution. This leads to the inverse elasticity problem; in that, displacement field and boundary conditions are known, and elasticity distribution of the tissue is aimed for computation. We treat this problem by the Gauss-Newton method. This iterative method results in an ill-posed problem, and therefore, regularization schemes are required to deal with this issue. The impacts of the initial guess for tissue elasticity distribution, contrast ratio between elastic modulus of tumor and normal tissue, and noise level of the input data on the estimated solutions are investigated via two different regularization methods. The numerical results show that the accuracy and speed of convergence vary when different regularization methods are applied. Also, the semi-convergence behavior has been observed and discussed. At the end, we signify the necessity of a clever initial guess and intelligent stopping criteria for the iterations. The main purpose here is to highlight some technical factors that have an influence on elasticity image quality and diagnostic accuracy, and we have tried our best to make this article accessible for a broad audience.

  20. Developments in real-time 2D ultrasound inspection for aging aircraft

    NASA Astrophysics Data System (ADS)

    Lasser, Marvin E.; Lasser, Bob; Kula, John; Rohrer, Gene; Harrison, George H.

    1999-01-01

    Nondestructive testing of aircraft components through ultrasonic testing is well established as one of the industry's benchmark techniques. Its capability to penetrate both thin and thick material provides arguably the best information to inspectors on subsurface faults. However, there are tow basic drawbacks to it use: its difficulty to employ and its slow speed. Real-time C-scan solves both of these issues while maintain high quality subsurface information. Cracking, corrosion, voids, delaminations and impact damage can be observed in 1/30 second. The basis for this technology is a novel 2D imaging array that creates immediate, high-resolution images of subsurface faults. The latest developments of the technique include commercial introduction of a through-transmission scanning product which can inspect large structures, as well as significant progress in the development of a hand held device which produces instantaneous high quality imagery of defects in reflection over an area as the user simply holds a probe up to the target. This work is funded in part by the Navy SBIR 'Fasttrack' program.

  1. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy.

    PubMed

    Lee, Sabrina S M; Gaebler-Spira, Deborah; Zhang, Li-Qun; Rymer, William Z; Steele, Katherine M

    2016-01-01

    Individuals with cerebral palsy tend to have altered muscle architecture and composition, but little is known about the muscle material properties, specifically stiffness. Shear wave ultrasound elastography allows shear wave speed, which is related to stiffness, to be measured in vivo in individual muscles. Our aim was to evaluate the material properties, specifically stiffness, as measured by shear wave speed of the medial gastrocnemius and tibialis anterior muscles in children with hemiplegic cerebral palsy across a range of ankle torques and positions, and fascicle strains. Shear wave speed was measured bilaterally in the medial gastrocnemius and tibialis anterior over a range of ankle positions and torques using shear wave ultrasound elastography in eight individuals with hemiplegic cerebral palsy. B-mode ultrasound was used to measure muscle thickness and fascicle strain. Shear waves traveled faster in the medial gastrocnemius and tibialis anterior of the more-affected limb by 14% (P=0.024) and 20% (P=0.03), respectively, when the ankle was at 90°. Shear wave speed in the medial gastrocnemius increased as the ankle moved from plantarflexion to dorsiflexion (less affected: r(2)=0.82, P<0.001; more-affected: r(2)=0.69, P<0.001) and as ankle torque increased (less affected: r(2)=0.56, P<0.001; more-affected: r(2)=0.45, P<0.001). In addition, shear wave speed was strongly correlated with fascicle strain (less affected: r(2)=0.63, P<0.001; more-affected: r(2)=0.53, P<0.001). The higher shear wave speed in the more-affected limb of individuals with cerebral palsy indicates greater muscle stiffness, and demonstrates the clinical potential of shear wave elastography as a non-invasive tool for investigating mechanisms of altered muscle properties and informing diagnosis and treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ultrasound elastography in the differential diagnosis of benign and malignant cervical lesions.

    PubMed

    Lu, Rong; Xiao, Ying; Liu, Minhui; Shi, Dazun

    2014-04-01

    This study aimed to evaluate the clinical value of ultrasound elastography in the differential diagnosis of benign and malignant cervical lesions and to compare the accuracy of the elasticity score and strain ratio in differentiating cervical lesions. B-mode sonography and ultrasound elastography were performed on 84 cervical lesions (40 benign and 44 malignant) in 84 patients. All of the images were obtained transvaginally. The elasticity score was determined by a 5-point scoring method. Calculation of the strain ratio was based on a comparison of the average strain measured in the lesion with the adjacent tissue of the same depth, size, and shape. The findings were compared with histopathologic results. With the use of receiver operating characteristic curves, the diagnostic value of the elasticity score and strain ratio methods was determined. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the elasticity score in the differential diagnosis of cervical lesions were 81.8%, 85.0%, 83.3%, 85.7%, and 81.0%, respectively, whereas those of the strain ratio were 90.9%, 90.0%, 90.5%, 90.9%, and 90.0%. A strain ratio cutoff value of 4.525 was used as a standard to distinguish benign from malignant lesions. The strain ratio values of malignant lesions were much higher than those of benign lesions (range, 4.85-8.91 versus 0.62-4.50). The differences were statistically significant (P < .01). Ultrasound elastography is a promising technique that is easy and rapid to perform and can help identify cervical lesions that are likely to be malignant. It is obvious that the strain ratio yielded better results than the elasticity score. Both methods are semiquantitative, but quantification of the strain ratio is finer than that of the elasticity score.

  3. Correlation between Ultrasound Elastography and Histologic Characteristics of Papillary Thyroid Carcinoma

    PubMed Central

    Yi, Li; Qiong, Wu; Yan, Wang; Youben, Fan; Bing, Hu

    2017-01-01

    The aim of this study was to investigate the correlation between elastography and histologic characteristics including fibrosis and calcification. We also wanted to investigate whether other clinicopathologic indexes influence the strain ratio (SR) of papillary thyroid carcinomas (PTCs). We retrospectively reviewed 126 papillary thyroid carcinomas (PTCs) from 103 patients who underwent ultrasonography and elastography before surgery. The histologic characteristics and clinicopathologic indexes were compared with the SR of ultrasound elastography (UE). The results showed that there was a significantly positive correlation between fibrosis degree and SR measurements (r = 0.754, p = 0.000); the SR was significantly different between the groups with and without calcification (11.34 ± 10.08 vs. 6.81 ± 7.33, p = 0.000). The standard coefficients of collagen and stromal calcification were 0.684 and 0.194, respectively. There was no significant correlation between SR and indices such as size, position, co-existence with Hashimoto’s thyroiditis (HT), multifocality or cervical lymph node (CLN) metastasis. In conclusion, we found that the SR of UE is positively correlated with the fibrosis of PTC. Stromal calcification will elevate the SR dramatically, but psammoma bodies will not when they exist in the absence of stromal calcification. PMID:28327620

  4. Non-invasive and real-time passive acoustic mapping of ultrasound-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Choi, James J.; Carlisle, Robert C.; Coviello, Christian; Seymour, Len; Coussios, Constantin-C.

    2014-09-01

    New classes of biologically active materials, such as viruses, siRNA, antibodies and a wide range of engineered nanoparticles have emerged as potent agents for diagnosing and treating diseases, yet many of these agents fail because there is no effective route of delivery to their intended targets. Focused ultrasound and its ability to drive microbubble-seeded cavitation have been shown to facilitate drug delivery. However, cavitation is difficult to control temporally and spatially, making prediction of therapeutic outcomes deep in the body difficult. Here, we utilized passive acoustic mapping in vivo to understand how ultrasound parameters influence cavitation dynamics and to correlate spatial maps of cavitation to drug delivery. Focused ultrasound (center frequency: 0.5 MHz, peak-rarefactional pressure: 1.2 MPa, pulse length: 25 cycles or 50,000 cycles, pulse repetition interval: 0.02, 0.2, 1 or 3 s, number of pulses: 80 pulses) was applied to murine xenograft-model tumors in vivo during systemic injection of microbubbles with and without cavitation-sensitive liposomes or type 5 adenoviruses. Analysis of in vivo cavitation dynamics through several pulses revealed that cavitation was more efficiently produced at a lower pulse repetition frequency of 1 Hz than at 50 Hz. Within a pulse, inertial cavitation activity was shown to persist but reduced to 50% and 25% of its initial magnitude in 4.3 and 29.3 ms, respectively. Both through several pulses and within a pulse, the spatial distribution of cavitation was shown to change in time due to variations in microbubble distribution present in tumors. Finally, we demonstrated that the centroid of the mapped cavitation activity was within 1.33  ±  0.6 mm and 0.36 mm from the centroid location of drug release from liposomes and expression of the reporter gene encoded by the adenovirus, respectively. Thus passive acoustic mapping not only unraveled key mechanisms whereby a successful outcome is achieved

  5. Embedded System for Real-Time Digital Processing of Medical Ultrasound Doppler Signals

    NASA Astrophysics Data System (ADS)

    Ricci, S.; Dallai, A.; Boni, E.; Bassi, L.; Guidi, F.; Cellai, A.; Tortoli, P.

    2008-12-01

    Ultrasound (US) Doppler systems are routinely used for the diagnosis of cardiovascular diseases. Depending on the application, either single tone bursts or more complex waveforms are periodically transmitted throughout a piezoelectric transducer towards the region of interest. Extraction of Doppler information from echoes backscattered from moving blood cells typically involves coherent demodulation and matched filtering of the received signal, followed by a suitable processing module. In this paper, we present an embedded Doppler US system which has been designed as open research platform, programmable according to a variety of strategies in both transmission and reception. By suitably sharing the processing tasks between a state-of-the-art FGPA and a DSP, the system can be used in several medical US applications. As reference examples, the detection of microemboli in cerebral circulation and the measurement of wall _distension_ in carotid arteries are finally presented.

  6. Imaging features of hepatic angiomyolipomas on real-time contrast-enhanced ultrasound

    PubMed Central

    Wang, Z; Xu, H-X; Xie, X-Y; Xie, X-H; Kuang, M; Xu, Z-F; Liu, G-J; Chen, L-D; Lin, M-X; Lu, M-D

    2010-01-01

    The aim of this study was to evaluate the imaging features of hepatic angiomyolipoma (AML) on contrast-enhanced ultrasound (CEUS). The imaging features of 12 pathologically proven hepatic AML lesions in 10 patients who had undergone baseline ultrasound (BUS) and CEUS examinations were evaluated retrospectively. The enhancement extent, pattern and dynamic change, along with the enhancement process, on CEUS were analysed. The diagnostic results of BUS and CEUS before pathological examination were also recorded. The results showed that 75% (9/12) of the AML lesions exhibited mixed echogenicity on BUS and most showed remarkable hyperechogenicity in combination with a hypoechoic or anechoic portion. Arterial flow signals were detected in 75% (9/12) of the lesions on colour Doppler imaging. On CEUS, 66.7% (n = 8) of the 12 lesions exhibited hyperenhancement in the arterial phase, slight hyperenhancement (n = 2) or isoenhancement (n = 6) in the portal phase, and slight hyperenhancement (n = 1) or isoenhancement (n = 7) in the late phase. Three (25%) lesions exhibited hyperenhancement in the arterial phase and hypoenhancement in both portal and late phases. One (8.3%) lesion exhibited hypoenhancement throughout the CEUS process. Before pathological examination with BUS, only 3 (25%) lesions were correctly diagnosed as hepatic AML. Conversely, on CEUS, correct diagnoses were made for 66.8% (8/12) of hepatic AMLs. Therefore, arterial hyperenhancement and subsequent sustained enhancement on CEUS were found in the majority of hepatic AMLs. The combination of BUS and CEUS leads to the correct diagnosis in the majority of hepatic AMLs, and is higher than the success rate achieved by BUS alone. PMID:19723766

  7. Real-time ultrasound-guided PCNL using a novel SonixGPS needle tracking system.

    PubMed

    Li, Xiang; Long, Qingzhi; Chen, Xingfa; He, Dalin; Dalin, He; He, Hui

    2014-08-01

    SonixGPS is a successful ultrasound guidance position system. It helps to improve accuracy in performing complex puncture operations. This study firstly used SonixGPS to perform kidney calyx access in PCNL to investigate its effectiveness and safety. This was a prospectively randomized controlled study performed from September 2011 to October 2012. A total of 97 patients were prospectively randomized into two groups using random number generated from SAS software. 47 Patients were enrolled in conventional ultrasound-guided (US-guided) group and 50 patients were classified into SonixGPS-guided group. Nine patients were lost during follow-up. Hence, a total of 88 patients were qualified and analyzed. Preoperative examinations included urine analysis, urine culture, kidney function, coagulation profile and routine analysis of blood. Ultrasonography was used to evaluate the degree of hydronephrosis. The intraoperative findings, including blood loss, operating time, time to successful puncture, the number of attempts for successful puncture and hospital stay were recorded. The stone clearance rate and complications were analyzed. The present study showed no significant difference between the two groups in terms of demographic data, preoperative markers, stone clearance rate and the stone composition. However, the time to successful puncture, the number of trials for successful puncture, operating time and hospital length of stay were significantly decreased in the SonixGPS-guided group. Furthermore, the hemoglobin decrease was also obviously lower in the SonixGPS group than that in conventional US-guided group. SonixGPS needle tacking system guided PCNL is safe and effective in treating upper urinary tract stones. This novel technology makes puncturing more accuracy and can significantly decrease the incidence of relative hemorrhage and accelerate recovery.

  8. Virtual reality imaging with real-time ultrasound guidance for facet joint injection: a proof of concept.

    PubMed

    Clarke, Collin; Moore, John; Wedlake, Christopher; Lee, Donald; Ganapathy, Su; Salbalbal, Maher; Wilson, Timothy; Peters, Terry; Bainbridge, Daniel

    2010-05-01

    Facet interventions continue to be used in pain management. Computed tomographic (CT) images can be registered into a virtual world that includes images generated by an ultrasound (US) probe tracked in real time, permitting guidance of tracked needles. We acquired CT-generated 3-dimensional (3D) images of 2 models and a cadaver. Three-dimensional representations of a US probe and needle were generated. A magnetic system tracked the needle and US probe. Using the US, 3D CT images were registered to the model/cadaver. Images were fused on a single interface. Facet injections were performed in the models and cadaver with radio-opaque markers. A postprocedure CT image determined appropriate placement. The virtual reality system described demonstrates technical innovations that may lead to future advancements in the area of percutaneous interventions in the management of pain.

  9. Percutaneous transhepatic duodenostomy for a gastrectomy case with CT guidance and real-time visualization by an ultrasound and endoscopy.

    PubMed

    Moriwaki, Yoshihiro; Otani, Jun; Sawada, Yoshiyuki; Okuda, Junzo; Niwano, Toshiyuki; Ntta, Tachiko; Ohshima, Chiaki

    2015-09-01

    After gastrectomy, the remnant stomach, a small stomach behind the lateral segment of the liver, is thought to be a relative contraindication to receiving a percutaneous endoscopy-guided gastrostomy (PEG). We successfully performed a percutaneous duodenostomy in a case with remnant stomach. We used a transhepatic pull method with computed tomography (CT) guidance and real-time visualization by using ultrasound (US) and an endoscopy. The procedure was as follows: 1. Full stretching of the remnant stomach; 2. Insertion of a fine injection needle into the duodenal lumen through the lateral segment of the liver without an intrahepatic vascular and biliary injury using real-time visualization through US; 3. Confirmation of the location of the fine needle using abdominal CT, which showed the fine needle penetrating through the lateral segment and the duodenal lumen; 4. Insertion of the thick needle of the PEG kit just laterally of the fine needle; 5. Confirmation of the location of the thick needle using a repeated CT; 6. Endoscopic confirmation of the location of the two needles; 7. Changing the direction of the thick needle using guidance with endoscopy, inserting the thick needle into the duodenal lumen, and removing the fine needle; 8. Insertion of the guide wire through the thick needle; and 9. Placement of the PEG tube using the pull method. Using a real-time US scan, we detected the puncture of the anterior wall of the duodenum or stomach and avoided intrahepatic major vascular and biliary injuries. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization.

    PubMed

    Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L; Wang, Xueding; Liu, Xiaojun

    2013-08-01

    Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.

  11. Real-Time Integrated Photoacoustic and Ultrasound (PAUS) Imaging System to Guide Interventional Procedures: Ex Vivo Study

    PubMed Central

    Wei, Chen-Wei; Nguyen, Thu-Mai; Xia, Jinjun; Arnal, Bastien; Wong, Emily Y.; Pelivanov, Ivan M.; O’Donnell, Matthew

    2015-01-01

    Because of depth-dependent light attenuation, bulky, low-repetition-rate lasers are usually used in most photoacoustic (PA) systems to provide sufficient pulse energies to image at depth within the body. However, integrating these lasers with real-time clinical ultrasound (US) scanners has been problematic because of their size and cost. In this paper, an integrated PA/US (PAUS) imaging system is presented operating at frame rates >30 Hz. By employing a portable, low-cost, low-pulse-energy (~2 mJ/pulse), high-repetition-rate (~1 kHz), 1053-nm laser, and a rotating galvo-mirror system enabling rapid laser beam scanning over the imaging area, the approach is demonstrated for potential applications requiring a few centimeters of penetration. In particular, we demonstrate here real-time (30 Hz frame rate) imaging (by combining multiple single-shot sub-images covering the scan region) of an 18-gauge needle inserted into a piece of chicken breast with subsequent delivery of an absorptive agent at more than 1-cm depth to mimic PAUS guidance of an interventional procedure. A signal-to-noise ratio of more than 35 dB is obtained for the needle in an imaging area 2.8 × 2.8 cm (depth × lateral). Higher frame rate operation is envisioned with an optimized scanning scheme. PMID:25643081

  12. A real-time photoacoustic and ultrasound dual-modality imaging system facilitated with GPU and code parallel optimization

    NASA Astrophysics Data System (ADS)

    Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L.; Wang, Xueding; Liu, Xiaojun

    2014-03-01

    Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The backprojection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel was conducted to verify the performance of this system for imaging fast biological events. The GPU based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/pat realtime .

  13. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization

    NASA Astrophysics Data System (ADS)

    Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L.; Wang, Xueding; Liu, Xiaojun

    2013-08-01

    Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.

  14. A Real-Time Medical Ultrasound Image Sequence Transmission System with Narrow Integrated Service Digital Network

    NASA Astrophysics Data System (ADS)

    Umeda, Toshiyuki; Kuroda, Tomohiro; Oshiro, Osamu; Chihara, Kunihiro

    1999-05-01

    In this paper, a new telemedicine system which enables real-timetelediagnosis using medical ultrasound (US) image sequences on apublic digital network with a speed of up to 128 kbps, famed as narrowintegrated service digital network (N-ISDN) is proposed. This systemcan be used to transmit two types of image sequences: one is the imagesequence of an entire region in low time/space resolution and theother is a region of interests (ROI) in high time/spaceresolution. Therefore, a medical doctor at a diagnosis site caninstruct the technician at the live acquisition site about thelocation and angle of the probe, using the entire region imagesequences. When the appropriate slices are obtained, a medical doctorcan diagnose the high-resolution image sequences of the ROI. Wedeveloped the prototype which compresses the US image sequences withdiscrete cosine transform (DCT) and examined the system on a userdatagram protocol/Internet protocol (UDP/IP) communicationchannel. The experimental results show that the image sequences of anentire region, which holds 640 × 480 pixels, are transmittedwith 5.0 frames per second less than 112.5 kbps, and that the ROI,which holds 90 × 90 pixels, are transmitted with 14.2 framesper second less than 81.9 kbps.

  15. Real-time 2D Imaging of Thermal and Mechanical Tissue Response to Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Ebbini, Emad S.

    2010-03-01

    An integrated system capable of performing high frame-rate two-dimensional (2D) temperature imaging in realtime is has been developed. The system consists of a SonixRP ultrasound scanner and a custom built data processing unit connected with Gigabit Ethernet (GbE). The SonixRP scanner which serves as the frontend of the integrated system allows us to have flexibilities of controlling the beam sequence and accessing the radio frequency (RF) data in realtime through its research interface. The RF data is then streamlined to the backend of the system through GbE, where the data is processed using a 2D temperature estimation algorithm running in a general purpose graphics processing unit (GPU). Using this system, we have developed a 2D high frame-rate imaging mode, M2D, for imaging the mechanical and thermal tissue response to subtherapeutic HIFU beams. In this paper, we present results from imaging subtherapetic HIFU beams in vitro porcine heart before and after lesion formation. The results demonstrate the feasibility of tissue parameter changes due to HIFU-induced lesions.

  16. Prediction of cervical lymph node metastasis in patients with papillary thyroid cancer using combined conventional ultrasound, strain elastography, and acoustic radiation force impulse (ARFI) elastography.

    PubMed

    Xu, Jun-Mei; Xu, Xiao-Hong; Xu, Hui-Xiong; Zhang, Yi-Feng; Guo, Le-Hang; Liu, Lin-Na; Liu, Chang; Bo, Xiao-Wan; Qu, Shen; Xing, Mingzhao; Li, Xiao-Long

    2016-08-01

    To investigate the value of combined conventional ultrasound (US), strain elastography (SE) and acoustic radiation force impulse (ARFI) elastography for prediction of cervical lymph node metastasis (CLNM) in papillary thyroid cancer (PTC). A consecutive series of 203 patients with 222 PTCs were preoperatively evaluated by US, SE, and ARFI including virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ). A multivariate analysis was performed to predict CLNM by 22 independent variables. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance. Multivariate analysis demonstrated that VTI area ratio (VAR) > 1 was the best predictor for CLNM, followed by abnormal cervical lymph node (ACLN), capsule contact, microcalcification, capsule involvement, and multiple nodules (all P < 0.05). ROC analyses of these characteristics showed the areas under the curve (Az), sensitivity, and specificity were 0.600-0.630, 47.7 %-93.2 %, and 26.9 %-78.4 % for US, respectively; and they were 0.784, 83.0 %, and 73.9 %, respectively, for VAR > 1. As combination of US characteristics with and without VAR, the Az, sensitivity, and specificity were 0.803 and 0.556, 83.0 % and 100.0 %, and 77.6 % and 11.2 %, respectively (P < 0.001). ARFI elastography shows superior performance over conventional US, particularly when combined with US, in predicting CLNM in PTC patients. • Conventional ultrasound is useful in predicting cervical lymph node metastasis preoperatively. • Virtual touch tissue imaging area ratio is the strongest predicting factor. • Predictive performance is markedly improved by combining ultrasound characteristics with VAR. • Acoustic radiation force impulse elastography may be a promising complementary tool.

  17. Added value of Virtual Touch IQ shear wave elastography in the ultrasound assessment of breast lesions.

    PubMed

    Ianculescu, Victor; Ciolovan, Laura Maria; Dunant, Ariane; Vielh, Philippe; Mazouni, Chafika; Delaloge, Suzette; Dromain, Clarisse; Blidaru, Alexandru; Balleyguier, Corinne

    2014-05-01

    To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann-Whitney U test, p<0.0001). By selecting a lesion cut-off value of 3.31m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Real-time co-registered ultrasound and photoacoustic imaging system based on FPGA and DSP architecture

    NASA Astrophysics Data System (ADS)

    Alqasemi, Umar; Li, Hai; Aguirre, Andres; Zhu, Quing

    2011-03-01

    Co-registering ultrasound (US) and photoacoustic (PA) imaging is a logical extension to conventional ultrasound because both modalities provide complementary information of tumor morphology, tumor vasculature and hypoxia for cancer detection and characterization. In addition, both modalities are capable of providing real-time images for clinical applications. In this paper, a Field Programmable Gate Array (FPGA) and Digital Signal Processor (DSP) module-based real-time US/PA imaging system is presented. The system provides real-time US/PA data acquisition and image display for up to 5 fps* using the currently implemented DSP board. It can be upgraded to 15 fps, which is the maximum pulse repetition rate of the used laser, by implementing an advanced DSP module. Additionally, the photoacoustic RF data for each frame is saved for further off-line processing. The system frontend consists of eight 16-channel modules made of commercial and customized circuits. Each 16-channel module consists of two commercial 8-channel receiving circuitry boards and one FPGA board from Analog Devices. Each receiving board contains an IC† that combines. 8-channel low-noise amplifiers, variable-gain amplifiers, anti-aliasing filters, and ADC's‡ in a single chip with sampling frequency of 40MHz. The FPGA board captures the LVDSξ Double Data Rate (DDR) digital output of the receiving board and performs data conditioning and subbeamforming. A customized 16-channel transmission circuitry is connected to the two receiving boards for US pulseecho (PE) mode data acquisition. A DSP module uses External Memory Interface (EMIF) to interface with the eight 16-channel modules through a customized adaptor board. The DSP transfers either sub-beamformed data (US pulse-echo mode or PAI imaging mode) or raw data from FPGA boards to its DDR-2 memory through the EMIF link, then it performs additional processing, after that, it transfer the data to the PC** for further image processing. The PC code

  19. Usefulness of strain elastography of the musculoskeletal system

    PubMed Central

    2016-01-01

    Ultrasound elastography is a widely used technique for assessing the mechanical characteristics of tissues. Although there are several ultrasound elastography techniques, strain elastography (SE) is currently the most widely used technique for visualizing an elastographic map in real time. Among its various indications, SE is especially useful in evaluating the musculoskeletal system. In this article, we review the SE techniques for clinical practice and describe the images produced by these techniques in the context of the musculoskeletal system. SE provides information about tissue stiffness and allows real-time visualization of the image; however, SE cannot completely replace gray-scale, color, or power Doppler ultrasonography. SE can increase diagnostic accuracy and may be useful for the follow-up of benign lesions. PMID:26810195

  20. Ultrasound for In Vitro, Noninvasive Real-Time Monitoring and Evaluation of Tissue-Engineered Heart Valves.

    PubMed

    Hurtado-Aguilar, Luis G; Mulderrig, Shane; Moreira, Ricardo; Hatam, Nima; Spillner, Jan; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Mela, Petra

    2016-10-01

    Tissue-engineered heart valves are developed in bioreactors where biochemical and mechanical stimuli are provided for extracellular matrix formation. During this phase, the monitoring possibilities are limited by the need to maintain the sterility and integrity of the valve. Therefore, noninvasive and nondestructive techniques are required. As such, optical imaging is commonly used to verify valve's functionality in vitro. It provides important information (i.e., leaflet symmetry, geometric orifice area, and closing and opening times), which is, however, usually limited to a singular view along the central axis from the outflow side. In this study, we propose ultrasound as a monitoring method that, in contrast to established optical imaging, can assess the valve from different planes, scanning the whole three-dimensional geometry. We show the potential benefits associated with the application of ultrasound to bioreactors, in advancing heart valve tissue engineering from design to fabrication and in vitro maturation. Specifically, we demonstrate that additional information, otherwise unavailable, can be gained to evaluate the valve's functionality (e.g., coaptation length, and effective cusp height and shape). Furthermore, we show that Doppler techniques provide qualitative visualization and quantitative evaluation of the flow through the valve, in real time and throughout the whole in vitro fabrication phase.

  1. Development of a real-time lumbar ultrasound image processing system for epidural needle entry site localization.

    PubMed

    Yusong Leng; Shuang Yu; Kok Kiong Tan; Tildsley, Philip; Sia, Alex Tiong Heng; Ban Leong Sng

    2016-08-01

    A fully-automatic ultrasound image processing system that can determine the needle entry site for epidural anesthesia (EA) in real time is presented in this paper. Neither the knowledge of anesthetists nor additional hardware is required to operate the system, which firstly directs the anesthetists to reach the desired insertion region in the longitudinal view, i.e., lumbar level L3-L4, and then locates the ideal puncture site by instructing the anesthetists to rotate and slightly adjust the position of ultrasound probe. In order to implement these functions, modules including image processing, panorama stitching, feature extraction/selection, template matching and support vector machine (SVM) classification are incorporated in this system. Additionally, a user-friendly graphical user interface (GUI), which displays the processing results and guides anesthetists intuitively, is further designed to conceal the intricacy of algorithms. Feasibility and effectiveness of the proposed system has been evaluated through a set of realtime tests on 53 volunteers from a local hospital.

  2. Modeling Transversely Isotropic, Viscoelastic, Incompressible Tissue-like Materials with Application in Ultrasound Shear Wave Elastography

    PubMed Central

    Qiang, Bo; Brigham, John C.; Aristizabal, Sara; Greenleaf, James F.; Zhang, Xiaoming; Urban, Matthew W.

    2015-01-01

    In this paper, we propose a method to model the shear wave propagation in transversely isotropic, viscoelastic and incompressible media. The targeted application is ultrasound-based shear wave elastography for viscoelasticity measurements in anisotropic tissues such as the kidney and skeletal muscles. The proposed model predicts that if the viscoelastic parameters both across and along fiber directions can be characterized as a Voigt material, then the spatial phase velocity at any angle is also governed by a Voigt material model. Further, with the aid of Taylor expansions, it is shown that the spatial group velocity at any angle is close to a Voigt type for weakly attenuative materials within a certain bandwidth. The model is implemented in a finite element code by a time domain explicit integration scheme and shear wave simulations are conducted. The results of the simulations are analyzed to extract the shear wave elasticity and viscosity for both the spatial phase and group velocities. The estimated values match well with theoretical predictions. The proposed theory is further verified by an ex vivo tissue experiment measured in a porcine skeletal muscle by an ultrasound shear wave elastography method. The applicability of the Taylor expansion to analyze the spatial velocities is also discussed. We demonstrate that the approximations from the Taylor expansions are subject to errors when the viscosities across or along the fiber directions are large or the maximum frequency considered is beyond the bandwidth defined by radii of convergence of the Taylor expansions. PMID:25591921

  3. Visualizing the stress distribution within vascular tissues using intravascular ultrasound elastography: a preliminary investigation.

    PubMed

    Richards, Michael S; Perucchio, Renato; Doyley, Marvin M

    2015-06-01

    A methodology for computing the stress distribution of vascular tissue using finite element-based, intravascular ultrasound (IVUS) reconstruction elastography is described. This information could help cardiologists detect life-threatening atherosclerotic plaques and predict their propensity to rupture. The calculation of vessel stresses requires the measurement of strain from the ultrasound images, a calibrating pressure measurement and additional model assumptions. In this work, we conducted simulation studies to investigate the effect of varying the model assumptions, specifically Poisson's ratio and the outer boundary conditions, on the resulting stress fields. In both simulation and phantom studies, we created vessel geometries with two fibrous cap thicknesses to determine if we could detect a difference in peak stress (spatially) between the two. The results revealed that (i) Poisson's ratios had negligible impact on the accuracy of stress elastograms, (ii) the outer boundary condition assumption had the greatest effect on the resulting modulus and stress distributions and (iii) in simulation and in phantom experiments, our stress imaging technique was able to detect an increased peak stress for the vessel geometry with the smaller cap thickness. This work is a first step toward understanding and creating a robust stress measurement technique for evaluating atherosclerotic plaques using IVUS elastography.

  4. Numerical characterization of quasi-static ultrasound elastography for the detection of deep tissue injuries.

    PubMed

    Hamaluik, Kenton; Moussa, Walied; Ferguson-Pell, Martin

    2014-07-01

    Deep tissue injuries are subcutaneous regions of tissue breakdown associated with excessive mechanical pressure for extended period of time. These wounds are currently clinically undetectable in their early stages and result in severe burdens on not only the patients who suffer from them, but the health care system as well. The goal of this work was to numerically characterize the use of quasi-static ultrasound elastography for detecting formative and progressive deep tissue injuries. In order to numerically characterize the technique, finite-element models of sonographic B-mode imaging and tissue deformation were created. These models were fed into a local strain-estimation algorithm to determine the detection sensitivity of the technique on various parameters. Our work showed that quasi-static ultrasound elastography was able to detect and characterize deep tissue injuries over a range of lesion parameters. Simulations were validated using a physical phantom model. This work represents a step along the path to developing a clinically relevant technique for detecting and diagnosing early deep tissue injuries.

  5. In Vivo Estimation of Perineal Body Properties Using Ultrasound Quasistatic Elastography in Nulliparous Women

    PubMed Central

    Chen, Luyun; Low, Lisa Kane; DeLancey, John OL; Ashton-Miller, James A

    2015-01-01

    Objective The perineal body must undergo a remarkable transformation during pregnancy to accommodate an estimated stretch ratio of over 3.3 in order to permit vaginal delivery of the fetal head. Yet measurements of perineal body elastic properties are lacking in vivo, whether in the pregnant or non-pregnant state. The objective of this study, therefore, was to develop a method for measuring perineal body elastic modulus and to test its feasibility in young nulliparous women. Methods An UltraSONIX RP500 ultrasound system was equipped with elastography software. Approximately 1 Hz free-hand sinusoidal compression loading of the perineum was used to measure the relative stiffness of the perineal body compared to that of a custom reference standoff pad with a modulus of 36.7 kPa. Measurements were made in 20 healthy nulliparous women. Four subjects were invited back for second and third visits to evaluate within- and between-visit repeatability using the coefficient of variation. Results The mean± SD elastic compression modulus of the perineal body was 28.9 ± 4.7 kPa. Within- and between-visit repeatability averaged 3.4% and 8.3%, respectively. Conclusion Ultrasound elastography using a standoff pad reference provides a valid method for evaluating the elastic modulus of the perineal body in living women. PMID:25801422

  6. Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays.

    PubMed

    Montilla, Leonardo G; Olafsson, Ragnar; Bauer, Daniel R; Witte, Russell S

    2013-01-07

    Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information during a routine breast exam for cancer. PAI enhances contrast between blood vessels and background tissue, which can help characterize suspicious lesions. However, most PAI systems are either not compatible with commercial ultrasound systems or inefficiently deliver light to the region of interest, effectively reducing the sensitivity of the technique. To address and potentially overcome these limitations, we developed an accessory for a standard linear ultrasound array that optimizes light delivery for PAI. The photoacoustic enabling device (PED) exploits an optically transparent acoustic reflector to help direct laser illumination to the region of interest. This study compares the PED with standard fiber bundle illumination in scattering and non-scattering media. In scattering media with the same incident fluence, the PED enhanced the photoacoustic signal by 18 dB at a depth of 5 mm and 6 dB at a depth of 20 mm. To demonstrate in vivo feasibility, we also used the device to image a mouse with a pancreatic tumor. The PED identified blood vessels at the periphery of the tumor, suggesting that PAI provides complementary contrast to standard pulse echo ultrasound. The PED is a simple and inexpensive solution that facilitates the translation of PAI technology to the clinic for routine screening of breast cancer.

  7. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography.

    PubMed

    Holm, Sverre; Näsholm, Sven Peter

    2014-04-01

    A set of wave equations with fractional loss operators in time and space are analyzed. The fractional Szabo equation, the power law wave equation and the causal fractional Laplacian wave equation are all found to be low-frequency approximations of the fractional Kelvin-Voigt wave equation and the more general fractional Zener wave equation. The latter two equations are based on fractional constitutive equations, whereas the former wave equations have been derived from the desire to model power law attenuation in applications like medical ultrasound. This has consequences for use in modeling and simulation, especially for applications that do not satisfy the low-frequency approximation, such as shear wave elastography. In such applications, the wave equations based on constitutive equations are the viable ones. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. A stochastic filtering approach to recover strain images from quasi-static ultrasound elastography

    PubMed Central

    2014-01-01

    Background Model-based reconstruction algorithms have shown potentials over conventional strain-based methods in quasi-static elastographic image by using realistic finite element (FE) or bio-mechanical model constraints. However, it is still difficult to properly handle the discrepancies between the model constraint and ultrasound data, and the measurement noise. Methods In this paper, we explore the usage of Kalman filtering algorithm for the estimation of strain imaging in quasi-static ultrasound elastography. The proposed strategy formulates the displacement distribution through biomechanical models, and the ultrasound-derived measurements through observation equations. Through this filtering strategy, the discrepancies are quantitatively modelled as one Gaussian white noise, and the measurement noise of ultrasound data is modelled as another independent Gaussian white noise. The optimal estimation of kinematic functions, i.e. the full displacement and velocity field, are computed through this Kalman filter. Then the strain images can be easily calculated from the estimated displacement field. Results The accuracy and robustness of our proposed framework is first evaluated in synthetic data in controlled conditions, and the performance of this framework is then evaluated in the real data collected from elastography phantoms and patients with favourable results. Conclusions The potential of our algorithm is to provide the distribution of mechanically meaningful strain under a proper biomechanical model constraint. We address the model-data discrepancy and measurement noise by introducing process noise and measurement noise in our framework, and then the mechanically meaningful strain is estimated through the Kalman filter in the minimum mean square error (MMSE) sense. PMID:24521481

  9. Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging.

    PubMed

    Zhou, Guang-Quan; Chan, Phoebe; Zheng, Yong-Ping

    2015-03-01

    Muscle imaging is a promising field of research to understand the biological and bioelectrical characteristics of muscles through the observation of muscle architectural change. Sonomyography (SMG) is a technique which can quantify the real-time architectural change of muscles under different contractions and motions with ultrasound imaging. The pennation angle and fascicle length are two crucial SMG parameters to understand the contraction mechanics at muscle level, but they have to be manually detected on ultrasound images frame by frame. In this study, we proposed an automatic method to quantitatively identify pennation angle and fascicle length of gastrocnemius (GM) muscle based on multi-resolution analysis and line feature extraction, which could overcome the limitations of tedious and time-consuming manual measurement. The method started with convolving Gabor wavelet specially designed for enhancing the line-like structure detection in GM ultrasound image. The resulting image was then used to detect the fascicles and aponeuroses for calculating the pennation angle and fascicle length with the consideration of their distribution in ultrasound image. The performance of this method was tested on computer simulated images and experimental images in vivo obtained from normal subjects. Tests on synthetic images showed that the method could identify the fascicle orientation with an average error less than 0.1°. The result of in vivo experiment showed a good agreement between the results obtained by the automatic and the manual measurements (r=0.94±0.03; p<0.001, and r=0.95±0.02, p<0.001). Furthermore, a significant correlation between the ankle angle and pennation angle (r=0.89±0.05; p<0.001) and fascicle length (r=-0.90±0.04; p<0.001) was found for the ankle plantar flexion. This study demonstrated that the proposed method was able to automatically measure the pennation angle and fascicle length of GM ultrasound images, which made it feasible to investigate

  10. Ultrasound Elastography Based on Multiscale Estimations of Regularized Displacement Fields

    PubMed Central

    Frouin, Frédérique; Insana, Michael F.; Herment, Alain

    2009-01-01

    Elasticity imaging is based on the measurements of local tissue deformation. The approach to ultrasound elasticity imaging presented in this paper relies on the estimation of dense displacement fields by a coarse-to-fine minimization of an energy function that combines constraints of conservation of echo amplitude and displacement field continuity. The multiscale optimization scheme presents several characteristics aimed at improving and accelerating the convergence of the minimization process. This includes the nonregularized initialization at the coarsest resolution and the use of adaptive configuration spaces. Parameters of the energy model and optimization were adjusted using data obtained from a tissue-like phantom material. Elasticity images from normal in vivo breast tissue were subsequently obtained with these parameters. Introducing a smoothness constraint into motion field estimation helped solve ambiguities due to incoherent motion, leading to elastograms less degraded by decorrelation noise than the ones obtained from correlation-based techniques. PMID:14964561

  11. Dynamic depth-dependent osmotic swelling and solute diffusion in articular cartilage monitored using real-time ultrasound.

    PubMed

    Zheng, Y P; Shi, J; Qin, L; Patil, S G; Mow, V C; Zhou, K Y

    2004-06-01

    The objective of this study was to investigate the feasibility of ultrasonic monitoring for the transient depth-dependent osmotic swelling and solute diffusion in normal and degenerated articular cartilage (artC) tissues. Full-thickness artC specimens were collected from fresh bovine patellae. The artC specimens were continuously monitored using a focused beam of 50 MHz ultrasound (US) during sequential changes of the bathing solution from 0.15 mol/L to 2 mol/L saline, 0.15 mol/L saline, 1 mg/mL trypsin solution, 0.15 mol/L saline, 2 mol/L saline and back to 0.15 mol/L saline. The transient displacements of US echoes from the artC tissues at different depths were used to represent the tissue deformation and the NaCl diffusion. The trypsin solution was used selectively to digest the proteoglycans in artC. It was demonstrated that high-frequency US was feasible for monitoring the transient osmotic swelling, solute transport and progressive degeneration of artC in real-time. Preliminary results showed that the normal bovine patellar artC shrank during the first several minutes and then recovered to its original state in approximately 1 h when the solution was changed from 0.15 mol/L to 2 mol/L saline. Degenerated artC showed neither shrinkage nor recovery during the same process. In addition, a dehydrated-hydrated artC specimen showed much stronger shrinkage and it resumed the original state when the solution was changed from 2 mol/L back to 0.15 mol/L saline. The diffusion of NaCl and the digestion process of proteoglycans induced by trypsin were also successfully monitored in real-time.

  12. Real-time optoacoustic imaging of breast cancer using an interleaved two laser imaging system coregistered with ultrasound

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Fronheiser, Matthew P.; Nadvoretsky, Vyacheslav; Brecht, Hans-Peter; Su, Richard; Conjusteau, André; Mehta, Ketan; Otto, Pamela; Oraevsky, Alexander A.

    2010-02-01

    We present results from a clinical case study on imaging breast cancer using a real-time interleaved two laser optoacoustic imaging system co-registered with ultrasound. The present version of Laser Optoacoustic Ultrasonic Imaging System (LOUIS) utilizes a commercial linear ultrasonic transducer array, which has been modified to include two parallel rectangular optical bundles, to operate in both ultrasonic (US) and optoacoustic (OA) modes. In OA mode, the images from two optical wavelengths (755 nm and 1064 nm) that provide opposite contrasts for optical absorption of oxygenated vs deoxygenated blood can be displayed simultaneously at a maximum rate of 20 Hz. The real-time aspect of the system permits probe manipulations that can assist in the detection of the lesion. The results show the ability of LOUIS to co-register regions of high absorption seen in OA images with US images collected at the same location with the dual modality probe. The dual wavelength results demonstrate that LOUIS can potentially provide breast cancer diagnostics based on different intensities of OA images of the lesion obtained at 755 nm and 1064 nm. We also present new data processing based on deconvolution of the LOUIS impulse response that helps recover original optoacoustic pressure profiles. Finally, we demonstrate the image analysis tool that provides automatic detection of the tumor boundary and quantitative metrics of the optoacoustic image quality. Using a blood vessel phantom submerged in a tissue-like milky background solution we show that the image contrast is minimally affected by the phantom distance from the LOUIS probe until about 60-65 mm. We suggest using the image contrast for quantitative assessment of an OA image of a breast lesion, as a part of the breast cancer diagnostics procedure.

  13. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    PubMed

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding

  14. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    PubMed

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  15. Investigation of the acute plantar fasciitis with contrast-enhanced ultrasound and shear wave elastography - first results.

    PubMed

    Putz, Franz Josef; Hautmann, Matthias G; Banas, Miriam; Jung, Ernst Michael

    2017-09-04

    The plantar fasciitis is a common disease with a high prevalence in public and a frequent cause of heel pain. In our pilot study, we wanted to characterise the feasibility of shear-wave elastography and contrast-enhanced ultrasound (CEUS) in the assessment of the plantar fasciitis. 23 cases of painful heels were examined by B-Mode ultrasound, Power Doppler (PD), shear wave elastography and contrast-enhanced ultrasound before anti-inflammatory radiation. Time-intensity-curves were analysed by the integrated software. The results for area-under-the-curve (AUC), peak, time-to-peak (TTP) and mean-transit-time (MTT) were compared between the plantar fascia and the surrounding tissue. All cases showed thickening of the plantar fascia, in most cases with interstitial oedema (87.0%). Shear wave elastography showed inhomogeneous stiffness of the plantar fascia. 83.3% of cases showed a visible hyperperfusion in CEUS at the proximal plantar fascia in comparison to the surrounding tissue. This hyperperfusion could also be found in 75.0% of cases with no signs of vascularisation in PD. AUC (p = 0.0005) and peak (p = 0.037) were significantely higher in the plantar fascia than in the surrounding tissue. CEUS and shear wave elastography are new diagnostic tools in the assessment of plantar fasciitis and can provide quantitative parameters for monitoring therapy.

  16. Application of real-time ultrasound technology to estimate in vivo breast muscle weight of broiler chickens.

    PubMed

    Oviedo-Rondón, E O; Parker, J; Clemente-Hernández, S

    2007-04-01

    1. Real-time ultrasound (RTU) is a fast, non-destructive and relatively inexpensive technique to estimate body composition in animals. 2. A total of 835 Hubbard, Ross and Cobb broilers from different flocks were randomly selected, weighed and two RTU measurements were taken from both sides of their breast muscles (BM). Immediately following ultrasonography, broilers were processed and dissected to determine carcase, boneless BM, leg quarter and wing weights. Data were utilised to develop multiple linear regression equations (MLRE) to estimate carcase part weights. 3. Factors such as sex, age or genetic line did not contribute significantly to the accuracy of the models. The measurement in the right side was consistently more efficient than the left for estimating BM weight. 4. The following MLRE was estimated from live body weight (BW) and RTU area images: BM (g) = -94.3476 + 0.1518 * BW (g) + 5.1644 * BM-RTU area (cm2) (R2 = 0.97). 5. Due to the allometric relationships among body parts the following equations were also estimated: Legs (g) = -56.6738 + 0.2846 * BW (g) + 2.1570 * BM-RTU area (cm2) (R2 = 0.98) and Total Meat Cuts (g) = -142.0567 + 0.4638 * BW (g) + 5.1236 * BM-RTU area (cm2) (R2 = 0.99). 6. The results indicated that it was possible to estimate BM and other carcase cut weights with high accuracy from RTU measurements.

  17. Precision Medicine Starts With Preanalytics: Real-Time Assessment of Tissue Fixation Quality by Ultrasound Time-of-Flight Analysis.

    PubMed

    Lerch, Melissa L; Bauer, Daniel R; Chafin, David; Theiss, Abbey; Otter, Michael; Baird, Geoffrey S

    2017-03-01

    Personalized medicine promises diagnosis and treatment of disease at the individual level and relies heavily on clinical specimen integrity and diagnostic assay quality. Preanalytics, the collection and handling steps of a clinical specimen before immunohistochemistry or other clinical assay, are critically important to enable the correct diagnosis of disease. However, the effects of preanalytics are often overlooked due to a lack of standardization and limited assessment tools to quantify their variation. Here, we report a novel real-time ultrasound time-of-flight instrument that is capable of monitoring and imaging the critical step in formalin fixation, diffusion of the fixative into tissue, which provides a quantifiable quality metric for tissue fixation in the clinical laboratory ensuring consistent downstream molecular assay results. We analyzed hundreds of tissue specimens from 34 distinct human tissue types and 12 clinically relevant diseased tissues for diffusion and fixation metrics. Our measurements can be converted into tissue diffusivity constants that correlate with the apparent diffusion constant calculated using magnetic resonance imaging (R=0.83), despite the differences in the approaches, indicating that our approach is biophysically plausible. Using data collected from time-of-flight analysis of many tissues, we have therefore developed a novel rapid fixation program that could ensure high-quality downstream assay results for a broad range of human tissue types.

  18. Dynamic shape modeling of the mitral valve from real-time 3D ultrasound images using continuous medial representation

    NASA Astrophysics Data System (ADS)

    Pouch, Alison M.; Yushkevich, Paul A.; Jackson, Benjamin M.; Gorman, Joseph H., III; Gorman, Robert C.; Sehgal, Chandra M.

    2012-03-01

    Purpose: Patient-specific shape analysis of the mitral valve from real-time 3D ultrasound (rt-3DUS) has broad application to the assessment and surgical treatment of mitral valve disease. Our goal is to demonstrate that continuous medial representation (cm-rep) is an accurate valve shape representation that can be used for statistical shape modeling over the cardiac cycle from rt-3DUS images. Methods: Transesophageal rt-3DUS data acquired from 15 subjects with a range of mitral valve pathology were analyzed. User-initialized segmentation with level sets and symmetric diffeomorphic normalization delineated the mitral leaflets at each time point in the rt-3DUS data series. A deformable cm-rep was fitted to each segmented image of the mitral leaflets in the time series, producing a 4D parametric representation of valve shape in a single cardiac cycle. Model fitting accuracy was evaluated by the Dice overlap, and shape interpolation and principal component analysis (PCA) of 4D valve shape were performed. Results: Of the 289 3D images analyzed, the average Dice overlap between each fitted cm-rep and its target segmentation was 0.880+/-0.018 (max=0.912, min=0.819). The results of PCA represented variability in valve morphology and localized leaflet thickness across subjects. Conclusion: Deformable medial modeling accurately captures valve geometry in rt-3DUS images over the entire cardiac cycle and enables statistical shape analysis of the mitral valve.

  19. Precision Medicine Starts With Preanalytics: Real-Time Assessment of Tissue Fixation Quality by Ultrasound Time-of-Flight Analysis

    PubMed Central

    Lerch, Melissa L.; Bauer, Daniel R.; Chafin, David; Theiss, Abbey; Otter, Michael

    2017-01-01

    Personalized medicine promises diagnosis and treatment of disease at the individual level and relies heavily on clinical specimen integrity and diagnostic assay quality. Preanalytics, the collection and handling steps of a clinical specimen before immunohistochemistry or other clinical assay, are critically important to enable the correct diagnosis of disease. However, the effects of preanalytics are often overlooked due to a lack of standardization and limited assessment tools to quantify their variation. Here, we report a novel real-time ultrasound time-of-flight instrument that is capable of monitoring and imaging the critical step in formalin fixation, diffusion of the fixative into tissue, which provides a quantifiable quality metric for tissue fixation in the clinical laboratory ensuring consistent downstream molecular assay results. We analyzed hundreds of tissue specimens from 34 distinct human tissue types and 12 clinically relevant diseased tissues for diffusion and fixation metrics. Our measurements can be converted into tissue diffusivity constants that correlate with the apparent diffusion constant calculated using magnetic resonance imaging (R2=0.83), despite the differences in the approaches, indicating that our approach is biophysically plausible. Using data collected from time-of-flight analysis of many tissues, we have therefore developed a novel rapid fixation program that could ensure high-quality downstream assay results for a broad range of human tissue types. PMID:28027117

  20. Effect of Calcifications on Breast Ultrasound Shear Wave Elastography: An Investigational Study

    PubMed Central

    Gregory, Adriana; Mehrmohammadi, Mohammad; Denis, Max; Bayat, Mahdi; Stan, Daniela L.; Fatemi, Mostafa; Alizad, Azra

    2015-01-01

    Purpose To investigate the effects of macrocalcifications and clustered microcalcifications associated with benign breast masses on shear wave elastography (SWE). Methods SuperSonic Imagine (SSI) and comb-push ultrasound shear elastography (CUSE) were performed on three sets of phantoms to investigate how calcifications of different sizes and distributions influence measured elasticity. To demonstrate the effect in vivo, three female patients with benign breast masses associated with mammographically-identified calcifications were evaluated by CUSE. Results Apparent maximum elasticity (Emax) estimates resulting from individual macrocalcifications (with diameters of 2mm, 3mm, 5mm, 6mm, 9mm, 11mm, and 15mm) showed values over 50 kPa for all cases, which represents more than 100% increase over background (~21kPa). We considered a 2cm-diameter circular region of interest for all phantom experiments. Mean elasticity (Emean) values varied from 26 kPa to 73 kPa, depending on the macrocalcification size. Highly dense clusters of microcalcifications showed higher Emax values than clusters of microcalcification with low concentrations, but the difference in Emean values was not significant. Conclusions Our results demonstrate that the presence of large isolated macrocalcifications and highly concentrated clusters of microcalcifications can introduce areas with apparent high elasticity in SWE. Considering that benign breast masses normally have significantly lower elasticity values than malignant tumors, such areas with high elasticity appearing due to presence of calcification in benign breast masses may lead to misdiagnosis. PMID:26368939

  1. A soft patellar tendon on ultrasound elastography is associated with pain and functional deficit in volleyball players.

    PubMed

    Ooi, Chin Chin; Richards, Paula J; Maffulli, Nicola; Ede, David; Schneider, Michal E; Connell, David; Morrissey, Dylan; Malliaras, Peter

    2016-05-01

    To investigate the diagnostic performance of grey scale Ultrasound (US), power Doppler (PD) and US elastography for diagnosing painful patellar tendinopathy, and to establish their relationship with Victorian Institute of Sport Assessment-Patella (VISA-P) scores in a group of volleyball players with and without symptoms of patellar tendinopathy. Cross-sectional study. Thirty-five volleyball players (70 patellar tendons) were recruited during a national university volleyball competition. Players were imaged with conventional US followed by elastography. The clinical findings of painful patellar tendons were used as the reference standard for diagnosing patellar tendinopathy. In addition, all participants completed the VISA-P questionnaires. Of the 70 patellar tendons, 40 (57.1%) were clinically painful. The diagnostic accuracy of grey scale US, PD and elastography were 60%, 50%, 62.9%, respectively, with sensitivity/specificity of 72.5%/43.3%, 12.5%/100%, and 70%/53.3%, respectively. Combined US elastography and grey scale imaging achieved 82.5% sensitivity, 33.3% specificity and 61.4% accuracy while routine combination technique of PD and grey scale imaging revealed 72.5% sensitivity, 43.3% specificity and 60.0% accuracy. Tendons in players categorized as soft on elastography had statistically significantly greater AP thickness (p<0.001) and lower VISA-P scores (p=0.004) than those categorized as hard. There was no significant association between grey scale US abnormalities (hypoechogenicities and/or fusiform swelling) and VISA-P scores (p=0.098). Soft tendon properties depicted by US elastography may be more related to patellar tendon symptoms compared to grey scale US abnormalities. The supplementation of US elastography to conventional US may enhance the sensitivity for diagnosing patellar tendinopathy in routine clinical practice. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Focal therapy for localized unifocal and multifocal prostate cancer: A prospective development study using real time MR guided focused ultrasound

    NASA Astrophysics Data System (ADS)

    Napoli, A.; Caliolo, G.; Boni, F.; Anzidei, M.; Catalano, C.

    2017-03-01

    To assess safety and feasibility of non-invasive high intensity 3T MR guided focused ultrasound (MRgFUS) treatment of localized prostate cancer in an exploratory designed study. Men aged 45-80 years were eligible for this prospective study if they had low-risk localized prostate cancer (prostate specific antigen [PSA] ≤10 ng/mL, Gleason score ≤ 3 + 3), with no previous androgen deprivation or treatment for prostate cancer, and who could safely undergo multiparametric MRI (Discovery 750, GE; Gd-Bopta, Bracco) and have a spinal anesthetic. Patients underwent focal therapy using real time MR guided high intensity focused ultrasound (MRgFUS), delivered to all known cancer lesions, with a margin of normal tissue. Primary endpoints were adverse events (serious and otherwise) and urinary symptoms and erectile function assessed using patient questionnaires. 8 men were recruited between June 2011 and June 2012. After treatment, one man was admitted to hospital for acute urinary retention. Another patient had self-resolving, mild, intermittent dysuria (median duration 5.0 days). Urinary tract infection was not reported. Urinary debris occurred in 6 men (75%), with a median duration of 12 days. Median overall International Index of Erectile Function-15 (IIEF-15) scores were similar at baseline and at 6 to 12 months (p=0.060), as were median IIEF-15 scores for intercourse satisfaction (p=0.433), sexual desire (p=0.622), and overall satisfaction (p=0.256). There was an improvement in lower urinary tract symptoms, assessed by International Prostate Symptom Score (IPSS), between baseline and 6 to 12 months (p=0.026). All 8 men with no baseline urinary incontinence were leak-free and pad-free by 9 months. No histological evidence of cancer was identified in 7 of 8 men biopsied at 6 months (87,5%); overall, the entire population (8 patients) was free of clinically significant cancer and had no evidence of disease on multi-parametric MRI at 6 to 12 months. MR guided Focused

  3. Utility and interobserver agreement of ultrasound elastography in the detection of malignant thyroid nodules in clinical care.

    PubMed

    Merino, S; Arrazola, J; Cárdenas, A; Mendoza, M; De Miguel, P; Fernández, C; Ganado, T

    2011-12-01

    Malignancy correlates with hardness of tissues and US elastography can potentially analyze the stiffness of lesions. Our aim was to evaluate the utility of US elastography in the detection of malignant nodules and to investigate interobserver agreement with this technique. One-hundred three consecutive patients with 106 thyroid nodules were examined prospectively with conventional B-mode sonography and real-time US elastography. All patients were referred for FNAB. Conventional B-mode sonography and US elastographic examinations were performed, and images were separated and independently interpreted by 2 radiologists blinded to pathologic results. US elastogram evaluation was based on a simplified classification of stiffness based on gray-scale patterns, tumor size compared with B-mode, and margins. Interobserver agreement was studied. FNAB was used as the reference standard for the diagnosis of benign nodules, but histopathologic evaluations were performed when results suspicious for malignancy or malignant results were obtained on FNAB as well as in indeterminate lesions. In our study, pattern of stiffness based on gray-scale and classification proposed were statistically significant and predicted malignancy with 100% sensitivity and 40.6% specificity. Tumor size when compared with B-mode images or margins was not statistically significant in our study. No false-negatives were found, and an NPV of 100% was seen. Interobserver agreement for US elastography was excellent in our study, with a κ index of 0.82 (95% CI). We believe that US elastography is a promising technique that can assist in the evaluation of thyroid nodules and can potentially diminish the number of FNAB procedures needed. We believe that it may be useful to introduce US elastography into routine clinical practice.

  4. Endoscopic ultrasound elastography for differentiating between pancreatic adenocarcinoma and inflammatory masses: A meta-analysis

    PubMed Central

    Li, Xiang; Xu, Wei; Shi, Jian; Lin, Yong; Zeng, Xin

    2013-01-01

    AIM: To evaluate the accuracy of endoscopic ultrasound (EUS) elastography for differentiating between pancreatic ductal adenocarcinoma (PDAC) and pancreatic inflammatory masses (PIM). METHODS: Electronic databases (updated to December 2012) and manual bibliographical searches were carried out. A meta-analysis of all diagnostic clinical trials evaluating the accuracy of EUS elastography in differentiating PDAC from PIM was conducted. Heterogeneity was assessed among the studies. The meta-analysis was performed to evaluate the accuracy of EUS elastography in differentiating PDAC from PIM in homogeneous studies. RESULTS: Ten studies involving 781 patients were included in the analysis. Significant heterogeneity in sensitivity was observed among the studies (Cochran Q test = 24.16, df = 9, P = 0.0041, I2 = 62.8%), while heterogeneity in specificity was not observed (Cochran Q test = 5.93, df = 9, P = 0.7473, I2 = 0.0%). The area under the curve under the Sports Rights Owners Coalition was 0.8227. Evaluation of heterogeneity suggested that the different diagnostic standards used in the included studies were the source of heterogeneity. In studies using the color pattern as the diagnostic standard, the pooled sensitivity, specificity, positive likelihood ratio (LR), negative LR and diagnostic OR were 0.99 (0.97-1.00), 0.76 (0.67-0.83), 3.36 (2.39-4.72), 0.03 (0.01-0.07) and 129.96 (47.02-359.16), respectively. In studies using the hue histogram as the diagnostic standard, the pooled sensitivity, specificity, positive LR, negative LR and diagnostic OR were 0.92 (0.89-0.95), 0.68 (0.57-0.78), 2.84 (2.05-3.93), 0.12 (0.08-0.19) and 24.69 (12.81-47.59), respectively. CONCLUSION: EUS elastography is a valuable method for the differential diagnosis between PDAC and PIM. And a preferable diagnostic standard should be explored and improvements in specificity are required. PMID:24115828

  5. Lung transthoracic ultrasound elastography imaging and guided biopsies of subpleural cancer: a preliminary report.

    PubMed

    Sperandeo, Marco; Trovato, Francesca M; Dimitri, Lucia; Catalano, Daniela; Simeone, Anna; Martines, Giuseppe Fabio; Piscitelli, Angela Pamela; Trovato, Guglielmo M

    2015-07-01

    Despite the usefulness of elastography in assessing the stiffness/elasticity of tissues, and its proven diagnostic accuracy in thyroid, breast, and prostate cancers, among others, it is not yet applied in transthoracic ultrasound (TUS) scans to investigate lung nodules. To investigate the potential clinical utility of TUS elastography in diagnosing lung cancer proven by fine-needle aspiration biopsy (FNAB). TUS elastography was performed in 95 consecutive patients (71 men, 24 women; age, 62.84 ± 7.37 years) with lesions suspected of involving the chest wall or the pleura detected on chest X-ray or computed tomography (CT). Patients with pleural effusions were not enrolled, but were further evaluated by pleural fluid cytology. Patients were excluded from the study if a diagnosis had already been made based on sputum cytology and/or bronchoscopic histology (making TUS biopsy unnecessary) or if their lung lesions could not be visualized under standard US. Under FNAB, 34 consolidations were ascribed to pneumonia and 65 to cancer. Under TUS, tissue stiffness, detected using a convex multifrequency 2-8-mHz probe and a MyLab™Twice - ElaXto, was scored from 1 (greatest elasticity) to 5 (no elasticity). Subpleural solid masses (2-5 cm) were initially detected by TUS and subsequently assessed by FNAB. Histological diagnoses were: small cell lung cancer (4/61), adenocarcinoma (29/61), squamous cell carcinoma (SCC) (12/61), large cell lung carcinoma (12/61), and lymphomas (4/61). Patients' age and mass sizes (3.06 ± 0.88 cm) were not significantly associated with any histological type. A significant lower elasticity of SCC (4.67 ± 0.492) was observed versus other types of lung cancer (P < 0.005), and versus pneumonia (2.35 ± 0.48). Since only squamous cell lung carcinoma displays the feature of significantly reduced elasticity, and since no clear-cut diagnostic key is yet available, the clinical usefulness of TUS elastography is currently limited

  6. Technical note: A novel technique to assess internal body fat of cattle by using real-time ultrasound.

    PubMed

    Ribeiro, F R B; Tedeschi, L O; Stouffer, J R; Carstens, G E

    2008-03-01

    The objectives of this study were to describe a system to assess KPH fat by using real-time ultrasound (RTU) and to develop equations to predict total physical separable internal fat (IFAT) based on ultrasound measurements. Data for this study were obtained from 24 Angus steers fed either hay- or corn-based diets during the backgrounding phase. Steers were serially slaughtered in 3 groups: at weaning (baseline), then at 4 and 8 mo after weaning. A fourth group was composed of 4 steers from the hay-fed group that were slaughtered at approximately 10 mo after weaning. The RTU measurements were collected every 2 mo, with a preslaughter scan approximately 7 d before the slaughter time. The RTU measurements consisted of 12th- to 13th-rib backfat thickness, 12th to 13th ribeye area, percentage of intramuscular fat, and kidney fat depth, which was measured in a cross-sectional image collected between the first lumbar vertebra and the 13th rib. For kidney fat, the ultrasound probe was placed on the flank region approximately 15 cm from the midline of the animal. Images were stored in the ultrasound console, and measurements were taken between the ventral part of the iliocostalis muscle and the end of the KPH fat at the chute side. The relationship between carcass and ultrasound measurements in the depths of kidney fat (cKFd and uKFd, respectively) had an r(2) of 0.93, with a root mean square error (RMSE) of 1.14 cm. An allometric regression between carcass KPH weight (cKPHwt) and cKFd was identified, and the untransformed regression had an r(2) of 0.96. The linear regression between total IFAT and cKPHwt had an r(2) of 0.97, with an RMSE of 2.67 kg. Therefore, a system was developed to predict IFAT from uKFd measurements by combining these equations. Additionally, a single linear regression between IFAT and uKFd measurements was developed (r(2) = 0.89, RMSE = 5.32 kg). Even though the system of equations had a lower RMSE of prediction and greater r(2) compared with the

  7. Reprint of "Update on ultrasound elastography: Miscellanea. Prostate, testicle, musculo-skeletal".

    PubMed

    Correas, J M; Drakonakis, E; Isidori, A M; Hélénon, O; Pozza, C; Cantisani, V; Di Leo, N; Maghella, F; Rubini, A; Drudi, F M; D'ambrosio, F

    2014-03-01

    Nowadays ultrasound elastosonography is an established technique, although with limited clinical application, used to assess tissue stiffness, which is a parameter that in most cases is associated with malignancy. However, although a consistent number of articles have been published about several applications of elastosonography, its use in certain human body districts is still not well defined. In this paper we write on the use of elastosonography in prostate, testicle and musculo-skeletal apparatus. We report and compare the work of several authors, different type of elastosonography (shear wave, strain elastography, etc.) and instrumental data obtained in the study of both benign and malignant lesions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Cervical strain determined by ultrasound elastography and its association with spontaneous preterm delivery

    PubMed Central

    Hernandez-Andrade, Edgar; Romero, Roberto; Korzeniewski, Steven J.; Ahn, Hyunyoung; Aurioles-Garibay, Alma; Garcia, Maynor; Schwartz, Alyse G.; Yeo, Lami; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.

    2014-01-01

    Objective To determine if there is an association between cervical strain, evaluated using ultrasound elastography, and spontaneous preterm delivery (sPTD) <37 weeks of gestation. Methods One hundred and eighty nine (189) women at 16–24 weeks of gestation were evaluated. Ultrasound elastography was used to estimate cervical strain in three anatomical planes: one mid-sagittal in the same plane used for cervical length measurement, and two cross sectional images: one at the level of the internal cervical os, and the other at the level of the external cervical os. In each plane, two regions of interest (endocervix and entire cervix) were examined; a total of six regions of interest were evaluated. Results The prevalence of sPTD was 11% (21/189). Strain values from each of the six cervical regions correlated weakly with cervical length (r= −0.24, p<0.001 to r= −0.03, p=0.69). Strain measurements obtained in a cross sectional view of the internal cervical os were significantly associated with sPTD. Women with strain values ≤25th centile in the endocervical canal (0.19) and in the entire cervix (0.14) were 80% less likely to have a sPTD than women with strain values >25th centile (endocervical: odds ratio [OR] 0.2; 95% confidence interval [CI], 0.03–0.96; entire cervix: OR 0.17; 95% CI, 0.03–0.9). Additional adjustment for gestational age, race, smoking status, parity, maternal age, pre-pregnancy body mass index and previous preterm delivery did not appreciably alter the magnitude or statistical significance of these associations. Strain values obtained from the external cervical os and from the sagittal view were not associated with sPTD. Conclusion Low strain values in the internal cervical os were associated with a significantly lower risk of spontaneous preterm delivery <37 weeks of gestation. PMID:24356388

  9. Comparison Between Neck and Shoulder Stiffness Determined by Shear Wave Ultrasound Elastography and a Muscle Hardness Meter.

    PubMed

    Akagi, Ryota; Kusama, Saki

    2015-08-01

    The goals of this study were to compare neck and shoulder stiffness values determined by shear wave ultrasound elastography with those obtained with a muscle hardness meter and to verify the correspondence between objective and subjective stiffness in the neck and shoulder. Twenty-four young men and women participated in the study. Their neck and shoulder stiffness was determined at six sites. Before the start of the measurements, patients rated their present subjective symptoms of neck and shoulder stiffness on a 6-point verbal scale. At all measurement sites, the correlation coefficients between the values of muscle hardness indices determined by the muscle hardness meter and shear wave ultrasound elastography were not significant. Furthermore, individuals' subjective neck and shoulder stiffness did not correspond to their objective symptoms. These results suggest that the use of shear wave ultrasound elastography is essential to more precisely assess neck and shoulder stiffness. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Ultrasound elastography in diagnosis and follow-up for patients with chronic recurrent parotitis.

    PubMed

    Zengel, Pamela; Reichel, Christoph A; Vincek, Teresa; Clevert, Dirk André

    2017-09-04

    Chronic recurrent parotitis (CRP) is a non-obstructive disease with episodes characterized by painful swelling of the parotid gland. It presents in both a juvenile and an adult form, with no clear information on its actual origin. Diagnosis is based on patient medical history and ultrasound examination but is frequently not correctly identified. Acoustic Radiation Force Impulse Imaging (ARFI) is a novel ultrasound elastography technology that has recently been implemented in the diagnostic work-up of patients with malignancies. This study aimed to answer whether ARFI can reasonably be employed in the initial examination and follow-up during therapy in patients with CRP. Mechanical tissue properties of the salivary glands were analyzed by ARFI in 37 parotid glands of patients with CRP. Having integrated ARFI into our diagnostic protocol for CRP, affected parotid glands were found to exhibit lower tissue elasticity compared to both healthy contralateral glands in the same individuals as well as those of healthy individuals. Most importantly, this method enabled us to quantitatively assess the patient benefit of therapy regarding the recovery of the glands' diseased parenchyma. ARFI provides a quick, easy, and reliable diagnostic tool for the assessment of disease severity and progression in patients with CRP that can be seamlessly implemented into preexisting ultrasound protocols.

  11. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.

    PubMed

    Hong, Xiaowei; Stegemann, Jan P; Deng, Cheri X

    2016-05-01

    Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger's viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials.

  12. Automated 3D ultrasound elastography of the breast: a phantom validation study

    NASA Astrophysics Data System (ADS)

    Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound

  13. Optimization of real-time rigid registration motion compensation for prostate biopsies using 2D/3D ultrasound

    NASA Astrophysics Data System (ADS)

    Gillies, Derek J.; Gardi, Lori; Zhao, Ren; Fenster, Aaron

    2017-03-01

    During image-guided prostate biopsy, needles are targeted at suspicious tissues to obtain specimens that are later examined histologically for cancer. Patient motion causes inaccuracies when using MR-transrectal ultrasound (TRUS) image fusion approaches used to augment the conventional biopsy procedure. Motion compensation using a single, user initiated correction can be performed to temporarily compensate for prostate motion, but a real-time continuous registration offers an improvement to clinical workflow by reducing user interaction and procedure time. An automatic motion compensation method, approaching the frame rate of a TRUS-guided system, has been developed for use during fusion-based prostate biopsy to improve image guidance. 2D and 3D TRUS images of a prostate phantom were registered using an intensity based algorithm utilizing normalized cross-correlation and Powell's method for optimization with user initiated and continuous registration techniques. The user initiated correction performed with observed computation times of 78 ± 35 ms, 74 ± 28 ms, and 113 ± 49 ms for in-plane, out-of-plane, and roll motions, respectively, corresponding to errors of 0.5 ± 0.5 mm, 1.5 ± 1.4 mm, and 1.5 ± 1.6°. The continuous correction performed significantly faster (p < 0.05) than the user initiated method, with observed computation times of 31 ± 4 ms, 32 ± 4 ms, and 31 ± 6 ms for in-plane, out-of-plane, and roll motions, respectively, corresponding to errors of 0.2 ± 0.2 mm, 0.6 ± 0.5 mm, and 0.8 ± 0.4°.

  14. Differentiation between benign and malignant breast tumors using kinetic features of real-time harmonic contrast-enhanced ultrasound.

    PubMed

    Saracco, Ariel; Szabó, Botond K; Aspelin, Peter; Leifland, Karin; Wilczek, Brigitte; Celebioglu, Fuat; Axelsson, Rimma

    2012-05-01

    Contrast-enhanced ultrasound (CEUS) has gained interest because of its ability to gather vascular information in diverse organs. There is still a subject of debate concerning its value in breast lesions, especially as a differential diagnostic tool. To investigate whether kinetic parameters of CEUS can differentiate between malignant and benign breast lesions. We evaluated 75 malignant and 21 benign lesions in the breast or axilla. Contrast harmonic imaging (CHI) US was performed after the injection of a bolus dose of 2.4 mL of Sono Vue® (Bracco, Milano, Italy). The following parameters were calculated for kinetic analysis: initial slope, time to peak enhancement, wash-out ratios W(21) and W(50) (relative decrease in signal intensity from the peak enhancement to 21 s and 50 s, respectively). A significant difference was found between the benign and malignant lesions in time-to-peak (P value <0.05) and wash-out ratios W(21) (P value <0.001) and W(50) (P value <0.001). The mean time-to-peak was 9.3 s for malignant and 14.6 s for benign lesions. The mean signal drop from peak to signal intensity measured at 50 s was 85% for malignant and 66% for benign lesions. There was no difference in absolute values of peak signal intensity and initial slope. The most significant difference between standardized benign and malignant wash-out curves was found at 21 s but statistical significance was reached in the range of 14-50 s. Real-time CEUS can evolve into a new non-invasive option for differentiate malignant from benign breast lesions.

  15. Real-time, ultrasound-based control of a virtual hand by a trans-radial amputee.

    PubMed

    Baker, Clayton A; Akhlaghi, Nima; Rangwala, Huzefa; Kosecka, Jana; Sikdar, Siddhartha

    2016-08-01

    Advancements in multiarticulate upper-limb prosthetics have outpaced the development of intuitive, non-invasive control mechanisms for implementing them. Surface electromyography is currently the most popular non-invasive control method, but presents a number of drawbacks including poor deep-muscle specificity. Previous research established the viability of ultrasound imaging as an alternative means of decoding movement intent, and demonstrated the ability to distinguish between complex grasps in able-bodied subjects via imaging of the anterior forearm musculature. In order to translate this work to clinical viability, able-bodied testing is insufficient. Amputation-induced changes in muscular geometry, dynamics, and imaging characteristics are all likely to influence the effectiveness of our existing techniques. In this work, we conducted preliminary trials with a transradial amputee participant to assess these effects, and potentially elucidate necessary refinements to our approach. Two trials were performed, the first using a set of three motion types, and the second using four. After a brief training period in each trial, the participant was able to control a virtual prosthetic hand in real-time; attempted grasps were successfully classified with a rate of 77% in trial 1, and 71% in trial 2. While the results are sub-optimal compared to our previous able-bodied testing, they are a promising step forward. More importantly, the data collected during these trials can provide valuable information for refining our image processing methods, especially via comparison to previously acquired data from able-bodied individuals. Ultimately, further work with amputees is a necessity for translation towards clinical application.

  16. Noninvasive vascular ultrasound elastography applied to the characterization of experimental aneurysms and follow-up after endovascular repair.

    PubMed

    Fromageau, Jérémie; Lerouge, Sophie; Maurice, Roch Listz; Soulez, Gilles; Cloutier, Guy

    2008-11-21

    Experimental and simulation studies were conducted to noninvasively characterize abdominal aneurysms with ultrasound (US) elastography before and after endovascular treatment. Twenty three dogs having bilateral aneurysms surgically created on iliac arteries with venous patches were investigated. In a first set of experiments, the feasibility of elastography to differentiate vascular wall elastic properties between the aneurismal neck (healthy region) and the venous patch (pathological region) was evaluated on six dogs. Lower strain values were found in venous patches (p < 0.001). In a second set of experiments, 17 dogs having endovascular repair (EVAR) by stent graft (SG) insertion were examined three months after SG implantation. Angiography, color Doppler US, examination of macroscopic sections and US elastography were used. The value of elastography was validated with the following end points by considering a solid thrombus of a healed aneurysm as a structure with small deformations and a soft thrombus associated with endoleaks as a more deformable tissue: (1) the correlation between the size of healed organized thrombi estimated by elastography and by macroscopic examinations; (2) the correlation between the strain amplitude measured within vessel wall elastograms and the leak size; and (3) agreement on the presence and size of endoleaks as determined by elastography and by combined reference imaging modalities (angiography + Doppler US). Mean surfaces of solid thrombi estimated with elastography were found correlated with those measured on macroscopic sections (r = 0.88, p < 0.001). Quantitative strain values measured within the vessel wall were poorly linked with the leak size (r = 0.12, p = 0.5). However, the qualitative evaluation of leak size in the aneurismal sac was very good, with a Kappa agreement coefficient of 0.79 between elastography and combined reference imaging modalities. In summary, complementing B-scan and color Doppler, noninvasive US

  17. Visualization and quantitation of fetal movements by real-time three-dimensional ultrasound with live xPlane imaging in the first trimester of pregnancy.

    PubMed

    Lu, Ye; Yang, Taizhu; Luo, Hong; Deng, Feng; Cai, Qianyun; Sun, Weiwei; Song, Hao

    2016-10-31

    To prove whether real-time three-dimensional (3D) ultrasound with live xPlane imaging is better in observing fetal movements than standard ultrasound imaging. 50 healthy women with singleton pregnancies (22-43 years old) at 11 to 14 weeks of gestation underwent real-time 3D ultrasound examination with live xPlane imaging from July 2014 to February 2015. The incidence and frequency of 10 fetal movement patterns in 10 minutes were evaluated, including general movements (GMs), isolated arm movements, isolated leg movements, hiccup, stretching, breathing, startle, jaw opening, isolated head retroflexion, and isolated head anteflexion. The correlation between gestational age and frequency of each fetal movement pattern was analyzed. GM had the highest incidence (100%), followed by startle (84%) and isolated arm movements (68%). Their median frequency was 5 (IQR 3-6), 5 (IQR 1.75-11.5), and 1 (IQR 0-2), respectively. GM (Z=5.875, P<0.001) and startle (Z=5.302, P<0.001) had significantly higher frequency than isolated arm movements. The other 7 fetal movement patterns had much lower incidence and frequency. The frequency of GM was positively correlated with gestational age (r=0.360, P=0.010). Real-time 3D ultrasound with live x Plane imaging was shown to be a feasible tool for observing fetal movements.

  18. Visualization and quantitation of fetal movements by real-time three-dimensional ultrasound with live xPlane imaging in the first trimester of pregnancy

    PubMed Central

    Lu, Ye; Yang, Taizhu; Luo, Hong; Deng, Feng; Cai, Qianyun; Sun, Weiwei; Song, Hao

    2016-01-01

    Aim To prove whether real-time three-dimensional (3D) ultrasound with live xPlane imaging is better in observing fetal movements than standard ultrasound imaging. Methods 50 healthy women with singleton pregnancies (22-43 years old) at 11 to 14 weeks of gestation underwent real-time 3D ultrasound examination with live xPlane imaging from July 2014 to February 2015. The incidence and frequency of 10 fetal movement patterns in 10 minutes were evaluated, including general movements (GMs), isolated arm movements, isolated leg movements, hiccup, stretching, breathing, startle, jaw opening, isolated head retroflexion, and isolated head anteflexion. The correlation between gestational age and frequency of each fetal movement pattern was analyzed. Results GM had the highest incidence (100%), followed by startle (84%) and isolated arm movements (68%). Their median frequency was 5 (IQR 3-6), 5 (IQR 1.75-11.5), and 1 (IQR 0-2), respectively. GM (Z = 5.875, P < 0.001) and startle (Z = 5.302, P < 0.001) had significantly higher frequency than isolated arm movements. The other 7 fetal movement patterns had much lower incidence and frequency. The frequency of GM was positively correlated with gestational age (r = 0.360, P = 0.010). Conclusion Real-time 3D ultrasound with live x Plane imaging was shown to be a feasible tool for observing fetal movements. PMID:27815938

  19. Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: a phantom study.

    PubMed

    Shin, Hyun Joo; Kim, Myung-Joon; Kim, Ha Yan; Roh, Yun Ho; Lee, Mi-Jung

    2016-10-01

    To investigate consistency in shear wave velocities (SWVs) on ultrasound elastography using different machines, transducers and acquisition depths. The SWVs were measured using an elasticity phantom with a Young's modulus of 16.9 kPa, with three recently introduced ultrasound elastography machines (A, B and C from different vendors) and two transducers (low and high frequencies) at four depths (2, 3, 4 and 5 cm). Mean SWVs from 15 measurements and coefficient of variations (CVs) were compared between three machines, two transducers and four acquisition depths. The SWVs using the high frequency transducer were not acquired at 5 cm depth in machine B, and a high frequency transducer was not available in machine C. The mean SWVs in the three machines were different (p ≤ 0.002). The CVs were 0-0.09 in three machines. The mean SWVs between the two transducers were different (p < 0.001) except at 4 and 5 cm depths in machine A. The SWVs were affected by the acquisition depths in all conditions (p < 0.001). There is considerable difference in SWVs on ultrasound elastography depending on different machines, transducers and acquisition depths. Caution is needed when using the cutoff values of SWVs in different conditions. • The shear wave velocities (SWVs) are different between different ultrasound elastography machines • The SWVs are also different between different transducers and acquisition depths • Caution is needed when using the cutoff SWVs measured under different conditions.

  20. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology.

    PubMed

    Shiina, Tsuyoshi; Nightingale, Kathryn R; Palmeri, Mark L; Hall, Timothy J; Bamber, Jeffrey C; Barr, Richard G; Castera, Laurent; Choi, Byung Ihn; Chou, Yi-Hong; Cosgrove, David; Dietrich, Christoph F; Ding, Hong; Amy, Dominique; Farrokh, Andre; Ferraioli, Giovanna; Filice, Carlo; Friedrich-Rust, Mireen; Nakashima, Kazutaka; Schafer, Fritz; Sporea, Ioan; Suzuki, Shinichi; Wilson, Stephanie; Kudo, Masatoshi

    2015-05-01

    Conventional diagnostic ultrasound images of the anatomy (as opposed to blood flow) reveal differences in the acoustic properties of soft tissues (mainly echogenicity but also, to some extent, attenuation), whereas ultrasound-based elasticity images are able to reveal the differences in the elastic properties of soft tissues (e.g., elasticity and viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathologic lesions. Typically, all elasticity measurement and imaging methods introduce a mechanical excitation and monitor the resulting tissue response. Some of the most widely available commercial elasticity imaging methods are 'quasi-static' and use external tissue compression to generate images of the resulting tissue strain (or deformation). In addition, many manufacturers now provide shear wave imaging and measurement methods, which deliver stiffness images based upon the shear wave propagation speed. The goal of this review is to describe the fundamental physics and the associated terminology underlying these technologies. We have included a questions and answers section, an extensive appendix, and a glossary of terms in this manuscript. We have also endeavored to ensure that the terminology and descriptions, although not identical, are broadly compatible across the WFUMB and EFSUMB sets of guidelines on elastography (Bamber et al. 2013; Cosgrove et al. 2013).

  1. Ultrasound dynamic micro-elastography applied to the viscoelastic characterization of soft tissues and arterial walls.

    PubMed

    Schmitt, Cédric; Hadj Henni, Anis; Cloutier, Guy

    2010-09-01

    Quantitative noninvasive methods that provide in vivo assessment of mechanical characterization of living tissues, organs and artery walls are of interest because information on their viscoelastic properties in the presence of disease can affect diagnosis and treatment options. This article proposes the dynamic micro-elastography (DME) method to characterize viscoelasticity of small homogeneous soft tissues, as well as the adaptation of the method for vascular applications [vascular dynamic micro-elastography (VDME)]. The technique is based on the generation of relatively high-frequency (240-1100 Hz) monochromatic or transient plane shear waves within the medium and the tracking of these waves from radio-frequency (RF) echoes acquired at 25 MHz with an ultrasound biomicroscope (Vevo 770, Visualsonics). By employing a dedicated shear wave gated strategy during signal acquisition, postprocessed RF sequences could achieve a very high frame rate (16,000 images per s). The proposed technique successfully reconstructed shear wave displacement maps at very high axial (60 mum) and lateral (250 mum) spatial resolutions for motions as low as a few mum. An inverse problem formulated as a least-square minimization, involving analytical simulations (for homogenous and vascular geometries) and experimental measurements were performed to retrieve storage (G') and loss (G'') moduli as a function of the shearing frequency. Viscoelasticity measurements of agar-gelatin materials and of a small rat liver were proven feasible. Results on a very thin wall (3 mm thickness) mimicking artery enabled to validate the feasibility and the reliability of the vascular inverse problem formulation. Subsequently, the G' and G'' of a porcine aorta showed that both parameters are strongly dependent on frequency, suggesting that the vascular wall is mechanically governed by complex viscoelastic laws.

  2. TSI ultrasound elastography for the diagnosis of chronic allograft nephropathy in kidney transplanted patients

    PubMed Central

    Slowinski, Torsten; Thomas, Anke; Filimonow, Sergej; Fischer, Thomas

    2013-01-01

    Purpose To answer the question whether the TSI (tissue strain imaging) sonoelastography technique can contribute to the diagnosis of chronic renal allograft damage. Material and methods A prospective study of 112 patients between June 2010 and April 2011 was conducted to compare elastography data with biopsy results and laboratory parameters in order to determine whether any correlations exist. Elastography parameters were acquired with a high-end ultrasound system and analyzed using the semiquantitative strain ratio. For comparison, patients were divided into three groups based on biopsy findings (Banff classification): group A: biopsy not necessary; group B: Banff grade I; group C: Banff grades II and III. Correlations were assessed by means of correlation (Pearson) and regression analysis. Differences between ordinal groups were tested for statistical significance by the Mann-Whitney U test. Results Mean patient age was 54.2 ± 15.01 years. Fifty-nine percent of the patients were male. The calculated TSI strain ratio of groups A and C differed significantly (p = 0.024). Groups B and C (p = 0.056) and groups A and B (p = 0.88) showed no significant difference. The TSI strain ratio did not correlate with glomerular filtration rate (r = 0.105) or creatinine (r = 0.092). Conclusion The TSI sonoelastography technique can contribute to the differentiation of different stages of renal graft damage (according to Banff classification). However, significant results were not observed for all investigated features. The TSI technique should be further evaluated in future studies including larger numbers of patients. PMID:26674928

  3. Strain US Elastography for the Characterization of Thyroid Nodules: Advantages and Limitation.

    PubMed

    Cantisani, Vito; Grazhdani, Hektor; Drakonaki, Elena; D'Andrea, Vito; Di Segni, Mattia; Kaleshi, Erton; Calliada, Fabrizio; Catalano, Carlo; Redler, Adriano; Brunese, Luca; Drudi, Francesco Maria; Fumarola, Angela; Carbotta, Giovanni; Frattaroli, Fabrizio; Di Leo, Nicola; Ciccariello, Mauro; Caratozzolo, Marcello; D'Ambrosio, Ferdinando

    2015-01-01

    Thyroid nodules, with their high prevalence in the general population, represent a diagnostic challenge for clinicians. Ultrasound (US), although absolutely reliable in detecting thyroid nodules, is still not accurate enough to differentiate them into benign and malignant. A promising novel modality, US elastography, has been introduced in order to further increase US accuracy. The purpose of this review article is to assess the thyroid application of US strain elastography, also known as real-time elastography or quasistatic elastography. We provide a presentation of the technique, and of up-to-date literature, analyzing the most prominent results reported for thyroid nodules differentiation. The practical advantages and limitations of strain elastography are extensively discussed herein.

  4. Strain US Elastography for the Characterization of Thyroid Nodules: Advantages and Limitation

    PubMed Central

    Cantisani, Vito; Grazhdani, Hektor; Drakonaki, Elena; D'Andrea, Vito; Di Segni, Mattia; Kaleshi, Erton; Calliada, Fabrizio; Catalano, Carlo; Brunese, Luca; Drudi, Francesco Maria; Fumarola, Angela; Carbotta, Giovanni; Frattaroli, Fabrizio; Di Leo, Nicola; Ciccariello, Mauro; Caratozzolo, Marcello; D'Ambrosio, Ferdinando

    2015-01-01

    Thyroid nodules, with their high prevalence in the general population, represent a diagnostic challenge for clinicians. Ultrasound (US), although absolutely reliable in detecting thyroid nodules, is still not accurate enough to differentiate them into benign and malignant. A promising novel modality, US elastography, has been introduced in order to further increase US accuracy. The purpose of this review article is to assess the thyroid application of US strain elastography, also known as real-time elastography or quasistatic elastography. We provide a presentation of the technique, and of up-to-date literature, analyzing the most prominent results reported for thyroid nodules differentiation. The practical advantages and limitations of strain elastography are extensively discussed herein. PMID:25954310

  5. Ultrasound Transducer and System for Real-Time Simultaneous Therapy and Diagnosis for Noninvasive Surgery of Prostate Tissue

    PubMed Central

    Jeong, Jong Seob; Chang, Jin Ho; Shung, K. Kirk

    2009-01-01

    For noninvasive treatment of prostate tissue using high intensity focused ultrasound (HIFU), this paper proposes a design of an integrated multi-functional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6 MHz array in the center row for imaging and two 4 MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA was verifeid. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured −6 dB and −20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be −48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded −6dB and −20dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be −40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy. PMID:19811994

  6. Quantification of pancreatic stiffness on intraoperative ultrasound elastography and evaluation of its relationship with postoperative pancreatic fistula.

    PubMed

    Hatano, Masahide; Watanabe, Jota; Kushihata, Fumiki; Tohyama, Taiji; Kuroda, Taira; Koizumi, Mitsuhito; Kumagi, Teru; Hisano, Yoshiko; Sugita, Atsuro; Takada, Yasutsugu

    2015-03-01

    "Soft pancreas" has often been reported as a predictive factor for postoperative pancreatic fistula (POPF) after pancreatectomy. However, pancreatic stiffness is judged subjectively by surgeons, without objective criteria. In the present study, pancreatic stiffness was quantified using intraoperative ultrasound elastography, and its relevance to POPF and histopathology was investigated. Forty-one patients (pancreatoduodenectomy, 30; distal pancreatectomy, 11) who underwent intraoperative elastography during pancreatectomy were included. The elastic ratio was determined at the pancreatic resection site (just above the portal vein) and at the remnant pancreas (head or tail). Correlations between the incidence of POPF and patient characteristics, operative variables, and the elastic ratio were examined. In addition, the relationship between the elastic ratio and the percentage of the exocrine gland at the resection stump was investigated. For pancreatoduodenectomy patients, main pancreatic duct diameter < 3.2 mm and elastic ratio < 2.09 were significant risk factors for POPF. In addition, the elastic ratio, but not main pancreatic duct diameter, was significantly associated with the percentage of exocrine gland area at the pancreatic resection stump. Pancreatic stiffness can be quantified using intraoperative elastography. Elastography can be used to diagnose "soft pancreas" and may thus be useful in predicting the occurrence of POPF.

  7. A coupled subsample displacement estimation method for ultrasound-based strain elastography

    NASA Astrophysics Data System (ADS)

    Jiang, Jingfeng; Hall, Timothy J.

    2015-11-01

    Obtaining accurate displacement estimates along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for several clinical applications such as shear strain imaging, modulus reconstruction and temperature imaging, where a full description of the two or three-dimensional (2D/3D) deformation field is required. In this study we propose an improved speckle tracking algorithm where axial and lateral motion estimations are simultaneously performed to enhance motion tracking accuracy. More specifically, using conventional ultrasound echo data, this algorithm first finds an iso-contour in the vicinity of the peak correlation between two segments of the pre- and post-deformation ultrasound radiofrequency echo data. The algorithm then attempts to find the center of the iso-contour of the correlation function that corresponds to the unknown (sub-sample) motion vector between these two segments of echo data. This algorithm has been tested using computer-simulated data, studies with a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results show that the method improves the accuracy of both lateral and axial tracking. Such improvements are more significant when the deformation is small or along the lateral direction. Results from the tissue-mimicking phantom study are consistent with findings observed in computer simulations. Using in vivo breast lesion data we found that, compared to the 2D quadratic subsample displacement estimation methods, higher quality axial strain and shear strain images (e.g. 18.6% improvement in contrast-to-noise ratio for shear strain images) can be obtained for large deformations (up to 5% frame-to-frame and 15% local strains) in a multi-compression technique. Our initial results demonstrated that this conceptually and computationally simple method could improve the image quality of ultrasound-based strain elastography with current clinical equipment.

  8. A Coupled Subsample Displacement Estimation Method for Ultrasound-Based Strain Elastography

    PubMed Central

    Jiang, Jingfeng; Hall, Timothy J.

    2015-01-01

    Obtaining accurate displacement estimates along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for several clinical applications such as shear strain imaging, modulus reconstruction and temperature imaging, where a full description of the two or three dimensional (2D/3D) deformation field is required. In this study we propose an improved speckle tracking algorithm where axial and lateral motion estimations are simultaneously performed to enhance motion tracking accuracy. More specifically, using conventional ultrasound echo data, this algorithm first finds an iso-contour in the vicinity of the peak correlation between two segments of the pre- and post-deformation ultrasound radiofrequency echo data. The algorithm then attempts to find the center of the iso-contour of the correlation function that corresponds to the unknown (sub-sample) motion vector between these two segments of echo data. This algorithm has been tested using computer-simulated data, studies with a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results show that the method improves the accuracy of both lateral and axial tracking. Such improvements are more significant when the deformation is small or along the lateral direction. Results from the tissue-mimicking phantom study are consistent with findings observed in computer simulations. Using in vivo breast lesion data we found that, compared to the 2D quadratic subsample displacement estimation methods, higher quality axial strain and shear strain images (e.g. 18.6% improvement in contrast-to-noise ratio for shear strain images) can be obtained for large deformations (up to 5% frame-to-frame and 15% local strains) in a multi-compression technique. Our initial results demonstrated that this conceptually and computationally simple method could improve the image quality of ultrasound-based strain elastography (SE) with current clinical equipment. PMID

  9. A coupled subsample displacement estimation method for ultrasound-based strain elastography.

    PubMed

    Jiang, Jingfeng; Hall, Timothy J

    2015-11-07

    Obtaining accurate displacement estimates along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for several clinical applications such as shear strain imaging, modulus reconstruction and temperature imaging, where a full description of the two or three-dimensional (2D/3D) deformation field is required. In this study we propose an improved speckle tracking algorithm where axial and lateral motion estimations are simultaneously performed to enhance motion tracking accuracy. More specifically, using conventional ultrasound echo data, this algorithm first finds an iso-contour in the vicinity of the peak correlation between two segments of the pre- and post-deformation ultrasound radiofrequency echo data. The algorithm then attempts to find the center of the iso-contour of the correlation function that corresponds to the unknown (sub-sample) motion vector between these two segments of echo data. This algorithm has been tested using computer-simulated data, studies with a tissue-mimicking phantom, and in vivo breast lesion data. Computer simulation results show that the method improves the accuracy of both lateral and axial tracking. Such improvements are more significant when the deformation is small or along the lateral direction. Results from the tissue-mimicking phantom study are consistent with findings observed in computer simulations. Using in vivo breast lesion data we found that, compared to the 2D quadratic subsample displacement estimation methods, higher quality axial strain and shear strain images (e.g. 18.6% improvement in contrast-to-noise ratio for shear strain images) can be obtained for large deformations (up to 5% frame-to-frame and 15% local strains) in a multi-compression technique. Our initial results demonstrated that this conceptually and computationally simple method could improve the image quality of ultrasound-based strain elastography with current clinical equipment.

  10. Level of agreement between three-dimensional volumetric ultrasound and real-time conventional ultrasound in the assessment of synovitis, tenosynovitis and erosions in rheumatoid arthritis patients.

    PubMed

    Acebes, Carlos; McKay, Neil; Ciechomska, Anna; Alcorn, Nicola; Harvie, John P; Robson, Barbara; Groenendijk, Nico; McDonald, Moira; Wilson, Alison; Garrido, Jesus

    2017-02-01

    The aim of the study was to assess agreement between three-dimensional volumetric ultrasound (3D US) performed by inexperienced staff and real-time conventional ultrasound (2D US) performed by experienced rheumatologists in detecting and scoring rheumatoid arthritis (RA) lesions. Thirty-one RA patients underwent examination of seven joints by 2D and 3D US for synovitis and tenosynovitis in B and PD modes and erosions in B mode. A global score for synovitis and global counts for synovitis, tenosynovitis and erosions were also calculated for every patient. Agreement between 2D and 3D US was analysed for counts and scores at the patient level with the intraclass correlation coefficient (ICC) and for counts at the joint level with Cohen's kappa coefficient. B-mode synovitis was detected at a median of five joints in each patient, frequently in wrists and hand joints but less frequently in foot joints. PD-mode synovitis, tenosynovitis and erosions were detected less frequently. All ICCs for agreement between 2D and 3D US findings were significant. All kappa coefficients were significant for B- and PD-mode synovitis and for erosions (except PIP3), while those for tenosynovitis were only significant for MCP2 (B and PD modes) and PIP2 (B mode). Although the 3D US volumes were acquired by inexperienced operators, agreement between 2D and 3D US was acceptable in detecting and scoring synovitis. A higher level of agreement was attained for patient-level global scores and counts than for individual joints.

  11. Real-Time Ultrasound/MRI Fusion for Suprasacral Parallel Shift Approach to Lumbosacral Plexus Blockade and Analysis of Injectate Spread: An Exploratory Randomized Controlled Trial

    PubMed Central

    Pedersen, Erik Morre; Al-Karradi, Sinan Naseer Hussain; Bendtsen, Mathias Alrø Fichtner; Bjørn, Siska; Dam, Mette; Daugaard, Morten; Hansen, Martin Sejr; Linnet, Katrine Danker; Søballe, Kjeld

    2017-01-01

    Fused real-time ultrasound and magnetic resonance imaging (MRI) may be used to improve the accuracy of advanced image guided procedures. However, its use in regional anesthesia is practically nonexistent. In this randomized controlled crossover trial, we aim to explore effectiveness, procedure-related outcomes, injectate spread analyzed by MRI, and safety of ultrasound/MRI fusion versus ultrasound guided Suprasacral Parallel Shift (SSPS) technique for lumbosacral plexus blockade. Twenty-six healthy subjects aged 21–36 years received two SSPS blocks (20 mL 2% lidocaine-epinephrine [1 : 200,000] added 1 mL diluted contrast) guided by ultrasound/MRI fusion versus ultrasound. Number (proportion) of subjects with motor blockade of the femoral and obturator nerves and the lumbosacral trunk was equal (ultrasound/MRI, 23/26 [88%]; ultrasound, 23/26 [88%]; p = 1.00). Median (interquartile range) preparation and procedure times (s) were longer for the ultrasound/MRI fusion guided technique (686 [552–1023] versus 196 [167–228], p < 0.001 and 333 [254–439] versus 216 [176–294], p = 0.001). Both techniques produced perineural spread and corresponding sensory analgesia from L2 to S1. Epidural spread and lidocaine pharmacokinetics were similar. Different compartmentalized patterns of injectate spread were observed. Ultrasound/MRI fusion guided SSPS was equally effective and safe but required prolonged time, compared to ultrasound guided SSPS. This trial is registered with EudraCT (2013-004013-41) and ClinicalTrials.gov (NCT02593370). PMID:28396863

  12. Simultaneous Real-time Monitoring of Thermal and Mechanical Tissue Responses to Pulsed HIFU Using Pulse-Echo Ultrasound

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Ebbini, Emad S.

    2009-04-01

    Pulsed HIFU beams are being increasingly used in a number of therapeutic applications, including thermal therapy, drug and gene delivery, and hemostasis. This wide range of applications is based on a range of HIFU-tissue interactions from purely thermal to purely mechanical to produce the desired therapeutic effects. We have developed a real-time system for monitoring tissue displacements in response to pulsed HIFU beams at high PRFs. The imaging component of the system comprises an FPGA-based signal processing unit for real-time filtering of M-mode pulse-echo data followed by real-time speckle tracking for tissue displacements before, during, and after exposure to pulsed HIFU. The latter can be used in evaluating temperature and/or viscoelastic response to the applied HIFU beam. The high acquisition rate of the M-mode system, together with the real-time displacement tracking are necessary for simultaneous estimation and separation of the thermal and viscoelastic tissue responses. In addition, the system provides a real-time link to MATLAB-based nonlinear spectral estimation routines for cavitation detection. The system has been tested in vitro bovine heart tissue and the results show that the displacement tracking captures the full dynamics of tissue displacements for the full range of HIFU exposures of interest.

  13. Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2016-07-01

    Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.

  14. Performance of 2-Dimensional Ultrasound Shear Wave Elastography in Liver Fibrosis Detection Using Magnetic Resonance Elastography as the Reference Standard: A Pilot Study.

    PubMed

    Song, Pengfei; Mellema, Daniel C; Sheedy, Shannon P; Meixner, Duane D; Karshen, Ryan M; Urban, Matthew W; Manduca, Armando; Sanchez, William; Callstrom, Matthew R; Greenleaf, James F; Chen, Shigao

    2016-02-01

    To investigate the correlation between 2-dimensional (2D) ultrasound shear wave elastography (SWE) and magnetic resonance elastography (MRE) in liver stiffness measurement and the diagnostic performance of 2D SWE for liver fibrosis when imaging from different intercostal spaces and using MRE as the reference standard. Two-dimensional SWE was performed on 47 patients. One patient was excluded from the study. Each of the remaining 46 patients underwent same-day MRE for clinical purposes. The study was compliant with the Health Insurance Portability and Accountability Act and approved by the Institutional Review Board. Informed consent was obtained from each patient. Two-dimensional SWE measurements were acquired from the ninth, eighth, and seventh intercostal spaces. The correlation with MRE was calculated at each intercostal space and multiple intercostal spaces combined. The performance of 2D SWE in diagnosing liver fibrosis was evaluated by receiver operating characteristic curve analysis using MRE as the standard. The 47 patients who initially underwent 2D SWE included 22 female and 25 male patients (age range, 19-77 years). The highest correlation between 2D SWE and MRE was from the eighth and seventh intercostal spaces (r = 0.68-0.76). The ranges of the areas under the receiver operating characteristic curves for separating normal or inflamed livers from fibrotic livers using MRE as the clinical reference were 0.84 to 0.92 when using the eighth and seventh intercostal spaces individually and 0.89 to 0.90 when combined. The results suggest that 2D SWE and MRE are well correlated when SWE is performed at the eighth and seventh intercostal spaces. The ninth intercostal space is less reliable for diagnosing fibrosis with 2D SWE. Combining measurements from multiple intercostal spaces does not significantly improve the performance of 2D SWE for detection of fibrosis. © 2016 by the American Institute of Ultrasound in Medicine.

  15. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    PubMed

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges.

  16. Comparison between shear wave dispersion magneto motive ultrasound and transient elastography for measuring tissue-mimicking phantom viscoelasticity.

    PubMed

    Almeida, Thiago W J; Sampaio, Diego R Thomaz; Bruno, Alexandre Colello; Pavan, Theo Z; Carneiro, Antonio A O

    2015-12-01

    Several methods have been developed over the last several years to analyze the mechanical properties of soft tissue. Elastography, for example, was proposed to evaluate soft tissue stiffness in an attempt to reduce the need for invasive procedures, such as breast biopsies; however, its qualitative nature and the fact that it is operator-dependent have proven to be limitations of the technique. Quantitative shearwave- based techniques have been proposed to obtain information about tissue stiffness independent of the operator. This paper describes shear wave dispersion magnetomotive ultrasound (SDMMUS), a new shear-wave-based method in which a viscoelastic medium labeled with iron oxide nanoparticles is displaced by an external tone burst magnetic field. As in magnetomotive ultrasound (MMUS), SDMMUS uses ultrasound to detect internal mechanical vibrations induced by the interaction between a magnetic field and magnetic nanoparticles. These vibrations generated shear waves that were evaluated to estimate the viscoelastic properties of tissue-mimicking phantoms. These phantoms were manufactured with different concentrations of gelatin and labeled with iron oxide nanoparticles. The elasticity and viscosity obtained with SDMMUS agreed well with the results obtained by traditional ultrasound-based transient elastography.

  17. In vivo measurement of rotator cuff tendon strain with ultrasound elastography: an investigation using a porcine model.

    PubMed

    Hatta, Taku; Yamamoto, Nobuyuki; Sano, Hirotaka; Itoi, Eiji

    2014-09-01

    To clarify the relationship between the strain ratio measured by ultrasound elastography and the mechanical properties of the tendon measured by a universal testing machine. We also attempted to determine the effect of the type and depth of soft tissue overlying the tendon on the elastographic measurement. Twelve fresh porcine shoulders were prepared. Elastographic measurement was performed on the infraspinatus tendon by manually applying repetitive compressions from an ultrasound probe with an acoustic coupler consisting of an elastomer with definite elasticity as a reference material. The strain ratio, defined as tendon/reference strain, was obtained by 4 different approaches: with the probe placed on the skin, on the subcutaneous fat after removing the skin, on the muscle after removing the subcutaneous fat, and directly on the tendon. The strain ratios measured by these approaches were compared statistically. The relationship between the depth of the tendon measured on elastography and the strain ratio was also investigated. We also attempted to clarify the relationship between the strain ratio of the tendon and its elastic property. The tendon was mounted on a testing machine, and compressive force was applied. Tendon compliance was calculated as the reciprocal of the Young modulus in the range of 5% to 10% strain, which was compared to its strain ratio. The tendon/reference strain ratio significantly correlated with the tendon compliance (r = 0.73; P < .01). The strain ratio was not affected by differences in the measuring approaches (P = .4) or by the depth to the tendon level (P = .8). Our results indicated that the strain ratio of the rotator cuff tendon could be measured with minimal influence by overlying soft tissues if its depth from the skin was less than 22 mm. We believe that ultrasound elastography would be a useful tool for assessment of tendon elasticity in clinical practice. © 2014 by the American Institute of Ultrasound in Medicine.

  18. Validation of Ultrasound Elastography Imaging for Nondestructive Characterization of Stiffer Biomaterials.

    PubMed

    Zhou, Haoyan; Goss, Monika; Hernandez, Christopher; Mansour, Joseph M; Exner, Agata

    2016-05-01

    Ultrasound elastography (UE) has been widely used as a "digital palpation" tool to characterize tissue mechanical properties in the clinic. UE benefits from the capability of noninvasively generating 2-D elasticity encoded maps. This spatial distribution of elasticity can be especially useful in the in vivo assessment of tissue engineering scaffolds and implantable drug delivery platforms. However, the detection limitations have not been fully characterized and thus its true potential has not been completely discovered. Characterization studies have focused primarily on the range of moduli corresponding to soft tissues, 20-600 kPa. However, polymeric biomaterials used in biomedical applications such as tissue scaffolds, stents, and implantable drug delivery devices can be much stiffer. In order to explore UE's potential to assess mechanical properties of biomaterials in a broader range of applications, this work investigated the detection limit of UE strain imaging beyond soft tissue range. To determine the detection limit, measurements using standard mechanical testing and UE on the same polydimethylsiloxane samples were compared and statistically evaluated. The broadest detection range found based on the current optimized setup is between 47 kPa and 4 MPa which exceeds the modulus of normal soft tissue suggesting the possibility of using this technique for stiffer materials' mechanical characterization. The detectable difference was found to be as low as 157 kPa depending on sample stiffness and experimental setup.

  19. Ultrasound elastography for carpal tunnel pressure measurement: A cadaveric validation study.

    PubMed

    Kubo, Kazutoshi; Zhou, Boran; Cheng, Yu-Shiuan; Yang, Tai-Hua; Qiang, Bo; An, Kai-Nan; Moran, Steven L; Amadio, Peter C; Zhang, Xiaoming; Zhao, Chunfeng

    2017-07-21

    Carpal tunnel pressure is a key factor in the etiology of carpal tunnel syndrome. Numerous approaches have been conducted to measure carpal tunnel pressure. However, most techniques are invasive and take time and effort. We have developed an innovative approach to noninvasively assess the tunnel pressure by using the ultrasound surface wave elastography (USWE) technique. In a previous study it was shown that the shear wave speed in a tendon increased linearly with increasing tunnel pressure enclosed the tendon in a simple tendon model. This study aimed to examine the relationship between the carpal tunnel pressure and the shear wave speeds inside and outside the carpal tunnel in a human cadaveric model. The result showed that the shear wave speed inside the carpal tunnel increased linearly with created carpal tunnel pressure, while the shear wave speed outside the carpal tunnel remained constant. These findings suggest that noninvasive measurement of carpal tunnel pressure is possible by measuring the shear wave speed in the tendon. After fully establishing this technology and being applicable in clinic, it would be useful in the diagnosis of carpal tunnel syndrome. For that reason, further validation with this technique in both healthy controls and patients with carpal tunnel syndrome is required. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Feasibility of real-time treatment feedback using novel filter for eliminating therapeutic ultrasound noise with high-speed ultrasonic imaging in ultrasound-guided high-intensity focused ultrasound treatment

    NASA Astrophysics Data System (ADS)

    Takagi, Ryo; Jimbo, Hayato; Iwasaki, Ryosuke; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    In the conventional ultrasonic monitoring of high-intensity focused ultrasound (HIFU) treatment, a significant interval between HIFU shots is required when monitoring target tissue to avoid interference between HIFU noise and RF echo signals. In our previous study, a new filtering method to eliminate only HIFU noise while maintaining tissue signals intact was proposed, and it was shown that the thermal coagulation could be detected during simultaneous HIFU irradiation through off-line processing. In this study, the filtering method and a real-time coagulation detection algorithm were implemented in an ultrasound imaging system, whose use for sequential exposure with multiple foci was demonstrated similarly to a commercial HIFU ablation system. The coagulation was automatically detected by the proposed method during real-time simultaneous HIFU irradiation, and the HIFU exposure time was controlled according to the changes in the tissue. The results imply that ultrasonic monitoring with the filtering and detection methods is useful for true real-time detection of changes in the tissue due to thermal coagulation during HIFU exposure.

  1. Back-to-back optical coherence tomography-ultrasound probe for co-registered three-dimensional intravascular imaging with real-time display

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Ma, Teng; Jing, Joseph; Zhang, Jun; Patel, Pranav M.; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2014-03-01

    We have developed a novel integrated optical coherence tomography (OCT)-intravascular ultrasound (IVUS) probe, with a 1.5 mm-long rigid-part and 0.9 mm outer diameter, for real-time intracoronary imaging of atherosclerotic plaques and guiding interventional procedures. By placing the OCT ball lens and IVUS 45MHz single element transducer back-to-back at the same axial position, this probe can provide automatically co-registered, co-axial OCT-IVUS imaging. To demonstrate its capability, 3D OCT-IVUS imaging of a pig's coronary artery in real-time displayed in polar coordinates, as well as images of two major types of advanced plaques in human cadaver coronary segments, was obtained using this probe and our upgraded system. Histology validation is also presented.

  2. Transient MR elastography (t-MRE) using ultrasound radiation force: theory, safety, and initial experiments in vitro.

    PubMed

    Souchon, Rémi; Salomir, Rares; Beuf, Olivier; Milot, Laurent; Grenier, Denis; Lyonnet, Denis; Chapelon, Jean-Yves; Rouvière, Olivier

    2008-10-01

    The purpose of our study was to assess the feasibility of using ultrasound radiation force as a safe vibration source for transient MR elastography (t-MRE). We present a theoretical framework to predict the phase shift of the complex MRE signal, the temperature elevation due to ultrasound, and safety indicators (I(SPPA), I(SPTA), MI). Next, we report wave images acquired in porcine liver samples in vitro. MR thermometry was used to estimate the temperature elevation induced by ultrasound. Finally, we discuss the implications of our results with regard to the feasibility of using radiation force for t-MRE in a clinical setting, and a specific echo-planar imaging (EPI) MRE sequence is proposed.

  3. The AutoQual ultrasound elastography method for quantitative assessment of lateral strain in post-rupture Achilles tendons.

    PubMed

    Brown, Phillip G; Alsousou, Joseph; Cooper, Ashley; Thompson, Mark S; Noble, J Alison

    2013-10-18

    This paper presents the AutoQual elastography method: a novel algorithm that improves the quality of 2D displacement field calculation from ultrasound radio frequency (RF) sequences of acutely ruptured Achilles tendons to determine image-lateral strain fields and has potential use for ligaments and muscles. This method uses 2D bicubic spline interpolation of the RF signal, Quality Determined Search, Automatic Search Range and Adaptive Block Size components as a novel combination that is designed to improve continuity and decrease displacement field noise, especially in areas of low signal strength. We present a simple experiment for quantitatively comparing the AutoQual method to a multiscale (MS) elastography method from ultrasound RF sequences of a 5% agar phantom for rigid body motion and known lateral strain loads with speeds up to 5mm/s. We finally present examples of four in vivo Achilles tendons in various damage states and with manual or artificially controlled passive flexion of the foot. Results show that the AutoQual method offers a substantial improvement on the MS method, achieving similar performance for rigid body tracking at all speeds, a lower normalized square error at all strains induced and a more continuous strain field at higher compression rates. AutoQual also showed a greater average normalized cross correlation for image blocks in the area of interest, a lower standard deviation of the strain field and a visually more acceptable point tracking for in vivo examples. This work demonstrates lateral ultrasound elastography which is robust to the complex passive motion of the Achilles and to various imaging artifacts associated with imaging tendon rupture. This method potentially has a wide clinical application for assessing in vivo strains in and hence mechanical function of any near skin surface tissues that are longitudinally loaded.

  4. A unified approach to combine temperature estimation and elastography for thermal lesion determination in focused ultrasound thermal therapy.

    PubMed

    Liu, Hao-Li; Li, Meng-Lin; Tsui, Po-Hsiang; Lin, Ming-Shi; Huang, Sheng-Min; Bai, Jing

    2011-01-07

    Sonogram-based temperature estimation and elastography have both shown promise as methods of monitoring focused ultrasound (FUS) treatments to induce thermal ablation in tissue. However, each method has important limitations. Temperature estimates based on echo delays become invalid when the relationship between sound speed and temperature is nonlinear, and are further complicated by thermal expansion and other changes in tissue. Elastography can track thermal lesion formation over a wider range of elasticity, but with low specificity and high noise. Furthermore, this method is poor at small lesion detection. This study proposes integrating the two estimates to improve the quality of monitoring FUS-induced thermal lesions. Our unified computational kernel is tested on three types of phantoms. Experiments with type I and type II phantoms were conducted to calibrate the thermal mapping and elastography methods, respectively. The optimal settings were then used in experiments with the type III phantom, which contains ex vivo swine liver tissue. Three different spatial-peak temporal-average intensities (I(spta); 35, 133 and 240 W cm(-2)) were delivered with a sonication time of 60 s. The new procedure can closely monitor heating while identifying the dimensions of the thermal lesion, and is significantly better at the latter task than either approach alone. This work may help improve the current clinical practice, which employs sonograms to guide the FUS-induced thermal ablation procedure.

  5. A PDE-based Regularization Algorithm toward Reducing Speckle Tracking Noise: A Feasibility Study for Ultrasound Breast Elastography

    PubMed Central

    Guo, Li; Xu, Yan; Xu, Zhengfu; Jiang, Jingfeng

    2015-01-01

    Obtaining accurate ultrasonically-estimated displacements along both axial (parallel to the acoustic beam) and lateral (perpendicular to the beam) directions is an important task for various clinical elastography applications (e.g. modulus reconstruction and temperature imaging). In this study, a partial differential equation (PDE)-based regularization algorithm was proposed to enhance motion tracking accuracy. More specifically, the proposed PDE-based algorithm, utilizing two-dimensional displacement estimates from a conventional elastography system, attempted to iteratively reduce noise contained in the original displacement estimates by mathematical regularization. In this study, the physical constraint used by the above-mentioned mathematical regularization was tissue incompressibility. This proposed algorithm was tested using computer-simulated data, a tissue-mimicking phantom and in vivo breast lesion data. Computer simulation results showed that the method significantly improved the accuracy of lateral tracking (e.g. 17X at 0.5% compression). From in vivo breast lesion data investigated, we have found that, as compared to the conventional method, higher quality axial and lateral strain images (e.g. at least 78% improvements among the estimated contrast-to-noise ratios of lateral strain images) were obtained. Our initial results demonstrated that this conceptually and computationally simple method could be useful to improve the image quality for ultrasound elastography with current clinical equipment as a post-processing tool. PMID:25452434

  6. A unified approach to combine temperature estimation and elastography for thermal lesion determination in focused ultrasound thermal therapy

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Li; Li, Meng-Lin; Tsui, Po-Hsiang; Lin, Ming-Shi; Huang, Sheng-Min; Bai, Jing

    2011-01-01

    Sonogram-based temperature estimation and elastography have both shown promise as methods of monitoring focused ultrasound (FUS) treatments to induce thermal ablation in tissue. However, each method has important limitations. Temperature estimates based on echo delays become invalid when the relationship between sound speed and temperature is nonlinear, and are further complicated by thermal expansion and other changes in tissue. Elastography can track thermal lesion formation over a wider range of elasticity, but with low specificity and high noise. Furthermore, this method is poor at small lesion detection. This study proposes integrating the two estimates to improve the quality of monitoring FUS-induced thermal lesions. Our unified computational kernel is tested on three types of phantoms. Experiments with type I and type II phantoms were conducted to calibrate the thermal mapping and elastography methods, respectively. The optimal settings were then used in experiments with the type III phantom, which contains ex vivo swine liver tissue. Three different spatial-peak temporal-average intensities (Ispta; 35, 133 and 240 W cm-2) were delivered with a sonication time of 60 s. The new procedure can closely monitor heating while identifying the dimensions of the thermal lesion, and is significantly better at the latter task than either approach alone. This work may help improve the current clinical practice, which employs sonograms to guide the FUS-induced thermal ablation procedure.

  7. Strain elastography of abnormal axillary nodes in breast cancer patients does not improve diagnostic accuracy compared with conventional ultrasound alone.

    PubMed

    Park, Young Mi; Fornage, Bruno D; Benveniste, Ana Paula; Fox, Patricia S; Bassett, Roland L; Yang, Wei Tse

    2014-12-01

    The purpose of this study was to determine the diagnostic value of strain elastography (SE) alone and in combination with gray-scale ultrasound in the diagnosis of benign versus metastatic disease for abnormal axillary lymph nodes in breast cancer patients. Patients with breast cancer and axillary lymph nodes suspicious for metastatic disease on conventional ultrasound who underwent SE of the suspicious node before ultrasound-guided fine-needle aspiration biopsy (FNAB) were included in this study. On conventional ultrasound, the long- and short-axis diameters, long-axis-to-short-axis ratio, cortical echogenicity, thickness, and evenness were documented. The nodal vascularity was assessed on power Doppler imaging. Elastograms were evaluated for the percentage of black (hard) areas in the lymph node, and the SE-ultrasound size ratio was calculated. Two readers assessed the images independently and then in consensus in cases of disagreement. ROC AUCs were calculated for conventional ultrasound, SE, and both methods combined. Interreader reliability was assessed using kappa statistics. A total of 101 patients with 104 nodes were examined; 35 nodes were benign, and 69 had metastases. SE alone showed a significantly lower AUC (62%) than did conventional ultrasound (92%) (p<0.001). There was no difference between the AUC of conventional ultrasound and the AUC of the combination of conventional ultrasound and SE (93%) (p=0.16). Interreader reliability was moderate for all variables (κ≥0.60) except the SE-ultrasound size ratio (κ=0.35). Added SE does not improve the diagnostic ability of conventional ultrasound when evaluating abnormal axillary lymph nodes.

  8. The diagnosis value of acoustic radiation force impulse (ARFI) elastography for thyroid malignancy without highly suspicious features on conventional ultrasound

    PubMed Central

    Liu, Bo-Ji; Lu, Feng; Xu, Hui-Xiong; Guo, Le-Hang; Li, Dan-Dan; Bo, Xiao-Wan; Li, Xiao-Long; Zhang, Yi-Feng; Xu, Jun-Mei; Xu, Xiao-Hong; Qu, Shen

    2015-01-01

    Objective: The aim of this study was to evaluate the potential diagnostic performance of acoustic radiation force impulse (ARFI) elastography in identifying malignancy in nodules that do not appear highly suspicious on conventional ultrasound (US). Methods: 330 pathologically confirmed thyroid nodules (40 malignant and 290 benign; mean size, 22.0±11.6 mm) not suspicious of malignancy on conventional US in 330 patients (mean age 52.8±11.7 years) underwent ARFI elastography before surgery. ARFI elastography included qualitative ARFI-induced strain elastography (SE) and quantitative point shear wave elastography (p-SWE). ARFI-induced SE image was assessed by SE score, while p-SWE was denoted with shear wave velocity (SWV, m/s). The diagnostic performance of four criteria sets was evaluated: criteria set 1 (ARFI-induced SE), criteria set 2 (p-SWE), criteria set 3 (either set 1 or 2), criteria set 4 (both set 1 and 2). Receiver operating characteristic curve (ROC) analyses were performed to assess the diagnostic performance. Results: SE score ≥4 was more frequently found in malignant nodules (32/40) than in benign nodules (30/290, P<0.001). The mean SWV of malignant nodules (3.64±2.23 m/s) was significantly higher than that of benign nodules (2.02±0.69 m/s) (P<0.001). ARFI-induced SE (set 1) had a sensitivity of 80.0% (32/40) and a specificity of 89.7% (260/290) with a cut-off point of SE score ≥4; p-SWE (set 2) had a sensitivity of 80.0% (32/40) and a specificity of 57.9% (168/290) with a cut-off point of SWV ≥2.15 m/s. When ARFI-induced SE and p-SWE were combined, set 3 had the highest sensitivity (92.5%, 37/40) while set 4 had the highest specificity (95.2%, 276/290). Conclusion: ARFI elastography can be used for differential diagnosis of malignant thyroid nodules without highly suspicious features on US. The combination of ARFI-induced SE and p-SWE leads to improved sensitivity and specificity. PMID:26629025

  9. Performance of 2-D ultrasound shear wave elastography in liver fibrosis detection using magnetic resonance elastography as the reference standard: A pilot study

    PubMed Central

    Song, Pengfei; Mellema, Daniel C.; Sheedy, Shannon P.; Meixner, Duane D.; Karshen, Ryan M.; Urban, Matthew W.; Manduca, Armando; Sanchez, William; Callstrom, Matthew R.; Greenleaf, James F.; Chen, Shigao

    2015-01-01

    Objective To investigate the correlation between 2-D ultrasound shear wave elastography (SWE) and magnetic resonance elastography (MRE) in liver stiffness measurement and the diagnostic performance of 2-D SWE for liver fibrosis when imaging from different intercostal spaces and using MRE as the reference standard. Methods 2-D SWE was performed on 47 patients (22 females and 25 males, age 19–77) using the GE LOGIQ E9 scanner. Each of the 47 patients had same day MRE obtained for clinical purposes. The study was HIPAA-compliant and approved by the institutional review board. Informed consent was obtained from each subject. 2-D SWE measurements were acquired from the 9th, 8th, and 7th intercostal spaces. Correlation with MRE was calculated at each intercostal space and multiple intercostal spaces combined. The performance of 2-D SWE in diagnosing liver fibrosis was evaluated with receiver operating characteristic (ROC) curve analysis using MRE as the standard. Results The highest correlation between 2-D SWE and MRE was from the 8th and 7th intercostal spaces (r = 0.68 – 0.76). The range of the areas under the ROC curve for separating normal or inflamed livers from fibrotic livers using MRE as the clinical reference were 0.84 – 0.92 when using 8th and 7th intercostal spaces individually, and 0.89 –0.9 when combined. Conclusion The results suggest that 2-D SWE and MRE are well correlated when SWE is performed at the 8th and 7th intercostal spaces. The 9th intercostal space is less reliable for diagnosing fibrosis using 2-D SWE. Combining measurements from multiple intercostal spaces does not significantly improve 2-D SWE performance for the detection of fibrosis. PMID:26782164

  10. Ultrasonic Elastography

    NASA Astrophysics Data System (ADS)

    Souchon, Rémi

    Elastography is a new ultrasound-based imaging technique that provides images (called elastograms) of internal strain in soft tissues under a static compression. The strain is related to the stiffness of the tissues, which is in turn related to the pathological state of tissues. For example, it has been known for long that breast and prostate cancer are stiffer than normal tissues, and palpation is a standard medical practice.

  11. Feasibility and Reliability of Quantifying Passive Muscle Stiffness in Young Children Using Shear Wave Ultrasound Elastography

    PubMed Central

    Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Landry, Bradford W.; Kingsley-Berg, Shirley; Bamlet, William R.; Chen, Shigao; Sieck, Gary C.; An, Kai-Nan

    2014-01-01

    Objective To investigate the feasibility and reliability of passive muscle stiffness measurements in children through use of shear wave ultrasound elastography. Methods This is a prospective cross -sectional study quantifying the passive stiffness of bilateral lateral gastrocnemii muscles during passive stretch in twenty typically developing children (age range, 2.0–12.6 years). Data collected included passive stiffness of the lateral gastrocnemius muscle (shear modulus in kilopascal [kPa]) at four positions of progressive passive foot dorsiflexion; demographic characteristics of the child participants; and comparison of demographic characteristics with the shear modulus. Results Passive stiffness increased with increasing stretch (mean [SD] range of stretch, 7.1 [2.0]–36.2 [22.0] kPa). For all four foot positions, no significant difference was found between right and left legs (range P=0.42 to P=0.98) or between the sexes (range P=0.28 to P> 0.99). No correlation of passive muscle stiffness to age, body mass index, or ankle range of motion was found. Reliability of measurements was good to excellent (mean [95% CI] range of reliability 0.67 [0.44–0.83] to 0.80 [0.63–0.90]). Conclusions Measurements of passive stiffness of the lateral gastrocnemius muscle are feasible and reliable in children as young as 2 years. Because the present study found no significant difference between sex and the side tested in this age-group, future studies involving children of this age range may not need to be stratified on the basis of these parameters. Defining normal passive muscle stiffness in children is critical for identifying and understanding the implications of abnormal passive muscle stiffness in children with neuromuscular disorders. PMID:25792582

  12. Evaluation of Post-stroke Spastic Muscle Stiffness Using Shear Wave Ultrasound Elastography.

    PubMed

    Wu, Chueh-Hung; Ho, Yu-Chun; Hsiao, Ming-Yen; Chen, Wen-Shiang; Wang, Tyng-Guey

    2017-03-09

    Current clinical evaluations of post-stroke upper limb spasticity are subjective and qualitative. We proposed a quantitative measurement of post-stroke spastic muscle stiffness by using shear-wave ultrasound elastography and tested its reliability. Acoustic radiation force impulse with shear wave velocity (SWV) detection was used to evaluate stiffness of the biceps brachii muscles at 90° and 0° elbow flexion. In 21 control subjects, SWV did not significantly differ between dominant and non-dominant sides at either flexion angle (0°: p = 0.311, 90°: p = 0.436). In 31 patients who had recent stroke, SWV was significantly greater on the paretic side than on the non-paretic side at both 90° (2.23 ± 0.15 m/s vs. 1.88 ± 0.08 m/s, p = 0.036) and 0° (3.28 ± 0.11 m/s vs. 2.93 ± 0.06 m/s, p = 0.002). The physical appearance of arms and forearms of our patients and controls prevented blinding of the rater to paretic or non-paretic side. At 90°, SWV on the paretic side correlated positively with modified Ashworth scale and modified Tardieu scale (spasticity severity) and negatively with Stroke Rehabilitation Assessment of Movement score (motor function impairment). The intra-class correlation coefficients of intra-rater and inter-rater reliability for SWV measurements were classified as excellent. In conclusion, high SWV was associated with high spasticity and poor function of the post-stroke upper limb, suggesting possible use as a reliable quantitative measure for disease progression and treatment follow-up.

  13. A regularization-free elasticity reconstruction method for ultrasound elastography with freehand scan.

    PubMed

    Pan, Xiaochang; Liu, Ke; Bai, Jing; Luo, Jianwen

    2014-09-07

    In ultrasound elastography, reconstruction of tissue elasticity (e.g., Young's modulus) requires regularization and known information of forces and/or displacements on tissue boundaries. In practice, it is challenging to choose an appropriate regularization parameter; and the boundary conditions are difficult to obtain in vivo. The purpose of this study is to develop a more applicable algorithm that does not need any regularization or boundary force/displacement information. The proposed method adopts the bicubic B-spline as the tissue motion model to estimate the displacement fields. Then the estimated displacements are input to the finite element inversion scheme to reconstruct the Young's modulus of each element. In the inversion, a modulus boundary condition is used instead of force/displacement boundary conditions. Simulation and experiments on tissue-mimicking phantoms are carried out to test the proposed method. The simulation results demonstrate that Young's modulus reconstruction of the proposed method has a relative error of -3.43 ± 0.43% and root-squared-mean error of 16.94 ± 0.25%. The phantom experimental results show that the target hardening artifacts in the strain images are significantly reduced in the Young's modulus images. In both simulation and phantom studies, the size and position of inclusions can be accurately depicted in the modulus images. The proposed method can reconstruct tissue Young's modulus distribution with a high accuracy. It can reduce the artifacts shown in the strain image and correctly delineate the locations and sizes of inclusions. Unlike most modulus reconstruction methods, it does not need any regularization during the inversion procedure. Furthermore, it does not need to measure the boundary conditions of displacement or force. Thus this method can be used with a freehand scan, which facilitates its usage in the clinic.

  14. Carotid plaque elasticity estimation using ultrasound elastography, MRI, and inverse FEA - A numerical feasibility study.

    PubMed

    Nieuwstadt, H A; Fekkes, S; Hansen, H H G; de Korte, C L; van der Lugt, A; Wentzel, J J; van der Steen, A F W; Gijsen, F J H

    2015-08-01

    The material properties of atherosclerotic plaques govern the biomechanical environment, which is associated with rupture-risk. We investigated the feasibility of noninvasively estimating carotid plaque component material properties through simulating ultrasound (US) elastography and in vivo magnetic resonance imaging (MRI), and solving the inverse problem with finite element analysis. 2D plaque models were derived from endarterectomy specimens of nine patients. Nonlinear neo-Hookean models (tissue elasticity C1) were assigned to fibrous intima, wall (i.e., media/adventitia), and lipid-rich necrotic core. Finite element analysis was used to simulate clinical cross-sectional US strain imaging. Computer-simulated, single-slice in vivo MR images were segmented by two MR readers. We investigated multiple scenarios for plaque model elasticity, and consistently found clear separations between estimated tissue elasticity values. The intima C1 (160 kPa scenario) was estimated as 125.8 ± 19.4 kPa (reader 1) and 128.9 ± 24.8 kPa (reader 2). The lipid-rich necrotic core C1 (5 kPa) was estimated as 5.6 ± 2.0 kPa (reader 1) and 8.5 ± 4.5 kPa (reader 2). A scenario with a stiffer wall yielded similar results, while realistic US strain noise and rotating the models had little influence, thus demonstrating robustness of the procedure. The promising findings of this computer-simulation study stimulate applying the proposed methodology in a clinical setting.

  15. A Hertzian contact mechanics based formulation to improve ultrasound elastography assessment of uterine cervical tissue stiffness.

    PubMed

    Briggs, Brandi N; Stender, Michael E; Muljadi, Patrick M; Donnelly, Meghan A; Winn, Virginia D; Ferguson, Virginia L

    2015-06-25

    Clinical practice requires improved techniques to assess human cervical tissue properties, especially at the internal os, or orifice, of the uterine cervix. Ultrasound elastography (UE) holds promise for non-invasively monitoring cervical stiffness throughout pregnancy. However, this technique provides qualitative strain images that cannot be linked to a material property (e.g., Young's modulus) without knowledge of the contact pressure under a rounded transvaginal transducer probe and correction for the resulting non-uniform strain dissipation. One technique to standardize elastogram images incorporates a material of known properties and uses one-dimensional, uniaxial Hooke's law to calculate Young's modulus within the compressed material half-space. However, this method does not account for strain dissipation and the strains that evolve in three-dimensional space. We demonstrate that an analytical approach based on 3D Hertzian contact mechanics provides a reasonable first approximation to correct for UE strain dissipation underneath a round transvaginal transducer probe and thus improves UE-derived estimates of tissue modulus. We validate the proposed analytical solution and evaluate sources of error using a finite element model. As compared to 1D uniaxial Hooke's law, the Hertzian contact-based solution yields significantly improved Young's modulus predictions in three homogeneous gelatin tissue phantoms possessing different moduli. We also demonstrate the feasibility of using this technique to image human cervical tissue, where UE-derived moduli estimations for the uterine cervix anterior lip agreed well with published, experimentally obtained values. Overall, UE with an attached reference standard and a Hertzian contact-based correction holds promise for improving quantitative estimates of cervical tissue modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Contrast-enhanced (endoscopic) ultrasound and endoscopic ultrasound elastography in gastrointestinal stromal tumors

    PubMed Central

    Ignee, Andre; Jenssen, Christian; Hocke, Michael; Dong, Yi; Wang, Wen-Ping; Cui, Xin-Wu; Woenckhaus, Matthias; Iordache, Sevastita; Saftoiu, Adrian; Schuessler, Gudrun; Dietrich, Christoph F.

    2017-01-01

    Background and Objectives: Gastrointestinal stromal tumors (GISTs) represent the largest group of subepithelial tumors (SET) of the upper gastrointestinal (GI) tract. They may show malignant behavior, in contrast to other SET. Endoscopic ultrasound (EUS) is frequently used to characterize SET. With the introduction of contrast-enhanced ultrasound (CEUS) into EUS (CE-EUS), distinct enhancement patterns can be detected. In the presented study, the characteristic features of CE-EUS in GIST are analyzed and compared with those of other SET. Materials and Methods: Consecutive patients from four centers with SET of the upper and middle GI tract were included and received endoscopic or transcutaneous CEUS. The results were compared with EUS-guided tissue acquisition, forceps biopsy, or surgical resection. Results: Forty-two out of 62 (68%) patients had SET of the stomach, 17/62 (27%) of the small intestine, 2/62 (3%) of the esophagus, and 1/62 (2%) extraintestinal. Eighty-one percent underwent surgery. Leiomyoma was found in 5/62 (8%) and GIST in 57/62 patients (92%). Thirty-nine out of 57 (68%) patients had GIST lesions in the stomach, 17/57 (30%) had GIST of the small intestine, and 1/57 (2%) patients had extraintestinal GISTs. GIST size was 62.6 ± 42.1 (16–200) mm. Hyperenhancement had a sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 98%, 100%, 100%, 93%, and 98% for the diagnosis of GIST. Fifty out of 57 patients with GIST (88%) showed avascular areas in the center of the lesions. Conclusion: CE-EUS and CEUS show hyperenhancement and avascular areas in a high percentage of GIST but not in leiomyoma. Thus, GIST and leiomyoma can be discriminated accurately. PMID:28218202

  17. Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography

    PubMed Central

    2013-01-01

    Background The convectional strain-based algorithm has been widely utilized in clinical practice. It can only provide the information of relative information of tissue stiffness. However, the exact information of tissue stiffness should be valuable for clinical diagnosis and treatment. Methods In this study we propose a reconstruction strategy to recover the mechanical properties of the tissue. After the discrepancies between the biomechanical model and data are modeled as the process noise, and the biomechanical model constraint is transformed into a state space representation the reconstruction of elasticity can be accomplished through one filtering identification process, which is to recursively estimate the material properties and kinematic functions from ultrasound data according to the minimum mean square error (MMSE) criteria. In the implementation of this model-based algorithm, the linear isotropic elasticity is adopted as the biomechanical constraint. The estimation of kinematic functions (i.e., the full displacement and velocity field), and the distribution of Young’s modulus are computed simultaneously through an extended Kalman filter (EKF). Results In the following experiments the accuracy and robustness of this filtering framework is first evaluated on synthetic data in controlled conditions, and the performance of this framework is then evaluated in the real data collected from elastography phantom and patients using the ultrasound system. Quantitative analysis verifies that strain fields estimated by our filtering strategy are more closer to the ground truth. The distribution of Young’s modulus is also well estimated. Further, the effects of measurement noise and process noise have been investigated as well. Conclusions The advantage of this model-based algorithm over the conventional strain-based algorithm is its potential of providing the distribution of elasticity under a proper biomechanical model constraint. We address the model

  18. Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography.

    PubMed

    Lu, Minhua; Zhang, Heye; Wang, Jun; Yuan, Jinwei; Hu, Zhenghui; Liu, Huafeng

    2013-08-10

    The convectional strain-based algorithm has been widely utilized in clinical practice. It can only provide the information of relative information of tissue stiffness. However, the exact information of tissue stiffness should be valuable for clinical diagnosis and treatment. In this study we propose a reconstruction strategy to recover the mechanical properties of the tissue. After the discrepancies between the biomechanical model and data are modeled as the process noise, and the biomechanical model constraint is transformed into a state space representation the reconstruction of elasticity can be accomplished through one filtering identification process, which is to recursively estimate the material properties and kinematic functions from ultrasound data according to the minimum mean square error (MMSE) criteria. In the implementation of this model-based algorithm, the linear isotropic elasticity is adopted as the biomechanical constraint. The estimation of kinematic functions (i.e., the full displacement and velocity field), and the distribution of Young's modulus are computed simultaneously through an extended Kalman filter (EKF). In the following experiments the accuracy and robustness of this filtering framework is first evaluated on synthetic data in controlled conditions, and the performance of this framework is then evaluated in the real data collected from elastography phantom and patients using the ultrasound system. Quantitative analysis verifies that strain fields estimated by our filtering strategy are more closer to the ground truth. The distribution of Young's modulus is also well estimated. Further, the effects of measurement noise and process noise have been investigated as well. The advantage of this model-based algorithm over the conventional strain-based algorithm is its potential of providing the distribution of elasticity under a proper biomechanical model constraint. We address the model-data discrepancy and measurement noise by introducing

  19. Real-time ultrasound-guided comparison of adductor canal block and psoas compartment block combined with sciatic nerve block in laparoscopic knee surgeries

    PubMed Central

    Messeha, Medhat M.

    2016-01-01

    Background: Lumbar plexus block, combined with a sciatic nerve block, is an effective locoregional anesthetic technique for analgesia and anesthesia of the lower extremity. The aim of this study was to compare the clinical results outcome of the adductor canal block versus the psoas compartment block combined with sciatic nerve block using real time ultrasound guidance in patients undergoing elective laparoscopic knee surgeries. Patients and Methods: Ninety patients who were undergoing elective laparoscopic knee surgeries were randomly allocated to receive a sciatic nerve block in addition to lumbar plexus block using either an adductor canal block (ACB) or a posterior psoas compartment approach (PCB) using 25 ml of bupivacine 0.5% with adrenaline 1:400,000 injection over 2-3 minutes while observing the distribution of the local anesthetic in real time. Successful nerve block was defined as a complete loss of pinprick sensation in the region that is supplied by the three nerves along with adequate motor block, 30 minutes after injection. The degree of motor block was evaluated 30 minutes after the block procedure. The results of the present study showed that the real time ultrasound guidance of PCB is more effective than ACB approach. Although the sensory blockade of the femoral nerve achieved equally by both techniques, the LFC and OBT nerves were faster and more effectively blocked with PCB technique. Also PCB group showed significant complete sensory block without need for general anesthesia, significant decrease in the post-operative VAS and significant increase time of first analgesic requirement as compared to the ACB group. Result and Conclusion: The present study demonstrates that blockade of lumber plexus by psoas compartment block is more effective in complete sensory block without general anesthesia supplementation in addition to decrease post-operative analgesic requirement than adductor canal block. PMID:27212766

  20. A pilot study estimating liver fibrosis with ultrasound shear-wave elastography: does the cause of liver disease or location of measurement affect performance?

    PubMed

    Beland, Michael D; Brown, Sanford F; Machan, Jason T; Taliano, Ross J; Promrat, Kittichai; Cronan, John J

    2014-09-01

    The purpose of this study was to evaluate the diagnostic accuracy of real-time shear-wave elastography for assessment of liver fibrosis in an unselected patient population, comparing shear-wave elastography measurements obtained at and remote from the site of random liver biopsy. In a prospective study of 50 patients (21 with and 29 without hepatitis C) referred for clinically indicated random liver biopsy for diffuse liver disease, shear-wave elastography measurements were taken from four locations before biopsy: one at the left lobe, two at the right lobe, and one at the biopsy location. The mean, minimum, maximum, and SD of shear-wave elastography were compared with pathologic grading. Steatosis and serum markers were analyzed using multiple logistic regression. Optimized shear-wave elastography thresholds were calculated using AUC analysis. The AUC (95% CI) at the biopsy site, ipsilateral lobe, and contralateral lobe were 0.82 (0.63-1.0), 0.84 (0.67-1.0), and 0.59 (0.19-0.99) in hepatitis C patients; 0.89 (0.75-1.0), 0.88 (0.73-1.0), and 0.93 (0.80-1.0) in nonhepatitis C patients; and 0.85 (0.74-0.96), 0.89 (0.79-0.99), and 0.80 (0.67-0.93) in all patients, respectively. Optimized biopsy site shear-wave elastography values for detecting Metavir score F2 or greater were 1.87 m/s (75% sensitivity and specificity), 2.00 m/s (80% sensitivity and specificity), and 1.89 m/s (76% sensitivity and specificity) in hepatitis C, nonhepatitis C, and all patients, respectively. Steatosis and serum markers were not significant. Real-time shear-wave elastography accurately predicted significant fibrosis (stage ≥ 2) in an unselected patient population with diffuse disease, including patients with and without hepatitis C. Shear-wave elastography best predicts pathologic grading when taken at the biopsy site or ipsilateral lobe in hepatitis C patients. Percentage steatosis was not predictive of shear-wave elastography results.

  1. Ultrasound-Based Guidance for Partial Breast Irradiation Therapy

    DTIC Science & Technology

    2011-01-01

    acquisition from more than 15 patients • Developed the 2D AM method which calculates high quality 2D strain images in real-time • Introduced ElastMI...Elastography using Multiple Images), a novel method which generates high quality strain images by utilizing multiple ultrasound images...the lumpectomy is relatively thin and demands a high resolution elastography method . Also, incoherent fluid motions in the cavity causes large

  2. Clinical validation of real-time tissue change monitoring during prostate tissue ablation with high intensity focused ultrasound.

    PubMed

    Sanghvi, Narendra T; Chen, Wo-Hsing; Carlson, Roy; Weis, Clint; Seip, Ralf; Uchida, Toyoaki; Marberger, Michael

    2017-01-01

    The purpose of these clinical studies was to validate a Tissue Change Monitoring (TCM) algorithm in vivo. TCM is a quantitative tool for the real-time assessment of HIFU dose. TCM provides quantitative analysis of the backscatter pulse echo signals (pre and immediately post HIFU) for each individual ablative site, using ultrasonic tissue characterization as a surrogate for monitoring tissue temperature. Real-time analysis generates an energy difference parameter (ΔE in dB) that is proportional to tissue temperature. Post in vitro studies, two clinical studies were conducted to validate the TCM algorithm on the Sonablate® device. Studies enrolled histologically confirmed, organ confined prostate cancer patients. The first clinical study was conducted in two phases for whole gland ablation. First eight patients' data were used to measure the algorithm performance followed by 89 additional patients for long term outcome. The second clinical study enrolled five patients; four patients with focal cancer had hemi-ablation only and one had whole gland ablation. Four 3 Fr. needles containing three thermocouples each were placed transperineally in the prostate to record tissue temperatures in the focal zone, posterior to the focal zone and on the lateral gland where no HIFU was applied. Tissue temperatures from the focal zone were correlated to the ΔE parameter. In the first clinical study, the average TCM rate was 86%. Pre and 6 months post HIFU, median PSA was 7.64 and 0.025 ng/ml respectively and 97% patients had negative biopsy. For the second clinical study, the measured prostate tissue temperatures (Average, Max, and Min) in the ablation zones were 84°, 114° and 60 °C and the corresponding ΔE (dB/10) parameters were 1.05, 2.6 and 0.4 resulting in 83% of temperatures in the range of 75°-100 °C and 17% in the 60°-74 °C range. Outside the focal zone, the average temperature was 50 °C and in the lateral lobe where no HIFU was applied, peak temperature was

  3. Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients

    PubMed Central

    Karakitsos, Dimitrios; Labropoulos, Nicolaos; De Groot, Eric; Patrianakos, Alexandros P; Kouraklis, Gregorios; Poularas, John; Samonis, George; Tsoutsos, Dimosthenis A; Konstadoulakis, Manousos M; Karabinis, Andreas

    2006-01-01

    Introduction Central venous cannulation is crucial in the management of the critical care patient. This study was designed to evaluate whether real-time ultrasound-guided cannulation of the internal jugular vein is superior to the standard landmark method. Methods In this randomised study, 450 critical care patients who underwent real-time ultrasound-guided cannulation of the internal jugular vein were prospectively compared with 450 critical care patients in whom the landmark technique was used. Randomisation was performed by means of a computer-generated random-numbers table, and patients were stratified with regard to age, gender, and body mass index. Results There were no significant differences in gender, age, body mass index, or side of cannulation (left or right) or in the presence of risk factors for difficult venous cannulation such as prior catheterisation, limited sites for access attempts, previous difficulties during catheterisation, previous mechanical complication, known vascular abnormality, untreated coagulopathy, skeletal deformity, and cannulation during cardiac arrest between the two groups of patients. Furthermore, the physicians who performed the procedures had comparable experience in the placement of central venous catheters (p = non-significant). Cannulation of the internal jugular vein was achieved in all patients by using ultrasound and in 425 of the patients (94.4%) by using the landmark technique (p < 0.001). Average access time (skin to vein) and number of attempts were significantly reduced in the ultrasound group of patients compared with the landmark group (p < 0.001). In the landmark group, puncture of the carotid artery occurred in 10.6% of patients, haematoma in 8.4%, haemothorax in 1.7%, pneumothorax in 2.4%, and central venous catheter-associated blood stream infection in 16%, which were all significantly increased compared with the ultrasound group (p < 0.001). Conclusion The present data suggest that ultrasound

  4. Diagnostic Criteria and Accuracy of Categorizing Malignant Thyroid Nodules by Ultrasonography and Ultrasound Elastography with Pathologic Correlation.

    PubMed

    Elsayed, Naglaa Mostafa; Elkhatib, Yasser Atta

    2016-03-01

    Thyroid nodules are a common medical and surgical concern. Thyroid ultrasound (US) is the primary imaging modality used for initial evaluation and assortment of nodules for fine needle aspiration (FNA) cytology/biopsy. Ultrasound elastography (USE) is believed to improve the diagnostic accuracy of US in distinguishing benign from malignant nodules. The aim of the work described here is to evaluate the diagnostic criteria and accuracy of US and USE in the diagnosis of malignant thyroid nodules. A prospective study of 88 patients who have thyroid nodules was performed. US, color Doppler, and USE were evaluated using a Philips iU22 equipped with a 5 to 12 MHz, linear transducer, followed by FNA of the each scanned nodule. The most sensitive US criteria for malignant nodules were a height-to-width ratio greater than one and the absence of a halo sign (sensitivity 0.875% and 1.000%, respectively). The most specific criteria for malignancy were a spiculated/blurred margin and the presence of microcalcifications (specificity 0.968% and 0.888%, respectively). The receiver operating characteristic curve showed that the cutoff diagnostic criteria of malignancy are two US characteristics and an elastography score of 4. The diagnostic accuracy of US for malignant thyroid nodules increases by combining US and USE.

  5. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners.

  6. Real-time measurement of rectus femoris muscle kinematics during drop jump using ultrasound imaging: a preliminary study.

    PubMed

    Eranki, Avinash; Cortes, Nelson; Ferencek Gregurić, Zrinka; Kim, John J; Sikdar, Siddhartha

    2012-01-01

    We have developed an office based vector tissue Doppler imaging (vTDI) that can be used to quantitatively measure muscle kinematics using ultrasound. The goal of this preliminary study was to investigate if vTDI measures are repeatable and can be used robustly to measure and understand the kinematics of the rectus femoris muscle during a drop jump task. Data were collected from 8 healthy volunteers. Vector TDI along with a high speed camera video was used to better understand the dynamics of the drop jump. Our results indicate that the peak resultant vector velocity of the rectus femoris immediately following landing was repeatable across trials (intraclass correlation coefficient=0.9).The peak velocity had a relatively narrow range in 6 out of 8 subjects (48-62 cm/s), while in the remaining two subjects it exceeded 70 cm/s. The entire drop jump lasted for 1.45 0.27 seconds. The waveform of muscle velocity could be used to identify different phases of the jump. Also, the movement of the ultrasound transducer holder was minimal with peak deflection of 0.91 0.54 degrees over all trials. Vector TDI can be implemented in a clinical setting using an ultrasound system with a research interface to better understand the muscle kinematics in patients with ACL injuries.

  7. Two-photon microscopy for real-time monitoring of focused ultrasound-mediated drug delivery to the brain in a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Burgess, Alison; Eterman, Naomi; Aubert, Isabelle; Hynynen, Kullervo

    2013-02-01

    There is substantial evidence that focused ultrasound (FUS) in combination with microbubble contrast agent can cause disruption of the blood-brain barrier (BBB) to aid in drug delivery to the brain. We have previously demonstrated that FUS efficiently delivers antibodies against amyloid-β peptides (Aβ) through the BBB, leading to a reduction in amyloid pathology at 4 days in a mouse model of Alzheimer's disease. In the current study, we used two-photon microscopy to characterize the effect of FUS in real time on amyloid pathology in the mouse brain. Mice were anesthetized and a cranial window was made in the skull. A custom-built ultrasound transducer was fixed to a coverslip and attached to the skull, covering the cranial window. Methoxy-X04 [2-5mg/kg] delivered intravenously 1 hr prior to the experiment clearly labelled the Aβ surrounding the vessels and the amyloid plaques in the cortex. Dextran conjugated Texas Red (70kDa) administered intravenously, confirmed BBB disruption. BBB disruption occurred in transgenic and non-transgenic animals at similar ultrasound pressures tested. However, the time required for BBB closure following FUS was longer in the Tg mice. We have conjugated Aβ antibodies to the fluorescent molecule FITC for real time monitoring of the antibody distribution in the brain. Our current experiments are aimed at optimizing the parameters to achieve maximal fluorescent intensity of the BAM10 antibody at the plaque surface. Two-photon microscopy has proven to be a valuable tool for evaluating the efficacy of FUS mediated drug delivery, including antibodies, to the Alzheimer brain.

  8. Toward a real-time simulation of ultrasound image sequences based on a 3-D set of moving scatterers.

    PubMed

    Marion, Adrien; Vray, Didier

    2009-10-01

    Data simulation is an important research tool to evaluate algorithms. Two types of methods are currently used to simulate medical ultrasound data: those based on acoustic models and those based on convolution models. The simulation of ultrasound data sequences is very time-consuming. In addition, many applications require accounting for the out-of-plane motion induced by the 3-D displacement of scatterers. The purpose of this paper is to propose a model adapted to a fast simulation of ultrasonic data sequences with 3-D moving scatterers. Our approach is based on the convolution model. The scatterers are moved in a 3-D continuous medium between each pair of images and then projected onto the imaging plane before being convolved. This paper discusses the practical implementation of the convolution that can be performed directly or after a grid approximation. The grid approximation convolution is obviously faster than the direct convolution but generates errors resulting from the approximation to the grid's nodes. We provide the analytical expression of these errors and then define 2 intensity-based criteria to quantify them as a function of the spatial sampling. The simulation of an image requires less than 2 s with oversampling, thus reducing these errors. The simulation model is validated with first- and second-order statistics. The positions of the scatterers at each imaging time can be provided by a displacement model. An example applied to flow imaging is proposed. Several cases are used to show that this displacement model provides realistic data. It is validated with speckle tracking, a well-known motion estimator in ultrasound imaging.

  9. A positive Real-Time Elastography (RTE) combined with a Prostate Cancer Gene 3 (PCA3) score above 35 convey a high probability of intermediate- or high-risk prostate cancer in patient admitted for primary prostate biopsy.

    PubMed

    Nygård, Yngve; Haukaas, Svein A; Halvorsen, Ole J; Gravdal, Karsten; Frugård, Jannicke; Akslen, Lars A; Beisland, Christian

    2016-07-08

    The standard of care in patients with suspected prostate cancer (PCa) is systematic prostate biopsies. This approach leads to unnecessary biopsies in patients without PCa and also to the detection of clinical insignificant PCa. Better tools are wanted. We have evaluated the performance of real-time elastography (RTE) combined with prostate cancer gene 3 (PCA3) in an initial biopsy setting with the goal of better identifying patients in need of prostate biopsies. 127 patients were included in this study; three were excluded because of not measureable PCA3 score leading to 124 evaluable patients. A cut-off value of 35 was used for PCA3. All patients were examined with a Hitachi Preirus with an endfire probe for RTE, a maximum of five targeted biopsies were obtained from suspicious lesions detected by RTE. All patients then had a 10-core systematic biopsy performed by another urologist unaware of the RTE results. The study includes follow-up data for a minimum of three years; all available histopathological data are included in the analysis. There was a significant difference in PCA3 score: 26.6 for benign disease, 73.6 for cancer patients (p < 0.001). 70 patients (56 %) were diagnosed with prostate cancer in the study period, 21 (30 %) low-risk, 32 (46 %) intermediate-risk and 17 (24 %) high-risk. RTE and PCA3 were significant markers for predicting intermediate- and high-risk PCa (p = 0.001). The combination of RTE and PCA3 had a sensitivity of 96 % and a negative predictive value (NPV) of 90 % for the group of intermediate- and high-risk PCa together and a NPV for high-risk PCa of 100 %. If both parameters are positive there is a high probability of detecting intermediate- or high-risk PCa, if both parameters are negative there is only a small chance of missing prostate cancer with documented treatment benefit. RTE and PCA3 may be used as pre-biopsy examinations to reduce the number of prostate biopsies.

  10. SU-D-BRF-06: A Brachytherapy Simulator with Realistic Haptic Force Feedback and Real-Time Ultrasounds Image Simulation for Training and Teaching

    SciTech Connect

    Beaulieu, L; Carette, A; Comtois, S; Lavigueur, M; Cardou, P; Laurendeau, D

    2014-06-01

    Purpose: Surgical procedures require dexterity, expertise and repetition to reach optimal patient outcomes. However, efficient training opportunities are usually limited. This work presents a simulator system with realistic haptic force-feedback and full, real-time ultrasounds image simulation. Methods: The simulator is composed of a custom-made Linear-DELTA force-feedback robotic platform. The needle tip is mounted on a force gauge at the end effector of the robot, which responds to needle insertion by providing reaction forces. 3D geometry of the tissue is using a tetrahedral finite element mesh (FEM) mimicking tissue properties. As the needle is inserted/retracted, tissue deformation is computed using a mass-tensor nonlinear visco-elastic FEM. The real-time deformation is fed to the L-DELTA to take into account the force imparted to the needle, providing feedback to the end-user when crossing tissue boundaries or needle bending. Real-time 2D US image is also generated synchronously showing anatomy, needle insertion and tissue deformation. The simulator is running on an Intel I7 6- core CPU at 3.26 MHz. 3D tissue rendering and ultrasound display are performed on a Windows 7 computer; the FEM computation and L-DELTA control are executed on a similar PC using the Neutrino real-time OS. Both machines communicate through an Ethernet link. Results: The system runs at 500 Hz for a 8333-tetrahedron tissue mesh and a 100-node angular spring needle model. This frame rate ensures a relatively smooth displacement of the needle when pushed or retracted (±20 N in all directions at speeds of up to 2 m/s). Unlike commercially-available haptic platforms, the oblong workspace of the L-DELTA robot complies with that required for brachytherapy needle displacements of 0.1m by 0.1m by 0.25m. Conclusion: We have demonstrated a real-life, realistic brachytherapy simulator developed for prostate implants (LDR/HDR). The platform could be adapted to other sites or training for other

  11. Solid hypo-echoic thyroid nodules on ultrasound: the diagnostic value of acoustic radiation force impulse elastography.

    PubMed

    Xu, Jun-Mei; Xu, Hui-Xiong; Xu, Xiao-Hong; Liu, Chang; Zhang, Yi-Feng; Guo, Le-Hang; Liu, Lin-Na; Zhang, Jin

    2014-09-01

    The aim of the study described here was to evaluate the diagnostic performance of acoustic radiation force impulse (ARFI) elastography in the differential diagnosis between benign and malignant solid hypo-echoic thyroid nodules (SHTNs) on ultrasound. In this retrospective study, 183 histologically proven SHTNs in 159 patients were enrolled. Conventional US, as well as Virtual Touch tissue imaging (VTI) and Virtual Touch tissue quantification (VTQ) of ARFI elastography, was performed on each nodule. The VTI features of SHTNs were divided into six grades, where higher grades represent harder tissue. VTQ was expressed as shear wave velocity, where higher shear wave velocity values indicate stiffer tissue. The sensitivity, specificity, accuracy, positive predictive value, negative predictive value and Youden index for ultrasound and ARFI were assessed. The 183 pathologically proven SHTNs included 117 benign and 66 malignant lesions. Nodules classified as VTI grades IV to VI were more frequently malignant (49/66, 74.2%) than benign (10/117, 8.5%) (p < 0.001). The mean shear wave velocity of VTQ for malignant SHTNs (mean ± standard deviation, 4.65 ± 2.68 m/s; range, 1.36-9 m/s) was significantly higher than that for benign SHTNs (2.34 ± 0.85 m/s, 0-5.7 m/s) (p < 0.001). The sensitivity, specificity, accuracy, positive predictive value, negative predictive value and Youden index were 27.3%-84.8%, 13.7%-89.7%, 39.3%-69.4%, 35.7%-60%, 61.5%-78.5%, and -0.015 to 0.37 for ultrasound; 68.2%, 76.9%, 73.8%, 62.5%, 81.1% and 0.451 for VTQ; and 74.2%, 91.5%, 85.2%, 83.1%, 86.3% and 0.657 for VTI, respectively. ARFI elastography performed at a superior level, compared with conventional ultrasound, in the differential diagnosis between malignant and benign SHTNs. The diagnostic performance of VTI is higher than that of VTQ.

  12. Real time observation of the ultrasound stimulated disintegration of optically trapped microbubbles in proximity to biological cells

    NASA Astrophysics Data System (ADS)

    Prentice, Paul; MacDonald, Michael P.; Cuschieri, Alfred; Dholakia, Kishan; Campbell, Paul

    2005-08-01

    Cells that are exposed to varying amounts of ultrasonic energy in the presence of ultrasound contrast agent (UCA) may undergo either permanent cell membrane damage (lethal sonoporation), or a transient enhancement of membrane permeability (reversible or non lethal sonoporation). The merits of each mode are clear; lethal sonoporation constitutes a significant tumour therapy weapon, whilst its less intrusive counterpart, reversible sonoporation, represents an effective non-invasive targeted drug delivery technique. Our working hypothesis for understanding this problem was that the root cause and effect in sonoporation involves the interaction of individual cells with single microbubbles, and to that end we devised an experiment that facilitates video rate observation of this specific scenario under well defined optical control. Specifically, we have constructed an innovative hybridization apparatus involving holographic optical trapping of single and multiple UCA microbubbles, together with the facility to irradiate with MHz pulsed ultrasound energy in the presence cancerous cells. This approach allows the isolation of a target microbubble from a resident population and the relocation to a [controllable] predetermined position relative to a cell within a monolayer. Frame extraction from standard framing rate video microscopy demonstrates the individuality of single microbubble-cell interactions. We describe a fluorescence microscopy protocol that will allow future study of the potential to deliver molecular species to cells, the dependence of the delivery on the initial microbubble-cell distance and to determine the targeted cell survival.

  13. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  14. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    PubMed

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-07

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  15. Contrast enhancement and elastography in endoscopic ultrasound: an update of clinical applications in pancreatic diseases.

    PubMed

    Serrani, Marta; Lisotti, Andrea; Caletti, Giancarlo; Fusaroli, Pietro

    2016-08-01

    It is well established that endoscopic ultrasound (EUS) is fundamental in the characterization of many diseases concerning different organs, i.e. pancreaticobiliary diseases, gastrointestinal pathologic conditions, and lymph nodes of unknown origin. It is also well known that many factors can hamper the accuracy of EUS, i.e. biliary stents, chronic pancreatitis, poor operator's expertise. These factors can also lead to suboptimal accuracy when cytological confirmation through EUS-fine needle aspiration (EUS-FNA) is indicated. In recent years, new technological tools have rapidly increased their clinical impact improving the diagnostic power of EUS and EUS-FNA. Among these new tools, the most investigated and useful ones are represented by contrast harmonic-EUS (CH-EUS) and EUS-elastography (EUS-E). The purpose of this paper is to provide, through a review of the literature, an update of the applications of CH-EUS and EUS-E in the routine clinical practice in pancreatic diseases. We discussed the first reports and applications of these techniques in our previous review published in Minerva Medica. The applications of CH-EUS and EUS-E to the study of pancreatic diseases appear feasible and safe. The use of both techniques is very simple and does not require any relevant additional workload for the endoscopic personnel. CH-EUS is now considered an important and accurate tool in the diagnosis of solid pancreatic masses and in the differential diagnosis of pancreatic cystic lesions. CH-EUS targeted FNA is an active field of research. However the available studies show that CH-EUS increases FNA accuracy by a little extent, without statistical significance; moreover, CH-EUS FNA showed a trend toward being more efficient vs. simple EUS FNA (less needle passes and more abundance in cytological material) but this trend did not reach statistical significance. On the other hand, the clinical impact of EUS-E in terms of differential diagnosis of pancreatic masses is still under

  16. Ultrasound-Based Shear Wave Elastography in the Assessment of Patients with Diabetic Kidney Disease.

    PubMed

    Bob, Flaviu; Grosu, Iulia; Sporea, Ioan; Bota, Simona; Popescu, Alina; Sima, Alexandra; Şirli, Roxana; Petrica, Ligia; Timar, Romulus; Schiller, Adalbert

    2017-10-01

    In previous studies of acoustic radiation force impulse (ARFI) elastography, using Virtual Touch tissue quantification (VTQ) (Siemens Acuson S2000), it was reported that the measurement of renal shear wave speed in patients with chronic kidney disease (CKD) is not influenced exclusively by renal fibrosis. The purpose of the present study was to analyze the role of VTQ in patients with diabetic kidney disease, considered the main cause of CKD. The study group included 164 patients: 80 patients with diabetic kidney disease (DKD) and 84 without renal disease or diabetes mellitus. In each subject in lateral decubitus, five valid VTQ measurements were performed in each kidney and a median value was calculated, the result being expressed in meters/second. The following means of the median values were obtained In DKD patients, the means of the median values were for VTQ right kidney, 2.21 ± 0.71 m/s, and for VTQ left kidney, 2.13 ± 0.72 m/s, whereas in the normal controls statistically significant higher values were obtained: 2.58 ± 0.78 m/s for VTQ right kidney (p = 0.0017) and 2.46 ± 0.81 m/s for VTQ left kidney (p = 0.006). Patients with an estimated glomerular filtration rate (eGFR) >60 mL/min (DKD stages 1 and 2 together with normal controls) had a significantly higher kidney shear wave speed compared with patients with an eGFR <60 mL/min (2.53 m/s vs. 2.09 m/s, p < 0.05). In the DKD group, there was a significant correlation between eGFR and VTQ levels for the right kidney (r = 0.28, p = 0.04). There was no correlation of VTQ values with proteinuria level, stage of diabetic retinopathy or glycated hemoglobin. Our study indicates that shear wave speed values in patients with diabetic kidney disease and eGFRs <60 mL/min are significantly lower compared with those of patients with eGFRs >60 mL/min (either normal controls or diabetic patients with DKD stages 1 and 2), and values decrease with the decrease in eGFR. However, proteinuria

  17. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.

    PubMed

    Nguyen, Man M; Zhou, Shiwei; Robert, Jean-Luc; Shamdasani, Vijay; Xie, Hua

    2014-01-01

    Because tissues consist of solid and fluid materials, their mechanical properties should be characterized in terms of both elasticity and viscosity. Although the elastic properties of tissue-mimicking phantoms have been extensively studied and well characterized in commercially available phantoms, their viscous properties have not been fully investigated. In this article, a set of 14 tissue-mimicking phantoms with different concentrations of gelatin and castor oil were fabricated and characterized in terms of acoustic and viscoelastic properties. The results indicate that adding castor oil to gelatin phantoms decreases shear modulus, but increases shear wave dispersion. For 3% gelatin phantoms containing 0%, 10%, 20% and 40% oil, the measured shear moduli are 2.01 ± 0.26, 1.68 ± 0.25, 1.10 ± 0.22 and 0.88 ± 0.17 kPa, and the Voigt-model coupled shear viscosities are 0.60 ± 0.11, 0.89 ± 0.07, 1.05 ± 0.11 and 1.06 ± 0.13 Pa·s, respectively. The results also confirm that increasing the gelatin concentration increases shear modulus. For phantoms containing 3%, 4%, 5%, 6% and 7% gelatin, the measured shear moduli are 2.01 ± 0.26, 3.10 ± 0.34, 4.18 ± 0.84, 8.05 ± 1.00 and 10.24 ± 1.80 kPa at 0% oil and 1.10 ± 0.22, 1.97 ± 0.20, 3.13 ± 0.63, 4.60 ± 0.60 and 8.43 ± 1.39 kPa at 20% oil, respectively. The phantom recipe developed in this study can be used in validating ultrasound shear wave elastography techniques for soft tissues.

  18. MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies.

    PubMed

    Siddiqui, Kashif; Chopra, Rajiv; Vedula, Siddharth; Sugar, Linda; Haider, Masoom; Boyes, Aaron; Musquera, Mireia; Bronskill, Michael; Klotz, Laurence

    2010-12-01

    To confirm the correlation between planning and thermal injury of the prostate as determined by magnetic resonance imaging (MRI) and histology in canine and humans treated with transurethral ultrasound. Canine studies: 2 sets of in vivo studies were performed under general anesthesia in 1.5 T clinical MRI. Nine dogs were treated using single transducer; 8 dogs were treated using urethral applicator with multiple transducers. Rectal cooling was maintained. After initial imaging, a target boundary was selected and high-intensity ultrasound energy delivered. The spatial temperature distribution was measured continuously every 5 seconds with MR thermometry using the proton-resonant frequency shift method. The goal was to achieve 55 °C at the target boundary. After treatment, the prostate was harvested and fixed with adjoining tissue, including rectum. Temperature maps, anatomical images, and histologic sections were registered to each other and compared. Human studies: To date, 5 patients with localized prostate cancer have been treated immediately before radical prostatectomy. Approximately 30% of the gland volume was targeted. A continuous pattern of thermal coagulation was successfully achieved within the target region, with an average spatial precision of 1-2 mm. Radical prostatectomy was routine, with an uncomplicated postoperative course in all patients. The correlation between anatomical, thermal, and histologic images was ≤3 mm. Treatment time was <30 minutes. No thermal damage to rectal tissue was observed. Thermal ablation within the prescribed target of the prostate has been successfully demonstrated in canine studies. The treatment is also feasible in humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. 3-D visualization and non-linear tissue classification of breast tumors using ultrasound elastography in vivo.

    PubMed

    Sayed, Ahmed; Layne, Ginger; Abraham, Jame; Mukdadi, Osama M

    2014-07-01

    The goal of the study described here was to introduce new methods for the classification and visualization of human breast tumors using 3-D ultrasound elastography. A tumor's type, shape and size are key features that can help the physician to decide the sort and extent of necessary treatment. In this work, tumor type, being either benign or malignant, was classified non-invasively for nine volunteer patients. The classification was based on estimating four parameters that reflect the tumor's non-linear biomechanical behavior, under multi-compression levels. Tumor prognosis using non-linear elastography was confirmed with biopsy as a gold standard. Three tissue classification parameters were found to be statistically significant with a p-value < 0.05, whereas the fourth non-linear parameter was highly significant, having a p-value < 0.001. Furthermore, each breast tumor's shape and size were estimated in vivo using 3-D elastography, and were enhanced using interactive segmentation. Segmentation with level sets was used to isolate the stiff tumor from the surrounding soft tissue. Segmentation also provided a reliable means to estimate tumors volumes. Four volumetric strains were investigated: the traditional normal axial strain, the first principal strain, von Mises strain and maximum shear strain. It was noted that these strains can provide varying degrees of boundary enhancement to the stiff tumor in the constructed elastograms. The enhanced boundary improved the performance of the segmentation process. In summary, the proposed methods can be employed as a 3-D non-invasive tool for characterization of breast tumors, and may provide early prognosis with minimal pain, as well as diminish the risk of late-stage breast cancer.

  20. Real-time ultrasound-guided fine needle cytology of the thyroid gland by capillary action. A modified technique without aspiration.

    PubMed

    Gkeli, M G; Daskalopoulou, D

    2011-01-01

    To present a modified technique of real-time (Rt) ultrasound-guided (Ug) fine-needle (FN) cytology of thyroid nodules without aspiration (RtUg-FNNAC). We retrospectively studied 958 patients with 1202 thyroid nodules referred to our institution between January 2009-January 2010. The efficacy of RtUg-FNNAC was determined by the number of satisfactory specimens that were obtained. Furthermore, we compared the RtUg-FNNAC results with the surgical histological results. All specimens were adequate for diagnosis. Two hundred and twelve (22.1% patients with malignant cytological findings and 20 (2.1%) with indeterminate cytological findings were referred for surgery. All nodules with malignant and indeterminate cytological findings were confirmed histologically. From 20 indeterminate cytological findings 17 (85%) were malignant. From 66 patients with initial benign RtUg-FNNAC who were subjected to surgery the results were true negative in 65 and false negative in 1. Finally, RtUg-FNNAC was true positive in 229 cases and false positive in 3. The overall sensitivity, specificity, positive predictive value and negative predictive value of RtUg-FNNAC were 99.6, 95.6, 98.7 and 98.7%, respectively. Accuracy for the detection of malignancy was 98.7%. RtUg-FNNAC is a technique that combines the benefits of real time US-guidance with those of capillary action sampling, maximizing cellular yield and minimizing bloody artefacts in cytologic examination.

  1. Fast and Accurate Data Extraction for Near Real-Time Registration of 3-D Ultrasound and Computed Tomography in Orthopedic Surgery.

    PubMed

    Brounstein, Anna; Hacihaliloglu, Ilker; Guy, Pierre; Hodgson, Antony; Abugharbieh, Rafeef

    2015-12-01

    Automatic, accurate and real-time registration is an important step in providing effective guidance and successful anatomic restoration in ultrasound (US)-based computer assisted orthopedic surgery. We propose a method in which local phase-based bone surfaces, extracted from intra-operative US data, are registered to pre-operatively segmented computed tomography data. Extracted bone surfaces are downsampled and reinforced with high curvature features. A novel hierarchical simplification algorithm is used to further optimize the point clouds. The final point clouds are represented as Gaussian mixture models and iteratively matched by minimizing the dissimilarity between them using an L2 metric. For 44 clinical data sets from 25 pelvic fracture patients and 49 phantom data sets, we report mean surface registration accuracies of 0.31 and 0.77 mm, respectively, with an average registration time of 1.41 s. Our results suggest the viability and potential of the chosen method for real-time intra-operative registration in orthopedic surgery.

  2. Real-time high-resolution vascular ultrasound using frequency domain interferometry with the ROI-division process.

    PubMed

    Taki, Hirofumi; Sakamoto, Takuya; Taki, Kousuke; Yamakawa, Makoto; Shiina, Tsuyoshi; Kudo, Motoi; Sato, Toru

    2013-01-01

    We have proposed a high-range-resolution ultrasound imaging method for human carotid artery using an adaptive beamforming technique based on frequency domain interferometry (FDI). The method assumes that the received signal consists of multiple echoes of targets and noise, where the waveform of each echo is similar to that of the reference signal. In this study, we examine the dependence of the echo waveform on the target depth, and investigate the proper measurement-range for the FDI imaging method using a reference signal. Furthermore, we propose a ROI-division process, where each sub-ROI has a proper measurement-range for the application of the FDI imaging method. Simulation and experimental results show the efficiency of the ROI-division process in improving the image quality of human carotid artery acquired using the FDI imaging method. We believe that the modified FDI imaging method with the ROI-division process has the potential to facilitate significant progress in the detection of vessel stenosis and in the assessment of cardiovascular disease risk.

  3. Modular Ultrasound Array Doppler Velocimeter with FPGA-based Signal Processing for Real-time Flow Mapping in Liquid Metal

    NASA Astrophysics Data System (ADS)

    Nauber, R.; Thieme, N.; Beyer, H.; Büttner, L.; Räbiger, D.; Eckert, S.; Czarske, J.

    Investigating the complex interaction of conductive fluids and magnetic fields is relevant for a variety of applications from basic research in magnetohydrodynamics (MHD) to modeling industrial processes involving metal melts, such as the crystal growth process in the photovoltaic industry. This enables targeted optimizations of the melt flow and allows to significantly increase the yield and energy efficiency of industrial processes. However, experimental studies in this field are often limited by the performance of flow instrumentation for opaque liquids. We present an ultrasound array Doppler velocimeter (UADV) for flow mapping in opaque liquids at room temperature. It is modular and flexible regarding its measurement configuration, for instance it allows capturing two velocity components in two planes (2d - 2c). It uses up to 9 linear arrays with a total element count of 225, driven in a parallelized time division multiplex (TDM) scheme. A FPGA-based signal pre-processing allows to handle the massive data bandwidth of typ. 1.2 GB/s and enables a continuous and near-realtime operation of the measurement system. The capabilities of the UADV system are demonstrated in a basic MHD research experiment with a metal melt (GaInSn) in a cubic container of (67 mm)3. The flow induced by a rotating magnetic field is captured with a temporal resolution of 250 ms for the horizontal and vertical central cross-section of the cube.

  4. Real-Time Assessment of Tissue Hypoxia In Vivo with Combined Photoacoustics and High-Frequency Ultrasound

    PubMed Central

    Gerling, Marco; Zhao, Ying; Nania, Salvatore; Norberg, K. Jessica; Verbeke, Caroline S.; Englert, Benjamin; Kuiper, Raoul V.; Bergström, Åsa; Hassan, Moustapha; Neesse, Albrecht; Löhr, J. Matthias; Heuchel, Rainer L.

    2014-01-01

    Purpose: In preclinical cancer studies, non-invasive functional imaging has become an important tool to assess tumor development and therapeutic effects. Tumor hypoxia is closely associated with tumor aggressiveness and is therefore a key parameter to be monitored. Recently, photoacoustic (PA) imaging with inherently co-registered high-frequency ultrasound (US) has reached preclinical applicability, allowing parallel collection of anatomical and functional information. Dual-wavelength PA imaging can be used to quantify tissue oxygen saturation based on the absorbance spectrum differences between hemoglobin and deoxyhemoglobin. Experimental Design: A new bi-modal PA/US system for small animal imaging was employed to test feasibility and reliability of dual-wavelength PA for measuring relative tissue oxygenation. Murine models of pancreatic and colon cancer were imaged, and differences in tissue oxygenation were compared to immunohistochemistry for hypoxia in the corresponding tissue regions. Results: Functional studies proved feasibility and reliability of oxygenation detection in murine tissue in vivo. Tumor models exhibited different levels of hypoxia in localized regions, which positively correlated with immunohistochemical staining for hypoxia. Contrast-enhanced imaging yielded complementary information on tissue perfusion using the same system. Conclusion: Bimodal PA/US imaging can be utilized to reliably detect hypoxic tumor regions in murine tumor models, thus providing the possibility to collect anatomical and functional information on tumor growth and treatment response live in longitudinal preclinical studies. PMID:24723982

  5. Real-time ultrasound Doppler enhances precision in image-guided approaches to the cerebello-pontine angle.

    PubMed

    Baghdasaryan, Davit; Albrecht, Marcel; Shahnazaryan, Mihr; Rosahl, Steffen

    2017-08-10

    To evaluate efficacy and reliability of intraoperative Doppler sonography in localizing the transverse and sigmoid sinuses during lateral suboccipital craniotomy. A 16-Mhz intraoperative micro-Doppler ultrasound (16Mhz, Multi-Dop pro®, Compumedics, Germany) was applied to detect the medial border of the sigmoid sinus and the inferior border of the transverse sinus in 25 patients. Micro-Doppler measurements were compared to MR- and CT-based image-guidance (Kolibri®, Brainlab, Germany). Visual detectability of the sinuses under the operating microscope was also documented. Inadvertent incision of the transverse or sigmoid sinuses did not occur in any case when the two localizing methods have been used in combination. The mean mismatch of image-guided system and micro-Doppler was 2.64mm (range 0-6mm, SD 1.55 mm). Under the microscope the transverse sinus was invisible in seven cases, the sigmoid sinus was visually undetectable in one case. The micro-Doppler indicated blood flow outside the visible borders of the sinuses in five cases. A combination of image-guidance and micro-Doppler enhances the accuracy in localizing the margins of the transverse and sigmoid sinuses in the retrosigmoid approach, thus preventing inadvertent injury. The method could potentially be applied during other craniotomies involving the exposure of a venous sinus. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Registration of 2D cardiac images to real-time 3D ultrasound volumes for 3D stress echocardiography

    NASA Astrophysics Data System (ADS)

    Leung, K. Y. Esther; van Stralen, Marijn; Voormolen, Marco M.; van Burken, Gerard; Nemes, Attila; ten Cate, Folkert J.; Geleijnse, Marcel L.; de Jong, Nico; van der Steen, Antonius F. W.; Reiber, Johan H. C.; Bosch, Johan G.

    2006-03-01

    Three-dimensional (3D) stress echocardiography is a novel technique for diagnosing cardiac dysfunction, by comparing wall motion of the left ventricle under different stages of stress. For quantitative comparison of this motion, it is essential to register the ultrasound data. We propose an intensity based rigid registration method to retrieve two-dimensional (2D) four-chamber (4C), two-chamber, and short-axis planes from the 3D data set acquired in the stress stage, using manually selected 2D planes in the rest stage as reference. The algorithm uses the Nelder-Mead simplex optimization to find the optimal transformation of one uniform scaling, three rotation, and three translation parameters. We compared registration using the SAD, SSD, and NCC metrics, performed on four resolution levels of a Gaussian pyramid. The registration's effectiveness was assessed by comparing the 3D positions of the registered apex and mitral valve midpoints and 4C direction with the manually selected results. The registration was tested on data from 20 patients. Best results were found using the NCC metric on data downsampled with factor two: mean registration errors were 8.1mm, 5.4mm, and 8.0° in the apex position, mitral valve position, and 4C direction respectively. The errors were close to the interobserver (7.1mm, 3.8mm, 7.4°) and intraobserver variability (5.2mm, 3.3mm, 7.0°), and better than the error before registration (9.4mm, 9.0mm, 9.9°). We demonstrated that the registration algorithm visually and quantitatively improves the alignment of rest and stress data sets, performing similar to manual alignment. This will improve automated analysis in 3D stress echocardiography.

  7. Comparison between real-time intra-operative ultrasound-based dosimetry and CT-based dosimetry for prostate brachytherapy using cesium-131.

    PubMed

    Jacobs, B L; Gibbons, E P; Smith, R P; Beriwal, S; Komanduri, K; Benoit, R M

    2008-12-01

    The purpose of this study was to evaluate the correlation between real-time intra-operative ultrasound-based dosimetry (USD) and day 0 post-implant CT dosimetry (CTD) (131)Cs permanent prostate brachytherapy. Fifty-two consecutive patients who underwent prostate brachytherapy with (131)Cs were evaluated. Real time operating room planning was performed using VariSeed 7.1 software. Post-needle placement prostate volume was used for real-time planning. Targets for dosimetry were D(90) >110%, V(100) >90%, V(150) <50%, and V(200) <20%. The CT scan for post-operative dosimetry was obtained on day 0. The mean values for USD, CTD, and the linear correlation, respectively, were, for D(90): 114.0%, 105.61%, and 0.15; for V(100): 95.1%, 91.6%, and 0.22; for V(150): 51.5%, 46.4%, and 0.40; and for V(200): 15.8%, 17.9%, and 0.42. The differences between the mean values for USD and CTD for D(90) (p<0.01), V(100) (p<0.01), and V(150) (p<0.05) were statistically significant. For D(90), 30.8% of patients had a >15% difference between USD and CTD and 51.9% of patients had a >10% difference between these values. In contrast, the USD and CTD for V(100) were within 5% in 55.8% of patients and within 10% in 86.5% of patients. This study demonstrates a correlation between the mean intra-operative USD and post-implant day 0 CTD values only for V(200). Significant variation in D(90), V(150), and V(200) values existed for individual patients between USD and CTD. These results suggest that real-time intra-operative USD does not serve as a surrogate for post-operative CTD, and that post-operative CTD is still necessary.

  8. Assessment of visual quality and spatial accuracy of fast anisotropic diffusion and scan conversion algorithms for real-time three-dimensional spherical ultrasound

    NASA Astrophysics Data System (ADS)

    Duan, Qi; Angelini, Elsa D.; Laine, Andrew

    2004-04-01

    Three-dimensional ultrasound machines based on matrix phased-array transducers are gaining predominance for real-time dynamic screening in cardiac and obstetric practice. These transducers array acquire three-dimensional data in spherical coordinates along lines tiled in azimuth and elevation angles at incremental depth. This study aims at evaluating fast filtering and scan conversion algorithms applied in the spherical domain prior to visualization into Cartesian coordinates for visual quality and spatial measurement accuracy. Fast 3d scan conversion algorithms were implemented and with different order interpolation kernels. Downsizing and smoothing of sampling artifacts were integrated in the scan conversion process. In addition, a denoising scheme for spherical coordinate data with 3d anisotropic diffusion was implemented and applied prior to scan conversion to improve image quality. Reconstruction results under different parameter settings, such as different interpolation kernels, scaling factor, smoothing options, and denoising, are reported. Image quality was evaluated on several data sets via visual inspections and measurements of cylinder objects dimensions. Error measurements of the cylinder's radius, reported in this paper, show that the proposed fast scan conversion algorithm can correctly reconstruct three-dimensional ultrasound in Cartesian coordinates under tuned parameter settings. Denoising via three-dimensional anisotropic diffusion was able to greatly improve the quality of resampled data without affecting the accuracy of spatial information after the modification of the introduction of a variable gradient threshold parameter.

  9. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology.

    PubMed

    Bamber, J; Cosgrove, D; Dietrich, C F; Fromageau, J; Bojunga, J; Calliada, F; Cantisani, V; Correas, J-M; D'Onofrio, M; Drakonaki, E E; Fink, M; Friedrich-Rust, M; Gilja, O H; Havre, R F; Jenssen, C; Klauser, A S; Ohlinger, R; Saftoiu, A; Schaefer, F; Sporea, I; Piscaglia, F

    2013-04-01

    The technical part of these Guidelines and Recommendations, produced under the auspices of EFSUMB, provides an introduction to the physical principles and technology on which all forms of current commercially available ultrasound elastography are based. A difference in shear modulus is the common underlying physical mechanism that provides tissue contrast in all elastograms. The relationship between the alternative technologies is considered in terms of the method used to take advantage of this. The practical advantages and disadvantages associated with each of the techniques are described, and guidance is provided on optimisation of scanning technique, image display, image interpretation and some of the known image artefacts. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Comparison of a novel real-time SonixGPS needle-tracking ultrasound technique with traditional ultrasound for vascular access in a phantom gel model.

    PubMed

    Kopac, Daniel S; Chen, Jerry; Tang, Raymond; Sawka, Andrew; Vaghadia, Himat

    2013-09-01

    Ultrasound-guided percutaneous vascular access for endovascular procedures is well established in surgical practice. Despite this, rates of complications from venous and arterial access procedures remain a significant cause of morbidity. We hypothesized that the use of a new technique of vascular access using an ultrasound with a novel needle-guidance positioning system (GPS) would lead to improved success rates of vascular puncture for both in-plane and out-of-plane techniques compared with traditional ultrasound. A prospective, randomized crossover study of medical students from all years of medical school was conducted using a phantom gel model. Each medical student performed three ultrasound-guided punctures with each of the four modalities (in-plane no GPS, in-plane with GPS, out-of-plane no GPS, out-of-plane with GPS) for a total of 12 attempts. The success or failure was judged by the ability to aspirate a simulated blood solution from the model. The time to successful puncture was also recorded. A poststudy validated NASA Task Load Index workload questionnaire was conducted to assess the student's perceptions of the two different techniques. A total of 30 students completed the study. There was no significant difference seen in the mean times of vascular access for each of the modalities. Higher success rates for vascular access using the GPS for both the in-plane (94% vs 91%) and the out-of-plane (86% vs 70%) views were observed; however, this was not statistically significant. The students perceived the mental demand (median 12.0 vs 14.00; P = .035) and effort to be lower (mean 11.25 vs 14.00; P = .044) as well as the performance to be higher (mean 15.50 vs 14.00; P = .041) for the GPS vs the traditional ultrasound-guided technique. Students also perceived their ability to access vessels increased with the aid of the GPS (7.00 vs 6.50; P = .007). The majority of students expressed a preference for GPS (26/30, 87%) as opposed to the traditional counterpart

  11. The effects of fatty deposits on the accuracy of the Fibroscan® liver transient elastography ultrasound system

    NASA Astrophysics Data System (ADS)

    Cournane, S.; Browne, J. E.; Fagan, A. J.

    2012-06-01

    A new generation of ultrasound transient elastography (TE) systems have emerged which exploit the well-known correlation between the liver's pathological and mechanical properties through measurements of the Young's elastic modulus; however, little work has been carried out to examine the effect that fatty deposits may have on the TE measurement accuracy. An investigation was carried out on the effects on the measurement accuracy of a TE ultrasound system, the Fibroscan®, caused by overlaying fat layers of varying thickness on healthy liver-mimicking phantoms, simulating in vivo conditions for obese patients. Furthermore, a steatosis effect similar to that in non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) was simulated to investigate its effect on the TE system. A range of novel elastography fat-mimicking materials were developed using 6-10 wt% poly(vinyl alcohol) cryogel capable of achieving a range of acoustic velocities (1482-1530 m s-1) and attenuation coefficients (0.4-1 dB MHz-1 cm-1) for simulating different liver states. Laboratory-based acoustic velocities and attenuation coefficients were measured while the Young's modulus was established through a gold standard compression testing method. A significant variation of the Young's elastic modulus was measured in healthy phantoms with overlaying fat layers of thicknesses exceeding 45 mm, impinging on the scanners region of interest, overestimating the compression tested values by up to 11 kPa in some cases. Furthermore, Fibroscan® measurements of the steatosis phantoms showed a consistent overestimation (˜54%), which strongly suggests that the speed of sound mismatch between that of liver tissue and that assumed by the scanner is responsible for the high clinical cut-offs established in the case of ALD and NAFLD.

  12. Feasibility of remote real-time guidance of a cardiac examination performed by novices using a pocket-sized ultrasound device.

    PubMed

    Mai, Tuan V; Ahn, David T; Phillips, Colin T; Agan, Donna L; Kimura, Bruce J

    2013-01-01

    Background. The potential of pocket-sized ultrasound devices (PUDs) to improve global healthcare delivery is limited by the lack of a suitable imaging protocol and trained users. Therefore, we investigated the feasibility of performing a brief, evidence-based cardiac limited ultrasound exam (CLUE) through wireless guidance of novice users. Methods. Three trainees applied PUDs on 27 subjects while directed by an off-site cardiologist to obtain a CLUE to screen for LV systolic dysfunction (LVSD), LA enlargement (LAE), ultrasound lung comets (ULC+), and elevated CVP (eCVP). Real-time remote audiovisual guidance and interpretation by the cardiologist were performed using the iPhone 4/iPod (FaceTime, Apple, Inc.) attached to the PUD and transmitted data wirelessly. Accuracy and technical quality of transmitted images were compared to on-site, gold-standard echo thresholds. Results. Novice versus sonographer imaging yielded technically adequate views in 122/135 (90%) versus 130/135 (96%) (P < 0.05). CLUE's combined SN, SP, and ACC were 0.67, 0.96, and 0.90. Technical adequacy (%) and accuracy for each abnormality (n) were LVSD (85%, 0.93, n = 5), LAE (89%, 0.74, n = 16), ULC+ (100%, 0.94, n = 5), and eCVP (78%, 0.91, n = 1). Conclusion. A novice can perform the CLUE using PUD when wirelessly guided by an expert. This method could facilitate PUD use for off-site bedside medical decision making and triaging of patients.

  13. Ultrasound strain elastography in assessment of cortical mechanical behavior in acute renal vein occlusion: in vivo animal model.

    PubMed

    Gao, Jing; He, Wen; Cheng, Ling-Gang; Li, Xiao-Ya; Zhang, Xiou-Ru; Juluru, Krishna; Al Khori, Noor; Coya, Adrienne; Min, Robert

    2015-01-01

    To assess the correlation of quantitative ultrasound strain parameters with the severity of cortical edema in renal vein occlusion, we prospectively performed ultrasound strain elastography on a canine acute renal vein occlusion model prior to and following 10, 20, and 40min of renal vein ligation. Strain and strain relaxation time representing the deformation and relaxation of the renal cortices and reference soft tissue were produced by the external compression with the ultrasound transducer and estimated using commercially available 2-D speckle tracking software. Cortical thickness was additionally measured. Repeated-measures analysis of variance was used to examine the difference in cortical thickness, strain ratio (mean cortical strain divided by mean reference tissue strain), and strain relaxation time ratio (cortical relaxation time divided by reference tissue relaxation time) prior to and after renal vein ligation. Pearson's correlation coefficient was applied to test the relationship between strain parameters and the time of the renal vein ligation. There was a strong positive correlation between the duration of renal vein ligation and strain (R(2)=0.97) and strain relaxation time (R(2)=0.98) ratios. Significant differences in strain and strain relaxation time ratios were found at all measured timepoints (all P≪.001). Cortical thickness, however, showed no significant difference between timepoints (P=.065). Our result suggest that strain and strain relaxation time ratios may be used as quantitative markers for the assessment of the renal cortical mechanical behavior in subclinical acute renal vein occlusion.

  14. Comb-push ultrasound shear elastography (CUSE): a novel method for two-dimensional shear elasticity imaging of soft tissues.

    PubMed

    Song, Pengfei; Zhao, Heng; Manduca, Armando; Urban, Matthew W; Greenleaf, James F; Chen, Shigao

    2012-09-01

    Fast and accurate tissue elasticity imaging is essential in studying dynamic tissue mechanical properties. Various ultrasound shear elasticity imaging techniques have been developed in the last two decades. However, to reconstruct a full field-of-view 2-D shear elasticity map, multiple data acquisitions are typically required. In this paper, a novel shear elasticity imaging technique, comb-push ultrasound shear elastography (CUSE), is introduced in which only one rapid data acquisition (less than 35 ms) is needed to reconstruct a full field-of-view 2-D shear wave speed map (40 × 38 mm). Multiple unfocused ultrasound beams arranged in a comb pattern (comb-push) are used to generate shear waves. A directional filter is then applied upon the shear wave field to extract the left-to-right (LR) and right-to-left (RL) propagating shear waves. Local shear wave speed is recovered using a time-of-flight method based on both LR and RL waves. Finally, a 2-D shear wave speed map is reconstructed by combining the LR and RL speed maps. Smooth and accurate shear wave speed maps are reconstructed using the proposed CUSE method in two calibrated homogeneous phantoms with different moduli. Inclusion phantom experiments demonstrate that CUSE is capable of providing good contrast (contrast-to-noise ratio ≥ 25 dB) between the inclusion and background without artifacts and is insensitive to inclusion positions. Safety measurements demonstrate that all regulated parameters of the ultrasound output level used in CUSE sequence are well below the FDA limits for diagnostic ultrasound.

  15. Free-hand transperineal targeted prostate biopsy with real-time fusion imaging of multiparametric magnetic resonance imaging and transrectal ultrasound: single-center experience in China.

    PubMed

    Zhang, Qing; Wang, Wei; Yang, Rong; Zhang, Gutian; Zhang, Bing; Li, Weiping; Huang, Haifeng; Guo, Hongqian

    2015-05-01

    To report our experience with free-hand transperineal targeted biopsy with real-time transrectal ultrasound (TRUS) and multiparametric magnetic resonance imaging (mpMRI) fusion images for the diagnosis of prostate cancer (PCa). A total of 62 consecutive patients suspicious of PCa at the mpMRI scan and PSA >4.0 ng/mL were recruited prospectively. Targeted biopsies (TBs) were carried out for each cancer-suspicious lesion and followed a 12-core systematic biopsy (SB) protocol. Pathological findings of TB and SB were analyzed. The age of the patients was 68.38 ± 6.57 years (range 51-79 years). The preoperative PSA value was 10.21 ± 5.57 ng/mL (range 4.5-30.1 ng/mL). Preoperative prostate volume was 34.05 ± 9.86 mL (range 19-64 mL). The PCa patients detected by SB and/or TB were 34 (54.8%). Cancer-detected rates of SB and TB cores were 7.53 and 26.2%, respectively (P < 0.001). The positive core length of SB and TB cores was 3.71 ± 2.77 mm (range 1-14 mm) and 5.00 ± 3.04 mm (range 2-17 mm), respectively (P = 0.016). The positive core percent of SB and TB cores was 28.77 ± 20.13% (range 7-100%) and 35.76 ± 18.73 (range 11-100%), respectively (P = 0.048). Moreover, clinically significant PCa cores detected by the SB and TB were 19 cores (2.6%) and 48 cores (18.5%), respectively (P < 0.001). Free-hand transperineal TB using real-time TRUS and mpMRI fusion imaging has the ability to improve sampling quality and detect more clinically significant PCa compared with SB.

  16. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    SciTech Connect

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-15

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  17. Using real-time ultrasound and carcass measurements to estimate total internal fat in beef cattle over different breed types and managements.

    PubMed

    Ribeiro, F R B; Tedeschi, L O

    2012-09-01

    The objective of this study was to re-evaluate our previously published technique of estimating total physically separable internal fat (IFAT) in beef cattle using real-time ultrasound (RTU) and carcass measurements from live animals by including more breed types and genders under different management scenarios. We expanded the original database and performed additional analyses. The database was gathered from 4 studies and contained 110 animals (16 bulls, 16 heifers, and 78 steers), being Angus (n = 56), Angus× 5/8 Angus × 3/8 Nellore (n = 18), and Angus crossbreds (n = 36). Ultrasound measurements were obtained 7 d before slaughter, including the 12th to 13th rib fat thickness (uBF) and ultrasound kidney fat depth (uKFd). The uKFd was measured in a cross-sectional image collected between the first lumbar and 13th rib as previously published. Carcass data were collected 48 h post-mortem and consisted of backfat thickness (cBF), kidney fat depth (cKFd) and KPH weight, live BW, and HCW. Whole gastrointestinal tracts were removed and dissected to obtain IFAT weights. Weight of IFAT was highly correlated with KPH weight (0.88) and cKFd (0.81) and moderately correlated with uKFd (0.71). Prediction equations were developed for estimating IFAT, KPH weight, and cKFd with the PROC REG of SAS using the stepwise statement. The best predictors of IFAT were KPH weight or cKFd and cBF (r(2) = 0.84 and 0.83 and root mean square errors (RMSE) of 4.23 and 4.33 kg, respectively). Ultrasound measurements of uKFd and uBF had an r(2) of 0.65 and RMSE of 6.07 kg when both were used to predict IFAT. The results of cross-validation analyses indicated that equations developed either with KPH weight or cKFd weight and cBF had greater precision than the equation developed with uKFd and uBF. Most of the errors associated with the mean square error of prediction were due to random, uncontrolled variation. These results were consistent with previously published evaluation of this technique

  18. Sparse matrix beamforming and image reconstruction for real-time 2D HIFU monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) with in vitro validation

    PubMed Central

    Hou, Gary Y.; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method. HMIFU utilizes an Amplitude-Modulated (fAM = 25 Hz) HIFU beam to induce a localized focal oscillatory motion, which is simultaneously estimated and imaged by confocally-aligned imaging transducer. HMIFU feasibilities have been previously shown in silico, in vitro, and in vivo in 1-D or 2-D monitoring of HIFU treatment. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system composed of a 93-element HIFU transducer (fcenter = 4.5MHz) and coaxially-aligned 64-element phased array (fcenter = 2.5MHz) for displacement excitation and motion estimation, respectively. A single transmit beam with divergent beam transmit was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface. The present work developed and implemented a sparse matrix beamforming onto a fully-integrated, clinically relevant system, which can stream displacement images up to 15 Hz using a GPU-based processing, an increase of 100 fold in rate of streaming displacement images compared to conventional CPU-based conventional beamforming and reconstruction processing. The achieved feedback rate is also currently the fastest and only approach that does not require interrupting the HIFU treatment amongst the acoustic radiation force based HIFU imaging techniques. Results in phantom experiments showed reproducible displacement imaging, and monitoring of twenty two in vitro HIFU treatments using the new 2D system showed a

  19. Quantification of dry needling and posture effects on myofascial trigger points using ultrasound shear-wave elastography.

    PubMed

    Maher, Ruth M; Hayes, Dawn M; Shinohara, Minoru

    2013-11-01

    To determine (1) whether the shear modulus in upper trapezius muscle myofascial trigger points (MTrPs) reduces acutely after dry needling (DN), and (2) whether a change in posture from sitting to prone affects the shear modulus. Ultrasound images were acquired in B mode with a linear transducer oriented in the transverse plane, followed by performance of shear-wave elastography (SWE) before and after DN and while sitting and prone. University. Women (N=7; mean age ± SD, 46±17y) with palpable MTrPs were recruited. All participants were dry needled in the prone position using solid filament needles that were inserted and manipulated inside the MTrPs. SWE was performed before and after DN in the sitting and prone positions. MTrPs were evaluated by shear modulus using SWE. Palpable reductions in stiffness were noted after DN and in the prone position. These changes were apparent in the shear modulus map obtained with ultrasound SWE. With significant main effects, the shear modulus reduced from before to after DN (P<.01) and from the sitting to the prone position (P<.05). No significant interaction effect between time and posture was observed. The shear modulus measured with ultrasound SWE reduced after DN and in the prone position compared with sitting, in agreement with reductions in palpable stiffness. These findings suggest that DN and posture have significant effects on the shear modulus of MTrPs, and that shear modulus measurement with ultrasound SWE may be sensitive enough to detect these effects. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Optimization of real-time acoustical and mechanical monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for high focused ultrasound (HMIFU).

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2013-01-01

    Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95.

  1. Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction

    PubMed Central

    Kang, Jeeun; Chang, Jin Ho; Kim, Sun Mi; Lee, Hak Jong; Kim, Haemin; Wilson, Brian C.; Song, Tai-Kyong

    2017-01-01

    Precise sentinel lymph node (SLN) identification is crucial not only for accurate diagnosis of micro-metastases at an early stage of cancer progression but also for reducing the number of SLN biopsies (SLNB) to minimize their severe side effects. Furthermore, it is desirable that an SLNB guidance should be as safe as possible in routine clinical use. Although there are currently various SLNB guidance methods for pre-operative or intra-operative assessment, none are ideal. We propose a real-time SLNB guidance method using contrast-enhanced tri-modal images (i.e., ultrasound, photoacoustic, and fluorescence) acquired by a recently developed hand-held tri-modal probe. The major advantage of tri-modal imaging is demonstrated here through an in vivo study of the technically-difficult case of nodal obstruction that frequently leads to false-negative results in patients. The results in a tumor model in rabbits and normal controls showed that tri-modal imaging is capable of clearly identifying obstructed SLNs and of indicating their metastatic involvement. Based on these findings, we propose an SLNB protocol to help surgeons take full advantage of the complementary information obtained from tri-modal imaging, including for pre-operative localization, intra-operative biopsy guidance and post-operative analysis. PMID:28327582

  2. Contrast-enhanced, real-time volumetric ultrasound imaging of tissue perfusion: preliminary results in a rabbit model of testicular torsion.

    PubMed

    Paltiel, H J; Padua, H M; Gargollo, P C; Cannon, G M; Alomari, A I; Yu, R; Clement, G T

    2011-04-07

    Contrast-enhanced ultrasound (US) imaging is potentially applicable to the clinical investigation of a wide variety of perfusion disorders. Quantitative analysis of perfusion is not widely performed, and is limited by the fact that data are acquired from a single tissue plane, a situation that is unlikely to accurately reflect global perfusion. Real-time perfusion information from a tissue volume in an experimental rabbit model of testicular torsion was obtained with a two-dimensional matrix phased array US transducer. Contrast-enhanced imaging was performed in 20 rabbits during intravenous infusion of the microbubble contrast agent Definity® before and after unilateral testicular torsion and contralateral orchiopexy. The degree of torsion was 0° in 4 (sham surgery), 180° in 4, 360° in 4, 540° in 4, and 720° in 4. An automated technique was developed to analyze the time history of US image intensity in experimental and control testes. Comparison of mean US intensity rate of change and of ratios between mean US intensity rate of change in experimental and control testes demonstrated good correlation with testicular perfusion and mean perfusion ratios obtained with radiolabeled microspheres, an accepted 'gold standard'. This method is of potential utility in the clinical evaluation of testicular and other organ perfusion.

  3. Real-time ultrasound measurements of changes in suboccipital vertebral artery diameter and blood flow velocity associated with cervical spine rotation.

    PubMed

    Mitchell, Jeanette; Kramschuster, Kristin

    2008-12-01

    The vulnerability of the vertebral artery (VA) to distortion with sustained, full-range cervical spine rotation, resulting in compromised blood flow and possible vertebrobasilar ischaemia, is well recognized. However, few studies have measured such blood flow changes in the parts of the VA downstream from the region of maximum cervical spine rotation: the suboccipital (VA3) and intracranial vertebral arteries. The purpose of this experimental study was to visualize the VA3 and record the changes in its blood flow associated with cervical spine rotation. VA3 diameters and blood flow velocities were measured in the neutral cervical spine position and with active full-range rotation to the left and right, in 35 healthy female subjects, using colour-coded real-time ultrasound. Both left and right VA3 diameters and blood flow velocities decreased significantly on ipsilateral rotation. These values increased non-significantly in the left VA3 and decreased non-significantly in the right VA3 on contralateral rotation. The results of this study suggest that the distortion or compression of VA3 demonstrated by the reduction in diameter on ipsilateral cervical spine rotation, particularly, was sufficient to result in compromised blood flow. A significant stretching effect of VA3, on contralateral rotation, was not demonstrated in these subjects. Nevertheless, these findings add evidence to support the recommendation that sustained, full-range cervical spine rotation should be avoided in professional practice. Copyright (c) 2008 John Wiley & Sons, Ltd.

  4. Contrast-enhanced, real-time volumetric ultrasound imaging of tissue perfusion: preliminary results in a rabbit model of testicular torsion

    NASA Astrophysics Data System (ADS)

    Paltiel, H. J.; Padua, H. M.; Gargollo, P. C.; Cannon, G. M., Jr.; Alomari, A. I.; Yu, R.; Clement, G. T.

    2011-04-01

    Contrast-enhanced ultrasound (US) imaging is potentially applicable to the clinical investigation of a wide variety of perfusion disorders. Quantitative analysis of perfusion is not widely performed, and is limited by the fact that data are acquired from a single tissue plane, a situation that is unlikely to accurately reflect global perfusion. Real-time perfusion information from a tissue volume in an experimental rabbit model of testicular torsion was obtained with a two-dimensional matrix phased array US transducer. Contrast-enhanced imaging was performed in 20 rabbits during intravenous infusion of the microbubble contrast agent Definity® before and after unilateral testicular torsion and contralateral orchiopexy. The degree of torsion was 0° in 4 (sham surgery), 180° in 4, 360° in 4, 540° in 4, and 720° in 4. An automated technique was developed to analyze the time history of US image intensity in experimental and control testes. Comparison of mean US intensity rate of change and of ratios between mean US intensity rate of change in experimental and control testes demonstrated good correlation with testicular perfusion and mean perfusion ratios obtained with radiolabeled microspheres, an accepted 'gold standard'. This method is of potential utility in the clinical evaluation of testicular and other organ perfusion.

  5. Ultrasound Elastography for Determination of the Age of Venous Thrombi. Evaluation of Thrombus Evolution in Patients After Sclerotherapy

    PubMed Central

    Paluch, Łukasz; Nawrocka-Laskus, Ewa; Dąbrowska, Agnieszka; Popiela, Tadeusz; Walecki, Jerzy

    2017-01-01

    Summary Background Venous thrombosis is a multicausal disease involving intravenous clot formation. It may occur spontaneously or after provoking events, such as traumatic injuries to the pelvis, upper and lower extermities, immobilization, intravascular procedures, including venous catheterization or injection. Color Doppler ultrasonography is a rapid and non-invasive technique for evaluation of venous disease. It is a very sensitive method for detection of thrombi, but has some limitations, e.g. inability to distinguish between an old and fresh thrombus. Elastography as a method for evaluation of tissue elasticity and allows more accurate assessment of venous thombosis. The thrombus solidifies significantly during the process of remodeling, thereby changing elasticity, while the tissues located around the vessel remain unchanged. Moreover, the homogeneity of the thrombus is also changed. These factors allow for exact determination of the age of the thrombus depending on changes of its elasticity. Material/Methods The object of this study was to assess thrombus age in patients with saphenous vein insufficiency treated with sclerotherapy. We examined 34 patients, 30 women and 4 men, aged 18–62 years. All short-listed patients with initial 7–8 mm vessel diameter underwent treatment with 3% Aetoxysklerol mixed with CO2 and other respiratory gases. Data acquisition was performed using an Esaote MyLab Twice device with LA523 linear probe. Results On the sixth day after the treatment 31 patients presented uniform, hypoechogenic thrombus in B-mode image. Ultrasound-based elasticity images (elastography) showed significant predominant red and green areas. Blue area was either invisible or appeared in insignificant grade on examined area. The mosaic image of colors appeared on 2 patients. On the fourteenth day of study 21 patients still presented hypoechogenic thrombus, whereas mixed echogenicity of thrombus appeared on 11 patients. On 28 examined patients mosaics of

  6. Ultrasound Elastography Combined With BI-RADS-US Classification System: Is It Helpful for the Diagnostic Performance of Conventional Ultrasonography?

    PubMed

    Hao, Shao-Yun; Jiang, Qiong-Chao; Zhong, Wen-Jing; Zhao, Xin-Bao; Yao, Ji-Yi; Li, Lu-Jing; Luo, Bao-Ming; Ou, Bing; Zhi, Hui

    2016-06-01

    To evaluate the additive diagnostic performance of ultrasound elastography (UE) to ultrasound (US) with the 2003 or 2013 Breast Imaging Reporting and Data System (BI-RADS)-US classification systems for the differentiation of benign and malignant breast lesions. From June 2010 to December 2012, 738 women with 770 breast lesions were recruited into this retrospective study. Breast lesions were evaluated separately by US, UE, and both. US assessment was based on the 2003 or 2013 BI-RADS-US, and UE assessment was based on a previously reported 5-point scale. Diagnostic performance of US, UE, and both was compared. Before category 4 lesions were subdivided, the area under the receiver operating characteristic curve (AUC) for US, UE, and both were, respectively, 0.735, 0.877, 0.878 (P < .01). When subcategories of 4 lesions were considered, the AUC for US, UE, and both were, respectively, 0.865, 0.877, and 0.883 (P > .05). Adding UE to analysis of 4A lesions can decrease the percentages of malignancy to 2.56%. When the 2003 BI-RADS was considered, UE could give US some help in differentiating breast lesions. However, when the 2013 BI-RADS was considered, UE gave little help to US, although it reduced unnecessary biopsies of benign category 4A lesions. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Monitoring Radiofrequency Ablation Using Ultrasound Envelope Statistics and Shear Wave Elastography in the Periablation Period: An In Vitro Feasibility Study

    PubMed Central

    Tsui, Po-Hsiang; Wang, Chiao-Yin; Zhou, Zhuhuang; Wan, Yung-Liang

    2016-01-01

    Radiofrequency ablation (RFA) is a minimally invasive method for treating tumors. Shear wave elastography (SWE) has been widely applied in evaluating tissue stiffness and final ablation size after RFA. However, the usefulness of periablation SWE imaging in assessing RFA remains unclear. Therefore, this study investigated the correlation between periablation SWE imaging and final ablation size. An in vitro porcine liver model was used for experimental validation (n = 36). During RFA with a power of 50 W, SWE images were collected using a clinical ultrasound system. To evaluate the effects of tissue temperature and gas bubbles during RFA, changes in the ablation temperature were recorded, and image echo patterns were measured using B-mode and ultrasound statistical parametric images. After RFA, the gross pathology of each tissue sample was compared with the region of change in the corresponding periablation SWE image. The experimental results showed that the tissue temperature at the ablation site varied between 70°C and 100°C. Hyperechoic regions and changes were observed in the echo amplitude distribution induced by gas bubbles. Under this condition, the confounding effects (including the temperature increase, tissue stiffness increase, and presence of gas bubbles) resulted in artifacts in the periablation SWE images, and the corresponding region correlated with the estimated final ablation size obtained from the gross pathology (r = 0.8). The findings confirm the feasibility of using periablation SWE imaging in assessing RFA. PMID:27603012

  8. Blood-brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller.

    PubMed

    O'Reilly, Meaghan A; Hynynen, Kullervo

    2012-04-01

    To determine if focused ultrasound disruption of the blood-brain barrier (BBB) can be safely controlled by using real-time modulation of treatment pressures on the basis of acoustic emissions from the exposed microbubbles. All experiments were performed with the approval of the institutional animal care committee. Transcranial focused ultrasound (551.5 kHz, 10-msec bursts, 2-Hz pulse repetition frequency, 2 minute sonication) in conjunction with circulating microbubbles was applied in 86 locations in 27 rats to disrupt the BBB. Acoustic emissions captured during each burst by using a wideband polyvinylidene fluoride hydrophone were analyzed for spectral content and used to adjust treatment pressures. Pressures were increased incrementally after each burst until ultraharmonic emissions were detected, at which point the pressure was reduced to a percentage of the pressure required to induce the ultraharmonics and was maintained for the remainder of the sonication. Disruption was evaluated at contrast material-enhanced T1-weighted magnetic resonance (MR) imaging. Mean enhancement was calculated by averaging the signal intensity at the focus over a 3 × 3-pixel region of interest and comparing it with that in nonsonicated tissue. Histologic analysis was performed to determine the extent of damage to the tissue. Statistical analysis was performed by using Student t tests. For sonications resulting in BBB disruption, the mean peak pressure was 0.28 MPa ± 0.05 (standard deviation) (range, 0.18-0.40 MPa). By using the control algorithm, a linear relationship was found between the scaling level and the mean enhancement on T1-weighted MR images after contrast agent injection. At a 50% scaling level, mean enhancement of 19.6% ± 1.7 (standard error of the mean) was achieved without inducing damage. At higher scaling levels, histologic analysis revealed gross tissue damage, while at a 50% scaling level, no damage was observed at high-field-strength MR imaging or histologic

  9. Trainee anaesthetist diagnosis of intraneural injection-a study comparing B-mode ultrasound with the fusion of B-mode and elastography in the soft embalmed Thiel cadaver model.

    PubMed

    Munirama, S; Zealley, K; Schwab, A; Columb, M; Corner, G A; Eisma, R; McLeod, G A

    2016-12-01

    The incidence of intraneural injection during trainee anaesthetist ultrasound guided nerve block varies between 16% in experts and up to 35% in trainees. We hypothesized that elastography, an ultrasound-based technology that presents colour images of tissue strain, had the potential to improve trainee diagnosis of intraneural injection during UGRA, when integrated with B-Mode ultrasound onto a single image. We recorded 40 median nerve blocks randomly allocated to 0.25 ml, 0.5 ml, 1 ml volumes to five sites, on both arms of two soft embalmed cadavers, using a dedicated B-Mode ultrasound and elastography transducer. We wrote software to fuse elastogram and B-Mode videos, then asked 20 trainee anaesthetists whether injection was intraneural or extraneural when seeing B-Mode videos, adjacent B-Mode and elastogram videos, fusion elastography videos or repeated B-Mode ultrasound videos. Fusion elastography improved the diagnosis of intraneural injection compared with B-Mode ultrasound, Diagnostic Odds Ratio (DOR) (95%CI) 21.7 (14.5 - 33.3) vs DOR 7.4 (5.2 - 10.6), P < 0.001. Compared with extraneural injection, intraneural injection was identified on fusion elastography as a distinct, brighter translucent image, geometric ratio 0.33 (95%CI: 0.16 - 0.49) P < 0.001. Fusion elastography was associated with greater trainee diagnostic confidence, OR (95%CI) 1.89 (1.69 - 2.11), P < 0.001, and an improvement in reliability, Kappa 0.60 (0.55 - 0.66). Fusion elastography improved the accuracy, reliability and confidence of trainee anaesthetist diagnosis of intraneural injection. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Building a virtual simulation platform for quasistatic breast ultrasound elastography using open source software: A preliminary investigation.

    PubMed

    Wang, Yu; Helminen, Emily; Jiang, Jingfeng

    2015-09-01

    Quasistatic ultrasound elastography (QUE) is being used to augment in vivo characterization of breast lesions. Results from early clinical trials indicated that there was a lack of confidence in image interpretation. Such confidence can only be gained through rigorous imaging tests using complex, heterogeneous but known media. The objective of this study is to build a virtual breast QUE simulation platform in the public domain that can be used not only for innovative QUE research but also for rigorous imaging tests. The main thrust of this work is to streamline biomedical ultrasound simulations by leveraging existing open source software packages including Field II (ultrasound simulator), VTK (geometrical visualization and processing), FEBio [finite element (FE) analysis], and Tetgen (mesh generator). However, integration of these open source packages is nontrivial and requires interdisciplinary knowledge. In the first step, a virtual breast model containing complex anatomical geometries was created through a novel combination of image-based landmark structures and randomly distributed (small) structures. Image-based landmark structures were based on data from the NIH Visible Human Project. Subsequently, an unstructured FE-mesh was created by Tetgen. In the second step, randomly positioned point scatterers were placed within the meshed breast model through an octree-based algorithm to make a virtual breast ultrasound phantom. In the third step, an ultrasound simulator (Field II) was used to interrogate the virtual breast phantom to obtain simulated ultrasound echo data. Of note, tissue deformation generated using a FE-simulator (FEBio) was the basis of deforming the original virtual breast phantom in order to obtain the postdeformation breast phantom for subsequent ultrasound simulations. Using the procedures described above, a full cycle of QUE simulations involving complex and highly heterogeneous virtual breast phantoms can be accomplished for the first time

  11. Building a virtual simulation platform for quasistatic breast ultrasound elastography using open source software: A preliminary investigation

    PubMed Central

    Wang, Yu; Helminen, Emily; Jiang, Jingfeng

    2015-01-01

    Purpose: Quasistatic ultrasound elastography (QUE) is being used to augment in vivo characterization of breast lesions. Results from early clinical trials indicated that there was a lack of confidence in image interpretation. Such confidence can only be gained through rigorous imaging tests using complex, heterogeneous but known media. The objective of this study is to build a virtual breast QUE simulation platform in the public domain that can be used not only for innovative QUE research but also for rigorous imaging tests. Methods: The main thrust of this work is to streamline biomedical ultrasound simulations by leveraging existing open source software packages including Field II (ultrasound simulator), VTK (geometrical visualization and processing), FEBio [finite element (FE) analysis], and Tetgen (mesh generator). However, integration of these open source packages is nontrivial and requires interdisciplinary knowledge. In the first step, a virtual breast model containing complex anatomical geometries was created through a novel combination of image-based landmark structures and randomly distributed (small) structures. Image-based landmark structures were based on data from the NIH Visible Human Project. Subsequently, an unstructured FE-mesh was created by Tetgen. In the second step, randomly positioned point scatterers were placed within the meshed breast model through an octree-based algorithm to make a virtual breast ultrasound phantom. In the third step, an ultrasound simulator (Field II) was used to interrogate the virtual breast phantom to obtain simulated ultrasound echo data. Of note, tissue deformation generated using a FE-simulator (FEBio) was the basis of deforming the original virtual breast phantom in order to obtain the postdeformation breast phantom for subsequent ultrasound simulations. Using the procedures described above, a full cycle of QUE simulations involving complex and highly heterogeneous virtual breast phantoms can be accomplished for

  12. Accuracy of Tumor Sizing in Breast Cancer: A Comparison of Strain Elastography, 3-D Ultrasound and Conventional B-Mode Ultrasound with and without Compound Imaging.

    PubMed

    Stachs, Angrit; Pandjaitan, Alexander; Martin, Annett; Stubert, Johannes; Hartmann, Steffi; Gerber, Bernd; Glass, Änne

    2016-12-01

    The objective of this study was to compare the accuracy of strain elastography (SE), 3-D ultrasound (US), B-mode US with compound imaging (CI) and B-mode US without compound imaging for lesion sizing in breast cancer. The prospective study included 93 patients with invasive breast cancer. The largest tumor diameters measured by B-mode US, B-mode US with CI, SE and 3-D US were compared in Bland-Altman plots versus pathology as reference. A general linear model repeated measures (GLM Rep) was applied to investigate factors influencing tumor sizing. All methods underestimated pathologic size, with SE (-0.08 ± 7.7 mm) and 3-D US (-1.4 ± 6.5 mm) having the smallest mean differences from pathology. Bland-Altman plots revealed that B-mode US, B-mode US with CI and 3-D US systematically underestimated large tumor sizes, and only SE was technically comparable to pathology. The study indicates that sonographic underestimation of tumor size occurs mainly in tumors >20 mm; in this subgroup, SE is superior to other ultrasound methods.

  13. A prospective comparison between auto-registration and manual registration of real-time ultrasound with MR images for percutaneous ablation or biopsy of hepatic lesions.

    PubMed

    Cha, Dong Ik; Lee, Min Woo; Song, Kyoung Doo; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-06-01

    To compare the accuracy and required time for image fusion of real-time ultrasound (US) with pre-procedural magnetic resonance (MR) images between positioning auto-registration and manual registration for percutaneous radiofrequency ablation or biopsy of hepatic lesions. This prospective study was approved by the institutional review board, and all patients gave written informed consent. Twenty-two patients (male/female, n = 18/n = 4; age, 61.0 ± 7.7 years) who were referred for planning US to assess the feasibility of radiofrequency ablation (n = 21) or biopsy (n = 1) for focal hepatic lesions were included. One experienced radiologist performed the two types of image fusion methods in each patient. The performance of auto-registration and manual registration was evaluated. The accuracy of the two methods, based on measuring registration error, and the time required for image fusion for both methods were recorded using in-house software and respectively compared using the Wilcoxon signed rank test. Image fusion was successful in all patients. The registration error was not significantly different between the two methods (auto-registration: median, 3.75 mm; range, 1.0-15.8 mm vs. manual registration: median, 2.95 mm; range, 1.2-12.5 mm, p = 0.242). The time required for image fusion was significantly shorter with auto-registration than with manual registration (median, 28.5 s; range, 18-47 s, vs. median, 36.5 s; range, 14-105 s, p = 0.026). Positioning auto-registration showed promising results compared with manual registration, with similar accuracy and even shorter registration time.

  14. A novel way of visualizing the ductal and aortic arches by real-time three-dimensional ultrasound with live xPlane imaging.

    PubMed

    Xiong, Y; Chen, M; Chan, L W; Ting, Y H; Fung, T Y; Leung, T Y; Lau, T K

    2012-03-01

    To describe a novel method of visualizing the ductal and aortic arches by real-time three-dimensional echocardiography with live xPlane imaging. Live xPlane imaging was used to display the ductal- and aortic-arch views in 107 women with singleton pregnancies, including seven cases with suspected congenital heart defects (CHDs). The three vessels and trachea (3VT) view was obtained in such an orientation that either the pulmonary artery or the aorta was parallel to the direction of the ultrasound beam. The xPlane reference line was then placed across the targeted vessel, which in a normal case would provide an image of the corresponding arch view as a dual-image display. Once the 3VT view had been obtained, live xPlane imaging showed the aortic and ductal arches in all 100 normal cases. In seven cases with suspected CHD, the 3VT view was abnormal in five cases and normal in the other two. However, the ductal-arch view demonstrated by live xPlane imaging was abnormal in five cases of conotruncal anomalies and normal in two cases in which conotruncal anomalies were excluded. CHDs were confirmed at autopsy following termination of pregnancy in five cases and on postnatal echocardiography in one case. The heart was found postnatally to be normal in one case of suspected CHD; in this case live xPlane imaging showed that the observed abnormal 3VT view was caused by a tortuous course of the thoracic aorta associated with an abnormal diaphragm. Live xPlane imaging is a novel and relatively simple method of visualizing the ductal- and aortic-arch views, and may potentially be a useful tool in the screening of fetal conotruncal and aortic-arch anomalies. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  15. Clinical Evaluation of Spatial Accuracy of a Fusion Imaging Technique Combining Previously Acquired Computed Tomography and Real-Time Ultrasound for Imaging of Liver Metastases

    SciTech Connect

    Hakime, Antoine Deschamps, Frederic; Garcia Marques de Carvalho, Enio; Teriitehau, Christophe; Auperin, Anne; De Baere, Thierry

    2011-04-15

    Purpose: This study was designed to evaluate the spatial accuracy of matching volumetric computed tomography (CT) data of hepatic metastases with real-time ultrasound (US) using a fusion imaging system (VNav) according to different clinical settings. Methods: Twenty-four patients with one hepatic tumor identified on enhanced CT and US were prospectively enrolled. A set of three landmarks markers was chosen on CT and US for image registration. US and CT images were then superimposed using the fusion imaging display mode. The difference in spatial location between the tumor visible on the CT and the US on the overlay images (reviewer no. 1, comment no. 2) was measured in the lateral, anterior-posterior, and vertical axis. The maximum difference (Dmax) was evaluated for different predictive factors.CT performed 1-30 days before registration versus immediately before. Use of general anesthesia for CT and US versus no anesthesia.Anatomic landmarks versus landmarks that include at least one nonanatomic structure, such as a cyst or a calcificationResultsOverall, Dmax was 11.53 {+-} 8.38 mm. Dmax was 6.55 {+-} 7.31 mm with CT performed immediately before VNav versus 17.4 {+-} 5.18 with CT performed 1-30 days before (p < 0.0001). Dmax was 7.05 {+-} 6.95 under general anesthesia and 16.81 {+-} 6.77 without anesthesia (p < 0.0015). Landmarks including at least one nonanatomic structure increase Dmax of 5.2 mm (p < 0.0001). The lowest Dmax (1.9 {+-} 1.4 mm) was obtained when CT and VNav were performed under general anesthesia, one immediately after the other. Conclusions: VNav is accurate when adequate clinical setup is carefully selected. Only under these conditions (reviewer no. 2), liver tumors not identified on US can be accurately targeted for biopsy or radiofrequency ablation using fusion imaging.

  16. In vitro study of the revised ultrasound based real-time tracking of renal stones for shock wave lithotripsy: Part 1.

    PubMed

    Chang, Chien-Chen; Pu, Yong-Ren; Manousakas, Ioannis; Liang, Shen-Min; Yu, Fan-Ming; Tong, Yat-Ching; Lin, Sheng-Hsiang

    2013-06-01

    Extracorporeal shock wave lithotripsy has been popular since the 1980s. Only 30% to 50% of the shock waves of all conventional lithotripters are focused on stones. We developed an ultrasound based, real-time stone tracking system (version 1) to improve accuracy and treatment efficiency. However, some problems remained. We revised the existing system (version 2) and tested its reliability and performance. We revised the system by adding more algorithms to decrease renal stone misidentification. We verified the advanced system by 2 tests using no tracking and tracking with 13 stone trajectories for versions 1 and 2. We performed the coincidence test to evaluate the accuracy of targeting the stone within the effective focal area and the stone fragmentation efficiency test to clarify the decrease in the number of shocks needed for stone fragmentation. In the coincidence test the mean ± SD results of the nontracking system, and tracking versions 1 and 2 were 68.8% ± 18.8%, 89.9% ± 5.2% and 94.3% ± 4.5%, respectively. Version 2 was statistically significantly better than version 1 (p = 1.5 × 10(-4)). In the stone fragmentation efficiency test the mean results of the nontracking system, and versions 1 and 2 were 49.5% ± 14.2%, 85.1% ± 4.5% and 89.5% ± 4.2%, respectively. Version 2 was statistically significantly better than version 1 (p = 1.9 × 10(-8)). The revised tracking system is better than version 1. It improves treatment efficiency, decreases stone misidentification and can shorten treatment time. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Five-dimensional ultrasound system for soft tissue visualization.

    PubMed

    Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2015-12-01

    A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.

  18. Ultrasound-Based Guidance for Partial Breast Irradiation Therapy

    DTIC Science & Technology

    2010-01-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Tracked ultrasound elastography can be used for guidance in partial breast radiotherapy by visualizing the hard...ultrasound images, specifically fluid motions inside the cavity, change of the appearance of speckles caused by compression or physiologic motions, and...sources such as fluid motion. The analytic displacement estimation works in real-time. Moreover, the tracked data, used for targeting the radiotherapy

  19. Computationally-efficient optical coherence elastography to assess degenerative osteoarthritis based on ultrasound-induced fringe washout (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tong, Minh Q.; Hasan, M. Monirul; Gregory, Patrick D.; Shah, Jasmine; Park, B. Hyle; Hirota, Koji; Liu, Junze; Choi, Andy; Low, Karen; Nam, Jin

    2017-02-01

    We demonstrate a computationally-efficient optical coherence elastography (OCE) method based on fringe washout. By introducing ultrasound in alternating depth profile, we can obtain information on the mechanical properties of a sample within acquisition of a single image. This can be achieved by simply comparing the intensity in adjacent depth profiles in order to quantify the degree of fringe washout. Phantom agar samples with various densities were measured and quantified by our OCE technique, the correlation to Young's modulus measurement by atomic force micrscopy (AFM) were observed. Knee cartilage samples of monoiodo acetate-induced arthiritis (MIA) rat models were utilized to replicate cartilage damages where our proposed OCE technique along with intensity and birefringence analyses and AFM measurements were applied. The results indicate that our OCE technique shows a correlation to the techniques as polarization-sensitive OCT, AFM Young's modulus measurements and histology were promising. Our OCE is applicable to any of existing OCT systems and demonstrated to be computationally-efficient.

  20. The difference in passive tension applied to the muscles composing the hamstrings - Comparison among muscles using ultrasound shear wave elastography.

    PubMed

    Nakamura, Masatoshi; Hasegawa, Satoshi; Umegaki, Hiroki; Nishishita, Satoru; Kobayashi, Takuya; Fujita, Kosuke; Tanaka, Hiroki; Ibuki, Satoko; Ichihashi, Noriaki

    2016-08-01

    Hamstring muscle strain is one of the most common injuries in sports. Therefore, to investigate the factors influencing hamstring strain, the differences in passive tension applied to the hamstring muscles at the same knee and hip positions as during terminal swing phase would be useful information. In addition, passive tension applied to the hamstrings could change with anterior or posterior tilt of the pelvis. The aims of this study were to investigate the difference in passive tension applied to the individual muscles composing the hamstrings during passive elongation, and to investigate the effect of pelvic position on passive tension. Fifteen healthy men volunteered for this study. The subject lay supine with the angle of the trunk axis to the femur of their dominant leg at 70° and the knee angle of the dominant leg fixed at 30° flexion. In three pelvic positions ("Non-Tilt", "Anterior-Tilt" and "Posterior-Tilt"), the shear elastic modulus of each muscle composing the hamstrings (semitendinosus, semimembranosus, and biceps femoris) was measured using an ultrasound shear wave elastography. The shear elastic modulus of semimembranosus was significantly higher than the others. Shear elastic modulus of the hamstrings in Anterior-Tilt was significantly higher than in Posterior-Tilt. Passive tension applied to semimembranosus is higher than the other muscles when the hamstring muscle is passively elongated, and passive tension applied to the hamstrings increases with anterior tilt of the pelvis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Acute effect of static stretching on passive stiffness of the human gastrocnemius fascicle measured by ultrasound shear wave elastography.

    PubMed

    Hirata, Kosuke; Kanehisa, Hiroaki; Miyamoto, Naokazu

    2017-03-01

    Passive muscle stiffness and muscle architecture at a given joint angle, as well as slack angle of the muscle have been shown to change after an acute bout of stretching. However, it remains unclear whether passive muscle stiffness at a given fascicle length is reduced after stretching. We aimed to elucidate the acute effect of static stretching on the passive fascicle stiffness using ultrasound shear wave elastography. Shear modulus, fascicle length, and slack angle of the medial gastrocnemius (MG) as well as passive plantar flexion torque during passive dorsiflexion were measured before and after a 5-min static stretching in 14 healthy males. After stretching, passive torques were significantly reduced at >50% of range of motion (ROM). Shear modulus at a given fascicle length was significantly reduced at >80% of the change in fascicle length during passive dorsiflexion. Slack angle of MG was observed at the middle part of ROM and significantly shifted toward more dorsiflexed position after stretching. The present study showed the significant effectiveness of static stretching on the passive fascicle stiffness. Furthermore, the present results suggest that both the shift in slack angle and the reduction in passive fascicle stiffness contribute to produce the change in passive torque-joint angle relationship during passive dorsiflexion. Notably, the contribution of the reduced passive fascicle stiffness to the decrease in passive torque is substantial over the latter part of ROM.

  2. Feasibility and reliability of quantifying passive muscle stiffness in young children by using shear wave ultrasound elastography.

    PubMed

    Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Landry, Bradford W; Kingsley-Berg, Shirley; Bamlet, William R; Chen, Shigao; Sieck, Gary C; An, Kai-Nan

    2015-04-01

    The purpose of this study was to investigate the feasibility and reliability of passive muscle stiffness measurements in children by shear wave ultrasound elastography. We conducted a prospective cross-sectional study quantifying the passive stiffness of bilateral lateral gastrocnemius muscles during passive stretching in 20 typically developing children (age range, 2.0-12.6 years). Data collected included passive stiffness of the lateral gastrocnemius muscle (shear modulus in kilopascals) at 4 positions of progressive passive foot dorsiflexion, demographic characteristics of the participants, and comparison of demographic characteristics with the shear modulus. Passive stiffness increased with increasing stretching (mean [SD] range of stiffness, 7.1 [2.0] to 36.2 [22.0] kPa). For all 4 foot positions, no significant difference was found between right and left legs (range, P = .42 to P = .98) or between the sexes (range, P = .28 to P > .99). No correlation of passive muscle stiffness with age, body mass index, or ankle range of motion was found. The reliability of measurements was good to excellent (mean [95% confidence interval] range of reliability, 0.67 [0.44-0.83] to 0.80 [0.63-0.90]). Measurements of passive stiffness of the lateral gastrocnemius muscle are feasible and reliable in children as young as 2 years. Because this study found no significant difference between sex and the side tested in this age group, future studies involving children of this age range may not need to be stratified on the basis of these parameters. Defining normal passive muscle stiffness in children is critical for identifying and understanding the implications of abnormal passive muscle stiffness in children with neuromuscular disorders. © 2015 by the American Institute of Ultrasound in Medicine.

  3. Ultrasound shear wave elastography in assessment of muscle stiffness in patients with Parkinson's disease: a primary observation.

    PubMed

    Du, Li-Juan; He, Wen; Cheng, Ling-Gang; Li, Shuo; Pan, Yue-Song; Gao, Jing

    The aim of this study was to assess the capability of ultrasound shear wave elastography (SWE) in evaluating the muscle stiffness in patients with Parkinson's diseases (PD). Ultrasound SWE of the longitudinal biceps brachii was performed on 46 patients with PD and 31 healthy controls from May 2013 to October 2013. The stiffness of the biceps brachii muscles measured with quantitative Young's modulus (kPa) was compared between the remarkably symptomatic arms and mildly symptomatic arms in the PD and between PD and controls with unpaired t test. The correlation between the Young's modulus of the biceps brachii measured by SWE and motion scores assessed by unified Parkinson's disease rating scale (UPDRS) part III was analyzed by Pearson's correlation coefficient. The reliability of SWE in assessment of biceps brachii stiffness was tested using intraclass correlation coefficient (ICC). The mean Young's modulus of biceps brachii in remarkably symptomatic arms, mildly symptomatic arms, and healthy controls was 59.94±20.91 kPa, 47.77±24.00 kPa, and 24.28±5.09 kPa, respectively. A significant difference in Young's modulus of biceps brachii was found between healthy controls and all PD patients (all P<.05); however, it was not between remarkably symptomatic and mildly symptomatic arms. A positive linear correlation was found between the Young's modulus of the biceps brachii and the motion score by UPDRS in patients with PD (r=0.646, P=.000). The ICC for interobserver and intraobserver variation in measuring Young's modulus of the biceps brachii with SWE was 0.74 (95% confidence interval 0.68-0.78) and 0.78 (95% confidence interval 0.75-0.82), respectively. SWE of the biceps brachii can be used as a quantitative assessment of muscle stiffness in the patients with PD. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Association of Renal Elasticity and Renal Function Progression in Patients with Chronic Kidney Disease Evaluated by Real-Time Ultrasound Elastography

    PubMed Central

    Lin, Hugo You-Hsien; Lee, Yu-Li; Lin, Kun-Der; Chiu, Yi-Wen; Shin, Shyi-Jang; Hwang, Shang-Jyh; Chen, Hung-Chun; Hung, Chi-Chih

    2017-01-01

    Glomerulosclerosis and tubulointerstitial fibrosis are associated with lower renal parenchymal elasticity. This study was designed to evaluate the predictive ability of renal elasticity in patients with chronic kidney disease (CKD). 148 non-CKD patients and 227 patients with CKD were recruited. 145 (38.7%) were female, 166 (73.1%) had diabetes, the mean estimated glomerular filtration rate (eGFR) was 33.9 ± 15.8 ml/min/1.73 m2 and the median urinary protein-to-creatinine ratio (UPCR) 502 (122–1491) mg/g. Patients with later stages of CKD had lower renal elasticity values, indicating stiffer kidneys (p < 0.001), and smaller kidney (p < 0.001). Renal elasticity correlated with log-transformed UPCR (β = −7.544, P < 0.001). Renal length correlated with age (β = −0.231, P < 0.001), sex (β = −3.730, P < 0.001), serum albumin level (β = −3.024, P = 0.001), body mass index (β = 0.390, P = 0.009) and eGFR (β = 0.146, P < 0.001). In fully-adjusted logistic regression model, the odds ratio (OR) per 10 unit change in renal elasticity for rapid renal deterioration was 0.928 (95% CI, 0.864–0.997; P = 0.042). The OR per 1 mm change in renal length for rapid renal deterioration was 1.022 (95% CI, 0.994–1.050; P = 0.125). Renal elasticity is associated with proteinuria and rapid renal deterioration in patients with CKD. PMID:28240304

  5. Two-dimensional and shear wave elastography ultrasound: A reliable method to analyse spastic muscles?

    PubMed

    Mathevon, Laure; Michel, F; Aubry, S; Testa, R; Lapole, T; Arnaudeau, L F; Fernandez, B; Parratte, B; Calmels, P

    2017-05-31

    Few data exist on the feasibility and reliability of measuring muscular atrophy in 2 dimensions (2D) by ultrasonography (US) and elasticity with shear wave elastography (SWE) in spastic muscles. Fourteen patients with chronic stroke took part in 2 intersession reliability experiments performed with 1-week intervals between sessions. Pennation angle (PA), muscle thickness (MT), and shear elastic modulus (µ) were measured in spastic gastrocnemius medialis (GM) muscles at rest and at maximal passive stretching in paretic and nonparetic legs. On the paretic side, the coefficient of variation (CV) in GM was 6.30% for MT and 6.40% for PA at rest and was 7.53% and 8.26% for MT and PA, respectively, at maximal passive stretching. The reliability of the µ measurement was good only for GM at rest on the paretic side (CV = 9.86%). 2D US associated with SWE shows promise for assessing structural changes in muscles. With some methodological adaptations, this approach could help guide spasticity treatment. Muscle Nerve, 2017. © 2017 Wiley Periodicals, Inc.

  6. Ultrasound shear wave elastography and liver fibrosis: A Prospective Multicenter Study

    PubMed Central

    S