Sample records for real-time video processing

  1. Practical, Real-Time, and Robust Watermarking on the Spatial Domain for High-Definition Video Contents

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Su; Lee, Hae-Yeoun; Im, Dong-Hyuck; Lee, Heung-Kyu

    Commercial markets employ digital right management (DRM) systems to protect valuable high-definition (HD) quality videos. DRM system uses watermarking to provide copyright protection and ownership authentication of multimedia contents. We propose a real-time video watermarking scheme for HD video in the uncompressed domain. Especially, our approach is in aspect of practical perspectives to satisfy perceptual quality, real-time processing, and robustness requirements. We simplify and optimize human visual system mask for real-time performance and also apply dithering technique for invisibility. Extensive experiments are performed to prove that the proposed scheme satisfies the invisibility, real-time processing, and robustness requirements against video processing attacks. We concentrate upon video processing attacks that commonly occur in HD quality videos to display on portable devices. These attacks include not only scaling and low bit-rate encoding, but also malicious attacks such as format conversion and frame rate change.

  2. HEVC real-time decoding

    NASA Astrophysics Data System (ADS)

    Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas

    2013-09-01

    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.

  3. Writing/Thinking in Real Time: Digital Video and Corpus Query Analysis

    ERIC Educational Resources Information Center

    Park, Kwanghyun; Kinginger, Celeste

    2010-01-01

    The advance of digital video technology in the past two decades facilitates empirical investigation of learning in real time. The focus of this paper is the combined use of real-time digital video and a networked linguistic corpus for exploring the ways in which these technologies enhance our capability to investigate the cognitive process of…

  4. Research of real-time video processing system based on 6678 multi-core DSP

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhen; Xie, Xiaodan; Yin, Xiaoqiang

    2017-10-01

    In the information age, the rapid development in the direction of intelligent video processing, complex algorithm proposed the powerful challenge on the performance of the processor. In this article, through the FPGA + TMS320C6678 frame structure, the image to fog, merge into an organic whole, to stabilize the image enhancement, its good real-time, superior performance, break through the traditional function of video processing system is simple, the product defects such as single, solved the video application in security monitoring, video, etc. Can give full play to the video monitoring effectiveness, improve enterprise economic benefits.

  5. Video enhancement workbench: an operational real-time video image processing system

    NASA Astrophysics Data System (ADS)

    Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.

    1993-01-01

    Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.

  6. Robust real-time horizon detection in full-motion video

    NASA Astrophysics Data System (ADS)

    Young, Grace B.; Bagnall, Bryan; Lane, Corey; Parameswaran, Shibin

    2014-06-01

    The ability to detect the horizon on a real-time basis in full-motion video is an important capability to aid and facilitate real-time processing of full-motion videos for the purposes such as object detection, recognition and other video/image segmentation applications. In this paper, we propose a method for real-time horizon detection that is designed to be used as a front-end processing unit for a real-time marine object detection system that carries out object detection and tracking on full-motion videos captured by ship/harbor-mounted cameras, Unmanned Aerial Vehicles (UAVs) or any other method of surveillance for Maritime Domain Awareness (MDA). Unlike existing horizon detection work, we cannot assume a priori the angle or nature (for e.g. straight line) of the horizon, due to the nature of the application domain and the data. Therefore, the proposed real-time algorithm is designed to identify the horizon at any angle and irrespective of objects appearing close to and/or occluding the horizon line (for e.g. trees, vehicles at a distance) by accounting for its non-linear nature. We use a simple two-stage hierarchical methodology, leveraging color-based features, to quickly isolate the region of the image containing the horizon and then perform a more ne-grained horizon detection operation. In this paper, we present our real-time horizon detection results using our algorithm on real-world full-motion video data from a variety of surveillance sensors like UAVs and ship mounted cameras con rming the real-time applicability of this method and its ability to detect horizon with no a priori assumptions.

  7. Exploring inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video

    NASA Astrophysics Data System (ADS)

    Li, Jia; Tian, Yonghong; Gao, Wen

    2008-01-01

    In recent years, the amount of streaming video has grown rapidly on the Web. Often, retrieving these streaming videos offers the challenge of indexing and analyzing the media in real time because the streams must be treated as effectively infinite in length, thus precluding offline processing. Generally speaking, captions are important semantic clues for video indexing and retrieval. However, existing caption detection methods often have difficulties to make real-time detection for streaming video, and few of them concern on the differentiation of captions from scene texts and scrolling texts. In general, these texts have different roles in streaming video retrieval. To overcome these difficulties, this paper proposes a novel approach which explores the inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video. In our approach, the inter-frame correlation information is used to distinguish caption texts from scene texts and scrolling texts. Moreover, wavelet-domain Generalized Gaussian Models (GGMs) are utilized to automatically remove non-text regions from each frame and only keep caption regions for further processing. Experiment results show that our approach is able to offer real-time caption detection with high recall and low false alarm rate, and also can effectively discern caption texts from the other texts even in low resolutions.

  8. Real-time video compressing under DSP/BIOS

    NASA Astrophysics Data System (ADS)

    Chen, Qiu-ping; Li, Gui-ju

    2009-10-01

    This paper presents real-time MPEG-4 Simple Profile video compressing based on the DSP processor. The programming framework of video compressing is constructed using TMS320C6416 Microprocessor, TDS510 simulator and PC. It uses embedded real-time operating system DSP/BIOS and the API functions to build periodic function, tasks and interruptions etcs. Realize real-time video compressing. To the questions of data transferring among the system. Based on the architecture of the C64x DSP, utilized double buffer switched and EDMA data transfer controller to transit data from external memory to internal, and realize data transition and processing at the same time; the architecture level optimizations are used to improve software pipeline. The system used DSP/BIOS to realize multi-thread scheduling. The whole system realizes high speed transition of a great deal of data. Experimental results show the encoder can realize real-time encoding of 768*576, 25 frame/s video images.

  9. Using dynamic mode decomposition for real-time background/foreground separation in video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutz, Jose Nathan; Grosek, Jacob; Brunton, Steven

    The technique of dynamic mode decomposition (DMD) is disclosed herein for the purpose of robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. Foreground/background separation is achieved at the computational cost of just one singular value decomposition (SVD) and one linear equation solve, thus producing results orders of magnitude faster than robust principal component analysis (RPCA). Additional techniques, including techniques for analyzing the video for multi-resolution time-scale components, and techniques for reusing computations to allow processing of streaming video in real time, are also described herein.

  10. Real-time unmanned aircraft systems surveillance video mosaicking using GPU

    NASA Astrophysics Data System (ADS)

    Camargo, Aldo; Anderson, Kyle; Wang, Yi; Schultz, Richard R.; Fevig, Ronald A.

    2010-04-01

    Digital video mosaicking from Unmanned Aircraft Systems (UAS) is being used for many military and civilian applications, including surveillance, target recognition, border protection, forest fire monitoring, traffic control on highways, monitoring of transmission lines, among others. Additionally, NASA is using digital video mosaicking to explore the moon and planets such as Mars. In order to compute a "good" mosaic from video captured by a UAS, the algorithm must deal with motion blur, frame-to-frame jitter associated with an imperfectly stabilized platform, perspective changes as the camera tilts in flight, as well as a number of other factors. The most suitable algorithms use SIFT (Scale-Invariant Feature Transform) to detect the features consistent between video frames. Utilizing these features, the next step is to estimate the homography between two consecutives video frames, perform warping to properly register the image data, and finally blend the video frames resulting in a seamless video mosaick. All this processing takes a great deal of resources of resources from the CPU, so it is almost impossible to compute a real time video mosaic on a single processor. Modern graphics processing units (GPUs) offer computational performance that far exceeds current CPU technology, allowing for real-time operation. This paper presents the development of a GPU-accelerated digital video mosaicking implementation and compares it with CPU performance. Our tests are based on two sets of real video captured by a small UAS aircraft; one video comes from Infrared (IR) and Electro-Optical (EO) cameras. Our results show that we can obtain a speed-up of more than 50 times using GPU technology, so real-time operation at a video capture of 30 frames per second is feasible.

  11. Low-SWaP coincidence processing for Geiger-mode LIDAR video

    NASA Astrophysics Data System (ADS)

    Schultz, Steven E.; Cervino, Noel P.; Kurtz, Zachary D.; Brown, Myron Z.

    2015-05-01

    Photon-counting Geiger-mode lidar detector arrays provide a promising approach for producing three-dimensional (3D) video at full motion video (FMV) data rates, resolution, and image size from long ranges. However, coincidence processing required to filter raw photon counts is computationally expensive, generally requiring significant size, weight, and power (SWaP) and also time. In this paper, we describe a laboratory test-bed developed to assess the feasibility of low-SWaP, real-time processing for 3D FMV based on Geiger-mode lidar. First, we examine a design based on field programmable gate arrays (FPGA) and demonstrate proof-of-concept results. Then we examine a design based on a first-of-its-kind embedded graphical processing unit (GPU) and compare performance with the FPGA. Results indicate feasibility of real-time Geiger-mode lidar processing for 3D FMV and also suggest utility for real-time onboard processing for mapping lidar systems.

  12. Real-time CT-video registration for continuous endoscopic guidance

    NASA Astrophysics Data System (ADS)

    Merritt, Scott A.; Rai, Lav; Higgins, William E.

    2006-03-01

    Previous research has shown that CT-image-based guidance could be useful for the bronchoscopic assessment of lung cancer. This research drew upon the registration of bronchoscopic video images to CT-based endoluminal renderings of the airway tree. The proposed methods either were restricted to discrete single-frame registration, which took several seconds to complete, or required non-real-time buffering and processing of video sequences. We have devised a fast 2D/3D image registration method that performs single-frame CT-Video registration in under 1/15th of a second. This allows the method to be used for real-time registration at full video frame rates without significantly altering the physician's behavior. The method achieves its speed through a gradient-based optimization method that allows most of the computation to be performed off-line. During live registration, the optimization iteratively steps toward the locally optimal viewpoint at which a CT-based endoluminal view is most similar to a current bronchoscopic video frame. After an initial registration to begin the process (generally done in the trachea for bronchoscopy), subsequent registrations are performed in real-time on each incoming video frame. As each new bronchoscopic video frame becomes available, the current optimization is initialized using the previous frame's optimization result, allowing continuous guidance to proceed without manual re-initialization. Tests were performed using both synthetic and pre-recorded bronchoscopic video. The results show that the method is robust to initialization errors, that registration accuracy is high, and that continuous registration can proceed on real-time video at >15 frames per sec. with minimal user-intervention.

  13. Objective assessment of MPEG-2 video quality

    NASA Astrophysics Data System (ADS)

    Gastaldo, Paolo; Zunino, Rodolfo; Rovetta, Stefano

    2002-07-01

    The increasing use of video compression standards in broadcasting television systems has required, in recent years, the development of video quality measurements that take into account artifacts specifically caused by digital compression techniques. In this paper we present a methodology for the objective quality assessment of MPEG video streams by using circular back-propagation feedforward neural networks. Mapping neural networks can render nonlinear relationships between objective features and subjective judgments, thus avoiding any simplifying assumption on the complexity of the model. The neural network processes an instantaneous set of input values, and yields an associated estimate of perceived quality. Therefore, the neural-network approach turns objective quality assessment into adaptive modeling of subjective perception. The objective features used for the estimate are chosen according to the assessed relevance to perceived quality and are continuously extracted in real time from compressed video streams. The overall system mimics perception but does not require any analytical model of the underlying physical phenomenon. The capability to process compressed video streams represents an important advantage over existing approaches, like avoiding the stream-decoding process greatly enhances real-time performance. Experimental results confirm that the system provides satisfactory, continuous-time approximations for actual scoring curves concerning real test videos.

  14. StreaMorph: A Case for Synthesizing Energy-Efficient Adaptive Programs Using High-Level Abstractions

    DTIC Science & Technology

    2013-08-12

    technique when switching from using eight cores to one core. 1. Introduction Real - time streaming of media data is growing in popularity. This includes...both capture and processing of real - time video and audio, and delivery of video and audio from servers; recent usage number shows over 800 million...source of data, when that source is a real - time source, and it is generally not necessary to get ahead of the sink. Even with real - time sources and sinks

  15. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A., Jr.

    1989-01-01

    Advances in very large-scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible and potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for a DPCM-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the CODEC are described, and performance results are provided.

  16. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A.

    1991-01-01

    Advances in very large scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible an potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for DPCM (differential pulse code midulation)-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the codec are described, and performance results are provided.

  17. Towards real-time remote processing of laparoscopic video

    NASA Astrophysics Data System (ADS)

    Ronaghi, Zahra; Duffy, Edward B.; Kwartowitz, David M.

    2015-03-01

    Laparoscopic surgery is a minimally invasive surgical technique where surgeons insert a small video camera into the patient's body to visualize internal organs and small tools to perform surgical procedures. However, the benefit of small incisions has a drawback of limited visualization of subsurface tissues, which can lead to navigational challenges in the delivering of therapy. Image-guided surgery (IGS) uses images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic camera system of interest is the vision system of the daVinci-Si robotic surgical system (Intuitive Surgical, Sunnyvale, CA, USA). The video streams generate approximately 360 megabytes of data per second, demonstrating a trend towards increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Processing this data on a bedside PC has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. The ability to acquire, process and visualize data in real-time is essential for performance of complex tasks as well as minimizing risk to the patient. As a result, utilizing high-speed networks to access computing clusters will lead to real-time medical image processing and improve surgical experiences by providing real-time augmented laparoscopic data. We aim to develop a medical video processing system using an OpenFlow software defined network that is capable of connecting to multiple remote medical facilities and HPC servers.

  18. SSME propellant path leak detection real-time

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Smith, L. M.

    1994-01-01

    Included are four documents that outline the technical aspects of the research performed on NASA Grant NAG8-140: 'A System for Sequential Step Detection with Application to Video Image Processing'; 'Leak Detection from the SSME Using Sequential Image Processing'; 'Digital Image Processor Specifications for Real-Time SSME Leak Detection'; and 'A Color Change Detection System for Video Signals with Applications to Spectral Analysis of Rocket Engine Plumes'.

  19. A Real-Time Image Acquisition And Processing System For A RISC-Based Microcomputer

    NASA Astrophysics Data System (ADS)

    Luckman, Adrian J.; Allinson, Nigel M.

    1989-03-01

    A low cost image acquisition and processing system has been developed for the Acorn Archimedes microcomputer. Using a Reduced Instruction Set Computer (RISC) architecture, the ARM (Acorn Risc Machine) processor provides instruction speeds suitable for image processing applications. The associated improvement in data transfer rate has allowed real-time video image acquisition without the need for frame-store memory external to the microcomputer. The system is comprised of real-time video digitising hardware which interfaces directly to the Archimedes memory, and software to provide an integrated image acquisition and processing environment. The hardware can digitise a video signal at up to 640 samples per video line with programmable parameters such as sampling rate and gain. Software support includes a work environment for image capture and processing with pixel, neighbourhood and global operators. A friendly user interface is provided with the help of the Archimedes Operating System WIMP (Windows, Icons, Mouse and Pointer) Manager. Windows provide a convenient way of handling images on the screen and program control is directed mostly by pop-up menus.

  20. A flexible software architecture for scalable real-time image and video processing applications

    NASA Astrophysics Data System (ADS)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2012-06-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility because they are normally oriented towards particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse and inefficient execution on multicore processors. This paper presents a novel software architecture for real-time image and video processing applications which addresses these issues. The architecture is divided into three layers: the platform abstraction layer, the messaging layer, and the application layer. The platform abstraction layer provides a high level application programming interface for the rest of the architecture. The messaging layer provides a message passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of messages. The application layer provides a repository for reusable application modules designed for real-time image and video processing applications. These modules, which include acquisition, visualization, communication, user interface and data processing modules, take advantage of the power of other well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, we present different prototypes and applications to show the possibilities of the proposed architecture.

  1. The design of red-blue 3D video fusion system based on DM642

    NASA Astrophysics Data System (ADS)

    Fu, Rongguo; Luo, Hao; Lv, Jin; Feng, Shu; Wei, Yifang; Zhang, Hao

    2016-10-01

    Aiming at the uncertainty of traditional 3D video capturing including camera focal lengths, distance and angle parameters between two cameras, a red-blue 3D video fusion system based on DM642 hardware processing platform is designed with the parallel optical axis. In view of the brightness reduction of traditional 3D video, the brightness enhancement algorithm based on human visual characteristics is proposed and the luminance component processing method based on YCbCr color space is also proposed. The BIOS real-time operating system is used to improve the real-time performance. The video processing circuit with the core of DM642 enhances the brightness of the images, then converts the video signals of YCbCr to RGB and extracts the R component from one camera, so does the other video and G, B component are extracted synchronously, outputs 3D fusion images finally. The real-time adjustments such as translation and scaling of the two color components are realized through the serial communication between the VC software and BIOS. The system with the method of adding red-blue components reduces the lost of the chrominance components and makes the picture color saturation reduce to more than 95% of the original. Enhancement algorithm after optimization to reduce the amount of data fusion in the processing of video is used to reduce the fusion time and watching effect is improved. Experimental results show that the system can capture images in near distance, output red-blue 3D video and presents the nice experiences to the audience wearing red-blue glasses.

  2. Real time mitigation of atmospheric turbulence in long distance imaging using the lucky region fusion algorithm with FPGA and GPU hardware acceleration

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher Robert

    "Lucky-region" fusion (LRF) is a synthetic imaging technique that has proven successful in enhancing the quality of images distorted by atmospheric turbulence. The LRF algorithm selects sharp regions of an image obtained from a series of short exposure frames, and fuses the sharp regions into a final, improved image. In previous research, the LRF algorithm had been implemented on a PC using the C programming language. However, the PC did not have sufficient sequential processing power to handle real-time extraction, processing and reduction required when the LRF algorithm was applied to real-time video from fast, high-resolution image sensors. This thesis describes two hardware implementations of the LRF algorithm to achieve real-time image processing. The first was created with a VIRTEX-7 field programmable gate array (FPGA). The other developed using the graphics processing unit (GPU) of a NVIDIA GeForce GTX 690 video card. The novelty in the FPGA approach is the creation of a "black box" LRF video processing system with a general camera link input, a user controller interface, and a camera link video output. We also describe a custom hardware simulation environment we have built to test the FPGA LRF implementation. The advantage of the GPU approach is significantly improved development time, integration of image stabilization into the system, and comparable atmospheric turbulence mitigation.

  3. Method and system for enabling real-time speckle processing using hardware platforms

    NASA Technical Reports Server (NTRS)

    Ortiz, Fernando E. (Inventor); Kelmelis, Eric (Inventor); Durbano, James P. (Inventor); Curt, Peterson F. (Inventor)

    2012-01-01

    An accelerator for the speckle atmospheric compensation algorithm may enable real-time speckle processing of video feeds that may enable the speckle algorithm to be applied in numerous real-time applications. The accelerator may be implemented in various forms, including hardware, software, and/or machine-readable media.

  4. Vehicle counting system using real-time video processing

    NASA Astrophysics Data System (ADS)

    Crisóstomo-Romero, Pedro M.

    2006-02-01

    Transit studies are important for planning a road network with optimal vehicular flow. A vehicular count is essential. This article presents a vehicle counting system based on video processing. An advantage of such system is the greater detail than is possible to obtain, like shape, size and speed of vehicles. The system uses a video camera placed above the street to image transit in real-time. The video camera must be placed at least 6 meters above the street level to achieve proper acquisition quality. Fast image processing algorithms and small image dimensions are used to allow real-time processing. Digital filters, mathematical morphology, segmentation and other techniques allow identifying and counting all vehicles in the image sequences. The system was implemented under Linux in a 1.8 GHz Pentium 4 computer. A successful count was obtained with frame rates of 15 frames per second for images of size 240x180 pixels and 24 frames per second for images of size 180x120 pixels, thus being able to count vehicles whose speeds do not exceed 150 km/h.

  5. System on a chip with MPEG-4 capability

    NASA Astrophysics Data System (ADS)

    Yassa, Fathy; Schonfeld, Dan

    2002-12-01

    Current products supporting video communication applications rely on existing computer architectures. RISC processors have been used successfully in numerous applications over several decades. DSP processors have become ubiquitous in signal processing and communication applications. Real-time applications such as speech processing in cellular telephony rely extensively on the computational power of these processors. Video processors designed to implement the computationally intensive codec operations have also been used to address the high demands of video communication applications (e.g., cable set-top boxes and DVDs). This paper presents an overview of a system-on-chip (SOC) architecture used for real-time video in wireless communication applications. The SOC specifications answer to the system requirements imposed by the application environment. A CAM-based video processor is used to accelerate data intensive video compression tasks such as motion estimations and filtering. Other components are dedicated to system level data processing and audio processing. A rich set of I/Os allows the SOC to communicate with other system components such as baseband and memory subsystems.

  6. Achieving real-time capsule endoscopy (CE) video visualization through panoramic imaging

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Xie, Jean; Mui, Peter; Leighton, Jonathan A.

    2013-02-01

    In this paper, we mainly present a novel and real-time capsule endoscopy (CE) video visualization concept based on panoramic imaging. Typical CE videos run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. To date, there is no commercially available tool capable of providing stabilized and processed CE video that is easy to analyze in real time. The burden on physicians' disease finding efforts is thus big. In fact, since the CE camera sensor has a limited forward looking view and low image frame rate (typical 2 frames per second), and captures very close range imaging on the GI tract surface, it is no surprise that traditional visualization method based on tracking and registration often fails to work. This paper presents a novel concept for real-time CE video stabilization and display. Instead of directly working on traditional forward looking FOV (field of view) images, we work on panoramic images to bypass many problems facing traditional imaging modalities. Methods on panoramic image generation based on optical lens principle leading to real-time data visualization will be presented. In addition, non-rigid panoramic image registration methods will be discussed.

  7. A design of real time image capturing and processing system using Texas Instrument's processor

    NASA Astrophysics Data System (ADS)

    Wee, Toon-Joo; Chaisorn, Lekha; Rahardja, Susanto; Gan, Woon-Seng

    2007-09-01

    In this work, we developed and implemented an image capturing and processing system that equipped with capability of capturing images from an input video in real time. The input video can be a video from a PC, video camcorder or DVD player. We developed two modes of operation in the system. In the first mode, an input image from the PC is processed on the processing board (development platform with a digital signal processor) and is displayed on the PC. In the second mode, current captured image from the video camcorder (or from DVD player) is processed on the board but is displayed on the LCD monitor. The major difference between our system and other existing conventional systems is that image-processing functions are performed on the board instead of the PC (so that the functions can be used for further developments on the board). The user can control the operations of the board through the Graphic User Interface (GUI) provided on the PC. In order to have a smooth image data transfer between the PC and the board, we employed Real Time Data Transfer (RTDX TM) technology to create a link between them. For image processing functions, we developed three main groups of function: (1) Point Processing; (2) Filtering and; (3) 'Others'. Point Processing includes rotation, negation and mirroring. Filter category provides median, adaptive, smooth and sharpen filtering in the time domain. In 'Others' category, auto-contrast adjustment, edge detection, segmentation and sepia color are provided, these functions either add effect on the image or enhance the image. We have developed and implemented our system using C/C# programming language on TMS320DM642 (or DM642) board from Texas Instruments (TI). The system was showcased in College of Engineering (CoE) exhibition 2006 at Nanyang Technological University (NTU) and have more than 40 users tried our system. It is demonstrated that our system is adequate for real time image capturing. Our system can be used or applied for applications such as medical imaging, video surveillance, etc.

  8. Incremental principal component pursuit for video background modeling

    DOEpatents

    Rodriquez-Valderrama, Paul A.; Wohlberg, Brendt

    2017-03-14

    An incremental Principal Component Pursuit (PCP) algorithm for video background modeling that is able to process one frame at a time while adapting to changes in background, with a computational complexity that allows for real-time processing, having a low memory footprint and is robust to translational and rotational jitter.

  9. Towards a Video Passive Content Fingerprinting Method for Partial-Copy Detection Robust against Non-Simulated Attacks

    PubMed Central

    2016-01-01

    Passive content fingerprinting is widely used for video content identification and monitoring. However, many challenges remain unsolved especially for partial-copies detection. The main challenge is to find the right balance between the computational cost of fingerprint extraction and fingerprint dimension, without compromising detection performance against various attacks (robustness). Fast video detection performance is desirable in several modern applications, for instance, in those where video detection involves the use of large video databases or in applications requiring real-time video detection of partial copies, a process whose difficulty increases when videos suffer severe transformations. In this context, conventional fingerprinting methods are not fully suitable to cope with the attacks and transformations mentioned before, either because the robustness of these methods is not enough or because their execution time is very high, where the time bottleneck is commonly found in the fingerprint extraction and matching operations. Motivated by these issues, in this work we propose a content fingerprinting method based on the extraction of a set of independent binary global and local fingerprints. Although these features are robust against common video transformations, their combination is more discriminant against severe video transformations such as signal processing attacks, geometric transformations and temporal and spatial desynchronization. Additionally, we use an efficient multilevel filtering system accelerating the processes of fingerprint extraction and matching. This multilevel filtering system helps to rapidly identify potential similar video copies upon which the fingerprint process is carried out only, thus saving computational time. We tested with datasets of real copied videos, and the results show how our method outperforms state-of-the-art methods regarding detection scores. Furthermore, the granularity of our method makes it suitable for partial-copy detection; that is, by processing only short segments of 1 second length. PMID:27861492

  10. Development of Targeting UAVs Using Electric Helicopters and Yamaha RMAX

    DTIC Science & Technology

    2007-05-17

    including the QNX real - time operating system . The video overlay board is useful to display the onboard camera’s image with important information such as... real - time operating system . Fully utilizing the built-in multi-processing architecture with inter-process synchronization and communication

  11. Digital codec for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A., Jr.

    1989-01-01

    The authors present the hardware implementation of a digital television bandwidth compression algorithm which processes standard NTSC (National Television Systems Committee) composite color television signals and produces broadcast-quality video in real time at an average of 1.8 b/pixel. The sampling rate used with this algorithm results in 768 samples over the active portion of each video line by 512 active video lines per video frame. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a nonadaptive predictor, nonuniform quantizer, and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The nonadaptive predictor and multilevel Huffman coder combine to set this technique apart from prior-art DPCM encoding algorithms. The authors describe the data compression algorithm and the hardware implementation of the codec and provide performance results.

  12. Real-time detection and data acquisition system for the left ventricular outline. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C.

    1976-01-01

    To automate the data acquisition procedure, a real-time contour detection and data acquisition system for the left ventricular outline was developed using video techniques. The X-ray image of the contrast-filled left ventricle is stored for subsequent processing on film (cineangiogram), video tape or disc. The cineangiogram is converted into video format using a television camera. The video signal from either the TV camera, video tape or disc is the input signal to the system. The contour detection is based on a dynamic thresholding technique. Since the left ventricular outline is a smooth continuous function, for each contour side a narrow expectation window is defined in which the next borderpoint will be detected. A computer interface was designed and built for the online acquisition of the coordinates using a PDP-12 computer. The advantage of this system over other available systems is its potential for online, real-time acquisition of the left ventricular size and shape during angiocardiography.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoaf, S.; APS Engineering Support Division

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  14. Simulation and Real-Time Verification of Video Algorithms on the TI C6400 Using Simulink

    DTIC Science & Technology

    2004-08-20

    SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12 . DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release...plot estimates over time (scrolling data) Adjust detection threshold (click mouse on graph) Monitor video capture Input video frames Captured frames 12 ...Video App: Surveillance Recording 1 2 7 3 4 9 5 6 11 SL for video Explanation of GUI 12 Target Options8 Build Process 10 13 14 15 16 M-code snippet

  15. Characterization, adaptive traffic shaping, and multiplexing of real-time MPEG II video

    NASA Astrophysics Data System (ADS)

    Agrawal, Sanjay; Barry, Charles F.; Binnai, Vinay; Kazovsky, Leonid G.

    1997-01-01

    We obtain network traffic model for real-time MPEG-II encoded digital video by analyzing video stream samples from real-time encoders from NUKO Information Systems. MPEG-II sample streams include a resolution intensive movie, City of Joy, an action intensive movie, Aliens, a luminance intensive (black and white) movie, Road To Utopia, and a chrominance intensive (color) movie, Dick Tracy. From our analysis we obtain a heuristic model for the encoded video traffic which uses a 15-stage Markov process to model the I,B,P frame sequences within a group of pictures (GOP). A jointly-correlated Gaussian process is used to model the individual frame sizes. Scene change arrivals are modeled according to a gamma process. Simulations show that our MPEG-II traffic model generates, I,B,P frame sequences and frame sizes that closely match the sample MPEG-II stream traffic characteristics as they relate to latency and buffer occupancy in network queues. To achieve high multiplexing efficiency we propose a traffic shaping scheme which sets preferred 1-frame generation times among a group of encoders so as to minimize the overall variation in total offered traffic while still allowing the individual encoders to react to scene changes. Simulations show that our scheme results in multiplexing gains of up to 10% enabling us to multiplex twenty 6 Mbps MPEG-II video streams instead of 18 streams over an ATM/SONET OC3 link without latency or cell loss penalty. This scheme is due for a patent.

  16. Processor core for real time background identification of HD video based on OpenCV Gaussian mixture model algorithm

    NASA Astrophysics Data System (ADS)

    Genovese, Mariangela; Napoli, Ettore

    2013-05-01

    The identification of moving objects is a fundamental step in computer vision processing chains. The development of low cost and lightweight smart cameras steadily increases the request of efficient and high performance circuits able to process high definition video in real time. The paper proposes two processor cores aimed to perform the real time background identification on High Definition (HD, 1920 1080 pixel) video streams. The implemented algorithm is the OpenCV version of the Gaussian Mixture Model (GMM), an high performance probabilistic algorithm for the segmentation of the background that is however computationally intensive and impossible to implement on general purpose CPU with the constraint of real time processing. In the proposed paper, the equations of the OpenCV GMM algorithm are optimized in such a way that a lightweight and low power implementation of the algorithm is obtained. The reported performances are also the result of the use of state of the art truncated binary multipliers and ROM compression techniques for the implementation of the non-linear functions. The first circuit has commercial FPGA devices as a target and provides speed and logic resource occupation that overcome previously proposed implementations. The second circuit is oriented to an ASIC (UMC-90nm) standard cell implementation. Both implementations are able to process more than 60 frames per second in 1080p format, a frame rate compatible with HD television.

  17. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  18. Video-assisted palatopharyngeal surgery: a model for improved education and training.

    PubMed

    Allori, Alexander C; Marcus, Jeffrey R; Daluvoy, Sanjay; Bond, Jennifer

    2014-09-01

    Objective : The learning process for intraoral procedures is arguably more difficult than for other surgical procedures because of the assistant's severely limited visibility. Consequently, trainees may not be able to adequately see and follow all steps of the procedure, and attending surgeons may be less willing to entrust trainees with critical portions of the procedure. In this report, we propose a video-assisted approach to intraoral procedures that improves lighting, visibility, and potential for effective education and training. Design : Technical report (idea/innovation). Setting : Tertiary referral hospital. Patients : Children with cleft palate and velopharyngeal insufficiency requiring surgery. Interventions : Video-assisted palatoplasty, sphincteroplasty, and pharyngoplasty. Main Outcome Measures : Qualitative and semiquantitative educational outcomes, including learner perception regarding "real-time" (video-assisted surgery) and "non-real-time" (video-library-based) surgical education. Results : Trainees were strongly in favor of the video-assisted modality in "real-time" surgical training. Senior trainees identified more opportunities in which they had been safely entrusted to perform critical portions of the procedure, corresponding with satisfaction with the learning process scores, and they showed greater comfort/confidence scores related to performing the procedure under supervision and alone. Conclusions : Adoption of the video-assisted approach can be expected to markedly improve the learning curve for surgeons in training. This is now standard practice at our institution. We are presently conducting a full educational technology assessment to better characterize the effect on knowledge acquisition and technical improvement.

  19. A real-time inverse quantised transform for multi-standard with dynamic resolution support

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Chia; Lin, Chun-Ying; Zhang, Ce

    2016-06-01

    In this paper, a real-time configurable intelligent property (IP) core is presented for image/video decoding process in compatibility with the standard MPEG-4 Visual and the standard H.264/AVC. The inverse quantised discrete cosine and integer transform can be used to perform inverse quantised discrete cosine transform and inverse quantised inverse integer transforms which only required shift and add operations. Meanwhile, COordinate Rotation DIgital Computer iterations and compensation steps are adjustable in order to compensate for the video compression quality regarding various data throughput. The implementations are embedded in publicly available software XVID Codes 1.2.2 for the standard MPEG-4 Visual and the H.264/AVC reference software JM 16.1, where the experimental results show that the balance between the computational complexity and video compression quality is retained. At the end, FPGA synthesised results show that the proposed IP core can bring advantages to low hardware costs and also provide real-time performance for Full HD and 4K-2K video decoding.

  20. Very low cost real time histogram-based contrast enhancer utilizing fixed-point DSP processing

    NASA Astrophysics Data System (ADS)

    McCaffrey, Nathaniel J.; Pantuso, Francis P.

    1998-03-01

    A real time contrast enhancement system utilizing histogram- based algorithms has been developed to operate on standard composite video signals. This low-cost DSP based system is designed with fixed-point algorithms and an off-chip look up table (LUT) to reduce the cost considerably over other contemporary approaches. This paper describes several real- time contrast enhancing systems advanced at the Sarnoff Corporation for high-speed visible and infrared cameras. The fixed-point enhancer was derived from these high performance cameras. The enhancer digitizes analog video and spatially subsamples the stream to qualify the scene's luminance. Simultaneously, the video is streamed through a LUT that has been programmed with the previous calculation. Reducing division operations by subsampling reduces calculation- cycles and also allows the processor to be used with cameras of nominal resolutions. All values are written to the LUT during blanking so no frames are lost. The enhancer measures 13 cm X 6.4 cm X 3.2 cm, operates off 9 VAC and consumes 12 W. This processor is small and inexpensive enough to be mounted with field deployed security cameras and can be used for surveillance, video forensics and real- time medical imaging.

  1. A complexity-scalable software-based MPEG-2 video encoder.

    PubMed

    Chen, Guo-bin; Lu, Xin-ning; Wang, Xing-guo; Liu, Ji-lin

    2004-05-01

    With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.

  2. Large-scale machine learning and evaluation platform for real-time traffic surveillance

    NASA Astrophysics Data System (ADS)

    Eichel, Justin A.; Mishra, Akshaya; Miller, Nicholas; Jankovic, Nicholas; Thomas, Mohan A.; Abbott, Tyler; Swanson, Douglas; Keller, Joel

    2016-09-01

    In traffic engineering, vehicle detectors are trained on limited datasets, resulting in poor accuracy when deployed in real-world surveillance applications. Annotating large-scale high-quality datasets is challenging. Typically, these datasets have limited diversity; they do not reflect the real-world operating environment. There is a need for a large-scale, cloud-based positive and negative mining process and a large-scale learning and evaluation system for the application of automatic traffic measurements and classification. The proposed positive and negative mining process addresses the quality of crowd sourced ground truth data through machine learning review and human feedback mechanisms. The proposed learning and evaluation system uses a distributed cloud computing framework to handle data-scaling issues associated with large numbers of samples and a high-dimensional feature space. The system is trained using AdaBoost on 1,000,000 Haar-like features extracted from 70,000 annotated video frames. The trained real-time vehicle detector achieves an accuracy of at least 95% for 1/2 and about 78% for 19/20 of the time when tested on ˜7,500,000 video frames. At the end of 2016, the dataset is expected to have over 1 billion annotated video frames.

  3. Low-complexity image processing for real-time detection of neonatal clonic seizures.

    PubMed

    Ntonfo, Guy Mathurin Kouamou; Ferrari, Gianluigi; Raheli, Riccardo; Pisani, Francesco

    2012-05-01

    In this paper, we consider a novel low-complexity real-time image-processing-based approach to the detection of neonatal clonic seizures. Our approach is based on the extraction, from a video of a newborn, of an average luminance signal representative of the body movements. Since clonic seizures are characterized by periodic movements of parts of the body (e.g., the limbs), by evaluating the periodicity of the extracted average luminance signal it is possible to detect the presence of a clonic seizure. The periodicity is investigated, through a hybrid autocorrelation-Yin estimation technique, on a per-window basis, where a time window is defined as a sequence of consecutive video frames. While processing is first carried out on a single window basis, we extend our approach to interlaced windows. The performance of the proposed detection algorithm is investigated, in terms of sensitivity and specificity, through receiver operating characteristic curves, considering video recordings of newborns affected by neonatal seizures.

  4. Ubiquitous UAVs: a cloud based framework for storing, accessing and processing huge amount of video footage in an efficient way

    NASA Astrophysics Data System (ADS)

    Efstathiou, Nectarios; Skitsas, Michael; Psaroudakis, Chrysostomos; Koutras, Nikolaos

    2017-09-01

    Nowadays, video surveillance cameras are used for the protection and monitoring of a huge number of facilities worldwide. An important element in such surveillance systems is the use of aerial video streams originating from onboard sensors located on Unmanned Aerial Vehicles (UAVs). Video surveillance using UAVs represent a vast amount of video to be transmitted, stored, analyzed and visualized in a real-time way. As a result, the introduction and development of systems able to handle huge amount of data become a necessity. In this paper, a new approach for the collection, transmission and storage of aerial videos and metadata is introduced. The objective of this work is twofold. First, the integration of the appropriate equipment in order to capture and transmit real-time video including metadata (i.e. position coordinates, target) from the UAV to the ground and, second, the utilization of the ADITESS Versatile Media Content Management System (VMCMS-GE) for storing of the video stream and the appropriate metadata. Beyond the storage, VMCMS-GE provides other efficient management capabilities such as searching and processing of videos, along with video transcoding. For the evaluation and demonstration of the proposed framework we execute a use case where the surveillance of critical infrastructure and the detection of suspicious activities is performed. Collected video Transcodingis subject of this evaluation as well.

  5. Combining high-speed SVM learning with CNN feature encoding for real-time target recognition in high-definition video for ISR missions

    NASA Astrophysics Data System (ADS)

    Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus

    2017-05-01

    For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high-definition video exploitation.

  6. An integrated multispectral video and environmental monitoring system for the study of coastal processes and the support of beach management operations

    NASA Astrophysics Data System (ADS)

    Ghionis, George; Trygonis, Vassilis; Karydis, Antonis; Vousdoukas, Michalis; Alexandrakis, George; Drakopoulos, Panos; Amdreadis, Olympos; Psarros, Fotis; Velegrakis, Antonis; Poulos, Serafim

    2016-04-01

    Effective beach management requires environmental assessments that are based on sound science, are cost-effective and are available to beach users and managers in an accessible, timely and transparent manner. The most common problems are: 1) The available field data are scarce and of sub-optimal spatio-temporal resolution and coverage, 2) our understanding of local beach processes needs to be improved in order to accurately model/forecast beach dynamics under a changing climate, and 3) the information provided by coastal scientists/engineers in the form of data, models and scientific interpretation is often too complicated to be of direct use by coastal managers/decision makers. A multispectral video system has been developed, consisting of one or more video cameras operating in the visible part of the spectrum, a passive near-infrared (NIR) camera, an active NIR camera system, a thermal infrared camera and a spherical video camera, coupled with innovative image processing algorithms and a telemetric system for the monitoring of coastal environmental parameters. The complete system has the capability to record, process and communicate (in quasi-real time) high frequency information on shoreline position, wave breaking zones, wave run-up, erosion hot spots along the shoreline, nearshore wave height, turbidity, underwater visibility, wind speed and direction, air and sea temperature, solar radiation, UV radiation, relative humidity, barometric pressure and rainfall. An innovative, remotely-controlled interactive visual monitoring system, based on the spherical video camera (with 360°field of view), combines the video streams from all cameras and can be used by beach managers to monitor (in real time) beach user numbers, flow activities and safety at beaches of high touristic value. The high resolution near infrared cameras permit 24-hour monitoring of beach processes, while the thermal camera provides information on beach sediment temperature and moisture, can detect upwelling in the nearshore zone, and enhances the safety of beach users. All data can be presented in real- or quasi-real time and are stored for future analysis and training/validation of coastal processes models. Acknowledgements: This work was supported by the project BEACHTOUR (11SYN-8-1466) of the Operational Program "Cooperation 2011, Competitiveness and Entrepreneurship", co-funded by the European Regional Development Fund and the Greek Ministry of Education and Religious Affairs.

  7. Video training with peer feedback in real-time consultation: acceptability and feasibility in a general-practice setting.

    PubMed

    Eeckhout, Thomas; Gerits, Michiel; Bouquillon, Dries; Schoenmakers, Birgitte

    2016-08-01

    Since many years, teaching and training in communication skills are cornerstones in the medical education curriculum. Although video recording in a real-time consultation is expected to positively contribute to the learning process, research on this topic is scarce. This study will focus on the feasibility and acceptability of video recording during real-time patient encounters performed by general practitioner (GP) trainees. The primary research question addressed the experiences (defined as feasibility and acceptability) of GP trainees in video-recorded vocational training in a general practice. The second research question addressed the appraisal of this training. The procedure of video-recorded training is developed, refined and validated by the Academic Teaching Practice of Leuven since 1974 (Faculty of Medicine of the University of Leuven). The study is set up as a cross-sectional survey without follow-up. Outcome measures were defined as 'feasibility and acceptability' (experiences of trainees) of the video-recorded training and were approached by a structured questionnaire with the opportunity to add free text comments. The studied sample consisted of all first-phase trainees of the GP Master 2011-2012 at the University of Leuven. Almost 70% of the trainees were positive about recording consultations. Nevertheless, over 60% believed that patients felt uncomfortable during the video-recorded encounter. Almost 90% noticed an improvement of own communication skills through the observation and evaluation of. Most students (85%) experienced the logistical issues as major barrier to perform video consultations on a regular base. This study lays the foundation stone for further exploration of the video training in real-time consultations. Both students and teachers on the field acknowledge that the power of imaging is underestimated in the training of communication and vocational skills. The development of supportive material and protocols will lower thresholds. Time investment for teachers could be tempered by bringing up students to peer tutors and by an accurate scheduling of the video training. The development of supportive material and protocols will lower thresholds. Further research should finally focus on long-term efficacy and efficiency in terms of learning outcomes and on the facilitation of the technical process. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Video training with peer feedback in real-time consultation: acceptability and feasibility in a general-practice setting

    PubMed Central

    Eeckhout, Thomas; Gerits, Michiel; Bouquillon, Dries; Schoenmakers, Birgitte

    2016-01-01

    Objective Since many years, teaching and training in communication skills are cornerstones in the medical education curriculum. Although video recording in a real-time consultation is expected to positively contribute to the learning process, research on this topic is scarce. This study will focus on the feasibility and acceptability of video recording during real-time patient encounters performed by general practitioner (GP) trainees. Method The primary research question addressed the experiences (defined as feasibility and acceptability) of GP trainees in video-recorded vocational training in a general practice. The second research question addressed the appraisal of this training. The procedure of video-recorded training is developed, refined and validated by the Academic Teaching Practice of Leuven since 1974 (Faculty of Medicine of the University of Leuven). The study is set up as a cross-sectional survey without follow-up. Outcome measures were defined as ‘feasibility and acceptability’ (experiences of trainees) of the video-recorded training and were approached by a structured questionnaire with the opportunity to add free text comments. The studied sample consisted of all first-phase trainees of the GP Master 2011–2012 at the University of Leuven. Results Almost 70% of the trainees were positive about recording consultations. Nevertheless, over 60% believed that patients felt uncomfortable during the video-recorded encounter. Almost 90% noticed an improvement of own communication skills through the observation and evaluation of. Most students (85%) experienced the logistical issues as major barrier to perform video consultations on a regular base. Conclusions This study lays the foundation stone for further exploration of the video training in real-time consultations. Both students and teachers on the field acknowledge that the power of imaging is underestimated in the training of communication and vocational skills. The development of supportive material and protocols will lower thresholds. Practice implications Time investment for teachers could be tempered by bringing up students to peer tutors and by an accurate scheduling of the video training. The development of supportive material and protocols will lower thresholds. Further research should finally focus on long-term efficacy and efficiency in terms of learning outcomes and on the facilitation of the technical process. PMID:26842970

  9. [Microinjection Monitoring System Design Applied to MRI Scanning].

    PubMed

    Xu, Yongfeng

    2017-09-30

    A microinjection monitoring system applied to the MRI scanning was introduced. The micro camera probe was used to stretch into the main magnet for real-time video injection monitoring of injection tube terminal. The programming based on LabVIEW was created to analysis and process the real-time video information. The feedback signal was used for intelligent controlling of the modified injection pump. The real-time monitoring system can make the best use of injection under the condition that the injection device was away from the sample which inside the magnetic room and unvisible. 9.4 T MRI scanning experiment showed that the system in ultra-high field can work stability and doesn't affect the MRI scans.

  10. Video-based real-time on-street parking occupancy detection system

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Loce, Robert P.; Wu, Wencheng; Wang, YaoRong; Bernal, Edgar A.; Fan, Zhigang

    2013-10-01

    Urban parking management is receiving significant attention due to its potential to reduce traffic congestion, fuel consumption, and emissions. Real-time parking occupancy detection is a critical component of on-street parking management systems, where occupancy information is relayed to drivers via smart phone apps, radio, Internet, on-road signs, or global positioning system auxiliary signals. Video-based parking occupancy detection systems can provide a cost-effective solution to the sensing task while providing additional functionality for traffic law enforcement and surveillance. We present a video-based on-street parking occupancy detection system that can operate in real time. Our system accounts for the inherent challenges that exist in on-street parking settings, including illumination changes, rain, shadows, occlusions, and camera motion. Our method utilizes several components from video processing and computer vision for motion detection, background subtraction, and vehicle detection. We also present three traffic law enforcement applications: parking angle violation detection, parking boundary violation detection, and exclusion zone violation detection, which can be integrated into the parking occupancy cameras as a value-added option. Our experimental results show that the proposed parking occupancy detection method performs in real-time at 5 frames/s and achieves better than 90% detection accuracy across several days of videos captured in a busy street block under various weather conditions such as sunny, cloudy, and rainy, among others.

  11. Real-time video quality monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey

    2011-12-01

    The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.

  12. Microcomputer-Based Digital Signal Processing Laboratory Experiments.

    ERIC Educational Resources Information Center

    Tinari, Jr., Rocco; Rao, S. Sathyanarayan

    1985-01-01

    Describes a system (Apple II microcomputer interfaced to flexible, custom-designed digital hardware) which can provide: (1) Fast Fourier Transform (FFT) computation on real-time data with a video display of spectrum; (2) frequency synthesis experiments using the inverse FFT; and (3) real-time digital filtering experiments. (JN)

  13. PixonVision real-time video processor

    NASA Astrophysics Data System (ADS)

    Puetter, R. C.; Hier, R. G.

    2007-09-01

    PixonImaging LLC and DigiVision, Inc. have developed a real-time video processor, the PixonVision PV-200, based on the patented Pixon method for image deblurring and denoising, and DigiVision's spatially adaptive contrast enhancement processor, the DV1000. The PV-200 can process NTSC and PAL video in real time with a latency of 1 field (1/60 th of a second), remove the effects of aerosol scattering from haze, mist, smoke, and dust, improve spatial resolution by up to 2x, decrease noise by up to 6x, and increase local contrast by up to 8x. A newer version of the processor, the PV-300, is now in prototype form and can handle high definition video. Both the PV-200 and PV-300 are FPGA-based processors, which could be spun into ASICs if desired. Obvious applications of these processors include applications in the DOD (tanks, aircraft, and ships), homeland security, intelligence, surveillance, and law enforcement. If developed into an ASIC, these processors will be suitable for a variety of portable applications, including gun sights, night vision goggles, binoculars, and guided munitions. This paper presents a variety of examples of PV-200 processing, including examples appropriate to border security, battlefield applications, port security, and surveillance from unmanned aerial vehicles.

  14. Real-time strategy game training: emergence of a cognitive flexibility trait.

    PubMed

    Glass, Brian D; Maddox, W Todd; Love, Bradley C

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function.

  15. Real-Time Strategy Game Training: Emergence of a Cognitive Flexibility Trait

    PubMed Central

    Glass, Brian D.; Maddox, W. Todd; Love, Bradley C.

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function. PMID:23950921

  16. Motion-based video monitoring for early detection of livestock diseases: The case of African swine fever

    PubMed Central

    Martínez-Avilés, Marta; Ivorra, Benjamin; Martínez-López, Beatriz; Ramos, Ángel Manuel; Sánchez-Vizcaíno, José Manuel

    2017-01-01

    Early detection of infectious diseases can substantially reduce the health and economic impacts on livestock production. Here we describe a system for monitoring animal activity based on video and data processing techniques, in order to detect slowdown and weakening due to infection with African swine fever (ASF), one of the most significant threats to the pig industry. The system classifies and quantifies motion-based animal behaviour and daily activity in video sequences, allowing automated and non-intrusive surveillance in real-time. The aim of this system is to evaluate significant changes in animals’ motion after being experimentally infected with ASF virus. Indeed, pig mobility declined progressively and fell significantly below pre-infection levels starting at four days after infection at a confidence level of 95%. Furthermore, daily motion decreased in infected animals by approximately 10% before the detection of the disease by clinical signs. These results show the promise of video processing techniques for real-time early detection of livestock infectious diseases. PMID:28877181

  17. Breakup phenomena of a coaxial jet in the non-dilute region using real-time X-ray radiography

    NASA Astrophysics Data System (ADS)

    Cheung, F. B.; Kuo, K. K.; Woodward, R. D.; Garner, K. N.

    1990-07-01

    An innovative approach to the investigation of liquid jet breakup processes in the near-injector region has been developed to overcome the experimental difficulties associated with optically opaque, dense sprays. Real-time X-ray radiography (RTR) has been employed to observe the inner structure and breakup phenomena of coaxial jets. In the atomizing regime, droplets much smaller than the exit diameter are formed beginning essentially at the injector exit. Through the use of RTR, the instantaneous contour of the liquid core was visualized. Experimental results consist of controlled-exposure digital video images of the liquid jet breakup process. Time-averaged video images have also been recorded for comparison. A digital image processing system is used to analyze the recorded images by creating radiance level distributions of the jet. A rudimentary method for deducing intact-liquid-core length has been suggested. The technique of real-time X-ray radiography has been shown to be a viable approach to the study of the breakup processes of high-speed liquid jets.

  18. Image processing for improved eye-tracking accuracy

    NASA Technical Reports Server (NTRS)

    Mulligan, J. B.; Watson, A. B. (Principal Investigator)

    1997-01-01

    Video cameras provide a simple, noninvasive method for monitoring a subject's eye movements. An important concept is that of the resolution of the system, which is the smallest eye movement that can be reliably detected. While hardware systems are available that estimate direction of gaze in real-time from a video image of the pupil, such systems must limit image processing to attain real-time performance and are limited to a resolution of about 10 arc minutes. Two ways to improve resolution are discussed. The first is to improve the image processing algorithms that are used to derive an estimate. Off-line analysis of the data can improve resolution by at least one order of magnitude for images of the pupil. A second avenue by which to improve resolution is to increase the optical gain of the imaging setup (i.e., the amount of image motion produced by a given eye rotation). Ophthalmoscopic imaging of retinal blood vessels provides increased optical gain and improved immunity to small head movements but requires a highly sensitive camera. The large number of images involved in a typical experiment imposes great demands on the storage, handling, and processing of data. A major bottleneck had been the real-time digitization and storage of large amounts of video imagery, but recent developments in video compression hardware have made this problem tractable at a reasonable cost. Images of both the retina and the pupil can be analyzed successfully using a basic toolbox of image-processing routines (filtering, correlation, thresholding, etc.), which are, for the most part, well suited to implementation on vectorizing supercomputers.

  19. Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system.

    PubMed

    Hahn, Paul; Migacz, Justin; O'Connell, Rachelle; Izatt, Joseph A; Toth, Cynthia A

    2013-01-01

    We have recently developed a microscope-integrated spectral-domain optical coherence tomography (MIOCT) device towards intrasurgical cross-sectional imaging of surgical maneuvers. In this report, we explore the capability of MIOCT to acquire real-time video imaging of vitreoretinal surgical maneuvers without post-processing modifications. Standard 3-port vitrectomy was performed in human during scheduled surgery as well as in cadaveric porcine eyes. MIOCT imaging of human subjects was performed in healthy normal volunteers and intraoperatively at a normal pause immediately following surgical manipulations, under an Institutional Review Board-approved protocol, with informed consent from all subjects. Video MIOCT imaging of live surgical manipulations was performed in cadaveric porcine eyes by carefully aligning B-scans with instrument orientation and movement. Inverted imaging was performed by lengthening of the reference arm to a position beyond the choroid. Unprocessed MIOCT imaging was successfully obtained in healthy human volunteers and in human patients undergoing surgery, with visualization of post-surgical changes in unprocessed single B-scans. Real-time, unprocessed MIOCT video imaging was successfully obtained in cadaveric porcine eyes during brushing of the retina with the Tano scraper, peeling of superficial retinal tissue with intraocular forceps, and separation of the posterior hyaloid face. Real-time inverted imaging enabled imaging without complex conjugate artifacts. MIOCT is capable of unprocessed imaging of the macula in human patients undergoing surgery and of unprocessed, real-time, video imaging of surgical maneuvers in model eyes. These capabilities represent an important step towards development of MIOCT for efficient, real-time imaging of manipulations during human surgery.

  20. DSP Implementation of the Retinex Image Enhancement Algorithm

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2004-01-01

    The Retinex is a general-purpose image enhancement algorithm that is used to produce good visual representations of scenes. It performs a non-linear spatial/spectral transform that synthesizes strong local contrast enhancement and color constancy. A real-time, video frame rate implementation of the Retinex is required to meet the needs of various potential users. Retinex processing contains a relatively large number of complex computations, thus to achieve real-time performance using current technologies requires specialized hardware and software. In this paper we discuss the design and development of a digital signal processor (DSP) implementation of the Retinex. The target processor is a Texas Instruments TMS320C6711 floating point DSP. NTSC video is captured using a dedicated frame-grabber card, Retinex processed, and displayed on a standard monitor. We discuss the optimizations used to achieve real-time performance of the Retinex and also describe our future plans on using alternative architectures.

  1. Design and Smartphone-Based Implementation of a Chaotic Video Communication Scheme via WAN Remote Transmission

    NASA Astrophysics Data System (ADS)

    Lin, Zhuosheng; Yu, Simin; Li, Chengqing; Lü, Jinhu; Wang, Qianxue

    This paper proposes a chaotic secure video remote communication scheme that can perform on real WAN networks, and implements it on a smartphone hardware platform. First, a joint encryption and compression scheme is designed by embedding a chaotic encryption scheme into the MJPG-Streamer source codes. Then, multiuser smartphone communications between the sender and the receiver are implemented via WAN remote transmission. Finally, the transmitted video data are received with the given IP address and port in an Android smartphone. It should be noted that, this is the first time that chaotic video encryption schemes are implemented on such a hardware platform. The experimental results demonstrate that the technical challenges on hardware implementation of secure video communication are successfully solved, reaching a balance amongst sufficient security level, real-time processing of massive video data, and utilization of available resources in the hardware environment. The proposed scheme can serve as a good application example of chaotic secure communications for smartphone and other mobile facilities in the future.

  2. Real-time fluorescence target/background (T/B) ratio calculation in multimodal endoscopy for detecting GI tract cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Yang; Gong, Yuanzheng; Wang, Thomas D.; Seibel, Eric J.

    2017-02-01

    Multimodal endoscopy, with fluorescence-labeled probes binding to overexpressed molecular targets, is a promising technology to visualize early-stage cancer. T/B ratio is the quantitative analysis used to correlate fluorescence regions to cancer. Currently, T/B ratio calculation is post-processing and does not provide real-time feedback to the endoscopist. To achieve real-time computer assisted diagnosis (CAD), we establish image processing protocols for calculating T/B ratio and locating high-risk fluorescence regions for guiding biopsy and therapy in Barrett's esophagus (BE) patients. Methods: Chan-Vese algorithm, an active contour model, is used to segment high-risk regions in fluorescence videos. A semi-implicit gradient descent method was applied to minimize the energy function of this algorithm and evolve the segmentation. The surrounding background was then identified using morphology operation. The average T/B ratio was computed and regions of interest were highlighted based on user-selected thresholding. Evaluation was conducted on 50 fluorescence videos acquired from clinical video recordings using a custom multimodal endoscope. Results: With a processing speed of 2 fps on a laptop computer, we obtained accurate segmentation of high-risk regions examined by experts. For each case, the clinical user could optimize target boundary by changing the penalty on area inside the contour. Conclusion: Automatic and real-time procedure of calculating T/B ratio and identifying high-risk regions of early esophageal cancer was developed. Future work will increase processing speed to <5 fps, refine the clinical interface, and apply to additional GI cancers and fluorescence peptides.

  3. A generic flexible and robust approach for intelligent real-time video-surveillance systems

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Delaigle, Jean-Francois; Bastide, Arnaud; Macq, Benoit

    2004-05-01

    In this article we present a generic, flexible and robust approach for an intelligent real-time video-surveillance system. A previous version of the system was presented in [1]. The goal of these advanced tools is to provide help to operators by detecting events of interest in visual scenes and highlighting alarms and compute statistics. The proposed system is a multi-camera platform able to handle different standards of video inputs (composite, IP, IEEE1394 ) and which can basically compress (MPEG4), store and display them. This platform also integrates advanced video analysis tools, such as motion detection, segmentation, tracking and interpretation. The design of the architecture is optimised to playback, display, and process video flows in an efficient way for video-surveillance application. The implementation is distributed on a scalable computer cluster based on Linux and IP network. It relies on POSIX threads for multitasking scheduling. Data flows are transmitted between the different modules using multicast technology and under control of a TCP-based command network (e.g. for bandwidth occupation control). We report here some results and we show the potential use of such a flexible system in third generation video surveillance system. We illustrate the interest of the system in a real case study, which is the indoor surveillance.

  4. Seeing Change in Time: Video Games to Teach about Temporal Change in Scientific Phenomena

    ERIC Educational Resources Information Center

    Corredor, Javier; Gaydos, Matthew; Squire, Kurt

    2014-01-01

    This article explores how learning biological concepts can be facilitated by playing a video game that depicts interactions and processes at the subcellular level. Particularly, this article reviews the effects of a real-time strategy game that requires players to control the behavior of a virus and interact with cell structures in a way that…

  5. MPCM: a hardware coder for super slow motion video sequences

    NASA Astrophysics Data System (ADS)

    Alcocer, Estefanía; López-Granado, Otoniel; Gutierrez, Roberto; Malumbres, Manuel P.

    2013-12-01

    In the last decade, the improvements in VLSI levels and image sensor technologies have led to a frenetic rush to provide image sensors with higher resolutions and faster frame rates. As a result, video devices were designed to capture real-time video at high-resolution formats with frame rates reaching 1,000 fps and beyond. These ultrahigh-speed video cameras are widely used in scientific and industrial applications, such as car crash tests, combustion research, materials research and testing, fluid dynamics, and flow visualization that demand real-time video capturing at extremely high frame rates with high-definition formats. Therefore, data storage capability, communication bandwidth, processing time, and power consumption are critical parameters that should be carefully considered in their design. In this paper, we propose a fast FPGA implementation of a simple codec called modulo-pulse code modulation (MPCM) which is able to reduce the bandwidth requirements up to 1.7 times at the same image quality when compared with PCM coding. This allows current high-speed cameras to capture in a continuous manner through a 40-Gbit Ethernet point-to-point access.

  6. Real-time heart rate measurement for multi-people using compressive tracking

    NASA Astrophysics Data System (ADS)

    Liu, Lingling; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Dong, Liquan; Ma, Feilong; Pang, Zongguang; Cai, Zhi; Zhang, Yachu; Hua, Peng; Yuan, Ruifeng

    2017-09-01

    The rise of aging population has created a demand for inexpensive, unobtrusive, automated health care solutions. Image PhotoPlethysmoGraphy(IPPG) aids in the development of these solutions by allowing for the extraction of physiological signals from video data. However, the main deficiencies of the recent IPPG methods are non-automated, non-real-time and susceptible to motion artifacts(MA). In this paper, a real-time heart rate(HR) detection method for multiple subjects simultaneously was proposed and realized using the open computer vision(openCV) library, which consists of getting multiple subjects' facial video automatically through a Webcam, detecting the region of interest (ROI) in the video, reducing the false detection rate by our improved Adaboost algorithm, reducing the MA by our improved compress tracking(CT) algorithm, wavelet noise-suppression algorithm for denoising and multi-threads for higher detection speed. For comparison, HR was measured simultaneously using a medical pulse oximetry device for every subject during all sessions. Experimental results on a data set of 30 subjects show that the max average absolute error of heart rate estimation is less than 8 beats per minute (BPM), and the processing speed of every frame has almost reached real-time: the experiments with video recordings of ten subjects under the condition of the pixel resolution of 600× 800 pixels show that the average HR detection time of 10 subjects was about 17 frames per second (fps).

  7. ACE: Automatic Centroid Extractor for real time target tracking

    NASA Technical Reports Server (NTRS)

    Cameron, K.; Whitaker, S.; Canaris, J.

    1990-01-01

    A high performance video image processor has been implemented which is capable of grouping contiguous pixels from a raster scan image into groups and then calculating centroid information for each object in a frame. The algorithm employed to group pixels is very efficient and is guaranteed to work properly for all convex shapes as well as most concave shapes. Processing speeds are adequate for real time processing of video images having a pixel rate of up to 20 million pixels per second. Pixels may be up to 8 bits wide. The processor is designed to interface directly to a transputer serial link communications channel with no additional hardware. The full custom VLSI processor was implemented in a 1.6 mu m CMOS process and measures 7200 mu m on a side.

  8. Researching on the process of remote sensing video imagery

    NASA Astrophysics Data System (ADS)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  9. Augmented Virtuality: A Real-time Process for Presenting Real-world Visual Sensory Information in an Immersive Virtual Environment for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    McFadden, D.; Tavakkoli, A.; Regenbrecht, J.; Wilson, B.

    2017-12-01

    Virtual Reality (VR) and Augmented Reality (AR) applications have recently seen an impressive growth, thanks to the advent of commercial Head Mounted Displays (HMDs). This new visualization era has opened the possibility of presenting researchers from multiple disciplines with data visualization techniques not possible via traditional 2D screens. In a purely VR environment researchers are presented with the visual data in a virtual environment, whereas in a purely AR application, a piece of virtual object is projected into the real world with which researchers could interact. There are several limitations to the purely VR or AR application when taken within the context of remote planetary exploration. For example, in a purely VR environment, contents of the planet surface (e.g. rocks, terrain, or other features) should be created off-line from a multitude of images using image processing techniques to generate 3D mesh data that will populate the virtual surface of the planet. This process usually takes a tremendous amount of computational resources and cannot be delivered in real-time. As an alternative, video frames may be superimposed on the virtual environment to save processing time. However, such rendered video frames will lack 3D visual information -i.e. depth information. In this paper, we present a technique to utilize a remotely situated robot's stereoscopic cameras to provide a live visual feed from the real world into the virtual environment in which planetary scientists are immersed. Moreover, the proposed technique will blend the virtual environment with the real world in such a way as to preserve both the depth and visual information from the real world while allowing for the sensation of immersion when the entire sequence is viewed via an HMD such as Oculus Rift. The figure shows the virtual environment with an overlay of the real-world stereoscopic video being presented in real-time into the virtual environment. Notice the preservation of the object's shape, shadows, and depth information. The distortions shown in the image are due to the rendering of the stereoscopic data into a 2D image for the purposes of taking screenshots.

  10. Real-time high-level video understanding using data warehouse

    NASA Astrophysics Data System (ADS)

    Lienard, Bruno; Desurmont, Xavier; Barrie, Bertrand; Delaigle, Jean-Francois

    2006-02-01

    High-level Video content analysis such as video-surveillance is often limited by computational aspects of automatic image understanding, i.e. it requires huge computing resources for reasoning processes like categorization and huge amount of data to represent knowledge of objects, scenarios and other models. This article explains how to design and develop a "near real-time adaptive image datamart", used, as a decisional support system for vision algorithms, and then as a mass storage system. Using RDF specification as storing format of vision algorithms meta-data, we can optimise the data warehouse concepts for video analysis, add some processes able to adapt the current model and pre-process data to speed-up queries. In this way, when new data is sent from a sensor to the data warehouse for long term storage, using remote procedure call embedded in object-oriented interfaces to simplified queries, they are processed and in memory data-model is updated. After some processing, possible interpretations of this data can be returned back to the sensor. To demonstrate this new approach, we will present typical scenarios applied to this architecture such as people tracking and events detection in a multi-camera network. Finally we will show how this system becomes a high-semantic data container for external data-mining.

  11. Internet Teleprescence by Real-Time View-Dependent Image Generation with Omnidirectional Video Camera

    NASA Astrophysics Data System (ADS)

    Morita, Shinji; Yamazawa, Kazumasa; Yokoya, Naokazu

    2003-01-01

    This paper describes a new networked telepresence system which realizes virtual tours into a visualized dynamic real world without significant time delay. Our system is realized by the following three steps: (1) video-rate omnidirectional image acquisition, (2) transportation of an omnidirectional video stream via internet, and (3) real-time view-dependent perspective image generation from the omnidirectional video stream. Our system is applicable to real-time telepresence in the situation where the real world to be seen is far from an observation site, because the time delay from the change of user"s viewing direction to the change of displayed image is small and does not depend on the actual distance between both sites. Moreover, multiple users can look around from a single viewpoint in a visualized dynamic real world in different directions at the same time. In experiments, we have proved that the proposed system is useful for internet telepresence.

  12. Affordable multisensor digital video architecture for 360° situational awareness displays

    NASA Astrophysics Data System (ADS)

    Scheiner, Steven P.; Khan, Dina A.; Marecki, Alexander L.; Berman, David A.; Carberry, Dana

    2011-06-01

    One of the major challenges facing today's military ground combat vehicle operations is the ability to achieve and maintain full-spectrum situational awareness while under armor (i.e. closed hatch). Thus, the ability to perform basic tasks such as driving, maintaining local situational awareness, surveillance, and targeting will require a high-density array of real time information be processed, distributed, and presented to the vehicle operators and crew in near real time (i.e. low latency). Advances in display and sensor technologies are providing never before seen opportunities to supply large amounts of high fidelity imagery and video to the vehicle operators and crew in real time. To fully realize the advantages of these emerging display and sensor technologies, an underlying digital architecture must be developed that is capable of processing these large amounts of video and data from separate sensor systems and distributing it simultaneously within the vehicle to multiple vehicle operators and crew. This paper will examine the systems and software engineering efforts required to overcome these challenges and will address development of an affordable, integrated digital video architecture. The approaches evaluated will enable both current and future ground combat vehicle systems the flexibility to readily adopt emerging display and sensor technologies, while optimizing the Warfighter Machine Interface (WMI), minimizing lifecycle costs, and improve the survivability of the vehicle crew working in closed-hatch systems during complex ground combat operations.

  13. Design and Implementation of a Video-Zoom Driven Digital Audio-Zoom System for Portable Digital Imaging Devices

    NASA Astrophysics Data System (ADS)

    Park, Nam In; Kim, Seon Man; Kim, Hong Kook; Kim, Ji Woon; Kim, Myeong Bo; Yun, Su Won

    In this paper, we propose a video-zoom driven audio-zoom algorithm in order to provide audio zooming effects in accordance with the degree of video-zoom. The proposed algorithm is designed based on a super-directive beamformer operating with a 4-channel microphone system, in conjunction with a soft masking process that considers the phase differences between microphones. Thus, the audio-zoom processed signal is obtained by multiplying an audio gain derived from a video-zoom level by the masked signal. After all, a real-time audio-zoom system is implemented on an ARM-CORETEX-A8 having a clock speed of 600 MHz after different levels of optimization are performed such as algorithmic level, C-code, and memory optimizations. To evaluate the complexity of the proposed real-time audio-zoom system, test data whose length is 21.3 seconds long is sampled at 48 kHz. As a result, it is shown from the experiments that the processing time for the proposed audio-zoom system occupies 14.6% or less of the ARM clock cycles. It is also shown from the experimental results performed in a semi-anechoic chamber that the signal with the front direction can be amplified by approximately 10 dB compared to the other directions.

  14. Obstacles encountered in the development of the low vision enhancement system.

    PubMed

    Massof, R W; Rickman, D L

    1992-01-01

    The Johns Hopkins Wilmer Eye Institute and the NASA Stennis Space Center are collaborating on the development of a new high technology low vision aid called the Low Vision Enhancement System (LVES). The LVES consists of a binocular head-mounted video display system, video cameras mounted on the head-mounted display, and real-time video image processing in a system package that is battery powered and portable. Through a phased development approach, several generations of the LVES can be made available to the patient in a timely fashion. This paper describes the LVES project with major emphasis on technical problems encountered or anticipated during the development process.

  15. Avionics-compatible video facial cognizer for detection of pilot incapacitation.

    PubMed

    Steffin, Morris

    2006-01-01

    High-acceleration loss of consciousness is a serious problem for military pilots. In this laboratory, a video cognizer has been developed that in real time detects facial changes closely coupled to the onset of loss of consciousness. Efficient algorithms are compatible with video digital signal processing hardware and are thus configurable on an autonomous single board that generates alarm triggers to activate autopilot, and is avionics-compatible.

  16. Low-complexity camera digital signal imaging for video document projection system

    NASA Astrophysics Data System (ADS)

    Hsia, Shih-Chang; Tsai, Po-Shien

    2011-04-01

    We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.

  17. Simultaneous compression and encryption for secure real-time secure transmission of sensitive video transmission

    NASA Astrophysics Data System (ADS)

    Al-Hayani, Nazar; Al-Jawad, Naseer; Jassim, Sabah A.

    2014-05-01

    Video compression and encryption became very essential in a secured real time video transmission. Applying both techniques simultaneously is one of the challenges where the size and the quality are important in multimedia transmission. In this paper we proposed a new technique for video compression and encryption. Both encryption and compression are based on edges extracted from the high frequency sub-bands of wavelet decomposition. The compression algorithm based on hybrid of: discrete wavelet transforms, discrete cosine transform, vector quantization, wavelet based edge detection, and phase sensing. The compression encoding algorithm treats the video reference and non-reference frames in two different ways. The encryption algorithm utilized A5 cipher combined with chaotic logistic map to encrypt the significant parameters and wavelet coefficients. Both algorithms can be applied simultaneously after applying the discrete wavelet transform on each individual frame. Experimental results show that the proposed algorithms have the following features: high compression, acceptable quality, and resistance to the statistical and bruteforce attack with low computational processing.

  18. A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks

    NASA Technical Reports Server (NTRS)

    Cui, Zhenqian

    1999-01-01

    With the development of high-speed networking technology, computer networks, including local-area networks (LANs), wide-area networks (WANs) and the Internet, are extending their traditional roles of carrying computer data. They are being used for Internet telephony, multimedia applications such as conferencing and video on demand, distributed simulations, and other real-time applications. LANs are even used for distributed real-time process control and computing as a cost-effective approach. Differing from traditional data transfer, these new classes of high-speed network applications (video, audio, real-time process control, and others) are delay sensitive. The usefulness of data depends not only on the correctness of received data, but also the time that data are received. In other words, these new classes of applications require networks to provide guaranteed services or quality of service (QoS). Quality of service can be defined by a set of parameters and reflects a user's expectation about the underlying network's behavior. Traditionally, distinct services are provided by different kinds of networks. Voice services are provided by telephone networks, video services are provided by cable networks, and data transfer services are provided by computer networks. A single network providing different services is called an integrated-services network.

  19. Design and implementation of H.264 based embedded video coding technology

    NASA Astrophysics Data System (ADS)

    Mao, Jian; Liu, Jinming; Zhang, Jiemin

    2016-03-01

    In this paper, an embedded system for remote online video monitoring was designed and developed to capture and record the real-time circumstances in elevator. For the purpose of improving the efficiency of video acquisition and processing, the system selected Samsung S5PV210 chip as the core processor which Integrated graphics processing unit. And the video was encoded with H.264 format for storage and transmission efficiently. Based on S5PV210 chip, the hardware video coding technology was researched, which was more efficient than software coding. After running test, it had been proved that the hardware video coding technology could obviously reduce the cost of system and obtain the more smooth video display. It can be widely applied for the security supervision [1].

  20. Analyzing workplace exposures using direct reading instruments and video exposure monitoring techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gressel, M.G.; Heitbrink, W.A.; Jensen, P.A.

    1992-08-01

    The techniques for conducting video exposure monitoring were described along with the equipment required to monitor and record worker breathing zone concentrations, the analysis of the real time exposure data using video recordings, and the use of real time concentration data from a direct reading instrument to determine the effective ventilation rate and the mixing factor of a given room at a specific time. Case studies which made use of video exposure monitoring techniques to provide information not available through integrated sampling were also discussed. The process being monitored and the methodology used to monitor the exposures were described formore » each of the case studies. The case studies included manual material weigh out, ceramic casting cleaning, dumping bags of powdered materials, furniture stripping, administration of nitrous-oxide during dental procedures, hand held sanding operation, methanol exposures in maintenance garages, brake servicing, bulk loading of railroad cars and trucks, and grinding operations.« less

  1. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    NASA Astrophysics Data System (ADS)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  2. The integration processing of the visual and auditory information in videos of real-world events: an ERP study.

    PubMed

    Liu, Baolin; Wang, Zhongning; Jin, Zhixing

    2009-09-11

    In real life, the human brain usually receives information through visual and auditory channels and processes the multisensory information, but studies on the integration processing of the dynamic visual and auditory information are relatively few. In this paper, we have designed an experiment, where through the presentation of common scenario, real-world videos, with matched and mismatched actions (images) and sounds as stimuli, we aimed to study the integration processing of synchronized visual and auditory information in videos of real-world events in the human brain, through the use event-related potentials (ERPs) methods. Experimental results showed that videos of mismatched actions (images) and sounds would elicit a larger P400 as compared to videos of matched actions (images) and sounds. We believe that the P400 waveform might be related to the cognitive integration processing of mismatched multisensory information in the human brain. The results also indicated that synchronized multisensory information would interfere with each other, which would influence the results of the cognitive integration processing.

  3. A MPEG-4 encoder based on TMS320C6416

    NASA Astrophysics Data System (ADS)

    Li, Gui-ju; Liu, Wei-ning

    2013-08-01

    Engineering and products need to achieve real-time video encoding by DSP, but the high computational complexity and huge amount of data requires that system has high data throughput. In this paper, a real-time MPEG-4 video encoder is designed based on TMS320C6416 platform. The kernel is the DSP of TMS320C6416T and FPGA chip f as the organization and management of video data. In order to control the flow of input and output data. Encoded stream is output using the synchronous serial port. The system has the clock frequency of 1GHz and has up to 8000 MIPS speed processing capacity when running at full speed. Due to the low coding efficiency of MPEG-4 video encoder transferred directly to DSP platform, it is needed to improve the program structure, data structures and algorithms combined with TMS320C6416T characteristics. First: Design the image storage architecture by balancing the calculation spending, storage space cost and EDMA read time factors. Open up a more buffer in memory, each buffer cache 16 lines of video data to be encoded, reconstruction image and reference image including search range. By using the variable alignment mode of the DSP, modifying the definition of structure variables and change the look-up table which occupy larger space with a direct calculation array to save memory space. After the program structure optimization, the program code, all variables, buffering buffers and the interpolation image including the search range can be placed in memory. Then, as to the time-consuming process modules and some functions which are called many times, the corresponding modules are written in parallel assembly language of TMS320C6416T which can increase the running speed. Besides, the motion estimation algorithm is improved by using a cross-hexagon search algorithm, The search speed can be increased obviously. Finally, the execution time, signal-to-noise ratio and compression ratio of a real-time image acquisition sequence is given. The experimental results show that the designed encoder in this paper can accomplish real-time encoding of a 768× 576, 25 frames per second grayscale video. The code rate is 1.5M bits per second.

  4. An embedded processor for real-time atmoshperic compensation

    NASA Astrophysics Data System (ADS)

    Bodnar, Michael R.; Curt, Petersen F.; Ortiz, Fernando E.; Carrano, Carmen J.; Kelmelis, Eric J.

    2009-05-01

    Imaging over long distances is crucial to a number of defense and security applications, such as homeland security and launch tracking. However, the image quality obtained from current long-range optical systems can be severely degraded by the turbulent atmosphere in the path between the region under observation and the imager. While this obscured image information can be recovered using post-processing techniques, the computational complexity of such approaches has prohibited deployment in real-time scenarios. To overcome this limitation, we have coupled a state-of-the-art atmospheric compensation algorithm, the average-bispectrum speckle method, with a powerful FPGA-based embedded processing board. The end result is a light-weight, lower-power image processing system that improves the quality of long-range imagery in real-time, and uses modular video I/O to provide a flexible interface to most common digital and analog video transport methods. By leveraging the custom, reconfigurable nature of the FPGA, a 20x speed increase over a modern desktop PC was achieved in a form-factor that is compact, low-power, and field-deployable.

  5. Interactive brain shift compensation using GPU based programming

    NASA Astrophysics Data System (ADS)

    van der Steen, Sander; Noordmans, Herke Jan; Verdaasdonk, Rudolf

    2009-02-01

    Processing large images files or real-time video streams requires intense computational power. Driven by the gaming industry, the processing power of graphic process units (GPUs) has increased significantly. With the pixel shader model 4.0 the GPU can be used for image processing 10x faster than the CPU. Dedicated software was developed to deform 3D MR and CT image sets for real-time brain shift correction during navigated neurosurgery using landmarks or cortical surface traces defined by the navigation pointer. Feedback was given using orthogonal slices and an interactively raytraced 3D brain image. GPU based programming enables real-time processing of high definition image datasets and various applications can be developed in medicine, optics and image sciences.

  6. Intra and Inter-Rater Reliability of Screening for Movement Impairments: Movement Control Tests from The Foundation Matrix

    PubMed Central

    Mischiati, Carolina R.; Comerford, Mark; Gosford, Emma; Swart, Jacqueline; Ewings, Sean; Botha, Nadine; Stokes, Maria; Mottram, Sarah L.

    2015-01-01

    Pre-season screening is well established within the sporting arena, and aims to enhance performance and reduce injury risk. With the increasing need to identify potential injury with greater accuracy, a new risk assessment process has been produced; The Performance Matrix (battery of movement control tests). As with any new method of objective testing, it is fundamental to establish whether the same results can be reproduced between examiners and by the same examiner on consecutive occasions. This study aimed to determine the intra-rater test re-test and inter-rater reliability of tests from a component of The Performance Matrix, The Foundation Matrix. Twenty participants were screened by two experienced musculoskeletal therapists using nine tests to assess the ability to control movement during specific tasks. Movement evaluation criteria for each test were rated as pass or fail. The therapists observed participants real-time and tests were recorded on video to enable repeated ratings four months later to examine intra-rater reliability (videos rated two weeks apart). Overall test percentage agreement was 87% for inter-rater reliability; 98% Rater 1, 94% Rater 2 for test re-test reliability; and 75% for real-time versus video. Intraclass-correlation coefficients (ICCs) were excellent between raters (0.81) and within raters (Rater 1, 0.96; Rater 2, 0.88) but poor for real-time versus video (0.23). Reliability for individual components of each test was more variable: inter-rater, 68-100%; intra-rater, 88-100% Rater 1, 75-100% Rater 2; and real-time versus video 31-100%. Cohen’s Kappa values for inter-rater reliability were 0.0-1.0; intra-rater 0.6-1.0 for Rater 1; -0.1-1.0 for Rater 2; and -0.1-1 for real-time versus video. It is concluded that both inter and intra-rater reliability of tests in The Foundation Matrix are acceptable when rated by experienced therapists. Recommendations are made for modifying some of the criteria to improve reliability where excellence was not reached. Key points The movement control tests of The Foundation Matrix had acceptable reliability between raters and within raters on different days Agreement between observations made on tests performed real-time and on video recordings was low, indicating poor validity of use of video recordings Some movement evaluation criteria related to specific tests that did not achieve excellent agreement could be modified to improve reliability PMID:25983594

  7. Real-time video streaming in mobile cloud over heterogeneous wireless networks

    NASA Astrophysics Data System (ADS)

    Abdallah-Saleh, Saleh; Wang, Qi; Grecos, Christos

    2012-06-01

    Recently, the concept of Mobile Cloud Computing (MCC) has been proposed to offload the resource requirements in computational capabilities, storage and security from mobile devices into the cloud. Internet video applications such as real-time streaming are expected to be ubiquitously deployed and supported over the cloud for mobile users, who typically encounter a range of wireless networks of diverse radio access technologies during their roaming. However, real-time video streaming for mobile cloud users across heterogeneous wireless networks presents multiple challenges. The network-layer quality of service (QoS) provision to support high-quality mobile video delivery in this demanding scenario remains an open research question, and this in turn affects the application-level visual quality and impedes mobile users' perceived quality of experience (QoE). In this paper, we devise a framework to support real-time video streaming in this new mobile video networking paradigm and evaluate the performance of the proposed framework empirically through a lab-based yet realistic testing platform. One particular issue we focus on is the effect of users' mobility on the QoS of video streaming over the cloud. We design and implement a hybrid platform comprising of a test-bed and an emulator, on which our concept of mobile cloud computing, video streaming and heterogeneous wireless networks are implemented and integrated to allow the testing of our framework. As representative heterogeneous wireless networks, the popular WLAN (Wi-Fi) and MAN (WiMAX) networks are incorporated in order to evaluate effects of handovers between these different radio access technologies. The H.264/AVC (Advanced Video Coding) standard is employed for real-time video streaming from a server to mobile users (client nodes) in the networks. Mobility support is introduced to enable continuous streaming experience for a mobile user across the heterogeneous wireless network. Real-time video stream packets are captured for analytical purposes on the mobile user node. Experimental results are obtained and analysed. Future work is identified towards further improvement of the current design and implementation. With this new mobile video networking concept and paradigm implemented and evaluated, results and observations obtained from this study would form the basis of a more in-depth, comprehensive understanding of various challenges and opportunities in supporting high-quality real-time video streaming in mobile cloud over heterogeneous wireless networks.

  8. Video image processing to create a speed sensor

    DOT National Transportation Integrated Search

    1999-11-01

    Image processing has been applied to traffic analysis in recent years, with different goals. In the report, a new approach is presented for extracting vehicular speed information, given a sequence of real-time traffic images. We extract moving edges ...

  9. Real-time optimizations for integrated smart network camera

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Lienard, Bruno; Meessen, Jerome; Delaigle, Jean-Francois

    2005-02-01

    We present an integrated real-time smart network camera. This system is composed of an image sensor, an embedded PC based electronic card for image processing and some network capabilities. The application detects events of interest in visual scenes, highlights alarms and computes statistics. The system also produces meta-data information that could be shared between other cameras in a network. We describe the requirements of such a system and then show how the design of the system is optimized to process and compress video in real-time. Indeed, typical video-surveillance algorithms as background differencing, tracking and event detection should be highly optimized and simplified to be used in this hardware. To have a good adequation between hardware and software in this light embedded system, the software management is written on top of the java based middle-ware specification established by the OSGi alliance. We can integrate easily software and hardware in complex environments thanks to the Java Real-Time specification for the virtual machine and some network and service oriented java specifications (like RMI and Jini). Finally, we will report some outcomes and typical case studies of such a camera like counter-flow detection.

  10. Real-time image processing for passive mmW imagery

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron; Bonnett, James; Harrity, Charles; Mackrides, Daniel; Dillon, Thomas E.; Martin, Richard D.; Schuetz, Christopher A.; Kelmelis, Eric; Prather, Dennis W.

    2015-05-01

    The transmission characteristics of millimeter waves (mmWs) make them suitable for many applications in defense and security, from airport preflight scanning to penetrating degraded visual environments such as brownout or heavy fog. While the cold sky provides sufficient illumination for these images to be taken passively in outdoor scenarios, this utility comes at a cost; the diffraction limit of the longer wavelengths involved leads to lower resolution imagery compared to the visible or IR regimes, and the low power levels inherent to passive imagery allow the data to be more easily degraded by noise. Recent techniques leveraging optical upconversion have shown significant promise, but are still subject to fundamental limits in resolution and signal-to-noise ratio. To address these issues we have applied techniques developed for visible and IR imagery to decrease noise and increase resolution in mmW imagery. We have developed these techniques into fieldable software, making use of GPU platforms for real-time operation of computationally complex image processing algorithms. We present data from a passive, 77 GHz, distributed aperture, video-rate imaging platform captured during field tests at full video rate. These videos demonstrate the increase in situational awareness that can be gained through applying computational techniques in real-time without needing changes in detection hardware.

  11. Overview of the DART project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, K.R.; Hansen, F.R.; Napolitano, L.M.

    1992-01-01

    DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate ( C'' or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability bymore » using DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less

  12. Overview of the DART project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, K.R.; Hansen, F.R.; Napolitano, L.M.

    1992-01-01

    DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate (``C`` or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability by usingmore » DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less

  13. Real-time processing of dual band HD video for maintaining operational effectiveness in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Parker, Steve C. J.; Hickman, Duncan L.; Smith, Moira I.

    2015-05-01

    Effective reconnaissance, surveillance and situational awareness, using dual band sensor systems, require the extraction, enhancement and fusion of salient features, with the processed video being presented to the user in an ergonomic and interpretable manner. HALO™ is designed to meet these requirements and provides an affordable, real-time, and low-latency image fusion solution on a low size, weight and power (SWAP) platform. The system has been progressively refined through field trials to increase its operating envelope and robustness. The result is a video processor that improves detection, recognition and identification (DRI) performance, whilst lowering operator fatigue and reaction times in complex and highly dynamic situations. This paper compares the performance of HALO™, both qualitatively and quantitatively, with conventional blended fusion for operation in degraded visual environments (DVEs), such as those experienced during ground and air-based operations. Although image blending provides a simple fusion solution, which explains its common adoption, the results presented demonstrate that its performance is poor compared to the HALO™ fusion scheme in DVE scenarios.

  14. Evaluation of a radiation survey training video developed from a real-time video radiation detection system.

    PubMed

    Wang, Wei-Hsung; McGlothlin, James D; Smith, Deborah J; Matthews, Kenneth L

    2006-02-01

    This project incorporates radiation survey training into a real-time video radiation detection system, thus providing a practical perspective for the radiation worker on efficient performance of radiation surveys. Regular surveys to evaluate radiation levels are necessary not only to recognize potential radiological hazards but also to keep the radiation exposure as low as reasonably achievable. By developing and implementing an instructional learning system using a real-time radiation survey training video showing specific categorization of work elements, radiation workers trained with this system demonstrated better radiation survey practice.

  15. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  16. Autonomous target tracking of UAVs based on low-power neural network hardware

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Jin, Zhanpeng; Thiem, Clare; Wysocki, Bryant; Shen, Dan; Chen, Genshe

    2014-05-01

    Detecting and identifying targets in unmanned aerial vehicle (UAV) images and videos have been challenging problems due to various types of image distortion. Moreover, the significantly high processing overhead of existing image/video processing techniques and the limited computing resources available on UAVs force most of the processing tasks to be performed by the ground control station (GCS) in an off-line manner. In order to achieve fast and autonomous target identification on UAVs, it is thus imperative to investigate novel processing paradigms that can fulfill the real-time processing requirements, while fitting the size, weight, and power (SWaP) constrained environment. In this paper, we present a new autonomous target identification approach on UAVs, leveraging the emerging neuromorphic hardware which is capable of massively parallel pattern recognition processing and demands only a limited level of power consumption. A proof-of-concept prototype was developed based on a micro-UAV platform (Parrot AR Drone) and the CogniMemTMneural network chip, for processing the video data acquired from a UAV camera on the y. The aim of this study was to demonstrate the feasibility and potential of incorporating emerging neuromorphic hardware into next-generation UAVs and their superior performance and power advantages towards the real-time, autonomous target tracking.

  17. Design considerations for computationally constrained two-way real-time video communication

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar M.; Saunders, Steven E.; Ralston, John D.

    2009-08-01

    Today's video codecs have evolved primarily to meet the requirements of the motion picture and broadcast industries, where high-complexity studio encoding can be utilized to create highly-compressed master copies that are then broadcast one-way for playback using less-expensive, lower-complexity consumer devices for decoding and playback. Related standards activities have largely ignored the computational complexity and bandwidth constraints of wireless or Internet based real-time video communications using devices such as cell phones or webcams. Telecommunications industry efforts to develop and standardize video codecs for applications such as video telephony and video conferencing have not yielded image size, quality, and frame-rate performance that match today's consumer expectations and market requirements for Internet and mobile video services. This paper reviews the constraints and the corresponding video codec requirements imposed by real-time, 2-way mobile video applications. Several promising elements of a new mobile video codec architecture are identified, and more comprehensive computational complexity metrics and video quality metrics are proposed in order to support the design, testing, and standardization of these new mobile video codecs.

  18. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    PubMed

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  19. Compression performance comparison in low delay real-time video for mobile applications

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2012-10-01

    This article compares the performance of several current video coding standards in the conditions of low-delay real-time in a resource constrained environment. The comparison is performed using the same content and the metrics and mix of objective and perceptual quality metrics. The metrics results in different coding schemes are analyzed from a point of view of user perception and quality of service. Multiple standards are compared MPEG-2, MPEG4 and MPEG-AVC and well and H.263. The metrics used in the comparison include SSIM, VQM and DVQ. Subjective evaluation and quality of service are discussed from a point of view of perceptual metrics and their incorporation in the coding scheme development process. The performance and the correlation of results are presented as a predictor of the performance of video compression schemes.

  20. Near real-time, on-the-move software PED using VPEF

    NASA Astrophysics Data System (ADS)

    Green, Kevin; Geyer, Chris; Burnette, Chris; Agarwal, Sanjeev; Swett, Bruce; Phan, Chung; Deterline, Diane

    2015-05-01

    The scope of the Micro-Cloud for Operational, Vehicle-Based EO-IR Reconnaissance System (MOVERS) development effort, managed by the Night Vision and Electronic Sensors Directorate (NVESD), is to develop, integrate, and demonstrate new sensor technologies and algorithms that improve improvised device/mine detection using efficient and effective exploitation and fusion of sensor data and target cues from existing and future Route Clearance Package (RCP) sensor systems. Unfortunately, the majority of forward looking Full Motion Video (FMV) and computer vision processing, exploitation, and dissemination (PED) algorithms are often developed using proprietary, incompatible software. This makes the insertion of new algorithms difficult due to the lack of standardized processing chains. In order to overcome these limitations, EOIR developed the Government off-the-shelf (GOTS) Video Processing and Exploitation Framework (VPEF) to be able to provide standardized interfaces (e.g., input/output video formats, sensor metadata, and detected objects) for exploitation software and to rapidly integrate and test computer vision algorithms. EOIR developed a vehicle-based computing framework within the MOVERS and integrated it with VPEF. VPEF was further enhanced for automated processing, detection, and publishing of detections in near real-time, thus improving the efficiency and effectiveness of RCP sensor systems.

  1. MobileASL: intelligibility of sign language video over mobile phones.

    PubMed

    Cavender, Anna; Vanam, Rahul; Barney, Dane K; Ladner, Richard E; Riskin, Eve A

    2008-01-01

    For Deaf people, access to the mobile telephone network in the United States is currently limited to text messaging, forcing communication in English as opposed to American Sign Language (ASL), the preferred language. Because ASL is a visual language, mobile video phones have the potential to give Deaf people access to real-time mobile communication in their preferred language. However, even today's best video compression techniques can not yield intelligible ASL at limited cell phone network bandwidths. Motivated by this constraint, we conducted one focus group and two user studies with members of the Deaf Community to determine the intelligibility effects of video compression techniques that exploit the visual nature of sign language. Inspired by eye tracking results that show high resolution foveal vision is maintained around the face, we studied region-of-interest encodings (where the face is encoded at higher quality) as well as reduced frame rates (where fewer, better quality, frames are displayed every second). At all bit rates studied here, participants preferred moderate quality increases in the face region, sacrificing quality in other regions. They also preferred slightly lower frame rates because they yield better quality frames for a fixed bit rate. The limited processing power of cell phones is a serious concern because a real-time video encoder and decoder will be needed. Choosing less complex settings for the encoder can reduce encoding time, but will affect video quality. We studied the intelligibility effects of this tradeoff and found that we can significantly speed up encoding time without severely affecting intelligibility. These results show promise for real-time access to the current low-bandwidth cell phone network through sign-language-specific encoding techniques.

  2. Bi-telescopic, deep, simultaneous meteor observations

    NASA Technical Reports Server (NTRS)

    Taff, L. G.

    1986-01-01

    A statistical summary is presented of 10 hours of observing sporadic meteors and two meteor showers using the Experimental Test System of the Lincoln Laboratory. The observatory is briefly described along with the real-time and post-processing hardware, the analysis, and the data reduction. The principal observational results are given for the sporadic meteor zenithal hourly rates. The unique properties of the observatory include twin telescopes to allow the discrimination of meteors by parallax, deep limiting magnitude, good time resolution, and sophisticated real-time and post-observing video processing.

  3. Coupled auralization and virtual video for immersive multimedia displays

    NASA Astrophysics Data System (ADS)

    Henderson, Paul D.; Torres, Rendell R.; Shimizu, Yasushi; Radke, Richard; Lonsway, Brian

    2003-04-01

    The implementation of maximally-immersive interactive multimedia in exhibit spaces requires not only the presentation of realistic visual imagery but also the creation of a perceptually accurate aural experience. While conventional implementations treat audio and video problems as essentially independent, this research seeks to couple the visual sensory information with dynamic auralization in order to enhance perceptual accuracy. An implemented system has been developed for integrating accurate auralizations with virtual video techniques for both interactive presentation and multi-way communication. The current system utilizes a multi-channel loudspeaker array and real-time signal processing techniques for synthesizing the direct sound, early reflections, and reverberant field excited by a moving sound source whose path may be interactively defined in real-time or derived from coupled video tracking data. In this implementation, any virtual acoustic environment may be synthesized and presented in a perceptually-accurate fashion to many participants over a large listening and viewing area. Subject tests support the hypothesis that the cross-modal coupling of aural and visual displays significantly affects perceptual localization accuracy.

  4. Real-time video analysis for retail stores

    NASA Astrophysics Data System (ADS)

    Hassan, Ehtesham; Maurya, Avinash K.

    2015-03-01

    With the advancement in video processing technologies, we can capture subtle human responses in a retail store environment which play decisive role in the store management. In this paper, we present a novel surveillance video based analytic system for retail stores targeting localized and global traffic estimate. Development of an intelligent system for human traffic estimation in real-life poses a challenging problem because of the variation and noise involved. In this direction, we begin with a novel human tracking system by an intelligent combination of motion based and image level object detection. We demonstrate the initial evaluation of this approach on available standard dataset yielding promising result. Exact traffic estimate in a retail store require correct separation of customers from service providers. We present a role based human classification framework using Gaussian mixture model for this task. A novel feature descriptor named graded colour histogram is defined for object representation. Using, our role based human classification and tracking system, we have defined a novel computationally efficient framework for two types of analytics generation i.e., region specific people count and dwell-time estimation. This system has been extensively evaluated and tested on four hours of real-life video captured from a retail store.

  5. Privacy-protecting video surveillance

    NASA Astrophysics Data System (ADS)

    Wickramasuriya, Jehan; Alhazzazi, Mohanned; Datt, Mahesh; Mehrotra, Sharad; Venkatasubramanian, Nalini

    2005-02-01

    Forms of surveillance are very quickly becoming an integral part of crime control policy, crisis management, social control theory and community consciousness. In turn, it has been used as a simple and effective solution to many of these problems. However, privacy-related concerns have been expressed over the development and deployment of this technology. Used properly, video cameras help expose wrongdoing but typically come at the cost of privacy to those not involved in any maleficent activity. This work describes the design and implementation of a real-time, privacy-protecting video surveillance infrastructure that fuses additional sensor information (e.g. Radio-frequency Identification) with video streams and an access control framework in order to make decisions about how and when to display the individuals under surveillance. This video surveillance system is a particular instance of a more general paradigm of privacy-protecting data collection. In this paper we describe in detail the video processing techniques used in order to achieve real-time tracking of users in pervasive spaces while utilizing the additional sensor data provided by various instrumented sensors. In particular, we discuss background modeling techniques, object tracking and implementation techniques that pertain to the overall development of this system.

  6. Headlines: Planet Earth: Improving Climate Literacy with Short Format News Videos

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Kulikov, A.; Jackson, R.

    2012-12-01

    One of the challenges of communicating climate science is the sense that climate change is remote and unconnected to daily life--something that's happening to someone else or in the future. To help face this challenge, NASA's Global Climate Change website http://climate.nasa.gov has launched a new video series, "Headlines: Planet Earth," which focuses on current climate news events. This rapid-response video series uses 3D video visualization technology combined with real-time satellite data and images, to throw a spotlight on real-world events.. The "Headlines: Planet Earth" news video products will be deployed frequently, ensuring timeliness. NASA's Global Climate Change Website makes extensive use of interactive media, immersive visualizations, ground-based and remote images, narrated and time-lapse videos, time-series animations, and real-time scientific data, plus maps and user-friendly graphics that make the scientific content both accessible and engaging to the public. The site has also won two consecutive Webby Awards for Best Science Website. Connecting climate science to current real-world events will contribute to improving climate literacy by making climate science relevant to everyday life.

  7. Characterizing the uncertainty of classification methods and its impact on the performance of crowdsourcing

    NASA Astrophysics Data System (ADS)

    Ribera, Javier; Tahboub, Khalid; Delp, Edward J.

    2015-03-01

    Video surveillance systems are widely deployed for public safety. Real-time monitoring and alerting are some of the key requirements for building an intelligent video surveillance system. Real-life settings introduce many challenges that can impact the performance of real-time video analytics. Video analytics are desired to be resilient to adverse and changing scenarios. In this paper we present various approaches to characterize the uncertainty of a classifier and incorporate crowdsourcing at the times when the method is uncertain about making a particular decision. Incorporating crowdsourcing when a real-time video analytic method is uncertain about making a particular decision is known as online active learning from crowds. We evaluate our proposed approach by testing a method we developed previously for crowd flow estimation. We present three different approaches to characterize the uncertainty of the classifier in the automatic crowd flow estimation method and test them by introducing video quality degradations. Criteria to aggregate crowdsourcing results are also proposed and evaluated. An experimental evaluation is conducted using a publicly available dataset.

  8. A Low Cost Microcomputer System for Process Dynamics and Control Simulations.

    ERIC Educational Resources Information Center

    Crowl, D. A.; Durisin, M. J.

    1983-01-01

    Discusses a video simulator microcomputer system used to provide real-time demonstrations to strengthen students' understanding of process dynamics and control. Also discusses hardware/software and simulations developed using the system. The four simulations model various configurations of a process liquid level tank system. (JN)

  9. Crew Field Notes: A New Tool for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Evans, Cynthia; Eppler, Dean; Gernhardt, Michael; Bluethmann, William; Graf, Jodi; Bleisath, Scott

    2011-01-01

    The Desert Research and Technology Studies (DRATS) field tests of 2010 focused on the simultaneous operation of two rovers, a historical first. The complexity and data volume of two rovers operating simultaneously presented significant operational challenges for the on-site Mission Control Center, including the real time science support function. The latter was split into two "tactical" back rooms, one for each rover, that supported the real time traverse activities; in addition, a "strategic" science team convened overnight to synthesize the day's findings, and to conduct the strategic forward planning of the next day or days as detailed in [1, 2]. Current DRATS simulations and operations differ dramatically from those of Apollo, including the most evolved Apollo 15-17 missions, due to the advent of digital technologies. Modern digital still and video cameras, combined with the capability for real time transmission of large volumes of data, including multiple video streams, offer the prospect for the ground based science support room(s) in Mission Control to witness all crew activities in unprecedented detail and in real time. It was not uncommon during DRATS 2010 that each tactical science back room simultaneously received some 4-6 video streams from cameras mounted on the rover or the crews' backpacks. Some of the rover cameras are controllable PZT (pan, zoom, tilt) devices that can be operated by the crews (during extensive drives) or remotely by the back room (during EVAs). Typically, a dedicated "expert" and professional geologist in the tactical back room(s) controls, monitors and analyses a single video stream and provides the findings to the team, commonly supported by screen-saved images. It seems obvious, that the real time comprehension and synthesis of the verbal descriptions, extensive imagery, and other information (e.g. navigation data; time lines etc) flowing into the science support room(s) constitute a fundamental challenge to future mission operations: how can one analyze, comprehend and synthesize -in real time- the enormous data volume coming to the ground? Real time understanding of all data is needed for constructive interaction with the surface crews, and it becomes critical for the strategic forward planning process.

  10. Real-time data compression of broadcast video signals

    NASA Technical Reports Server (NTRS)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  11. Multimedia applications in nursing curriculum: the process of producing streaming videos for medication administration skills.

    PubMed

    Sowan, Azizeh K

    2014-07-01

    Streaming videos (SVs) are commonly used multimedia applications in clinical health education. However, there are several negative aspects related to the production and delivery of SVs. Only a few published studies have included sufficient descriptions of the videos and the production process and design innovations. This paper describes the production of innovative SVs for medication administration skills for undergraduate nursing students at a public university in Jordan and focuses on the ethical and cultural issues in producing this type of learning resource. The curriculum development committee approved the modification of educational techniques for medication administration procedures to include SVs within an interactive web-based learning environment. The production process of the videos adhered to established principles for "protecting patients' rights when filming and recording" and included: preproduction, production and postproduction phases. Medication administration skills were videotaped in a skills laboratory where they are usually taught to students and also in a hospital setting with real patients. The lab videos included critical points and Do's and Don'ts and the hospital videos fostered real-world practices. The range of time of the videos was reasonable to eliminate technical difficulty in access. Eight SVs were produced that covered different types of the medication administration skills. The production of SVs required the collaborative efforts of experts in IT, multimedia, nursing and informatics educators, and nursing care providers. Results showed that the videos were well-perceived by students, and the instructors who taught the course. The process of producing the videos in this project can be used as a valuable framework for schools considering utilizing multimedia applications in teaching. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. The impact of video technology on learning: A cooking skills experiment.

    PubMed

    Surgenor, Dawn; Hollywood, Lynsey; Furey, Sinéad; Lavelle, Fiona; McGowan, Laura; Spence, Michelle; Raats, Monique; McCloat, Amanda; Mooney, Elaine; Caraher, Martin; Dean, Moira

    2017-07-01

    This study examines the role of video technology in the development of cooking skills. The study explored the views of 141 female participants on whether video technology can promote confidence in learning new cooking skills to assist in meal preparation. Prior to each focus group participants took part in a cooking experiment to assess the most effective method of learning for low-skilled cooks across four experimental conditions (recipe card only; recipe card plus video demonstration; recipe card plus video demonstration conducted in segmented stages; and recipe card plus video demonstration whereby participants freely accessed video demonstrations as and when needed). Focus group findings revealed that video technology was perceived to assist learning in the cooking process in the following ways: (1) improved comprehension of the cooking process; (2) real-time reassurance in the cooking process; (3) assisting the acquisition of new cooking skills; and (4) enhancing the enjoyment of the cooking process. These findings display the potential for video technology to promote motivation and confidence as well as enhancing cooking skills among low-skilled individuals wishing to cook from scratch using fresh ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Video Game-Based Framework for Analyzing Human-Robot Interaction: Characterizing Interface Design in Real-Time Interactive Multimedia Applications

    DTIC Science & Technology

    2006-01-01

    segments video game interaction into domain-independent components which together form a framework that can be used to characterize real-time interactive...multimedia applications in general and HRI in particular. We provide examples of using the components in both the video game and the Unmanned Aerial

  14. Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification.

    PubMed

    Yang, Fan; Paindavoine, M

    2003-01-01

    This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.

  15. Seeing Change in Time: Video Games to Teach about Temporal Change in Scientific Phenomena

    NASA Astrophysics Data System (ADS)

    Corredor, Javier; Gaydos, Matthew; Squire, Kurt

    2014-06-01

    This article explores how learning biological concepts can be facilitated by playing a video game that depicts interactions and processes at the subcellular level. Particularly, this article reviews the effects of a real-time strategy game that requires players to control the behavior of a virus and interact with cell structures in a way that resembles the actual behavior of biological agents. The evaluation of the video game presented here aims at showing that video games have representational advantages that facilitate the construction of dynamic mental models. Ultimately, the article shows that when video game's characteristics come in contact with expert knowledge during game design, the game becomes an excellent medium for supporting the learning of disciplinary content related to dynamic processes. In particular, results show that students who participated in a game-based intervention aimed at teaching biology described a higher number of temporal-dependent interactions as measured by the coding of verbal protocols and drawings than students who used texts and diagrams to learn the same topic.

  16. Observations of breakup processes of liquid jets using real-time X-ray radiography

    NASA Technical Reports Server (NTRS)

    Char, J. M.; Kuo, K. K.; Hsieh, K. C.

    1988-01-01

    To unravel the liquid-jet breakup process in the nondilute region, a newly developed system of real-time X-ray radiography, an advanced digital image processor, and a high-speed video camera were used. Based upon recorded X-ray images, the inner structure of a liquid jet during breakup was observed. The jet divergence angle, jet breakup length, and fraction distributions along the axial and transverse directions of the liquid jets were determined in the near-injector region. Both wall- and free-jet tests were conducted to study the effect of wall friction on the jet breakup process.

  17. Real-time demonstration hardware for enhanced DPCM video compression algorithm

    NASA Technical Reports Server (NTRS)

    Bizon, Thomas P.; Whyte, Wayne A., Jr.; Marcopoli, Vincent R.

    1992-01-01

    The lack of available wideband digital links as well as the complexity of implementation of bandwidth efficient digital video CODECs (encoder/decoder) has worked to keep the cost of digital television transmission too high to compete with analog methods. Terrestrial and satellite video service providers, however, are now recognizing the potential gains that digital video compression offers and are proposing to incorporate compression systems to increase the number of available program channels. NASA is similarly recognizing the benefits of and trend toward digital video compression techniques for transmission of high quality video from space and therefore, has developed a digital television bandwidth compression algorithm to process standard National Television Systems Committee (NTSC) composite color television signals. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a non-adaptive predictor, non-uniform quantizer and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The non-adaptive predictor and multilevel Huffman coder combine to set this technique apart from other DPCM encoding algorithms. All processing is done on a intra-field basis to prevent motion degradation and minimize hardware complexity. Computer simulations have shown the algorithm will produce broadcast quality reconstructed video at an average transmission rate of 1.8 bits/pixel. Hardware implementation of the DPCM circuit, non-adaptive predictor and non-uniform quantizer has been completed, providing realtime demonstration of the image quality at full video rates. Video sampling/reconstruction circuits have also been constructed to accomplish the analog video processing necessary for the real-time demonstration. Performance results for the completed hardware compare favorably with simulation results. Hardware implementation of the multilevel Huffman encoder/decoder is currently under development along with implementation of a buffer control algorithm to accommodate the variable data rate output of the multilevel Huffman encoder. A video CODEC of this type could be used to compress NTSC color television signals where high quality reconstruction is desirable (e.g., Space Station video transmission, transmission direct-to-the-home via direct broadcast satellite systems or cable television distribution to system headends and direct-to-the-home).

  18. A method of operation scheduling based on video transcoding for cluster equipment

    NASA Astrophysics Data System (ADS)

    Zhou, Haojie; Yan, Chun

    2018-04-01

    Because of the cluster technology in real-time video transcoding device, the application of facing the massive growth in the number of video assignments and resolution and bit rate of diversity, task scheduling algorithm, and analyze the current mainstream of cluster for real-time video transcoding equipment characteristics of the cluster, combination with the characteristics of the cluster equipment task delay scheduling algorithm is proposed. This algorithm enables the cluster to get better performance in the generation of the job queue and the lower part of the job queue when receiving the operation instruction. In the end, a small real-time video transcode cluster is constructed to analyze the calculation ability, running time, resource occupation and other aspects of various algorithms in operation scheduling. The experimental results show that compared with traditional clustering task scheduling algorithm, task delay scheduling algorithm has more flexible and efficient characteristics.

  19. Scalable software architecture for on-line multi-camera video processing

    NASA Astrophysics Data System (ADS)

    Camplani, Massimo; Salgado, Luis

    2011-03-01

    In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead.

  20. FAWKES Information Management for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Spetka, S.; Ramseyer, G.; Tucker, S.

    2010-09-01

    Current space situational awareness assets can be fully utilized by managing their inputs and outputs in real time. Ideally, sensors are tasked to perform specific functions to maximize their effectiveness. Many sensors are capable of collecting more data than is needed for a particular purpose, leading to the potential to enhance a sensor’s utilization by allowing it to be re-tasked in real time when it is determined that sufficient data has been acquired to meet the first task’s requirements. In addition, understanding a situation involving fast-traveling objects in space may require inputs from more than one sensor, leading to a need for information sharing in real time. Observations that are not processed in real time may be archived to support forensic analysis for accidents and for long-term studies. Space Situational Awareness (SSA) requires an extremely robust distributed software platform to appropriately manage the collection and distribution for both real-time decision-making as well as for analysis. FAWKES is being developed as a Joint Space Operations Center (JSPOC) Mission System (JMS) compliant implementation of the AFRL Phoenix information management architecture. It implements a pub/sub/archive/query (PSAQ) approach to communications designed for high performance applications. FAWKES provides an easy to use, reliable interface for structuring parallel processing, and is particularly well suited to the requirements of SSA. In addition to supporting point-to-point communications, it offers an elegant and robust implementation of collective communications, to scatter, gather and reduce values. A query capability is also supported that enhances reliability. Archived messages can be queried to re-create a computation or to selectively retrieve previous publications. PSAQ processes express their role in a computation by subscribing to their inputs and by publishing their results. Sensors on the edge can subscribe to inputs by appropriately authorized users, allowing dynamic tasking capabilities. Previously, the publication of sensor data collected by mobile systems was demonstrated. Thumbnails of infrared imagery that were imaged in real time by an aircraft [1] were published over a grid. This airborne system subscribed to requests for and then published the requested detailed images. In another experiment a system employing video subscriptions [2] drove the analysis of live video streams, resulting in a published stream of processed video output. We are currently implementing an SSA system that uses FAWKES to deliver imagery from telescopes through a pipeline of processing steps that are performed on high performance computers. PSAQ facilitates the decomposition of a problem into components that can be distributed across processing assets from the smallest sensors in space to the largest high performance computing (HPC) centers, as well as the integration and distribution of the results, all in real time. FAWKES supports the real-time latency requirements demanded by all of these applications. It also enhances reliability by easily supporting redundant computation. This study shows how FAWKES/PSAQ is utilized in SSA applications, and presents performance results for latency and throughput that meet these needs.

  1. Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture.

    PubMed

    Mat Kiah, M L; Al-Bakri, S H; Zaidan, A A; Zaidan, B B; Hussain, Muzammil

    2014-10-01

    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time.

  2. Video image processor on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/

    NASA Technical Reports Server (NTRS)

    Lindgren, R. W.; Tarbell, T. D.

    1981-01-01

    The SOUP instrument is designed to obtain diffraction-limited digital images of the sun with high photometric accuracy. The Video Processor originated from the requirement to provide onboard real-time image processing, both to reduce the telemetry rate and to provide meaningful video displays of scientific data to the payload crew. This original concept has evolved into a versatile digital processing system with a multitude of other uses in the SOUP program. The central element in the Video Processor design is a 16-bit central processing unit based on 2900 family bipolar bit-slice devices. All arithmetic, logical and I/O operations are under control of microprograms, stored in programmable read-only memory and initiated by commands from the LSI-11. Several functions of the Video Processor are described, including interface to the High Rate Multiplexer downlink, cosmetic and scientific data processing, scan conversion for crew displays, focus and exposure testing, and use as ground support equipment.

  3. Hardware accelerator design for tracking in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.

  4. Real-time people counting system using a single video camera

    NASA Astrophysics Data System (ADS)

    Lefloch, Damien; Cheikh, Faouzi A.; Hardeberg, Jon Y.; Gouton, Pierre; Picot-Clemente, Romain

    2008-02-01

    There is growing interest in video-based solutions for people monitoring and counting in business and security applications. Compared to classic sensor-based solutions the video-based ones allow for more versatile functionalities, improved performance with lower costs. In this paper, we propose a real-time system for people counting based on single low-end non-calibrated video camera. The two main challenges addressed in this paper are: robust estimation of the scene background and the number of real persons in merge-split scenarios. The latter is likely to occur whenever multiple persons move closely, e.g. in shopping centers. Several persons may be considered to be a single person by automatic segmentation algorithms, due to occlusions or shadows, leading to under-counting. Therefore, to account for noises, illumination and static objects changes, a background substraction is performed using an adaptive background model (updated over time based on motion information) and automatic thresholding. Furthermore, post-processing of the segmentation results is performed, in the HSV color space, to remove shadows. Moving objects are tracked using an adaptive Kalman filter, allowing a robust estimation of the objects future positions even under heavy occlusion. The system is implemented in Matlab, and gives encouraging results even at high frame rates. Experimental results obtained based on the PETS2006 datasets are presented at the end of the paper.

  5. ITC/USA/'90; Proceedings of the International Telemetering Conference, Las Vegas, NV, Oct. 29-Nov. 2, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This conference presents papers in the fields of airborne telemetry, measurement technology, video instrumentation and monitoring, tracking and receiving systems, and real-time processing in telemetry. Topics presented include packet telemetry ground station simulation, a predictable performance wideband noise generator, an improved drone tracking control system transponder, the application of neural networks to drone control, and an integrated real-time turbine engine flight test system.

  6. Dynamic video encryption algorithm for H.264/AVC based on a spatiotemporal chaos system.

    PubMed

    Xu, Hui; Tong, Xiao-Jun; Zhang, Miao; Wang, Zhu; Li, Ling-Hao

    2016-06-01

    Video encryption schemes mostly employ the selective encryption method to encrypt parts of important and sensitive video information, aiming to ensure the real-time performance and encryption efficiency. The classic block cipher is not applicable to video encryption due to the high computational overhead. In this paper, we propose the encryption selection control module to encrypt video syntax elements dynamically which is controlled by the chaotic pseudorandom sequence. A novel spatiotemporal chaos system and binarization method is used to generate a key stream for encrypting the chosen syntax elements. The proposed scheme enhances the resistance against attacks through the dynamic encryption process and high-security stream cipher. Experimental results show that the proposed method exhibits high security and high efficiency with little effect on the compression ratio and time cost.

  7. Grayscale image segmentation for real-time traffic sign recognition: the hardware point of view

    NASA Astrophysics Data System (ADS)

    Cao, Tam P.; Deng, Guang; Elton, Darrell

    2009-02-01

    In this paper, we study several grayscale-based image segmentation methods for real-time road sign recognition applications on an FPGA hardware platform. The performance of different image segmentation algorithms in different lighting conditions are initially compared using PC simulation. Based on these results and analysis, suitable algorithms are implemented and tested on a real-time FPGA speed sign detection system. Experimental results show that the system using segmented images uses significantly less hardware resources on an FPGA while maintaining comparable system's performance. The system is capable of processing 60 live video frames per second.

  8. HVS: an image-based approach for constructing virtual environments

    NASA Astrophysics Data System (ADS)

    Zhang, Maojun; Zhong, Li; Sun, Lifeng; Li, Yunhao

    1998-09-01

    Virtual Reality Systems can construct virtual environment which provide an interactive walkthrough experience. Traditionally, walkthrough is performed by modeling and rendering 3D computer graphics in real-time. Despite the rapid advance of computer graphics technique, the rendering engine usually places a limit on scene complexity and rendering quality. This paper presents a approach which uses the real-world image or synthesized image to comprise a virtual environment. The real-world image or synthesized image can be recorded by camera, or synthesized by off-line multispectral image processing for Landsat TM (Thematic Mapper) Imagery and SPOT HRV imagery. They are digitally warped on-the-fly to simulate walking forward/backward, to left/right and 360-degree watching around. We have developed a system HVS (Hyper Video System) based on these principles. HVS improves upon QuickTime VR and Surround Video in the walking forward/backward.

  9. Multiple objects tracking with HOGs matching in circular windows

    NASA Astrophysics Data System (ADS)

    Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.

    2014-09-01

    In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.

  10. An openstack-based flexible video transcoding framework in live

    NASA Astrophysics Data System (ADS)

    Shi, Qisen; Song, Jianxin

    2017-08-01

    With the rapid development of mobile live business, transcoding HD video is often a challenge for mobile devices due to their limited processing capability and bandwidth-constrained network connection. For live service providers, it's wasteful for resources to delay lots of transcoding server because some of them are free to work sometimes. To deal with this issue, this paper proposed an Openstack-based flexible transcoding framework to achieve real-time video adaption for mobile device and make computing resources used efficiently. To this end, we introduced a special method of video stream splitting and VMs resource scheduling based on access pressure prediction,which is forecasted by an AR model.

  11. Real-time video signal processing by generalized DDA and control memories: three-dimensional rotation and mapping

    NASA Astrophysics Data System (ADS)

    Hama, Hiromitsu; Yamashita, Kazumi

    1991-11-01

    A new method for video signal processing is described in this paper. The purpose is real-time image transformations at low cost, low power, and small size hardware. This is impossible without special hardware. Here generalized digital differential analyzer (DDA) and control memory (CM) play a very important role. Then indentation, which is called jaggy, is caused on the boundary of a background and a foreground accompanied with the processing. Jaggy does not occur inside the transformed image because of adopting linear interpretation. But it does occur inherently on the boundary of the background and the transformed images. It causes deterioration of image quality, and must be avoided. There are two well-know ways to improve image quality, blurring and supersampling. The former does not have much effect, and the latter has the much higher cost of computing. As a means of settling such a trouble, a method is proposed, which searches for positions that may arise jaggy and smooths such points. Computer simulations based on the real data from VTR, one scene of a movie, are presented to demonstrate our proposed scheme using DDA and CMs and to confirm the effectiveness on various transformations.

  12. Gas leak detection in infrared video with background modeling

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaoxia; Huang, Likun

    2018-03-01

    Background modeling plays an important role in the task of gas detection based on infrared video. VIBE algorithm is a widely used background modeling algorithm in recent years. However, the processing speed of the VIBE algorithm sometimes cannot meet the requirements of some real time detection applications. Therefore, based on the traditional VIBE algorithm, we propose a fast prospect model and optimize the results by combining the connected domain algorithm and the nine-spaces algorithm in the following processing steps. Experiments show the effectiveness of the proposed method.

  13. A system for real-time measurement of the brachial artery diameter in B-mode ultrasound images.

    PubMed

    Gemignani, Vincenzo; Faita, Francesco; Ghiadoni, Lorenzo; Poggianti, Elisa; Demi, Marcello

    2007-03-01

    The measurement of the brachial artery diameter is frequently used in clinical studies for evaluating the flow-mediated dilation and, in conjunction with the blood pressure value, for assessing arterial stiffness. This paper presents a system for computing the brachial artery diameter in real-time by analyzing B-mode ultrasound images. The method is based on a robust edge detection algorithm which is used to automatically locate the two walls of the vessel. The measure of the diameter is obtained with subpixel precision and with a temporal resolution of 25 samples/s, so that the small dilations induced by the cardiac cycle can also be retrieved. The algorithm is implemented on a standalone video processing board which acquires the analog video signal from the ultrasound equipment. Results are shown in real-time on a graphical user interface. The system was tested both on synthetic ultrasound images and in clinical studies of flow-mediated dilation. Accuracy, robustness, and intra/inter observer variability of the method were evaluated.

  14. Real-time WebRTC-based design for a telepresence wheelchair.

    PubMed

    Van Kha Ly Ha; Rifai Chai; Nguyen, Hung T

    2017-07-01

    This paper presents a novel approach to the telepresence wheelchair system which is capable of real-time video communication and remote interaction. The investigation of this emerging technology aims at providing a low-cost and efficient way for assisted-living of people with disabilities. The proposed system has been designed and developed by deploying the JavaScript with Hyper Text Markup Language 5 (HTML5) and Web Real-time Communication (WebRTC) in which the adaptive rate control algorithm for video transmission is invoked. We conducted experiments in real-world environments, and the wheelchair was controlled from a distance using the Internet browser to compare with existing methods. The results show that the adaptively encoded video streaming rate matches the available bandwidth. The video streaming is high-quality with approximately 30 frames per second (fps) and round trip time less than 20 milliseconds (ms). These performance results confirm that the WebRTC approach is a potential method for developing a telepresence wheelchair system.

  15. A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation

    NASA Astrophysics Data System (ADS)

    da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille

    2012-03-01

    Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.

  16. The Texas Thermal Interface: A real-time computer interface for an Inframetrics infrared camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storek, D.J.; Gentle, K.W.

    1996-03-01

    The Texas Thermal Interface (TTI) offers an advantageous alternative to the conventional video path for computer analysis of infrared images from Inframetrics cameras. The TTI provides real-time computer data acquisition of 48 consecutive fields (version described here) with 8-bit pixels. The alternative requires time-consuming individual frame grabs from video tape with frequent loss of resolution in the D/A/D conversion. Within seconds after the event, the TTI temperature files may be viewed and processed to infer heat fluxes or other quantities as needed. The system cost is far less than commercial units which offer less capability. The system was developed formore » and is being used to measure heat fluxes to the plasma-facing components in a tokamak. {copyright} {ital 1996 American Institute of Physics.}« less

  17. An efficient interpolation filter VLSI architecture for HEVC standard

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Zhou, Xin; Lian, Xiaocong; Liu, Zhenyu; Liu, Xiaoxiang

    2015-12-01

    The next-generation video coding standard of High-Efficiency Video Coding (HEVC) is especially efficient for coding high-resolution video such as 8K-ultra-high-definition (UHD) video. Fractional motion estimation in HEVC presents a significant challenge in clock latency and area cost as it consumes more than 40 % of the total encoding time and thus results in high computational complexity. With aims at supporting 8K-UHD video applications, an efficient interpolation filter VLSI architecture for HEVC is proposed in this paper. Firstly, a new interpolation filter algorithm based on the 8-pixel interpolation unit is proposed in this paper. It can save 19.7 % processing time on average with acceptable coding quality degradation. Based on the proposed algorithm, an efficient interpolation filter VLSI architecture, composed of a reused data path of interpolation, an efficient memory organization, and a reconfigurable pipeline interpolation filter engine, is presented to reduce the implement hardware area and achieve high throughput. The final VLSI implementation only requires 37.2k gates in a standard 90-nm CMOS technology at an operating frequency of 240 MHz. The proposed architecture can be reused for either half-pixel interpolation or quarter-pixel interpolation, which can reduce the area cost for about 131,040 bits RAM. The processing latency of our proposed VLSI architecture can support the real-time processing of 4:2:0 format 7680 × 4320@78fps video sequences.

  18. Transmission of live laparoscopic surgery over the Internet2.

    PubMed

    Damore, L J; Johnson, J A; Dixon, R S; Iverson, M A; Ellison, E C; Melvin, W S

    1999-11-01

    Video broadcasting of surgical procedures is an important tool for education, training, and consultation. Current video conferencing systems are expensive and time-consuming and require preplanning. Real-time Internet video is known for its poor quality and relies on the equipment and the speed of the connection. The Internet2, a new high-speed (up to 2,048 Mbps), large bandwidth data network presently connects more than 100 universities and corporations. We have successfully used the Internet2 to broadcast the first real-time, high-quality audio/video program from a live laparoscopic operation to distant points. Video output of the laparoscopic camera and audio from a wireless microphone were broadcast to distant sites using a proprietary, PC-based implementation of H.320 video conferencing over a TCP/IP network connected to the Internet2. The receiving sites participated in two-way, real-time video and audio communications and graded the quality of the signal they received. On August 25, 1998, a laparoscopic Nissen fundoplication was transmitted to Internet2 stations in Colorado, Pennsylvania, and to an Internet station in New York. On September 28 and 29, 1998, we broadcast laparoscopic operations throughout both days to the Internet2 Fall Conference in San Francisco, California. Most recently, on February 24, 1999, we transmitted a laparoscopic Heller myotomy to the Abilene Network Launch Event in Washington, DC. The Internet2 is currently able to provide the bandwidth needed for a turn-key video conferencing system with high-resolution, real-time transmission. The system could be used for a variety of teaching and educational programs for experienced surgeons, residents, and medical students.

  19. Dense 3D Face Alignment from 2D Video for Real-Time Use

    PubMed Central

    Jeni, László A.; Cohn, Jeffrey F.; Kanade, Takeo

    2018-01-01

    To enable real-time, person-independent 3D registration from 2D video, we developed a 3D cascade regression approach in which facial landmarks remain invariant across pose over a range of approximately 60 degrees. From a single 2D image of a person’s face, a dense 3D shape is registered in real time for each frame. The algorithm utilizes a fast cascade regression framework trained on high-resolution 3D face-scans of posed and spontaneous emotion expression. The algorithm first estimates the location of a dense set of landmarks and their visibility, then reconstructs face shapes by fitting a part-based 3D model. Because no assumptions are required about illumination or surface properties, the method can be applied to a wide range of imaging conditions that include 2D video and uncalibrated multi-view video. The method has been validated in a battery of experiments that evaluate its precision of 3D reconstruction, extension to multi-view reconstruction, temporal integration for videos and 3D head-pose estimation. Experimental findings strongly support the validity of real-time, 3D registration and reconstruction from 2D video. The software is available online at http://zface.org. PMID:29731533

  20. An Insect Eye Inspired Miniaturized Multi-Camera System for Endoscopic Imaging.

    PubMed

    Cogal, Omer; Leblebici, Yusuf

    2017-02-01

    In this work, we present a miniaturized high definition vision system inspired by insect eyes, with a distributed illumination method, which can work in dark environments for proximity imaging applications such as endoscopy. Our approach is based on modeling biological systems with off-the-shelf miniaturized cameras combined with digital circuit design for real time image processing. We built a 5 mm radius hemispherical compound eye, imaging a 180 ° ×180 ° degrees field of view while providing more than 1.1 megapixels (emulated ommatidias) as real-time video with an inter-ommatidial angle ∆ϕ = 0.5 ° at 18 mm radial distance. We made an FPGA implementation of the image processing system which is capable of generating 25 fps video with 1080 × 1080 pixel resolution at a 120 MHz processing clock frequency. When compared to similar size insect eye mimicking systems in literature, the system proposed in this paper features 1000 × resolution increase. To the best of our knowledge, this is the first time that a compound eye with built-in illumination idea is reported. We are offering our miniaturized imaging system for endoscopic applications like colonoscopy or laparoscopic surgery where there is a need for large field of view high definition imagery. For that purpose we tested our system inside a human colon model. We also present the resulting images and videos from the human colon model in this paper.

  1. Impact of different cloud deployments on real-time video applications for mobile video cloud users

    NASA Astrophysics Data System (ADS)

    Khan, Kashif A.; Wang, Qi; Luo, Chunbo; Wang, Xinheng; Grecos, Christos

    2015-02-01

    The latest trend to access mobile cloud services through wireless network connectivity has amplified globally among both entrepreneurs and home end users. Although existing public cloud service vendors such as Google, Microsoft Azure etc. are providing on-demand cloud services with affordable cost for mobile users, there are still a number of challenges to achieve high-quality mobile cloud based video applications, especially due to the bandwidth-constrained and errorprone mobile network connectivity, which is the communication bottleneck for end-to-end video delivery. In addition, existing accessible clouds networking architectures are different in term of their implementation, services, resources, storage, pricing, support and so on, and these differences have varied impact on the performance of cloud-based real-time video applications. Nevertheless, these challenges and impacts have not been thoroughly investigated in the literature. In our previous work, we have implemented a mobile cloud network model that integrates localized and decentralized cloudlets (mini-clouds) and wireless mesh networks. In this paper, we deploy a real-time framework consisting of various existing Internet cloud networking architectures (Google Cloud, Microsoft Azure and Eucalyptus Cloud) and a cloudlet based on Ubuntu Enterprise Cloud over wireless mesh networking technology for mobile cloud end users. It is noted that the increasing trend to access real-time video streaming over HTTP/HTTPS is gaining popularity among both research and industrial communities to leverage the existing web services and HTTP infrastructure in the Internet. To study the performance under different deployments using different public and private cloud service providers, we employ real-time video streaming over the HTTP/HTTPS standard, and conduct experimental evaluation and in-depth comparative analysis of the impact of different deployments on the quality of service for mobile video cloud users. Empirical results are presented and discussed to quantify and explain the different impacts resulted from various cloud deployments, video application and wireless/mobile network setting, and user mobility. Additionally, this paper analyses the advantages, disadvantages, limitations and optimization techniques in various cloud networking deployments, in particular the cloudlet approach compared with the Internet cloud approach, with recommendations of optimized deployments highlighted. Finally, federated clouds and inter-cloud collaboration challenges and opportunities are discussed in the context of supporting real-time video applications for mobile users.

  2. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  3. Transforming War Fighting through the Use of Service Based Architecture (SBA) Technology

    DTIC Science & Technology

    2006-05-04

    near-real-time video & telemetry to users on network using standard web-based protocols – Provides web-based access to archived video files MTI...Target Tracks Service Capabilities – Disseminates near-real-time MTI and Target Tracks to users on network based on consumer specified geographic...filter IBS SIGINT Service Capabilities – Disseminates near-real-time IBS SIGINT data to users on network based on consumer specified geographic filter

  4. Dynamic Simulation and Static Matching for Action Prediction: Evidence from Body Part Priming

    ERIC Educational Resources Information Center

    Springer, Anne; Brandstadter, Simone; Prinz, Wolfgang

    2013-01-01

    Accurately predicting other people's actions may involve two processes: internal real-time simulation (dynamic updating) and matching recently perceived action images (static matching). Using a priming of body parts, this study aimed to differentiate the two processes. Specifically, participants played a motion-controlled video game with…

  5. Colometer: a real-time quality feedback system for screening colonoscopy.

    PubMed

    Filip, Dobromir; Gao, Xuexin; Angulo-Rodríguez, Leticia; Mintchev, Martin P; Devlin, Shane M; Rostom, Alaa; Rosen, Wayne; Andrews, Christopher N

    2012-08-28

    To investigate the performance of a new software-based colonoscopy quality assessment system. The software-based system employs a novel image processing algorithm which detects the levels of image clarity, withdrawal velocity, and level of the bowel preparation in a real-time fashion from live video signal. Threshold levels of image blurriness and the withdrawal velocity below which the visualization could be considered adequate have initially been determined arbitrarily by review of sample colonoscopy videos by two experienced endoscopists. Subsequently, an overall colonoscopy quality rating was computed based on the percentage of the withdrawal time with adequate visualization (scored 1-5; 1, when the percentage was 1%-20%; 2, when the percentage was 21%-40%, etc.). In order to test the proposed velocity and blurriness thresholds, screening colonoscopy withdrawal videos from a specialized ambulatory colon cancer screening center were collected, automatically processed and rated. Quality ratings on the withdrawal were compared to the insertion in the same patients. Then, 3 experienced endoscopists reviewed the collected videos in a blinded fashion and rated the overall quality of each withdrawal (scored 1-5; 1, poor; 3, average; 5, excellent) based on 3 major aspects: image quality, colon preparation, and withdrawal velocity. The automated quality ratings were compared to the averaged endoscopist quality ratings using Spearman correlation coefficient. Fourteen screening colonoscopies were assessed. Adenomatous polyps were detected in 4/14 (29%) of the collected colonoscopy video samples. As a proof of concept, the Colometer software rated colonoscope withdrawal as having better visualization than the insertion in the 10 videos which did not have any polyps (average percent time with adequate visualization: 79% ± 5% for withdrawal and 50% ± 14% for insertion, P < 0.01). Withdrawal times during which no polyps were removed ranged from 4-12 min. The median quality rating from the automated system and the reviewers was 3.45 [interquartile range (IQR), 3.1-3.68] and 3.00 (IQR, 2.33-3.67) respectively for all colonoscopy video samples. The automated rating revealed a strong correlation with the reviewer's rating (ρ coefficient= 0.65, P = 0.01). There was good correlation of the automated overall quality rating and the mean endoscopist withdrawal speed rating (Spearman r coefficient= 0.59, P = 0.03). There was no correlation of automated overall quality rating with mean endoscopists image quality rating (Spearman r coefficient= 0.41, P = 0.15). The results from a novel automated real-time colonoscopy quality feedback system strongly agreed with the endoscopists' quality assessments. Further study is required to validate this approach.

  6. Behavior analysis of video object in complicated background

    NASA Astrophysics Data System (ADS)

    Zhao, Wenting; Wang, Shigang; Liang, Chao; Wu, Wei; Lu, Yang

    2016-10-01

    This paper aims to achieve robust behavior recognition of video object in complicated background. Features of the video object are described and modeled according to the depth information of three-dimensional video. Multi-dimensional eigen vector are constructed and used to process high-dimensional data. Stable object tracing in complex scenes can be achieved with multi-feature based behavior analysis, so as to obtain the motion trail. Subsequently, effective behavior recognition of video object is obtained according to the decision criteria. What's more, the real-time of algorithms and accuracy of analysis are both improved greatly. The theory and method on the behavior analysis of video object in reality scenes put forward by this project have broad application prospect and important practical significance in the security, terrorism, military and many other fields.

  7. Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque at speed of video-rate level

    NASA Astrophysics Data System (ADS)

    Hui, Jie; Cao, Yingchun; Zhang, Yi; Kole, Ayeeshik; Wang, Pu; Yu, Guangli; Eakins, Gregory; Sturek, Michael; Chen, Weibiao; Cheng, Ji-Xin

    2017-03-01

    Intravascular photoacoustic-ultrasound (IVPA-US) imaging is an emerging hybrid modality for the detection of lipidladen plaques by providing simultaneous morphological and lipid-specific chemical information of an artery wall. The clinical utility of IVPA-US technology requires real-time imaging and display at speed of video-rate level. Here, we demonstrate a compact and portable IVPA-US system capable of imaging at up to 25 frames per second in real-time display mode. This unprecedented imaging speed was achieved by concurrent innovations in excitation laser source, rotary joint assembly, 1 mm IVPA-US catheter, differentiated A-line strategy, and real-time image processing and display algorithms. By imaging pulsatile motion at different imaging speeds, 16 frames per second was deemed to be adequate to suppress motion artifacts from cardiac pulsation for in vivo applications. Our lateral resolution results further verified the number of A-lines used for a cross-sectional IVPA image reconstruction. The translational capability of this system for the detection of lipid-laden plaques was validated by ex vivo imaging of an atherosclerotic human coronary artery at 16 frames per second, which showed strong correlation to gold-standard histopathology.

  8. Heterogeneous CPU-GPU moving targets detection for UAV video

    NASA Astrophysics Data System (ADS)

    Li, Maowen; Tang, Linbo; Han, Yuqi; Yu, Chunlei; Zhang, Chao; Fu, Huiquan

    2017-07-01

    Moving targets detection is gaining popularity in civilian and military applications. On some monitoring platform of motion detection, some low-resolution stationary cameras are replaced by moving HD camera based on UAVs. The pixels of moving targets in the HD Video taken by UAV are always in a minority, and the background of the frame is usually moving because of the motion of UAVs. The high computational cost of the algorithm prevents running it at higher resolutions the pixels of frame. Hence, to solve the problem of moving targets detection based UAVs video, we propose a heterogeneous CPU-GPU moving target detection algorithm for UAV video. More specifically, we use background registration to eliminate the impact of the moving background and frame difference to detect small moving targets. In order to achieve the effect of real-time processing, we design the solution of heterogeneous CPU-GPU framework for our method. The experimental results show that our method can detect the main moving targets from the HD video taken by UAV, and the average process time is 52.16ms per frame which is fast enough to solve the problem.

  9. Video capture of clinical care to enhance patient safety

    PubMed Central

    Weinger, M; Gonzales, D; Slagle, J; Syeed, M

    2004-01-01

    

 Experience from other domains suggests that videotaping and analyzing actual clinical care can provide valuable insights for enhancing patient safety through improvements in the process of care. Methods are described for the videotaping and analysis of clinical care using a high quality portable multi-angle digital video system that enables simultaneous capture of vital signs and time code synchronization of all data streams. An observer can conduct clinician performance assessment (such as workload measurements or behavioral task analysis) either in real time (during videotaping) or while viewing previously recorded videotapes. Supplemental data are synchronized with the video record and stored electronically in a hierarchical database. The video records are transferred to DVD, resulting in a small, cheap, and accessible archive. A number of technical and logistical issues are discussed, including consent of patients and clinicians, maintaining subject privacy and confidentiality, and data security. Using anesthesiology as a test environment, over 270 clinical cases (872 hours) have been successfully videotaped and processed using the system. PMID:15069222

  10. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    NASA Technical Reports Server (NTRS)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  11. A Framework of Simple Event Detection in Surveillance Video

    NASA Astrophysics Data System (ADS)

    Xu, Weiguang; Zhang, Yafei; Lu, Jianjiang; Tian, Yulong; Wang, Jiabao

    Video surveillance is playing more and more important role in people's social life. Real-time alerting of threaten events and searching interesting content in stored large scale video footage needs human operator to pay full attention on monitor for long time. The labor intensive mode has limit the effectiveness and efficiency of the system. A framework of simple event detection is presented advance the automation of video surveillance. An improved inner key point matching approach is used to compensate motion of background in real-time; frame difference are used to detect foreground; HOG based classifiers are used to classify foreground object into people and car; mean-shift is used to tracking the recognized objects. Events are detected based on predefined rules. The maturity of the algorithms guarantee the robustness of the framework, and the improved approach and the easily checked rules enable the framework to work in real-time. Future works to be done are also discussed.

  12. Automated multiple target detection and tracking in UAV videos

    NASA Astrophysics Data System (ADS)

    Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie

    2010-04-01

    In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.

  13. HPC enabled real-time remote processing of laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Ronaghi, Zahra; Sapra, Karan; Izard, Ryan; Duffy, Edward; Smith, Melissa C.; Wang, Kuang-Ching; Kwartowitz, David M.

    2016-03-01

    Laparoscopic surgery is a minimally invasive surgical technique. The benefit of small incisions has a disadvantage of limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative and intra-operative images to map subsurface structures. One particular laparoscopic system is the daVinci-si robotic surgical system. The video streams generate approximately 360 megabytes of data per second. Real-time processing this large stream of data on a bedside PC, single or dual node setup, has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. We have implement and compared performance of compression, segmentation and registration algorithms on Clemson's Palmetto supercomputer using dual NVIDIA K40 GPUs per node. Our computing framework will also enable reliability using replication of computation. We will securely transfer the files to remote HPC clusters utilizing an OpenFlow-based network service, Steroid OpenFlow Service (SOS) that can increase performance of large data transfers over long-distance and high bandwidth networks. As a result, utilizing high-speed OpenFlow- based network to access computing clusters with GPUs will improve surgical procedures by providing real-time medical image processing and laparoscopic data.

  14. Non-line-of-sight (NLOS), secure, low-probability of intercept (LPI), antijam (AJ), high frequency (HF), real time video communication system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupinetti, F.

    1988-01-01

    This paper outlines a video communication system capable of non-line-of-sight (NLOS), secure, low-probability of intercept (LPI), antijam, real time transmission and reception of video information in a tactical enviroment. An introduction to a class of ternary PN sequences is presented to familiarize the reader with yet another avenue for spreading and despreading baseband information. The use of the high frequency (HF) band (1.5 to 30 MHz) for real time video transmission is suggested to allow NLOS communication. The spreading of the baseband information by means of multiple nontrivially different ternary pseudonoise (PN) sequence is used in order to assure encryptionmore » of the signal, enhanced security, a good degree of LPI, and good antijam features. 18 refs., 3 figs., 1 tab.« less

  15. Optically phase-locked electronic speckle pattern interferometer

    NASA Astrophysics Data System (ADS)

    Moran, Steven E.; Law, Robert; Craig, Peter N.; Goldberg, Warren M.

    1987-02-01

    The design, theory, operation, and characteristics of an optically phase-locked electronic speckle pattern interferometer (OPL-ESPI) are described. The OPL-ESPI system couples an optical phase-locked loop with an ESPI system to generate real-time equal Doppler speckle contours of moving objects from unstable sensor platforms. In addition, the optical phase-locked loop provides the basis for a new ESPI video signal processing technique which incorporates local oscillator phase shifting coupled with video sequential frame subtraction.

  16. Real-time radiography support for Titan LAM

    NASA Astrophysics Data System (ADS)

    Anderson, M. G.

    1992-07-01

    This paper discusses real-time radiography (RTR) support for the Titan Lightweight Analog Motor (LAM) cold gas tests. RTR was used as a diagnostic technique to measure propellant deformation within the motors as gaseous nitrogen, at various pressures, was flowed over the propellant grain. The data consisted of video images that correlated the propellant deformation to time and to chamber pressure. Measurements were made on three propellant configurations in 17 tests. Specific issues addressed include the approach taken to gather the data, the system layout, and image processing techniques used to interpret the data.

  17. Real-time skin feature identification in a time-sequential video stream

    NASA Astrophysics Data System (ADS)

    Kramberger, Iztok

    2005-04-01

    Skin color can be an important feature when tracking skin-colored objects. Particularly this is the case for computer-vision-based human-computer interfaces (HCI). Humans have a highly developed feeling of space and, therefore, it is reasonable to support this within intelligent HCI, where the importance of augmented reality can be foreseen. Joining human-like interaction techniques within multimodal HCI could, or will, gain a feature for modern mobile telecommunication devices. On the other hand, real-time processing plays an important role in achieving more natural and physically intuitive ways of human-machine interaction. The main scope of this work is the development of a stereoscopic computer-vision hardware-accelerated framework for real-time skin feature identification in the sense of a single-pass image segmentation process. The hardware-accelerated preprocessing stage is presented with the purpose of color and spatial filtering, where the skin color model within the hue-saturation-value (HSV) color space is given with a polyhedron of threshold values representing the basis of the filter model. An adaptive filter management unit is suggested to achieve better segmentation results. This enables the adoption of filter parameters to the current scene conditions in an adaptive way. Implementation of the suggested hardware structure is given at the level of filed programmable system level integrated circuit (FPSLIC) devices using an embedded microcontroller as their main feature. A stereoscopic clue is achieved using a time-sequential video stream, but this shows no difference for real-time processing requirements in terms of hardware complexity. The experimental results for the hardware-accelerated preprocessing stage are given by efficiency estimation of the presented hardware structure using a simple motion-detection algorithm based on a binary function.

  18. Real-time visual communication to aid disaster recovery in a multi-segment hybrid wireless networking system

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Wang, Qi; Grecos, Christos

    2012-06-01

    When natural disasters or other large-scale incidents occur, obtaining accurate and timely information on the developing situation is vital to effective disaster recovery operations. High-quality video streams and high-resolution images, if available in real time, would provide an invaluable source of current situation reports to the incident management team. Meanwhile, a disaster often causes significant damage to the communications infrastructure. Therefore, another essential requirement for disaster management is the ability to rapidly deploy a flexible incident area communication network. Such a network would facilitate the transmission of real-time video streams and still images from the disrupted area to remote command and control locations. In this paper, a comprehensive end-to-end video/image transmission system between an incident area and a remote control centre is proposed and implemented, and its performance is experimentally investigated. In this study a hybrid multi-segment communication network is designed that seamlessly integrates terrestrial wireless mesh networks (WMNs), distributed wireless visual sensor networks, an airborne platform with video camera balloons, and a Digital Video Broadcasting- Satellite (DVB-S) system. By carefully integrating all of these rapidly deployable, interworking and collaborative networking technologies, we can fully exploit the joint benefits provided by WMNs, WSNs, balloon camera networks and DVB-S for real-time video streaming and image delivery in emergency situations among the disaster hit area, the remote control centre and the rescue teams in the field. The whole proposed system is implemented in a proven simulator. Through extensive simulations, the real-time visual communication performance of this integrated system has been numerically evaluated, towards a more in-depth understanding in supporting high-quality visual communications in such a demanding context.

  19. Evolving discriminators for querying video sequences

    NASA Astrophysics Data System (ADS)

    Iyengar, Giridharan; Lippman, Andrew B.

    1997-01-01

    In this paper we present a framework for content based query and retrieval of information from large video databases. This framework enables content based retrieval of video sequences by characterizing the sequences using motion, texture and colorimetry cues. This characterization is biologically inspired and results in a compact parameter space where every segment of video is represented by an 8 dimensional vector. Searching and retrieval is done in real- time with accuracy in this parameter space. Using this characterization, we then evolve a set of discriminators using Genetic Programming Experiments indicate that these discriminators are capable of analyzing and characterizing video. The VideoBook is able to search and retrieve video sequences with 92% accuracy in real-time. Experiments thus demonstrate that the characterization is capable of extracting higher level structure from raw pixel values.

  20. Role-Playing and Real-Time Strategy Games Associated with Greater Probability of Internet Gaming Disorder.

    PubMed

    Eichenbaum, Adam; Kattner, Florian; Bradford, Daniel; Gentile, Douglas A; Green, C Shawn

    2015-08-01

    Research indicates that a small subset of those who routinely play video games show signs of pathological habits, with side effects ranging from mild (e.g., being late) to quite severe (e.g., losing a job). However, it is still not clear whether individual types, or genres, of games are most strongly associated with Internet gaming disorder (IGD). A sample of 4,744 University of Wisconsin-Madison undergraduates (Mage=18.9 years; SD=1.9 years; 60.5% female) completed questionnaires on general video game playing habits and on symptoms of IGD. Consistent with previous reports: 5.9-10.8% (depending on classification criteria) of individuals who played video games show signs of pathological play. Furthermore, real-time strategy and role-playing video games were more strongly associated with pathological play, compared with action and other games (e.g., phone games). The current investigation adds support to the idea that not all video games are equal. Instead, certain genres of video games, specifically real-time strategy and role-playing/fantasy games, are disproportionately associated with IGD symptoms.

  1. Data streaming in telepresence environments.

    PubMed

    Lamboray, Edouard; Würmlin, Stephan; Gross, Markus

    2005-01-01

    In this paper, we discuss data transmission in telepresence environments for collaborative virtual reality applications. We analyze data streams in the context of networked virtual environments and classify them according to their traffic characteristics. Special emphasis is put on geometry-enhanced (3D) video. We review architectures for real-time 3D video pipelines and derive theoretical bounds on the minimal system latency as a function of the transmission and processing delays. Furthermore, we discuss bandwidth issues of differential update coding for 3D video. In our telepresence system-the blue-c-we use a point-based 3D video technology which allows for differentially encoded 3D representations of human users. While we discuss the considerations which lead to the design of our three-stage 3D video pipeline, we also elucidate some critical implementation details regarding decoupling of acquisition, processing and rendering frame rates, and audio/video synchronization. Finally, we demonstrate the communication and networking features of the blue-c system in its full deployment. We show how the system can possibly be controlled to face processing or networking bottlenecks by adapting the multiple system components like audio, application data, and 3D video.

  2. Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit.

    PubMed

    Xu, Jing; Wong, Kevin; Jian, Yifan; Sarunic, Marinko V

    2014-02-01

    In this report, we describe a graphics processing unit (GPU)-accelerated processing platform for real-time acquisition and display of flow contrast images with Fourier domain optical coherence tomography (FDOCT) in mouse and human eyes in vivo. Motion contrast from blood flow is processed using the speckle variance OCT (svOCT) technique, which relies on the acquisition of multiple B-scan frames at the same location and tracking the change of the speckle pattern. Real-time mouse and human retinal imaging using two different custom-built OCT systems with processing and display performed on GPU are presented with an in-depth analysis of performance metrics. The display output included structural OCT data, en face projections of the intensity data, and the svOCT en face projections of retinal microvasculature; these results compare projections with and without speckle variance in the different retinal layers to reveal significant contrast improvements. As a demonstration, videos of real-time svOCT for in vivo human and mouse retinal imaging are included in our results. The capability of performing real-time svOCT imaging of the retinal vasculature may be a useful tool in a clinical environment for monitoring disease-related pathological changes in the microcirculation such as diabetic retinopathy.

  3. Real-time video streaming using H.264 scalable video coding (SVC) in multihomed mobile networks: a testbed approach

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2011-03-01

    Users of the next generation wireless paradigm known as multihomed mobile networks expect satisfactory quality of service (QoS) when accessing streamed multimedia content. The recent H.264 Scalable Video Coding (SVC) extension to the Advanced Video Coding standard (AVC), offers the facility to adapt real-time video streams in response to the dynamic conditions of multiple network paths encountered in multihomed wireless mobile networks. Nevertheless, preexisting streaming algorithms were mainly proposed for AVC delivery over multipath wired networks and were evaluated by software simulation. This paper introduces a practical, hardware-based testbed upon which we implement and evaluate real-time H.264 SVC streaming algorithms in a realistic multihomed wireless mobile networks environment. We propose an optimised streaming algorithm with multi-fold technical contributions. Firstly, we extended the AVC packet prioritisation schemes to reflect the three-dimensional granularity of SVC. Secondly, we designed a mechanism for evaluating the effects of different streamer 'read ahead window' sizes on real-time performance. Thirdly, we took account of the previously unconsidered path switching and mobile networks tunnelling overheads encountered in real-world deployments. Finally, we implemented a path condition monitoring and reporting scheme to facilitate the intelligent path switching. The proposed system has been experimentally shown to offer a significant improvement in PSNR of the received stream compared with representative existing algorithms.

  4. Real-time 3D video compression for tele-immersive environments

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyu; Cui, Yi; Anwar, Zahid; Bocchino, Robert; Kiyanclar, Nadir; Nahrstedt, Klara; Campbell, Roy H.; Yurcik, William

    2006-01-01

    Tele-immersive systems can improve productivity and aid communication by allowing distributed parties to exchange information via a shared immersive experience. The TEEVE research project at the University of Illinois at Urbana-Champaign and the University of California at Berkeley seeks to foster the development and use of tele-immersive environments by a holistic integration of existing components that capture, transmit, and render three-dimensional (3D) scenes in real time to convey a sense of immersive space. However, the transmission of 3D video poses significant challenges. First, it is bandwidth-intensive, as it requires the transmission of multiple large-volume 3D video streams. Second, existing schemes for 2D color video compression such as MPEG, JPEG, and H.263 cannot be applied directly because the 3D video data contains depth as well as color information. Our goal is to explore from a different angle of the 3D compression space with factors including complexity, compression ratio, quality, and real-time performance. To investigate these trade-offs, we present and evaluate two simple 3D compression schemes. For the first scheme, we use color reduction to compress the color information, which we then compress along with the depth information using zlib. For the second scheme, we use motion JPEG to compress the color information and run-length encoding followed by Huffman coding to compress the depth information. We apply both schemes to 3D videos captured from a real tele-immersive environment. Our experimental results show that: (1) the compressed data preserves enough information to communicate the 3D images effectively (min. PSNR > 40) and (2) even without inter-frame motion estimation, very high compression ratios (avg. > 15) are achievable at speeds sufficient to allow real-time communication (avg. ~ 13 ms per 3D video frame).

  5. Low Cost Efficient Deliverying Video Surveillance Service to Moving Guard for Smart Home.

    PubMed

    Gualotuña, Tatiana; Macías, Elsa; Suárez, Álvaro; C, Efraín R Fonseca; Rivadeneira, Andrés

    2018-03-01

    Low-cost video surveillance systems are attractive for Smart Home applications (especially in emerging economies). Those systems use the flexibility of the Internet of Things to operate the video camera only when an intrusion is detected. We are the only ones that focus on the design of protocols based on intelligent agents to communicate the video of an intrusion in real time to the guards by wireless or mobile networks. The goal is to communicate, in real time, the video to the guards who can be moving towards the smart home. However, this communication suffers from sporadic disruptions that difficults the control and drastically reduces user satisfaction and operativity of the system. In a novel way, we have designed a generic software architecture based on design patterns that can be adapted to any hardware in a simple way. The implanted hardware is of very low economic cost; the software frameworks are free. In the experimental tests we have shown that it is possible to communicate to the moving guard, intrusion notifications (by e-mail and by instant messaging), and the first video frames in less than 20 s. In addition, we automatically recovered the frames of video lost in the disruptions in a transparent way to the user, we supported vertical handover processes and we could save energy of the smartphone's battery. However, the most important thing was that the high satisfaction of the people who have used the system.

  6. Low Cost Efficient Deliverying Video Surveillance Service to Moving Guard for Smart Home

    PubMed Central

    Gualotuña, Tatiana; Fonseca C., Efraín R.; Rivadeneira, Andrés

    2018-01-01

    Low-cost video surveillance systems are attractive for Smart Home applications (especially in emerging economies). Those systems use the flexibility of the Internet of Things to operate the video camera only when an intrusion is detected. We are the only ones that focus on the design of protocols based on intelligent agents to communicate the video of an intrusion in real time to the guards by wireless or mobile networks. The goal is to communicate, in real time, the video to the guards who can be moving towards the smart home. However, this communication suffers from sporadic disruptions that difficults the control and drastically reduces user satisfaction and operativity of the system. In a novel way, we have designed a generic software architecture based on design patterns that can be adapted to any hardware in a simple way. The implanted hardware is of very low economic cost; the software frameworks are free. In the experimental tests we have shown that it is possible to communicate to the moving guard, intrusion notifications (by e-mail and by instant messaging), and the first video frames in less than 20 s. In addition, we automatically recovered the frames of video lost in the disruptions in a transparent way to the user, we supported vertical handover processes and we could save energy of the smartphone's battery. However, the most important thing was that the high satisfaction of the people who have used the system. PMID:29494551

  7. Real-time rendering for multiview autostereoscopic displays

    NASA Astrophysics Data System (ADS)

    Berretty, R.-P. M.; Peters, F. J.; Volleberg, G. T. G.

    2006-02-01

    In video systems, the introduction of 3D video might be the next revolution after the introduction of color. Nowadays multiview autostereoscopic displays are in development. Such displays offer various views at the same time and the image content observed by the viewer depends upon his position with respect to the screen. His left eye receives a signal that is different from what his right eye gets; this gives, provided the signals have been properly processed, the impression of depth. The various views produced on the display differ with respect to their associated camera positions. A possible video format that is suited for rendering from different camera positions is the usual 2D format enriched with a depth related channel, e.g. for each pixel in the video not only its color is given, but also e.g. its distance to a camera. In this paper we provide a theoretical framework for the parallactic transformations which relates captured and observed depths to screen and image disparities. Moreover we present an efficient real time rendering algorithm that uses forward mapping to reduce aliasing artefacts and that deals properly with occlusions. For improved perceived resolution, we take the relative position of the color subpixels and the optics of the lenticular screen into account. Sophisticated filtering techniques results in high quality images.

  8. Using LabView for real-time monitoring and tracking of multiple biological objects

    NASA Astrophysics Data System (ADS)

    Nikolskyy, Aleksandr I.; Krasilenko, Vladimir G.; Bilynsky, Yosyp Y.; Starovier, Anzhelika

    2017-04-01

    Today real-time studying and tracking of movement dynamics of various biological objects is important and widely researched. Features of objects, conditions of their visualization and model parameters strongly influence the choice of optimal methods and algorithms for a specific task. Therefore, to automate the processes of adaptation of recognition tracking algorithms, several Labview project trackers are considered in the article. Projects allow changing templates for training and retraining the system quickly. They adapt to the speed of objects and statistical characteristics of noise in images. New functions of comparison of images or their features, descriptors and pre-processing methods will be discussed. The experiments carried out to test the trackers on real video files will be presented and analyzed.

  9. Implementation of MPEG-2 encoder to multiprocessor system using multiple MVPs (TMS320C80)

    NASA Astrophysics Data System (ADS)

    Kim, HyungSun; Boo, Kenny; Chung, SeokWoo; Choi, Geon Y.; Lee, YongJin; Jeon, JaeHo; Park, Hyun Wook

    1997-05-01

    This paper presents the efficient algorithm mapping for the real-time MPEG-2 encoding on the KAIST image computing system (KICS), which has a parallel architecture using five multimedia video processors (MVPs). The MVP is a general purpose digital signal processor (DSP) of Texas Instrument. It combines one floating-point processor and four fixed- point DSPs on a single chip. The KICS uses the MVP as a primary processing element (PE). Two PEs form a cluster, and there are two processing clusters in the KICS. Real-time MPEG-2 encoder is implemented through the spatial and the functional partitioning strategies. Encoding process of spatially partitioned half of the video input frame is assigned to ne processing cluster. Two PEs perform the functionally partitioned MPEG-2 encoding tasks in the pipelined operation mode. One PE of a cluster carries out the transform coding part and the other performs the predictive coding part of the MPEG-2 encoding algorithm. One MVP among five MVPs is used for system control and interface with host computer. This paper introduces an implementation of the MPEG-2 algorithm with a parallel processing architecture.

  10. Video change detection for fixed wing UAVs

    NASA Astrophysics Data System (ADS)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the image processing and change detection, we use the approach of Muller.4 Although it was developed for unmanned ground vehicles (UGVs), it enables a near real time video change detection for aerial videos. Concluding, we discuss the demands on sensor systems in the matter of change detection.

  11. Design of video processing and testing system based on DSP and FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Lv, Jun; Chen, Xi'ai; Gong, Xuexia; Yang, Chen'na

    2007-12-01

    Based on high speed Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA), a video capture, processing and display system is presented, which is of miniaturization and low power. In this system, a triple buffering scheme was used for the capture and display, so that the application can always get a new buffer without waiting; The Digital Signal Processor has an image process ability and it can be used to test the boundary of workpiece's image. A video graduation technology is used to aim at the position which is about to be tested, also, it can enhance the system's flexibility. The character superposition technology realized by DSP is used to display the test result on the screen in character format. This system can process image information in real time, ensure test precision, and help to enhance product quality and quality management.

  12. Real-time target tracking and locating system for UAV

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Tang, Linbo; Fu, Huiquan; Li, Maowen

    2017-07-01

    In order to achieve real-time target tracking and locating for UAV, a reliable processing system is built on the embedded platform. Firstly, the video image is acquired in real time by the photovoltaic system on the UAV. When the target information is known, KCF tracking algorithm is adopted to track the target. Then, the servo is controlled to rotate with the target, when the target is in the center of the image, the laser ranging module is opened to obtain the distance between the UAV and the target. Finally, to combine with UAV flight parameters obtained by BeiDou navigation system, through the target location algorithm to calculate the geodetic coordinates of the target. The results show that the system is stable for real-time tracking of targets and positioning.

  13. Real-Time Acquisition and Display of Data and Video

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic; Chakinarapu, Ramya; Garcia, Mario; Kar, Dulal; Nguyen, Tien

    2007-01-01

    This paper describes the development of a prototype that takes in an analog National Television System Committee (NTSC) video signal generated by a video camera and data acquired by a microcontroller and display them in real-time on a digital panel. An 8051 microcontroller is used to acquire power dissipation by the display panel, room temperature, and camera zoom level. The paper describes the major hardware components and shows how they are interfaced into a functional prototype. Test data results are presented and discussed.

  14. Deriving video content type from HEVC bitstream semantics

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos; Goma, Sergio R.

    2014-05-01

    As network service providers seek to improve customer satisfaction and retention levels, they are increasingly moving from traditional quality of service (QoS) driven delivery models to customer-centred quality of experience (QoE) delivery models. QoS models only consider metrics derived from the network however, QoE models also consider metrics derived from within the video sequence itself. Various spatial and temporal characteristics of a video sequence have been proposed, both individually and in combination, to derive methods of classifying video content either on a continuous scale or as a set of discrete classes. QoE models can be divided into three broad categories, full reference, reduced reference and no-reference models. Due to the need to have the original video available at the client for comparison, full reference metrics are of limited practical value in adaptive real-time video applications. Reduced reference metrics often require metadata to be transmitted with the bitstream, while no-reference metrics typically operate in the decompressed domain at the client side and require significant processing to extract spatial and temporal features. This paper proposes a heuristic, no-reference approach to video content classification which is specific to HEVC encoded bitstreams. The HEVC encoder already makes use of spatial characteristics to determine partitioning of coding units and temporal characteristics to determine the splitting of prediction units. We derive a function which approximates the spatio-temporal characteristics of the video sequence by using the weighted averages of the depth at which the coding unit quadtree is split and the prediction mode decision made by the encoder to estimate spatial and temporal characteristics respectively. Since the video content type of a sequence is determined by using high level information parsed from the video stream, spatio-temporal characteristics are identified without the need for full decoding and can be used in a timely manner to aid decision making in QoE oriented adaptive real time streaming.

  15. Formal Verification of a Power Controller Using the Real-Time Model Checker UPPAAL

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Larsen, Kim Guldstrand; Skou, Arne

    1999-01-01

    A real-time system for power-down control in audio/video components is modeled and verified using the real-time model checker UPPAAL. The system is supposed to reside in an audio/video component and control (read from and write to) links to neighbor audio/video components such as TV, VCR and remote-control. In particular, the system is responsible for the powering up and down of the component in between the arrival of data, and in order to do so in a safe way without loss of data, it is essential that no link interrupts are lost. Hence, a component system is a multitasking system with hard real-time requirements, and we present techniques for modeling time consumption in such a multitasked, prioritized system. The work has been carried out in a collaboration between Aalborg University and the audio/video company B&O. By modeling the system, 3 design errors were identified and corrected, and the following verification confirmed the validity of the design but also revealed the necessity for an upper limit of the interrupt frequency. The resulting design has been implemented and it is going to be incorporated as part of a new product line.

  16. The development of video game enjoyment in a role playing game.

    PubMed

    Wirth, Werner; Ryffel, Fabian; von Pape, Thilo; Karnowski, Veronika

    2013-04-01

    This study examines the development of video game enjoyment over time. The results of a longitudinal study (N=62) show that enjoyment increases over several sessions. Moreover, results of a multilevel regression model indicate a causal link between the dependent variable video game enjoyment and the predictor variables exploratory behavior, spatial presence, competence, suspense and solution, and simulated experiences of life. These findings are important for video game research because they reveal the antecedents of video game enjoyment in a real-world longitudinal setting. Results are discussed in terms of the dynamics of video game enjoyment under real-world conditions.

  17. Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos

    NASA Astrophysics Data System (ADS)

    Juneja, Medha; Grover, Priyanka

    2013-12-01

    Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.

  18. Using Image Analysis to Explore Changes In Bacterial Mat Coverage at the Base of a Hydrothermal Vent within the Caldera of Axial Seamount

    NASA Astrophysics Data System (ADS)

    Knuth, F.; Crone, T. J.; Marburg, A.

    2017-12-01

    The Ocean Observatories Initiative's (OOI) Cabled Array is delivering real-time high-definition video data from an HD video camera (CAMHD), installed at the Mushroom hydrothermal vent in the ASHES hydrothermal vent field within the caldera of Axial Seamount, an active submarine volcano located approximately 450 kilometers off the coast of Washington at a depth of 1,542 m. Every three hours the camera pans, zooms and focuses in on nine distinct scenes of scientific interest across the vent, producing 14-minute-long videos during each run. This standardized video sampling routine enables scientists to programmatically analyze the content of the video using automated image analysis techniques. Each scene-specific time series dataset can service a wide range of scientific investigations, including the estimation of bacterial flux into the system by quantifying chemosynthetic bacterial clusters (floc) present in the water column, relating periodicity in hydrothermal vent fluid flow to earth tides, measuring vent chimney growth in response to changing hydrothermal fluid flow rates, or mapping the patterns of fauna colonization, distribution and composition across the vent over time. We are currently investigating the seventh scene in the sampling routine, focused on the bacterial mat covering the seafloor at the base of the vent. We quantify the change in bacterial mat coverage over time using image analysis techniques, and examine the relationship between mat coverage, fluid flow processes, episodic chimney collapse events, and other processes observed by Cabled Array instrumentation. This analysis is being conducted using cloud-enabled computer vision processing techniques, programmatic image analysis, and time-lapse video data collected over the course of the first CAMHD deployment, from November 2015 to July 2016.

  19. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  20. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  1. Real-time trichromatic holographic interferometry: preliminary study

    NASA Astrophysics Data System (ADS)

    Albe, Felix; Bastide, Myriam; Desse, Jean-Michel; Tribillon, Jean-Louis H.

    1998-08-01

    In this paper we relate our preliminary experiments on real- time trichromatic holographic interferometry. For this purpose a CW `white' laser (argon and krypton of Coherent- Radiation, Spectrum model 70) is used. This laser produces about 10 wavelengths. A system consisting of birefringent plates and polarizers allows to select a trichromatic TEM00 triplet: blue line ((lambda) equals 476 nm, 100 mW), green line ((lambda) equals 514 nm, 100 mW) and red line ((lambda) equals 647 nm, 100 mW). In a first stage we recorded a trichromatic reflection hologram with a separate reference beam on a single-layer silver-halide panchromatic plate (PFG 03C). After processing, the hologram is put back into the original recording set-up, as in classical experiments on real-time monochromatic holographic interferometry. So we observe interference fringes between the 3 reconstructed waves and the 3 actual waves. The interference fringes of the phenomenon are observed on a screen and recorded by a video camera at 25 frames per second. A color video film of about 3 minutes of duration is presented. Some examples related to phase objects are presented (hot airflow from a candle, airflow from a hand). The actual results show the possibility of using this technique to study, in real time, aerodynamic wakes and mechanical deformation.

  2. A real-time TV logo tracking method using template matching

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Sang, Xinzhu; Yan, Binbin; Leng, Junmin

    2012-11-01

    A fast and accurate TV Logo detection method is presented based on real-time image filtering, noise eliminating and recognition of image features including edge and gray level information. It is important to accurately extract the optical template using the time averaging method from the sample video stream, and then different templates are used to match different logos in separated video streams with different resolution based on the topology features of logos. 12 video streams with different logos are used to verify the proposed method, and the experimental result demonstrates that the achieved accuracy can be up to 99%.

  3. Artificial vision support system (AVS(2)) for improved prosthetic vision.

    PubMed

    Fink, Wolfgang; Tarbell, Mark A

    2014-11-01

    State-of-the-art and upcoming camera-driven, implanted artificial vision systems provide only tens to hundreds of electrodes, affording only limited visual perception for blind subjects. Therefore, real time image processing is crucial to enhance and optimize this limited perception. Since tens or hundreds of pixels/electrodes allow only for a very crude approximation of the typically megapixel optical resolution of the external camera image feed, the preservation and enhancement of contrast differences and transitions, such as edges, are especially important compared to picture details such as object texture. An Artificial Vision Support System (AVS(2)) is devised that displays the captured video stream in a pixelation conforming to the dimension of the epi-retinal implant electrode array. AVS(2), using efficient image processing modules, modifies the captured video stream in real time, enhancing 'present but hidden' objects to overcome inadequacies or extremes in the camera imagery. As a result, visual prosthesis carriers may now be able to discern such objects in their 'field-of-view', thus enabling mobility in environments that would otherwise be too hazardous to navigate. The image processing modules can be engaged repeatedly in a user-defined order, which is a unique capability. AVS(2) is directly applicable to any artificial vision system that is based on an imaging modality (video, infrared, sound, ultrasound, microwave, radar, etc.) as the first step in the stimulation/processing cascade, such as: retinal implants (i.e. epi-retinal, sub-retinal, suprachoroidal), optic nerve implants, cortical implants, electric tongue stimulators, or tactile stimulators.

  4. Collaborative Estimation in Distributed Sensor Networks

    ERIC Educational Resources Information Center

    Kar, Swarnendu

    2013-01-01

    Networks of smart ultra-portable devices are already indispensable in our lives, augmenting our senses and connecting our lives through real time processing and communication of sensory (e.g., audio, video, location) inputs. Though usually hidden from the user's sight, the engineering of these devices involves fierce tradeoffs between energy…

  5. Packetized Video On MAGNET

    NASA Astrophysics Data System (ADS)

    Lazar, Aurel A.; White, John S.

    1987-07-01

    Theoretical analysis of integrated local area network model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up during video and voice calls during periods of little movement in the images and periods of silence in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamicaly controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real-time multimedia workstation EDDY, which integrates video, voice, and data traffic flows. Protocols supporting variable-bandwidth, fixed-quality packetized video transport are described in detail.

  6. Packetized video on MAGNET

    NASA Astrophysics Data System (ADS)

    Lazar, Aurel A.; White, John S.

    1986-11-01

    Theoretical analysis of an ILAN model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up by video and voice calls during periods of little movement in the images and silence periods in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamically controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real time multimedia workstation EDDY that integrates video, voice and data traffic flows. Protocols supporting variable bandwidth, constant quality packetized video transport are descibed in detail.

  7. Can training in a real-time strategy video game attenuate cognitive decline in older adults?

    PubMed

    Basak, Chandramallika; Boot, Walter R; Voss, Michelle W; Kramer, Arthur F

    2008-12-01

    Declines in various cognitive abilities, particularly executive control functions, are observed in older adults. An important goal of cognitive training is to slow or reverse these age-related declines. However, opinion is divided in the literature regarding whether cognitive training can engender transfer to a variety of cognitive skills in older adults. In the current study, the authors trained older adults in a real-time strategy video game for 23.5 hr in an effort to improve their executive functions. A battery of cognitive tasks, including tasks of executive control and visuospatial skills, were assessed before, during, and after video-game training. The trainees improved significantly in the measures of game performance. They also improved significantly more than the control participants in executive control functions, such as task switching, working memory, visual short-term memory, and reasoning. Individual differences in changes in game performance were correlated with improvements in task switching. The study has implications for the enhancement of executive control processes of older adults. Copyright (c) 2009 APA, all rights reserved.

  8. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.

    2014-02-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  9. A real-time remote video streaming platform for ultrasound imaging.

    PubMed

    Ahmadi, Mehdi; Gross, Warren J; Kadoury, Samuel

    2016-08-01

    Ultrasound is a viable imaging technology in remote and resources-limited areas. Ultrasonography is a user-dependent skill which depends on a high degree of training and hands-on experience. However, there is a limited number of skillful sonographers located in remote areas. In this work, we aim to develop a real-time video streaming platform which allows specialist physicians to remotely monitor ultrasound exams. To this end, an ultrasound stream is captured and transmitted through a wireless network into remote computers, smart-phones and tablets. In addition, the system is equipped with a camera to track the position of the ultrasound probe. The main advantage of our work is using an open source platform for video streaming which gives us more control over streaming parameters than the available commercial products. The transmission delays of the system are evaluated for several ultrasound video resolutions and the results show that ultrasound videos close to the high-definition (HD) resolution can be received and displayed on an Android tablet with the delay of 0.5 seconds which is acceptable for accurate real-time diagnosis.

  10. Appropriating Video Surveillance for Art and Environmental Awareness: Experiences from ARTiVIS.

    PubMed

    Mendes, Mónica; Ângelo, Pedro; Correia, Nuno; Nisi, Valentina

    2018-06-01

    Arts, Real-Time Video and Interactivity for Sustainability (ARTiVIS) is an ongoing collaborative research project investigating how real-time video, DIY surveillance technologies and sensor data can be used as a tool for environmental awareness, activism and artistic explorations. The project consists of a series of digital contexts for aesthetic contemplation of nature and civic engagement, aiming to foster awareness and empowerment of local populations through DIY surveillance. At the core of the ARTIVIS efforts are a series of interactive installations (namely B-Wind!, Hug@tree and Play with Fire), that make use of surveillance technologies and real-time video as raw material to promote environmental awareness through the emotion generated by real-time connections with nature. Throughout the project development, the surveillance concept has been shifting from the use of surveillance technology in a centralized platform, to the idea of veillance with distributed peer-to-peer networks that can be used for science and environmental monitoring. In this paper we present the history of the ARTiVIS project, related and inspiring work, describe ongoing research work and explore the present and future challenges of appropriating surveillance technology for artistic, educational and civic engagement purposes.

  11. A web-based video annotation system for crowdsourcing surveillance videos

    NASA Astrophysics Data System (ADS)

    Gadgil, Neeraj J.; Tahboub, Khalid; Kirsh, David; Delp, Edward J.

    2014-03-01

    Video surveillance systems are of a great value to prevent threats and identify/investigate criminal activities. Manual analysis of a huge amount of video data from several cameras over a long period of time often becomes impracticable. The use of automatic detection methods can be challenging when the video contains many objects with complex motion and occlusions. Crowdsourcing has been proposed as an effective method for utilizing human intelligence to perform several tasks. Our system provides a platform for the annotation of surveillance video in an organized and controlled way. One can monitor a surveillance system using a set of tools such as training modules, roles and labels, task management. This system can be used in a real-time streaming mode to detect any potential threats or as an investigative tool to analyze past events. Annotators can annotate video contents assigned to them for suspicious activity or criminal acts. First responders are then able to view the collective annotations and receive email alerts about a newly reported incident. They can also keep track of the annotators' training performance, manage their activities and reward their success. By providing this system, the process of video analysis is made more efficient.

  12. Comparison of H.265/HEVC encoders

    NASA Astrophysics Data System (ADS)

    Trochimiuk, Maciej

    2016-09-01

    The H.265/HEVC is the state-of-the-art video compression standard, which allows the bitrate reduction up to 50% compared with its predecessor, H.264/AVC, maintaining equal perceptual video quality. The growth in coding efficiency was achieved by increasing the number of available intra- and inter-frame prediction features and improvements in existing ones, such as entropy encoding and filtering. Nevertheless, to achieve real-time performance of the encoder, simplifications in algorithm are inevitable. Some features and coding modes shall be skipped, to reduce time needed to evaluate modes forwarded to rate-distortion optimisation. Thus, the potential acceleration of the encoding process comes at the expense of coding efficiency. In this paper, a trade-off between video quality and encoding speed of various H.265/HEVC encoders is discussed.

  13. Robotic Attention Processing And Its Application To Visual Guidance

    NASA Astrophysics Data System (ADS)

    Barth, Matthew; Inoue, Hirochika

    1988-03-01

    This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.

  14. Contour Detector and Data Acquisition System for the Left Ventricular Outline

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C. (Inventor)

    1978-01-01

    A real-time contour detector and data acquisition system is described for an angiographic apparatus having a video scanner for converting an X-ray image of a structure characterized by a change in brightness level compared with its surrounding into video format and displaying the X-ray image in recurring video fields. The real-time contour detector and data acqusition system includes track and hold circuits; a reference level analog computer circuit; an analog compartor; a digital processor; a field memory; and a computer interface.

  15. Real-time inspection by submarine images

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Zingaretti, Primo; Conte, Giuseppe

    1996-10-01

    A real-time application of computer vision concerning tracking and inspection of a submarine pipeline is described. The objective is to develop automatic procedures for supporting human operators in the real-time analysis of images acquired by means of cameras mounted on underwater remotely operated vehicles (ROV) Implementation of such procedures gives rise to a human-machine system for underwater pipeline inspection that can automatically detect and signal the presence of the pipe, of its structural or accessory elements, and of dangerous or alien objects in its neighborhood. The possibility of modifying the image acquisition rate in the simulations performed on video- recorded images is used to prove that the system performs all necessary processing with an acceptable robustness working in real-time up to a speed of about 2.5 kn, widely greater than that the actual ROVs and the security features allow.

  16. A contourlet transform based algorithm for real-time video encoding

    NASA Astrophysics Data System (ADS)

    Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris

    2012-06-01

    In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to algorithms utilizing block-based coding, like the MPEG family, as it introduces fuzziness and blurring instead of artificial block artifacts.

  17. Healthcare4VideoStorm: Making Smart Decisions Based on Storm Metrics.

    PubMed

    Zhang, Weishan; Duan, Pengcheng; Chen, Xiufeng; Lu, Qinghua

    2016-04-23

    Storm-based stream processing is widely used for real-time large-scale distributed processing. Knowing the run-time status and ensuring performance is critical to providing expected dependability for some applications, e.g., continuous video processing for security surveillance. The existing scheduling strategies' granularity is too coarse to have good performance, and mainly considers network resources without computing resources while scheduling. In this paper, we propose Healthcare4Storm, a framework that finds Storm insights based on Storm metrics to gain knowledge from the health status of an application, finally ending up with smart scheduling decisions. It takes into account both network and computing resources and conducts scheduling at a fine-grained level using tuples instead of topologies. The comprehensive evaluation shows that the proposed framework has good performance and can improve the dependability of the Storm-based applications.

  18. Real-time Enhancement, Registration, and Fusion for an Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than-human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests.

  19. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    PubMed

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  20. Intergraph video and images exploitation capabilities

    NASA Astrophysics Data System (ADS)

    Colla, Simone; Manesis, Charalampos

    2013-08-01

    The current paper focuses on the capture, fusion and process of aerial imagery in order to leverage full motion video, giving analysts the ability to collect, analyze, and maximize the value of video assets. Unmanned aerial vehicles (UAV) have provided critical real-time surveillance and operational support to military organizations, and are a key source of intelligence, particularly when integrated with other geospatial data. In the current workflow, at first, the UAV operators plan the flight by using a flight planning software. During the flight the UAV send a live video stream directly on the field to be processed by Intergraph software, to generate and disseminate georeferenced images trough a service oriented architecture based on ERDAS Apollo suite. The raw video-based data sources provide the most recent view of a situation and can augment other forms of geospatial intelligence - such as satellite imagery and aerial photos - to provide a richer, more detailed view of the area of interest. To effectively use video as a source of intelligence, however, the analyst needs to seamlessly fuse the video with these other types of intelligence, such as map features and annotations. Intergraph has developed an application that automatically generates mosaicked georeferenced image, tags along the video route which can then be seamlessly integrated with other forms of static data, such as aerial photos, satellite imagery, or geospatial layers and features. Consumers will finally have the ability to use a single, streamlined system to complete the entire geospatial information lifecycle: capturing geospatial data using sensor technology; processing vector, raster, terrain data into actionable information; managing, fusing, and sharing geospatial data and video toghether; and finally, rapidly and securely delivering integrated information products, ensuring individuals can make timely decisions.

  1. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors.

    PubMed

    Belkacem, Abdelkader Nasreddine; Saetia, Supat; Zintus-art, Kalanyu; Shin, Duk; Kambara, Hiroyuki; Yoshimura, Natsue; Berrached, Nasreddine; Koike, Yasuharu

    2015-01-01

    EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control.

  2. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors

    PubMed Central

    Saetia, Supat; Zintus-art, Kalanyu; Shin, Duk; Kambara, Hiroyuki; Yoshimura, Natsue; Berrached, Nasreddine; Koike, Yasuharu

    2015-01-01

    EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control. PMID:26690500

  3. Implementation and Analysis of Real-Time Streaming Protocols.

    PubMed

    Santos-González, Iván; Rivero-García, Alexandra; Molina-Gil, Jezabel; Caballero-Gil, Pino

    2017-04-12

    Communication media have become the primary way of interaction thanks to the discovery and innovation of many new technologies. One of the most widely used communication systems today is video streaming, which is constantly evolving. Such communications are a good alternative to face-to-face meetings, and are therefore very useful for coping with many problems caused by distance. However, they suffer from different issues such as bandwidth limitation, network congestion, energy efficiency, cost, reliability and connectivity. Hence, the quality of service and the quality of experience are considered the two most important issues for this type of communication. This work presents a complete comparative study of two of the most used protocols of video streaming, Real Time Streaming Protocol (RTSP) and the Web Real-Time Communication (WebRTC). In addition, this paper proposes two new mobile applications that implement those protocols in Android whose objective is to know how they are influenced by the aspects that most affect the streaming quality of service, which are the connection establishment time and the stream reception time. The new video streaming applications are also compared with the most popular video streaming applications for Android, and the experimental results of the analysis show that the developed WebRTC implementation improves the performance of the most popular video streaming applications with respect to the stream packet delay.

  4. Real-time software-based end-to-end wireless visual communications simulation platform

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell

    1995-04-01

    Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.

  5. DC-8 Scanning Lidar Characterization of Aircraft Contrails and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Oseberg, Terje E.

    1998-01-01

    An angular-scanning large-aperture (36 cm) backscatter lidar was developed and deployed on the NASA DC-8 research aircraft as part of the SUCCESS (Subsonic Aircraft: Contrail and Cloud Effects Special Study) program. The lidar viewing direction could be scanned continuously during aircraft flight from vertically upward to forward to vertically downward, or the viewing could be at fixed angles. Real-time pictorial displays generated from the lidar signatures were broadcast on the DC-8 video network and used to locate clouds and contrails above, ahead of, and below the DC-8 to depict their spatial structure and to help select DC-8 altitudes for achieving optimum sampling by onboard in situ sensors. Several lidar receiver systems and real-time data displays were evaluated to help extend in situ data into vertical dimensions and to help establish possible lidar configurations and applications on future missions. Digital lidar signatures were recorded on 8 mm Exabyte tape and generated real-time displays were recorded on 8mm video tape. The digital records were transcribed in a common format to compact disks to facilitate data analysis and delivery to SUCCESS participants. Data selected from the real-time display video recordings were processed for publication-quality displays incorporating several standard lidar data corrections. Data examples are presented that illustrate: (1) correlation with particulate, gas, and radiometric measurements made by onboard sensors, (2) discrimination and identification between contrails observed by onboard sensors, (3) high-altitude (13 km) scattering layer that exhibits greatly enhanced vertical backscatter relative to off-vertical backscatter, and (4) mapping of vertical distributions of individual precipitating ice crystals and their capture by cloud layers. An angular scan plotting program was developed that accounts for DC-8 pitch and velocity.

  6. Source-Adaptation-Based Wireless Video Transport: A Cross-Layer Approach

    NASA Astrophysics Data System (ADS)

    Qu, Qi; Pei, Yong; Modestino, James W.; Tian, Xusheng

    2006-12-01

    Real-time packet video transmission over wireless networks is expected to experience bursty packet losses that can cause substantial degradation to the transmitted video quality. In wireless networks, channel state information is hard to obtain in a reliable and timely manner due to the rapid change of wireless environments. However, the source motion information is always available and can be obtained easily and accurately from video sequences. Therefore, in this paper, we propose a novel cross-layer framework that exploits only the motion information inherent in video sequences and efficiently combines a packetization scheme, a cross-layer forward error correction (FEC)-based unequal error protection (UEP) scheme, an intracoding rate selection scheme as well as a novel intraframe interleaving scheme. Our objective and subjective results demonstrate that the proposed approach is very effective in dealing with the bursty packet losses occurring on wireless networks without incurring any additional implementation complexity or delay. Thus, the simplicity of our proposed system has important implications for the implementation of a practical real-time video transmission system.

  7. Speed Biases With Real-Life Video Clips

    PubMed Central

    Rossi, Federica; Montanaro, Elisa; de’Sperati, Claudio

    2018-01-01

    We live almost literally immersed in an artificial visual world, especially motion pictures. In this exploratory study, we asked whether the best speed for reproducing a video is its original, shooting speed. By using adjustment and double staircase methods, we examined speed biases in viewing real-life video clips in three experiments, and assessed their robustness by manipulating visual and auditory factors. With the tested stimuli (short clips of human motion, mixed human-physical motion, physical motion and ego-motion), speed underestimation was the rule rather than the exception, although it depended largely on clip content, ranging on average from 2% (ego-motion) to 32% (physical motion). Manipulating display size or adding arbitrary soundtracks did not modify these speed biases. Estimated speed was not correlated with estimated duration of these same video clips. These results indicate that the sense of speed for real-life video clips can be systematically biased, independently of the impression of elapsed time. Measuring subjective visual tempo may integrate traditional methods that assess time perception: speed biases may be exploited to develop a simple, objective test of reality flow, to be used for example in clinical and developmental contexts. From the perspective of video media, measuring speed biases may help to optimize video reproduction speed and validate “natural” video compression techniques based on sub-threshold temporal squeezing. PMID:29615875

  8. Speed Biases With Real-Life Video Clips.

    PubMed

    Rossi, Federica; Montanaro, Elisa; de'Sperati, Claudio

    2018-01-01

    We live almost literally immersed in an artificial visual world, especially motion pictures. In this exploratory study, we asked whether the best speed for reproducing a video is its original, shooting speed. By using adjustment and double staircase methods, we examined speed biases in viewing real-life video clips in three experiments, and assessed their robustness by manipulating visual and auditory factors. With the tested stimuli (short clips of human motion, mixed human-physical motion, physical motion and ego-motion), speed underestimation was the rule rather than the exception, although it depended largely on clip content, ranging on average from 2% (ego-motion) to 32% (physical motion). Manipulating display size or adding arbitrary soundtracks did not modify these speed biases. Estimated speed was not correlated with estimated duration of these same video clips. These results indicate that the sense of speed for real-life video clips can be systematically biased, independently of the impression of elapsed time. Measuring subjective visual tempo may integrate traditional methods that assess time perception: speed biases may be exploited to develop a simple, objective test of reality flow, to be used for example in clinical and developmental contexts. From the perspective of video media, measuring speed biases may help to optimize video reproduction speed and validate "natural" video compression techniques based on sub-threshold temporal squeezing.

  9. A Formative Evaluation of CU-SeeMe.

    DTIC Science & Technology

    1995-02-01

    CU- SeeMe is a video conferencing software package that was designed and programmed at Cornell University. The program works with the TCP/IP network...protocol and allows two or more parties to conduct a real-time video conference with full audio support. In this paper we evaluate CU- SeeMe through...caused the problem and why This helps in the process of formulating solutions for observed usability problems. All the testing results are combined in the Appendix in an illustrated partial redesign of the CU- SeeMe Interface.

  10. Three-dimensional face pose detection and tracking using monocular videos: tool and application.

    PubMed

    Dornaika, Fadi; Raducanu, Bogdan

    2009-08-01

    Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.

  11. Nekton Interaction Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-03-15

    The software provides a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) extracts and archives tracking and backscatter statistics data from a real-time stream of data from a sonar device. NIMS also sends real-time tracking messages over the network that can be used by other systems to generate other metrics or to trigger instruments such as an optical video camera. A web-based user interface provides remote monitoring and control. NIMS currently supports three popular sonarmore » devices: M3 multi-beam sonar (Kongsberg), EK60 split-beam echo-sounder (Simrad) and BlueView acoustic camera (Teledyne).« less

  12. Real-time blood flow visualization using the graphics processing unit

    NASA Astrophysics Data System (ADS)

    Yang, Owen; Cuccia, David; Choi, Bernard

    2011-01-01

    Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ~10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark.

  13. Real-time blood flow visualization using the graphics processing unit

    PubMed Central

    Yang, Owen; Cuccia, David; Choi, Bernard

    2011-01-01

    Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ∼10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark. PMID:21280915

  14. Video encryption using chaotic masks in joint transform correlator

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2015-03-01

    A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.

  15. Action-Driven Visual Object Tracking With Deep Reinforcement Learning.

    PubMed

    Yun, Sangdoo; Choi, Jongwon; Yoo, Youngjoon; Yun, Kimin; Choi, Jin Young

    2018-06-01

    In this paper, we propose an efficient visual tracker, which directly captures a bounding box containing the target object in a video by means of sequential actions learned using deep neural networks. The proposed deep neural network to control tracking actions is pretrained using various training video sequences and fine-tuned during actual tracking for online adaptation to a change of target and background. The pretraining is done by utilizing deep reinforcement learning (RL) as well as supervised learning. The use of RL enables even partially labeled data to be successfully utilized for semisupervised learning. Through the evaluation of the object tracking benchmark data set, the proposed tracker is validated to achieve a competitive performance at three times the speed of existing deep network-based trackers. The fast version of the proposed method, which operates in real time on graphics processing unit, outperforms the state-of-the-art real-time trackers with an accuracy improvement of more than 8%.

  16. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    PubMed

    Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 × 80 µm with a section thickness of only 600 µm were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the impact of disintegrant concentration were examined. Crospovidone seems to be the only disintegrant acting by a shape memory effect, whereas the others mainly swell. A higher relative density of tablets containing croscarmellose sodium leads to a more even distribution of water within the tablet matrix but hardly impacts the disintegration kinetics. Increasing the polacrilin potassium disintegrant concentration leads to a quicker and more thorough disintegration process. Real-time MRI emerges as valuable tool to visualize and investigate the process of tablet disintegration.

  17. Secure and Lightweight Cloud-Assisted Video Reporting Protocol over 5G-Enabled Vehicular Networks

    PubMed Central

    2017-01-01

    In the vehicular networks, the real-time video reporting service is used to send the recorded videos in the vehicle to the cloud. However, when facilitating the real-time video reporting service in the vehicular networks, the usage of the fourth generation (4G) long term evolution (LTE) was proved to suffer from latency while the IEEE 802.11p standard does not offer sufficient scalability for a such congested environment. To overcome those drawbacks, the fifth-generation (5G)-enabled vehicular network is considered as a promising technology for empowering the real-time video reporting service. In this paper, we note that security and privacy related issues should also be carefully addressed to boost the early adoption of 5G-enabled vehicular networks. There exist a few research works for secure video reporting service in 5G-enabled vehicular networks. However, their usage is limited because of public key certificates and expensive pairing operations. Thus, we propose a secure and lightweight protocol for cloud-assisted video reporting service in 5G-enabled vehicular networks. Compared to the conventional public key certificates, the proposed protocol achieves entities’ authorization through anonymous credential. Also, by using lightweight security primitives instead of expensive bilinear pairing operations, the proposed protocol minimizes the computational overhead. From the evaluation results, we show that the proposed protocol takes the smaller computation and communication time for the cryptographic primitives than that of the well-known Eiza-Ni-Shi protocol. PMID:28946633

  18. Secure and Lightweight Cloud-Assisted Video Reporting Protocol over 5G-Enabled Vehicular Networks.

    PubMed

    Nkenyereye, Lewis; Kwon, Joonho; Choi, Yoon-Ho

    2017-09-23

    In the vehicular networks, the real-time video reporting service is used to send the recorded videos in the vehicle to the cloud. However, when facilitating the real-time video reporting service in the vehicular networks, the usage of the fourth generation (4G) long term evolution (LTE) was proved to suffer from latency while the IEEE 802.11p standard does not offer sufficient scalability for a such congested environment. To overcome those drawbacks, the fifth-generation (5G)-enabled vehicular network is considered as a promising technology for empowering the real-time video reporting service. In this paper, we note that security and privacy related issues should also be carefully addressed to boost the early adoption of 5G-enabled vehicular networks. There exist a few research works for secure video reporting service in 5G-enabled vehicular networks. However, their usage is limited because of public key certificates and expensive pairing operations. Thus, we propose a secure and lightweight protocol for cloud-assisted video reporting service in 5G-enabled vehicular networks. Compared to the conventional public key certificates, the proposed protocol achieves entities' authorization through anonymous credential. Also, by using lightweight security primitives instead of expensive bilinear pairing operations, the proposed protocol minimizes the computational overhead. From the evaluation results, we show that the proposed protocol takes the smaller computation and communication time for the cryptographic primitives than that of the well-known Eiza-Ni-Shi protocol.

  19. High-frequency video capture and a computer program with frame-by-frame angle determination functionality as tools that support judging in artistic gymnastics.

    PubMed

    Omorczyk, Jarosław; Nosiadek, Leszek; Ambroży, Tadeusz; Nosiadek, Andrzej

    2015-01-01

    The main aim of this study was to verify the usefulness of selected simple methods of recording and fast biomechanical analysis performed by judges of artistic gymnastics in assessing a gymnast's movement technique. The study participants comprised six artistic gymnastics judges, who assessed back handsprings using two methods: a real-time observation method and a frame-by-frame video analysis method. They also determined flexion angles of knee and hip joints using the computer program. In the case of the real-time observation method, the judges gave a total of 5.8 error points with an arithmetic mean of 0.16 points for the flexion of the knee joints. In the high-speed video analysis method, the total amounted to 8.6 error points and the mean value amounted to 0.24 error points. For the excessive flexion of hip joints, the sum of the error values was 2.2 error points and the arithmetic mean was 0.06 error points during real-time observation. The sum obtained using frame-by-frame analysis method equaled 10.8 and the mean equaled 0.30 error points. Error values obtained through the frame-by-frame video analysis of movement technique were higher than those obtained through the real-time observation method. The judges were able to indicate the number of the frame in which the maximal joint flexion occurred with good accuracy. Using the real-time observation method as well as the high-speed video analysis performed without determining the exact angle for assessing movement technique were found to be insufficient tools for improving the quality of judging.

  20. Interactive CT-Video Registration for the Continuous Guidance of Bronchoscopy

    PubMed Central

    Merritt, Scott A.; Khare, Rahul; Bascom, Rebecca

    2014-01-01

    Bronchoscopy is a major step in lung cancer staging. To perform bronchoscopy, the physician uses a procedure plan, derived from a patient’s 3D computed-tomography (CT) chest scan, to navigate the bronchoscope through the lung airways. Unfortunately, physicians vary greatly in their ability to perform bronchoscopy. As a result, image-guided bronchoscopy systems, drawing upon the concept of CT-based virtual bronchoscopy (VB), have been proposed. These systems attempt to register the bronchoscope’s live position within the chest to a CT-based virtual chest space. Recent methods, which register the bronchoscopic video to CT-based endoluminal airway renderings, show promise but do not enable continuous real-time guidance. We present a CT-video registration method inspired by computer-vision innovations in the fields of image alignment and image-based rendering. In particular, motivated by the Lucas–Kanade algorithm, we propose an inverse-compositional framework built around a gradient-based optimization procedure. We next propose an implementation of the framework suitable for image-guided bronchoscopy. Laboratory tests, involving both single frames and continuous video sequences, demonstrate the robustness and accuracy of the method. Benchmark timing tests indicate that the method can run continuously at 300 frames/s, well beyond the real-time bronchoscopic video rate of 30 frames/s. This compares extremely favorably to the ≥1 s/frame speeds of other methods and indicates the method’s potential for real-time continuous registration. A human phantom study confirms the method’s efficacy for real-time guidance in a controlled setting, and, hence, points the way toward the first interactive CT-video registration approach for image-guided bronchoscopy. Along this line, we demonstrate the method’s efficacy in a complete guidance system by presenting a clinical study involving lung cancer patients. PMID:23508260

  1. Real-Time Courseware Design: The LAVAC Video Sequencer[R].

    ERIC Educational Resources Information Center

    Toma, Tony

    Teachers have acknowledged the richer learning environment and interactivity of multimedia teaching, its flexibility to different learning styles, and learner control that allows the learner to fully engage in the learning process. However, they still have problems in courseware design because their work is mainly centered on exercises and not on…

  2. Real-time automatic inspection under adverse conditions

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Correia, Fernando C.; Freitas, Jose C. A.; Rodrigues, Fernando C.

    1991-03-01

    This paper presents the results of a R&D Program supported by a grant from the Ministry of Defense, devoted to the development of an inteffigent camera for surveillance in the open air. The effects of shadows, clouds and winds were problems to be solved without generating false alarm events. The system is based on a video CCD camera which generates a video CCIR signal. The signal is then processed in modular hardware which detects the changes in the scene and processes the image, in order to enhance the intruder image and path. Windows may be defined over the image in order to increase the information obtained about the intruder and a first approach to the classification of the type of intruder may be achieved. The paper describes the hardware used in the system, as well as the software, used for the installation of the camera and the software developed for the microprocessor which is responsible for the generation of the alarm signals. The paper also presents some results of surveillance tasks in the open air executed by the system with real time performance.

  3. The use of distributed displays of operating room video when real-time occupancy status was available.

    PubMed

    Xiao, Yan; Dexter, Franklin; Hu, Peter; Dutton, Richard P

    2008-02-01

    On the day of surgery, real-time information of both room occupancy and activities within the operating room (OR) is needed for management of staff, equipment, and unexpected events. A status display system showed color OR video with controllable image quality and showed times that patients entered and exited each OR (obtained automatically). The system was installed and its use was studied in a 6-OR trauma suite and at four locations in a 19-OR tertiary suite. Trauma staff were surveyed for their perceptions of the system. Evidence of staff acceptance of distributed OR video included its operational use for >3 yr in the two suites, with no administrative complaints. Individuals of all job categories used the video. Anesthesiologists were the most frequent users for more than half of the days (95% confidence interval [CI] >50%) in the tertiary ORs. The OR charge nurses accessed the video mostly early in the day when the OR occupancy was high. In comparison (P < 0.001), anesthesiologists accessed it mostly at the end of the workday when occupancy was declining and few cases were starting. Of all 30-min periods during which the video was accessed in the trauma suite, many accesses (95% CI >42%) occurred in periods with no cases starting or ending (i.e., the video was used during the middle of cases). The three stated reasons for using video that had median surveyed responses of "very useful" were "to see if cases are finished," "to see if a room is ready," and "to see when cases are about to finish." Our nurses and physicians both accepted and used distributed OR video as it provided useful information, regardless of whether real-time display of milestones was available (e.g., through anesthesia information system data).

  4. Evaluating the effectiveness of SW-only video coding for real-time video transmission over low-rate wireless networks

    NASA Astrophysics Data System (ADS)

    Bartolini, Franco; Pasquini, Cristina; Piva, Alessandro

    2001-04-01

    The recent development of video compression algorithms allowed the diffusion of systems for the transmission of video sequences over data networks. However, the transmission over error prone mobile communication channels is yet an open issue. In this paper, a system developed for the real time transmission of H263 video coded sequences over TETRA mobile networks is presented. TETRA is an open digital trunked radio standard defined by the European Telecommunications Standardization Institute developed for professional mobile radio users, providing full integration of voice and data services. Experimental tests demonstrate that, in spite of the low frame rate allowed by the SW only implementation of the decoder and by the low channel rate a video compression technique such as that complying with the H263 standard, is still preferable to a simpler but less effective frame based compression system.

  5. Development of a real-time wave field reconstruction TEM system (II): correction of coma aberration and 3-fold astigmatism, and real-time correction of 2-fold astigmatism.

    PubMed

    Tamura, Takahiro; Kimura, Yoshihide; Takai, Yoshizo

    2018-02-01

    In this study, a function for the correction of coma aberration, 3-fold astigmatism and real-time correction of 2-fold astigmatism was newly incorporated into a recently developed real-time wave field reconstruction TEM system. The aberration correction function was developed by modifying the image-processing software previously designed for auto focus tracking, as described in the first article of this series. Using the newly developed system, the coma aberration and 3-fold astigmatism were corrected using the aberration coefficients obtained experimentally before the processing was carried out. In this study, these aberration coefficients were estimated from an apparent 2-fold astigmatism induced under tilted-illumination conditions. In contrast, 2-fold astigmatism could be measured and corrected in real time from the reconstructed wave field. Here, the measurement precision for 2-fold astigmatism was found to be ±0.4 nm and ±2°. All of these aberration corrections, as well as auto focus tracking, were performed at a video frame rate of 1/30 s. Thus, the proposed novel system is promising for quantitative and reliable in situ observations, particularly in environmental TEM applications.

  6. A system for the real-time display of radar and video images of targets

    NASA Technical Reports Server (NTRS)

    Allen, W. W.; Burnside, W. D.

    1990-01-01

    Described here is a software and hardware system for the real-time display of radar and video images for use in a measurement range. The main purpose is to give the reader a clear idea of the software and hardware design and its functions. This system is designed around a Tektronix XD88-30 graphics workstation, used to display radar images superimposed on video images of the actual target. The system's purpose is to provide a platform for tha analysis and documentation of radar images and their associated targets in a menu-driven, user oriented environment.

  7. Detection of artery interfaces: a real-time system and its clinical applications

    NASA Astrophysics Data System (ADS)

    Faita, Francesco; Gemignani, Vincenzo; Bianchini, Elisabetta; Giannarelli, Chiara; Ghiadoni, Lorenzo; Demi, Marcello

    2008-03-01

    Analyzing the artery mechanics is a crucial issue because of its close relationship with several cardiovascular risk factors, such as hypertension and diabetes. Moreover, most of the work can be carried out by analyzing image sequences obtained with ultrasounds, that is with a non-invasive technique which allows a real-time visualization of the observed structures. For this reason, therefore, an accurate temporal localization of the main vessel interfaces becomes a central task for which the manual approach should be avoided since such a method is rather unreliable and time consuming. Real-time automatic systems are advantageously used to automatically locate the arterial interfaces. The automatic measurement reduces the inter/intra-observer variability with respect to the manual measurement which unavoidably depends on the experience of the operator. The real-time visual feedback, moreover, guides physicians when looking for the best position of the ultrasound probe, thus increasing the global robustness of the system. The automatic system which we developed is a stand-alone video processing system which acquires the analog video signal from the ultrasound equipment, performs all the measurements and shows the results in real-time. The localization algorithm of the artery tunics is based on a new mathematical operator (the first order absolute moment) and on a pattern recognition approach. Various clinical applications have been developed on board and validated through a comparison with gold-standard techniques: the assessment of intima-media thickness, the arterial distension, the flow-mediated dilation and the pulse wave velocity. With this paper, the results obtained on clinical trials are presented.

  8. Application of linear array imaging techniques to the real-time inspection of airframe structures and substructures

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1995-01-01

    Development and application of linear array imaging technologies to address specific aging-aircraft inspection issues is described. Real-time video-taped images were obtained from an unmodified commercial linear-array medical scanner of specimens constructed to simulate typical types of flaws encountered in the inspection of aircraft structures. Results suggest that information regarding the characteristics, location, and interface properties of specific types of flaws in materials and structures may be obtained from the images acquired with a linear array. Furthermore, linear array imaging may offer the advantage of being able to compare 'good' regions with 'flawed' regions simultaneously, and in real time. Real-time imaging permits the inspector to obtain image information from various views and provides the opportunity for observing the effects of introducing specific interventions. Observation of an image in real-time can offer the operator the ability to 'interact' with the inspection process, thus providing new capabilities, and perhaps, new approaches to nondestructive inspections.

  9. Parallel processing approach to transform-based image coding

    NASA Astrophysics Data System (ADS)

    Normile, James O.; Wright, Dan; Chu, Ken; Yeh, Chia L.

    1991-06-01

    This paper describes a flexible parallel processing architecture designed for use in real time video processing. The system consists of floating point DSP processors connected to each other via fast serial links, each processor has access to a globally shared memory. A multiple bus architecture in combination with a dual ported memory allows communication with a host control processor. The system has been applied to prototyping of video compression and decompression algorithms. The decomposition of transform based algorithms for decompression into a form suitable for parallel processing is described. A technique for automatic load balancing among the processors is developed and discussed, results ar presented with image statistics and data rates. Finally techniques for accelerating the system throughput are analyzed and results from the application of one such modification described.

  10. Recent experiences with implementing a video based six degree of freedom measurement system for airplane models in a 20 foot diameter vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.; Jones, Stephen B.; Fremaux, Charles M.

    1993-01-01

    A model space positioning system (MSPS), a state-of-the-art, real-time tracking system to provide the test engineer with on line model pitch and spin rate information, is described. It is noted that the six-degree-of-freedom post processor program will require additional programming effort both in the automated tracking mode for high spin rates and in accuracy to meet the measurement objectives. An independent multicamera system intended to augment the MSPS is studied using laboratory calibration methods based on photogrammetry to characterize the losses in various recording options. Data acquired to Super VHS tape encoded with Vertical Interval Time Code and transcribed to video disk are considered to be a reasonable priced choice for post editing and processing video data.

  11. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound.

    PubMed

    Baumgartner, Christian F; Kamnitsas, Konstantinos; Matthew, Jacqueline; Fletcher, Tara P; Smith, Sandra; Koch, Lisa M; Kainz, Bernhard; Rueckert, Daniel

    2017-11-01

    Identifying and interpreting fetal standard scan planes during 2-D ultrasound mid-pregnancy examinations are highly complex tasks, which require years of training. Apart from guiding the probe to the correct location, it can be equally difficult for a non-expert to identify relevant structures within the image. Automatic image processing can provide tools to help experienced as well as inexperienced operators with these tasks. In this paper, we propose a novel method based on convolutional neural networks, which can automatically detect 13 fetal standard views in freehand 2-D ultrasound data as well as provide a localization of the fetal structures via a bounding box. An important contribution is that the network learns to localize the target anatomy using weak supervision based on image-level labels only. The network architecture is designed to operate in real-time while providing optimal output for the localization task. We present results for real-time annotation, retrospective frame retrieval from saved videos, and localization on a very large and challenging dataset consisting of images and video recordings of full clinical anomaly screenings. We found that the proposed method achieved an average F1-score of 0.798 in a realistic classification experiment modeling real-time detection, and obtained a 90.09% accuracy for retrospective frame retrieval. Moreover, an accuracy of 77.8% was achieved on the localization task.

  12. Cognitive integration of asynchronous natural or non-natural auditory and visual information in videos of real-world events: an event-related potential study.

    PubMed

    Liu, B; Wang, Z; Wu, G; Meng, X

    2011-04-28

    In this paper, we aim to study the cognitive integration of asynchronous natural or non-natural auditory and visual information in videos of real-world events. Videos with asynchronous semantically consistent or inconsistent natural sound or speech were used as stimuli in order to compare the difference and similarity between multisensory integrations of videos with asynchronous natural sound and speech. The event-related potential (ERP) results showed that N1 and P250 components were elicited irrespective of whether natural sounds were consistent or inconsistent with critical actions in videos. Videos with inconsistent natural sound could elicit N400-P600 effects compared to videos with consistent natural sound, which was similar to the results from unisensory visual studies. Videos with semantically consistent or inconsistent speech could both elicit N1 components. Meanwhile, videos with inconsistent speech would elicit N400-LPN effects in comparison with videos with consistent speech, which showed that this semantic processing was probably related to recognition memory. Moreover, the N400 effect elicited by videos with semantically inconsistent speech was larger and later than that elicited by videos with semantically inconsistent natural sound. Overall, multisensory integration of videos with natural sound or speech could be roughly divided into two stages. For the videos with natural sound, the first stage might reflect the connection between the received information and the stored information in memory; and the second one might stand for the evaluation process of inconsistent semantic information. For the videos with speech, the first stage was similar to the first stage of videos with natural sound; while the second one might be related to recognition memory process. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Real-time Enhancement, Registration, and Fusion for a Multi-Sensor Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than- human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests. Keywords: enhanced vision system, image enhancement, retinex, digital signal processing, sensor fusion

  14. Three-dimensional real-time imaging of bi-phasic flow through porous media

    NASA Astrophysics Data System (ADS)

    Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, S.

    2011-11-01

    We present a scanning laser-sheet video imaging technique to image bi-phasic flow in three-dimensional porous media in real time with pore-scale spatial resolution, i.e., 35 μm and 500 μm for directions parallel and perpendicular to the flow, respectively. The technique is illustrated for the case of viscous fingering. Using suitable image processing protocols, both the morphology and the movement of the two-fluid interface, were quantitatively estimated. Furthermore, a macroscopic parameter such as the displacement efficiency obtained from a microscopic (pore-scale) analysis demonstrates the versatility and usefulness of the method.

  15. Semantic integration of differently asynchronous audio-visual information in videos of real-world events in cognitive processing: an ERP study.

    PubMed

    Liu, Baolin; Wu, Guangning; Wang, Zhongning; Ji, Xiang

    2011-07-01

    In the real world, some of the auditory and visual information received by the human brain are temporally asynchronous. How is such information integrated in cognitive processing in the brain? In this paper, we aimed to study the semantic integration of differently asynchronous audio-visual information in cognitive processing using ERP (event-related potential) method. Subjects were presented with videos of real world events, in which the auditory and visual information are temporally asynchronous. When the critical action was prior to the sound, sounds incongruous with the preceding critical actions elicited a N400 effect when compared to congruous condition. This result demonstrates that semantic contextual integration indexed by N400 also applies to cognitive processing of multisensory information. In addition, the N400 effect is early in latency when contrasted with other visually induced N400 studies. It is shown that cross modal information is facilitated in time when contrasted with visual information in isolation. When the sound was prior to the critical action, a larger late positive wave was observed under the incongruous condition compared to congruous condition. P600 might represent a reanalysis process, in which the mismatch between the critical action and the preceding sound was evaluated. It is shown that environmental sound may affect the cognitive processing of a visual event. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. The neural processing of voluntary completed, real and virtual violent and nonviolent computer game scenarios displaying predefined actions in gamers and nongamers.

    PubMed

    Regenbogen, Christina; Herrmann, Manfred; Fehr, Thorsten

    2010-01-01

    Studies investigating the effects of violent computer and video game playing have resulted in heterogeneous outcomes. It has been assumed that there is a decreased ability to differentiate between virtuality and reality in people that play these games intensively. FMRI data of a group of young males with (gamers) and without (controls) a history of long-term violent computer game playing experience were obtained during the presentation of computer game and realistic video sequences. In gamers the processing of real violence in contrast to nonviolence produced activation clusters in right inferior frontal, left lingual and superior temporal brain regions. Virtual violence activated a network comprising bilateral inferior frontal, occipital, postcentral, right middle temporal, and left fusiform regions. Control participants showed extended left frontal, insula and superior frontal activations during the processing of real, and posterior activations during the processing of virtual violent scenarios. The data suggest that the ability to differentiate automatically between real and virtual violence has not been diminished by a long-term history of violent video game play, nor have gamers' neural responses to real violence in particular been subject to desensitization processes. However, analyses of individual data indicated that group-related analyses reflect only a small part of actual individual different neural network involvement, suggesting that the consideration of individual learning history is sufficient for the present discussion.

  17. Real-time object tracking based on scale-invariant features employing bio-inspired hardware.

    PubMed

    Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya

    2016-09-01

    We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. High-performance electronic image stabilisation for shift and rotation correction

    NASA Astrophysics Data System (ADS)

    Parker, Steve C. J.; Hickman, D. L.; Wu, F.

    2014-06-01

    A novel low size, weight and power (SWaP) video stabiliser called HALO™ is presented that uses a SoC to combine the high processing bandwidth of an FPGA, with the signal processing flexibility of a CPU. An image based architecture is presented that can adapt the tiling of frames to cope with changing scene dynamics. A real-time implementation is then discussed that can generate several hundred optical flow vectors per video frame, to accurately calculate the unwanted rigid body translation and rotation of camera shake. The performance of the HALO™ stabiliser is comprehensively benchmarked against the respected Deshaker 3.0 off-line stabiliser plugin to VirtualDub. Eight different videos are used for benchmarking, simulating: battlefield, surveillance, security and low-level flight applications in both visible and IR wavebands. The results show that HALO™ rivals the performance of Deshaker within its operating envelope. Furthermore, HALO™ may be easily reconfigured to adapt to changing operating conditions or requirements; and can be used to host other video processing functionality like image distortion correction, fusion and contrast enhancement.

  19. Unattended real-time re-establishment of visibility in high dynamic range video and stills

    NASA Astrophysics Data System (ADS)

    Abidi, B.

    2014-05-01

    We describe a portable unattended persistent surveillance system that corrects for harsh illumination conditions, where bright sun light creates mixed contrast effects, i.e., heavy shadows and washouts. These effects result in high dynamic range scenes, where illuminance can vary from few luxes to a 6 figure value. When using regular monitors and cameras, such wide span of illuminations can only be visualized if the actual range of values is compressed, leading to the creation of saturated and/or dark noisy areas and a loss of information in these areas. Images containing extreme mixed contrast cannot be fully enhanced from a single exposure, simply because all information is not present in the original data. The active intervention in the acquisition process is required. A software package, capable of integrating multiple types of COTS and custom cameras, ranging from Unmanned Aerial Systems (UAS) data links to digital single-lens reflex cameras (DSLR), is described. Hardware and software are integrated via a novel smart data acquisition algorithm, which communicates to the camera the parameters that would maximize information content in the final processed scene. A fusion mechanism is then applied to the smartly acquired data, resulting in an enhanced scene where information in both dark and bright areas is revealed. Multi-threading and parallel processing are exploited to produce automatic real time full motion corrected video. A novel enhancement algorithm was also devised to process data from legacy and non-controllable cameras. The software accepts and processes pre-recorded sequences and stills, enhances visible, night vision, and Infrared data, and successfully applies to night time and dark scenes. Various user options are available, integrating custom functionalities of the application into intuitive and easy to use graphical interfaces. The ensuing increase in visibility in surveillance video and intelligence imagery will expand the performance and timely decision making of the human analyst, as well as that of unmanned systems performing automatic data exploitation, such as target detection and identification.

  20. System for real-time generation of georeferenced terrain models

    NASA Astrophysics Data System (ADS)

    Schultz, Howard J.; Hanson, Allen R.; Riseman, Edward M.; Stolle, Frank; Zhu, Zhigang; Hayward, Christopher D.; Slaymaker, Dana

    2001-02-01

    A growing number of law enforcement applications, especially in the areas of border security, drug enforcement and anti- terrorism require high-resolution wide area surveillance from unmanned air vehicles. At the University of Massachusetts we are developing an aerial reconnaissance system capable of generating high resolution, geographically registered terrain models (in the form of a seamless mosaic) in real-time from a single down-looking digital video camera. The efficiency of the processing algorithms, as well as the simplicity of the hardware, will provide the user with the ability to produce and roam through stereoscopic geo-referenced mosaic images in real-time, and to automatically generate highly accurate 3D terrain models offline in a fraction of the time currently required by softcopy conventional photogrammetry systems. The system is organized around a set of integrated sensor and software components. The instrumentation package is comprised of several inexpensive commercial-off-the-shelf components, including a digital video camera, a differential GPS, and a 3-axis heading and reference system. At the heart of the system is a set of software tools for image registration, mosaic generation, geo-location and aircraft state vector recovery. Each process is designed to efficiently handle the data collected by the instrument package. Particular attention is given to minimizing geospatial errors at each stage, as well as modeling propagation of errors through the system. Preliminary results for an urban and forested scene are discussed in detail.

  1. Monitoring system for phreatic eruptions and thermal behavior on Poás volcano hyperacidic lake, with permanent IR and HD cameras

    NASA Astrophysics Data System (ADS)

    Ramirez, C. J.; Mora-Amador, R. A., Sr.; Alpizar Segura, Y.; González, G.

    2015-12-01

    Monitoring volcanoes have been on the past decades an expanding matter, one of the rising techniques that involve new technology is the digital video surveillance, and the automated software that come within, now is possible if you have the budget and some facilities on site, to set up a real-time network of high definition video cameras, some of them even with special features like infrared, thermal, ultraviolet, etc. That can make easier or harder the analysis of volcanic phenomena like lava eruptions, phreatic eruption, plume speed, lava flows, close/open vents, just to mention some of the many application of these cameras. We present the methodology of the installation at Poás volcano of a real-time system for processing and storing HD and thermal images and video, also the process to install and acquired the HD and IR cameras, towers, solar panels and radios to transmit the data on a volcano located at the tropics, plus what volcanic areas are our goal and why. On the other hand we show the hardware and software we consider necessary to carry on our project. Finally we show some early data examples of upwelling areas on the Poás volcano hyperacidic lake and the relation with lake phreatic eruptions, also some data of increasing temperature on an old dome wall and the suddenly wall explosions, and the use of IR video for measuring plume speed and contour for use on combination with DOAS or FTIR measurements.

  2. Real-time WAMI streaming target tracking in fog

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Blasch, Erik; Chen, Ning; Deng, Anna; Ling, Haibin; Chen, Genshe

    2016-05-01

    Real-time information fusion based on WAMI (Wide-Area Motion Imagery), FMV (Full Motion Video), and Text data is highly desired for many mission critical emergency or security applications. Cloud Computing has been considered promising to achieve big data integration from multi-modal sources. In many mission critical tasks, however, powerful Cloud technology cannot satisfy the tight latency tolerance as the servers are allocated far from the sensing platform, actually there is no guaranteed connection in the emergency situations. Therefore, data processing, information fusion, and decision making are required to be executed on-site (i.e., near the data collection). Fog Computing, a recently proposed extension and complement for Cloud Computing, enables computing on-site without outsourcing jobs to a remote Cloud. In this work, we have investigated the feasibility of processing streaming WAMI in the Fog for real-time, online, uninterrupted target tracking. Using a single target tracking algorithm, we studied the performance of a Fog Computing prototype. The experimental results are very encouraging that validated the effectiveness of our Fog approach to achieve real-time frame rates.

  3. A teledentistry system for the second opinion.

    PubMed

    Gambino, Orazio; Lima, Fausto; Pirrone, Roberto; Ardizzone, Edoardo; Campisi, Giuseppina; di Fede, Olga

    2014-01-01

    In this paper we present a Teledentistry system aimed to the Second Opinion task. It make use of a particular camera called intra-oral camera, also called dental camera, in order to perform the photo shooting and real-time video of the inner part of the mouth. The pictures acquired by the Operator with such a device are sent to the Oral Medicine Expert (OME) by means of a current File Transfer Protocol (FTP) service and the real-time video is channeled into a video streaming thanks to the VideoLan client/server (VLC) application. It is composed by a HTML5 web-pages generated by PHP and allows to perform the Second Opinion both when Operator and OME are logged and when one of them is offline.

  4. In-network adaptation of SHVC video in software-defined networks

    NASA Astrophysics Data System (ADS)

    Awobuluyi, Olatunde; Nightingale, James; Wang, Qi; Alcaraz Calero, Jose Maria; Grecos, Christos

    2016-04-01

    Software Defined Networks (SDN), when combined with Network Function Virtualization (NFV) represents a paradigm shift in how future networks will behave and be managed. SDN's are expected to provide the underpinning technologies for future innovations such as 5G mobile networks and the Internet of Everything. The SDN architecture offers features that facilitate an abstracted and centralized global network view in which packet forwarding or dropping decisions are based on application flows. Software Defined Networks facilitate a wide range of network management tasks, including the adaptation of real-time video streams as they traverse the network. SHVC, the scalable extension to the recent H.265 standard is a new video encoding standard that supports ultra-high definition video streams with spatial resolutions of up to 7680×4320 and frame rates of 60fps or more. The massive increase in bandwidth required to deliver these U-HD video streams dwarfs the bandwidth requirements of current high definition (HD) video. Such large bandwidth increases pose very significant challenges for network operators. In this paper we go substantially beyond the limited number of existing implementations and proposals for video streaming in SDN's all of which have primarily focused on traffic engineering solutions such as load balancing. By implementing and empirically evaluating an SDN enabled Media Adaptation Network Entity (MANE) we provide a valuable empirical insight into the benefits and limitations of SDN enabled video adaptation for real time video applications. The SDN-MANE is the video adaptation component of our Video Quality Assurance Manager (VQAM) SDN control plane application, which also includes an SDN monitoring component to acquire network metrics and a decision making engine using algorithms to determine the optimum adaptation strategy for any real time video application flow given the current network conditions. Our proposed VQAM application has been implemented and evaluated on an SDN allowing us to provide important benchmarks for video streaming over SDN and for SDN control plane latency.

  5. Video-guided calibration of an augmented reality mobile C-arm.

    PubMed

    Chen, Xin; Naik, Hemal; Wang, Lejing; Navab, Nassir; Fallavollita, Pascal

    2014-11-01

    The augmented reality (AR) fluoroscope augments an X-ray image by video and provides the surgeon with a real-time in situ overlay of the anatomy. The overlay alignment is crucial for diagnostic and intra-operative guidance, so precise calibration of the AR fluoroscope is required. The first and most complex step of the calibration procedure is the determination of the X-ray source position. Currently, this is achieved using a biplane phantom with movable metallic rings on its top layer and fixed X-ray opaque markers on its bottom layer. The metallic rings must be moved to positions where at least two pairs of rings and markers are isocentric in the X-ray image. The current "trial and error" calibration process currently requires acquisition of many X-ray images, a task that is both time consuming and radiation intensive. An improved process was developed and tested for C-arm calibration. Video guidance was used to drive the calibration procedure to minimize both X-ray exposure and the time involved. For this, a homography between X-ray and video images is estimated. This homography is valid for the plane at which the metallic rings are positioned and is employed to guide the calibration procedure. Eight users having varying calibration experience (i.e., 2 experts, 2 semi-experts, 4 novices) were asked to participate in the evaluation. The video-guided technique reduced the number of intra-operative X-ray calibration images by 89% and decreased the total time required by 59%. A video-based C-arm calibration method has been developed that improves the usability of the AR fluoroscope with a friendlier interface, reduced calibration time and clinically acceptable radiation doses.

  6. Implementation and Analysis of Real-Time Streaming Protocols

    PubMed Central

    Santos-González, Iván; Rivero-García, Alexandra; Molina-Gil, Jezabel; Caballero-Gil, Pino

    2017-01-01

    Communication media have become the primary way of interaction thanks to the discovery and innovation of many new technologies. One of the most widely used communication systems today is video streaming, which is constantly evolving. Such communications are a good alternative to face-to-face meetings, and are therefore very useful for coping with many problems caused by distance. However, they suffer from different issues such as bandwidth limitation, network congestion, energy efficiency, cost, reliability and connectivity. Hence, the quality of service and the quality of experience are considered the two most important issues for this type of communication. This work presents a complete comparative study of two of the most used protocols of video streaming, Real Time Streaming Protocol (RTSP) and the Web Real-Time Communication (WebRTC). In addition, this paper proposes two new mobile applications that implement those protocols in Android whose objective is to know how they are influenced by the aspects that most affect the streaming quality of service, which are the connection establishment time and the stream reception time. The new video streaming applications are also compared with the most popular video streaming applications for Android, and the experimental results of the analysis show that the developed WebRTC implementation improves the performance of the most popular video streaming applications with respect to the stream packet delay. PMID:28417949

  7. Real-time color image processing for forensic fiber investigations

    NASA Astrophysics Data System (ADS)

    Paulsson, Nils

    1995-09-01

    This paper describes a system for automatic fiber debris detection based on color identification. The properties of the system are fast analysis and high selectivity, a necessity when analyzing forensic fiber samples. An ordinary investigation separates the material into well above 100,000 video images to analyze. The system is based on standard techniques such as CCD-camera, motorized sample table, and IBM-compatible PC/AT with add-on-boards for video frame digitalization and stepping motor control as the main parts. It is possible to operate the instrument at full video rate (25 image/s) with aid of the HSI-color system (hue- saturation-intensity) and software optimization. High selectivity is achieved by separating the analysis into several steps. The first step is fast direct color identification of objects in the analyzed video images and the second step analyzes detected objects with a more complex and time consuming stage of the investigation to identify single fiber fragments for subsequent analysis with more selective techniques.

  8. Real-time bicycle detection at signalized intersections using thermal imaging technology

    NASA Astrophysics Data System (ADS)

    Collaert, Robin

    2013-02-01

    More and more governments and authorities around the world are promoting the use of bicycles in cities, as this is healthy for the bicyclist and improves the quality of life in general. Safety and efficiency of bicyclists has become a major focus. To achieve this, there is a need for a smarter approach towards the control of signalized intersections. Various traditional detection technologies, such as video, microwave radar and electromagnetic loops, can be used to detect vehicles at signalized intersections, but none of these can consistently separate bikes from other traffic, day and night and in various weather conditions. As bikes should get a higher priority and also require longer green time to safely cross the signalized intersection, traffic managers are looking for alternative detection systems that can make the distinction between bicycles and other vehicles near the stop bar. In this paper, the drawbacks of a video-based approach are presented, next to the benefits of a thermal-video-based approach for vehicle presence detection with separation of bicycles. Also, the specific technical challenges are highlighted in developing a system that combines thermal image capturing, image processing and output triggering to the traffic light controller in near real-time and in a single housing.

  9. Novel ultrasonic real-time scanner featuring servo controlled transducers displaying a sector image.

    PubMed

    Matzuk, T; Skolnick, M L

    1978-07-01

    This paper describes a new real-time servo controlled sector scanner that produces high resolution images and has functionally programmable features similar to phased array systems, but possesses the simplicity of design and low cost best achievable in a mechanical sector scanner. The unique feature is the transducer head which contains a single moving part--the transducer--enclosed within a light-weight, hand held, and vibration free case. The frame rate, sector width, stop action angle, are all operator programmable. The frame rate can be varied from 12 to 30 frames s-1 and the sector width from 0 degrees to 60 degrees. Conversion from sector to time motion (T/M) modes are instant and two options are available, a freeze position high density T/M and a low density T/M obtainable simultaneously during sector visualization. Unusual electronic features are: automatic gain control, electronic recording of images on video tape in rf format, and ability to post-process images during video playback to extract T/M display and to change time gain control (tgc) and image size.

  10. Understanding viral video dynamics through an epidemic modelling approach

    NASA Astrophysics Data System (ADS)

    Sachak-Patwa, Rahil; Fadai, Nabil T.; Van Gorder, Robert A.

    2018-07-01

    Motivated by the hypothesis that the spread of viral videos is analogous to the spread of a disease epidemic, we formulate a novel susceptible-exposed-infected-recovered-susceptible (SEIRS) delay differential equation epidemic model to describe the popularity evolution of viral videos. Our models incorporate time-delay, in order to accurately describe the virtual contact process between individuals and the temporary immunity of individuals to videos after they have grown tired of watching them. We validate our models by fitting model parameters to viewing data from YouTube music videos, in order to demonstrate that the model solutions accurately reproduce real behaviour seen in this data. We use an SEIR model to describe the initial growth and decline of daily views, and an SEIRS model to describe the long term behaviour of the popularity of music videos. We also analyse the decay rates in the daily views of videos, determining whether they follow a power law or exponential distribution. Although we focus on viral videos, the modelling approach may be used to understand dynamics emergent from other areas of science which aim to describe consumer behaviour.

  11. Segmentation of Pollen Tube Growth Videos Using Dynamic Bi-Modal Fusion and Seam Carving.

    PubMed

    Tambo, Asongu L; Bhanu, Bir

    2016-05-01

    The growth of pollen tubes is of significant interest in plant cell biology, as it provides an understanding of internal cell dynamics that affect observable structural characteristics such as cell diameter, length, and growth rate. However, these parameters can only be measured in experimental videos if the complete shape of the cell is known. The challenge is to accurately obtain the cell boundary in noisy video images. Usually, these measurements are performed by a scientist who manually draws regions-of-interest on the images displayed on a computer screen. In this paper, a new automated technique is presented for boundary detection by fusing fluorescence and brightfield images, and a new efficient method of obtaining the final cell boundary through the process of Seam Carving is proposed. This approach takes advantage of the nature of the fusion process and also the shape of the pollen tube to efficiently search for the optimal cell boundary. In video segmentation, the first two frames are used to initialize the segmentation process by creating a search space based on a parametric model of the cell shape. Updates to the search space are performed based on the location of past segmentations and a prediction of the next segmentation.Experimental results show comparable accuracy to a previous method, but significant decrease in processing time. This has the potential for real time applications in pollen tube microscopy.

  12. Comparison of turbulence mitigation algorithms

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric

    2017-07-01

    When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.

  13. Cellular Neural Network for Real Time Image Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagliasindi, G.; Arena, P.; Fortuna, L.

    2008-03-12

    Since their introduction in 1988, Cellular Nonlinear Networks (CNNs) have found a key role as image processing instruments. Thanks to their structure they are able of processing individual pixels in a parallel way providing fast image processing capabilities that has been applied to a wide range of field among which nuclear fusion. In the last years, indeed, visible and infrared video cameras have become more and more important in tokamak fusion experiments for the twofold aim of understanding the physics and monitoring the safety of the operation. Examining the output of these cameras in real-time can provide significant information formore » plasma control and safety of the machines. The potentiality of CNNs can be exploited to this aim. To demonstrate the feasibility of the approach, CNN image processing has been applied to several tasks both at the Frascati Tokamak Upgrade (FTU) and the Joint European Torus (JET)« less

  14. Real-time strategy video game experience and structural connectivity - A diffusion tensor imaging study.

    PubMed

    Kowalczyk, Natalia; Shi, Feng; Magnuski, Mikolaj; Skorko, Maciek; Dobrowolski, Pawel; Kossowski, Bartosz; Marchewka, Artur; Bielecki, Maksymilian; Kossut, Malgorzata; Brzezicka, Aneta

    2018-06-20

    Experienced video game players exhibit superior performance in visuospatial cognition when compared to non-players. However, very little is known about the relation between video game experience and structural brain plasticity. To address this issue, a direct comparison of the white matter brain structure in RTS (real time strategy) video game players (VGPs) and non-players (NVGPs) was performed. We hypothesized that RTS experience can enhance connectivity within and between occipital and parietal regions, as these regions are likely to be involved in the spatial and visual abilities that are trained while playing RTS games. The possible influence of long-term RTS game play experience on brain structural connections was investigated using diffusion tensor imaging (DTI) and a region of interest (ROI) approach in order to describe the experience-related plasticity of white matter. Our results revealed significantly more total white matter connections between occipital and parietal areas and within occipital areas in RTS players compared to NVGPs. Additionally, the RTS group had an altered topological organization of their structural network, expressed in local efficiency within the occipito-parietal subnetwork. Furthermore, the positive association between network metrics and time spent playing RTS games suggests a close relationship between extensive, long-term RTS game play and neuroplastic changes. These results indicate that long-term and extensive RTS game experience induces alterations along axons that link structures of the occipito-parietal loop involved in spatial and visual processing. © 2018 Wiley Periodicals, Inc.

  15. [Mobile hospital -real time mobile telehealthcare system with ultrasound and CT van using high-speed satellite communication-].

    PubMed

    Takizawa, Masaomi; Miyashita, Toyohisa; Murase, Sumio; Kanda, Hirohito; Karaki, Yoshiaki; Yagi, Kazuo; Ohue, Toru

    2003-01-01

    A real-time telescreening system is developed to detect early diseases for rural area residents using two types of mobile vans with a portable satellite station. The system consists of a satellite communication system with 1.5Mbps of the JCSAT-1B satellite, a spiral CT van, an ultrasound imaging van with two video conference system, a DICOM server and a multicast communication unit. The video image and examination image data are transmitted from the van to hospitals and the university simultaneously. Physician in the hospital observes and interprets exam images from the van and watches the video images of the position of ultrasound transducer on screenee in the van. After the observation images, physician explains a results of the examination by the video conference system. Seventy lung CT screening and 203 ultrasound screening were done from March to June 2002. The trial of this real time screening suggested that rural residents are given better healthcare without visit to the hospital. And it will open the gateway to reduce the medical cost and medical divide between city area and rural area.

  16. Control Software

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Real-Time Innovations, Inc. (RTI) collaborated with Ames Research Center, the Jet Propulsion Laboratory and Stanford University to leverage NASA research to produce ControlShell software. RTI is the first "graduate" of Ames Research Center's Technology Commercialization Center. The ControlShell system was used extensively on a cooperative project to enhance the capabilities of a Russian-built Marsokhod rover being evaluated for eventual flight to Mars. RTI's ControlShell is complex, real-time command and control software, capable of processing information and controlling mechanical devices. One ControlShell tool is StethoScope. As a real-time data collection and display tool, StethoScope allows a user to see how a program is running without changing its execution. RTI has successfully applied its software savvy in other arenas, such as telecommunications, networking, video editing, semiconductor manufacturing, automobile systems, and medical imaging.

  17. Practical system for generating digital mixed reality video holograms.

    PubMed

    Song, Joongseok; Kim, Changseob; Park, Hanhoon; Park, Jong-Il

    2016-07-10

    We propose a practical system that can effectively mix the depth data of real and virtual objects by using a Z buffer and can quickly generate digital mixed reality video holograms by using multiple graphic processing units (GPUs). In an experiment, we verify that real objects and virtual objects can be merged naturally in free viewing angles, and the occlusion problem is well handled. Furthermore, we demonstrate that the proposed system can generate mixed reality video holograms at 7.6 frames per second. Finally, the system performance is objectively verified by users' subjective evaluations.

  18. Unified transform architecture for AVC, AVS, VC-1 and HEVC high-performance codecs

    NASA Astrophysics Data System (ADS)

    Dias, Tiago; Roma, Nuno; Sousa, Leonel

    2014-12-01

    A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e.g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 × 4,320 at 30 fps) in real time.

  19. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  20. Video Tutorial of Continental Food

    NASA Astrophysics Data System (ADS)

    Nurani, A. S.; Juwaedah, A.; Mahmudatussa'adah, A.

    2018-02-01

    This research is motivated by the belief in the importance of media in a learning process. Media as an intermediary serves to focus on the attention of learners. Selection of appropriate learning media is very influential on the success of the delivery of information itself both in terms of cognitive, affective and skills. Continental food is a course that studies food that comes from Europe and is very complex. To reduce verbalism and provide more real learning, then the tutorial media is needed. Media tutorials that are audio visual can provide a more concrete learning experience. The purpose of this research is to develop tutorial media in the form of video. The method used is the development method with the stages of analyzing the learning objectives, creating a story board, validating the story board, revising the story board and making video tutorial media. The results show that the making of storyboards should be very thorough, and detailed in accordance with the learning objectives to reduce errors in video capture so as to save time, cost and effort. In video capturing, lighting, shooting angles, and soundproofing make an excellent contribution to the quality of tutorial video produced. In shooting should focus more on tools, materials, and processing. Video tutorials should be interactive and two-way.

  1. Mobile Video in Everyday Social Interactions

    NASA Astrophysics Data System (ADS)

    Reponen, Erika; Lehikoinen, Jaakko; Impiö, Jussi

    Video recording has become a spontaneous everyday activity for many people, thanks to the video capabilities of modern mobile phones. Internet connectivity of mobile phones enables fluent sharing of captured material even real-time, which makes video an up-and-coming everyday interaction medium. In this article we discuss the effect of the video camera in the social environment, everyday life situations, mainly based on a study where four groups of people used digital video cameras in their normal settings. We also reflect on another study of ours, relating to real-time mobile video communication and discuss future views. The aim of our research is to understand the possibilities in the domain of mobile video. Live and delayed sharing seem to have their special characteristics, live video being used as a virtual window between places whereas delayed video usage has more scope for good-quality content. While this novel way of interacting via mobile video enables new social patterns, it also raises new concerns for privacy and trust between participating persons in all roles, largely due to the widely spreading possibilities of videos. Video in a social situation affects cameramen (who record), targets (who are recorded), passers-by (who are unintentionally in the situation), and the audience (who follow the videos or recording situations) but also the other way around, the participants affect the video by their varying and evolving personal and communicational motivations for recording.

  2. Algorithm-Based Motion Magnification for Video Processing in Urological Laparoscopy.

    PubMed

    Adams, Fabian; Schoelly, Reto; Schlager, Daniel; Schoenthaler, Martin; Schoeb, Dominik S; Wilhelm, Konrad; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz

    2017-06-01

    Minimally invasive surgery is in constant further development and has replaced many conventional operative procedures. If vascular structure movement could be detected during these procedures, it could reduce the risk of vascular injury and conversion to open surgery. The recently proposed motion-amplifying algorithm, Eulerian Video Magnification (EVM), has been shown to substantially enhance minimal object changes in digitally recorded video that is barely perceptible to the human eye. We adapted and examined this technology for use in urological laparoscopy. Video sequences of routine urological laparoscopic interventions were recorded and further processed using spatial decomposition and filtering algorithms. The freely available EVM algorithm was investigated for its usability in real-time processing. In addition, a new image processing technology, the CRS iimotion Motion Magnification (CRSMM) algorithm, was specifically adjusted for endoscopic requirements, applied, and validated by our working group. Using EVM, no significant motion enhancement could be detected without severe impairment of the image resolution, motion, and color presentation. The CRSMM algorithm significantly improved image quality in terms of motion enhancement. In particular, the pulsation of vascular structures could be displayed more accurately than in EVM. Motion magnification image processing technology has the potential for clinical importance as a video optimizing modality in endoscopic and laparoscopic surgery. Barely detectable (micro)movements can be visualized using this noninvasive marker-free method. Despite these optimistic results, the technology requires considerable further technical development and clinical tests.

  3. Getting the Bigger Picture With Digital Surveillance

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a Space Act Agreement, Diebold, Inc., acquired the exclusive rights to Glenn Research Center's patented video observation technology, originally designed to accelerate video image analysis for various ongoing and future space applications. Diebold implemented the technology into its AccuTrack digital, color video recorder, a state-of- the-art surveillance product that uses motion detection for around-the- clock monitoring. AccuTrack captures digitally signed images and transaction data in real-time. This process replaces the onerous tasks involved in operating a VCR-based surveillance system, and subsequently eliminates the need for central viewing and tape archiving locations altogether. AccuTrack can monitor an entire bank facility, including four automated teller machines, multiple teller lines, and new account areas, all from one central location.

  4. Motion adaptive Kalman filter for super-resolution

    NASA Astrophysics Data System (ADS)

    Richter, Martin; Nasse, Fabian; Schröder, Hartmut

    2011-01-01

    Superresolution is a sophisticated strategy to enhance image quality of both low and high resolution video, performing tasks like artifact reduction, scaling and sharpness enhancement in one algorithm, all of them reconstructing high frequency components (above Nyquist frequency) in some way. Especially recursive superresolution algorithms can fulfill high quality aspects because they control the video output using a feed-back loop and adapt the result in the next iteration. In addition to excellent output quality, temporal recursive methods are very hardware efficient and therefore even attractive for real-time video processing. A very promising approach is the utilization of Kalman filters as proposed by Farsiu et al. Reliable motion estimation is crucial for the performance of superresolution. Therefore, robust global motion models are mainly used, but this also limits the application of superresolution algorithm. Thus, handling sequences with complex object motion is essential for a wider field of application. Hence, this paper proposes improvements by extending the Kalman filter approach using motion adaptive variance estimation and segmentation techniques. Experiments confirm the potential of our proposal for ideal and real video sequences with complex motion and further compare its performance to state-of-the-art methods like trainable filters.

  5. A hardware architecture for real-time shadow removal in high-contrast video

    NASA Astrophysics Data System (ADS)

    Verdugo, Pablo; Pezoa, Jorge E.; Figueroa, Miguel

    2017-09-01

    Broadcasting an outdoor sports event at daytime is a challenging task due to the high contrast that exists between areas in the shadow and light conditions within the same scene. Commercial cameras typically do not handle the high dynamic range of such scenes in a proper manner, resulting in broadcast streams with very little shadow detail. We propose a hardware architecture for real-time shadow removal in high-resolution video, which reduces the shadow effect and simultaneously improves shadow details. The algorithm operates only on the shadow portions of each video frame, thus improving the results and producing more realistic images than algorithms that operate on the entire frame, such as simplified Retinex and histogram shifting. The architecture receives an input in the RGB color space, transforms it into the YIQ space, and uses color information from both spaces to produce a mask of the shadow areas present in the image. The mask is then filtered using a connected components algorithm to eliminate false positives and negatives. The hardware uses pixel information at the edges of the mask to estimate the illumination ratio between light and shadow in the image, which is then used to correct the shadow area. Our prototype implementation simultaneously processes up to 7 video streams of 1920×1080 pixels at 60 frames per second on a Xilinx Kintex-7 XC7K325T FPGA.

  6. Immersive Photography Renders 360 degree Views

    NASA Technical Reports Server (NTRS)

    2008-01-01

    An SBIR contract through Langley Research Center helped Interactive Pictures Corporation, of Knoxville, Tennessee, create an innovative imaging technology. This technology is a video imaging process that allows real-time control of live video data and can provide users with interactive, panoramic 360 views. The camera system can see in multiple directions, provide up to four simultaneous views, each with its own tilt, rotation, and magnification, yet it has no moving parts, is noiseless, and can respond faster than the human eye. In addition, it eliminates the distortion caused by a fisheye lens, and provides a clear, flat view of each perspective.

  7. Elements of Scenario-Based Learning on Suicidal Patient Care Using Real-Time Video.

    PubMed

    Lu, Chuehfen; Lee, Hueying; Hsu, Shuhui; Shu, Inmei

    2016-01-01

    This study aims understanding of students' learning experiences when receiving scenario-based learning combined with real-time video. Videos that recorded student nurses intervention with a suicidal standardized patient (SP) were replayed immediately as teaching materials. Videos clips and field notes from ten classes were analysed. Investigators and method triangulation were used to boost the robustness of the study. Three key elements, emotional involvement, concretizing of the teaching material and substitute learning were identified. Emotions were evoked among the SP, the student performer and the students who were observing, thus facilitating a learning effect. Concretizing of the teaching material refers to students were able to focus on the discussions using visual and verbal information. Substitute learning occurred when the students watching the videos, both the strengths and weaknesses represented were similar to those that would be likely to occur. These key elements explicate their learning experience and suggested a strategic teaching method.

  8. Rapid prototyping of SoC-based real-time vision system: application to image preprocessing and face detection

    NASA Astrophysics Data System (ADS)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    By this paper, the major goal is to investigate the Multi-CPU/FPGA SoC (System on Chip) design flow and to transfer a know-how and skills to rapidly design embedded real-time vision system. Our aim is to show how the use of these devices can be benefit for system level integration since they make possible simultaneous hardware and software development. We take the facial detection and pretreatments as case study since they have a great potential to be used in several applications such as video surveillance, building access control and criminal identification. The designed system use the Xilinx Zedboard platform. The last is the central element of the developed vision system. The video acquisition is performed using either standard webcam connected to the Zedboard via USB interface or several camera IP devices. The visualization of video content and intermediate results are possible with HDMI interface connected to HD display. The treatments embedded in the system are as follow: (i) pre-processing such as edge detection implemented in the ARM and in the reconfigurable logic, (ii) software implementation of motion detection and face detection using either ViolaJones or LBP (Local Binary Pattern), and (iii) application layer to select processing application and to display results in a web page. One uniquely interesting feature of the proposed system is that two functions have been developed to transmit data from and to the VDMA port. With the proposed optimization, the hardware implementation of the Sobel filter takes 27 ms and 76 ms for 640x480, and 720p resolutions, respectively. Hence, with the FPGA implementation, an acceleration of 5 times is obtained which allow the processing of 37 fps and 13 fps for 640x480, and 720p resolutions, respectively.

  9. The AAPM/RSNA physics tutorial for residents: digital fluoroscopy.

    PubMed

    Pooley, R A; McKinney, J M; Miller, D A

    2001-01-01

    A digital fluoroscopy system is most commonly configured as a conventional fluoroscopy system (tube, table, image intensifier, video system) in which the analog video signal is converted to and stored as digital data. Other methods of acquiring the digital data (eg, digital or charge-coupled device video and flat-panel detectors) will become more prevalent in the future. Fundamental concepts related to digital imaging in general include binary numbers, pixels, and gray levels. Digital image data allow the convenient use of several image processing techniques including last image hold, gray-scale processing, temporal frame averaging, and edge enhancement. Real-time subtraction of digital fluoroscopic images after injection of contrast material has led to widespread use of digital subtraction angiography (DSA). Additional image processing techniques used with DSA include road mapping, image fade, mask pixel shift, frame summation, and vessel size measurement. Peripheral angiography performed with an automatic moving table allows imaging of the peripheral vasculature with a single contrast material injection.

  10. PixonVision real-time Deblurring Anisoplanaticism Corrector (DAC)

    NASA Astrophysics Data System (ADS)

    Hier, R. G.; Puetter, R. C.

    2007-09-01

    DigiVision, Inc. and PixonImaging LLC have teamed to develop a real-time Deblurring Anisoplanaticism Corrector (DAC) for the Army. The DAC measures the geometric image warp caused by anisoplanaticism and removes it to rectify and stabilize (dejitter) the incoming image. Each new geometrically corrected image field is combined into a running-average reference image. The image averager employs a higher-order filter that uses temporal bandpass information to help identify true motion of objects and thereby adaptively moderate the contribution of each new pixel to the reference image. This result is then passed to a real-time PixonVision video processor (see paper 6696-04 note, the DAC also first dehazes the incoming video) where additional blur from high-order seeing effects is removed, the image is spatially denoised, and contrast is adjusted in a spatially adaptive manner. We plan to implement the entire algorithm within a few large modern FPGAs on a circuit board for video use. Obvious applications are within the DOD, surveillance and intelligence, security and law enforcement communities. Prototype hardware is scheduled to be available in late 2008. To demonstrate the capabilities of the DAC, we present a software simulation of the algorithm applied to real atmosphere-corrupted video data collected by Sandia Labs.

  11. Recognising safety critical events: can automatic video processing improve naturalistic data analyses?

    PubMed

    Dozza, Marco; González, Nieves Pañeda

    2013-11-01

    New trends in research on traffic accidents include Naturalistic Driving Studies (NDS). NDS are based on large scale data collection of driver, vehicle, and environment information in real world. NDS data sets have proven to be extremely valuable for the analysis of safety critical events such as crashes and near crashes. However, finding safety critical events in NDS data is often difficult and time consuming. Safety critical events are currently identified using kinematic triggers, for instance searching for deceleration below a certain threshold signifying harsh braking. Due to the low sensitivity and specificity of this filtering procedure, manual review of video data is currently necessary to decide whether the events identified by the triggers are actually safety critical. Such reviewing procedure is based on subjective decisions, is expensive and time consuming, and often tedious for the analysts. Furthermore, since NDS data is exponentially growing over time, this reviewing procedure may not be viable anymore in the very near future. This study tested the hypothesis that automatic processing of driver video information could increase the correct classification of safety critical events from kinematic triggers in naturalistic driving data. Review of about 400 video sequences recorded from the events, collected by 100 Volvo cars in the euroFOT project, suggested that drivers' individual reaction may be the key to recognize safety critical events. In fact, whether an event is safety critical or not often depends on the individual driver. A few algorithms, able to automatically classify driver reaction from video data, have been compared. The results presented in this paper show that the state of the art subjective review procedures to identify safety critical events from NDS can benefit from automated objective video processing. In addition, this paper discusses the major challenges in making such video analysis viable for future NDS and new potential applications for NDS video processing. As new NDS such as SHRP2 are now providing the equivalent of five years of one vehicle data each day, the development of new methods, such as the one proposed in this paper, seems necessary to guarantee that these data can actually be analysed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. ATM: The Key To Harnessing the Power of Networked Multimedia.

    ERIC Educational Resources Information Center

    Gross, Rod

    1996-01-01

    ATM (Asynchronous Transfer Mode) network technology handles the real-time continuous traffic flow necessary to support desktop multimedia applications. Describes network applications already used: desktop video collaboration, distance learning, and broadcasting video delivery. Examines the architecture of ATM technology, video delivery and sound…

  13. Violence exposure in real-life, video games, television, movies, and the internet: is there desensitization?

    PubMed

    Funk, Jeanne B; Baldacci, Heidi Bechtoldt; Pasold, Tracie; Baumgardner, Jennifer

    2004-02-01

    It is believed that repeated exposure to real-life and to entertainment violence may alter cognitive, affective, and behavioral processes, possibly leading to desensitization. The goal of the present study was to determine if there are relationships between real-life and media violence exposure and desensitization as reflected in related characteristics. One hundred fifty fourth and fifth graders completed measures of real-life violence exposure, media violence exposure, empathy, and attitudes towards violence. Regression analyses indicated that only exposure to video game violence was associated with (lower) empathy. Both video game and movie violence exposure were associated with stronger proviolence attitudes. The active nature of playing video games, intense engagement, and the tendency to be translated into fantasy play may explain negative impact, though causality was not investigated in the present design. The samples' relatively low exposure to real-life violence may have limited the identification of relationships. Although difficult to quantify, desensitization to violence should be further studied using related characteristics as in the present study. Individual differences and causal relationships should also be examined.

  14. Research of Pedestrian Crossing Safety Facilities Based on the Video Detection

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Zhen; Xie, Quan-Long; Zang, Xiao-Dong; Tang, Guo-Jun

    Since that the pedestrian crossing facilities at present is not perfect, pedestrian crossing is in chaos and pedestrians from opposite direction conflict and congest with each other, which severely affects the pedestrian traffic efficiency, obstructs the vehicle and bringing about some potential security problems. To solve these problems, based on video identification, a pedestrian crossing guidance system was researched and designed. It uses the camera to monitor the pedestrians in real time and sums up the number of pedestrians through video detection program, and a group of pedestrian's induction lamp array is installed at the interval of crosswalk, which adjusts color display according to the proportion of pedestrians from both sides to guide pedestrians from both opposite directions processing separately. The emulation analysis result from cellular automaton shows that the system reduces the pedestrian crossing conflict, shortens the time of pedestrian crossing and improves the safety of pedestrians crossing.

  15. Image enhancement software for underwater recovery operations: User's manual

    NASA Astrophysics Data System (ADS)

    Partridge, William J.; Therrien, Charles W.

    1989-06-01

    This report describes software for performing image enhancement on live or recorded video images. The software was developed for operational use during underwater recovery operations at the Naval Undersea Warfare Engineering Station. The image processing is performed on an IBM-PC/AT compatible computer equipped with hardware to digitize and display video images. The software provides the capability to provide contrast enhancement and other similar functions in real time through hardware lookup tables, to automatically perform histogram equalization, to capture one or more frames and average them or apply one of several different processing algorithms to a captured frame. The report is in the form of a user manual for the software and includes guided tutorial and reference sections. A Digital Image Processing Primer in the appendix serves to explain the principle concepts that are used in the image processing.

  16. Virtual Environments Using Video Capture for Social Phobia with Psychosis

    PubMed Central

    White, Richard; Clarke, Timothy; Turner, Ruth; Fowler, David

    2013-01-01

    Abstract A novel virtual environment (VE) system was developed and used as an adjunct to cognitive behavior therapy (CBT) with six socially anxious patients recovering from psychosis. The novel aspect of the VE system is that it uses video capture so the patients can see a life-size projection of themselves interacting with a specially scripted and digitally edited filmed environment played in real time on a screen in front of them. Within-session process outcomes (subjective units of distress and belief ratings on individual behavioral experiments), as well as patient feedback, generated the hypothesis that this type of virtual environment can potentially add value to CBT by helping patients understand the role of avoidance and safety behaviors in the maintenance of social anxiety and paranoia and by boosting their confidence to carry out “real-life” behavioral experiments. PMID:23659722

  17. GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.

    PubMed

    Halic, Tansel; Sankaranarayanan, Ganesh; De, Suvranu

    2010-12-01

    In actual surgery, smoke and bleeding due to cauterization processes provide important visual cues to the surgeon, which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated the effects of bleeding and smoke generation, they are not realistic due to the requirement of real-time performance. To be interactive, visual update must be performed at at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques, since other computationally intensive processes compete for the available Central Processing Unit (CPU) resources. In this study we developed a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators, which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos. The smoke and bleeding simulation were implemented as part of a laparoscopic adjustable gastric banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur noticeable overhead. However, for smoke generation, an input/output (I/O) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale). Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be efficient, highly realistic and well suited to VR-based surgical simulators. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Enabling Collaboration and Video Assessment: Exposing Trends in Science Preservice Teachers' Assessments

    ERIC Educational Resources Information Center

    Borowczak, Mike; Burrows, Andrea C.

    2016-01-01

    This article details a new, free resource for continuous video assessment named YouDemo. The tool enables real time rating of uploaded YouTube videos for use in science, technology, engineering, and mathematics (STEM) education and beyond. The authors discuss trends of preservice science teachers' assessments of self- and peer-created videos using…

  19. Secure video communications system

    DOEpatents

    Smith, Robert L.

    1991-01-01

    A secure video communications system having at least one command network formed by a combination of subsystems. The combination of subsystems to include a video subsystem, an audio subsystem, a communications subsystem, and a control subsystem. The video communications system to be window driven and mouse operated, and having the ability to allow for secure point-to-point real-time teleconferencing.

  20. Foliage penetration by using 4-D point cloud data

    NASA Astrophysics Data System (ADS)

    Méndez Rodríguez, Javier; Sánchez-Reyes, Pedro J.; Cruz-Rivera, Sol M.

    2012-06-01

    Real-time awareness and rapid target detection are critical for the success of military missions. New technologies capable of detecting targets concealed in forest areas are needed in order to track and identify possible threats. Currently, LAser Detection And Ranging (LADAR) systems are capable of detecting obscured targets; however, tracking capabilities are severely limited. Now, a new LADAR-derived technology is under development to generate 4-D datasets (3-D video in a point cloud format). As such, there is a new need for algorithms that are able to process data in real time. We propose an algorithm capable of removing vegetation and other objects that may obfuscate concealed targets in a real 3-D environment. The algorithm is based on wavelets and can be used as a pre-processing step in a target recognition algorithm. Applications of the algorithm in a real-time 3-D system could help make pilots aware of high risk hidden targets such as tanks and weapons, among others. We will be using a 4-D simulated point cloud data to demonstrate the capabilities of our algorithm.

  1. Fast optically sectioned fluorescence HiLo endomicroscopy.

    PubMed

    Ford, Tim N; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  2. Fast optically sectioned fluorescence HiLo endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  3. Real-time quantum cascade laser-based infrared microspectroscopy in-vivo

    NASA Astrophysics Data System (ADS)

    Kröger-Lui, N.; Haase, K.; Pucci, A.; Schönhals, A.; Petrich, W.

    2016-03-01

    Infrared microscopy can be performed to observe dynamic processes on a microscopic scale. Fourier-transform infrared spectroscopy-based microscopes are bound to limitations regarding time resolution, which hampers their potential for imaging fast moving systems. In this manuscript we present a quantum cascade laser-based infrared microscope which overcomes these limitations and readily achieves standard video frame rates. The capabilities of our setup are demonstrated by observing dynamical processes at their specific time scales: fermentation, slow moving Amoeba Proteus and fast moving Caenorhabditis elegans. Mid-infrared sampling rates between 30 min and 20 ms are demonstrated.

  4. Real-time distributed video coding for 1K-pixel visual sensor networks

    NASA Astrophysics Data System (ADS)

    Hanca, Jan; Deligiannis, Nikos; Munteanu, Adrian

    2016-07-01

    Many applications in visual sensor networks (VSNs) demand the low-cost wireless transmission of video data. In this context, distributed video coding (DVC) has proven its potential to achieve state-of-the-art compression performance while maintaining low computational complexity of the encoder. Despite their proven capabilities, current DVC solutions overlook hardware constraints, and this renders them unsuitable for practical implementations. This paper introduces a DVC architecture that offers highly efficient wireless communication in real-world VSNs. The design takes into account the severe computational and memory constraints imposed by practical implementations on low-resolution visual sensors. We study performance-complexity trade-offs for feedback-channel removal, propose learning-based techniques for rate allocation, and investigate various simplifications of side information generation yielding real-time decoding. The proposed system is evaluated against H.264/AVC intra, Motion-JPEG, and our previously designed DVC prototype for low-resolution visual sensors. Extensive experimental results on various data show significant improvements in multiple configurations. The proposed encoder achieves real-time performance on a 1k-pixel visual sensor mote. Real-time decoding is performed on a Raspberry Pi single-board computer or a low-end notebook PC. To the best of our knowledge, the proposed codec is the first practical DVC deployment on low-resolution VSNs.

  5. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  6. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  7. Advantages of Live Microscope Video for Laboratory and Teaching Applications

    ERIC Educational Resources Information Center

    Michels, Kristin K.; Michels, Zachary D.; Hotchkiss, Sara C.

    2016-01-01

    Although spatial reasoning and penetrative thinking skills are essential for many disciplines, these concepts are difficult for students to comprehend. In microscopy, traditional educational materials (i.e., photographs) are static. Conversely, video-based training methods convey dimensionality. We implemented a real-time digital video imaging…

  8. Robust media processing on programmable power-constrained systems

    NASA Astrophysics Data System (ADS)

    McVeigh, Jeff

    2005-03-01

    To achieve consumer-level quality, media systems must process continuous streams of audio and video data while maintaining exacting tolerances on sampling rate, jitter, synchronization, and latency. While it is relatively straightforward to design fixed-function hardware implementations to satisfy worst-case conditions, there is a growing trend to utilize programmable multi-tasking solutions for media applications. The flexibility of these systems enables support for multiple current and future media formats, which can reduce design costs and time-to-market. This paper provides practical engineering solutions to achieve robust media processing on such systems, with specific attention given to power-constrained platforms. The techniques covered in this article utilize the fundamental concepts of algorithm and software optimization, software/hardware partitioning, stream buffering, hierarchical prioritization, and system resource and power management. A novel enhancement to dynamically adjust processor voltage and frequency based on buffer fullness to reduce system power consumption is examined in detail. The application of these techniques is provided in a case study of a portable video player implementation based on a general-purpose processor running a non real-time operating system that achieves robust playback of synchronized H.264 video and MP3 audio from local storage and streaming over 802.11.

  9. Real time observation and automated measurement of red blood cells agglutination inside a passive microfluidic biochip containing embedded reagents.

    PubMed

    Huet, Maxime; Cubizolles, Myriam; Buhot, Arnaud

    2017-07-15

    The process of agglutination is commonly used for the detection of biomarkers like proteins or viruses. The multiple bindings between micrometer sized particles, either latex beads or red blood cells (RBCs), create aggregates that are easily detectable and give qualitative information about the presence of the biomarkers. In most cases, the detection is made by simple naked-eye observation of agglutinates without any access to the kinetics of agglutination. In this study, we address the development of a real-time time observation of RBCs agglutination. Using ABO blood typing as a proof-of-concept, we developed i) an integrated biological protocol suitable for further use as point-of-care (POC) analysis and ii) two dedicated image processing algorithms for the real-time and quantitative measurement of agglutination. Anti-A or anti-B typing reagents were dried inside the microchannel of a passive microfluidic chip designed to enhance capillary flow. A blood drop deposit at the tip of the biochip established a simple biological protocol. In situ agglutination of autologous RBCs was achieved by means of embedded reagents and real time agglutination process was monitored by video recording. Using a training set of 24 experiments, two real-time indicators based on correlation and variance of gray levels were optimized and then further confirmed on a validation set. 100% correct discrimination between positive and negative agglutinations was performed within less than 2min by measuring real-time evolution of both correlation and variance indicators. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Microgravity

    NASA Image and Video Library

    1994-07-10

    TEMPUS, an electromagnetic levitation facility that allows containerless processing of metallic samples in microgravity, first flew on the IML-2 Spacelab mission. The principle of electromagnetic levitation is used commonly in ground-based experiments to melt and then cool metallic melts below their freezing points without solidification occurring. The TEMPUS operation is controlled by its own microprocessor system; although commands may be sent remotely from the ground and real time adjustments may be made by the crew. Two video cameras, a two-color pyrometer for measuring sample temperatures, and a fast infrared detector for monitoring solidification spikes, will be mounted to the process chamber to facilitate observation and analysis. In addition, a dedicated high-resolution video camera can be attached to the TEMPUS to measure the sample volume precisely.

  11. Speedometer app videos to provide real-world velocity-time graph data 1: rail travel

    NASA Astrophysics Data System (ADS)

    King, Julien

    2018-03-01

    The use of modern rail travel as a source of real-life velocity-time data to aid in the teaching of velocity and acceleration is discussed. A technique for using GPS speedometer apps to produce videos of velocity and time figures during a rail journey is described. The technique is applied to a UK rail journey, demonstrating how students can use its results to produce a velocity-time graph from which acceleration and deceleration figures can be calculated. These are compared with theoretical maximum figures, calculated from the train’s technical specification.

  12. Real-time handling of existing content sources on a multi-layer display

    NASA Astrophysics Data System (ADS)

    Singh, Darryl S. K.; Shin, Jung

    2013-03-01

    A Multi-Layer Display (MLD) consists of two or more imaging planes separated by physical depth where the depth is a key component in creating a glasses-free 3D effect. Its core benefits include being viewable from multiple angles, having full panel resolution for 3D effects with no side effects of nausea or eye-strain. However, typically content must be designed for its optical configuration in foreground and background image pairs. A process was designed to give a consistent 3D effect in a 2-layer MLD from existing stereo video content in real-time. Optimizations to stereo matching algorithms that generate depth maps in real-time were specifically tailored for the optical characteristics and image processing algorithms of a MLD. The end-to-end process included improvements to the Hierarchical Belief Propagation (HBP) stereo matching algorithm, improvements to optical flow and temporal consistency. Imaging algorithms designed for the optical characteristics of a MLD provided some visual compensation for depth map inaccuracies. The result can be demonstrated in a PC environment, displayed on a 22" MLD, used in the casino slot market, with 8mm of panel seperation. Prior to this development, stereo content had not been used to achieve a depth-based 3D effect on a MLD in real-time

  13. Providing QoS through machine-learning-driven adaptive multimedia applications.

    PubMed

    Ruiz, Pedro M; Botía, Juan A; Gómez-Skarmeta, Antonio

    2004-06-01

    We investigate the optimization of the quality of service (QoS) offered by real-time multimedia adaptive applications through machine learning algorithms. These applications are able to adapt in real time their internal settings (i.e., video sizes, audio and video codecs, among others) to the unpredictably changing capacity of the network. Traditional adaptive applications just select a set of settings to consume less than the available bandwidth. We propose a novel approach in which the selected set of settings is the one which offers a better user-perceived QoS among all those combinations which satisfy the bandwidth restrictions. We use a genetic algorithm to decide when to trigger the adaptation process depending on the network conditions (i.e., loss-rate, jitter, etc.). Additionally, the selection of the new set of settings is done according to a set of rules which model the user-perceived QoS. These rules are learned using the SLIPPER rule induction algorithm over a set of examples extracted from scores provided by real users. We will demonstrate that the proposed approach guarantees a good user-perceived QoS even when the network conditions are constantly changing.

  14. Playing with Process: Video Game Choice as a Model of Behavior

    ERIC Educational Resources Information Center

    Waelchli, Paul

    2010-01-01

    Popular culture experience in video games creates avenues to practice information literacy skills and model research in a real-world setting. Video games create a unique popular culture experience where players can invest dozens of hours on one game, create characters to identify with, organize skill sets and plot points, collaborate with people…

  15. Real-time terrain storage generation from multiple sensors towards mobile robot operation interface.

    PubMed

    Song, Wei; Cho, Seoungjae; Xi, Yulong; Cho, Kyungeun; Um, Kyhyun

    2014-01-01

    A mobile robot mounted with multiple sensors is used to rapidly collect 3D point clouds and video images so as to allow accurate terrain modeling. In this study, we develop a real-time terrain storage generation and representation system including a nonground point database (PDB), ground mesh database (MDB), and texture database (TDB). A voxel-based flag map is proposed for incrementally registering large-scale point clouds in a terrain model in real time. We quantize the 3D point clouds into 3D grids of the flag map as a comparative table in order to remove the redundant points. We integrate the large-scale 3D point clouds into a nonground PDB and a node-based terrain mesh using the CPU. Subsequently, we program a graphics processing unit (GPU) to generate the TDB by mapping the triangles in the terrain mesh onto the captured video images. Finally, we produce a nonground voxel map and a ground textured mesh as a terrain reconstruction result. Our proposed methods were tested in an outdoor environment. Our results show that the proposed system was able to rapidly generate terrain storage and provide high resolution terrain representation for mobile mapping services and a graphical user interface between remote operators and mobile robots.

  16. Directional templates for real-time detection of coronal axis rotated faces

    NASA Astrophysics Data System (ADS)

    Perez, Claudio A.; Estevez, Pablo A.; Garate, Patricio

    2004-10-01

    Real-time face and iris detection on video images has gained renewed attention because of multiple possible applications in studying eye function, drowsiness detection, virtual keyboard interfaces, face recognition, video processing and multimedia retrieval. In this paper, a study is presented on using directional templates in the detection of faces rotated in the coronal axis. The templates are built by extracting the directional image information from the regions of the eyes, nose and mouth. The face position is determined by computing a line integral using the templates over the face directional image. The line integral reaches a maximum when it coincides with the face position. It is shown an improvement in localization selectivity by the increased value in the line integral computed with the directional template. Besides, improvements in the line integral value for face size and face rotation angle was also found through the computation of the line integral using the directional template. Based on these results the new templates should improve selectivity and hence provide the means to restrict computations to a fewer number of templates and restrict the region of search during the face and eye tracking procedure. The proposed method is real time, completely non invasive and was applied with no background limitation and normal illumination conditions in an indoor environment.

  17. Real-Time Terrain Storage Generation from Multiple Sensors towards Mobile Robot Operation Interface

    PubMed Central

    Cho, Seoungjae; Xi, Yulong; Cho, Kyungeun

    2014-01-01

    A mobile robot mounted with multiple sensors is used to rapidly collect 3D point clouds and video images so as to allow accurate terrain modeling. In this study, we develop a real-time terrain storage generation and representation system including a nonground point database (PDB), ground mesh database (MDB), and texture database (TDB). A voxel-based flag map is proposed for incrementally registering large-scale point clouds in a terrain model in real time. We quantize the 3D point clouds into 3D grids of the flag map as a comparative table in order to remove the redundant points. We integrate the large-scale 3D point clouds into a nonground PDB and a node-based terrain mesh using the CPU. Subsequently, we program a graphics processing unit (GPU) to generate the TDB by mapping the triangles in the terrain mesh onto the captured video images. Finally, we produce a nonground voxel map and a ground textured mesh as a terrain reconstruction result. Our proposed methods were tested in an outdoor environment. Our results show that the proposed system was able to rapidly generate terrain storage and provide high resolution terrain representation for mobile mapping services and a graphical user interface between remote operators and mobile robots. PMID:25101321

  18. Comparative study of internet cloud and cloudlet over wireless mesh networks for real-time applications

    NASA Astrophysics Data System (ADS)

    Khan, Kashif A.; Wang, Qi; Luo, Chunbo; Wang, Xinheng; Grecos, Christos

    2014-05-01

    Mobile cloud computing is receiving world-wide momentum for ubiquitous on-demand cloud services for mobile users provided by Amazon, Google etc. with low capital cost. However, Internet-centric clouds introduce wide area network (WAN) delays that are often intolerable for real-time applications such as video streaming. One promising approach to addressing this challenge is to deploy decentralized mini-cloud facility known as cloudlets to enable localized cloud services. When supported by local wireless connectivity, a wireless cloudlet is expected to offer low cost and high performance cloud services for the users. In this work, we implement a realistic framework that comprises both a popular Internet cloud (Amazon Cloud) and a real-world cloudlet (based on Ubuntu Enterprise Cloud (UEC)) for mobile cloud users in a wireless mesh network. We focus on real-time video streaming over the HTTP standard and implement a typical application. We further perform a comprehensive comparative analysis and empirical evaluation of the application's performance when it is delivered over the Internet cloud and the cloudlet respectively. The study quantifies the influence of the two different cloud networking architectures on supporting real-time video streaming. We also enable movement of the users in the wireless mesh network and investigate the effect of user's mobility on mobile cloud computing over the cloudlet and Amazon cloud respectively. Our experimental results demonstrate the advantages of the cloudlet paradigm over its Internet cloud counterpart in supporting the quality of service of real-time applications.

  19. Video Mosaicking for Inspection of Gas Pipelines

    NASA Technical Reports Server (NTRS)

    Magruder, Darby; Chien, Chiun-Hong

    2005-01-01

    A vision system that includes a specially designed video camera and an image-data-processing computer is under development as a prototype of robotic systems for visual inspection of the interior surfaces of pipes and especially of gas pipelines. The system is capable of providing both forward views and mosaicked radial views that can be displayed in real time or after inspection. To avoid the complexities associated with moving parts and to provide simultaneous forward and radial views, the video camera is equipped with a wide-angle (>165 ) fish-eye lens aimed along the axis of a pipe to be inspected. Nine white-light-emitting diodes (LEDs) placed just outside the field of view of the lens (see Figure 1) provide ample diffuse illumination for a high-contrast image of the interior pipe wall. The video camera contains a 2/3-in. (1.7-cm) charge-coupled-device (CCD) photodetector array and functions according to the National Television Standards Committee (NTSC) standard. The video output of the camera is sent to an off-the-shelf video capture board (frame grabber) by use of a peripheral component interconnect (PCI) interface in the computer, which is of the 400-MHz, Pentium II (or equivalent) class. Prior video-mosaicking techniques are applicable to narrow-field-of-view (low-distortion) images of evenly illuminated, relatively flat surfaces viewed along approximately perpendicular lines by cameras that do not rotate and that move approximately parallel to the viewed surfaces. One such technique for real-time creation of mosaic images of the ocean floor involves the use of visual correspondences based on area correlation, during both the acquisition of separate images of adjacent areas and the consolidation (equivalently, integration) of the separate images into a mosaic image, in order to insure that there are no gaps in the mosaic image. The data-processing technique used for mosaicking in the present system also involves area correlation, but with several notable differences: Because the wide-angle lens introduces considerable distortion, the image data must be processed to effectively unwarp the images (see Figure 2). The computer executes special software that includes an unwarping algorithm that takes explicit account of the cylindrical pipe geometry. To reduce the processing time needed for unwarping, parameters of the geometric mapping between the circular view of a fisheye lens and pipe wall are determined in advance from calibration images and compiled into an electronic lookup table. The software incorporates the assumption that the optical axis of the camera is parallel (rather than perpendicular) to the direction of motion of the camera. The software also compensates for the decrease in illumination with distance from the ring of LEDs.

  20. Learned saliency transformations for gaze guidance

    NASA Astrophysics Data System (ADS)

    Vig, Eleonora; Dorr, Michael; Barth, Erhardt

    2011-03-01

    The saliency of an image or video region indicates how likely it is that the viewer of the image or video fixates that region due to its conspicuity. An intriguing question is how we can change the video region to make it more or less salient. Here, we address this problem by using a machine learning framework to learn from a large set of eye movements collected on real-world dynamic scenes how to alter the saliency level of the video locally. We derive saliency transformation rules by performing spatio-temporal contrast manipulations (on a spatio-temporal Laplacian pyramid) on the particular video region. Our goal is to improve visual communication by designing gaze-contingent interactive displays that change, in real time, the saliency distribution of the scene.

  1. Real-time image sequence segmentation using curve evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liu, Weisong

    2001-04-01

    In this paper, we describe a novel approach to image sequence segmentation and its real-time implementation. This approach uses the 3D structure tensor to produce a more robust frame difference signal and uses curve evolution to extract whole objects. Our algorithm is implemented on a standard PC running the Windows operating system with video capture from a USB camera that is a standard Windows video capture device. Using the Windows standard video I/O functionalities, our segmentation software is highly portable and easy to maintain and upgrade. In its current implementation on a Pentium 400, the system can perform segmentation at 5 frames/sec with a frame resolution of 160 by 120.

  2. Close to real-time robust pedestrian detection and tracking

    NASA Astrophysics Data System (ADS)

    Lipetski, Y.; Loibner, G.; Sidla, O.

    2015-03-01

    Fully automated video based pedestrian detection and tracking is a challenging task with many practical and important applications. We present our work aimed to allow robust and simultaneously close to real-time tracking of pedestrians. The presented approach is stable to occlusions, lighting conditions and is generalized to be applied on arbitrary video data. The core tracking approach is built upon tracking-by-detections principle. We describe our cascaded HOG detector with successive CNN verification in detail. For the tracking and re-identification task, we did an extensive analysis of appearance based features as well as their combinations. The tracker was tested on many hours of video data for different scenarios; the results are presented and discussed.

  3. A real-time optical tracking and measurement processing system for flying targets.

    PubMed

    Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu

    2014-01-01

    Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control.

  4. A Real-Time Optical Tracking and Measurement Processing System for Flying Targets

    PubMed Central

    Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu

    2014-01-01

    Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control. PMID:24987748

  5. Annotation of UAV surveillance video

    NASA Astrophysics Data System (ADS)

    Howlett, Todd; Robertson, Mark A.; Manthey, Dan; Krol, John

    2004-08-01

    Significant progress toward the development of a video annotation capability is presented in this paper. Research and development of an object tracking algorithm applicable for UAV video is described. Object tracking is necessary for attaching the annotations to the objects of interest. A methodology and format is defined for encoding video annotations using the SMPTE Key-Length-Value encoding standard. This provides the following benefits: a non-destructive annotation, compliance with existing standards, video playback in systems that are not annotation enabled and support for a real-time implementation. A model real-time video annotation system is also presented, at a high level, using the MPEG-2 Transport Stream as the transmission medium. This work was accomplished to meet the Department of Defense"s (DoD"s) need for a video annotation capability. Current practices for creating annotated products are to capture a still image frame, annotate it using an Electric Light Table application, and then pass the annotated image on as a product. That is not adequate for reporting or downstream cueing. It is too slow and there is a severe loss of information. This paper describes a capability for annotating directly on the video.

  6. First results of the multi-purpose real-time processing video camera system on the Wendelstein 7-X stellarator and implications for future devices

    NASA Astrophysics Data System (ADS)

    Zoletnik, S.; Biedermann, C.; Cseh, G.; Kocsis, G.; König, R.; Szabolics, T.; Szepesi, T.; Wendelstein 7-X Team

    2018-01-01

    A special video camera has been developed for the 10-camera overview video system of the Wendelstein 7-X (W7-X) stellarator considering multiple application needs and limitations resulting from this complex long-pulse superconducting stellarator experiment. The event detection intelligent camera (EDICAM) uses a special 1.3 Mpixel CMOS sensor with non-destructive read capability which enables fast monitoring of smaller Regions of Interest (ROIs) even during long exposures. The camera can perform simple data evaluation algorithms (minimum/maximum, mean comparison to levels) on the ROI data which can dynamically change the readout process and generate output signals. Multiple EDICAM cameras were operated in the first campaign of W7-X and capabilities were explored in the real environment. Data prove that the camera can be used for taking long exposure (10-100 ms) overview images of the plasma while sub-ms monitoring and even multi-camera correlated edge plasma turbulence measurements of smaller areas can be done in parallel. These latter revealed that filamentary turbulence structures extend between neighboring modules of the stellarator. Considerations emerging for future upgrades of this system and similar setups on future long-pulse fusion experiments such as ITER are discussed.

  7. Improving wavelet denoising based on an in-depth analysis of the camera color processing

    NASA Astrophysics Data System (ADS)

    Seybold, Tamara; Plichta, Mathias; Stechele, Walter

    2015-02-01

    While Denoising is an extensively studied task in signal processing research, most denoising methods are designed and evaluated using readily processed image data, e.g. the well-known Kodak data set. The noise model is usually additive white Gaussian noise (AWGN). This kind of test data does not correspond to nowadays real-world image data taken with a digital camera. Using such unrealistic data to test, optimize and compare denoising algorithms may lead to incorrect parameter tuning or suboptimal choices in research on real-time camera denoising algorithms. In this paper we derive a precise analysis of the noise characteristics for the different steps in the color processing. Based on real camera noise measurements and simulation of the processing steps, we obtain a good approximation for the noise characteristics. We further show how this approximation can be used in standard wavelet denoising methods. We improve the wavelet hard thresholding and bivariate thresholding based on our noise analysis results. Both the visual quality and objective quality metrics show the advantage of the proposed method. As the method is implemented using look-up-tables that are calculated before the denoising step, our method can be implemented with very low computational complexity and can process HD video sequences real-time in an FPGA.

  8. DSCOVR Transcendance

    NASA Astrophysics Data System (ADS)

    Herman, J. R.; Boccara, M.; Albers, S. C.

    2017-12-01

    The Earth Polychromatic Imaging Camera (EPIC) onboard the DSCOVR satellite continuously views the sun-illuminated portion of the Earth with spectral coverage in the visible band, among others. Ideally, such a system would be able to provide a video with continuous coverage up to real time. However due to limits in onboard storage, bandwidth, and antenna coverage on the ground, we can receive at most 20 images a day, separated by at least one hour. Also, the processing time to generate the visible image out of the separate RGB channels delays public images delivery by a day or two. Finally, occasional remote tuning of instruments can cause several day periods where the imagery is completely missing. We are proposing a model-based method to fill these gaps and restore images lost in real-time processing. We are combining two sets of algorithms. The first, called Blueturn, interpolates successive images while projecting them on a 3-D model of the Earth, all this being done in real-time using the GPU. The second, called Simulated Weather Imagery (SWIM), makes EPIC-like images utilizing a ray-tracing model of scattering and absorption of sunlight by clouds, atmospheric gases, aerosols, and land surface. Clouds are obtained from 3-D gridded analyses and forecasts using weather modeling systems such as the Local Analysis and Prediction System (LAPS), and the Flow-following finite-volume Finite Icosahedral Model (FIM). SWIM uses EPIC images to validate its models. Typical model grid spacing is about 20km and is roughly commensurate with the EPIC imagery. Calculating one image per hour is enough for Blueturn to generate a smooth video. The synthetic images are designed to be visually realistic and aspire to be indistinguishable from the real ones. Resulting interframe transitions become seamless, and real-time delay is reduced to 1 hour. With Blueturn already available as a free online app, streaming EPIC images directly from NASA's public website, and with another SWIM server to ensure constant interval between key images, this work brings transcendance to EPIC's tribute. Enriched by two years of actual service in space, the most real holistic view of the Earth will be continued at a high degree of fidelity, regardless of EPIC limitations or interruptions.

  9. Visually induced analgesia during massage treatment in chronic back pain patients.

    PubMed

    Löffler, A; Trojan, J; Zieglgänsberger, W; Diers, M

    2017-11-01

    Previous findings suggest that watching sites of experimental and chronic pain can exert an analgesic effect. Our present study investigates whether watching one's back during massage increases the analgesic effect of this treatment in chronic back pain patients. Twenty patients with chronic back pain were treated with a conventional massage therapy. During this treatment, patients received a real-time video feedback of their own back. Watching a neutral object, a video of another person of the same sex being massaged, a picture of the own back, and keeping one's eyes closed were used as controls. These conditions were presented in randomized order on five separate days. All conditions yielded significant decreases in habitual pain intensity. The effect of real-time video feedback of the own back on massage treatment was the strongest and differed significantly from the effect of watching a neutral object, but not from the other control conditions, which may have induced slight effects of their own. Repeated real-time video feedback may be useful during massage treatment of chronic pain. This study shows that inducing visual induced analgesia during massage treatment can be helpful in alleviating chronic pain. © 2017 European Pain Federation - EFIC®.

  10. Innovative hyperchaotic encryption algorithm for compressed video

    NASA Astrophysics Data System (ADS)

    Yuan, Chun; Zhong, Yuzhuo; Yang, Shiqiang

    2002-12-01

    It is accepted that stream cryptosystem can achieve good real-time performance and flexibility which implements encryption by selecting few parts of the block data and header information of the compressed video stream. Chaotic random number generator, for example Logistics Map, is a comparatively promising substitute, but it is easily attacked by nonlinear dynamic forecasting and geometric information extracting. In this paper, we present a hyperchaotic cryptography scheme to encrypt the compressed video, which integrates Logistics Map with Z(232 - 1) field linear congruential algorithm to strengthen the security of the mono-chaotic cryptography, meanwhile, the real-time performance and flexibility of the chaotic sequence cryptography are maintained. It also integrates with the dissymmetrical public-key cryptography and implements encryption and identity authentification on control parameters at initialization phase. In accord with the importance of data in compressed video stream, encryption is performed in layered scheme. In the innovative hyperchaotic cryptography, the value and the updating frequency of control parameters can be changed online to satisfy the requirement of the network quality, processor capability and security requirement. The innovative hyperchaotic cryprography proves robust security by cryptoanalysis, shows good real-time performance and flexible implement capability through the arithmetic evaluating and test.

  11. Visual analysis of trash bin processing on garbage trucks in low resolution video

    NASA Astrophysics Data System (ADS)

    Sidla, Oliver; Loibner, Gernot

    2015-03-01

    We present a system for trash can detection and counting from a camera which is mounted on a garbage collection truck. A working prototype has been successfully implemented and tested with several hours of real-world video. The detection pipeline consists of HOG detectors for two trash can sizes, and meanshift tracking and low level image processing for the analysis of the garbage disposal process. Considering the harsh environment and unfavorable imaging conditions, the process works already good enough so that very useful measurements from video data can be extracted. The false positive/false negative rate of the full processing pipeline is about 5-6% at fully automatic operation. Video data of a full day (about 8 hrs) can be processed in about 30 minutes on a standard PC.

  12. "You Should Have Seen the Look on Your Face…": Self-awareness of Facial Expressions.

    PubMed

    Qu, Fangbing; Yan, Wen-Jing; Chen, Yu-Hsin; Li, Kaiyun; Zhang, Hui; Fu, Xiaolan

    2017-01-01

    The awareness of facial expressions allows one to better understand, predict, and regulate his/her states to adapt to different social situations. The present research investigated individuals' awareness of their own facial expressions and the influence of the duration and intensity of expressions in two self-reference modalities, a real-time condition and a video-review condition. The participants were instructed to respond as soon as they became aware of any facial movements. The results revealed that awareness rates were 57.79% in the real-time condition and 75.92% in the video-review condition. The awareness rate was influenced by the intensity and (or) the duration. The intensity thresholds for individuals to become aware of their own facial expressions were calculated using logistic regression models. The results of Generalized Estimating Equations (GEE) revealed that video-review awareness was a significant predictor of real-time awareness. These findings extend understandings of human facial expression self-awareness in two modalities.

  13. “You Should Have Seen the Look on Your Face…”: Self-awareness of Facial Expressions

    PubMed Central

    Qu, Fangbing; Yan, Wen-Jing; Chen, Yu-Hsin; Li, Kaiyun; Zhang, Hui; Fu, Xiaolan

    2017-01-01

    The awareness of facial expressions allows one to better understand, predict, and regulate his/her states to adapt to different social situations. The present research investigated individuals’ awareness of their own facial expressions and the influence of the duration and intensity of expressions in two self-reference modalities, a real-time condition and a video-review condition. The participants were instructed to respond as soon as they became aware of any facial movements. The results revealed that awareness rates were 57.79% in the real-time condition and 75.92% in the video-review condition. The awareness rate was influenced by the intensity and (or) the duration. The intensity thresholds for individuals to become aware of their own facial expressions were calculated using logistic regression models. The results of Generalized Estimating Equations (GEE) revealed that video-review awareness was a significant predictor of real-time awareness. These findings extend understandings of human facial expression self-awareness in two modalities. PMID:28611703

  14. Comparing Real-time Versus Delayed Video Assessments for Evaluating ACGME Sub-competency Milestones in Simulated Patient Care Environments

    PubMed Central

    Stiegler, Marjorie; Hobbs, Gene; Martinelli, Susan M; Zvara, David; Arora, Harendra; Chen, Fei

    2018-01-01

    Background Simulation is an effective method for creating objective summative assessments of resident trainees. Real-time assessment (RTA) in simulated patient care environments is logistically challenging, especially when evaluating a large group of residents in multiple simulation scenarios. To date, there is very little data comparing RTA with delayed (hours, days, or weeks later) video-based assessment (DA) for simulation-based assessments of Accreditation Council for Graduate Medical Education (ACGME) sub-competency milestones. We hypothesized that sub-competency milestone evaluation scores obtained from DA, via audio-video recordings, are equivalent to the scores obtained from RTA. Methods Forty-one anesthesiology residents were evaluated in three separate simulated scenarios, representing different ACGME sub-competency milestones. All scenarios had one faculty member perform RTA and two additional faculty members perform DA. Subsequently, the scores generated by RTA were compared with the average scores generated by DA. Variance component analysis was conducted to assess the amount of variation in scores attributable to residents and raters. Results Paired t-tests showed no significant difference in scores between RTA and averaged DA for all cases. Cases 1, 2, and 3 showed an intraclass correlation coefficient (ICC) of 0.67, 0.85, and 0.50 for agreement between RTA scores and averaged DA scores, respectively. Analysis of variance of the scores assigned by the three raters showed a small proportion of variance attributable to raters (4% to 15%). Conclusions The results demonstrate that video-based delayed assessment is as reliable as real-time assessment, as both assessment methods yielded comparable scores. Based on a department’s needs or logistical constraints, our findings support the use of either real-time or delayed video evaluation for assessing milestones in a simulated patient care environment. PMID:29736352

  15. Digital cinema system using JPEG2000 movie of 8-million pixel resolution

    NASA Astrophysics Data System (ADS)

    Fujii, Tatsuya; Nomura, Mitsuru; Shirai, Daisuke; Yamaguchi, Takahiro; Fujii, Tetsuro; Ono, Sadayasu

    2003-05-01

    We have developed a prototype digital cinema system that can store, transmit and display extra high quality movies of 8-million pixel resolution, using JPEG2000 coding algorithm. The image quality is 4 times better than HDTV in resolution, and enables us to replace conventional films with digital cinema archives. Using wide-area optical gigabit IP networks, cinema contents are distributed and played back as a video-on-demand (VoD) system. The system consists of three main devices, a video server, a real-time JPEG2000 decoder, and a large-venue LCD projector. All digital movie data are compressed by JPEG2000 and stored in advance. The coded streams of 300~500 Mbps can be continuously transmitted from the PC server using TCP/IP. The decoder can perform the real-time decompression at 24/48 frames per second, using 120 parallel JPEG2000 processing elements. The received streams are expanded into 4.5Gbps raw video signals. The prototype LCD projector uses 3 pieces of 3840×2048 pixel reflective LCD panels (D-ILA) to show RGB 30-bit color movies fed by the decoder. The brightness exceeds 3000 ANSI lumens for a 300-inch screen. The refresh rate is chosen to 96Hz to thoroughly eliminate flickers, while preserving compatibility to cinema movies of 24 frames per second.

  16. Real-time Internet connections: implications for surgical decision making in laparoscopy.

    PubMed

    Broderick, T J; Harnett, B M; Doarn, C R; Rodas, E B; Merrell, R C

    2001-08-01

    To determine whether a low-bandwidth Internet connection can provide adequate image quality to support remote real-time surgical consultation. Telemedicine has been used to support care at a distance through the use of expensive equipment and broadband communication links. In the past, the operating room has been an isolated environment that has been relatively inaccessible for real-time consultation. Recent technological advances have permitted videoconferencing over low-bandwidth, inexpensive Internet connections. If these connections are shown to provide adequate video quality for surgical applications, low-bandwidth telemedicine will open the operating room environment to remote real-time surgical consultation. Surgeons performing a laparoscopic cholecystectomy in Ecuador or the Dominican Republic shared real-time laparoscopic images with a panel of surgeons at the parent university through a dial-up Internet account. The connection permitted video and audio teleconferencing to support real-time consultation as well as the transmission of real-time images and store-and-forward images for observation by the consultant panel. A total of six live consultations were analyzed. In addition, paired local and remote images were "grabbed" from the video feed during these laparoscopic cholecystectomies. Nine of these paired images were then placed into a Web-based tool designed to evaluate the effect of transmission on image quality. The authors showed for the first time the ability to identify critical anatomic structures in laparoscopy over a low-bandwidth connection via the Internet. The consultant panel of surgeons correctly remotely identified biliary and arterial anatomy during six laparoscopic cholecystectomies. Within the Web-based questionnaire, 15 surgeons could not blindly distinguish the quality of local and remote laparoscopic images. Low-bandwidth, Internet-based telemedicine is inexpensive, effective, and almost ubiquitous. Use of these inexpensive, portable technologies will allow sharing of surgical procedures and decisions regardless of location. Internet telemedicine consistently supported real-time intraoperative consultation in laparoscopic surgery. The implications are broad with respect to quality improvement and diffusion of knowledge as well as for basic consultation.

  17. Real-time detection of small and dim moving objects in IR video sequences using a robust background estimator and a noise-adaptive double thresholding

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2016-10-01

    We developed an algorithm for automatically detecting small and poorly contrasted (dim) moving objects in real-time, within video sequences acquired through a steady infrared camera. The algorithm is suitable for different situations since it is independent of the background characteristics and of changes in illumination. Unlike other solutions, small objects of any size (up to single-pixel), either hotter or colder than the background, can be successfully detected. The algorithm is based on accurately estimating the background at the pixel level and then rejecting it. A novel approach permits background estimation to be robust to changes in the scene illumination and to noise, and not to be biased by the transit of moving objects. Care was taken in avoiding computationally costly procedures, in order to ensure the real-time performance even using low-cost hardware. The algorithm was tested on a dataset of 12 video sequences acquired in different conditions, providing promising results in terms of detection rate and false alarm rate, independently of background and objects characteristics. In addition, the detection map was produced frame by frame in real-time, using cheap commercial hardware. The algorithm is particularly suitable for applications in the fields of video-surveillance and computer vision. Its reliability and speed permit it to be used also in critical situations, like in search and rescue, defence and disaster monitoring.

  18. Real-time embedded atmospheric compensation for long-range imaging using the average bispectrum speckle method

    NASA Astrophysics Data System (ADS)

    Curt, Petersen F.; Bodnar, Michael R.; Ortiz, Fernando E.; Carrano, Carmen J.; Kelmelis, Eric J.

    2009-02-01

    While imaging over long distances is critical to a number of security and defense applications, such as homeland security and launch tracking, current optical systems are limited in resolving power. This is largely a result of the turbulent atmosphere in the path between the region under observation and the imaging system, which can severely degrade captured imagery. There are a variety of post-processing techniques capable of recovering this obscured image information; however, the computational complexity of such approaches has prohibited real-time deployment and hampers the usability of these technologies in many scenarios. To overcome this limitation, we have designed and manufactured an embedded image processing system based on commodity hardware which can compensate for these atmospheric disturbances in real-time. Our system consists of a reformulation of the average bispectrum speckle method coupled with a high-end FPGA processing board, and employs modular I/O capable of interfacing with most common digital and analog video transport methods (composite, component, VGA, DVI, SDI, HD-SDI, etc.). By leveraging the custom, reconfigurable nature of the FPGA, we have achieved performance twenty times faster than a modern desktop PC, in a form-factor that is compact, low-power, and field-deployable.

  19. Application of robust face recognition in video surveillance systems

    NASA Astrophysics Data System (ADS)

    Zhang, De-xin; An, Peng; Zhang, Hao-xiang

    2018-03-01

    In this paper, we propose a video searching system that utilizes face recognition as searching indexing feature. As the applications of video cameras have great increase in recent years, face recognition makes a perfect fit for searching targeted individuals within the vast amount of video data. However, the performance of such searching depends on the quality of face images recorded in the video signals. Since the surveillance video cameras record videos without fixed postures for the object, face occlusion is very common in everyday video. The proposed system builds a model for occluded faces using fuzzy principal component analysis (FPCA), and reconstructs the human faces with the available information. Experimental results show that the system has very high efficiency in processing the real life videos, and it is very robust to various kinds of face occlusions. Hence it can relieve people reviewers from the front of the monitors and greatly enhances the efficiency as well. The proposed system has been installed and applied in various environments and has already demonstrated its power by helping solving real cases.

  20. Digital video timing analyzer for the evaluation of PC-based real-time simulation systems

    NASA Astrophysics Data System (ADS)

    Jones, Shawn R.; Crosby, Jay L.; Terry, John E., Jr.

    2009-05-01

    Due to the rapid acceleration in technology and the drop in costs, the use of commercial off-the-shelf (COTS) PC-based hardware and software components for digital and hardware-in-the-loop (HWIL) simulations has increased. However, the increase in PC-based components creates new challenges for HWIL test facilities such as cost-effective hardware and software selection, system configuration and integration, performance testing, and simulation verification/validation. This paper will discuss how the Digital Video Timing Analyzer (DiViTA) installed in the Aviation and Missile Research, Development and Engineering Center (AMRDEC) provides quantitative characterization data for PC-based real-time scene generation systems. An overview of the DiViTA is provided followed by details on measurement techniques, applications, and real-world examples of system benefits.

  1. Convergence in full motion video processing, exploitation, and dissemination and activity based intelligence

    NASA Astrophysics Data System (ADS)

    Phipps, Marja; Lewis, Gina

    2012-06-01

    Over the last decade, intelligence capabilities within the Department of Defense/Intelligence Community (DoD/IC) have evolved from ad hoc, single source, just-in-time, analog processing; to multi source, digitally integrated, real-time analytics; to multi-INT, predictive Processing, Exploitation and Dissemination (PED). Full Motion Video (FMV) technology and motion imagery tradecraft advancements have greatly contributed to Intelligence, Surveillance and Reconnaissance (ISR) capabilities during this timeframe. Imagery analysts have exploited events, missions and high value targets, generating and disseminating critical intelligence reports within seconds of occurrence across operationally significant PED cells. Now, we go beyond FMV, enabling All-Source Analysts to effectively deliver ISR information in a multi-INT sensor rich environment. In this paper, we explore the operational benefits and technical challenges of an Activity Based Intelligence (ABI) approach to FMV PED. Existing and emerging ABI features within FMV PED frameworks are discussed, to include refined motion imagery tools, additional intelligence sources, activity relevant content management techniques and automated analytics.

  2. Pollen Bearing Honey Bee Detection in Hive Entrance Video Recorded by Remote Embedded System for Pollination Monitoring

    NASA Astrophysics Data System (ADS)

    Babic, Z.; Pilipovic, R.; Risojevic, V.; Mirjanic, G.

    2016-06-01

    Honey bees have crucial role in pollination across the world. This paper presents a simple, non-invasive, system for pollen bearing honey bee detection in surveillance video obtained at the entrance of a hive. The proposed system can be used as a part of a more complex system for tracking and counting of honey bees with remote pollination monitoring as a final goal. The proposed method is executed in real time on embedded systems co-located with a hive. Background subtraction, color segmentation and morphology methods are used for segmentation of honey bees. Classification in two classes, pollen bearing honey bees and honey bees that do not have pollen load, is performed using nearest mean classifier, with a simple descriptor consisting of color variance and eccentricity features. On in-house data set we achieved correct classification rate of 88.7% with 50 training images per class. We show that the obtained classification results are not far behind from the results of state-of-the-art image classification methods. That favors the proposed method, particularly having in mind that real time video transmission to remote high performance computing workstation is still an issue, and transfer of obtained parameters of pollination process is much easier.

  3. Vehicle-borne IED detection using the ULTOR correlation processor

    NASA Astrophysics Data System (ADS)

    Burcham, Joel D.; Vachon, Joyce E.

    2006-05-01

    Advanced Optical Systems, Inc. developed the ULTOR(r) system, a real-time correlation processor that looks for improvised explosive devices (IED) by examining imagery of vehicles. The system determines the level of threat an approaching vehicle may represent. The system works on incoming video collected at different wavelengths, including visible, infrared, and synthetic aperture radar. Sensors that attach to ULTOR can be located wherever necessary to improve the safety around a checkpoint. When a suspect vehicle is detected, ULTOR can track the vehicle, alert personnel, check for previous instances of the vehicle, and update other networked systems with the threat information. The ULTOR processing engine focuses on the spatial frequency information available in the image. It correlates the imagery with templates that specify the criteria defining a suspect vehicle. It can perform full field correlations at a rate of 180 Hz or better. Additionally, the spatial frequency information is applied to a trained neural network to identify suspect vehicles. We have performed various laboratory and field experiments to verify the performance of the ULTOR system in a counter IED environment. The experiments cover tracking specific targets in video clips to demonstrating real-time ULTOR system performance. The selected targets in the experiments include various automobiles in both visible and infrared video.

  4. Automated Generation of Geo-Referenced Mosaics From Video Data Collected by Deep-Submergence Vehicles: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Rhzanov, Y.; Beaulieu, S.; Soule, S. A.; Shank, T.; Fornari, D.; Mayer, L. A.

    2005-12-01

    Many advances in understanding geologic, tectonic, biologic, and sedimentologic processes in the deep ocean are facilitated by direct observation of the seafloor. However, making such observations is both difficult and expensive. Optical systems (e.g., video, still camera, or direct observation) will always be constrained by the severe attenuation of light in the deep ocean, limiting the field of view to distances that are typically less than 10 meters. Acoustic systems can 'see' much larger areas, but at the cost of spatial resolution. Ultimately, scientists want to study and observe deep-sea processes in the same way we do land-based phenomena so that the spatial distribution and juxtaposition of processes and features can be resolved. We have begun development of algorithms that will, in near real-time, generate mosaics from video collected by deep-submergence vehicles. Mosaics consist of >>10 video frames and can cover 100's of square-meters. This work builds on a publicly available still and video mosaicking software package developed by Rzhanov and Mayer. Here we present the results of initial tests of data collection methodologies (e.g., transects across the seafloor and panoramas across features of interest), algorithm application, and GIS integration conducted during a recent cruise to the Eastern Galapagos Spreading Center (0 deg N, 86 deg W). We have developed a GIS database for the region that will act as a means to access and display mosaics within a geospatially-referenced framework. We have constructed numerous mosaics using both video and still imagery and assessed the quality of the mosaics (including registration errors) under different lighting conditions and with different navigation procedures. We have begun to develop algorithms for efficient and timely mosaicking of collected video as well as integration with navigation data for georeferencing the mosaics. Initial results indicate that operators must be properly versed in the control of the video systems as well as maintaining vehicle attitude and altitude in order to achieve the best results possible.

  5. In-camera video-stream processing for bandwidth reduction in web inspection

    NASA Astrophysics Data System (ADS)

    Jullien, Graham A.; Li, QiuPing; Hajimowlana, S. Hossain; Morvay, J.; Conflitti, D.; Roberts, James W.; Doody, Brian C.

    1996-02-01

    Automated machine vision systems are now widely used for industrial inspection tasks where video-stream data information is taken in by the camera and then sent out to the inspection system for future processing. In this paper we describe a prototype system for on-line programming of arbitrary real-time video data stream bandwidth reduction algorithms; the output of the camera only contains information that has to be further processed by a host computer. The processing system is built into a DALSA CCD camera and uses a microcontroller interface to download bit-stream data to a XILINXTM FPGA. The FPGA is directly connected to the video data-stream and outputs data to a low bandwidth output bus. The camera communicates to a host computer via an RS-232 link to the microcontroller. Static memory is used to both generate a FIFO interface for buffering defect burst data, and for off-line examination of defect detection data. In addition to providing arbitrary FPGA architectures, the internal program of the microcontroller can also be changed via the host computer and a ROM monitor. This paper describes a prototype system board, mounted inside a DALSA camera, and discusses some of the algorithms currently being implemented for web inspection applications.

  6. Real-time capture of student reasoning while writing

    NASA Astrophysics Data System (ADS)

    Franklin, Scott V.; Hermsen, Lisa M.

    2014-12-01

    We present a new approach to investigating student reasoning while writing: real-time capture of the dynamics of the writing process. Key-capture or video software is used to record the entire writing episode, including all pauses, deletions, insertions, and revisions. A succinct shorthand, "S notation," is used to highlight significant moments in the episode that may be indicative of shifts in understanding and can be used in followup interviews for triangulation. The methodology allows one to test the widespread belief that writing is a valuable pedagogical technique, which currently has little directly supportive research. To demonstrate the method, we present a case study of a writing episode. The data reveal an evolution of expression and articulation, discontinuous in both time and space. Distinct shifts in the tone and topic that follow long pauses and revisions are not restricted to the most recently written text. Real-time writing analysis, with its study of the temporal breaks and revision locations, can serve as a complementary tool to more traditional research methods (e.g., speak-aloud interviews) into student reasoning during the writing process.

  7. The Myth of Blunted Gamers: No Evidence for Desensitization in Empathy for Pain after a Violent Video Game Intervention in a Longitudinal fMRI Study on Non-Gamers.

    PubMed

    Kühn, Simone; Kugler, Dimitrij; Schmalen, Katharina; Weichenberger, Markus; Witt, Charlotte; Gallinat, Jürgen

    2018-01-31

    It is a common concern in the research field and the community that habitual violent video gaming reduces empathy for pain in its players. However, previous fMRI studies have only compared habitual game players against control participants cross-sectionally. However the observed pattern of results may be due to a priori differences in people who become gamers and who not. In order to derive the causal conclusion that violent video game play causes desensitisation, longitudinal studies are needed. Therefore we conducted a longitudinal fMRI intervention study over 16 weeks. Participants were randomly assigned to 1) play a violent video game (Grand Theft Auto 5), 2) perform a social life simulation game (The Sims 3) 30 min/day for 8 weeks, 3) serve as passive control. To assess empathy processing, participants were exposed to painful and non-painful stimuli (e.g. someone cutting a cucumber with or without hurting herself) either as real photographs or video-game like depictions in a 3T MRI scanner before and after the training intervention as well as two months after training. We did not find any evidence for desensitization in the empathy network for pain in the violent video game group at any time point. The present results provide strong evidence against the frequently proclaimed negative effects of playing violent video games and will therefore help to communicate a more realistic scientific perspective of the effects of violent video gaming in real life. © 2018 The Author(s). Published by S. Karger AG, Basel.

  8. Real-time synchronization of kinematic and video data for the comprehensive assessment of surgical skills.

    PubMed

    Dosis, Aristotelis; Bello, Fernando; Moorthy, Krishna; Munz, Yaron; Gillies, Duncan; Darzi, Ara

    2004-01-01

    Surgical dexterity in operating theatres has traditionally been assessed subjectively. Electromagnetic (EM) motion tracking systems such as the Imperial College Surgical Assessment Device (ICSAD) have been shown to produce valid and accurate objective measures of surgical skill. To allow for video integration we have modified the data acquisition and built it within the ROVIMAS analysis software. We then used ActiveX 9.0 DirectShow video capturing and the system clock as a time stamp for the synchronized concurrent acquisition of kinematic data and video frames. Interactive video/motion data browsing was implemented to allow the user to concentrate on frames exhibiting certain kinematic properties that could result in operative errors. We exploited video-data synchronization to calculate the camera visual hull by identifying all 3D vertices using the ICSAD electromagnetic sensors. We also concentrated on high velocity peaks as a means of identifying potential erroneous movements to be confirmed by studying the corresponding video frames. The outcome of the study clearly shows that the kinematic data are precisely synchronized with the video frames and that the velocity peaks correspond to large and sudden excursions of the instrument tip. We validated the camera visual hull by both video and geometrical kinematic analysis and we observed that graphs containing fewer sudden velocity peaks are less likely to have erroneous movements. This work presented further developments to the well-established ICSAD dexterity analysis system. Synchronized real-time motion and video acquisition provides a comprehensive assessment solution by combining quantitative motion analysis tools and qualitative targeted video scoring.

  9. Multiformat decoder for a DSP-based IP set-top box

    NASA Astrophysics Data System (ADS)

    Pescador, F.; Garrido, M. J.; Sanz, C.; Juárez, E.; Samper, D.; Antoniello, R.

    2007-05-01

    Internet Protocol Set-Top Boxes (IP STBs) based on single-processor architectures have been recently introduced in the market. In this paper, the implementation of an MPEG-4 SP/ASP video decoder for a multi-format IP STB based on a TMS320DM641 DSP is presented. An initial decoder for PC platform was fully tested and ported to the DSP. Using this code an optimization process was started achieving a 90% speedup. This process allows real-time MPEG-4 SP/ASP decoding. The MPEG-4 decoder has been integrated in an IP STB and tested in a real environment using DVD movies and TV channels with excellent results.

  10. Digital Video and the Internet: A Powerful Combination.

    ERIC Educational Resources Information Center

    Barron, Ann E.; Orwig, Gary W.

    1995-01-01

    Provides an overview of digital video and outlines hardware and software necessary for interactive training on the World Wide Web and for videoconferences via the Internet. Lists sites providing additional information on digital video, on CU-SeeMe software, and on MBONE (Multicast BackBONE), a technology that permits real-time transmission of…

  11. Aim, Shoot, Ready! Future Teachers Learn to Do Video

    ERIC Educational Resources Information Center

    Hernandez-Ramos, Pedro

    2007-01-01

    This paper describes an intensive 2-hr workshop designed to introduce preservice teachers to digital video in the context of an instructional technology course or as a stand-alone activity. Acknowledging time constraints in most real-life instructional situations, this format takes novices with no or very limited knowledge of video making to the…

  12. A customizable commercial miniaturized 320×256 indium gallium arsenide shortwave infrared camera

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Che; O'Grady, Matthew; Groppe, Joseph V.; Ettenberg, Martin H.; Brubaker, Robert M.

    2004-10-01

    The design and performance of a commercial short-wave-infrared (SWIR) InGaAs microcamera engine is presented. The 0.9-to-1.7 micron SWIR imaging system consists of a room-temperature-TEC-stabilized, 320x256 (25 μm pitch) InGaAs focal plane array (FPA) and a high-performance, highly customizable image-processing set of electronics. The detectivity, D*, of the system is greater than 1013 cm-√Hz/W at 1.55 μm, and this sensitivity may be adjusted in real-time over 100 dB. It features snapshot-mode integration with a minimum exposure time of 130 μs. The digital video processor provides real time pixel-to-pixel, 2-point dark-current subtraction and non-uniformity compensation along with defective-pixel substitution. Other features include automatic gain control (AGC), gamma correction, 7 preset configurations, adjustable exposure time, external triggering, and windowing. The windowing feature is highly flexible; the region of interest (ROI) may be placed anywhere on the imager and can be varied at will. Windowing allows for high-speed readout enabling such applications as target acquisition and tracking; for example, a 32x32 ROI window may be read out at over 3500 frames per second (fps). Output video is provided as EIA170-compatible analog, or as 12-bit CameraLink-compatible digital. All the above features are accomplished in a small volume < 28 cm3, weight < 70 g, and with low power consumption < 1.3 W at room temperature using this new microcamera engine. Video processing is based on a field-programmable gate array (FPGA) platform with a soft-embedded processor that allows for ease of integration/addition of customer-specific algorithms, processes, or design requirements. The camera was developed with the high-performance, space-restricted, power-conscious application in mind, such as robotic or UAV deployment.

  13. Airborne Camera System for Real-Time Applications - Support of a National Civil Protection Exercise

    NASA Astrophysics Data System (ADS)

    Gstaiger, V.; Romer, H.; Rosenbaum, D.; Henkel, F.

    2015-04-01

    In the VABENE++ project of the German Aerospace Center (DLR), powerful tools are being developed to aid public authorities and organizations with security responsibilities as well as traffic authorities when dealing with disasters and large public events. One focus lies on the acquisition of high resolution aerial imagery, its fully automatic processing, analysis and near real-time provision to decision makers in emergency situations. For this purpose a camera system was developed to be operated from a helicopter with light-weight processing units and microwave link for fast data transfer. In order to meet end-users' requirements DLR works close together with the German Federal Office of Civil Protection and Disaster Assistance (BBK) within this project. One task of BBK is to establish, maintain and train the German Medical Task Force (MTF), which gets deployed nationwide in case of large-scale disasters. In October 2014, several units of the MTF were deployed for the first time in the framework of a national civil protection exercise in Brandenburg. The VABENE++ team joined the exercise and provided near real-time aerial imagery, videos and derived traffic information to support the direction of the MTF and to identify needs for further improvements and developments. In this contribution the authors introduce the new airborne camera system together with its near real-time processing components and share experiences gained during the national civil protection exercise.

  14. GPU-based Efficient Realistic Techniques for Bleeding and Smoke Generation in Surgical Simulators

    PubMed Central

    Halic, Tansel; Sankaranarayanan, Ganesh; De, Suvranu

    2010-01-01

    Background In actual surgery, smoke and bleeding due to cautery processes, provide important visual cues to the surgeon which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated effects of bleeding and smoke generation, they are not realistic due to the requirement of real time performance. To be interactive, visual update must be performed at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques since other computationally intensive processes compete for the available CPU resources. Methods In this work, we develop a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos. Results The smoke and bleeding simulation were implemented as part of a Laparoscopic Adjustable Gastric Banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur in noticeable overhead. However, for smoke generation, an I/O (Input/Output) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale). Conclusions Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be efficient, highly realistic and well suited in VR-based surgical simulators. PMID:20878651

  15. Ethernet direct display: a new dimension for in-vehicle video connectivity solutions

    NASA Astrophysics Data System (ADS)

    Rowley, Vincent

    2009-05-01

    To improve the local situational awareness (LSA) of personnel in light or heavily armored vehicles, most military organizations recognize the need to equip their fleets with high-resolution digital video systems. Several related upgrade programs are already in progress and, almost invariably, COTS IP/Ethernet is specified as the underlying transport mechanism. The high bandwidths, long reach, networking flexibility, scalability, and affordability of IP/Ethernet make it an attractive choice. There are significant technical challenges, however, in achieving high-performance, real-time video connectivity over the IP/Ethernet platform. As an early pioneer in performance-oriented video systems based on IP/Ethernet, Pleora Technologies has developed core expertise in meeting these challenges and applied a singular focus to innovating within the required framework. The company's field-proven iPORTTM Video Connectivity Solution is deployed successfully in thousands of real-world applications for medical, military, and manufacturing operations. Pleora's latest innovation is eDisplayTM, a smallfootprint, low-power, highly efficient IP engine that acquires video from an Ethernet connection and sends it directly to a standard HDMI/DVI monitor for real-time viewing. More costly PCs are not required. This paper describes Pleora's eDisplay IP Engine in more detail. It demonstrates how - in concert with other elements of the end-to-end iPORT Video Connectivity Solution - the engine can be used to build standards-based, in-vehicle video systems that increase the safety and effectiveness of military personnel while fully leveraging the advantages of the lowcost COTS IP/Ethernet platform.

  16. A Novel Real-Time Reference Key Frame Scan Matching Method.

    PubMed

    Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu

    2017-05-07

    Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions' environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems.

  17. Video Game Rehabilitation of Velopharyngeal Dysfunction: A Case Series.

    PubMed

    Cler, Gabriel J; Mittelman, Talia; Braden, Maia N; Woodnorth, Geralyn Harvey; Stepp, Cara E

    2017-06-22

    Video games provide a promising platform for rehabilitation of speech disorders. Although video games have been used to train speech perception in foreign language learners and have been proposed for aural rehabilitation, their use in speech therapy has been limited thus far. We present feasibility results from at-home use in a case series of children with velopharyngeal dysfunction (VPD) using an interactive video game that provided real-time biofeedback to facilitate appropriate nasalization. Five participants were recruited across a range of ages, VPD severities, and VPD etiologies. Participants completed multiple weeks of individual game play with a video game that provides feedback on nasalization measured via nasal accelerometry. Nasalization was assessed before and after training by using nasometry, aerodynamic measures, and expert perceptual judgments. Four participants used the game at home or school, with the remaining participant unwilling to have the nasal accelerometer secured to his nasal skin, perhaps due to his young age. The remaining participants showed a tendency toward decreased nasalization after training, particularly for the words explicitly trained in the video game. Results suggest that video game-based systems may provide a useful rehabilitation platform for providing real-time feedback of speech nasalization in VPD. https://doi.org/10.23641/asha.5116828.

  18. An affordable wearable video system for emergency response training

    NASA Astrophysics Data System (ADS)

    King-Smith, Deen; Mikkilineni, Aravind; Ebert, David; Collins, Timothy; Delp, Edward J.

    2009-02-01

    Many emergency response units are currently faced with restrictive budgets that prohibit their use of advanced technology-based training solutions. Our work focuses on creating an affordable, mobile, state-of-the-art emergency response training solution through the integration of low-cost, commercially available products. The system we have developed consists of tracking, audio, and video capability, coupled with other sensors that can all be viewed through a unified visualization system. In this paper we focus on the video sub-system which helps provide real time tracking and video feeds from the training environment through a system of wearable and stationary cameras. These two camera systems interface with a management system that handles storage and indexing of the video during and after training exercises. The wearable systems enable the command center to have live video and tracking information for each trainee in the exercise. The stationary camera systems provide a fixed point of reference for viewing action during the exercise and consist of a small Linux based portable computer and mountable camera. The video management system consists of a server and database which work in tandem with a visualization application to provide real-time and after action review capability to the training system.

  19. Overview of image processing tools to extract physical information from JET videos

    NASA Astrophysics Data System (ADS)

    Craciunescu, T.; Murari, A.; Gelfusa, M.; Tiseanu, I.; Zoita, V.; EFDA Contributors, JET

    2014-11-01

    In magnetic confinement nuclear fusion devices such as JET, the last few years have witnessed a significant increase in the use of digital imagery, not only for the surveying and control of experiments, but also for the physical interpretation of results. More than 25 cameras are routinely used for imaging on JET in the infrared (IR) and visible spectral regions. These cameras can produce up to tens of Gbytes per shot and their information content can be very different, depending on the experimental conditions. However, the relevant information about the underlying physical processes is generally of much reduced dimensionality compared to the recorded data. The extraction of this information, which allows full exploitation of these diagnostics, is a challenging task. The image analysis consists, in most cases, of inverse problems which are typically ill-posed mathematically. The typology of objects to be analysed is very wide, and usually the images are affected by noise, low levels of contrast, low grey-level in-depth resolution, reshaping of moving objects, etc. Moreover, the plasma events have time constants of ms or tens of ms, which imposes tough conditions for real-time applications. On JET, in the last few years new tools and methods have been developed for physical information retrieval. The methodology of optical flow has allowed, under certain assumptions, the derivation of information about the dynamics of video objects associated with different physical phenomena, such as instabilities, pellets and filaments. The approach has been extended in order to approximate the optical flow within the MPEG compressed domain, allowing the manipulation of the large JET video databases and, in specific cases, even real-time data processing. The fast visible camera may provide new information that is potentially useful for disruption prediction. A set of methods, based on the extraction of structural information from the visual scene, have been developed for the automatic detection of MARFE (multifaceted asymmetric radiation from the edge) occurrences, which precede disruptions in density limit discharges. An original spot detection method has been developed for large surveys of videos in JET, and for the assessment of the long term trends in their evolution. The analysis of JET IR videos, recorded during JET operation with the ITER-like wall, allows the retrieval of data and hence correlation of the evolution of spots properties with macroscopic events, in particular series of intentional disruptions.

  20. Imaging systems and algorithms to analyze biological samples in real-time using mobile phone microscopy.

    PubMed

    Shanmugam, Akshaya; Usmani, Mohammad; Mayberry, Addison; Perkins, David L; Holcomb, Daniel E

    2018-01-01

    Miniaturized imaging devices have pushed the boundaries of point-of-care imaging, but existing mobile-phone-based imaging systems do not exploit the full potential of smart phones. This work demonstrates the use of simple imaging configurations to deliver superior image quality and the ability to handle a wide range of biological samples. Results presented in this work are from analysis of fluorescent beads under fluorescence imaging, as well as helminth eggs and freshwater mussel larvae under white light imaging. To demonstrate versatility of the systems, real time analysis and post-processing results of the sample count and sample size are presented in both still images and videos of flowing samples.

  1. Detection of dominant flow and abnormal events in surveillance video

    NASA Astrophysics Data System (ADS)

    Kwak, Sooyeong; Byun, Hyeran

    2011-02-01

    We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.

  2. Software-codec-based full motion video conferencing on the PC using visual pattern image sequence coding

    NASA Astrophysics Data System (ADS)

    Barnett, Barry S.; Bovik, Alan C.

    1995-04-01

    This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.

  3. Real-Time Non-Intrusive Assessment of Viewing Distance during Computer Use.

    PubMed

    Argilés, Marc; Cardona, Genís; Pérez-Cabré, Elisabet; Pérez-Magrané, Ramon; Morcego, Bernardo; Gispets, Joan

    2016-12-01

    To develop and test the sensitivity of an ultrasound-based sensor to assess the viewing distance of visual display terminals operators in real-time conditions. A modified ultrasound sensor was attached to a computer display to assess viewing distance in real time. Sensor functionality was tested on a sample of 20 healthy participants while they conducted four 10-minute randomly presented typical computer tasks (a match-three puzzle game, a video documentary, a task requiring participants to complete a series of sentences, and a predefined internet search). The ultrasound sensor offered good measurement repeatability. Game, text completion, and web search tasks were conducted at shorter viewing distances (54.4 cm [95% CI 51.3-57.5 cm], 54.5 cm [95% CI 51.1-58.0 cm], and 54.5 cm [95% CI 51.4-57.7 cm], respectively) than the video task (62.3 cm [95% CI 58.9-65.7 cm]). Statistically significant differences were found between the video task and the other three tasks (all p < 0.05). Range of viewing distances (from 22 to 27 cm) was similar for all tasks (F = 0.996; p = 0.413). Real-time assessment of the viewing distance of computer users with a non-intrusive ultrasonic device disclosed a task-dependent pattern.

  4. Stereoscopic augmented reality for laparoscopic surgery.

    PubMed

    Kang, Xin; Azizian, Mahdi; Wilson, Emmanuel; Wu, Kyle; Martin, Aaron D; Kane, Timothy D; Peters, Craig A; Cleary, Kevin; Shekhar, Raj

    2014-07-01

    Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and expand the capacity of minimally invasive laparoscopic surgeries.

  5. Real-Time Moment-to-Moment Emotional Responses to Narrative and Informational Breast Cancer Videos in African American Women

    ERIC Educational Resources Information Center

    Bollinger, Sarah; Kreuter, Matthew W.

    2012-01-01

    In a randomized experiment using moment-to-moment audience analysis methods, we compared women's emotional responses with a narrative versus informational breast cancer video. Both videos communicated three key messages about breast cancer: (i) understand your breast cancer risk, (ii) talk openly about breast cancer and (iii) get regular…

  6. Kinematic Measurements from YouTube Videos

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2009-01-01

    Video analysis of motion has been in use now for some time. However, some teachers may not have video equipment or may be looking for innovative ways to engage students with interesting applications at no cost. The recent advent of YouTube offers opportunities for students to measure kinematic properties of real-life events using their computers.…

  7. A formative evaluation of CU-SeeMe

    NASA Astrophysics Data System (ADS)

    Bibeau, Michael

    1995-02-01

    CU-SeeMe is a video conferencing software package that was designed and programmed at Cornell University. The program works with the TCP/IP network protocol and allows two or more parties to conduct a real-time video conference with full audio support. In this paper we evaluate CU-SeeMe through the process of Formative Evaluation. We first perform a Critical Review of the software using a subset of the Smith and Mosier Guidelines for Human-Computer Interaction. Next, we empirically review the software interface through a series of benchmark tests that are derived directly from a set of scenarios. The scenarios attempt to model real world situations that might be encountered by an individual in the target user class. Designing benchmark tasks becomes a natural and straightforward process when they are derived from the scenario set. Empirical measures are taken for each task, including completion times and error counts. These measures are accompanied by critical incident analysis 2 7 13 which serves to identify problems with the interface and the cognitive roots of those problems. The critical incidents reported by participants are accompanied by explanations of what caused the problem and why This helps in the process of formulating solutions for observed usability problems. All the testing results are combined in the Appendix in an illustrated partial redesign of the CU-SeeMe Interface.

  8. A real-time spectral mapper as an emerging diagnostic technology in biomedical sciences.

    PubMed

    Epitropou, George; Kavvadias, Vassilis; Iliou, Dimitris; Stathopoulos, Efstathios; Balas, Costas

    2013-01-01

    Real time spectral imaging and mapping at video rates can have tremendous impact not only on diagnostic sciences but also on fundamental physiological problems. We report the first real-time spectral mapper based on the combination of snap-shot spectral imaging and spectral estimation algorithms. Performance evaluation revealed that six band imaging combined with the Wiener algorithm provided high estimation accuracy, with error levels lying within the experimental noise. High accuracy is accompanied with much faster, by 3 orders of magnitude, spectral mapping, as compared with scanning spectral systems. This new technology is intended to enable spectral mapping at nearly video rates in all kinds of dynamic bio-optical effects as well as in applications where the target-probe relative position is randomly and fast changing.

  9. Video integrated measurement system. [Diagnostic display devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spector, B.; Eilbert, L.; Finando, S.

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides anmore » innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.« less

  10. Real-Time Detection of Sporadic Meteors in the Intensified TV Imaging Systems.

    PubMed

    Vítek, Stanislav; Nasyrova, Maria

    2017-12-29

    The automatic observation of the night sky through wide-angle video systems with the aim of detecting meteor and fireballs is currently among routine astronomical observations. The observation is usually done in multi-station or network mode, so it is possible to estimate the direction and the speed of the body flight. The high velocity of the meteorite flying through the atmosphere determines the important features of the camera systems, namely the high frame rate. Thanks to high frame rates, such imaging systems produce a large amount of data, of which only a small fragment has scientific potential. This paper focuses on methods for the real-time detection of fast moving objects in the video sequences recorded by intensified TV systems with frame rates of about 60 frames per second. The goal of our effort is to remove all unnecessary data during the daytime and make free hard-drive capacity for the next observation. The processing of data from the MAIA (Meteor Automatic Imager and Analyzer) system is demonstrated in the paper.

  11. Real-Time Detection of Sporadic Meteors in the Intensified TV Imaging Systems

    PubMed Central

    2017-01-01

    The automatic observation of the night sky through wide-angle video systems with the aim of detecting meteor and fireballs is currently among routine astronomical observations. The observation is usually done in multi-station or network mode, so it is possible to estimate the direction and the speed of the body flight. The high velocity of the meteorite flying through the atmosphere determines the important features of the camera systems, namely the high frame rate. Thanks to high frame rates, such imaging systems produce a large amount of data, of which only a small fragment has scientific potential. This paper focuses on methods for the real-time detection of fast moving objects in the video sequences recorded by intensified TV systems with frame rates of about 60 frames per second. The goal of our effort is to remove all unnecessary data during the daytime and make free hard-drive capacity for the next observation. The processing of data from the MAIA (Meteor Automatic Imager and Analyzer) system is demonstrated in the paper. PMID:29286294

  12. A software framework for real-time multi-modal detection of microsleeps.

    PubMed

    Knopp, Simon J; Bones, Philip J; Weddell, Stephen J; Jones, Richard D

    2017-09-01

    A software framework is described which was designed to process EEG, video of one eye, and head movement in real time, towards achieving early detection of microsleeps for prevention of fatal accidents, particularly in transport sectors. The framework is based around a pipeline structure with user-replaceable signal processing modules. This structure can encapsulate a wide variety of feature extraction and classification techniques and can be applied to detecting a variety of aspects of cognitive state. Users of the framework can implement signal processing plugins in C++ or Python. The framework also provides a graphical user interface and the ability to save and load data to and from arbitrary file formats. Two small studies are reported which demonstrate the capabilities of the framework in typical applications: monitoring eye closure and detecting simulated microsleeps. While specifically designed for microsleep detection/prediction, the software framework can be just as appropriately applied to (i) other measures of cognitive state and (ii) development of biomedical instruments for multi-modal real-time physiological monitoring and event detection in intensive care, anaesthesiology, cardiology, neurosurgery, etc. The software framework has been made freely available for researchers to use and modify under an open source licence.

  13. PCI-based WILDFIRE reconfigurable computing engines

    NASA Astrophysics Data System (ADS)

    Fross, Bradley K.; Donaldson, Robert L.; Palmer, Douglas J.

    1996-10-01

    WILDFORCE is the first PCI-based custom reconfigurable computer that is based on the Splash 2 technology transferred from the National Security Agency and the Institute for Defense Analyses, Supercomputing Research Center (SRC). The WILDFORCE architecture has many of the features of the WILDFIRE computer, such as field- programmable gate array (FPGA) based processing elements, linear array and crossbar interconnection, and high- performance memory and I/O subsystems. New features introduced in the PCI-based WILDFIRE systems include memory/processor options that can be added to any processing element. These options include static and dynamic memory, digital signal processors (DSPs), FPGAs, and microprocessors. In addition to memory/processor options, many different application specific connectors can be used to extend the I/O capabilities of the system, including systolic I/O, camera input and video display output. This paper also discusses how this new PCI-based reconfigurable computing engine is used for rapid-prototyping, real-time video processing and other DSP applications.

  14. Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network

    NASA Astrophysics Data System (ADS)

    Ong, Jia Jan; Ang, L.-M.; Seng, K. P.

    This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.

  15. Real-Time Detection and Reading of LED/LCD Displays for Visually Impaired Persons

    PubMed Central

    Tekin, Ender; Coughlan, James M.; Shen, Huiying

    2011-01-01

    Modern household appliances, such as microwave ovens and DVD players, increasingly require users to read an LED or LCD display to operate them, posing a severe obstacle for persons with blindness or visual impairment. While OCR-enabled devices are emerging to address the related problem of reading text in printed documents, they are not designed to tackle the challenge of finding and reading characters in appliance displays. Any system for reading these characters must address the challenge of first locating the characters among substantial amounts of background clutter; moreover, poor contrast and the abundance of specular highlights on the display surface – which degrade the image in an unpredictable way as the camera is moved – motivate the need for a system that processes images at a few frames per second, rather than forcing the user to take several photos, each of which can take seconds to acquire and process, until one is readable. We describe a novel system that acquires video, detects and reads LED/LCD characters in real time, reading them aloud to the user with synthesized speech. The system has been implemented on both a desktop and a cell phone. Experimental results are reported on videos of display images, demonstrating the feasibility of the system. PMID:21804957

  16. A comparison of moving object detection methods for real-time moving object detection

    NASA Astrophysics Data System (ADS)

    Roshan, Aditya; Zhang, Yun

    2014-06-01

    Moving object detection has a wide variety of applications from traffic monitoring, site monitoring, automatic theft identification, face detection to military surveillance. Many methods have been developed across the globe for moving object detection, but it is very difficult to find one which can work globally in all situations and with different types of videos. The purpose of this paper is to evaluate existing moving object detection methods which can be implemented in software on a desktop or laptop, for real time object detection. There are several moving object detection methods noted in the literature, but few of them are suitable for real time moving object detection. Most of the methods which provide for real time movement are further limited by the number of objects and the scene complexity. This paper evaluates the four most commonly used moving object detection methods as background subtraction technique, Gaussian mixture model, wavelet based and optical flow based methods. The work is based on evaluation of these four moving object detection methods using two (2) different sets of cameras and two (2) different scenes. The moving object detection methods have been implemented using MatLab and results are compared based on completeness of detected objects, noise, light change sensitivity, processing time etc. After comparison, it is observed that optical flow based method took least processing time and successfully detected boundary of moving objects which also implies that it can be implemented for real-time moving object detection.

  17. Dynamic resource allocation engine for cloud-based real-time video transcoding in mobile cloud computing environments

    NASA Astrophysics Data System (ADS)

    Adedayo, Bada; Wang, Qi; Alcaraz Calero, Jose M.; Grecos, Christos

    2015-02-01

    The recent explosion in video-related Internet traffic has been driven by the widespread use of smart mobile devices, particularly smartphones with advanced cameras that are able to record high-quality videos. Although many of these devices offer the facility to record videos at different spatial and temporal resolutions, primarily with local storage considerations in mind, most users only ever use the highest quality settings. The vast majority of these devices are optimised for compressing the acquired video using a single built-in codec and have neither the computational resources nor battery reserves to transcode the video to alternative formats. This paper proposes a new low-complexity dynamic resource allocation engine for cloud-based video transcoding services that are both scalable and capable of being delivered in real-time. Firstly, through extensive experimentation, we establish resource requirement benchmarks for a wide range of transcoding tasks. The set of tasks investigated covers the most widely used input formats (encoder type, resolution, amount of motion and frame rate) associated with mobile devices and the most popular output formats derived from a comprehensive set of use cases, e.g. a mobile news reporter directly transmitting videos to the TV audience of various video format requirements, with minimal usage of resources both at the reporter's end and at the cloud infrastructure end for transcoding services.

  18. Model-Based Analysis of Flow-Mediated Dilation and Intima-Media Thickness

    PubMed Central

    Bartoli, G.; Menegaz, G.; Lisi, M.; Di Stolfo, G.; Dragoni, S.; Gori, T.

    2008-01-01

    We present an end-to-end system for the automatic measurement of flow-mediated dilation (FMD) and intima-media thickness (IMT) for the assessment of the arterial function. The video sequences are acquired from a B-mode echographic scanner. A spline model (deformable template) is fitted to the data to detect the artery boundaries and track them all along the video sequence. The a priori knowledge about the image features and its content is exploited. Preprocessing is performed to improve both the visual quality of video frames for visual inspection and the performance of the segmentation algorithm without affecting the accuracy of the measurements. The system allows real-time processing as well as a high level of interactivity with the user. This is obtained by a graphical user interface (GUI) enabling the cardiologist to supervise the whole process and to eventually reset the contour extraction at any point in time. The system was validated and the accuracy, reproducibility, and repeatability of the measurements were assessed with extensive in vivo experiments. Jointly with the user friendliness, low cost, and robustness, this makes the system suitable for both research and daily clinical use. PMID:19360110

  19. Fast optically sectioned fluorescence HiLo endomicroscopy

    PubMed Central

    Lim, Daryl; Mertz, Jerome

    2012-01-01

    Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023

  20. Can Training in a Real-Time Strategy Videogame Attenuate Cognitive Decline in Older Adults?

    PubMed Central

    Basak, Chandramallika; Boot, Walter R.; Voss, Michelle W.; Kramer, Arthur F.

    2014-01-01

    Declines in various cognitive abilities, particularly executive control functions, are observed in older adults. An important goal of cognitive training is to slow or reverse these age-related declines. However, opinion is divided in the literature regarding whether cognitive training can engender transfer to a variety of cognitive skills in older adults. Yet, recent research indicates that videogame training of young adults may engender broad transfer to skills of visual attention. In the current study, we used a real-time strategy videogame to attempt to train executive functions in older adults, such as working memory, task switching, short-term memory, inhibition, and reasoning. Older adults were either trained in a real-time strategy videogame for 23.5 hours (RON, n=20) or not (CONTROLS, n=20). A battery of cognitive tasks, including tasks of executive control and visuo-spatial skills, were assessed before, during, and after video game training. The trainees improved significantly in the measures of game performance. They also improved significantly more than the controls in a subset of the cognitive tasks, such as task switching, working memory, visual short term memory, and mental rotation. Trends in improvement were also observed, for the video game trainees, in inhibition and reasoning. Individual differences in changes in game performance were correlated with improvements in task-switching. The study has implications for the enhancement of executive control processes of older adults. PMID:19140648

  1. Reliability of sensor-based real-time workflow recognition in laparoscopic cholecystectomy.

    PubMed

    Kranzfelder, Michael; Schneider, Armin; Fiolka, Adam; Koller, Sebastian; Reiser, Silvano; Vogel, Thomas; Wilhelm, Dirk; Feussner, Hubertus

    2014-11-01

    Laparoscopic cholecystectomy is a very common minimally invasive surgical procedure that may be improved by autonomous or cooperative assistance support systems. Model-based surgery with a precise definition of distinct procedural tasks (PT) of the operation was implemented and tested to depict and analyze the process of this procedure. Reliability of real-time workflow recognition in laparoscopic cholecystectomy ([Formula: see text] cases) was evaluated by continuous sensor-based data acquisition. Ten PTs were defined including begin/end preparation calots' triangle, clipping/cutting cystic artery and duct, begin/end gallbladder dissection, begin/end hemostasis, gallbladder removal, and end of operation. Data acquisition was achieved with continuous instrument detection, room/table light status, intra-abdominal pressure, table tilt, irrigation/aspiration volume and coagulation/cutting current application. Two independent observers recorded start and endpoint of each step by analysis of the sensor data. The data were cross-checked with laparoscopic video recordings serving as gold standard for PT identification. Bland-Altman analysis revealed for 95% of cases a difference of annotation results within the limits of agreement ranging from [Formula: see text]309 s (PT 7) to +368 s (PT 5). Laparoscopic video and sensor data matched to a greater or lesser extent within the different procedural tasks. In the majority of cases, the observer results exceeded those obtained from the laparoscopic video. Empirical knowledge was required to detect phase transit. A set of sensors used to monitor laparoscopic cholecystectomy procedures was sufficient to enable expert observers to reliably identify each PT. In the future, computer systems may automate the task identification process provided a more robust data inflow is available.

  2. Real-Time Human Detection for Aerial Captured Video Sequences via Deep Models.

    PubMed

    AlDahoul, Nouar; Md Sabri, Aznul Qalid; Mansoor, Ali Mohammed

    2018-01-01

    Human detection in videos plays an important role in various real life applications. Most of traditional approaches depend on utilizing handcrafted features which are problem-dependent and optimal for specific tasks. Moreover, they are highly susceptible to dynamical events such as illumination changes, camera jitter, and variations in object sizes. On the other hand, the proposed feature learning approaches are cheaper and easier because highly abstract and discriminative features can be produced automatically without the need of expert knowledge. In this paper, we utilize automatic feature learning methods which combine optical flow and three different deep models (i.e., supervised convolutional neural network (S-CNN), pretrained CNN feature extractor, and hierarchical extreme learning machine) for human detection in videos captured using a nonstatic camera on an aerial platform with varying altitudes. The models are trained and tested on the publicly available and highly challenging UCF-ARG aerial dataset. The comparison between these models in terms of training, testing accuracy, and learning speed is analyzed. The performance evaluation considers five human actions (digging, waving, throwing, walking, and running). Experimental results demonstrated that the proposed methods are successful for human detection task. Pretrained CNN produces an average accuracy of 98.09%. S-CNN produces an average accuracy of 95.6% with soft-max and 91.7% with Support Vector Machines (SVM). H-ELM has an average accuracy of 95.9%. Using a normal Central Processing Unit (CPU), H-ELM's training time takes 445 seconds. Learning in S-CNN takes 770 seconds with a high performance Graphical Processing Unit (GPU).

  3. Non-contact Real-time heart rate measurements based on high speed circuit technology research

    NASA Astrophysics Data System (ADS)

    Wu, Jizhe; Liu, Xiaohua; Kong, Lingqin; Shi, Cong; Liu, Ming; Hui, Mei; Dong, Liquan; Zhao, Yuejin

    2015-08-01

    In recent years, morbidity and mortality of the cardiovascular or cerebrovascular disease, which threaten human health greatly, increased year by year. Heart rate is an important index of these diseases. To address this status, the paper puts forward a kind of simple structure, easy operation, suitable for large populations of daily monitoring non-contact heart rate measurement. In the method we use imaging equipment video sensitive areas. The changes of light intensity reflected through the image grayscale average. The light change is caused by changes in blood volume. We video the people face which include the sensitive areas (ROI), and use high-speed processing circuit to save the video as AVI format into memory. After processing the whole video of a period of time, we draw curve of each color channel with frame number as horizontal axis. Then get heart rate from the curve. We use independent component analysis (ICA) to restrain noise of sports interference, realized the accurate extraction of heart rate signal under the motion state. We design an algorithm, based on high-speed processing circuit, for face recognition and tracking to automatically get face region. We do grayscale average processing to the recognized image, get RGB three grayscale curves, and extract a clearer pulse wave curves through independent component analysis, and then we get the heart rate under the motion state. At last, by means of compare our system with Fingertip Pulse Oximeter, result show the system can realize a more accurate measurement, the error is less than 3 pats per minute.

  4. Real-time lens distortion correction: speed, accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Bax, Michael R.; Shahidi, Ramin

    2014-11-01

    Optical lens systems suffer from nonlinear geometrical distortion. Optical imaging applications such as image-enhanced endoscopy and image-based bronchoscope tracking require correction of this distortion for accurate localization, tracking, registration, and measurement of image features. Real-time capability is desirable for interactive systems and live video. The use of a texture-mapping graphics accelerator, which is standard hardware on current motherboard chipsets and add-in video graphics cards, to perform distortion correction is proposed. Mesh generation for image tessellation, an error analysis, and performance results are presented. It is shown that distortion correction using commodity graphics hardware is substantially faster than using the main processor and can be performed at video frame rates (faster than 30 frames per second), and that the polar-based method of mesh generation proposed here is more accurate than a conventional grid-based approach. Using graphics hardware to perform distortion correction is not only fast and accurate but also efficient as it frees the main processor for other tasks, which is an important issue in some real-time applications.

  5. Leveraging traffic and surveillance video cameras for urban traffic.

    DOT National Transportation Integrated Search

    2014-12-01

    The objective of this project was to investigate the use of existing video resources, such as traffic : cameras, police cameras, red light cameras, and security cameras for the long-term, real-time : collection of traffic statistics. An additional ob...

  6. Overview of FTV (free-viewpoint television)

    NASA Astrophysics Data System (ADS)

    Tanimoto, Masayuki

    2010-07-01

    We have developed a new type of television named FTV (Free-viewpoint TV). FTV is the ultimate 3DTV that enables us to view a 3D scene by freely changing our viewpoints. We proposed the concept of FTV and constructed the world's first real-time system including the complete chain of operation from image capture to display. FTV is based on the rayspace method that represents one ray in real space with one point in the ray-space. We have developed ray capture, processing and display technologies for FTV. FTV can be carried out today in real time on a single PC or on a mobile player. We also realized FTV with free listening-point audio. The international standardization of FTV has been conducted in MPEG. The first phase of FTV was MVC (Multi-view Video Coding) and the second phase is 3DV (3D Video). MVC was completed in May 2009. The Blu-ray 3D specification has adopted MVC for compression. 3DV is a standard that targets serving a variety of 3D displays. The view generation function of FTV is used to decouple capture and display in 3DV. FDU (FTV Data Unit) is proposed as a data format for 3DV. FTU can compensate errors of the synthesized views caused by depth error.

  7. Experimental application of simulation tools for evaluating UAV video change detection

    NASA Astrophysics Data System (ADS)

    Saur, Günter; Bartelsen, Jan

    2015-10-01

    Change detection is one of the most important tasks when unmanned aerial vehicles (UAV) are used for video reconnaissance and surveillance. In this paper, we address changes on short time scale, i.e. the observations are taken within time distances of a few hours. Each observation is a short video sequence corresponding to the near-nadir overflight of the UAV above the interesting area and the relevant changes are e.g. recently added or removed objects. The change detection algorithm has to distinguish between relevant and non-relevant changes. Examples for non-relevant changes are versatile objects like trees and compression or transmission artifacts. To enable the usage of an automatic change detection within an interactive workflow of an UAV video exploitation system, an evaluation and assessment procedure has to be performed. Large video data sets which contain many relevant objects with varying scene background and altering influence parameters (e.g. image quality, sensor and flight parameters) including image metadata and ground truth data are necessary for a comprehensive evaluation. Since the acquisition of real video data is limited by cost and time constraints, from our point of view, the generation of synthetic data by simulation tools has to be considered. In this paper the processing chain of Saur et al. (2014) [1] and the interactive workflow for video change detection is described. We have selected the commercial simulation environment Virtual Battle Space 3 (VBS3) to generate synthetic data. For an experimental setup, an example scenario "road monitoring" has been defined and several video clips have been produced with varying flight and sensor parameters and varying objects in the scene. Image registration and change mask extraction, both components of the processing chain, are applied to corresponding frames of different video clips. For the selected examples, the images could be registered, the modelled changes could be extracted and the artifacts of the image rendering considered as noise (slight differences of heading angles, disparity of vegetation, 3D parallax) could be suppressed. We conclude that these image data could be considered to be realistic enough to serve as evaluation data for the selected processing components. Future work will extend the evaluation to other influence parameters and may include the human operator for mission planning and sensor control.

  8. Hybrid vision activities at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1990-01-01

    NASA's Johnson Space Center in Houston, Texas, is active in several aspects of hybrid image processing. (The term hybrid image processing refers to a system that combines digital and photonic processing). The major thrusts are autonomous space operations such as planetary landing, servicing, and rendezvous and docking. By processing images in non-Cartesian geometries to achieve shift invariance to canonical distortions, researchers use certain aspects of the human visual system for machine vision. That technology flow is bidirectional; researchers are investigating the possible utility of video-rate coordinate transformations for human low-vision patients. Man-in-the-loop teleoperations are also supported by the use of video-rate image-coordinate transformations, as researchers plan to use bandwidth compression tailored to the varying spatial acuity of the human operator. Technological elements being developed in the program include upgraded spatial light modulators, real-time coordinate transformations in video imagery, synthetic filters that robustly allow estimation of object pose parameters, convolutionally blurred filters that have continuously selectable invariance to such image changes as magnification and rotation, and optimization of optical correlation done with spatial light modulators that have limited range and couple both phase and amplitude in their response.

  9. Optimisation Issues of High Throughput Medical Data and Video Streaming Traffic in 3G Wireless Environments.

    PubMed

    Istepanian, R S H; Philip, N

    2005-01-01

    In this paper we describe some of the optimisation issues relevant to the requirements of high throughput of medical data and video streaming traffic in 3G wireless environments. In particular we present a challenging 3G mobile health care application that requires a demanding 3G medical data throughput. We also describe the 3G QoS requirement of mObile Tele-Echography ultra-Light rObot system (OTELO that is designed to provide seamless 3G connectivity for real-time ultrasound medical video streams and diagnosis from a remote site (robotic and patient station) manipulated by an expert side (specialists) that is controlling the robotic scanning operation and presenting a real-time feedback diagnosis using 3G wireless communication links.

  10. Time-Lapse Video Microscopy for Assessment of EYFP-Parkin Aggregation as a Marker for Cellular Mitophagy

    PubMed Central

    Di Sante, Gabriele; Casimiro, Mathew C.; Pestell, Timothy G.; Pestell, Richard G.

    2016-01-01

    Time-lapse video microscopy can be defined as the real time imaging of living cells. This technique relies on the collection of images at different time points. Time intervals can be set through a computer interface that controls the microscope-integrated camera. This kind of microscopy requires both the ability to acquire very rapid events and the signal generated by the observed cellular structure during these events. After the images have been collected, a movie of the entire experiment is assembled to show the dynamic of the molecular events of interest. Time-lapse video microscopy has a broad range of applications in the biomedical research field and is a powerful and unique tool for following the dynamics of the cellular events in real time. Through this technique, we can assess cellular events such as migration, division, signal transduction, growth, and death. Moreover, using fluorescent molecular probes we are able to mark specific molecules, such as DNA, RNA or proteins and follow them through their molecular pathways and functions. Time-lapse video microscopy has multiple advantages, the major one being the ability to collect data at the single-cell level, that make it a unique technology for investigation in the field of cell biology. However, time-lapse video microscopy has limitations that can interfere with the acquisition of high quality images. Images can be compromised by both external factors; temperature fluctuations, vibrations, humidity and internal factors; pH, cell motility. Herein, we describe a protocol for the dynamic acquisition of a specific protein, Parkin, fused with the enhanced yellow fluorescent protein (EYFP) in order to track the selective removal of damaged mitochondria, using a time-lapse video microscopy approach. PMID:27168174

  11. Time-Lapse Video Microscopy for Assessment of EYFP-Parkin Aggregation as a Marker for Cellular Mitophagy.

    PubMed

    Di Sante, Gabriele; Casimiro, Mathew C; Pestell, Timothy G; Pestell, Richard G

    2016-05-04

    Time-lapse video microscopy can be defined as the real time imaging of living cells. This technique relies on the collection of images at different time points. Time intervals can be set through a computer interface that controls the microscope-integrated camera. This kind of microscopy requires both the ability to acquire very rapid events and the signal generated by the observed cellular structure during these events. After the images have been collected, a movie of the entire experiment is assembled to show the dynamic of the molecular events of interest. Time-lapse video microscopy has a broad range of applications in the biomedical research field and is a powerful and unique tool for following the dynamics of the cellular events in real time. Through this technique, we can assess cellular events such as migration, division, signal transduction, growth, and death. Moreover, using fluorescent molecular probes we are able to mark specific molecules, such as DNA, RNA or proteins and follow them through their molecular pathways and functions. Time-lapse video microscopy has multiple advantages, the major one being the ability to collect data at the single-cell level, that make it a unique technology for investigation in the field of cell biology. However, time-lapse video microscopy has limitations that can interfere with the acquisition of high quality images. Images can be compromised by both external factors; temperature fluctuations, vibrations, humidity and internal factors; pH, cell motility. Herein, we describe a protocol for the dynamic acquisition of a specific protein, Parkin, fused with the enhanced yellow fluorescent protein (EYFP) in order to track the selective removal of damaged mitochondria, using a time-lapse video microscopy approach.

  12. Gender differences in BOLD activation to face photographs and video vignettes.

    PubMed

    Fine, Jodene Goldenring; Semrud-Clikeman, Margaret; Zhu, David C

    2009-07-19

    Few neuroimaging studies have reported gender differences in response to human emotions, and those that have examined such differences have utilized face photographs. This study presented not only human face photographs of positive and negative emotions, but also video vignettes of positive and negative social human interactions in an attempt to provide a more ecologically appropriate stimuli paradigm. Ten male and 10 female healthy right-handed young adults were shown positive and negative affective social human faces and video vignettes to elicit gender differences in social/emotional perception. Conservative ROI (region of interest) analysis indicated greater male than female activation to positive affective photos in the anterior cingulate, medial frontal gyrus, superior frontal gyrus and superior temporal gyrus, all in the right hemisphere. No significant ROI gender differences were observed to negative affective photos. Male greater than female activation was seen in ROIs of the left posterior cingulate and the right inferior temporal gyrus to positive social videos. Male greater than female activation occurred in only the left middle temporal ROI for negative social videos. Consistent with previous findings, males were more lateralized than females. Although more activation was observed overall to video compared to photo conditions, males and females appear to process social video stimuli more similarly to one another than they do for photos. This study is a step forward in understanding the social brain with more ecologically valid stimuli that more closely approximates the demands of real-time social and affective processing.

  13. Informative-frame filtering in endoscopy videos

    NASA Astrophysics Data System (ADS)

    An, Yong Hwan; Hwang, Sae; Oh, JungHwan; Lee, JeongKyu; Tavanapong, Wallapak; de Groen, Piet C.; Wong, Johnny

    2005-04-01

    Advances in video technology are being incorporated into today"s healthcare practice. For example, colonoscopy is an important screening tool for colorectal cancer. Colonoscopy allows for the inspection of the entire colon and provides the ability to perform a number of therapeutic operations during a single procedure. During a colonoscopic procedure, a tiny video camera at the tip of the endoscope generates a video signal of the internal mucosa of the colon. The video data are displayed on a monitor for real-time analysis by the endoscopist. Other endoscopic procedures include upper gastrointestinal endoscopy, enteroscopy, bronchoscopy, cystoscopy, and laparoscopy. However, a significant number of out-of-focus frames are included in this type of videos since current endoscopes are equipped with a single, wide-angle lens that cannot be focused. The out-of-focus frames do not hold any useful information. To reduce the burdens of the further processes such as computer-aided image processing or human expert"s examinations, these frames need to be removed. We call an out-of-focus frame as non-informative frame and an in-focus frame as informative frame. We propose a new technique to classify the video frames into two classes, informative and non-informative frames using a combination of Discrete Fourier Transform (DFT), Texture Analysis, and K-Means Clustering. The proposed technique can evaluate the frames without any reference image, and does not need any predefined threshold value. Our experimental studies indicate that it achieves over 96% of four different performance metrics (i.e. precision, sensitivity, specificity, and accuracy).

  14. Streaming video-based 3D reconstruction method compatible with existing monoscopic and stereoscopic endoscopy systems

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; van der Mark, Wannes; Eendebak, Pieter T.; Landsmeer, Sander H.; van Eekeren, Adam W. M.; ter Haar, Frank B.; Wieringa, F. Pieter; van Basten, Jean-Paul

    2012-06-01

    Compared to open surgery, minimal invasive surgery offers reduced trauma and faster recovery. However, lack of direct view limits space perception. Stereo-endoscopy improves depth perception, but is still restricted to the direct endoscopic field-of-view. We describe a novel technology that reconstructs 3D-panoramas from endoscopic video streams providing a much wider cumulative overview. The method is compatible with any endoscope. We demonstrate that it is possible to generate photorealistic 3D-environments from mono- and stereoscopic endoscopy. The resulting 3D-reconstructions can be directly applied in simulators and e-learning. Extended to real-time processing, the method looks promising for telesurgery or other remote vision-guided tasks.

  15. Feedback from video for virtual reality Navigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V

    2000-10-27

    Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and amore » robust skin-color segmentation for accounting illumination variations.« less

  16. Baby FaceTime: can toddlers learn from online video chat?

    PubMed

    Myers, Lauren J; LeWitt, Rachel B; Gallo, Renee E; Maselli, Nicole M

    2017-07-01

    There is abundant evidence for the 'video deficit': children under 2 years old learn better in person than from video. We evaluated whether these findings applied to video chat by testing whether children aged 12-25 months could form relationships with and learn from on-screen partners. We manipulated social contingency: children experienced either real-time FaceTime conversations or pre-recorded Videos as the partner taught novel words, actions and patterns. Children were attentive and responsive in both conditions, but only children in the FaceTime group responded to the partner in a temporally synced manner. After one week, children in the FaceTime condition (but not the Video condition) preferred and recognized their Partner, learned more novel patterns, and the oldest children learned more novel words. Results extend previous studies to demonstrate that children under 2 years show social and cognitive learning from video chat because it retains social contingency. A video abstract of this article can be viewed at: https://youtu.be/rTXaAYd5adA. © 2016 John Wiley & Sons Ltd.

  17. Building a Conversation: Preservice Teachers' Use of Video as Data for Making Evidence Based Arguments About Practice

    ERIC Educational Resources Information Center

    McDonald, Scott

    2010-01-01

    For decades teacher educators have used video to support developing preservice teachers, but new technologies open the possibility of a much more dynamic and real-time use for video of teaching. This article describes an initial attempt to leverage these technologies to develop a teacher learning community focused on evidence-based arguments about…

  18. A System for Reflective Learning Using Handwriting Tablet Devices for Real-Time Event Bookmarking into Simultaneously Recorded Videos

    ERIC Educational Resources Information Center

    Nakajima, Taira

    2012-01-01

    The author demonstrates a new system useful for reflective learning. Our new system offers an environment that one can use handwriting tablet devices to bookmark symbolic and descriptive feedbacks into simultaneously recorded videos in the environment. If one uses video recording and feedback check sheets in reflective learning sessions, one can…

  19. Video as a technology for interpersonal communications: a new perspective

    NASA Astrophysics Data System (ADS)

    Whittaker, Steve

    1995-03-01

    Some of the most challenging multimedia applications have involved real- time conferencing, using audio and video to support interpersonal communication. Here we re-examine assumptions about the role, importance and implementation of video information in such systems. Rather than focussing on novel technologies, we present evaluation data relevant to both the classes of real-time multimedia applications we should develop and their design and implementation. Evaluations of videoconferencing systems show that previous work has overestimated the importance of video at the expense of audio. This has strong implications for the implementation of bandwidth allocation and synchronization. Furthermore our recent studies of workplace interaction show that prior work has neglected another potentially vital function of visual information: in assessing the communication availability of others. In this new class of application, rather than providing a supplement to audio information, visual information is used to promote the opportunistic communications that are prevalent in face-to-face settings. We discuss early experiments with such connection applications and identify outstanding design and implementation issues. Finally we examine a different class of application 'video-as-data', where the video image is used to transmit information about the work objects themselves, rather than information about interactants.

  20. Robust and efficient fiducial tracking for augmented reality in HD-laparoscopic video streams

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Groch, A.; Baumhauer, M.; Maier-Hein, L.; Teber, D.; Rassweiler, J.; Meinzer, H.-P.; Wegner, In.

    2012-02-01

    Augmented Reality (AR) is a convenient way of porting information from medical images into the surgical field of view and can deliver valuable assistance to the surgeon, especially in laparoscopic procedures. In addition, high definition (HD) laparoscopic video devices are a great improvement over the previously used low resolution equipment. However, in AR applications that rely on real-time detection of fiducials from video streams, the demand for efficient image processing has increased due to the introduction of HD devices. We present an algorithm based on the well-known Conditional Density Propagation (CONDENSATION) algorithm which can satisfy these new demands. By incorporating a prediction around an already existing and robust segmentation algorithm, we can speed up the whole procedure while leaving the robustness of the fiducial segmentation untouched. For evaluation purposes we tested the algorithm on recordings from real interventions, allowing for a meaningful interpretation of the results. Our results show that we can accelerate the segmentation by a factor of 3.5 on average. Moreover, the prediction information can be used to compensate for fiducials that are temporarily occluded or out of scope, providing greater stability.

  1. Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea

    Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.

  2. A portable platform to collect and review behavioral data simultaneously with neurophysiological signals.

    PubMed

    Tianxiao Jiang; Siddiqui, Hasan; Ray, Shruti; Asman, Priscella; Ozturk, Musa; Ince, Nuri F

    2017-07-01

    This paper presents a portable platform to collect and review behavioral data simultaneously with neurophysiological signals. The whole system is comprised of four parts: a sensor data acquisition interface, a socket server for real-time data streaming, a Simulink system for real-time processing and an offline data review and analysis toolbox. A low-cost microcontroller is used to acquire data from external sensors such as accelerometer and hand dynamometer. The micro-controller transfers the data either directly through USB or wirelessly through a bluetooth module to a data server written in C++ for MS Windows OS. The data server also interfaces with the digital glove and captures HD video from webcam. The acquired sensor data are streamed under User Datagram Protocol (UDP) to other applications such as Simulink/Matlab for real-time analysis and recording. Neurophysiological signals such as electroencephalography (EEG), electrocorticography (ECoG) and local field potential (LFP) recordings can be collected simultaneously in Simulink and fused with behavioral data. In addition, we developed a customized Matlab Graphical User Interface (GUI) software to review, annotate and analyze the data offline. The software provides a fast, user-friendly data visualization environment with synchronized video playback feature. The software is also capable of reviewing long-term neural recordings. Other featured functions such as fast preprocessing with multithreaded filters, annotation, montage selection, power-spectral density (PSD) estimate, time-frequency map and spatial spectral map are also implemented.

  3. Final contract report : real-time EMS helicopter video feasibility study

    DOT National Transportation Integrated Search

    2001-11-01

    The purpose of this project was to determine whether the use of ground-based video imaging by local rescue squad personnel and Pegasus medical staff is technically and organizationally feasible as a tool to improve pre-hospital care provided to crash...

  4. Real-Time Internet Connections: Implications for Surgical Decision Making in Laparoscopy

    PubMed Central

    Broderick, Timothy J.; Harnett, Brett M.; Doarn, Charles R.; Rodas, Edgar B.; Merrell, Ronald C.

    2001-01-01

    Objective To determine whether a low-bandwidth Internet connection can provide adequate image quality to support remote real-time surgical consultation. Summary Background Data Telemedicine has been used to support care at a distance through the use of expensive equipment and broadband communication links. In the past, the operating room has been an isolated environment that has been relatively inaccessible for real-time consultation. Recent technological advances have permitted videoconferencing over low-bandwidth, inexpensive Internet connections. If these connections are shown to provide adequate video quality for surgical applications, low-bandwidth telemedicine will open the operating room environment to remote real-time surgical consultation. Methods Surgeons performing a laparoscopic cholecystectomy in Ecuador or the Dominican Republic shared real-time laparoscopic images with a panel of surgeons at the parent university through a dial-up Internet account. The connection permitted video and audio teleconferencing to support real-time consultation as well as the transmission of real-time images and store-and-forward images for observation by the consultant panel. A total of six live consultations were analyzed. In addition, paired local and remote images were “grabbed” from the video feed during these laparoscopic cholecystectomies. Nine of these paired images were then placed into a Web-based tool designed to evaluate the effect of transmission on image quality. Results The authors showed for the first time the ability to identify critical anatomic structures in laparoscopy over a low-bandwidth connection via the Internet. The consultant panel of surgeons correctly remotely identified biliary and arterial anatomy during six laparoscopic cholecystectomies. Within the Web-based questionnaire, 15 surgeons could not blindly distinguish the quality of local and remote laparoscopic images. Conclusions Low-bandwidth, Internet-based telemedicine is inexpensive, effective, and almost ubiquitous. Use of these inexpensive, portable technologies will allow sharing of surgical procedures and decisions regardless of location. Internet telemedicine consistently supported real-time intraoperative consultation in laparoscopic surgery. The implications are broad with respect to quality improvement and diffusion of knowledge as well as for basic consultation. PMID:11505061

  5. Video Game Rehabilitation of Velopharyngeal Dysfunction: A Case Series

    PubMed Central

    Mittelman, Talia; Braden, Maia N.; Woodnorth, Geralyn Harvey; Stepp, Cara E.

    2017-01-01

    Purpose Video games provide a promising platform for rehabilitation of speech disorders. Although video games have been used to train speech perception in foreign language learners and have been proposed for aural rehabilitation, their use in speech therapy has been limited thus far. We present feasibility results from at-home use in a case series of children with velopharyngeal dysfunction (VPD) using an interactive video game that provided real-time biofeedback to facilitate appropriate nasalization. Method Five participants were recruited across a range of ages, VPD severities, and VPD etiologies. Participants completed multiple weeks of individual game play with a video game that provides feedback on nasalization measured via nasal accelerometry. Nasalization was assessed before and after training by using nasometry, aerodynamic measures, and expert perceptual judgments. Results Four participants used the game at home or school, with the remaining participant unwilling to have the nasal accelerometer secured to his nasal skin, perhaps due to his young age. The remaining participants showed a tendency toward decreased nasalization after training, particularly for the words explicitly trained in the video game. Conclusion Results suggest that video game–based systems may provide a useful rehabilitation platform for providing real-time feedback of speech nasalization in VPD. Supplemental Material https://doi.org/10.23641/asha.5116828 PMID:28655049

  6. Advanced visualization platform for surgical operating room coordination: distributed video board system.

    PubMed

    Hu, Peter F; Xiao, Yan; Ho, Danny; Mackenzie, Colin F; Hu, Hao; Voigt, Roger; Martz, Douglas

    2006-06-01

    One of the major challenges for day-of-surgery operating room coordination is accurate and timely situation awareness. Distributed and secure real-time status information is key to addressing these challenges. This article reports on the design and implementation of a passive status monitoring system in a 19-room surgical suite of a major academic medical center. Key design requirements considered included integrated real-time operating room status display, access control, security, and network impact. The system used live operating room video images and patient vital signs obtained through monitors to automatically update events and operating room status. Images were presented on a "need-to-know" basis, and access was controlled by identification badge authorization. The system delivered reliable real-time operating room images and status with acceptable network impact. Operating room status was visualized at 4 separate locations and was used continuously by clinicians and operating room service providers to coordinate operating room activities.

  7. Monitoring tumor motion by real time 2D/3D registration during radiotherapy.

    PubMed

    Gendrin, Christelle; Furtado, Hugo; Weber, Christoph; Bloch, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Bergmann, Helmar; Stock, Markus; Fichtinger, Gabor; Georg, Dietmar; Birkfellner, Wolfgang

    2012-02-01

    In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy. The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the planned target volume (PTV). The phantom motion is measured with an rms error of 2.56 mm. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is shown. Videos show a good match between X-ray and digitally reconstructed radiographs (DRR) displacement. Mean registration time is 0.5 s. We have demonstrated that real-time organ motion monitoring using image based markerless registration is feasible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  9. Detecting abandoned objects using interacting multiple models

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Münch, David; Kieritz, Hilke; Hübner, Wolfgang; Arens, Michael

    2015-10-01

    In recent years, the wide use of video surveillance systems has caused an enormous increase in the amount of data that has to be stored, monitored, and processed. As a consequence, it is crucial to support human operators with automated surveillance applications. Towards this end an intelligent video analysis module for real-time alerting in case of abandoned objects in public spaces is proposed. The overall processing pipeline consists of two major parts. First, person motion is modeled using an Interacting Multiple Model (IMM) filter. The IMM filter estimates the state of a person according to a finite-state, discrete-time Markov chain. Second, the location of persons that stay at a fixed position defines a region of interest, in which a nonparametric background model with dynamic per-pixel state variables identifies abandoned objects. In case of a detected abandoned object, an alarm event is triggered. The effectiveness of the proposed system is evaluated on the PETS 2006 dataset and the i-Lids dataset, both reflecting prototypical surveillance scenarios.

  10. Imaging systems and algorithms to analyze biological samples in real-time using mobile phone microscopy

    PubMed Central

    Mayberry, Addison; Perkins, David L.; Holcomb, Daniel E.

    2018-01-01

    Miniaturized imaging devices have pushed the boundaries of point-of-care imaging, but existing mobile-phone-based imaging systems do not exploit the full potential of smart phones. This work demonstrates the use of simple imaging configurations to deliver superior image quality and the ability to handle a wide range of biological samples. Results presented in this work are from analysis of fluorescent beads under fluorescence imaging, as well as helminth eggs and freshwater mussel larvae under white light imaging. To demonstrate versatility of the systems, real time analysis and post-processing results of the sample count and sample size are presented in both still images and videos of flowing samples. PMID:29509786

  11. Enhanced Video-Oculography System

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; MacDougall, Hamish G.

    2009-01-01

    A previously developed video-oculography system has been enhanced for use in measuring vestibulo-ocular reflexes of a human subject in a centrifuge, motor vehicle, or other setting. The system as previously developed included a lightweight digital video camera mounted on goggles. The left eye was illuminated by an infrared light-emitting diode via a dichroic mirror, and the camera captured images of the left eye in infrared light. To extract eye-movement data, the digitized video images were processed by software running in a laptop computer. Eye movements were calibrated by having the subject view a target pattern, fixed with respect to the subject s head, generated by a goggle-mounted laser with a diffraction grating. The system as enhanced includes a second camera for imaging the scene from the subject s perspective, and two inertial measurement units (IMUs) for measuring linear accelerations and rates of rotation for computing head movements. One IMU is mounted on the goggles, the other on the centrifuge or vehicle frame. All eye-movement and head-motion data are time-stamped. In addition, the subject s point of regard is superimposed on each scene image to enable analysis of patterns of gaze in real time.

  12. Assessment of disintegrant efficacy with fractal dimensions from real-time MRI.

    PubMed

    Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter

    2014-11-20

    An efficient disintegrant is capable of breaking up a tablet in the smallest possible particles in the shortest time. Until now, comparative data on the efficacy of different disintegrants is based on dissolution studies or the disintegration time. Extending these approaches, this study introduces a method, which defines the evolution of fractal dimensions of tablets as surrogate parameter for the available surface area. Fractal dimensions are a measure for the tortuosity of a line, in this case the upper surface of a disintegrating tablet. High-resolution real-time MRI was used to record videos of disintegrating tablets. The acquired video images were processed to depict the upper surface of the tablets and a box-counting algorithm was used to estimate the fractal dimensions. The influence of six different disintegrants, of different relative tablet density, and increasing disintegrant concentration was investigated to evaluate the performance of the novel method. Changing relative densities hardly affect the progression of fractal dimensions, whereas an increase in disintegrant concentration causes increasing fractal dimensions during disintegration, which are also reached quicker. Different disintegrants display only minor differences in the maximal fractal dimension, yet the kinetic in which the maximum is reached allows a differentiation and classification of disintegrants. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A Novel Real-Time Reference Key Frame Scan Matching Method

    PubMed Central

    Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu

    2017-01-01

    Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions’ environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems. PMID:28481285

  14. Complex effusive events at Kilauea as documented by the GOES satellite and remote video cameras

    USGS Publications Warehouse

    Harris, A.J.L.; Thornber, C.R.

    1999-01-01

    GOES provides thermal data for all of the Hawaiian volcanoes once every 15 min. We show how volcanic radiance time series produced from this data stream can be used as a simple measure of effusive activity. Two types of radiance trends in these time series can be used to monitor effusive activity: (a) Gradual variations in radiance reveal steady flow-field extension and tube development. (b) Discrete spikes correlate with short bursts of activity, such as lava fountaining or lava-lake overflows. We are confident that any effusive event covering more than 10,000 m2 of ground in less than 60 min will be unambiguously detectable using this approach. We demonstrate this capability using GOES, video camera and ground-based observational data for the current eruption of Kilauea volcano (Hawai'i). A GOES radiance time series was constructed from 3987 images between 19 June and 12 August 1997. This time series displayed 24 radiance spikes elevated more than two standard deviations above the mean; 19 of these are correlated with video-recorded short-burst effusive events. Less ambiguous events are interpreted, assessed and related to specific volcanic events by simultaneous use of permanently recording video camera data and ground-observer reports. The GOES radiance time series are automatically processed on data reception and made available in near-real-time, so such time series can contribute to three main monitoring functions: (a) automatically alerting major effusive events; (b) event confirmation and assessment; and (c) establishing effusive event chronology.

  15. Student Self-Assessment and Faculty Assessment of Performance in an Interprofessional Error Disclosure Simulation Training Program.

    PubMed

    Poirier, Therese I; Pailden, Junvie; Jhala, Ray; Ronald, Katie; Wilhelm, Miranda; Fan, Jingyang

    2017-04-01

    Objectives. To conduct a prospective evaluation for effectiveness of an error disclosure assessment tool and video recordings to enhance student learning and metacognitive skills while assessing the IPEC competencies. Design. The instruments for assessing performance (planning, communication, process, and team dynamics) in interprofessional error disclosure were developed. Student self-assessment of performance before and after viewing the recordings of their encounters were obtained. Faculty used a similar instrument to conduct real-time assessments. An instrument to assess achievement of the Interprofessional Education Collaborative (IPEC) core competencies was developed. Qualitative data was reviewed to determine student and faculty perceptions of the simulation. Assessment. The interprofessional simulation training involved a total of 233 students (50 dental, 109 nursing and 74 pharmacy). Use of video recordings made a significant difference in student self-assessment for communication and process categories of error disclosure. No differences in student self-assessments were noted among the different professions. There were differences among the family member affects for planning and communication for both pre-video and post-video data. There were significant differences between student self-assessment and faculty assessment for all paired comparisons, except communication in student post-video self-assessment. Students' perceptions of achievement of the IPEC core competencies were positive. Conclusion. The use of assessment instruments and video recordings may have enhanced students' metacognitive skills for assessing performance in interprofessional error disclosure. The simulation training was effective in enhancing perceptions on achievement of IPEC core competencies. This enhanced assessment process appeared to enhance learning about the skills needed for interprofessional error disclosure.

  16. Student Self-Assessment and Faculty Assessment of Performance in an Interprofessional Error Disclosure Simulation Training Program

    PubMed Central

    Pailden, Junvie; Jhala, Ray; Ronald, Katie; Wilhelm, Miranda; Fan, Jingyang

    2017-01-01

    Objectives. To conduct a prospective evaluation for effectiveness of an error disclosure assessment tool and video recordings to enhance student learning and metacognitive skills while assessing the IPEC competencies. Design. The instruments for assessing performance (planning, communication, process, and team dynamics) in interprofessional error disclosure were developed. Student self-assessment of performance before and after viewing the recordings of their encounters were obtained. Faculty used a similar instrument to conduct real-time assessments. An instrument to assess achievement of the Interprofessional Education Collaborative (IPEC) core competencies was developed. Qualitative data was reviewed to determine student and faculty perceptions of the simulation. Assessment. The interprofessional simulation training involved a total of 233 students (50 dental, 109 nursing and 74 pharmacy). Use of video recordings made a significant difference in student self-assessment for communication and process categories of error disclosure. No differences in student self-assessments were noted among the different professions. There were differences among the family member affects for planning and communication for both pre-video and post-video data. There were significant differences between student self-assessment and faculty assessment for all paired comparisons, except communication in student post-video self-assessment. Students’ perceptions of achievement of the IPEC core competencies were positive. Conclusion. The use of assessment instruments and video recordings may have enhanced students’ metacognitive skills for assessing performance in interprofessional error disclosure. The simulation training was effective in enhancing perceptions on achievement of IPEC core competencies. This enhanced assessment process appeared to enhance learning about the skills needed for interprofessional error disclosure. PMID:28496274

  17. Framework for Processing Videos in the Presence of Spatially Varying Motion Blur

    DTIC Science & Technology

    2014-04-18

    international journals. Expected impact The related problems of image restoration, registration, dehazing, and superresolution , all in the presence of blurring...real-time, it can be very valuable for applications involving aerial surveillance. Our work on superresolution will be especially valuable while...unified approach to superresolution and multichannel blind decon- volution,” Trans. Img. Proc., vol. 16, no. 9, pp. 2322–2332, Sept. 2007. 5, 5.2.1

  18. Accuracy of sign interpreting and real-time captioning of science videos for the delivery of instruction to deaf students

    NASA Astrophysics Data System (ADS)

    Sadler, Karen L.

    2009-04-01

    The purpose of this study was to quantitatively examine the impact of third-party support service providers on the quality of science information available to deaf students in regular science classrooms. Three different videotapes that were developed by NASA for high school science classrooms were selected for the study, allowing for different concepts and vocabulary to be examined. The focus was on the accuracy of translation as measured by the number of key science words included in the transcripts (captions) or videos (interpreted). Data were collected via transcripts completed by CART (computer assisted real-time captionists) or through videos of sign language interpreters. All participants were required to listen to and translate these NASA educational videos with no prior experience with this information so as not to influence their delivery. CART personnel using captions were found to be significantly more accurate in the delivery of science words as compared to the sign language interpreters in this study.

  19. Design and Development of a Real-Time Model Attitude Measurement System for Hypersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2005-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and applies photogrammetric principles for point tracking to compute model position including pitch, roll and yaw variables. A discussion of the constraints encountered during the design, development, and testing process, including lighting, vibration, operational range and optical access is included. Initial measurement results from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  20. Design and Development of a Real-Time Model Attitude Measurement System for Hypersonic Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Lunsford, Charles B.

    2004-01-01

    A series of wind tunnel tests have been conducted to evaluate a multi-camera videogrammetric system designed to measure model attitude in hypersonic facilities. The technique utilizes processed video data and applies photogrammetric principles for point tracking to compute model position including pitch, roll and yaw variables. A discussion of the constraints encountered during the design, development, and testing process, including lighting, vibration, operational range and optical access is included. Initial measurement results from the NASA Langley Research Center (LaRC) 31-Inch Mach 10 tunnel are presented.

  1. Eliminating Bias In Acousto-Optical Spectrum Analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Lesh, James R.

    1992-01-01

    Scheme for digital processing of video signals in acousto-optical spectrum analyzer provides real-time correction for signal-dependent spectral bias. Spectrum analyzer described in "Two-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18092), related apparatus described in "Three-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18122). Essence of correction is to average over digitized outputs of pixels in each CCD row and to subtract this from the digitized output of each pixel in row. Signal processed electro-optically with reference-function signals to form two-dimensional spectral image in CCD camera.

  2. Software architecture for time-constrained machine vision applications

    NASA Astrophysics Data System (ADS)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility, because they are normally oriented toward particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse, and inefficient execution on multicore processors. We present a novel software architecture for time-constrained machine vision applications that addresses these issues. The architecture is divided into three layers. The platform abstraction layer provides a high-level application programming interface for the rest of the architecture. The messaging layer provides a message-passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of message. The application layer provides a repository for reusable application modules designed for machine vision applications. These modules, which include acquisition, visualization, communication, user interface, and data processing, take advantage of the power of well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, the proposed architecture is applied to a real machine vision application: a jam detector for steel pickling lines.

  3. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R; Glaser, A; Jarvis, L

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. Anmore » edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking, treatment monitoring, superficial dose and skin reaction estimation and prediction.« less

  4. Spherical visual system for real-time virtual reality and surveillance

    NASA Astrophysics Data System (ADS)

    Chen, Su-Shing

    1998-12-01

    A spherical visual system has been developed for full field, web-based surveillance, virtual reality, and roundtable video conference. The hardware is a CycloVision parabolic lens mounted on a video camera. The software was developed at the University of Missouri-Columbia. The mathematical model is developed by Su-Shing Chen and Michael Penna in the 1980s. The parabolic image, capturing the full (360 degrees) hemispherical field (except the north pole) of view is transformed into the spherical model of Chen and Penna. In the spherical model, images are invariant under the rotation group and are easily mapped to the image plane tangent to any point on the sphere. The projected image is exactly what the usual camera produces at that angle. Thus a real-time full spherical field video camera is developed by using two pieces of parabolic lenses.

  5. Performance evaluation of a two detector camera for real-time video.

    PubMed

    Lochocki, Benjamin; Gambín-Regadera, Adrián; Artal, Pablo

    2016-12-20

    Single pixel imaging can be the preferred method over traditional 2D-array imaging in spectral ranges where conventional cameras are not available. However, when it comes to real-time video imaging, single pixel imaging cannot compete with the framerates of conventional cameras, especially when high-resolution images are desired. Here we evaluate the performance of an imaging approach using two detectors simultaneously. First, we present theoretical results on how low SNR affects final image quality followed by experimentally determined results. Obtained video framerates were doubled compared to state of the art systems, resulting in a framerate from 22 Hz for a 32×32 resolution to 0.75 Hz for a 128×128 resolution image. Additionally, the two detector imaging technique enables the acquisition of images with a resolution of 256×256 in less than 3 s.

  6. An image retrieval framework for real-time endoscopic image retargeting.

    PubMed

    Ye, Menglong; Johns, Edward; Walter, Benjamin; Meining, Alexander; Yang, Guang-Zhong

    2017-08-01

    Serial endoscopic examinations of a patient are important for early diagnosis of malignancies in the gastrointestinal tract. However, retargeting for optical biopsy is challenging due to extensive tissue variations between examinations, requiring the method to be tolerant to these changes whilst enabling real-time retargeting. This work presents an image retrieval framework for inter-examination retargeting. We propose both a novel image descriptor tolerant of long-term tissue changes and a novel descriptor matching method in real time. The descriptor is based on histograms generated from regional intensity comparisons over multiple scales, offering stability over long-term appearance changes at the higher levels, whilst remaining discriminative at the lower levels. The matching method then learns a hashing function using random forests, to compress the string and allow for fast image comparison by a simple Hamming distance metric. A dataset that contains 13 in vivo gastrointestinal videos was collected from six patients, representing serial examinations of each patient, which includes videos captured with significant time intervals. Precision-recall for retargeting shows that our new descriptor outperforms a number of alternative descriptors, whilst our hashing method outperforms a number of alternative hashing approaches. We have proposed a novel framework for optical biopsy in serial endoscopic examinations. A new descriptor, combined with a novel hashing method, achieves state-of-the-art retargeting, with validation on in vivo videos from six patients. Real-time performance also allows for practical integration without disturbing the existing clinical workflow.

  7. Portable low-coherence interferometry for quantitatively imaging fast dynamics with extended field of view

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena

    2014-06-01

    We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.

  8. Violence Exposure in Real-Life, Video Games, Television, Movies, and the Internet: Is There Desensitization?

    ERIC Educational Resources Information Center

    Funk, Jeanne B.; Baldacci, Heidi Bechtoldt; Pasold; Tracie; Baumgardner, Jennifer

    2004-01-01

    It is believed that repeated exposure to real-life and to entertainment violence may alter cognitive, affective, and behavioral processes, possibly leading to desensitization. The goal of the present study was to determine if there are relationships between real-life and media violence exposure and desensitization as reflected in related…

  9. Pediatric Obesity: Is There Room for Active Video Games in Prevention or Management?

    PubMed

    Thivel, David; OʼMalley, Grace

    2016-01-01

    Children and adolescents spend a considerable amount of time engaged in sedentary behaviors that have been shown to favor weight gain and impaired physical fitness. Active video games have been proposed to increase physical activity levels. Although active video games may offer an interesting alternative to reducing sedentary time for children, the present commentary aimed to determine whether there is adequate evidence that compared active video gaming to real-life play and exercise. Given the dearth of data, it is not possible at present to support the use of active video games as substitutes for traditional forms of active play and health-enhancing physical activity. Further research should be encouraged and therapists should not consider active video games exclusively for intervention in children with obesity.

  10. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. Platform for intraoperative analysis of video streams

    NASA Astrophysics Data System (ADS)

    Clements, Logan; Galloway, Robert L., Jr.

    2004-05-01

    Interactive, image-guided surgery (IIGS) has proven to increase the specificity of a variety of surgical procedures. However, current IIGS systems do not compensate for changes that occur intraoperatively and are not reflected in preoperative tomograms. Endoscopes and intraoperative ultrasound, used in minimally invasive surgery, provide real-time (RT) information in a surgical setting. Combining the information from RT imaging modalities with traditional IIGS techniques will further increase surgical specificity by providing enhanced anatomical information. In order to merge these techniques and obtain quantitative data from RT imaging modalities, a platform was developed to allow both the display and processing of video streams in RT. Using a Bandit-II CV frame grabber board (Coreco Imaging, St. Laurent, Quebec) and the associated library API, a dynamic link library was created in Microsoft Visual C++ 6.0 such that the platform could be incorporated into the IIGS system developed at Vanderbilt University. Performance characterization, using two relatively inexpensive host computers, has shown the platform capable of performing simple image processing operations on frames captured from a CCD camera and displaying the processed video data at near RT rates both independent of and while running the IIGS system.

  12. Detection, location, and quantification of structural damage by neural-net-processed moiré profilometry

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Hooker, Jeffery A.

    1992-03-01

    The development of efficient high speed techniques to recognize, locate, and quantify damage is vitally important for successful automated inspection systems such as ones used for the inspection of undersea pipelines. Two critical problems must be solved to achieve these goals: the reduction of nonuseful information present in the video image and automatic recognition and quantification of extent and location of damage. Artificial neural network processed moire profilometry appears to be a promising technique to accomplish this. Real time video moire techniques have been developed which clearly distinguish damaged and undamaged areas on structures, thus reducing the amount of extraneous information input into an inspection system. Artificial neural networks have demonstrated advantages for image processing, since they can learn the desired response to a given input and are inherently fast when implemented in hardware due to their parallel computing architecture. Video moire images of pipes with dents of different depths were used to train a neural network, with the desired output being the location and severity of the damage. The system was then successfully tested with a second series of moire images. The techniques employed and the results obtained are discussed.

  13. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    PubMed

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.

  14. Teaching Workflow Analysis and Lean Thinking via Simulation: A Formative Evaluation

    PubMed Central

    Campbell, Robert James; Gantt, Laura; Congdon, Tamara

    2009-01-01

    This article presents the rationale for the design and development of a video simulation used to teach lean thinking and workflow analysis to health services and health information management students enrolled in a course on the management of health information. The discussion includes a description of the design process, a brief history of the use of simulation in healthcare, and an explanation of how video simulation can be used to generate experiential learning environments. Based on the results of a survey given to 75 students as part of a formative evaluation, the video simulation was judged effective because it allowed students to visualize a real-world process (concrete experience), contemplate the scenes depicted in the video along with the concepts presented in class in a risk-free environment (reflection), develop hypotheses about why problems occurred in the workflow process (abstract conceptualization), and develop solutions to redesign a selected process (active experimentation). PMID:19412533

  15. Characterization of electroencephalography signals for estimating saliency features in videos.

    PubMed

    Liang, Zhen; Hamada, Yasuyuki; Oba, Shigeyuki; Ishii, Shin

    2018-05-12

    Understanding the functions of the visual system has been one of the major targets in neuroscience formany years. However, the relation between spontaneous brain activities and visual saliency in natural stimuli has yet to be elucidated. In this study, we developed an optimized machine learning-based decoding model to explore the possible relationships between the electroencephalography (EEG) characteristics and visual saliency. The optimal features were extracted from the EEG signals and saliency map which was computed according to an unsupervised saliency model ( Tavakoli and Laaksonen, 2017). Subsequently, various unsupervised feature selection/extraction techniques were examined using different supervised regression models. The robustness of the presented model was fully verified by means of ten-fold or nested cross validation procedure, and promising results were achieved in the reconstruction of saliency features based on the selected EEG characteristics. Through the successful demonstration of using EEG characteristics to predict the real-time saliency distribution in natural videos, we suggest the feasibility of quantifying visual content through measuring brain activities (EEG signals) in real environments, which would facilitate the understanding of cortical involvement in the processing of natural visual stimuli and application developments motivated by human visual processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    PubMed

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  17. Detection and Tracking of Moving Objects with Real-Time Onboard Vision System

    NASA Astrophysics Data System (ADS)

    Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.

    2017-05-01

    Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.

  18. Flexible retrospective selection of temporal resolution in real-time speech MRI using a golden-ratio spiral view order.

    PubMed

    Kim, Yoon-Chul; Narayanan, Shrikanth S; Nayak, Krishna S

    2011-05-01

    In speech production research using real-time magnetic resonance imaging (MRI), the analysis of articulatory dynamics is performed retrospectively. A flexible selection of temporal resolution is highly desirable because of natural variations in speech rate and variations in the speed of different articulators. The purpose of the study is to demonstrate a first application of golden-ratio spiral temporal view order to real-time speech MRI and investigate its performance by comparison with conventional bit-reversed temporal view order. Golden-ratio view order proved to be more effective at capturing the dynamics of rapid tongue tip motion. A method for automated blockwise selection of temporal resolution is presented that enables the synthesis of a single video from multiple temporal resolution videos and potentially facilitates subsequent vocal tract shape analysis. Copyright © 2010 Wiley-Liss, Inc.

  19. Real time markerless motion tracking using linked kinematic chains

    DOEpatents

    Luck, Jason P [Arvada, CO; Small, Daniel E [Albuquerque, NM

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  20. Reduction of capsule endoscopy reading times by unsupervised image mining.

    PubMed

    Iakovidis, D K; Tsevas, S; Polydorou, A

    2010-09-01

    The screening of the small intestine has become painless and easy with wireless capsule endoscopy (WCE) that is a revolutionary, relatively non-invasive imaging technique performed by a wireless swallowable endoscopic capsule transmitting thousands of video frames per examination. The average time required for the visual inspection of a full 8-h WCE video ranges from 45 to 120min, depending on the experience of the examiner. In this paper, we propose a novel approach to WCE reading time reduction by unsupervised mining of video frames. The proposed methodology is based on a data reduction algorithm which is applied according to a novel scheme for the extraction of representative video frames from a full length WCE video. It can be used either as a video summarization or as a video bookmarking tool, providing the comparative advantage of being general, unbounded by the finiteness of a training set. The number of frames extracted is controlled by a parameter that can be tuned automatically. Comprehensive experiments on real WCE videos indicate that a significant reduction in the reading times is feasible. In the case of the WCE videos used this reduction reached 85% without any loss of abnormalities.

  1. The effectiveness of incorporating a real-time oculometer system in a commercial flight training program

    NASA Technical Reports Server (NTRS)

    Jones, D. H.; Coates, G. D.; Kirby, R. H.

    1983-01-01

    The effectiveness of incroporating a real-time oculometer system into a Boeing 737 commercial flight training program was studied. The study combined a specialized oculometer system with sophisticated video equipment that would allow instructor pilots (IPs) to monitor pilot and copilot trainees' instrument scan behavior in real-time, and provide each trainee with video tapes of his/her instrument scanning behavior for each training session. The IPs' performance ratings and trainees' self-ratings were compared to the performance ratings by IPs and trainees in a control group. The results indicate no difference in IP ratings or trainees' self-ratings for the control and experimental groups. The results indicated that the major beneficial role of a real-time oculometer system for pilots and copilots having a significant amount of flight experience would be for problem solving or refinement of instrument scanning behavior rather than a general instructional scheme. It is suggested that this line of research be continued with the incorporation of objective data (e.g., state of the aircraft data), measures of cost effectiveness and with trainees having less flight experience.

  2. Real-time measurement of dust in the workplace using video exposure monitoring: Farming to pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Walsh, P. T.; Forth, A. R.; Clark, R. D. R.; Dowker, K. P.; Thorpe, A.

    2009-02-01

    Real-time, photometric, portable dust monitors have been employed for video exposure monitoring (VEM) to measure and highlight dust levels generated by work activities, illustrate dust control techniques, and demonstrate good practice. Two workplaces, presenting different challenges for measurement, were used to illustrate the capabilities of VEM: (a) poultry farming activities and (b) powder transfer operations in a pharmaceutical company. For the poultry farm work, the real-time monitors were calibrated with respect to the respirable and inhalable dust concentrations using cyclone and IOM reference samplers respectively. Different rankings of exposure for typical activities were found on the small farm studied here compared to previous exposure measurements at larger poultry farms: these were mainly attributed to the different scales of operation. Large variations in the ratios of respirable, inhalable and real-time monitor TWA concentrations of poultry farm dust for various activities were found. This has implications for the calibration of light-scattering dust monitors with respect to inhalable dust concentration. In the pharmaceutical application, the effectiveness of a curtain barrier for dust control when dispensing powder in a downflow booth was rapidly demonstrated.

  3. Flow Control and Routing in an Integrated Voice and Data Communication Network

    DTIC Science & Technology

    1981-08-01

    require continuous and almost real - time delivery; they are very sensitive to delay. Data conversations, on the other hand, are generally intolerant of...packets arrive in time to be delivered to the sink. However, this is not the solution we seek. We have noted that voice conversations require almost real ...by long messages that require continuous real - time delivery; e.g. voice facsimile, video. Class II: characterized by short discrete messages that

  4. Bitstream decoding processor for fast entropy decoding of variable length coding-based multiformat videos

    NASA Astrophysics Data System (ADS)

    Jo, Hyunho; Sim, Donggyu

    2014-06-01

    We present a bitstream decoding processor for entropy decoding of variable length coding-based multiformat videos. Since most of the computational complexity of entropy decoders comes from bitstream accesses and table look-up process, the developed bitstream processing unit (BsPU) has several designated instructions to access bitstreams and to minimize branch operations in the table look-up process. In addition, the instruction for bitstream access has the capability to remove emulation prevention bytes (EPBs) of H.264/AVC without initial delay, repeated memory accesses, and additional buffer. Experimental results show that the proposed method for EPB removal achieves a speed-up of 1.23 times compared to the conventional EPB removal method. In addition, the BsPU achieves speed-ups of 5.6 and 3.5 times in entropy decoding of H.264/AVC and MPEG-4 Visual bitstreams, respectively, compared to an existing processor without designated instructions and a new table mapping algorithm. The BsPU is implemented on a Xilinx Virtex5 LX330 field-programmable gate array. The MPEG-4 Visual (ASP, Level 5) and H.264/AVC (Main Profile, Level 4) are processed using the developed BsPU with a core clock speed of under 250 MHz in real time.

  5. A distributed approach for optimizing cascaded classifier topologies in real-time stream mining systems.

    PubMed

    Foo, Brian; van der Schaar, Mihaela

    2010-11-01

    In this paper, we discuss distributed optimization techniques for configuring classifiers in a real-time, informationally-distributed stream mining system. Due to the large volume of streaming data, stream mining systems must often cope with overload, which can lead to poor performance and intolerable processing delay for real-time applications. Furthermore, optimizing over an entire system of classifiers is a difficult task since changing the filtering process at one classifier can impact both the feature values of data arriving at classifiers further downstream and thus, the classification performance achieved by an ensemble of classifiers, as well as the end-to-end processing delay. To address this problem, this paper makes three main contributions: 1) Based on classification and queuing theoretic models, we propose a utility metric that captures both the performance and the delay of a binary filtering classifier system. 2) We introduce a low-complexity framework for estimating the system utility by observing, estimating, and/or exchanging parameters between the inter-related classifiers deployed across the system. 3) We provide distributed algorithms to reconfigure the system, and analyze the algorithms based on their convergence properties, optimality, information exchange overhead, and rate of adaptation to non-stationary data sources. We provide results using different video classifier systems.

  6. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s.

    PubMed

    Wieser, Wolfgang; Draxinger, Wolfgang; Klein, Thomas; Karpf, Sebastian; Pfeiffer, Tom; Huber, Robert

    2014-09-01

    We present a 1300 nm OCT system for volumetric real-time live OCT acquisition and visualization at 1 billion volume elements per second. All technological challenges and problems associated with such high scanning speed are discussed in detail as well as the solutions. In one configuration, the system acquires, processes and visualizes 26 volumes per second where each volume consists of 320 x 320 depth scans and each depth scan has 400 usable pixels. This is the fastest real-time OCT to date in terms of voxel rate. A 51 Hz volume rate is realized with half the frame number. In both configurations the speed can be sustained indefinitely. The OCT system uses a 1310 nm Fourier domain mode locked (FDML) laser operated at 3.2 MHz sweep rate. Data acquisition is performed with two dedicated digitizer cards, each running at 2.5 GS/s, hosted in a single desktop computer. Live real-time data processing and visualization are realized with custom developed software on an NVidia GTX 690 dual graphics processing unit (GPU) card. To evaluate potential future applications of such a system, we present volumetric videos captured at 26 and 51 Hz of planktonic crustaceans and skin.

  7. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s

    PubMed Central

    Wieser, Wolfgang; Draxinger, Wolfgang; Klein, Thomas; Karpf, Sebastian; Pfeiffer, Tom; Huber, Robert

    2014-01-01

    We present a 1300 nm OCT system for volumetric real-time live OCT acquisition and visualization at 1 billion volume elements per second. All technological challenges and problems associated with such high scanning speed are discussed in detail as well as the solutions. In one configuration, the system acquires, processes and visualizes 26 volumes per second where each volume consists of 320 x 320 depth scans and each depth scan has 400 usable pixels. This is the fastest real-time OCT to date in terms of voxel rate. A 51 Hz volume rate is realized with half the frame number. In both configurations the speed can be sustained indefinitely. The OCT system uses a 1310 nm Fourier domain mode locked (FDML) laser operated at 3.2 MHz sweep rate. Data acquisition is performed with two dedicated digitizer cards, each running at 2.5 GS/s, hosted in a single desktop computer. Live real-time data processing and visualization are realized with custom developed software on an NVidia GTX 690 dual graphics processing unit (GPU) card. To evaluate potential future applications of such a system, we present volumetric videos captured at 26 and 51 Hz of planktonic crustaceans and skin. PMID:25401010

  8. Hardware-Abbildung eines videobasierten Verfahrens zur echtzeitfähigen Auswertung von Winkelhistogrammen auf eine modulare Coprozessor-Architektur

    NASA Astrophysics Data System (ADS)

    Flatt, H.; Tarnowsky, A.; Blume, H.; Pirsch, P.

    2010-10-01

    Dieser Beitrag behandelt die Abbildung eines videobasierten Verfahrens zur echtzeitfähigen Auswertung von Winkelhistogrammen auf eine modulare Coprozessor-Architektur. Die Architektur besteht aus mehreren dedizierten Recheneinheiten zur parallelen Verarbeitung rechenintensiver Bildverarbeitungsverfahren und ist mit einem RISC-Prozessor verbunden. Eine konfigurierbare Architekturerweiterung um eine Recheneinheit zur Auswertung von Winkelhistogrammen von Objekten ermöglicht in Verbindung mit dem RISC eine echtzeitfähige Klassifikation. Je nach Konfiguration sind für die Architekturerweiterung auf einem Xilinx Virtex-5-FPGA zwischen 3300 und 12 000 Lookup-Tables erforderlich. Bei einer Taktfrequenz von 100 MHz können unabhängig von der Bildauflösung pro Einzelbild in einem 25-Hz-Videodatenstrom bis zu 100 Objekte der Größe 256×256 Pixel analysiert werden. This paper presents the mapping of a video-based approach for real-time evaluation of angular histograms on a modular coprocessor architecture. The architecture comprises several dedicated processing elements for parallel processing of computation-intensive image processing tasks and is coupled with a RISC processor. A configurable architecture extension, especially a processing element for evaluating angular histograms of objects in conjunction with a RISC processor, provides a real-time classification. Depending on the configuration of the architecture extension, 3 300 to 12 000 look-up tables are required for a Xilinx Virtex-5 FPGA implementation. Running at a clock frequency of 100 MHz and independently of the image resolution per frame, 100 objects of size 256×256 pixels are analyzed in a 25 Hz video stream by the architecture.

  9. Bar-Chart-Monitor System For Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Jung, Oscar

    1993-01-01

    Real-time monitor system provides bar-chart displays of significant operating parameters developed for National Full-Scale Aerodynamic Complex at Ames Research Center. Designed to gather and process sensory data on operating conditions of wind tunnels and models, and displays data for test engineers and technicians concerned with safety and validation of operating conditions. Bar-chart video monitor displays data in as many as 50 channels at maximum update rate of 2 Hz in format facilitating quick interpretation.

  10. Automation and apps for clinical dental biomechanics.

    PubMed

    Adams, Bruce W

    2016-09-01

    The aim of this research summary is to introduce the current and ongoing work using smartphone video, tracking markers to measure musculoskeletal disorders of cranial and mandibular origin, and the potential significance of the technology to doctors and therapists. The MPA™ biomechanical measuring apps are in beta trials with various doctors and therapists. The technique requires substantial image processing and statistical analysis, best suited to server-side processing. A smartphone environment has enabled a virtual laboratory, which provides automated generation of graphics and in some cases automated interpretation. The system enables highly accurate real-time biomechanics studies using only a smartphone and tracking markers. Despite the technical challenges in setting up and testing of the virtual environment and with interpretation of clinical relevance, the trials have enabled a demonstration of real-time biomechanics studies. The technology has prompted a lot of discussion about the relevance of rapid assessment tools in clinical practice. It seems that a prior bias against motion tracking and its relevance is very strong with occlusion related use cases, yet there has been a general agreement about the use case for cranial movement tracking in managing complex issues related to the head, neck, and TMJ. Measurement of cranial and mandibular functions using a smartphone video as the input have been investigated. Ongoing research will depend upon doctors and therapists to provide feedback as to which uses are considered clinically relevant.

  11. The production of audiovisual teaching tools in minimally invasive surgery.

    PubMed

    Tolerton, Sarah K; Hugh, Thomas J; Cosman, Peter H

    2012-01-01

    Audiovisual learning resources have become valuable adjuncts to formal teaching in surgical training. This report discusses the process and challenges of preparing an audiovisual teaching tool for laparoscopic cholecystectomy. The relative value in surgical education and training, for both the creator and viewer are addressed. This audiovisual teaching resource was prepared as part of the Master of Surgery program at the University of Sydney, Australia. The different methods of video production used to create operative teaching tools are discussed. Collating and editing material for an audiovisual teaching resource can be a time-consuming and technically challenging process. However, quality learning resources can now be produced even with limited prior video editing experience. With minimal cost and suitable guidance to ensure clinically relevant content, most surgeons should be able to produce short, high-quality education videos of both open and minimally invasive surgery. Despite the challenges faced during production of audiovisual teaching tools, these resources are now relatively easy to produce using readily available software. These resources are particularly attractive to surgical trainees when real time operative footage is used. They serve as valuable adjuncts to formal teaching, particularly in the setting of minimally invasive surgery. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  12. Storage, retrieval, and edit of digital video using Motion JPEG

    NASA Astrophysics Data System (ADS)

    Sudharsanan, Subramania I.; Lee, D. H.

    1994-04-01

    In a companion paper we describe a Micro Channel adapter card that can perform real-time JPEG (Joint Photographic Experts Group) compression of a 640 by 480 24-bit image within 1/30th of a second. Since this corresponds to NTSC video rates at considerably good perceptual quality, this system can be used for real-time capture and manipulation of continuously fed video. To facilitate capturing the compressed video in a storage medium, an IBM Bus master SCSI adapter with cache is utilized. Efficacy of the data transfer mechanism is considerably improved using the System Control Block architecture, an extension to Micro Channel bus masters. We show experimental results that the overall system can perform at compressed data rates of about 1.5 MBytes/second sustained and with sporadic peaks to about 1.8 MBytes/second depending on the image sequence content. We also describe mechanisms to access the compressed data very efficiently through special file formats. This in turn permits creation of simpler sequence editors. Another advantage of the special file format is easy control of forward, backward and slow motion playback. The proposed method can be extended for design of a video compression subsystem for a variety of personal computing systems.

  13. Real-Time Transmission and Storage of Video, Audio, and Health Data in Emergency and Home Care Situations

    NASA Astrophysics Data System (ADS)

    Barbieri, Ivano; Lambruschini, Paolo; Raggio, Marco; Stagnaro, Riccardo

    2007-12-01

    The increase in the availability of bandwidth for wireless links, network integration, and the computational power on fixed and mobile platforms at affordable costs allows nowadays for the handling of audio and video data, their quality making them suitable for medical application. These information streams can support both continuous monitoring and emergency situations. According to this scenario, the authors have developed and implemented the mobile communication system which is described in this paper. The system is based on ITU-T H.323 multimedia terminal recommendation, suitable for real-time data/video/audio and telemedical applications. The audio and video codecs, respectively, H.264 and G723.1, were implemented and optimized in order to obtain high performance on the system target processors. Offline media streaming storage and retrieval functionalities were supported by integrating a relational database in the hospital central system. The system is based on low-cost consumer technologies such as general packet radio service (GPRS) and wireless local area network (WLAN or WiFi) for lowband data/video transmission. Implementation and testing were carried out for medical emergency and telemedicine application. In this paper, the emergency case study is described.

  14. From Ship-To-Shore In Real Time: Data Transmission, Distribution, Management, Processing, And Archiving Using Telepresence Technologies And The Inner Space Center

    NASA Astrophysics Data System (ADS)

    Coleman, D. F.

    2012-12-01

    Most research vessels are equipped with satellite Internet services with bandwidths capable of being upgraded to support telepresence technologies and live shore-based participation. This capability can be used for real-time data transmission to shore, where it can be distributed, managed, processed, and archived. The University of Rhode Island Inner Space Center utilizes telepresence technologies and a growing network of command centers on Internet2 to participate live with a variety of research vessels and their ocean observing and sampling systems. High-bandwidth video streaming, voice-over-IP telecommunications, and real-time data feeds and file transfers enable users on shore to take part in the oceanographic expeditions as if they were present on the ship, working in the lab. Telepresence-enabled systematic ocean exploration and similar programs represent a significant and growing paradigm shift that can change the future of seagoing ocean observations using research vessels. The required platform is the ship itself, and users of the technology rely on the ship-based technical teams, but remote and distributed shore-based science users, students, educators, and the general public can now take part by being aboard virtually.

  15. Real-time implementation of logo detection on open source BeagleBoard

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Estevez, L.

    2011-03-01

    This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.

  16. A Novel Method for Real-Time Audio Recording With Intraoperative Video.

    PubMed

    Sugamoto, Yuji; Hamamoto, Yasuyoshi; Kimura, Masayuki; Fukunaga, Toru; Tasaki, Kentaro; Asai, Yo; Takeshita, Nobuyoshi; Maruyama, Tetsuro; Hosokawa, Takashi; Tamachi, Tomohide; Aoyama, Hiromichi; Matsubara, Hisahiro

    2015-01-01

    Although laparoscopic surgery has become widespread, effective and efficient education in laparoscopic surgery is difficult. Instructive laparoscopy videos with appropriate annotations are ideal for initial training in laparoscopic surgery; however, the method we use at our institution for creating laparoscopy videos with audio is not generalized, and there have been no detailed explanations of any such method. Our objectives were to demonstrate the feasibility of low-cost simple methods for recording surgical videos with audio and to perform a preliminary safety evaluation when obtaining these recordings during operations. We devised a method for the synchronous recording of surgical video with real-time audio in which we connected an amplifier and a wireless microphone to an existing endoscopy system and its equipped video-recording device. We tested this system in 209 cases of laparoscopic surgery in operating rooms between August 2010 and July 2011 and prospectively investigated the results of the audiovisual recording method and examined intraoperative problems. Numazu City Hospital in Numazu city, Japan. Surgeons, instrument nurses, and medical engineers. In all cases, the synchronous input of audio and video was possible. The recording system did not cause any inconvenience to the surgeon, assistants, instrument nurse, sterilized equipment, or electrical medical equipment. Statistically significant differences were not observed between the audiovisual group and control group regarding the operating time, which had been divided into 2 slots-performed by the instructors or by trainees (p > 0.05). This recording method is feasible and considerably safe while posing minimal difficulty in terms of technology, time, and expense. We recommend this method for both surgical trainees who wish to acquire surgical skills effectively and medical instructors who wish to teach surgical skills effectively. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. Modern Methods for fast generation of digital holograms

    NASA Astrophysics Data System (ADS)

    Tsang, P. W. M.; Liu, J. P.; Cheung, K. W. K.; Poon, T.-C.

    2010-06-01

    With the advancement of computers, digital holography (DH) has become an area of interest that has gained much popularity. Research findings derived from this technology enables holograms representing three dimensional (3-D) scenes to be acquired with optical means, or generated with numerical computation. In both cases, the holograms are in the form of numerical data that can be recorded, transmitted, and processed with digital techniques. On top of that, the availability of high capacity digital storage and wide-band communication technologies also cast light on the emergence of real time video holographic systems, enabling animated 3-D contents to be encoded as holographic data, and distributed via existing medium. At present, development in DH has reached a reasonable degree of maturity, but at the same time the heavy computation involved also imposes difficulty in practical applications. In this paper, a summary on a number of successful accomplishments that have been made recently in overcoming this problem is presented. Subsequently, we shall propose an economical framework that is suitable for real time generation and transmission of holographic video signals over existing distribution media. The proposed framework includes an aspect of extending the depth range of the object scene, which is important for the display of large-scale objects. [Figure not available: see fulltext.

  18. Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification

    NASA Astrophysics Data System (ADS)

    Charfi, Imen; Miteran, Johel; Dubois, Julien; Atri, Mohamed; Tourki, Rached

    2013-10-01

    We propose a supervised approach to detect falls in a home environment using an optimized descriptor adapted to real-time tasks. We introduce a realistic dataset of 222 videos, a new metric allowing evaluation of fall detection performance in a video stream, and an automatically optimized set of spatio-temporal descriptors which fed a supervised classifier. We build the initial spatio-temporal descriptor named STHF using several combinations of transformations of geometrical features (height and width of human body bounding box, the user's trajectory with her/his orientation, projection histograms, and moments of orders 0, 1, and 2). We study the combinations of usual transformations of the features (Fourier transform, wavelet transform, first and second derivatives), and we show experimentally that it is possible to achieve high performance using support vector machine and Adaboost classifiers. Automatic feature selection allows to show that the best tradeoff between classification performance and processing time is obtained by combining the original low-level features with their first derivative. Hence, we evaluate the robustness of the fall detection regarding location changes. We propose a realistic and pragmatic protocol that enables performance to be improved by updating the training in the current location with normal activities records.

  19. Feasibility study of a real-time operating system for a multichannel MPEG-4 encoder

    NASA Astrophysics Data System (ADS)

    Lehtoranta, Olli; Hamalainen, Timo D.

    2005-03-01

    Feasibility of DSP/BIOS real-time operating system for a multi-channel MPEG-4 encoder is studied. Performances of two MPEG-4 encoder implementations with and without the operating system are compared in terms of encoding frame rate and memory requirements. The effects of task switching frequency and number of parallel video channels to the encoding frame rate are measured. The research is carried out on a 200 MHz TMS320C6201 fixed point DSP using QCIF (176x144 pixels) video format. Compared to a traditional DSP implementation without an operating system, inclusion of DSP/BIOS reduces total system throughput only by 1 QCIF frames/s. The operating system has 6 KB data memory overhead and program memory requirement of 15.7 KB. Hence, the overhead is considered low enough for resource critical mobile video applications.

  20. Detecting dominant motion patterns in crowds of pedestrians

    NASA Astrophysics Data System (ADS)

    Saqib, Muhammad; Khan, Sultan Daud; Blumenstein, Michael

    2017-02-01

    As the population of the world increases, urbanization generates crowding situations which poses challenges to public safety and security. Manual analysis of crowded situations is a tedious job and usually prone to errors. In this paper, we propose a novel technique of crowd analysis, the aim of which is to detect different dominant motion patterns in real-time videos. A motion field is generated by computing the dense optical flow. The motion field is then divided into blocks. For each block, we adopt an Intra-clustering algorithm for detecting different flows within the block. Later on, we employ Inter-clustering for clustering the flow vectors among different blocks. We evaluate the performance of our approach on different real-time videos. The experimental results show that our proposed method is capable of detecting distinct motion patterns in crowded videos. Moreover, our algorithm outperforms state-of-the-art methods.

  1. Relationships between Sensory Stimuli and Autonomic Regulation During Real and Virtual Exercises.

    PubMed

    Kiryu, Tohru; Iijima, Atsuhiko; Bando, Takehiko

    2005-01-01

    For expanding application of virtual reality, such as rehabilitation engineering, concerns of cybersicknes should be cleared. We have investigated changes in autonomic regulations under real cycling and virtual mountain biking video with the first-person viewpoint. The results showed that the dominant sensory stimuli affected autonomic regulation with different process. The different process will lead to the hints for preventing cybersickness.

  2. Establishing a gold standard for manual cough counting: video versus digital audio recordings

    PubMed Central

    Smith, Jaclyn A; Earis, John E; Woodcock, Ashley A

    2006-01-01

    Background Manual cough counting is time-consuming and laborious; however it is the standard to which automated cough monitoring devices must be compared. We have compared manual cough counting from video recordings with manual cough counting from digital audio recordings. Methods We studied 8 patients with chronic cough, overnight in laboratory conditions (diagnoses were 5 asthma, 1 rhinitis, 1 gastro-oesophageal reflux disease and 1 idiopathic cough). Coughs were recorded simultaneously using a video camera with infrared lighting and digital sound recording. The numbers of coughs in each 8 hour recording were counted manually, by a trained observer, in real time from the video recordings and using audio-editing software from the digital sound recordings. Results The median cough frequency was 17.8 (IQR 5.9–28.7) cough sounds per hour in the video recordings and 17.7 (6.0–29.4) coughs per hour in the digital sound recordings. There was excellent agreement between the video and digital audio cough rates; mean difference of -0.3 coughs per hour (SD ± 0.6), 95% limits of agreement -1.5 to +0.9 coughs per hour. Video recordings had poorer sound quality even in controlled conditions and can only be analysed in real time (8 hours per recording). Digital sound recordings required 2–4 hours of analysis per recording. Conclusion Manual counting of cough sounds from digital audio recordings has excellent agreement with simultaneous video recordings in laboratory conditions. We suggest that ambulatory digital audio recording is therefore ideal for validating future cough monitoring devices, as this as this can be performed in the patients own environment. PMID:16887019

  3. Detection of illegal transfer of videos over the Internet

    NASA Astrophysics Data System (ADS)

    Chaisorn, Lekha; Sainui, Janya; Manders, Corey

    2010-07-01

    In this paper, a method for detecting infringements or modifications of a video in real-time is proposed. The method first segments a video stream into shots, after which it extracts some reference frames as keyframes. This process is performed employing a Singular Value Decomposition (SVD) technique developed in this work. Next, for each input video (represented by its keyframes), ordinal-based signature and SIFT (Scale Invariant Feature Transform) descriptors are generated. The ordinal-based method employs a two-level bitmap indexing scheme to construct the index for each video signature. The first level clusters all input keyframes into k clusters while the second level converts the ordinal-based signatures into bitmap vectors. On the other hand, the SIFT-based method directly uses the descriptors as the index. Given a suspect video (being streamed or transferred on the Internet), we generate the signature (ordinal and SIFT descriptors) then we compute similarity between its signature and those signatures in the database based on ordinal signature and SIFT descriptors separately. For similarity measure, besides the Euclidean distance, Boolean operators are also utilized during the matching process. We have tested our system by performing several experiments on 50 videos (each about 1/2 hour in duration) obtained from the TRECVID 2006 data set. For experiments set up, we refer to the conditions provided by TRECVID 2009 on "Content-based copy detection" task. In addition, we also refer to the requirements issued in the call for proposals by MPEG standard on the similar task. Initial result shows that our framework is effective and robust. As compared to our previous work, on top of the achievement we obtained by reducing the storage space and time taken in the ordinal based method, by introducing the SIFT features, we could achieve an overall accuracy in F1 measure of about 96% (improved about 8%).

  4. High-performance software-only H.261 video compression on PC

    NASA Astrophysics Data System (ADS)

    Kasperovich, Leonid

    1996-03-01

    This paper describes an implementation of a software H.261 codec for PC, that takes an advantage of the fast computational algorithms for DCT-based video compression, which have been presented by the author at the February's 1995 SPIE/IS&T meeting. The motivation for developing the H.261 prototype system is to demonstrate a feasibility of real time software- only videoconferencing solution to operate across a wide range of network bandwidth, frame rate, and resolution of the input video. As the bandwidths of current network technology will be increased, the higher frame rate and resolution of video to be transmitted is allowed, that requires, in turn, a software codec to be able to compress pictures of CIF (352 X 288) resolution at up to 30 frame/sec. Running on Pentium 133 MHz PC the codec presented is capable to compress video in CIF format at 21 - 23 frame/sec. This result is comparable to the known hardware-based H.261 solutions, but it doesn't require any specific hardware. The methods to achieve high performance, the program optimization technique for Pentium microprocessor along with the performance profile, showing the actual contribution of the different encoding/decoding stages to the overall computational process, are presented.

  5. Robust feedback zoom tracking for digital video surveillance.

    PubMed

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.

  6. Low-power coprocessor for Haar-like feature extraction with pixel-based pipelined architecture

    NASA Astrophysics Data System (ADS)

    Luo, Aiwen; An, Fengwei; Fujita, Yuki; Zhang, Xiangyu; Chen, Lei; Jürgen Mattausch, Hans

    2017-04-01

    Intelligent analysis of image and video data requires image-feature extraction as an important processing capability for machine-vision realization. A coprocessor with pixel-based pipeline (CFEPP) architecture is developed for real-time Haar-like cell-based feature extraction. Synchronization with the image sensor’s pixel frequency and immediate usage of each input pixel for the feature-construction process avoids the dependence on memory-intensive conventional strategies like integral-image construction or frame buffers. One 180 nm CMOS prototype can extract the 1680-dimensional Haar-like feature vectors, applied in the speeded up robust features (SURF) scheme, using an on-chip memory of only 96 kb (kilobit). Additionally, a low power dissipation of only 43.45 mW at 1.8 V supply voltage is achieved during VGA video procession at 120 MHz frequency with more than 325 fps. The Haar-like feature-extraction coprocessor is further evaluated by the practical application of vehicle recognition, achieving the expected high accuracy which is comparable to previous work.

  7. Digital Signal Processing For Low Bit Rate TV Image Codecs

    NASA Astrophysics Data System (ADS)

    Rao, K. R.

    1987-06-01

    In view of the 56 KBPS digital switched network services and the ISDN, low bit rate codecs for providing real time full motion color video are under various stages of development. Some companies have already brought the codecs into the market. They are being used by industry and some Federal Agencies for video teleconferencing. In general, these codecs have various features such as multiplexing audio and data, high resolution graphics, encryption, error detection and correction, self diagnostics, freezeframe, split video, text overlay etc. To transmit the original color video on a 56 KBPS network requires bit rate reduction of the order of 1400:1. Such a large scale bandwidth compression can be realized only by implementing a number of sophisticated,digital signal processing techniques. This paper provides an overview of such techniques and outlines the newer concepts that are being investigated. Before resorting to the data compression techniques, various preprocessing operations such as noise filtering, composite-component transformation and horizontal and vertical blanking interval removal are to be implemented. Invariably spatio-temporal subsampling is achieved by appropriate filtering. Transform and/or prediction coupled with motion estimation and strengthened by adaptive features are some of the tools in the arsenal of the data reduction methods. Other essential blocks in the system are quantizer, bit allocation, buffer, multiplexer, channel coding etc.

  8. Object detection in cinematographic video sequences for automatic indexing

    NASA Astrophysics Data System (ADS)

    Stauder, Jurgen; Chupeau, Bertrand; Oisel, Lionel

    2003-06-01

    This paper presents an object detection framework applied to cinematographic post-processing of video sequences. Post-processing is done after production and before editing. At the beginning of each shot of a video, a slate (also called clapperboard) is shown. The slate contains notably an electronic audio timecode that is necessary for audio-visual synchronization. This paper presents an object detection framework to detect slates in video sequences for automatic indexing and post-processing. It is based on five steps. The first two steps aim to reduce drastically the video data to be analyzed. They ensure high recall rate but have low precision. The first step detects images at the beginning of a shot possibly showing up a slate while the second step searches in these images for candidates regions with color distribution similar to slates. The objective is to not miss any slate while eliminating long parts of video without slate appearance. The third and fourth steps are statistical classification and pattern matching to detected and precisely locate slates in candidate regions. These steps ensure high recall rate and high precision. The objective is to detect slates with very little false alarms to minimize interactive corrections. In a last step, electronic timecodes are read from slates to automize audio-visual synchronization. The presented slate detector has a recall rate of 89% and a precision of 97,5%. By temporal integration, much more than 89% of shots in dailies are detected. By timecode coherence analysis, the precision can be raised too. Issues for future work are to accelerate the system to be faster than real-time and to extend the framework for several slate types.

  9. A novel vehicle tracking algorithm based on mean shift and active contour model in complex environment

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen

    2017-06-01

    Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.

  10. Augmenting the access grid using augmented reality

    NASA Astrophysics Data System (ADS)

    Li, Ying

    2012-01-01

    The Access Grid (AG) targets an advanced collaboration environment, with which multi-party group of people from remote sites can collaborate over high-performance networks. However, current AG still employs VIC (Video Conferencing Tool) to offer only pure video for remote communication, while most AG users expect to collaboratively refer and manipulate the 3D geometric models of grid services' results in live videos of AG session. Augmented Reality (AR) technique can overcome the deficiencies with its characteristics of combining virtual and real, real-time interaction and 3D registration, so it is necessary for AG to utilize AR to better assist the advanced collaboration environment. This paper introduces an effort to augment the AG by adding support for AR capability, which is encapsulated in the node service infrastructure, named as Augmented Reality Service (ARS). The ARS can merge the 3D geometric models of grid services' results and real video scene of AG into one AR environment, and provide the opportunity for distributed AG users to interactively and collaboratively participate in the AR environment with better experience.

  11. Miniaturized video-microscopy system for near real-time water quality biomonitoring using microfluidic chip-based devices

    NASA Astrophysics Data System (ADS)

    Huang, Yushi; Nigam, Abhimanyu; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    Biomonitoring studies apply biological responses of sensitive biomonitor organisms to rapidly detect adverse environmental changes such as presence of physic-chemical stressors and toxins. Behavioral responses such as changes in swimming patterns of small aquatic invertebrates are emerging as sensitive endpoints to monitor aquatic pollution. Although behavioral responses do not deliver information on an exact type or the intensity of toxicants present in water samples, they could provide orders of magnitude higher sensitivity than lethal endpoints such as mortality. Despite the advantages of behavioral biotests performed on sentinel organisms, their wider application in real-time and near realtime biomonitoring of water quality is limited by the lack of dedicated and automated video-microscopy systems. Current behavioral analysis systems rely mostly on static test conditions and manual procedures that are time-consuming and labor intensive. Tracking and precise quantification of locomotory activities of multiple small aquatic organisms requires high-resolution optical data recording. This is often problematic due to small size of fast moving animals and limitations of culture vessels that are not specially designed for video data recording. In this work, we capitalized on recent advances in miniaturized CMOS cameras, high resolution optics and biomicrofluidic technologies to develop near real-time water quality sensing using locomotory activities of small marine invertebrates. We present proof-of-concept integration of high-resolution time-resolved video recording system and high-throughput miniaturized perfusion biomicrofluidic platform for optical tracking of nauplii of marine crustacean Artemia franciscana. Preliminary data demonstrate that Artemia sp. exhibits rapid alterations of swimming patterns in response to toxicant exposure. The combination of video-microscopy and biomicrofluidic platform facilitated straightforward recording of fast moving objects. We envisage that prospectively such system can be scaled up to perform high-throughput water quality sensing in a robotic biomonitoring facility.

  12. YaQ: an architecture for real-time navigation and rendering of varied crowds.

    PubMed

    Maïm, Jonathan; Yersin, Barbara; Thalmann, Daniel

    2009-01-01

    The YaQ software platform is a complete system dedicated to real-time crowd simulation and rendering. Fitting multiple application domains, such as video games and VR, YaQ aims to provide efficient algorithms to generate crowds comprising up to thousands of varied virtual humans navigating in large-scale, global environments.

  13. Enhanced protocol for real-time transmission of echocardiograms over wireless channels.

    PubMed

    Cavero, Eva; Alesanco, Alvaro; García, Jose

    2012-11-01

    This paper presents a methodology to transmit clinical video over wireless networks in real-time. A 3-D set partitioning in hierarchical trees compression prior to transmission is proposed. In order to guarantee the clinical quality of the compressed video, a clinical evaluation specific to each video modality has to be made. This evaluation indicates the minimal transmission rate necessary for an accurate diagnosis. However, the channel conditions produce errors and distort the video. A reliable application protocol is therefore proposed using a hybrid solution in which either retransmission or retransmission combined with forward error correction (FEC) techniques are used, depending on the channel conditions. In order to analyze the proposed methodology, the 2-D mode of an echocardiogram has been assessed. A bandwidth of 200 kbps is necessary to guarantee its clinical quality. The transmission using the proposed solution and retransmission and FEC techniques working separately have been simulated and compared in high-speed uplink packet access (HSUPA) and worldwide interoperability for microwave access (WiMAX) networks. The proposed protocol achieves guaranteed clinical quality for bit error rates higher than with the other protocols, being for a mobile speed of 60 km/h up to 3.3 times higher for HSUPA and 10 times for WiMAX.

  14. Real-time three-dimensional soft tissue reconstruction for laparoscopic surgery.

    PubMed

    Kowalczuk, Jędrzej; Meyer, Avishai; Carlson, Jay; Psota, Eric T; Buettner, Shelby; Pérez, Lance C; Farritor, Shane M; Oleynikov, Dmitry

    2012-12-01

    Accurate real-time 3D models of the operating field have the potential to enable augmented reality for endoscopic surgery. A new system is proposed to create real-time 3D models of the operating field that uses a custom miniaturized stereoscopic video camera attached to a laparoscope and an image-based reconstruction algorithm implemented on a graphics processing unit (GPU). The proposed system was evaluated in a porcine model that approximates the viewing conditions of in vivo surgery. To assess the quality of the models, a synthetic view of the operating field was produced by overlaying a color image on the reconstructed 3D model, and an image rendered from the 3D model was compared with a 2D image captured from the same view. Experiments conducted with an object of known geometry demonstrate that the system produces 3D models accurate to within 1.5 mm. The ability to produce accurate real-time 3D models of the operating field is a significant advancement toward augmented reality in minimally invasive surgery. An imaging system with this capability will potentially transform surgery by helping novice and expert surgeons alike to delineate variance in internal anatomy accurately.

  15. Video Analysis of a Plucked String: An Example of Problem-based Learning

    NASA Astrophysics Data System (ADS)

    Wentworth, Christopher D.; Buse, Eric

    2009-11-01

    Problem-based learning is a teaching methodology that grounds learning within the context of solving a real problem. Typically the problem initiates learning of concepts rather than simply being an application of the concept, and students take the lead in identifying what must be developed to solve the problem. Problem-based learning in upper-level physics courses can be challenging, because of the time and financial requirements necessary to generate real data. Here, we present a problem that motivates learning about partial differential equations and their solution in a mathematical methods for physics course. Students study a plucked elastic cord using high speed digital video. After creating video clips of the cord motion under different tensions they are asked to create a mathematical model. Ultimately, students develop and solve a model that includes damping effects that are clearly visible in the videos. The digital video files used in this project are available on the web at http://physics.doane.edu .

  16. Digital Image Support in the ROADNet Real-time Monitoring Platform

    NASA Astrophysics Data System (ADS)

    Lindquist, K. G.; Hansen, T. S.; Newman, R. L.; Vernon, F. L.; Nayak, A.; Foley, S.; Fricke, T.; Orcutt, J.; Rajasekar, A.

    2004-12-01

    The ROADNet real-time monitoring infrastructure has allowed researchers to integrate geophysical monitoring data from a wide variety of signal domains. Antelope-based data transport, relational-database buffering and archiving, backup/replication/archiving through the Storage Resource Broker, and a variety of web-based distribution tools create a powerful monitoring platform. In this work we discuss our use of the ROADNet system for the collection and processing of digital image data. Remote cameras have been deployed at approximately 32 locations as of September 2004, including the SDSU Santa Margarita Ecological Reserve, the Imperial Beach pier, and the Pinon Flats geophysical observatory. Fire monitoring imagery has been obtained through a connection to the HPWREN project. Near-real-time images obtained from the R/V Roger Revelle include records of seafloor operations by the JASON submersible, as part of a maintenance mission for the H2O underwater seismic observatory. We discuss acquisition mechanisms and the packet architecture for image transport via Antelope orbservers, including multi-packet support for arbitrarily large images. Relational database storage supports archiving of timestamped images, image-processing operations, grouping of related images and cameras, support for motion-detect triggers, thumbnail images, pre-computed video frames, support for time-lapse movie generation and storage of time-lapse movies. Available ROADNet monitoring tools include both orbserver-based display of incoming real-time images and web-accessible searching and distribution of images and movies driven by the relational database (http://mercali.ucsd.edu/rtapps/rtimbank.php). An extension to the Kepler Scientific Workflow System also allows real-time image display via the Ptolemy project. Custom time-lapse movies may be made from the ROADNet web pages.

  17. Video Games for Neuro-Cognitive Optimization.

    PubMed

    Mishra, Jyoti; Anguera, Joaquin A; Gazzaley, Adam

    2016-04-20

    Sophisticated video games that integrate engaging cognitive training with real-time biosensing and neurostimulation have the potential to optimize cognitive performance in health and disease. We argue that technology development must be paired with rigorous scientific validation and discuss academic and industry opportunities in this field. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Pedagogy of the Observed: How Does Surveillance Technology Influence Dance Studio Education?

    ERIC Educational Resources Information Center

    Berg, Tanya

    2015-01-01

    A local trend in commercial dance studio education is the implementation of real-time digital video surveillance. This case study explores how digital video cameras in the dance studio environment affect asymmetrical power relationships already present in the commercial studio setting, as well as how surveillance impacts feminist pedagogical…

  19. Postpartum womens perspectives of engaging with a dietitian and exercise physiologist via video consultations for weight management: A qualitative evaluation

    USDA-ARS?s Scientific Manuscript database

    Optimising weight status after childbirth is important. Video consultations are an unexplored opportunity to deliver real-time support to postpartum women to improve lifestyle behaviours. This study aims to provide insight into postpartum women's perspectives of engaging with a dietitian and exercis...

  20. Postpartum women's perspectives of engaging with a dietitian and exercise physiologist via video consultations for weight managment: A qualitative evaluation

    USDA-ARS?s Scientific Manuscript database

    Optimising weight status after childbirth is important. Video consultations are an unexplored opportunity to deliver real-time support to postpartum women to improve lifestyle behaviours. This study aims to provide insight into postpartum women's perspectives of engaging with a dietitian and exercis...

  1. Semi-automatic 2D-to-3D conversion of human-centered videos enhanced by age and gender estimation

    NASA Astrophysics Data System (ADS)

    Fard, Mani B.; Bayazit, Ulug

    2014-01-01

    In this work, we propose a feasible 3D video generation method to enable high quality visual perception using a monocular uncalibrated camera. Anthropometric distances between face standard landmarks are approximated based on the person's age and gender. These measurements are used in a 2-stage approach to facilitate the construction of binocular stereo images. Specifically, one view of the background is registered in initial stage of video shooting. It is followed by an automatically guided displacement of the camera toward its secondary position. At the secondary position the real-time capturing is started and the foreground (viewed person) region is extracted for each frame. After an accurate parallax estimation the extracted foreground is placed in front of the background image that was captured at the initial position. So the constructed full view of the initial position combined with the view of the secondary (current) position, form the complete binocular pairs during real-time video shooting. The subjective evaluation results present a competent depth perception quality through the proposed system.

  2. SU-E-J-196: Implementation of An In-House Visual Feedback System for Motion Management During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, V; James, J; Wang, B

    Purpose: To describe an in-house video goggle feedback system for motion management during simulation and treatment of radiation therapy patients. Methods: This video goggle system works by splitting and amplifying the video output signal directly from the Varian Real-Time Position Management (RPM) workstation or TrueBeam imaging workstation into two signals using a Distribution Amplifier. The first signal S[1] gets reconnected back to the monitor. The second signal S[2] gets connected to the input of a Video Scaler. The S[2] signal can be scaled, cropped and panned in real time to display only the relevant information to the patient. The outputmore » signal from the Video Scaler gets connected to an HDMI Extender Transmitter via a DVI-D to HDMI converter cable. The S[2] signal can be transported from the HDMI Extender Transmitter to the HDMI Extender Receiver located inside the treatment room via a Cat5e/6 cable. Inside the treatment room, the HDMI Extender Receiver is permanently mounted on the wall near the conduit where the Cat5e/6 cable is located. An HDMI cable is used to connect from the output of the HDMI Receiver to the video goggles. Results: This video goggle feedback system is currently being used at two institutions. At one institution, the system was just recently implemented for simulation and treatments on two breath-hold gated patients with 8+ total fractions over a two month period. At the other institution, the system was used to treat 100+ breath-hold gated patients on three Varian TrueBeam linacs and has been operational for twelve months. The average time to prepare the video goggle system for treatment is less than 1 minute. Conclusion: The video goggle system provides an efficient and reliable method to set up a video feedback signal for radiotherapy patients with motion management.« less

  3. Subjective evaluation of H.265/HEVC based dynamic adaptive video streaming over HTTP (HEVC-DASH)

    NASA Astrophysics Data System (ADS)

    Irondi, Iheanyi; Wang, Qi; Grecos, Christos

    2015-02-01

    The Dynamic Adaptive Streaming over HTTP (DASH) standard is becoming increasingly popular for real-time adaptive HTTP streaming of internet video in response to unstable network conditions. Integration of DASH streaming techniques with the new H.265/HEVC video coding standard is a promising area of research. The performance of HEVC-DASH systems has been previously evaluated by a few researchers using objective metrics, however subjective evaluation would provide a better measure of the user's Quality of Experience (QoE) and overall performance of the system. This paper presents a subjective evaluation of an HEVC-DASH system implemented in a hardware testbed. Previous studies in this area have focused on using the current H.264/AVC (Advanced Video Coding) or H.264/SVC (Scalable Video Coding) codecs and moreover, there has been no established standard test procedure for the subjective evaluation of DASH adaptive streaming. In this paper, we define a test plan for HEVC-DASH with a carefully justified data set employing longer video sequences that would be sufficient to demonstrate the bitrate switching operations in response to various network condition patterns. We evaluate the end user's real-time QoE online by investigating the perceived impact of delay, different packet loss rates, fluctuating bandwidth, and the perceived quality of using different DASH video stream segment sizes on a video streaming session using different video sequences. The Mean Opinion Score (MOS) results give an insight into the performance of the system and expectation of the users. The results from this study show the impact of different network impairments and different video segments on users' QoE and further analysis and study may help in optimizing system performance.

  4. Compact full-motion video hyperspectral cameras: development, image processing, and applications

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.

    2015-10-01

    Emergence of spectral pixel-level color filters has enabled development of hyper-spectral Full Motion Video (FMV) sensors operating in visible (EO) and infrared (IR) wavelengths. The new class of hyper-spectral cameras opens broad possibilities of its utilization for military and industry purposes. Indeed, such cameras are able to classify materials as well as detect and track spectral signatures continuously in real time while simultaneously providing an operator the benefit of enhanced-discrimination-color video. Supporting these extensive capabilities requires significant computational processing of the collected spectral data. In general, two processing streams are envisioned for mosaic array cameras. The first is spectral computation that provides essential spectral content analysis e.g. detection or classification. The second is presentation of the video to an operator that can offer the best display of the content depending on the performed task e.g. providing spatial resolution enhancement or color coding of the spectral analysis. These processing streams can be executed in parallel or they can utilize each other's results. The spectral analysis algorithms have been developed extensively, however demosaicking of more than three equally-sampled spectral bands has been explored scarcely. We present unique approach to demosaicking based on multi-band super-resolution and show the trade-off between spatial resolution and spectral content. Using imagery collected with developed 9-band SWIR camera we demonstrate several of its concepts of operation including detection and tracking. We also compare the demosaicking results to the results of multi-frame super-resolution as well as to the combined multi-frame and multiband processing.

  5. Activity-based exploitation of Full Motion Video (FMV)

    NASA Astrophysics Data System (ADS)

    Kant, Shashi

    2012-06-01

    Video has been a game-changer in how US forces are able to find, track and defeat its adversaries. With millions of minutes of video being generated from an increasing number of sensor platforms, the DOD has stated that the rapid increase in video is overwhelming their analysts. The manpower required to view and garner useable information from the flood of video is unaffordable, especially in light of current fiscal restraints. "Search" within full-motion video has traditionally relied on human tagging of content, and video metadata, to provision filtering and locate segments of interest, in the context of analyst query. Our approach utilizes a novel machine-vision based approach to index FMV, using object recognition & tracking, events and activities detection. This approach enables FMV exploitation in real-time, as well as a forensic look-back within archives. This approach can help get the most information out of video sensor collection, help focus the attention of overburdened analysts form connections in activity over time and conserve national fiscal resources in exploiting FMV.

  6. SwarmSight: Real-time Tracking of Insect Antenna Movements and Proboscis Extension Reflex Using a Common Preparation and Conventional Hardware

    PubMed Central

    Birgiolas, Justas; Jernigan, Christopher M.; Gerkin, Richard C.; Smith, Brian H.; Crook, Sharon M.

    2017-01-01

    Many scientifically and agriculturally important insects use antennae to detect the presence of volatile chemical compounds and extend their proboscis during feeding. The ability to rapidly obtain high-resolution measurements of natural antenna and proboscis movements and assess how they change in response to chemical, developmental, and genetic manipulations can aid the understanding of insect behavior. By extending our previous work on assessing aggregate insect swarm or animal group movements from natural and laboratory videos using the video analysis software SwarmSight, we developed a novel, free, and open-source software module, SwarmSight Appendage Tracking (SwarmSight.org) for frame-by-frame tracking of insect antenna and proboscis positions from conventional web camera videos using conventional computers. The software processes frames about 120 times faster than humans, performs at better than human accuracy, and, using 30 frames per second (fps) videos, can capture antennal dynamics up to 15 Hz. The software was used to track the antennal response of honey bees to two odors and found significant mean antennal retractions away from the odor source about 1 s after odor presentation. We observed antenna position density heat map cluster formation and cluster and mean angle dependence on odor concentration. PMID:29364251

  7. Distributed Coding/Decoding Complexity in Video Sensor Networks

    PubMed Central

    Cordeiro, Paulo J.; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality. PMID:22736972

  8. Distributed coding/decoding complexity in video sensor networks.

    PubMed

    Cordeiro, Paulo J; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality.

  9. Virtual interactive presence for real-time, long-distance surgical collaboration during complex microsurgical procedures.

    PubMed

    Shenai, Mahesh B; Tubbs, R Shane; Guthrie, Barton L; Cohen-Gadol, Aaron A

    2014-08-01

    The shortage of surgeons compels the development of novel technologies that geographically extend the capabilities of individual surgeons and enhance surgical skills. The authors have developed "Virtual Interactive Presence" (VIP), a platform that allows remote participants to simultaneously view each other's visual field, creating a shared field of view for real-time surgical telecollaboration. The authors demonstrate the capability of VIP to facilitate long-distance telecollaboration during cadaveric dissection. Virtual Interactive Presence consists of local and remote workstations with integrated video capture devices and video displays. Each workstation mutually connects via commercial teleconferencing devices, allowing worldwide point-to-point communication. Software composites the local and remote video feeds, displaying a hybrid perspective to each participant. For demonstration, local and remote VIP stations were situated in Indianapolis, Indiana, and Birmingham, Alabama, respectively. A suboccipital craniotomy and microsurgical dissection of the pineal region was performed in a cadaveric specimen using VIP. Task and system performance were subjectively evaluated, while additional video analysis was used for objective assessment of delay and resolution. Participants at both stations were able to visually and verbally interact while identifying anatomical structures, guiding surgical maneuvers, and discussing overall surgical strategy. Video analysis of 3 separate video clips yielded a mean compositing delay of 760 ± 606 msec (when compared with the audio signal). Image resolution was adequate to visualize complex intracranial anatomy and provide interactive guidance. Virtual Interactive Presence is a feasible paradigm for real-time, long-distance surgical telecollaboration. Delay, resolution, scaling, and registration are parameters that require further optimization, but are within the realm of current technology. The paradigm potentially enables remotely located experts to mentor less experienced personnel located at the surgical site with applications in surgical training programs, remote proctoring for proficiency, and expert support for rural settings and across different counties.

  10. Deep Sea Gazing: Making Ship-Based Research Aboard RV Falkor Relevant and Accessible

    NASA Astrophysics Data System (ADS)

    Wiener, C.; Zykov, V.; Miller, A.; Pace, L. J.; Ferrini, V. L.; Friedman, A.

    2016-02-01

    Schmidt Ocean Institute (SOI) is a private, non-profit operating foundation established to advance the understanding of the world's oceans through technological advancement, intelligent observation, and open sharing of information. Our research vessel Falkorprovides ship time to selected scientists and supports a wide range of scientific functions, including ROV operations with live streaming capabilities. Since 2013, SOI has live streamed 55 ROV dives in high definition and recorded them onto YouTube. This has totaled over 327 hours of video which received 1,450, 461 views in 2014. SOI is one of the only research programs that makes their entire dive series available online, creating a rich collection of video data sets. In doing this, we provide an opportunity for scientists to make new discoveries in the video data that may have been missed earlier. These data sets are also available to students, allowing them to engage with real data in the classroom. SOI's video collection is also being used in a newly developed video management system, Ocean Video Lab. Telepresence-enabled research is an important component of Falkor cruises, which is exemplified by several that were conducted in 2015. This presentation will share a few case studies including an image tagging citizen science project conducted through the Squidle interface in partnership with the Australian Center for Field Robotics. Using real-time image data collected in the Timor Sea, numerous shore-based citizens created seafloor image tags that could be used by a machine learning algorithms on Falkor's high performance computer (HPC) to accomplish habitat characterization. With the use of the HPC system real-time robot tracking, image tagging, and other outreach connections were made possible, allowing scientists on board to engage with the public and build their knowledge base. The above mentioned examples will be used to demonstrate the benefits of remote data analysis and participatory engagement in science-based telepresence.

  11. CVD2014-A Database for Evaluating No-Reference Video Quality Assessment Algorithms.

    PubMed

    Nuutinen, Mikko; Virtanen, Toni; Vaahteranoksa, Mikko; Vuori, Tero; Oittinen, Pirkko; Hakkinen, Jukka

    2016-07-01

    In this paper, we present a new video database: CVD2014-Camera Video Database. In contrast to previous video databases, this database uses real cameras rather than introducing distortions via post-processing, which results in a complex distortion space in regard to the video acquisition process. CVD2014 contains a total of 234 videos that are recorded using 78 different cameras. Moreover, this database contains the observer-specific quality evaluation scores rather than only providing mean opinion scores. We have also collected open-ended quality descriptions that are provided by the observers. These descriptions were used to define the quality dimensions for the videos in CVD2014. The dimensions included sharpness, graininess, color balance, darkness, and jerkiness. At the end of this paper, a performance study of image and video quality algorithms for predicting the subjective video quality is reported. For this performance study, we proposed a new performance measure that accounts for observer variance. The performance study revealed that there is room for improvement regarding the video quality assessment algorithms. The CVD2014 video database has been made publicly available for the research community. All video sequences and corresponding subjective ratings can be obtained from the CVD2014 project page (http://www.helsinki.fi/psychology/groups/visualcognition/).

  12. Video Salient Object Detection via Fully Convolutional Networks.

    PubMed

    Wang, Wenguan; Shen, Jianbing; Shao, Ling

    This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).

  13. Film grain noise modeling in advanced video coding

    NASA Astrophysics Data System (ADS)

    Oh, Byung Tae; Kuo, C.-C. Jay; Sun, Shijun; Lei, Shawmin

    2007-01-01

    A new technique for film grain noise extraction, modeling and synthesis is proposed and applied to the coding of high definition video in this work. The film grain noise is viewed as a part of artistic presentation by people in the movie industry. On one hand, since the film grain noise can boost the natural appearance of pictures in high definition video, it should be preserved in high-fidelity video processing systems. On the other hand, video coding with film grain noise is expensive. It is desirable to extract film grain noise from the input video as a pre-processing step at the encoder and re-synthesize the film grain noise and add it back to the decoded video as a post-processing step at the decoder. Under this framework, the coding gain of the denoised video is higher while the quality of the final reconstructed video can still be well preserved. Following this idea, we present a method to remove film grain noise from image/video without distorting its original content. Besides, we describe a parametric model containing a small set of parameters to represent the extracted film grain noise. The proposed model generates the film grain noise that is close to the real one in terms of power spectral density and cross-channel spectral correlation. Experimental results are shown to demonstrate the efficiency of the proposed scheme.

  14. High-Speed Observer: Automated Streak Detection in SSME Plumes

    NASA Technical Reports Server (NTRS)

    Rieckoff, T. J.; Covan, M.; OFarrell, J. M.

    2001-01-01

    A high frame rate digital video camera installed on test stands at Stennis Space Center has been used to capture images of Space Shuttle main engine plumes during test. These plume images are processed in real time to detect and differentiate anomalous plume events occurring during a time interval on the order of 5 msec. Such speed yields near instantaneous availability of information concerning the state of the hardware. This information can be monitored by the test conductor or by other computer systems, such as the integrated health monitoring system processors, for possible test shutdown before occurrence of a catastrophic engine failure.

  15. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  16. MARTI: man-machine animation real-time interface

    NASA Astrophysics Data System (ADS)

    Jones, Christian M.; Dlay, Satnam S.

    1997-05-01

    The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.

  17. Investigating the quality of video consultations performed using fourth generation (4G) mobile telecommunications.

    PubMed

    Caffery, Liam J; Smith, Anthony C

    2015-09-01

    The use of fourth-generation (4G) mobile telecommunications to provide real-time video consultations were investigated in this study with the aims of determining if 4G is a suitable telecommunications technology; and secondly, to identify if variation in perceived audio and video quality were due to underlying network performance. Three patient end-points that used 4G Internet connections were evaluated. Consulting clinicians recorded their perception of audio and video quality using the International Telecommunications Union scales during clinics with these patient end-points. These scores were used to calculate a mean opinion score (MOS). The network performance metrics were obtained for each session and the relationships between these metrics and the session's quality scores were tested. Clinicians scored the quality of 50 hours of video consultations, involving 36 clinic sessions. The MOS for audio was 4.1 ± 0.62 and the MOS for video was 4.4 ± 0.22. Image impairment and effort to listen were also rated favourably. There was no correlation between audio or video quality and the network metrics of packet loss or jitter. These findings suggest that 4G networks are an appropriate telecommunication technology to deliver real-time video consultations. Variations in quality scores observed during this study were not explained by the packet loss and jitter in the underlying network. Before establishing a telemedicine service, the performance of the 4G network should be assessed at the location of the proposed service. This is due to known variability in performance of 4G networks. © The Author(s) 2015.

  18. Using Video Game Telemetry Data to Research Motor Chunking, Action Latencies, and Complex Cognitive-Motor Skill Learning.

    PubMed

    Thompson, Joseph J; McColeman, C M; Stepanova, Ekaterina R; Blair, Mark R

    2017-04-01

    Many theories of complex cognitive-motor skill learning are built on the notion that basic cognitive processes group actions into easy-to-perform sequences. The present work examines predictions derived from laboratory-based studies of motor chunking and motor preparation using data collected from the real-time strategy video game StarCraft 2. We examined 996,163 action sequences in the telemetry data of 3,317 players across seven levels of skill. As predicted, the latency to the first action (thought to be the beginning of a chunked sequence) is delayed relative to the other actions in the group. Other predictions, inspired by the memory drum theory of Henry and Rogers, received only weak support. Copyright © 2017 Cognitive Science Society, Inc.

  19. Video and thermal imaging system for monitoring interiors of high temperature reaction vessels

    DOEpatents

    Saveliev, Alexei V [Chicago, IL; Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL

    2012-01-10

    A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

  20. Immersive video for virtual tourism

    NASA Astrophysics Data System (ADS)

    Hernandez, Luis A.; Taibo, Javier; Seoane, Antonio J.

    2001-11-01

    This paper describes a new panoramic, 360 degree(s) video system and its use in a real application for virtual tourism. The development of this system has required to design new hardware for multi-camera recording, and software for video processing in order to elaborate the panorama frames and to playback the resulting high resolution video footage on a regular PC. The system makes use of new VR display hardware, such as WindowVR, in order to make the view dependent on the viewer's spatial orientation and so enhance immersiveness. There are very few examples of similar technologies and the existing ones are extremely expensive and/or impossible to be implemented on personal computers with acceptable quality. The idea of the system starts from the concept of Panorama picture, developed in technologies such as QuickTimeVR. This idea is extended to the concept of panorama frame that leads to panorama video. However, many problems are to be solved to implement this simple scheme. Data acquisition involves simultaneously footage recording in every direction, and latter processing to convert every set of frames in a single high resolution panorama frame. Since there is no common hardware capable of 4096x512 video playback at 25 fps rate, it must be stripped in smaller pieces which the system must manage to get the right frames of the right parts as the user movement demands it. As the system must be immersive, the physical interface to watch the 360 degree(s) video is a WindowVR, that is, a flat screen with an orientation tracker that the user holds in his hands, moving it like if it were a virtual window through which the city and its activity is being shown.

  1. MPEG-1 low-cost encoder solution

    NASA Astrophysics Data System (ADS)

    Grueger, Klaus; Schirrmeister, Frank; Filor, Lutz; von Reventlow, Christian; Schneider, Ulrich; Mueller, Gerriet; Sefzik, Nicolai; Fiedrich, Sven

    1995-02-01

    A solution for real-time compression of digital YCRCB video data to an MPEG-1 video data stream has been developed. As an additional option, motion JPEG and video telephone streams (H.261) can be generated. For MPEG-1, up to two bidirectional predicted images are supported. The required computational power for motion estimation and DCT/IDCT, memory size and memory bandwidth have been the main challenges. The design uses fast-page-mode memory accesses and requires only one single 80 ns EDO-DRAM with 256 X 16 organization for video encoding. This can be achieved only by using adequate access and coding strategies. The architecture consists of an input processing and filter unit, a memory interface, a motion estimation unit, a motion compensation unit, a DCT unit, a quantization control, a VLC unit and a bus interface. For using the available memory bandwidth by the processing tasks, a fixed schedule for memory accesses has been applied, that can be interrupted for asynchronous events. The motion estimation unit implements a highly sophisticated hierarchical search strategy based on block matching. The DCT unit uses a separated fast-DCT flowgraph realized by a switchable hardware unit for both DCT and IDCT operation. By appropriate multiplexing, only one multiplier is required for: DCT, quantization, inverse quantization, and IDCT. The VLC unit generates the video-stream up to the video sequence layer and is directly coupled with an intelligent bus-interface. Thus, the assembly of video, audio and system data can easily be performed by the host computer. Having a relatively low complexity and only small requirements for DRAM circuits, the developed solution can be applied to low-cost encoding products for consumer electronics.

  2. An Understanding Information Management System for a Real-Time Interactive Distance Education Environment

    ERIC Educational Resources Information Center

    He, Aiguo

    2009-01-01

    A real-time interactive distance lecture is a joint work that should be accomplished by the effort of the lecturer and his students in remote sites. It is important for the lecturer to get understanding information from the students which cannot be efficiently collected by only using video/audio channels between the lecturer and the students. This…

  3. Distance Learning between German and Japanese School Classes Based on a Real Time Video Conference Environment.

    ERIC Educational Resources Information Center

    Graf, Klaus-D.

    We have established an environment for German-Japanese school education projects using real time interactive audio-visual distance learning between remote classrooms. In periods of 8-12 weeks, two classes are dealing with the same subject matter, exchanging materials and results via e-mail and Internet. At 3 or 4 occasions the classes met on…

  4. Social Network Analysis of Crowds

    DTIC Science & Technology

    2009-08-06

    crowd responses to non-lethal weapons d tan sys ems – Prior, existing social relationships – Real time social interactions – Formal/informal...Crowd Behavior Testbed Layout Video Cameras on Trusses Importance of Social Factors • Response to non-lethal weapons fire depends on social ... relationships among crowd members – Pre-existing Personal Relationships – Ongoing Real Time Social Interactions – Formal/Informal Hierarchies • Therefore

  5. Efficient super-resolution image reconstruction applied to surveillance video captured by small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry

    2008-04-01

    The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.

  6. Parallel design patterns for a low-power, software-defined compressed video encoder

    NASA Astrophysics Data System (ADS)

    Bruns, Michael W.; Hunt, Martin A.; Prasad, Durga; Gunupudi, Nageswara R.; Sonachalam, Sekar

    2011-06-01

    Video compression algorithms such as H.264 offer much potential for parallel processing that is not always exploited by the technology of a particular implementation. Consumer mobile encoding devices often achieve real-time performance and low power consumption through parallel processing in Application Specific Integrated Circuit (ASIC) technology, but many other applications require a software-defined encoder. High quality compression features needed for some applications such as 10-bit sample depth or 4:2:2 chroma format often go beyond the capability of a typical consumer electronics device. An application may also need to efficiently combine compression with other functions such as noise reduction, image stabilization, real time clocks, GPS data, mission/ESD/user data or software-defined radio in a low power, field upgradable implementation. Low power, software-defined encoders may be implemented using a massively parallel memory-network processor array with 100 or more cores and distributed memory. The large number of processor elements allow the silicon device to operate more efficiently than conventional DSP or CPU technology. A dataflow programming methodology may be used to express all of the encoding processes including motion compensation, transform and quantization, and entropy coding. This is a declarative programming model in which the parallelism of the compression algorithm is expressed as a hierarchical graph of tasks with message communication. Data parallel and task parallel design patterns are supported without the need for explicit global synchronization control. An example is described of an H.264 encoder developed for a commercially available, massively parallel memorynetwork processor device.

  7. The role of the right hemisphere for processing of social interactions in normal adults using functional magnetic resonance imaging.

    PubMed

    Semrud-Clikeman, Margaret; Fine, Jodene Goldenring; Zhu, David C

    2011-01-01

    The main purpose of this study was to evaluate whole-brain and hemispheric activation in normal adult volunteers to videos depicting positive and negative social encounters. There are few studies that have utilized dynamic social stimuli to evaluate brain activation. Twenty young adults viewed videotaped vignettes during an functional magnetic resonance imaging procedure. The vignettes included positive and negative interaction scenes of social encounters. Significant right greater than left activation for positive and negative conditions was found for the social interaction videos in the amygdaloid complex, the inferior frontal gyrus, the fusiform gyrus, and the temporal gyri (p < 0.0001). These findings support the hypothesis that the regions of the right hemisphere are more active in the interpretation of social information processing than those regions in the left hemisphere. This study is a first step in understanding processing of dynamic stimuli using ecologically appropriate stimuli that approximate the real-time social processing that is appropriate for use with populations who experience significant social problems. Copyright © 2011 S. Karger AG, Basel.

  8. An embedded vision system for an unmanned four-rotor helicopter

    NASA Astrophysics Data System (ADS)

    Lillywhite, Kirt; Lee, Dah-Jye; Tippetts, Beau; Fowers, Spencer; Dennis, Aaron; Nelson, Brent; Archibald, James

    2006-10-01

    In this paper an embedded vision system and control module is introduced that is capable of controlling an unmanned four-rotor helicopter and processing live video for various law enforcement, security, military, and civilian applications. The vision system is implemented on a newly designed compact FPGA board (Helios). The Helios board contains a Xilinx Virtex-4 FPGA chip and memory making it capable of implementing real time vision algorithms. A Smooth Automated Intelligent Leveling daughter board (SAIL), attached to the Helios board, collects attitude and heading information to be processed in order to control the unmanned helicopter. The SAIL board uses an electrolytic tilt sensor, compass, voltage level converters, and analog to digital converters to perform its operations. While level flight can be maintained, problems stemming from the characteristics of the tilt sensor limits maneuverability of the helicopter. The embedded vision system has proven to give very good results in its performance of a number of real-time robotic vision algorithms.

  9. Polarimeter based on video matrix

    NASA Astrophysics Data System (ADS)

    Pavlov, Andrey; Kontantinov, Oleg; Shmirko, Konstantin; Zubko, Evgenij

    2017-11-01

    In this paper we present a new measurement tool - polarimeter, based on video matrix. Polarimetric measure- ments are usefull, for example, when monitoring water areas pollutions and atmosphere constituents. New device is small enough to mount on unmanned aircraft vehicles (quadrocopters) and stationary platforms. Device and corresponding software turns it into real-time monitoring system, that helps to solve some research problems.

  10. State of the "art": a taxonomy of artistic stylization techniques for images and video.

    PubMed

    Kyprianidis, Jan Eric; Collomosse, John; Wang, Tinghuai; Isenberg, Tobias

    2013-05-01

    This paper surveys the field of nonphotorealistic rendering (NPR), focusing on techniques for transforming 2D input (images and video) into artistically stylized renderings. We first present a taxonomy of the 2D NPR algorithms developed over the past two decades, structured according to the design characteristics and behavior of each technique. We then describe a chronology of development from the semiautomatic paint systems of the early nineties, through to the automated painterly rendering systems of the late nineties driven by image gradient analysis. Two complementary trends in the NPR literature are then addressed, with reference to our taxonomy. First, the fusion of higher level computer vision and NPR, illustrating the trends toward scene analysis to drive artistic abstraction and diversity of style. Second, the evolution of local processing approaches toward edge-aware filtering for real-time stylization of images and video. The survey then concludes with a discussion of open challenges for 2D NPR identified in recent NPR symposia, including topics such as user and aesthetic evaluation.

  11. Real-time transmission of digital video using variable-length coding

    NASA Technical Reports Server (NTRS)

    Bizon, Thomas P.; Shalkhauser, Mary JO; Whyte, Wayne A., Jr.

    1993-01-01

    Huffman coding is a variable-length lossless compression technique where data with a high probability of occurrence is represented with short codewords, while 'not-so-likely' data is assigned longer codewords. Compression is achieved when the high-probability levels occur so frequently that their benefit outweighs any penalty paid when a less likely input occurs. One instance where Huffman coding is extremely effective occurs when data is highly predictable and differential coding can be applied (as with a digital video signal). For that reason, it is desirable to apply this compression technique to digital video transmission; however, special care must be taken in order to implement a communication protocol utilizing Huffman coding. This paper addresses several of the issues relating to the real-time transmission of Huffman-coded digital video over a constant-rate serial channel. Topics discussed include data rate conversion (from variable to a fixed rate), efficient data buffering, channel coding, recovery from communication errors, decoder synchronization, and decoder architectures. A description of the hardware developed to execute Huffman coding and serial transmission is also included. Although this paper focuses on matters relating to Huffman-coded digital video, the techniques discussed can easily be generalized for a variety of applications which require transmission of variable-length data.

  12. Improving the Capture and Re-Use of Data with Wearable Computers

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Fating, Curtis C.; Green, Daniel; Powers, Edward I. (Technical Monitor)

    2001-01-01

    At the Goddard Space Flight Center, members of the Real-Time Software Engineering Branch are developing a wearable, wireless, voice-activated computer for use in a wide range of crosscutting space applications that would benefit from having instant Internet, network, and computer access with complete mobility and hands-free operations. These applications can be applied across many fields and disciplines including spacecraft fabrication, integration and testing (including environmental testing), and astronaut on-orbit control and monitoring of experiments with ground based experimenters. To satisfy the needs of NASA customers, this wearable computer needs to be connected to a wireless network, to transmit and receive real-time video over the network, and to receive updated documents via the Internet or NASA servers. The voice-activated computer, with a unique vocabulary, will allow the users to access documentation in a hands free environment and interact in real-time with remote users. We will discuss wearable computer development, hardware and software issues, wireless network limitations, video/audio solutions and difficulties in language development.

  13. Equipment issues regarding the collection of video data for research

    NASA Astrophysics Data System (ADS)

    Kung, Rebecca Lippmann; Kung, Peter; Linder, Cedric

    2005-12-01

    Physics education research increasingly makes use of video data for analysis of student learning and teaching practice. Collection of these data is conceptually simple but execution is often fraught with costly and time-consuming complications. This pragmatic paper discusses the development of systems to record and permanently archive audio and video data in real-time. We focus on a system based upon consumer video DVD recorders, but also give an overview of other technologies and detail issues common to all systems. We detail common yet unexpected complications, particularly with regard to sound quality and compatibility with transcription software. Information specific to fixed and transportable systems, other technology options, and generic and specific equipment recommendations are given in supplemental appendices

  14. Real time video analysis to monitor neonatal medical condition

    NASA Astrophysics Data System (ADS)

    Shirvaikar, Mukul; Paydarfar, David; Indic, Premananda

    2017-05-01

    One in eight live births in the United States is premature and these infants have complications leading to life threatening events such as apnea (pauses in breathing), bradycardia (slowness of heart) and hypoxia (oxygen desaturation). Infant movement pattern has been hypothesized as an important predictive marker for these life threatening events. Thus estimation of movement along with behavioral states, as a precursor of life threatening events, can be useful for risk stratification of infants as well as for effective management of disease state. However, more important and challenging is the determination of the behavioral state of the infant. This information includes important cues such as sleep position and the status of the eyes, which are important markers for neonatal neurodevelopment state. This paper explores the feasibility of using real time video analysis to monitor the condition of premature infants. The image of the infant can be segmented into regions to localize and focus on specific areas of interest. Analysis of the segmented regions can be performed to identify different parts of the body including the face, arms, legs and torso. This is necessary due to real-time processing speed considerations. Such a monitoring system would be of great benefit as an aide to medical staff in neonatal hospital settings requiring constant surveillance. Any such system would have to satisfy extremely stringent reliability and accuracy requirements, before it can be deployed in a hospital care unit, due to obvious reasons. The effect of lighting conditions and interference will have to be mitigated to achieve such performance.

  15. The Variability of Neural Responses to Naturalistic Videos Change with Age and Sex.

    PubMed

    Petroni, Agustin; Cohen, Samantha S; Ai, Lei; Langer, Nicolas; Henin, Simon; Vanderwal, Tamara; Milham, Michael P; Parra, Lucas C

    2018-01-01

    Neural development is generally marked by an increase in the efficiency and diversity of neural processes. In a large sample ( n = 114) of human children and adults with ages ranging from 5 to 44 yr, we investigated the neural responses to naturalistic video stimuli. Videos from both real-life classroom settings and Hollywood feature films were used to probe different aspects of attention and engagement. For all stimuli, older ages were marked by more variable neural responses. Variability was assessed by the intersubject correlation of evoked electroencephalographic responses. Young males also had less-variable responses than young females. These results were replicated in an independent cohort ( n = 303). When interpreted in the context of neural maturation, we conclude that neural function becomes more variable with maturity, at least during the passive viewing of real-world stimuli.

  16. Missile signal processing common computer architecture for rapid technology upgrade

    NASA Astrophysics Data System (ADS)

    Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul

    2004-10-01

    Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application may be programmed under existing real-time operating systems using parallel processing software libraries, resulting in highly portable code that can be rapidly migrated to new platforms as processor technology evolves. Use of standardized development tools and 3rd party software upgrades are enabled as well as rapid upgrade of processing components as improved algorithms are developed. The resulting weapon system will have a superior processing capability over a custom approach at the time of deployment as a result of a shorter development cycles and use of newer technology. The signal processing computer may be upgraded over the lifecycle of the weapon system, and can migrate between weapon system variants enabled by modification simplicity. This paper presents a reference design using the new approach that utilizes an Altivec PowerPC parallel COTS platform. It uses a VxWorks-based real-time operating system (RTOS), and application code developed using an efficient parallel vector library (PVL). A quantification of computing requirements and demonstration of interceptor algorithm operating on this real-time platform are provided.

  17. A portable high-definition electronic endoscope based on embedded system

    NASA Astrophysics Data System (ADS)

    Xu, Guang; Wang, Liqiang; Xu, Jin

    2012-11-01

    This paper presents a low power and portable highdefinition (HD) electronic endoscope based on CortexA8 embedded system. A 1/6 inch CMOS image sensor is used to acquire HD images with 1280 *800 pixels. The camera interface of A8 is designed to support images of various sizes and support multiple inputs of video format such as ITUR BT601/ 656 standard. Image rotation (90 degrees clockwise) and image process functions are achieved by CAMIF. The decode engine of the processor plays back or records HD videos at speed of 30 frames per second, builtin HDMI interface transmits high definition images to the external display. Image processing procedures such as demosaicking, color correction and auto white balance are realized on the A8 platform. Other functions are selected through OSD settings. An LCD panel displays the real time images. The snapshot pictures or compressed videos are saved in an SD card or transmited to a computer through USB interface. The size of the camera head is 4×4.8×15 mm with more than 3 meters working distance. The whole endoscope system can be powered by a lithium battery, with the advantages of miniature, low cost and portability.

  18. Real time imaging of infrared scene data generated by the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) system

    NASA Astrophysics Data System (ADS)

    Baca, Michael J.

    1990-09-01

    A system to display images generated by the Naval Postgraduate School Infrared Search and Target Designation (a modified AN/SAR-8 Advanced Development Model) in near real time was developed using a 33 MHz NIC computer as the central controller. This computer was enhanced with a Data Translation DT2861 Frame Grabber for image processing and an interface board designed and constructed at NPS to provide synchronization between the IRSTD and Frame Grabber. Images are displayed in false color in a video raster format on a 512 by 480 pixel resolution monitor. Using FORTRAN, programs have been written to acquire, unscramble, expand and display a 3 deg sector of data. The time line for acquisition, processing and display has been analyzed and repetition periods of less than four seconds for successive screen displays have been achieved. This represents a marked improvement over previous methods necessitating slower Direct Memory Access transfers of data into the Frame Grabber. Recommendations are made for further improvements to enhance the speed and utility of images produced.

  19. Real-time monitoring prefrontal activities during online video game playing by functional near-infrared spectroscopy.

    PubMed

    Li, Yue; Zhang, Lei; Long, Kehong; Gong, Hui; Lei, Hao

    2018-02-16

    A growing body of literature has suggested that video game playing can induce functional and structural plasticity of the brain. The underlying mechanisms, however, remain poorly understood. In this study, functional near-infrared spectroscopy (fNIRS) was used to record prefrontal activities in 24 experienced game players when they played a massively multiplayer online battle arena video game, League of Legends (LOL), under naturalistic conditions. It was observed that game onset was associated with significant activations in the ventrolateral prefrontal cortex (VLPFC) and concomitant deactivations in the dorsolateral prefrontal cortex (DLPFC) and frontal pole area (FPA). Game events, such as slaying an enemy and being slain by an enemy evoked region-specific time-locked hemodynamic/oxygenation responses in the prefrontal cortex (PFC). It was proposed that the VLPFC activities during LOL playing are likely responses to visuo-motor task load of the game, while the DLPFC/FPA activities may be involved in the constant shifts of attentional states and allocation of cognitive resources required by game playing. The present study demonstrated that it is feasible to use fNIRS to monitor real-time prefrontal activity during online video game playing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Creating an animation-enhanced video library of hepato-pancreato-biliary and transplantation surgical procedures.

    PubMed

    Fung, Albert; Kelly, Paul; Tait, Gordon; Greig, Paul D; McGilvray, Ian D

    2016-01-01

    The potential for integrating real-time surgical video and state-of-the art animation techniques has not been widely applied to surgical education. This paper describes the use of new technology for creating videos of liver, pancreas and transplant surgery, annotating them with 3D animations, resulting in a freely-accessible online resource: The Toronto Video Atlas of Liver, Pancreas and Transplant Surgery ( http://tvasurg.ca ). The atlas complements the teaching provided to trainees in the operating room, and the techniques described in this study can be readily adapted by other surgical training programmes.

Top