A Probabilistic Ontology Development Methodology
2014-06-01
Test, and Evaluation; Acquisition; and Planning and Marketing ," in Handbook of Systems Engineering and Management .: John Wiley & Sons, 2009, pp...Intelligence and knowledge management . However, many real world problems in these disciplines are burdened by incomplete information and other sources...knowledge engineering, Artificial Intelligence and knowledge management . However, many real world problems in these disciplines are burdened by
Engineering Encounters: The Tightrope Challenge
ERIC Educational Resources Information Center
Burton, Bill
2014-01-01
In order to prepare students to become the next innovators, teachers need to provide real-world challenges that allow children to exercise their innovation muscles. Innovation starts with a problem and innovators work to solve a problem by planning, creating, and testing. The real-world innovation process does not happen on a worksheet, and it…
A New Approach to Teaching Biomechanics Through Active, Adaptive, and Experiential Learning.
Singh, Anita
2017-07-01
Demand of biomedical engineers continues to rise to meet the needs of healthcare industry. Current training of bioengineers follows the traditional and dominant model of theory-focused curricula. However, the unmet needs of the healthcare industry warrant newer skill sets in these engineers. Translational training strategies such as solving real world problems through active, adaptive, and experiential learning hold promise. In this paper, we report our findings of adding a real-world 4-week problem-based learning unit into a biomechanics capstone course for engineering students. Surveys assessed student perceptions of the activity and learning experience. While students, across three cohorts, felt challenged to solve a real-world problem identified during the simulation lab visit, they felt more confident in utilizing knowledge learned in the biomechanics course and self-directed research. Instructor evaluations indicated that the active and experiential learning approach fostered their technical knowledge and life-long learning skills while exposing them to the components of adaptive learning and innovation.
ERIC Educational Resources Information Center
Bender, Melinda; Fulwider, Miles; Stemkoski, Michael J.
2008-01-01
This paper encourages the investigation of real world problems by students and faculty and links recommended student competencies with project based learning. In addition to the traditional course objectives, project-based learning (PBL) uses real world problems for classroom instruction and fieldwork to connect students, instructors, and industry…
Ingenuity in Action: Connecting Tinkering to Engineering Design Processes
ERIC Educational Resources Information Center
Wang, Jennifer; Werner-Avidon, Maia; Newton, Lisa; Randol, Scott; Smith, Brooke; Walker, Gretchen
2013-01-01
The Lawrence Hall of Science, a science center, seeks to replicate real-world engineering at the "Ingenuity in Action" exhibit, which consists of three open-ended challenges. These problems encourage children to engage in engineering design processes and problem-solving techniques through tinkering. We observed and interviewed 112…
ERIC Educational Resources Information Center
Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.
2013-01-01
Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…
Bridging STEM in a Real World Problem
ERIC Educational Resources Information Center
English, Lyn D.; Mousoulides, Nicholas G.
2015-01-01
Engineering-based modeling activities provide a rich source of meaningful situations that capitalize on and extend students' routine learning. By integrating such activities within existing curricula, students better appreciate how their school learning in mathematics and science applies to problems in the outside world. Furthermore, modeling…
ERIC Educational Resources Information Center
Venkateswarlu, P.
2017-01-01
Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with…
Does What I Eat and Drink Affect My Teeth?
ERIC Educational Resources Information Center
Brown, Sherri Lynne
2013-01-01
"A Framework for K-12 Science Education" (NRC 2012) recommends that science teachers provide experiences for students to see "how science and engineering pertain to real-world problems and to explore opportunities to apply their scientific knowledge to engineering design problems once this linkage is made" (NRC 2012, p. 32). To…
Get a Grip! A Middle School Engineering Challenge
ERIC Educational Resources Information Center
Olds, Suzanne A.; Harrell, Deborah A.; Valente, Michael E.
2006-01-01
Investigating the field of engineering offers the opportunity for interdisciplinary, hands-on, inquiry-based units that integrate real-world applications. However, many K-12 students are not exposed to engineering until they enter college. Get a Grip! is a problem-based unit that places middle school students in the role of engineers who are…
Creativity among Geomatical Engineering Students
ERIC Educational Resources Information Center
Keh, Lim Keng; Ismail, Zaleha; Yusof, Yudariah Mohammad
2017-01-01
This research aims to find out the creativity among the geomatical engineering students. 96 geomatical engineering students participated in the research. They were divided into 24 groups of 4 students. Each group were asked to solve a real world problem collaboratively with their creative thinking. Their works were collected and then analysed as…
ERIC Educational Resources Information Center
Capobianco, Brenda M.; Tyrie, Nancy
2009-01-01
In a unique school-university partnership, methods students collaborated with fifth graders to use the engineering design process to build their problem-solving skills. By placing the problem in the context of a client having particular needs, the problem took on a real-world appeal that students found intriguing and inviting. In this article, the…
ERIC Educational Resources Information Center
Parks, Melissa
2014-01-01
Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…
Engineering Problem-Solving Knowledge: The Impact of Context
ERIC Educational Resources Information Center
Wolff, Karin
2017-01-01
Employer complaints of engineering graduate inability to "apply knowledge" suggests a need to interrogate the complex theory-practice relationship in twenty-first century real world contexts. Focussing specifically on the application of mathematics, physics and logic-based disciplinary knowledge, the research examines engineering…
Marshall, Matthew M; Carrano, Andres L; Dannels, Wendy A
2016-10-01
Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and best practices of STEM instruction to give first-year DHH students enrolled in a postsecondary STEM program the opportunity to develop problem-solving skills in real-world scenarios. Using an industrial engineering laboratory that provides manufacturing and warehousing environments, students were immersed in real-world scenarios in which they worked on teams to address prescribed problems encountered during the activities. The highly structured, Plan-Do-Check-Act approach commonly used in industry was adapted for the DHH student participants to document and communicate the problem-solving steps. Students who experienced the intervention realized a 14.6% improvement in problem-solving proficiency compared with a control group, and this gain was retained at 6 and 12 months, post-intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Fryda, Lawrence J.; Harrington, Robert; Szumal, Clint
Electronics Engineering Technology majors in the Industrial and Engineering Technology department at Central Michigan University have developed many real-world projects that represent the type of problem-solving projects encouraged by industry. Two projects that can be used by other educators as freestanding projects or as the core for further…
ERIC Educational Resources Information Center
Baldwin, Blake; Koenig, Kathleen; Van der Bent, Andries
2016-01-01
Integrating engineering and science in the classroom can be challenging, and creating authentic experiences that address real-world problems is often even more difficult. "A Framework for K-12 Science Education" (NRC 2012), however, calls for high school graduates to be able to undertake more complex engineering design projects related…
Engineering Design in the Primary School: Applying STEM Concepts to Build an Optical Instrument
ERIC Educational Resources Information Center
King, Donna; English, Lyn D.
2016-01-01
Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students' learning of STEM concepts.…
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin
Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.
Reinventing the Wheel: Design and Problem Solving
ERIC Educational Resources Information Center
Blasetti, Sean M.
2010-01-01
This article describes a design problem that not only takes students through the technological design process, but it also provides them with real-world problem-solving experience as it relates to the manufacturing and engineering fields. It begins with a scenario placing the student as a custom wheel designer for an automotive manufacturing…
ERIC Educational Resources Information Center
Nadelson, Louis S.; Pfiester, Joshua; Callahan, Janet; Pyke, Patricia
2015-01-01
Science, technology, engineering, and mathematics (STEM) professional development for K-5 teachers often includes engineering design as a focus. Because engineering applications provide perspective to both teachers and their students in terms of how mathematic and scientific principles are employed to solve real-world problems (Baine, 2004; Roden,…
Project-Based Learning to Enhance Teaching Embedded Systems
ERIC Educational Resources Information Center
Sababha, Belal H.; Alqudah, Yazan A.; Abualbasal, Abdelraheem; AlQaralleh, Esam A.
2016-01-01
Exposing engineering students during their education to real-world problems and giving them the chance to apply what they learn in the classroom is a vital element of engineering education. The Embedded Systems course at Princess Sumaya University for Technology (PSUT) is one of the main courses that bridge the gap between theoretical electrical…
Designing a Better Experience: A Qualitative Investigation of Student Engineering Internships
ERIC Educational Resources Information Center
Paknejad, Mohammad R.
2016-01-01
Science, Technology, Engineering and Mathematics (STEM) education play a very important role in preparing students with skills necessary to obtain better jobs, solve real-world challenges, and compete in the global economy. STEM education develops critical thinking and the ability to solve complex problems. Research showed that 8 out of 10 most…
COMPARISON OF AN ENGINE OPERATED ON CANOLA BASED BIODIESEL TO AN ENGINE OPERATED ON PETROLEUM DIESEL
The educational mission of the university will be met in two ways. First, students who are involved in the project will enhance their learning through their participation in the interdisciplinary solution of a real-world problem. Second, the students will demonstrate the v...
Smythe, M H
1997-01-01
Automation, a hot topic in the laboratory world today, can be a very expensive option. Those who are considering implementing automation can save time and money by examining the issues from the standpoint of an industrial/manufacturing engineer. The engineer not only asks what problems will be solved by automation, but what problems will be created. This article discusses questions that must be asked and answered to ensure that automation efforts will yield real and substantial payoffs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Thomas W.; Quach, Tu-Thach; Detry, Richard Joseph
Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline ofmore » CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.« less
NASA Astrophysics Data System (ADS)
Masetti, Margaret; Bowers, S.
2011-01-01
Students around the country are becoming experts on the James Webb Space Telescope by designing solutions to two of the design challenges presented by this complex mission. RealWorld-InWorld has two parts; the first (the Real World portion) has high-school students working face to face in their classroom as engineers and scientists. The InWorld phase starts December 15, 2010 as interested teachers and their teams of high school students register to move their work into a 3D multi-user virtual world environment. At the start of this phase, college students from all over the country choose a registered team to lead InWorld. Each InWorld team is also assigned an engineer or scientist mentor. In this virtual world setting, each team refines their design solutions and creates a 3D model of the Webb telescope. InWorld teams will use 21st century tools to collaborate and build in the virtual world environment. Each team will learn, not only from their own team members, but will have the opportunity to interact with James Webb Space Telescope researchers through the virtual world setting, which allows for synchronous interactions. Halfway through the challenge, design solutions will be critiqued and a mystery problem will be introduced for each team. The top five teams will be invited to present their work during a synchronous Education Forum April 14, 2011. The top team will earn scholarships and technology. This is an excellent opportunity for professionals in both astronomy and associated engineering disciplines to become involved with a unique educational program. Besides the chance to mentor a group of interested students, there are many opportunities to interact with the students as a guest, via chats and presentations.
Impact on Learning Award, 2002.
ERIC Educational Resources Information Center
School Planning & Management, 2002
2002-01-01
Describes winners of the title award, K-12 school facilities that have solved real-world problems through design, engineering, and technology solutions. Winners were named in the following categories: accessibility, accommodating technology, energy efficient/hi-performance buildings, furniture and equipment for learning, historic preservation,…
Leadership emergence in engineering design teams.
Guastello, Stephen J
2011-01-01
Leaders emerge from leaderless groups as part of a more complex emerging social structure. Several studies have shown that the emerging structure is aptly described by a swallowtail catastrophe model where the control parameters differ depending on whether creative problem solving, production, coordination-intensive, or emergency management groups are involved. The present study explored creative problem solving further where the participants were engaged in real-world tasks extending over several months rather than short laboratory tasks. Participants were engineering students who were organized into groups of to people who designed, built, and tested a prototype product that would solve a real-world problem. At the th week of work they completed a questionnaire indicating who was most like the leader of their group, second most like the leader, along with other questions about individuals' contributions to the group process. Results showed that the swallowtail model (R = .) exhibited a strong advantage over the linear alternative model (R = .) for predicting leadership emergence. The three control variables were control of the task, creative contributions to the group's work, and facilitating the creative contributions of others.
2000 FIRST Robotics Competition
NASA Technical Reports Server (NTRS)
Purman, Richard
2000-01-01
The New Horizons Regional Education Center (NHREC) in Hampton, VA sought and received NASA funding to support its participation in the 2000 FIRST Robotics competition. FIRST, Inc. (For Inspiration and Recognition of Science and Technology) is an organization which encourages the application of creative science, math, and computer science principles to solve real-world engineering problems. The FIRST competition is an international engineering contest featuring high school, government, and business partnerships.
ERIC Educational Resources Information Center
Ward, Lauren; Lyden, Sarah; Fitzallen, Noleine
2016-01-01
Context based learning (CBL) is a powerful tool that utilises areas of student interest framed in meaningful contexts to foster development of new skills and understanding. For middle school students, engineering activities that relate to real-world problems provide suitable CBL contexts for acquiring conceptual scientific and mathematical…
Dancing with STEAM: Creative Movement Generates Electricity for Young Learners
ERIC Educational Resources Information Center
Simpson Steele, Jamie; Fulton, Lori; Fanning, Lisa
2016-01-01
The integration of science, technology, engineering, arts, and mathematics (STEAM) serves to develop creative thinking and twenty-first-century skills in the classroom (Maeda 2012). Learning through STEAM promotes novelty, innovation, ingenuity, and task-specific purposefulness to solve real-world problems--all aspects that define creativity. Lisa…
A shrinking hypersphere PSO for engineering optimisation problems
NASA Astrophysics Data System (ADS)
Yadav, Anupam; Deep, Kusum
2016-03-01
Many real-world and engineering design problems can be formulated as constrained optimisation problems (COPs). Swarm intelligence techniques are a good approach to solve COPs. In this paper an efficient shrinking hypersphere-based particle swarm optimisation (SHPSO) algorithm is proposed for constrained optimisation. The proposed SHPSO is designed in such a way that the movement of the particle is set to move under the influence of shrinking hyperspheres. A parameter-free approach is used to handle the constraints. The performance of the SHPSO is compared against the state-of-the-art algorithms for a set of 24 benchmark problems. An exhaustive comparison of the results is provided statistically as well as graphically. Moreover three engineering design problems namely welded beam design, compressed string design and pressure vessel design problems are solved using SHPSO and the results are compared with the state-of-the-art algorithms.
Attitudes about high school physics in relationship to gender and ethnicity: A mixed method analysis
NASA Astrophysics Data System (ADS)
Hafza, Rabieh Jamal
There is an achievement gap and lack of participation in science, technology, engineering, and math (STEM) by minority females. The number of minority females majoring in STEM related fields and earning advanced degrees in these fields has not significantly increased over the past 40 years. Previous research has evaluated the relationship between self-identity concept and factors that promote the academic achievement as well the motivation of students to study different subject areas. This study examined the interaction between gender and ethnicity in terms of physics attitudes in the context of real world connections, personal interest, sense making/effort, problem solving confidence, and problem solving sophistication. The Colorado Learning Attitudes about Science Survey (CLASS) was given to 131 students enrolled in physics classes. There was a statistically significant Gender*Ethnicity interaction for attitude in the context of Real World Connections, Personal Interest, Sense Making/Effort, Problem Solving Confidence, and Problem Solving Sophistication as a whole. There was also a statistically significant Gender*Ethnicity interaction for attitude in the context of Real World Connections, Personal Interest, and Sense Making/Effort individually. Five Black females were interviewed to triangulate the quantitative results and to describe the experiences of minority females taking physics classes. There were four themes that emerged from the interviews and supported the findings from the quantitative results. The data supported previous research done on attitudes about STEM. The results reported that Real World Connections and Personal Interest could be possible factors that explain the lack of participation and achievement gaps that exists among minority females.
A compatible control algorithm for greenhouse environment control based on MOCC strategy.
Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua
2011-01-01
Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system.
A Compatible Control Algorithm for Greenhouse Environment Control Based on MOCC Strategy
Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua
2011-01-01
Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system. PMID:22163799
"You Can't Go on the Other Side of the Fence": Preservice Teachers and Real-World Problems
ERIC Educational Resources Information Center
Simic-Muller, Ksenija; Fernandes, Anthony; Felton-Koestler, Mathew D.
2016-01-01
Our study investigates preservice teachers' perceptions of real-world problems; their beliefs about teaching real-world contexts, especially ones sociopolitical in nature; and their ability to pose meaningful real-world problems. In this paper we present cases of three preservice teachers who participated in interviews that probed their thinking…
New Horizons Regional Education Center 1999 FIRST Robotics Competition
NASA Technical Reports Server (NTRS)
Purman, Richard I.
1999-01-01
The New Horizons Regional Education Center (NHREC) in Hampton, VA sought and received NASA funding to support its participation in the 1999 FIRST Robotics competition. FIRST, Inc. (For Inspiration and Recognition of Science and Technology) is an organization which encourages the application of creative science, math, and computer science principles to solve real-world engineering problems. The FIRST competition is an international engineering contest featuring high school, government, and business partnerships.
New Horizons Regional Education Center 2001 FIRST Robotics Competition
NASA Technical Reports Server (NTRS)
2001-01-01
The New Horizons Regional Education Center (NHREC) in Hampton, VA sought and received NASA funding to support its participation in the 2001 FIRST Robotics competition. FIRST, Inc. (For Inspiration and Recognition of Science and Technology) is an organization which encourages the application of creative science, math, and computer science principles to solve real-world engineering problems. The FIRST competition is an international engineering contest featuring high school, government, and business partnerships.
FIRST 2002, 2003, 2004 Robotics Competition(s)
NASA Technical Reports Server (NTRS)
Purman, Richard
2004-01-01
The New Horizons Regional Education Center (NHREC) in Hampton, VA sought and received NASA funding to support its participation in the 2002, 2003, and 2004 FIRST Robotics Competitions. FIRST, Inc. (For Inspiration and Recognition of Science and Technology) is an organization which encourages the application of creative science, math, and computer science principles to solve real-world engineering problems. The FIRST competition is an international engineering contest featuring high school, government, and business partnerships.
Problems With Deployment of Multi-Domained, Multi-Homed Mobile Networks
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2008-01-01
This document describes numerous problems associated with deployment of multi-homed mobile platforms consisting of multiple networks and traversing large geographical areas. The purpose of this document is to provide insight to real-world deployment issues and provide information to groups that are addressing many issues related to multi-homing, policy-base routing, route optimization and mobile security - particularly those groups within the Internet Engineering Task Force.
NASA Astrophysics Data System (ADS)
Yang, Eunice
2016-02-01
This paper discusses the use of a free mobile engineering application (app) called Autodesk® ForceEffect™ to provide students assistance with spatial visualization of forces and more practice in solving/visualizing statics problems compared to the traditional pencil-and-paper method. ForceEffect analyzes static rigid-body systems using free-body diagrams (FBDs) and provides solutions in real time. It is a cost-free software that is available for download on the Internet. The software is supported on the iOS™, Android™, and Google Chrome™ platforms. It is easy to use and the learning curve is approximately two hours using the tutorial provided within the app. The use of ForceEffect has the ability to provide students different problem modalities (textbook, real-world, and design) to help them acquire and improve on skills that are needed to solve force equilibrium problems. Although this paper focuses on the engineering mechanics statics course, the technology discussed is also relevant to the introductory physics course.
Hirose, Katsuhiko
2010-07-28
In the past, material innovation has changed society through new material-induced technologies, adding a new value to society. In the present world, engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector, the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy, it is time to accelerate our efforts towards this change. Industries are tackling global energy issues such as oil and CO2, as well as local environmental problems, such as NO(x) and particulate matter. Hydrogen is the most promising candidate to provide carbon-free, emission-free and oil-free mobility. As such, engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies, as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.
Infusing Real World Experiences into Engineering Education
ERIC Educational Resources Information Center
National Academies Press, 2012
2012-01-01
The aim of this report is to encourage enhanced richness and relevance of the undergraduate engineering education experience, and thus produce better-prepared and more globally competitive graduates, by providing practical guidance for incorporating real world experience in US engineering programs. The report, a collaborative effort of the…
ERIC Educational Resources Information Center
Gallowich, Kay
Descriptive information and supporting documents for courses taught in the language center of a school of mines are presented here. The first is a four-semester engineering practices introductory course sequence that incorporates professional-level technical problem-solving, cooperative learning, and the preparation of written and oral…
An Assessment of Remote Laboratory Experiments in Radio Communication
ERIC Educational Resources Information Center
Gampe, Andreas; Melkonyan, Arsen; Pontual, Murillo; Akopian, David
2014-01-01
Today's electrical and computer engineering graduates need marketable skills to work with electronic devices. Hands-on experiments prepare students to deal with real-world problems and help them to comprehend theoretical concepts and relate these to practical tasks. However, shortage of equipment, high costs, and a lack of human resources for…
Proposal of Evolutionary Simplex Method for Global Optimization Problem
NASA Astrophysics Data System (ADS)
Shimizu, Yoshiaki
To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.
Liu, Zhihua; Ge, Yunshan; Johnson, Kent C; Shah, Asad Naeem; Tan, Jianwei; Wang, Chu; Yu, Linxiao
2011-03-15
On-road measurement is an effective method to investigate real-world emissions generated from vehicles and estimate the difference between engine certification cycles and real-world operating conditions. This study presents the results of on-road measurements collected from urban buses which propelled by diesel engine in Beijing city. Two widely used Euro III emission level buses and two Euro IV emission level buses were chosen to perform on-road emission measurements using portable emission measurement system (PEMS) for gaseous pollutant and Electric Low Pressure Impactor (ELPI) for particulate matter (PM) number emissions. The results indicate that considerable discrepancies of engine operating conditions between real-world driving cycles and engine certification cycles have been observed. Under real-world operating conditions, carbon monoxide (CO) and hydrocarbon (HC) emissions can easily meet their respective regulations limits, while brake specification nitrogen oxide (bsNO(x)) emissions present a significant deviation from its corresponding limit. Compared with standard limits, the real-world bsNO(x) emission of the two Euro III emission level buses approximately increased by 60% and 120% respectively, and bsNO(x) of two Euro IV buses nearly twice standard limits because Selective Catalytic Reduction (SCR) system not active under low exhaust temperature. Particle mass were estimated via particle size distribution with the assumption that particle density and diameter is liner. The results demonstrate that nanometer size particulate matter make significant contribution to total particle number but play a minor role to total particle mass. It is suggested that specific certified cycle should be developed to regulate bus engines emissions on the test bench or use PEMS to control the bus emissions under real-world operating conditions. Copyright © 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Yuen, Timothy T.; Boecking, Melanie; Stone, Jennifer; Tiger, Erin Price; Gomez, Alvaro; Guillen, Adrienne; Arreguin, Analisa
2014-01-01
Robotics provide the opportunity for students to bring their individual interests, perspectives and areas of expertise together in order to work collaboratively on real-world science, technology, engineering and mathematics (STEM) problems. This paper examines the nature of collaboration that manifests in groups of elementary and middle school…
Ornithologists by Design: Kindergarteners Design, Construct, and Evaluate Bird Feeders
ERIC Educational Resources Information Center
Shorter, Angela; Segers, Marcia
2016-01-01
How can an engineer design a bird feeder that attracts many birds? This question resulted from kindergarten students' observations of the bird feeders in their school's bird sanctuary. The challenging question is the heart of project-based learning (PBL), a teaching strategy in which students tackle real-world problems and design projects to solve…
NASA Astrophysics Data System (ADS)
Jovanov, D.; Vollpracht, H. J.; Beles, H.; Popa, V.; Tolea, B. A.
2017-10-01
Most common road safety engineering deficiencies identified by the authors in South Eastern Europe, including Romania, have been collected together and presented in this paper as a part of road safety unbreakably connected to the safe system approach (driver-vehicle-road). In different South Eastern Europe countries Road Safety Audit (RSA), Road Safety Inspection (RSI), as well as Black Spot Management (BSM) was introduced and practical implementation experience enabled the authors to analyze the road safety problems. Typical road safety engineering deficiencies have been presented in 8 different subsections, based on PIARC (World Road Association) RSA approach. This paper presents collected common road safety problems with relevant illustrations (real pictures) with associated accident risks.
Learning from Dealing with Real World Problems
ERIC Educational Resources Information Center
Akcay, Hakan
2017-01-01
The purpose of this article is to provide an example of using real world issues as tools for science teaching and learning. Using real world issues provides students with experiences in learning in problem-based environments and encourages them to apply their content knowledge to solving current and local problems.
NASA Astrophysics Data System (ADS)
Holden, Patricia A.
2017-03-01
Jusup et al. [1] appeal to mathematical physicists, and to biologists, by providing the theoretical basis for dynamic energy budget (DEB) modeling of individual organisms and populations, while emphasizing model simplicity, universality, and applicability to real world problems. Comments herein regard the disciplinary tensions proposed by the authors and suggest that-in addition to important applications in eco- and specifically nano-toxicology-there are opportunities for DEB frameworks to inform relative complexity in microbial ecological process modeling. This commentary also suggests another audience for bridging DEB theory and application-engineers solving environmental problems.
Kentzoglanakis, Kyriakos; Poole, Matthew
2012-01-01
In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.
Learning through Real-World Problem Solving: The Power of Integrative Teaching.
ERIC Educational Resources Information Center
Nagel, Nancy G.
This book is based on the idea that curriculum development projects focused on integrated or interdisciplinary teaching within the context of real-world problem solving creates dynamics and meaningful learning experiences for students. The real-world, problem-solving units presented in this book were created by four intern teachers, their mentor…
NASA Astrophysics Data System (ADS)
Long, Kim Chenming
Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this application of the proposed algorithm, TSEA, with several state-of-the-art multiobjective optimization algorithms reveals that TSEA outperforms these algorithms by providing retrofit solutions with greater reliability for the same costs (i.e., closer to the Pareto-optimal front) after the algorithms are executed for the same number of generations. This research also demonstrates that TSEA competes with and, in some situations, outperforms state-of-the-art multiobjective optimization algorithms such as NSGA II and SPEA 2 when applied to classic bicriteria test problems in the technical literature and other complex, sizable real-world applications. The successful implementation of TSEA contributes to the safety of aeronautical structures by providing a systematic way to guide aircraft structural retrofitting efforts, as well as a potentially useful algorithm for a wide range of multiobjective optimization problems in engineering and other fields.
Physical Analytics: An emerging field with real-world applications and impact
NASA Astrophysics Data System (ADS)
Hamann, Hendrik
2015-03-01
In the past most information on the internet has been originated by humans or computers. However with the emergence of cyber-physical systems, vast amount of data is now being created by sensors from devices, machines etc digitizing the physical world. While cyber-physical systems are subject to active research around the world, the vast amount of actual data generated from the physical world has attracted so far little attention from the engineering and physics community. In this presentation we use examples to highlight the opportunities in this new subject of ``Physical Analytics'' for highly inter-disciplinary research (including physics, engineering and computer science), which aims understanding real-world physical systems by leveraging cyber-physical technologies. More specifically, the convergence of the physical world with the digital domain allows applying physical principles to everyday problems in a much more effective and informed way than what was possible in the past. Very much like traditional applied physics and engineering has made enormous advances and changed our lives by making detailed measurements to understand the physics of an engineered device, we can now apply the same rigor and principles to understand large-scale physical systems. In the talk we first present a set of ``configurable'' enabling technologies for Physical Analytics including ultralow power sensing and communication technologies, physical big data management technologies, numerical modeling for physical systems, machine learning based physical model blending, and physical analytics based automation and control. Then we discuss in detail several concrete applications of Physical Analytics ranging from energy management in buildings and data centers, environmental sensing and controls, precision agriculture to renewable energy forecasting and management.
ERIC Educational Resources Information Center
Canavan, Heather E.; Stanton, Michael; Lopez, Kaori; Grubin, Catherine; Graham, Daniel J.
2008-01-01
This article describes a hands-on activity and demonstration developed at the University of Washington and further reined at the University of New Mexico. In this activity, the authors present a real-world problem to the student: Someone has an injured finger joint, and the students in the class need to design an implant to replace it. After…
ERIC Educational Resources Information Center
Wei, Tie; Ford, Julie
2015-01-01
This article provides information about the integration of innovative hands-on activities within a sophomore-level Fluid Mechanics course at New Mexico Tech. The course introduces students to the fundamentals of fluid mechanics with emphasis on teaching key equations and methods of analysis for solving real-world problems. Strategies and examples…
Making Connections: Where STEM Learning and Earth Science Data Services Meet
NASA Technical Reports Server (NTRS)
Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Weigel, Amanda
2016-01-01
STEM (Science, Technology, Engineering, Mathematics) learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth Science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS (Earth Observing System Data Information System) data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems.
Boriboonsomsin, Kanok; Durbin, Thomas; Scora, George; Johnson, Kent; Sandez, Daniel; Vu, Alexander; Jiang, Yu; Burnette, Andrew; Yoon, Seungju; Collins, John; Dai, Zhen; Fulper, Carl; Kishan, Sandeep; Sabisch, Michael; Jackson, Doug
2018-06-01
Real-world vehicle and engine activity data were collected from 90 heavy-duty vehicles in California, United States, most of which have engine model year 2010 or newer and are equipped with selective catalytic reduction (SCR). The 90 vehicles represent 19 different groups defined by a combination of vocational use and geographic region. The data were collected using advanced data loggers that recorded vehicle speed, position (latitude and longitude), and more than 170 engine and aftertreatment parameters (including engine load and exhaust temperature) at the frequency of one Hz. This article presents plots of real-world exhaust temperature and engine load distributions for the 19 vehicle groups. In each plot, both frequency distribution and cumulative frequency distribution are shown. These distributions are generated using the aggregated data from all vehicle samples in each group.
ATK Launch Systems Engineering NASA Programs Engineering Examples
NASA Technical Reports Server (NTRS)
Richardson, David
2007-01-01
This presentation provides an overview of the work done at ATK Launch Systems with and indication of how engineering knowledge can be applied to several real world problems. All material in the presentation has been screened to meet ITAR restrictions. The information provided is a compilation of general engineering knowledge and material available in the public domain. The presentation provides an overview of ATK Launch Systems and NASA programs. Some discussion is provided about the types of engineering conducted at the Promontory plant with added detail about RSRM nozzle engineering. Some brief examples of examples of nozzle technical issues with regard to adhesives and phenolics are shared. These technical issue discussions are based on material available in the public domain.
ERIC Educational Resources Information Center
Martínez Ortiz, Araceli
2015-01-01
The presented study used a problem-solving experience in engineering design with LEGO robotics materials as the real-world mathematics-learning context. The goals of the study were (a) to determine if a short but intensive extracurricular learning experience would lead to significant student learning of a particular academic topic and (b) to…
Fault Identification Based on Nlpca in Complex Electrical Engineering
NASA Astrophysics Data System (ADS)
Zhang, Yagang; Wang, Zengping; Zhang, Jinfang
2012-07-01
The fault is inevitable in any complex systems engineering. Electric power system is essentially a typically nonlinear system. It is also one of the most complex artificial systems in this world. In our researches, based on the real-time measurements of phasor measurement unit, under the influence of white Gaussian noise (suppose the standard deviation is 0.01, and the mean error is 0), we used mainly nonlinear principal component analysis theory (NLPCA) to resolve fault identification problem in complex electrical engineering. The simulation results show that the fault in complex electrical engineering is usually corresponding to the variable with the maximum absolute value coefficient in the first principal component. These researches will have significant theoretical value and engineering practical significance.
MatLab Programming for Engineers Having No Formal Programming Knowledge
NASA Technical Reports Server (NTRS)
Shaykhian, Linda H.; Shaykhian, Gholam Ali
2007-01-01
MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.
A Cost Assessment of the Dayton Public Schools Vehicle Routing Problem
2009-03-01
known problems: the Traveling Salesman Problem (TSP) and the Bin Packing Problem ( BPP ) (Ralphs, 2003). The VRP has a plethora of real world...well known problems: the Traveling Salesman Problem (TSP) and the Bin Packing Problem ( BPP ) (Ralphs, 2003). The VRP has a plethora of real world
STS Case Study Development Support
NASA Technical Reports Server (NTRS)
Rosa de Jesus, Dan A.; Johnson, Grace K.
2013-01-01
The Shuttle Case Study Collection (SCSC) has been developed using lessons learned documented by NASA engineers, analysts, and contractors. The SCSC provides educators with a new tool to teach real-world engineering processes with the goal of providing unique educational materials that enhance critical thinking, decision-making and problem-solving skills. During this third phase of the project, responsibilities included: the revision of the Hyper Text Markup Language (HTML) source code to ensure all pages follow World Wide Web Consortium (W3C) standards, and the addition and edition of website content, including text, documents, and images. Basic HTML knowledge was required, as was basic knowledge of photo editing software, and training to learn how to use NASA's Content Management System for website design. The outcome of this project was its release to the public.
An engineering design approach to systems biology.
Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A
2017-07-17
Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.
NASA Astrophysics Data System (ADS)
Venkateswarlu, P.
2017-07-01
Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with necessary skills to create and advance knowledge that meets global standards. To achieve this goal, this paper proposes establishing a central facility, 'Centre for Engineering Experimentation and Design Simulation' (CEEDS) in autonomous engineering colleges in India. The centre will be equipped with the most recent technology resources and computational facilities where students execute novel interdisciplinary product-oriented projects benefiting both industry and society. Students undertake two projects: a short-term project aimed at an engineering solution to a problem in energy, health and environment and the other a major industry-supported project devoted to a product that enhances innovation and creativity. The paper presents the current status, the theoretical and pedagogical foundation for the centre's relevance, an activity plan and its implementation in the centre for product-based learning with illustrative examples.
Women Working in Engineering and Science
NASA Technical Reports Server (NTRS)
Luna, Bernadette; Kliss, Mark (Technical Monitor)
1998-01-01
The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.
Promoting higher order thinking skills using inquiry-based learning
NASA Astrophysics Data System (ADS)
Madhuri, G. V.; S. S. N Kantamreddi, V.; Goteti, L. N. S. Prakash
2012-05-01
Active learning pedagogies play an important role in enhancing higher order cognitive skills among the student community. In this work, a laboratory course for first year engineering chemistry is designed and executed using an inquiry-based learning pedagogical approach. The goal of this module is to promote higher order thinking skills in chemistry. Laboratory exercises are designed based on Bloom's taxonomy and a just-in-time facilitation approach is used. A pre-laboratory discussion outlining the theory of the experiment and its relevance is carried out to enable the students to analyse real-life problems. The performance of the students is assessed based on their ability to perform the experiment, design new experiments and correlate practical utility of the course module with real life. The novelty of the present approach lies in the fact that the learning outcomes of the existing experiments are achieved through establishing a relationship with real-world problems.
NASA Astrophysics Data System (ADS)
Gazit, Avikam; Patkin, Dorit
2012-03-01
The article aims to check the way adults, some who are practicing mathematics teachers at elementary school, some who are academicians making a career change to mathematics teachers at junior high school and the rest who are pre-service mathematics teachers at elementary school, cope with the solution of everyday real-world problems of buying and selling. The findings show that even adults with mathematical background tend to make mistakes in solving everyday real-world problems. Only about 70% of the adults who have an orientation to mathematics solved the sample problem correctly. The lowest percentage of success was demonstrated by the academicians making a career change to junior high school mathematics teachers whereas the highest percentage of success was manifested by pre-service elementary school mathematics teachers. Moreover, the findings illustrate that life experience of the practicing mathematics teachers and, mainly, of the academicians making a career change, who were older than the pre-service teachers, did not facilitate the solution of such a real-world problem. Perhaps the reason resides in the process of mathematics teaching at school, which does not put an emphasis on the solution of everyday real-world problems.
Solving fuzzy shortest path problem by genetic algorithm
NASA Astrophysics Data System (ADS)
Syarif, A.; Muludi, K.; Adrian, R.; Gen, M.
2018-03-01
Shortest Path Problem (SPP) is known as one of well-studied fields in the area Operations Research and Mathematical Optimization. It has been applied for many engineering and management designs. The objective is usually to determine path(s) in the network with minimum total cost or traveling time. In the past, the cost value for each arc was usually assigned or estimated as a deteministic value. For some specific real world applications, however, it is often difficult to determine the cost value properly. One way of handling such uncertainty in decision making is by introducing fuzzy approach. With this situation, it will become difficult to solve the problem optimally. This paper presents the investigations on the application of Genetic Algorithm (GA) to a new SPP model in which the cost values are represented as Triangular Fuzzy Number (TFN). We adopts the concept of ranking fuzzy numbers to determine how good the solutions. Here, by giving his/her degree value, the decision maker can determine the range of objective value. This would be very valuable for decision support system in the real world applications.Simulation experiments were carried out by modifying several test problems with 10-25 nodes. It is noted that the proposed approach is capable attaining a good solution with different degree of optimism for the tested problems.
Terrain Navigation Concepts for Autonomous Vehicles,
1984-06-01
AD-fi144 994 TERRAIN NAVIGATION CONCEPTS FOR AUTONOMOUS VEHICLES (U) i/i I ARMY ENGINEER OPOGRAPHIC LABS FORT BELVOIR VA R D LEIGHTY JUN 84 ETL-R@65...FUNCTIONS The pacing problem for developing autonomous vehicles that can efficiently move to designated locations in the real world in the perfor- mance...autonomous functions can serve as general terrain navigation requirements for our discussion of autonomous vehicles . LEIGHTY Can we build a vehicular system
The effect of Problem/Project-Based Learning on a desired skill set for construction professionals
NASA Astrophysics Data System (ADS)
Sirotiak, Todd L.
The purpose of this study was to investigate if a Problem/Project-Based Learning (PBL) approach can affect certain non-technical, "soft" skills of construction engineers. Such skills include leadership, adaptability, and stress management. In mixed design research, quantitative and qualitative data are assembled and analyzed collectively. For this study, two separate assessment tools were used for the quantitative portion, while open-ended written reflections and a partially closed-ended senior questionnaire were implemented for the qualitative portion. A hypothetical model was used to investigate certain soft skills based on prior research documenting need. Skills investigated were confidence, stress coping, leadership, communication skills, adaptability, and management skills. Descriptive statistics, open-ended final written reflections, and a partially closed-ended senior questionnaire were used to analyze the data. PBL is a process in which the students are challenged to develop realistic solutions on open, less structured, real world type problems. The results of this study performed with the combined count of nearly 60 students suggest that PBL can influence several soft skills of senior construction engineers. Specifically, these findings demonstrate the following: (a) PBL appears to affect students' soft skills; (b) students appear to recognize the realism and "real world" applicability that PBL brings to their skill development; and (c) the data suggest that the experience is holistic and offers opportunities for balanced growth in several ways. Some key competencies such as communication and leadership indicated significant enhancements. Although this study was limited to one academic year of the university's construction engineering program, it provides interesting insight to changes within the time period investigated. This study should be replicated in other construction engineering environments to investigate a larger population sample. In addition, industry, professional consultants, and academic entities are encouraged to review current learning methods to ensure that they are implementing the findings and methodology offered in this study.
A study of the performance of patients with frontal lobe lesions in a financial planning task.
Goel, V; Grafman, J; Tajik, J; Gana, S; Danto, D
1997-10-01
It has long been argued that patients with lesions in the prefrontal cortex have difficulties in decision making and problem solving in real-world, ill-structured situations, particularly problem types involving planning and look-ahead components. Recently, several researchers have questioned our ability to capture and characterize these deficits adequately using just the standard neuropsychological test batteries, and have called for tests that reflect real-world task requirements more accurately. We present data from 10 patients with focal lesions to the prefrontal cortex and 10 normal control subjects engaged in a real-world financial planning task. We also introduce a theoretical framework and methodology developed in the cognitive science literature for quantifying and analysing the complex data generated by problem-solving tasks. Our findings indicate that patient performance is impoverished at a global level but not at the local level. Patients have difficulty in organizing and structuring their problem space. Once they begin problem solving, they have difficulty in allocating adequate effort to each problem-solving phase. Patients also have difficulty dealing with the fact that there are no right or wrong answers nor official termination points in real-world planning problems. They also find it problematic to generate their own feedback. They invariably terminate the session before the details are fleshed out and all the goals satisfied. Finally, patients do not take full advantage of the fact that constraints on real-world problems are negotiable. However, it is not necessary to postulate a 'planning' deficit. It is possible to understand the patients' difficulties in real world planning tasks in terms of the following four accepted deficits: inadequate access to 'structured event complexes', difficulty in generalizing from particulars, failure to shift between 'mental sets', and poor judgment regarding adequacy and completeness of a plan.
A design rationale for NASA TileWorld
NASA Technical Reports Server (NTRS)
Philips, Andrew B.; Swanson, Keith J.; Drummond, Mark E.; Bresina, John L.
1991-01-01
Automated systems that can operate in unrestricted real-world domains are still well beyond current computational capabilities. This paper argues that isolating essential problem characteristics found in real-world domains allows for a careful study of how particular control systems operate. By isolating essential problem characteristics and studying their impact on autonomous system performance, we should be able to more quickly deliver systems for practical real-world problems. For our research on planning, scheduling, and control, we have selected three particular domain attributes to study: exogenous events, uncertain action outcome, and metric time. We are not suggesting that studies of these attributes in isolation are sufficient to guarantee the obvious goals of good methodology, brilliant architectures, or first-class results; however, we are suggesting that such isolation facilitates the achievement of these goals. To study these attributes, we have developed the NASA TileWorld. We describe the NASA TileWorld simulator in general terms, present an example NASA TileWorld problem, and discuss some of our motivations and concerns for NASA TileWorld.
Engineering scalable biological systems
2010-01-01
Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204
The Role of Problem-Based Learning in Developing Creative Expertise
ERIC Educational Resources Information Center
Gallagher, Shelagh A.
2015-01-01
Contemporary real-world problems require creative solutions, necessitating the preparation of a new generation of creative experts capable of finding original solutions to ill-structured problems. Although much school-based training in creativity focuses on discrete skills, real-world creativity results from a multidimensional interaction between…
Diving into Real World Challenges
ERIC Educational Resources Information Center
Saldana, Matt; Rodden, Leslie
2012-01-01
In this article, the authors discuss how educators can engage students in real world learning using their academic knowledge and technical skills. They describe how school districts have discovered that the world of robotics can help students use technical skills to solve simulated problems found in the real world, while understanding the…
Introduction to Color Imaging Science
NASA Astrophysics Data System (ADS)
Lee, Hsien-Che
2005-04-01
Color imaging technology has become almost ubiquitous in modern life in the form of monitors, liquid crystal screens, color printers, scanners, and digital cameras. This book is a comprehensive guide to the scientific and engineering principles of color imaging. It covers the physics of light and color, how the eye and physical devices capture color images, how color is measured and calibrated, and how images are processed. It stresses physical principles and includes a wealth of real-world examples. The book will be of value to scientists and engineers in the color imaging industry and, with homework problems, can also be used as a text for graduate courses on color imaging.
Design study to simulate the development of a commercial transportation system
NASA Technical Reports Server (NTRS)
1991-01-01
Seven teams of senior-level Aerospace Engineering undergraduates were given a Request for Proposals (RFP) for a design concept of a remotely piloted vehicle (RPV). The RPV designs were intended to simulate commercial transport aircraft within the model of 'Aeroworld.' The Aeroworld model was developed so that the RPV designs would be subject to many of the engineering problems and tradeoffs that dominate real-world commercial air transport designs, such as profitability, fuel efficiency, range vs. payload capabilities, and ease of production and maintenance. As part of the proposal, each team was required to construct a prototype and validate its design with a flight demonstration.
Students' perceptions of the relevance of mathematics in engineering
NASA Astrophysics Data System (ADS)
Flegg, Jennifer; Mallet, Dann; Lupton, Mandy
2012-09-01
In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, Education for Civil Engineering: A Profession of Practice, Leader. Manag. Eng. 10 (2010), p. 54]. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of engineering mathematics curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour and the effectiveness of problem-solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.
Bayesian-information-gap decision theory with an application to CO 2 sequestration
O'Malley, D.; Vesselinov, V. V.
2015-09-04
Decisions related to subsurface engineering problems such as groundwater management, fossil fuel production, and geologic carbon sequestration are frequently challenging because of an overabundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are scientifically defensible must be made despite the uncertainties. We describe a general approach to making decisions for challenging problems such as these in the presence of severe uncertainties that combines probabilistic and non-probabilistic methods. The approach uses Bayesian sampling to assess parametric uncertainty and Information-Gap Decision Theory (IGDT) to addressmore » model inadequacy. The combined approach also resolves an issue that frequently arises when applying Bayesian methods to real-world engineering problems related to the enumeration of possible outcomes. In the case of zero non-probabilistic uncertainty, the method reduces to a Bayesian method. Lastly, to illustrate the approach, we apply it to a site-selection decision for geologic CO 2 sequestration.« less
Demirkus, Meltem; Precup, Doina; Clark, James J; Arbel, Tal
2016-06-01
Recent literature shows that facial attributes, i.e., contextual facial information, can be beneficial for improving the performance of real-world applications, such as face verification, face recognition, and image search. Examples of face attributes include gender, skin color, facial hair, etc. How to robustly obtain these facial attributes (traits) is still an open problem, especially in the presence of the challenges of real-world environments: non-uniform illumination conditions, arbitrary occlusions, motion blur and background clutter. What makes this problem even more difficult is the enormous variability presented by the same subject, due to arbitrary face scales, head poses, and facial expressions. In this paper, we focus on the problem of facial trait classification in real-world face videos. We have developed a fully automatic hierarchical and probabilistic framework that models the collective set of frame class distributions and feature spatial information over a video sequence. The experiments are conducted on a large real-world face video database that we have collected, labelled and made publicly available. The proposed method is flexible enough to be applied to any facial classification problem. Experiments on a large, real-world video database McGillFaces [1] of 18,000 video frames reveal that the proposed framework outperforms alternative approaches, by up to 16.96 and 10.13%, for the facial attributes of gender and facial hair, respectively.
Yilmaz Eroglu, Duygu; Caglar Gencosman, Burcu; Cavdur, Fatih; Ozmutlu, H. Cenk
2014-01-01
In this paper, we analyze a real-world OVRP problem for a production company. Considering real-world constrains, we classify our problem as multicapacitated/heterogeneous fleet/open vehicle routing problem with split deliveries and multiproduct (MCHF/OVRP/SDMP) which is a novel classification of an OVRP. We have developed a mixed integer programming (MIP) model for the problem and generated test problems in different size (10–90 customers) considering real-world parameters. Although MIP is able to find optimal solutions of small size (10 customers) problems, when the number of customers increases, the problem gets harder to solve, and thus MIP could not find optimal solutions for problems that contain more than 10 customers. Moreover, MIP fails to find any feasible solution of large-scale problems (50–90 customers) within time limits (7200 seconds). Therefore, we have developed a genetic algorithm (GA) based solution approach for large-scale problems. The experimental results show that the GA based approach reaches successful solutions with 9.66% gap in 392.8 s on average instead of 7200 s for the problems that contain 10–50 customers. For large-scale problems (50–90 customers), GA reaches feasible solutions of problems within time limits. In conclusion, for the real-world applications, GA is preferable rather than MIP to reach feasible solutions in short time periods. PMID:25045735
Real World Software Engineering
1994-07-15
Corvision Cortex Corporation Daisys S /Cubed, Inc. Design/IDF & CPN Meta Software Corp. 22 EasyCase Professional Evergreen CASE Tools 8522 150th 4th Ave NE...Final RSUoTL 28 Sep 92-31 May 94 4. TITLE AND SUBTITLE S . FUNDING NUMBERS Real World Software Engineering 6. AUTHOR( S ) Donald Gotterbarn Robert Riser . a...nin• Sm-i t’h 7. PERFORMING ORGANIZATION NAME( S ) AND AOORESS(ES1 8. PERFORMING ORGANIZATION REPORT NUMBER East Tennessee State University Department
Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas
2012-01-01
Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.
Bridging Water Resources Policy and Environmental Engineering in the Classroom at Cornell University
NASA Astrophysics Data System (ADS)
Walter, M. T.; Shaw, S. B.; Seifert, S.; Schwarz, T.
2006-12-01
Current university undergraduate students in environmental sciences and engineering are the next generation of environmental protection practitioners. Recognizing this, Cornell's Biological and Environmental Engineering department has developed a popular class, Watershed Engineering (BEE 473), specifically designed to bridge the too-common gap between water resources policy and state-of-art science and technology. Weekly homework assignments are to design real-life solutions to actual water resources problems, often with the objective of applying storm water policies to local situations. Where appropriate, usually in conjunction with recent amendments to the Federal Clean Water Act, this course introduces water resource protection tools and concepts developed in the Cornell Soil and Water Lab. Here we present several examples of how we build bridges between university classrooms and the complex world of water resources policy.
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
Singh, Brajesh K.; Srivastava, Vineet K.
2015-01-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Mehrdad
Characterizing the near-surface shear-wave velocity structure using Rayleigh-wave phase velocity dispersion curves is widespread in the context of reservoir characterization, exploration seismology, earthquake engineering, and geotechnical engineering. This surface seismic approach provides a feasible and low-cost alternative to the borehole measurements. Phase velocity dispersion curves from Rayleigh surface waves are inverted to yield the vertical shear-wave velocity profile. A significant problem with the surface wave inversion is its intrinsic non-uniqueness, and although this problem is widely recognized, there have not been systematic efforts to develop approaches to reduce the pervasive uncertainty that affects the velocity profiles determined by the inversion. Non-uniqueness cannot be easily studied in a nonlinear inverse problem such as Rayleigh-wave inversion and the only way to understand its nature is by numerical investigation which can get computationally expensive and inevitably time consuming. Regarding the variety of the parameters affecting the surface wave inversion and possible non-uniqueness induced by them, a technique should be established which is not controlled by the non-uniqueness that is already affecting the surface wave inversion. An efficient and repeatable technique is proposed and tested to overcome the non-uniqueness problem; multiple inverted shear-wave velocity profiles are used in a wavenumber integration technique to generate synthetic time series resembling the geophone recordings. The similarity between synthetic and observed time series is used as an additional tool along with the similarity between the theoretical and experimental dispersion curves. The proposed method is proven to be effective through synthetic and real world examples. In these examples, the nature of the non-uniqueness is discussed and its existence is shown. Using the proposed technique, inverted velocity profiles are estimated and effectiveness of this technique is evaluated; in the synthetic example, final inverted velocity profile is compared with the initial target velocity model, and in the real world example, final inverted shear-wave velocity profile is compared with the velocity model from independent measurements in a nearby borehole. Real world example shows that it is possible to overcome the non-uniqueness and distinguish the representative velocity profile for the site that also matches well with the borehole measurements.
History of visual systems in the Systems Engineering Simulator
NASA Technical Reports Server (NTRS)
Christianson, David C.
1989-01-01
The Systems Engineering Simulator (SES) houses a variety of real-time computer generated visual systems. The earliest machine dates from the mid-1960's and is one of the first real-time graphics systems in the world. The latest acquisition is the state-of-the-art Evans and Sutherland CT6. Between the span of time from the mid-1960's to the late 1980's, tremendous strides have been made in the real-time graphics world. These strides include advances in both software and hardware engineering. The purpose is to explore the history of the development of these real-time computer generated image systems from the first machine to the present. Hardware advances as well as software algorithm changes are presented. This history is not only quite interesting but also provides us with a perspective with which we can look backward and forward.
Building a robust vehicle detection and classification module
NASA Astrophysics Data System (ADS)
Grigoryev, Anton; Khanipov, Timur; Koptelov, Ivan; Bocharov, Dmitry; Postnikov, Vassily; Nikolaev, Dmitry
2015-12-01
The growing adoption of intelligent transportation systems (ITS) and autonomous driving requires robust real-time solutions for various event and object detection problems. Most of real-world systems still cannot rely on computer vision algorithms and employ a wide range of costly additional hardware like LIDARs. In this paper we explore engineering challenges encountered in building a highly robust visual vehicle detection and classification module that works under broad range of environmental and road conditions. The resulting technology is competitive to traditional non-visual means of traffic monitoring. The main focus of the paper is on software and hardware architecture, algorithm selection and domain-specific heuristics that help the computer vision system avoid implausible answers.
Transient Turbine Engine Modeling with Hardware-in-the-Loop Power Extraction (PREPRINT)
2008-07-01
Furthermore, it must be compatible with a real - time operating system that is capable of running the simulation. For some models, especially those that use...problem of interfacing the engine/control model to a real - time operating system and associated lab hardware becomes a problem of interfacing these...model in real-time. This requires the use of a real - time operating system and a compatible I/O (input/output) board. Figure 1 illustrates the HIL
Particle swarm optimization with recombination and dynamic linkage discovery.
Chen, Ying-Ping; Peng, Wen-Chih; Jian, Ming-Chung
2007-12-01
In this paper, we try to improve the performance of the particle swarm optimizer by incorporating the linkage concept, which is an essential mechanism in genetic algorithms, and design a new linkage identification technique called dynamic linkage discovery to address the linkage problem in real-parameter optimization problems. Dynamic linkage discovery is a costless and effective linkage recognition technique that adapts the linkage configuration by employing only the selection operator without extra judging criteria irrelevant to the objective function. Moreover, a recombination operator that utilizes the discovered linkage configuration to promote the cooperation of particle swarm optimizer and dynamic linkage discovery is accordingly developed. By integrating the particle swarm optimizer, dynamic linkage discovery, and recombination operator, we propose a new hybridization of optimization methodologies called particle swarm optimization with recombination and dynamic linkage discovery (PSO-RDL). In order to study the capability of PSO-RDL, numerical experiments were conducted on a set of benchmark functions as well as on an important real-world application. The benchmark functions used in this paper were proposed in the 2005 Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. The experimental results on the benchmark functions indicate that PSO-RDL can provide a level of performance comparable to that given by other advanced optimization techniques. In addition to the benchmark, PSO-RDL was also used to solve the economic dispatch (ED) problem for power systems, which is a real-world problem and highly constrained. The results indicate that PSO-RDL can successfully solve the ED problem for the three-unit power system and obtain the currently known best solution for the 40-unit system.
Teaching Real-World Applications of Business Statistics Using Communication to Scaffold Learning
ERIC Educational Resources Information Center
Green, Gareth P.; Jones, Stacey; Bean, John C.
2015-01-01
Our assessment research suggests that quantitative business courses that rely primarily on algorithmic problem solving may not produce the deep learning required for addressing real-world business problems. This article illustrates a strategy, supported by recent learning theory, for promoting deep learning by moving students gradually from…
Teaching Molecular Phylogenetics through Investigating a Real-World Phylogenetic Problem
ERIC Educational Resources Information Center
Zhang, Xiaorong
2012-01-01
A phylogenetics exercise is incorporated into the "Introduction to biocomputing" course, a junior-level course at Savannah State University. This exercise is designed to help students learn important concepts and practical skills in molecular phylogenetics through solving a real-world problem. In this application, students are required to identify…
NASA Astrophysics Data System (ADS)
Vasant, Pandian; Barsoum, Nader
2008-10-01
Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research paper is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.
Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW.
Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián
2013-02-21
This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented.
Virtual and Remote Robotic Laboratory Using EJS, MATLAB and Lab VIEW
Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián
2013-01-01
This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented. PMID:23429578
Boriboonsomsin, Kanok; Durbin, Thomas; Scora, George; Johnson, Kent; Sandez, Daniel; Vu, Alexander; Jiang, Yu; Burnette, Andrew; Yoon, Seungju; Collins, John; Dai, Zhen; Fulper, Carl; Kishan, Sandeep; Sabisch, Michael; Jackson, Doug
2018-09-01
On-road heavy-duty diesel vehicles are a major contributor of oxides of nitrogen (NO x ) emissions. In the US, many heavy-duty diesel vehicles employ selective catalytic reduction (SCR) technology to meet the 2010 emission standard for NO x . Typically, SCR needs to be at least 200°C before a significant level of NO x reduction is achieved. However, this SCR temperature requirement may not be met under some real-world operating conditions, such as during cold starts, long idling, or low speed/low engine load driving activities. The frequency of vehicle operation with low SCR temperature varies partly by the vehicle's vocational use. In this study, detailed vehicle and engine activity data were collected from 90 heavy-duty vehicles involved in a range of vocations, including line haul, drayage, construction, agricultural, food distribution, beverage distribution, refuse, public work, and utility repair. The data were used to create real-world SCR temperature and engine load profiles and identify the fraction of vehicle operating time that SCR may not be as effective for NO x control. It is found that the vehicles participated in this study operate with SCR temperature lower than 200°C for 11-70% of the time depending on their vocation type. This implies that real-world NO x control efficiency could deviate from the control efficiency observed during engine certification. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bayazit, Ibrahim
2013-01-01
This study scrutinises approaches and thinking processes displayed by the elementary school students when solving real-world problems. It employed a qualitative inquiry to produce rich and realistic data about the case at hand. The research sample included 116 students. The data were obtained from written exam and semistructured interviews, and…
A New Approach to A Science Magnet School - Classroom and Museum Integration
NASA Astrophysics Data System (ADS)
Franklin, Samuel
2009-03-01
The Pittsburgh Science & Technology Academy is a place where any student with an interest in science, technology, engineering or math can develop skills for a career in life sciences, environmental sciences, computing, or engineering. The Academy isn't just a new school. It's a new way to think about school. The curriculum is tailored to students who have a passion for science, technology, engineering or math. The environment is one of extraordinary support for students, parents, and faculty. And the Academy exists to provide opportunities, every day, for students to Dream. Discover. Design. That is, Academy students set goals and generate ideas, research and discover answers, and design real solutions for the kinds of real-world problems that they'll face after graduation. The Academy prepares students for their future, whether they go on to higher education or immediate employment. This talk will explain the unique features of the Pittsburgh Science & Technology Academy, lessons learned from its two-year design process, and the role that the Carnegie Museums have played and will continue to play as the school grows.
Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.
Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry
2018-05-15
Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.
Using Real World Experience to Teach Science and Environmental Writing.
ERIC Educational Resources Information Center
Friedman, Sharon M.
The use of interpretive reporting techniques and programs offering real world training to writers may provide solutions to the problems encountered in writing about science for the mass media. Both science and environmental writers have suggested that the problems they face would be decreased by the use of more interpretive and investigative…
Exploiting the Dynamics of Soft Materials for Machine Learning
Hauser, Helmut; Li, Tao; Pfeifer, Rolf
2018-01-01
Abstract Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world. PMID:29708857
Exploiting the Dynamics of Soft Materials for Machine Learning.
Nakajima, Kohei; Hauser, Helmut; Li, Tao; Pfeifer, Rolf
2018-06-01
Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world.
Engineering Education Using a Remote Laboratory through the Internet
ERIC Educational Resources Information Center
Axaopoulos, Petros J.; Moutsopoulos, Konstantinos N.; Theodoridis, Michael P.
2012-01-01
An experiment using real hardware and under real test conditions can be remotely conducted by engineering students and other interested individuals in the world via the Internet and with the capability of live video streaming from the test site. The presentation of this innovative experiment refers to the determination of the current voltage…
An Online, Interactive Renewable Energy Laboratory
ERIC Educational Resources Information Center
O'Leary, D. A.; Shattuck, J.; Kubby, J.
2012-01-01
An undergraduate introductory science, technology, engineering, and math (STEM) class can be a jarring disappointment to new students expecting to work with cutting-edge, real-world technology. Their cell phones are often more technically advanced and real-world than the tools used in a class lab. Not surprisingly, many complain that the STEM labs…
ERIC Educational Resources Information Center
McKain, Danielle R.
2012-01-01
The term real world is often used in mathematics education, yet the definition of real-world problems and how to incorporate them in the classroom remains ambiguous. One way real-world connections can be made is through guest speakers. Guest speakers can offer different perspectives and share knowledge about various subject areas, yet the impact…
Technology Management Education for Students with Educational Background of Engineering
NASA Astrophysics Data System (ADS)
Aoyama, Atsushi; Abe, Atsushi
Japanese industry has been encouraged to transform from a mode of ‘recovery’ to one of 'front-runner' in effective innovation and creation of new businesses and markets based in accomplishments of basic research. Graduate School of Technology Management at Ritsumeikan University strives to not only offer knowledge and skills, but also business experiences to its students so that they may acquire the abilities to discover and solve practical problems logically, analytically and systematically. To achieve these aims, it has inaugurated the Ritsumeikan University Practicum Program by enhancing existing internship programs. Under the guidance of its faculties, this program will allow its students a chance to set and solve actual problems in real world business environments.
Steady-State ALPS for Real-Valued Problems
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2009-01-01
The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.
NASA Astrophysics Data System (ADS)
Suvannatsiri, Ratchasak; Santichaianant, Kitidech; Murphy, Elizabeth
2015-01-01
This paper reports on a project in which students designed, constructed and tested a model of an existing early warning system with simulation of debris flow in a context of a landslide. Students also assessed rural community members' knowledge of this system and subsequently taught them to estimate the time needed for evacuation of the community in the event of a landslide. Participants were four undergraduate students in a civil engineering programme at a university in Thailand, as well as nine community members and three external evaluators. Results illustrate project and problem-based, experiential learning and highlight the real-world applications and development of knowledge and of hard and soft skills. The discussion raises issues of scalability and feasibility for implementation of these types of projects in large undergraduate engineering classes.
Shuttle Case Study Collection Website Development
NASA Technical Reports Server (NTRS)
Ransom, Khadijah S.; Johnson, Grace K.
2012-01-01
As a continuation from summer 2012, the Shuttle Case Study Collection has been developed using lessons learned documented by NASA engineers, analysts, and contractors. Decades of information related to processing and launching the Space Shuttle is gathered into a single database to provide educators with an alternative means to teach real-world engineering processes. The goal is to provide additional engineering materials that enhance critical thinking, decision making, and problem solving skills. During this second phase of the project, the Shuttle Case Study Collection website was developed. Extensive HTML coding to link downloadable documents, videos, and images was required, as was training to learn NASA's Content Management System (CMS) for website design. As the final stage of the collection development, the website is designed to allow for distribution of information to the public as well as for case study report submissions from other educators online.
Mathematical and Scientific Foundations for an Integrative Engineering Curriculum.
ERIC Educational Resources Information Center
Carr, Robin; And Others
1995-01-01
Describes the Mathematical and Scientific Foundations of Engineering curriculum which emphasizes the mathematical and scientific concepts common to all engineering fields. Scientists and engineers together devised topics and experiments that emphasize the relevance of theory to real-world applications. Presents material efficiently while building…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, E.; Gonder, J.; Lopp, S.
It is widely understood that cold-temperature engine operation negatively impacts vehicle fuel use due to a combination of increased friction (high-viscosity engine oil) and temporary enrichment (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large number of driving cycles and ambient conditions. This work leverages high-quality dynamometer data collected at various ambient conditions to develop a modeling framework for quantifying engine cold-start fuel penalties over a wide array of real-world usage profiles. Additionally, mitigation strategies including energy retention and exhaust heat recovery are explored with benefits quantified for each approach.
NASA Astrophysics Data System (ADS)
Zurbuchen, Thomas H.
2007-04-01
There is a need for a motivated and innovative work force for the U.S. aerospace industry. The education of such engineers and scientists typically revolves around a fundamental knowledge of basic important technologies, such as the mechanics relevant to orbit-design, structures, avionics, and many others. A few years ago, the University of Michigan developed a Masters of Engineering program that provides students with skills that are not taught as part of a typical engineering curriculum. This program is focused on open problem solving, space systems, and space policy, as well as other classes that further their understanding of the connections between technologies and the nontechnical aspects of managing a space mission. The value of such an education is substantially increased through a direct connection to industry. An innovative problem-oriented approach has been developed that enables direct connections between industry and classroom teaching. The class works as a system study group and addresses problems of interest to and defined by a company with a specific application. We discuss such an application, a near-space lidar wind measurement system to enhance weather predictions, as well as the approach taken to link educational rationales.
Increasing student confidence in technical and professional skills through project based learning
NASA Astrophysics Data System (ADS)
Robinson, Alice L.
This work focuses on developing undergraduate students' technical and professional skills through a project-based spiral curriculum in the Agricultural & Biological Engineering department at Purdue that can be implemented campus wide. Through this curriculum, Purdue engineers will be prepared for leadership roles in responding to the global technological, economic, and societal challenges of the 21st century by exposure to the relationships between engineering and its impacts on real world needs and challenges. Project-based learning uses projects as the focus of instruction and has shown increased understanding, motivation, and confidence through application of engineering principles to real-world problems. The strength of a spiral curriculum is that it continually revisits basic ideas and themes with increasing complexity and sophistication. The proposed spiral curriculum incorporates the target attributes of the Purdue Engineer of 2020 through project based courses during sophomore, junior, and senior year. These courses will build on concepts taught during first year engineering as well. The Engineer of 2020 (NAE and Purdue) target attributes include strong technical and professional skills to solve societal and technological burdens. A prototype course has been developed, taught, and evaluated during the previous two fall semesters in the sophomore level of the Biological and Food Process Engineering curriculum. The target students met 3 hours a week in a traditional lecture setting plus 2 hours a week in a project based lab setting. The control group met only 3 hours a week in a traditional lecture setting. Peer and self assessment results from student surveys show increased confidence in every area surveyed. Focus groups revealed student reactions to the course. Students enjoyed the course but felt it difficult to handle ambiguity with project work. Future work includes course revisions to the content, assessment, and pedagogy of the prototype class, development of the remaining project courses in the curriculum, and increasing graduate student instruction in the courses to gain teaching and leadership experience.
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Shaykhian, Gholam Ali
2011-01-01
MatLab(TradeMark)(MATrix LABoratory) is a numerical computation and simulation tool that is used by thousands Scientists and Engineers in many countries. MatLab does purely numerical calculations, which can be used as a glorified calculator or interpreter programming language; its real strength is in matrix manipulations. Computer algebra functionalities are achieved within the MatLab environment using "symbolic" toolbox. This feature is similar to computer algebra programs, provided by Maple or Mathematica to calculate with mathematical equations using symbolic operations. MatLab in its interpreter programming language form (command interface) is similar with well known programming languages such as C/C++, support data structures and cell arrays to define classes in object oriented programming. As such, MatLab is equipped with most of the essential constructs of a higher programming language. MatLab is packaged with an editor and debugging functionality useful to perform analysis of large MatLab programs and find errors. We believe there are many ways to approach real-world problems; prescribed methods to ensure foregoing solutions are incorporated in design and analysis of data processing and visualization can benefit engineers and scientist in gaining wider insight in actual implementation of their perspective experiments. This presentation will focus on data processing and visualizations aspects of engineering and scientific applications. Specifically, it will discuss methods and techniques to perform intermediate-level data processing covering engineering and scientific problems. MatLab programming techniques including reading various data files formats to produce customized publication-quality graphics, importing engineering and/or scientific data, organizing data in tabular format, exporting data to be used by other software programs such as Microsoft Excel, data presentation and visualization will be discussed.
ERIC Educational Resources Information Center
DeBay, Dennis J.
2013-01-01
To explore student mathematical self-efficacy and understanding of graphical data, this dissertation examines students solving real-world problems in their neighborhood, mediated by professional urban planning technologies. As states and schools are working on the alignment of the Common Core State Standards for Mathematics (CCSSM), traditional…
Problem-Based Learning Pedagogies: Psychological Processes and Enhancement of Intelligences
ERIC Educational Resources Information Center
Tan, Oon-Seng
2007-01-01
Education in this 21st century is concerned with developing intelligences. Problem solving in real-world contexts involves multiple ways of knowing and learning. Intelligence in the real world involves not only learning how to do things effectively but also more importantly the ability to deal with novelty and growing our capacity to adapt, select…
ERIC Educational Resources Information Center
Aksoy, Yilmaz; Bayazit, Ibrahim; Dönmez, S. Merve Kirnap
2015-01-01
This study investigates approaches, strategies and models used by prospective primary school teachers in responding to real-world problems. The research was carried out with 82 participants. Data were collected through written-exam and semi-structured interviews; and they were analysed using content and discourse analysis methods. Most of the…
Martin, Nathan; Lombard, Melissa; Jensen, Kirk R; Kelley, Patrick; Pratt, Tara; Traviss, Nora
2017-05-15
Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (p<0.05) in a BEAS-2B cell line. This study contributes novel data on real-world, nonroad engine sources of metals, PAH and N-PAH species, comparing tailpipe PM vs. PM collected inside the equipment cabin. Results suggest PM generated from burning petroleum diesel in nonroad engines may be more harmful to human health, but the links between exposure, composition and toxicity are not straightforward. Copyright © 2016 Elsevier B.V. All rights reserved.
An Introduction to Thermal-Fluid Engineering
NASA Astrophysics Data System (ADS)
Warhaft, Zellman
1998-01-01
This text is the first to provide an integrated introduction to basic engineering topics and the social implications of engineering practice. Aimed at beginning engineering students, the book presents the basic ideas of thermodynamics, fluid mechanics, heat transfer, and combustion through a real-world engineering situation. It relates the engine to the atmosphere in which it moves and exhausts its waste products. The book also discusses the greenhouse effect and atmospheric inversions, and the social implications of engineering in a crowded world with increasing energy demands. Students in mechanical, civil, agricultural, environmental, aerospace, and chemical engineering will welcome this engaging, well-illustrated introduction to thermal-fluid engineering.
Ecological literacy and beyond: Problem-based learning for future professionals.
Lewinsohn, Thomas M; Attayde, José Luiz; Fonseca, Carlos Roberto; Ganade, Gislene; Jorge, Leonardo Ré; Kollmann, Johannes; Overbeck, Gerhard E; Prado, Paulo Inácio; Pillar, Valério D; Popp, Daniela; da Rocha, Pedro L B; Silva, Wesley Rodrigues; Spiekermann, Annette; Weisser, Wolfgang W
2015-03-01
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.
2015-09-24
algorithms for solving real- world problems. Within the past five years, 2 books, 5 journal special issues, and about 60 papers have been published...Four international conferences have been organized, including the 3rd World Congress of Global Optimization. A unified methodology and algorithm have...been developed with real- world applications. This grant has been used to support and co-support three post-doctors, three PhD students, one part
ERIC Educational Resources Information Center
Heylen, Christel; Smet, Marc; Buelens, Hermans; Sloten, Jos Vander
2007-01-01
A present-day engineer has a large scientific knowledge; he is a team-player, eloquent communicator and life-long learner. At the Katholieke Universiteit Leuven, the course "Problem Solving and Engineering Design" introduces engineering students from the first semester onwards into real engineering practice and teamwork. Working in small…
A new collection of real world applications of fractional calculus in science and engineering
NASA Astrophysics Data System (ADS)
Sun, HongGuang; Zhang, Yong; Baleanu, Dumitru; Chen, Wen; Chen, YangQuan
2018-11-01
Fractional calculus is at this stage an arena where many models are still to be introduced, discussed and applied to real world applications in many branches of science and engineering where nonlocality plays a crucial role. Although researchers have already reported many excellent results in several seminal monographs and review articles, there are still a large number of non-local phenomena unexplored and waiting to be discovered. Therefore, year by year, we can discover new aspects of the fractional modeling and applications. This review article aims to present some short summaries written by distinguished researchers in the field of fractional calculus. We believe this incomplete, but important, information will guide young researchers and help newcomers to see some of the main real-world applications and gain an understanding of this powerful mathematical tool. We expect this collection will also benefit our community.
Learning-Centered Instruction of Engineering Graphics for Freshman Engineering Students
ERIC Educational Resources Information Center
Pucha, Raghuram V.; Utschig, Tristan T.
2012-01-01
Teaching "Engineering Graphics" to freshman engineering students poses challenges to instructors as well as to students. While the instructors are confronted with a lack of material / text book that covers the broad scope of the subject matter, the students struggle to correlate newly developed skills to real-world engineering design problems…
NASA Astrophysics Data System (ADS)
Lynch, Cheryl L.; Graham, Geoff M.; Popovic, Milos R.
2011-08-01
Functional electrical stimulation (FES) applications are frequently evaluated in simulation prior to testing in human subjects. Such simulations are usually based on the typical muscle responses to electrical stimulation, which may result in an overly optimistic assessment of likely real-world performance. We propose a novel method for simulating FES applications that includes non-ideal muscle behaviour during electrical stimulation resulting from muscle fatigue, spasms and tremors. A 'non-idealities' block that can be incorporated into existing FES simulations and provides a realistic estimate of real-world performance is described. An implementation example is included, showing how the non-idealities block can be incorporated into a simulation of electrically stimulated knee extension against gravity for both a proportional-integral-derivative controller and a sliding mode controller. The results presented in this paper illustrate that the real-world performance of a FES system may be vastly different from the performance obtained in simulation using nominal muscle models. We believe that our non-idealities block should be included in future simulations that involve muscle response to FES, as this tool will provide neural engineers with a realistic simulation of the real-world performance of FES systems. This simulation strategy will help engineers and organizations save time and money by preventing premature human testing. The non-idealities block will become available free of charge at www.toronto-fes.ca in late 2011.
ERIC Educational Resources Information Center
Dondlinger, Mary Jo; McLeod, Julie K.
2015-01-01
The Global Village Playground (GVP) was a capstone learning experience designed to address institutional assessment needs while providing an integrated and authentic learning experience for students aimed at fostering complex problem solving, as well as critical and creative thinking. In the GVP, students work on simulated and real-world problems…
Algorithm Engineering: Concepts and Practice
NASA Astrophysics Data System (ADS)
Chimani, Markus; Klein, Karsten
Over the last years the term algorithm engineering has become wide spread synonym for experimental evaluation in the context of algorithm development. Yet it implies even more. We discuss the major weaknesses of traditional "pen and paper" algorithmics and the ever-growing gap between theory and practice in the context of modern computer hardware and real-world problem instances. We present the key ideas and concepts of the central algorithm engineering cycle that is based on a full feedback loop: It starts with the design of the algorithm, followed by the analysis, implementation, and experimental evaluation. The results of the latter can then be reused for modifications to the algorithmic design, stronger or input-specific theoretic performance guarantees, etc. We describe the individual steps of the cycle, explaining the rationale behind them and giving examples of how to conduct these steps thoughtfully. Thereby we give an introduction to current algorithmic key issues like I/O-efficient or parallel algorithms, succinct data structures, hardware-aware implementations, and others. We conclude with two especially insightful success stories—shortest path problems and text search—where the application of algorithm engineering techniques led to tremendous performance improvements compared with previous state-of-the-art approaches.
Use of Common-Sense Knowledge, Language and Reality in Mathematical Word Problem Solving
ERIC Educational Resources Information Center
Sepeng, Percy
2014-01-01
The study reported in this article sought to explore and observe how grade 9 learners solve real-wor(l)d problems (a) without real context and (b) without real meaning. Learners' abilities to make sense of the decontextualised word problems set in the real world were investigated with regard to learners' use of common sense in relation to problem…
ERIC Educational Resources Information Center
Wallace, Gregory L.; Kenworthy, Lauren; Pugliese, Cara E.; Popal, Haroon S.; White, Emily I.; Brodsky, Emily; Martin, Alex
2016-01-01
Although executive functioning (EF) difficulties are well documented among children and adolescents with autism spectrum disorder (ASD), little is known about real-world measures of EF among adults with ASD. Therefore, this study examined parent-reported real-world EF problems among 35 adults with ASD without intellectual disability and their…
Fixing Ganache: Another Real-Life Use for Algebra
ERIC Educational Resources Information Center
Kalman, Adam M.
2011-01-01
This article presents a real-world application of proportional reasoning and equation solving. The author describes how students adjust ingredient amounts in a recipe for chocolate ganache. Using this real-world scenario provided students an opportunity to solve a difficult and nonstandard algebra problem, a lot of practice with fractions, a…
Virtual Reality Enhanced Instructional Learning
ERIC Educational Resources Information Center
Nachimuthu, K.; Vijayakumari, G.
2009-01-01
Virtual Reality (VR) is a creation of virtual 3D world in which one can feel and sense the world as if it is real. It is allowing engineers to design machines and Educationists to design AV [audiovisual] equipment in real time but in 3-dimensional hologram as if the actual material is being made and worked upon. VR allows a least-cost (energy…
Engineering with uncertainty: monitoring air bag performance.
Wetmore, Jameson M
2008-06-01
Modern engineering is complicated by an enormous number of uncertainties. Engineers know a great deal about the material world and how it works. But due to the inherent limits of testing and the complexities of the world outside the lab, engineers will never be able to fully predict how their creations will behave. One way the uncertainties of engineering can be dealt with is by actively monitoring technologies once they have left the development and production stage. This article uses an episode in the history of automobile air bags as an example of engineers who had the foresight and initiative to carefully track the technology on the road to discover problems as early as possible. Not only can monitoring help engineers identify problems that surface in the field, it can also assist them in their efforts to mobilize resources to resolve problem.
The Motivation of Problem-Based Teaching and Learning in Translation
ERIC Educational Resources Information Center
Yingxue, Zheng
2013-01-01
Problem-Based Learning (PBL) has been one of the popular pedagogical strategies these years. PBL is about students connecting disciplinary knowledge to real-world problems--the motivation to solve a problem. To recognize general elements and typological differences of language in translation is the motivation to solve real problems such as…
Learning and Construction in Engineering Jobs.
ERIC Educational Resources Information Center
Buch, Anders
Knowledge production and learning in engineering is a local, situated, negotiated, and thoroughly social process. Although engineering work entails the construal, production, and application of artifacts and technical devices belonging to the "object world," the process of designing is a process of achieving consensus among real or…
Civil Engineering in Primary Schools
ERIC Educational Resources Information Center
Brown, Martin; Strong, Alan
2010-01-01
For many children of primary school age, an engineer is the man who comes to service the central heating system or who fixes the family car when it breaks down. Most have never met a "real" professional engineer, and have no idea of what is involved in the exciting world of engineering. Most assume that engineers are men. To try to…
ERIC Educational Resources Information Center
Roberts, Lindsay
2017-01-01
How can we better engage adult learners during information literacy sessions? How do we increase students' perception of the relevance and importance of information literacy skills for academic work and life in the real world? To explore these questions, the ARCS Model of Motivational Design and Problem-Based Learning were used to develop…
Analyzing Real-World Light Duty Vehicle Efficiency Benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, Jeffrey; Wood, Eric; Chaney, Larry
Off-cycle technologies represent an important pathway to achieve real-world fuel savings, through which OEMs can potentially receive credit toward CAFE compliance. DOE national labs such as NREL are well positioned to provide objective input on these technologies using large, national data sets in conjunction with OEM- and technology-specific testing. This project demonstrates an approach that combines vehicle testing (dynamometer and on-road) with powertrain modeling and simulation over large, representative datasets to quantify real-world fuel economy. The approach can be applied to specific off-cycle technologies (engine encapsulation, start/stop, connected vehicle, etc.) in A/B comparisons to support calculation of realistic real-world impacts.more » Future work will focus on testing-based A/B technology comparisons that demonstrate the significance of this approach.« less
Feyaerts, Gille; Deguerry, Murielle; Deboosere, Patrick; De Spiegelaere, Myriam
2017-06-01
With the implementation of health impact assessment (HIA)'s conceptual model into real-world policymaking, a number of fundamental issues arise concerning its decision-support function. Rooted in a rational vision of the decision-making process, focus regarding both conceptualisation and evaluation has been mainly on the function of instrumental policy-learning. However, in the field of social health inequalities, this function is strongly limited by the intrinsic 'wickedness' of the policy issue. Focusing almost exclusively on this instrumental function, the real influence HIA can have on policymaking in the longer term is underestimated and remains largely unexploited. Drawing insights from theoretical models developed in the field of political science and sociology, we explore the different decision-support functions HIA can fulfill and identify conceptual learning as potentially the most important. Accordingly, dominant focus on the technical engineering function, where knowledge is provided in order to 'rationalise' the policy process and to tackle 'tame' problems, should be complemented with an analysis of the conditions for conceptual learning, where knowledge introduces new information and perspectives and, as such, contributes in the longer term to a paradigm change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iodice, Paolo, E-mail: paolo.iodice@unina.it; Senatore, Adolfo
In the latest years the effect of powered two-wheelers on air polluting emissions is generally noteworthy all over the world, notwithstanding advances in internal combustion engines allowed to reduce considerably both fuel consumption and exhaust emissions of SI engines. Nowadays, in fact, these vehicles represent common means of quotidian moving, serving to meet daily urban transport necessities with a significant environmental impact on air quality. Besides, the emissive behavior of the two-wheelers measured under fixed legislative driving standards (and not on the local driving conditions) might not be sufficiently representative of real world motorcycle riding. The purpose of this investigationmore » is a deeper research on emissive levels of in-use motorcycles equipped with last generation SI engines under real world driving behavior. In order to analyze the effect of vehicle instantaneous speed and acceleration on emissive behavior, instantaneous emissions of CO, HC and NO{sub X} were measured in the exhaust of a four-stroke motorcycle, equipped with a three-way catalyst and belonging to the Euro-3 legislative category. Experimental tests were executed on a chassis dynamometer bench in the laboratories of the National Research Council (Italy), during the Type Approval test cycle, at constant speed and under real-world driving cycles. This analytical-experimental investigation was executed with a methodology that improves vehicles emission assessment in comparison with the modeling approaches that are based on fixed legislative driving standards. The statistical processing results so obtained are very useful also in order to improve the database of emission models commonly used for estimating emissions from road transport sector, then they can be used to evaluate the environmental impact of last generation medium-size motorcycles under real driving behaviors.« less
Self-Adaptive Stepsize Search Applied to Optimal Structural Design
NASA Astrophysics Data System (ADS)
Nolle, L.; Bland, J. A.
Structural engineering often involves the design of space frames that are required to resist predefined external forces without exhibiting plastic deformation. The weight of the structure and hence the weight of its constituent members has to be as low as possible for economical reasons without violating any of the load constraints. Design spaces are usually vast and the computational costs for analyzing a single design are usually high. Therefore, not every possible design can be evaluated for real-world problems. In this work, a standard structural design problem, the 25-bar problem, has been solved using self-adaptive stepsize search (SASS), a relatively new search heuristic. This algorithm has only one control parameter and therefore overcomes the drawback of modern search heuristics, i.e. the need to first find a set of optimum control parameter settings for the problem at hand. In this work, SASS outperforms simulated-annealing, genetic algorithms, tabu search and ant colony optimization.
Virtual School, Real Experience: Simulations Replicate the World of Practice for Aspiring Principals
ERIC Educational Resources Information Center
Mann, Dale; Shakeshaft, Charol
2013-01-01
A web-enabled computer simulation program presents real-world opportunities, problems, and challenges for aspiring principals. The simulation challenges areas that are not always covered in lectures, textbooks, or workshops. For example, using the simulation requires dealing--on-screen and in real time--with demanding parents, observing…
ERIC Educational Resources Information Center
Parker, Tom
2012-01-01
As a fifth-grade mathematics teacher, the author tries to create authentic problem-solving activities that connect to the world in which his students live. He discovered a natural connection to his students' real world at a computer camp. A friend introduced him to Alice, a computer application developed at Carnegie Mellon, under the leadership of…
Evaluation of Process Science Skills: From the Real World to the Ideal World.
ERIC Educational Resources Information Center
Lipowich, Shelley A.
State legislatures and others are recommending and, in some cases, mandating reforms in education including evaluating students' ability to meet stated objectives. This "ideal" situation poses a major problem concerning instruments needed to assess process skills. In the real world, educators do not yet have nationally recognized, valid,…
Distributed fiber optic system for oil pipeline leakage detection
NASA Astrophysics Data System (ADS)
Paranjape, R.; Liu, N.; Rumple, C.; Hara, Elmer H.
2003-02-01
We present a novel approach for the detection of leakage in oil pipelines using methods of fiber optic distributed sensors, a presence-of-oil based actuator, and Optical Time Domain Reflectometry (OTDR). While the basic concepts of our approach are well understood, the integration of the components into a complete system is a real world engineering design problem. Our focus has been on the development of the actuator design and testing using installed dark fiber. Initial results are promising, however environmental studies into the long term effects of exposure to the environment are still pending.
Putting the puzzle together: the role of ‘problem definition’ in complex clinical judgement
Cristancho, Sayra; Lingard, Lorelei; Forbes, Thomas; Ott, Michael; Novick, Richard
2017-01-01
CONTEXT We teach judgement in pieces; that is, we talk about each aspect separately (patient, plan, resources, technique, etc.). We also let trainees figure out how to put the pieces together. In complex situations, this might be problematic. Using data from a drawing-based study on surgeons’ experiences with complex situations, we explore the notion of ‘problem definition’ in real-world clinical judgement using the theoretical lens of systems engineering. METHODS ‘Emergence’, the sensitising concept for analysis, is rooted in two key systems premises: that person and context are inseparable and that what emerges is an act of choice. Via a ‘gallery walk’ we used these premises to perform analysis on individual drawings as well as cross-comparisons of multiple drawings. Our focus was to understand similarities and differences among the vantage points used by multiple surgeons. RESULTS In this paper we challenge two assumptions from current models of clinical judgement: that experts hold a fixed and static definition of the problem and that consequently the focus of the expert’s work is on solving the problem. Each situation described by our participants revealed different but complementary perspectives of what a surgical problem might come to be: from concerns about ensuring standard of care, to balancing personal emotions versus care choices, to coordinating resources, and to maintaining control while in the midst of personality clashes. CONCLUSION We suggest that it is only at the situation and system level, not at the individual level, that we are able to appreciate the nuances of defining the problem when experts make judgements during real-world complex situations. PMID:27943366
Putting the puzzle together: the role of 'problem definition' in complex clinical judgement.
Cristancho, Sayra; Lingard, Lorelei; Forbes, Thomas; Ott, Michael; Novick, Richard
2017-02-01
We teach judgement in pieces; that is, we talk about each aspect separately (patient, plan, resources, technique, etc.). We also let trainees figure out how to put the pieces together. In complex situations, this might be problematic. Using data from a drawing-based study on surgeons' experiences with complex situations, we explore the notion of 'problem definition' in real-world clinical judgement using the theoretical lens of systems engineering. 'Emergence', the sensitising concept for analysis, is rooted in two key systems premises: that person and context are inseparable and that what emerges is an act of choice. Via a 'gallery walk' we used these premises to perform analysis on individual drawings as well as cross-comparisons of multiple drawings. Our focus was to understand similarities and differences among the vantage points used by multiple surgeons. In this paper we challenge two assumptions from current models of clinical judgement: that experts hold a fixed and static definition of the problem and that consequently the focus of the expert's work is on solving the problem. Each situation described by our participants revealed different but complementary perspectives of what a surgical problem might come to be: from concerns about ensuring standard of care, to balancing personal emotions versus care choices, to coordinating resources, and to maintaining control while in the midst of personality clashes. We suggest that it is only at the situation and system level, not at the individual level, that we are able to appreciate the nuances of defining the problem when experts make judgements during real-world complex situations. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Enriching Science and Math through Engineering
ERIC Educational Resources Information Center
Redmond, Adrienne; Thomas, Julie; High, Karen; Scott, Margaret; Jordan, Pat; Dockers, Jean
2011-01-01
This case study reviewed the collaborative efforts of university engineers, teacher educators, and middle school teachers to advance sixth- and seventh-grade students' learning through a series of project-based engineering activities. This two-year project enriched regular school curricula by introducing real-world applications of science and…
Survival ethics in the real world: the research university and sustainable development.
Verharen, Charles; Tharakan, John; Bugarin, Flordeliz; Fortunak, Joseph; Kadoda, Gada; Middendorf, George
2014-03-01
We discuss how academically-based interdisciplinary teams can address the extreme challenges of the world's poorest by increasing access to the basic necessities of life. The essay's first part illustrates the evolving commitment of research universities to develop ethical solutions for populations whose survival is at risk and whose quality of life is deeply impaired. The second part proposes a rationale for university responsibility to solve the problems of impoverished populations at a geographical remove. It also presents a framework for integrating science, engineering and ethics in the efforts of multidisciplinary teams dedicated to this task. The essay's third part illustrates the efforts of Howard University researchers to join forces with African university colleagues in fleshing out a model for sustainable and ethical global development.
NASA Technical Reports Server (NTRS)
1997-01-01
Coryphaeus Software, founded in 1989 by former NASA electronic engineer Steve Lakowske, creates real-time 3D software. Designer's Workbench, the company flagship product, is a modeling and simulation tool for the development of both static and dynamic 3D databases. Other products soon followed. Activation, specifically designed for game developers, allows developers to play and test the 3D games before they commit to a target platform. Game publishers can shorten development time and prove the "playability" of the title, maximizing their chances of introducing a smash hit. Another product, EasyT, lets users create massive, realistic representation of Earth terrains that can be viewed and traversed in real time. Finally, EasyScene software control the actions among interactive objects within a virtual world. Coryphaeus products are used on Silican Graphics workstation and supercomputers to simulate real-world performance in synthetic environments. Customers include aerospace, aviation, architectural and engineering firms, game developers, and the entertainment industry.
NASA Astrophysics Data System (ADS)
Tadokoro, Satoshi; Kitano, Hiroaki; Takahashi, Tomoichi; Noda, Itsuki; Matsubara, Hitoshi; Shinjoh, Atsushi; Koto, Tetsuo; Takeuchi, Ikuo; Takahashi, Hironao; Matsuno, Fumitoshi; Hatayama, Mitsunori; Nobe, Jun; Shimada, Susumu
2000-07-01
This paper introduces the RoboCup-Rescue Simulation Project, a contribution to the disaster mitigation, search and rescue problem. A comprehensive urban disaster simulator is constructed on distributed computers. Heterogeneous intelligent agents such as fire fighters, victims and volunteers conduct search and rescue activities in this virtual disaster world. A real world interface integrates various sensor systems and controllers of infrastructures in the real cities with the real world. Real-time simulation is synchronized with actual disasters, computing complex relationship between various damage factors and agent behaviors. A mission-critical man-machine interface provides portability and robustness of disaster mitigation centers, and augmented-reality interfaces for rescue in real disasters. It also provides a virtual- reality training function for the public. This diverse spectrum of RoboCup-Rescue contributes to the creation of the safer social system.
ERIC Educational Resources Information Center
Thorson, Annette, Ed.
1999-01-01
This issue of ENC Focus focuses on the topic of inquiry and problem solving. Featured articles include: (1) "Inquiry in the Everyday World of Schools" (Ronald D. Anderson); (2) "In the Cascade Reservoir Restoration Project Students Tackle Real-World Problems" (Clint Kennedy with Advanced Biology Students from Cascade High…
Methods of Mathematical and Computational Physics for Industry, Science, and Technology
NASA Astrophysics Data System (ADS)
Melnik, Roderick V. N.; Voss, Frands
2006-11-01
Many industrial problems provide scientists with important and challenging problems that need to be solved today rather than tomorrow. The key role of mathematical physics, modelling, and computational methodologies in addressing such problems continues to increase. Science has never been exogenous to applied research. Gigantic ships and steam engines, repeating catapult of Dionysius and the Antikythera `computer' invented around 80BC are just a few examples demonstrating a profound link between theoretical and applied science in the ancient world. Nowadays, many industrial problems are typically approached by groups of researchers who are working as a team bringing their expertise to the success of the entire enterprise. Since the late 1960s several groups of European mathematicians and scientists have started organizing regular meetings, seeking new challenges from industry and contributing to the solution of important industrial problems. In particular, this often took the format of week-long workshops originally initiated by the Oxford Study Groups with Industry in 1968. Such workshops are now held in many European countries (typically under the auspices of the European Study Groups with Industry - ESGI), as well as in Australia, Canada, the United States, and other countries around the world. Problems given by industrial partners are sometimes very difficult to complete within a week. However, during a week of brainstorming activities these problems inevitably stimulate developing fruitful new ideas, new approaches, and new collaborations. At the same time, there are cases where as soon as the problem is formulated mathematically, it is relatively easy to solve. Hence, putting the industrial problem into a mathematical framework, based on physical laws, often provides a key element to the success. In addition to this important first step, the value in such cases is the real, practical applicability of the results obtained for an industrial partner who presents the problem. Under both outlined scenarios, scientists and mathematicians are provided with an opportunity to challenge themselves with real-world problems and to work together in a team on important industrial issues. This issue is a result of selected contributions by participants of the meeting that took place in the Sønderborg area of Denmark, one of the most important centers for information technology, telecommunication and electronics in the country. The meeting was hosted by the University of Southern Denmark in a picturesque area of Southern Jutland. It brought together about 65 participants, among whom were professional mathematicians, engineers, physicists, and industrial participants. The meeting was a truly international one, with delegates from four major Danish Universities, the UK, Norway, Italy, Czech Republic, Turkey, China, Germany, Latvia, Canada, the United States, and Finland. Five challenging projects were presented by leading industrial companies, including Grundfos, Danfoss Industrial Control, Unisensor, and Danfoss Flow Division (now Siemens). The meeting featured also the Mathematics for Industry Workshop with several distinguished international speakers. This volume of Journal of Physics: Conference Series on `Methods of Mathematical and Computational Physics for Industry, Science, and Technology' contains contributions from some of the participants of the workshop as well as the papers produced as a result of collaborative efforts with the above mentioned industrial companies. We would like to thank all authors and participants for their contributions and for bearing with us during the review process and preparation of this issue. We thank also all our referees for their timely and detailed reports. The publication of the proceedings of this meeting in Denmark was delayed due to problems with a previous publisher. We are very grateful that Journal of Physics: Conference Series kindly agreed to publish the proceedings rapidly at this late stage. As industrial problems become increasingly multidisciplinary, their successful solutions are often contingent on effective collaborative efforts between scientists, mathematicians, industrialists, and engineers. This volume has provided several examples of such collaborative efforts in the context of real-world industrial problems along with the analysis of important physics-based mathematical models applicable in a range of industrial contexts. Roderick V N Melnik, Professor of Mathematical Modelling, Syddansk Universitet (Denmark) and Professor and Canada Research Chair, Wilfrid Laurier University, Waterloo, Canada E-mail: rmelnik@wlu.ca Frands Voss, Director of the Mads Clausen Institute, Syddansk Universitet (Denmark)
A set partitioning reformulation for the multiple-choice multidimensional knapsack problem
NASA Astrophysics Data System (ADS)
Voß, Stefan; Lalla-Ruiz, Eduardo
2016-05-01
The Multiple-choice Multidimensional Knapsack Problem (MMKP) is a well-known ?-hard combinatorial optimization problem that has received a lot of attention from the research community as it can be easily translated to several real-world problems arising in areas such as allocating resources, reliability engineering, cognitive radio networks, cloud computing, etc. In this regard, an exact model that is able to provide high-quality feasible solutions for solving it or being partially included in algorithmic schemes is desirable. The MMKP basically consists of finding a subset of objects that maximizes the total profit while observing some capacity restrictions. In this article a reformulation of the MMKP as a set partitioning problem is proposed to allow for new insights into modelling the MMKP. The computational experimentation provides new insights into the problem itself and shows that the new model is able to improve on the best of the known results for some of the most common benchmark instances.
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2010-09-01
This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.
ERIC Educational Resources Information Center
Fox, Garey A.; Weckler, Paul; Thomas, Dan
2015-01-01
In Biosystems Engineering at Oklahoma State University, senior design is a two semester course in which students work on real-world projects provided by clients. First-year (freshmen and transfer) students enroll in an introductory engineering course. Historically, these students worked on a team-based analysis project, and the engineering design…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erfle, Stephen; Pound, John; Kalt, Joseph
An analysis of the response of American markets to supply crises in world oil markets is presented. It addresses four main issues: the efficiency of the operation of American oil markets during oil supply crises; the problems of both economic efficiency and social equity which arise during the American adaptation process; the propriety of the Federal government's past policy responses to these problems; and the relationship between perceptions of the problems caused by world oil crises and the real economic natures of these problems. Specifically, Chapter 1 presents a theoretical discussion of the effects of a world supply disruption onmore » the price level and supply availability of the world market oil to any consuming country including the US Chapter 2 provides a theoretical and empirical analysis of the efficiency of the adaptations of US oil product markets to higher world oil prices. Chapter 3 examines the responses of various groups of US oil firms to the alterations observed in world markets, while Chapter 4 presents a theoretical explanation for the price-lagging behavior exhibited by firms in the US oil industry. Chapter 5 addresses the nature of both real and imagined oil market problems in the US during periods of world oil market transition. (MCW)« less
NASA Technical Reports Server (NTRS)
Shafto, Michael G.; Remington, Roger W.; Trimble, Jay W.
1994-01-01
A case study is presented to illustrate some of the problems of applying cognitive science to complex human-machine systems. Disregard for facts about human cognition often undermines the safety, reliability, and cost-effectiveness of complex systems. Yet single-point methods (for example, better user-interface design), whether rooted in computer science or in experimental psychology, fall far short of addressing systems-level problems in a timely way using realistic resources. A model-based methodology is proposed for organizing and prioritizing the cognitive engineering effort, focusing appropriate expertise on major problems first, then moving to more sophisticated refinements if time and resources permit. This case study is based on a collaborative effort between the Human Factors Division at NASA-Ames and the Spaceborne Imaging Radar SIR-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) Project at the Jet Propulsion Laboratory (JPL), California institute of Technology. The first SIR-C/X-SAR Shuttle mission flew successfully in April, 1994. A series of such missions is planned to provide radar data to study Earth's ecosystems, climatic and geological processes, hydrologic cycle, and ocean circulation. In addition to JPL and NASA personnel, the SIR-C/X-SAR operations team included Scientists and engineers from the German and Italian space agencies.
Dynamic vehicle routing with time windows in theory and practice.
Yang, Zhiwei; van Osta, Jan-Paul; van Veen, Barry; van Krevelen, Rick; van Klaveren, Richard; Stam, Andries; Kok, Joost; Bäck, Thomas; Emmerich, Michael
2017-01-01
The vehicle routing problem is a classical combinatorial optimization problem. This work is about a variant of the vehicle routing problem with dynamically changing orders and time windows. In real-world applications often the demands change during operation time. New orders occur and others are canceled. In this case new schedules need to be generated on-the-fly. Online optimization algorithms for dynamical vehicle routing address this problem but so far they do not consider time windows. Moreover, to match the scenarios found in real-world problems adaptations of benchmarks are required. In this paper, a practical problem is modeled based on the procedure of daily routing of a delivery company. New orders by customers are introduced dynamically during the working day and need to be integrated into the schedule. A multiple ant colony algorithm combined with powerful local search procedures is proposed to solve the dynamic vehicle routing problem with time windows. The performance is tested on a new benchmark based on simulations of a working day. The problems are taken from Solomon's benchmarks but a certain percentage of the orders are only revealed to the algorithm during operation time. Different versions of the MACS algorithm are tested and a high performing variant is identified. Finally, the algorithm is tested in situ: In a field study, the algorithm schedules a fleet of cars for a surveillance company. We compare the performance of the algorithm to that of the procedure used by the company and we summarize insights gained from the implementation of the real-world study. The results show that the multiple ant colony algorithm can get a much better solution on the academic benchmark problem and also can be integrated in a real-world environment.
Engineering education in the wake of hurricane Katrina
Lima, Marybeth
2007-01-01
Living through hurricane Katrina and its aftermath and reflecting on these experiences from technical and non-technical standpoints has led me to reconsider my thoughts and philosophy on engineering education. I present three ideas regarding engineering education pedagogy that I believe will prepare future engineers for problem-solving in an increasingly complex world. They are (1) we must practice radical (to the root) engineering, (2) we must illustrate connections between engineering and public policy, and (3) we will join the charge to find sustainable solutions to problems. Ideas for bringing each of these concepts into engineering curricula through methods such as case study, practicing broad information gathering and data interpretation, and other methods inside and outside the classroom, are discussed. I believe that the consequences of not considering the root issues of problems to be solved, and of not including policy and sustainability considerations when problems to be solved are framed will lead our profession toward well meaning but insufficient utility. Hurricane Katrina convinced me that we must do better as educators to prepare our students for engineering for a sustainable world. PMID:18271988
A Heuristic Algorithm for Planning Personalized Learning Paths for Context-Aware Ubiquitous Learning
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Kuo, Fan-Ray; Yin, Peng-Yeng; Chuang, Kuo-Hsien
2010-01-01
In a context-aware ubiquitous learning environment, learning systems can detect students' learning behaviors in the real-world with the help of context-aware (sensor) technology; that is, students can be guided to observe or operate real-world objects with personalized support from the digital world. In this study, an optimization problem that…
Handbook of Research on Technology Tools for Real-World Skill Development (2 Volumes)
ERIC Educational Resources Information Center
Rosen, Yigel, Ed.; Ferrara, Steve, Ed.; Mosharraf, Maryam, Ed.
2016-01-01
Education is expanding to include a stronger focus on the practical application of classroom lessons in an effort to prepare the next generation of scholars for a changing world economy centered on collaborative and problem-solving skills for the digital age. "The Handbook of Research on Technology Tools for Real-World Skill Development"…
Exploring Engineering--Pros Can Help Make It Real
ERIC Educational Resources Information Center
Roman, Harry T.
2008-01-01
Engineering is one of the oldest professions, dating back to humanity's early times. The Seven Wonders of the Ancient World were all primarily feats of engineering. Most also had profound social/cultural impacts. Engineers are agents of change, devotees of capitalism, and dreamers of the possible. They are also in a unique position to work with…
Application of real-time engine simulations to the development of propulsion system controls
NASA Technical Reports Server (NTRS)
Szuch, J. R.
1975-01-01
The development of digital controls for turbojet and turbofan engines is presented by the use of real-time computer simulations of the engines. The engine simulation provides a test-bed for evaluating new control laws and for checking and debugging control software and hardware prior to engine testing. The development and use of real-time, hybrid computer simulations of the Pratt and Whitney TF30-P-3 and F100-PW-100 augmented turbofans are described in support of a number of controls research programs at the Lewis Research Center. The role of engine simulations in solving the propulsion systems integration problem is also discussed.
NASA Astrophysics Data System (ADS)
Zheng, Xuan; Wu, Ye; Zhang, Shaojun; Baldauf, Richard W.; Zhang, K. Max; Hu, Jingnan; Li, Zhenhua; Fu, Lixin; Hao, Jiming
2016-09-01
The black carbon (BC) emitted from heavy-duty diesel vehicles (HDDVs) is an important source of urban atmospheric pollution and creates strong climate-forcing impacts. The emission ratio of BC to total particle mass (PM) (i.e., BC/PM ratio) is an essential variable used to estimate total BC emissions from historical PM data; however, these ratios have not been measured using portable emission measurement systems (PEMS) in order to obtain real-world measurements over a wide range of driving conditions. In this study, we developed a PEMS platform by integrating two Aethalometers and an electric low pressure impactor to realize the joint measurement of real-world BC and PM emissions for ten HDDVs in China. Test results showed that the average BC/PM ratio for five HDDVs equipped with mechanical fuel injection (MI) engines was 0.43 ± 0.06, significantly lower (P < 0.05) than another five HDDVs equipped with electronically-controlled fuel injection (EI) engines (0.56 ± 0.12). Traffic conditions also affected the BC/PM ratios with higher ratios on freeway routes than on local roads. Furthermore, higher ratios were observed for HDDVs equipped with EI engines than for the MI engines for the highway and local road routes. With an operating mode binning approach, we observed that the instantaneous BC/PM ratios of EI engine vehicles were above those of the MI engine vehicles in all operating modes except for the braking mode (i.e., Bin 0). Therefore, the complex impacts from engine technology and traffic conditions on BC/PM ratios should be carefully considered when estimating real-world BC emissions from HDDVs based on overall PM emissions data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanfilippo, Antonio P.; Riensche, Roderick M.; Haack, Jereme N.
“Gamification”, the application of gameplay to real-world problems, enables the development of human computation systems that support decision-making through the integration of social and machine intelligence. One of gamification’s major benefits includes the creation of a problem solving environment where the influence of cognitive and cultural biases on human judgment can be curtailed through collaborative and competitive reasoning. By reducing biases on human judgment, gamification allows human computation systems to exploit human creativity relatively unhindered by human error. Operationally, gamification uses simulation to harvest human behavioral data that provide valuable insights for the solution of real-world problems.
Camera Geolocation From Mountain Images
2015-09-17
be reliably extracted from query images. However, in real-life scenarios the skyline in a query image may be blurred or invisible , due to occlusions...extracted from multiple mountain ridges is critical to reliably geolocating challenging real-world query images with blurred or invisible mountain skylines...Buddemeier, A. Bissacco, F. Brucher, T. Chua, H. Neven, and J. Yagnik, “Tour the world: building a web -scale landmark recognition engine,” in Proc. of
Models, Data, and War: a Critique of the Foundation for Defense Analyses.
1980-03-12
scientific formulation 6 An "objective" solution 8 Analysis of a squishy problem 9 A judgmental formulation 9 A potential for distortion 11 A subjective...inextricably tied to those judgments. Different analysts, with apparently identical knowledge of a real world problem, may develop plausible formulations ...configured is a concrete theoretical statement." 2/ The formulation of a computer model--conceiving a mathematical representation of the real world
A Conceptual Level Design for a Static Scheduler for Hard Real-Time Systems
1988-03-01
The design of hard real - time systems is gaining a great deal of attention in the software engineering field as more and more real-world processes are...for these hard real - time systems . PSDL, as an executable design language, is supported by an execution support system consisting of a static scheduler, dynamic scheduler, and translator.
NASA Astrophysics Data System (ADS)
Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik
2017-10-01
The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.
The History of the Planar Elastica: Insights into Mechanics and Scientific Method
NASA Astrophysics Data System (ADS)
Goss, Victor Geoffrey Alan
2009-08-01
Euler’s formula for the buckling of an elastic column is widely used in engineering design. However, only a handful of engineers will be familiar with Euler’s classic paper De Curvis Elasticis in which the formula is derived. In addition to the Euler Buckling Formula, De Curvis Elasticis classifies all the bent configurations of elastic rod—a landmark in the development of a rational theory of continuum mechanics. As a historical case study, Euler’s work on elastic rods offers an insight into some important concepts which underlie mechanics. It sheds light on the search for unifying principles of mechanics and the role of analysis. The connection between results obtained from theory and those obtained from experiments on rods, highlights two different approaches to scientific discovery, which can be traced back to Bacon, Descartes and Galileo. The bent rod also has an analogy in dynamics, with a pendulum, which highlights the crucial distinctions between initial value and boundary value problems and between linear and nonlinear differential equations. In addition to benefiting from the overview which a historical study provides, the particular problem of the elastica offers students of science and engineering a clear elucidation of the connection between mathematics and real-world engineering, issues which still have relevance today.
An Examination of the Social Systems of Engineering Projects
ERIC Educational Resources Information Center
Lawson, Errol
2006-01-01
In this article, the author describes his PhD thesis, titled "An examination of the social systems of engineering projects," which was transdisciplinary in that it drew from bodies of knowledge in domains of engineering, management, sociology, education and philosophy. The thesis drew together threads of the representation of real-world entities…
Experiencing Production Ramp-Up Education for Engineers
ERIC Educational Resources Information Center
Bassetto, S.; Fiegenwald, V.; Cholez, C.; Mangione, F.
2011-01-01
This paper presents a game of industrialisation, based on a paper airplane, that mimics real world production ramp-up and blends classical engineering courses together. It is based on a low cost product so that it can be mass produced. The game targets graduate students and practitioners in engineering fields. For students, it offers an experiment…
NASA Astrophysics Data System (ADS)
Sien, Ven Yu
2011-12-01
Object-oriented analysis and design (OOAD) is not an easy subject to learn. There are many challenges confronting students when studying OOAD. Students have particular difficulty abstracting real-world problems within the context of OOAD. They are unable to effectively build object-oriented (OO) models from the problem domain because they essentially do not know "what" to model. This article investigates the difficulties and misconceptions undergraduate students have with analysing systems using unified modelling language analysis class and sequence diagrams. These models were chosen because they represent important static and dynamic aspects of the software system under development. The results of this study will help students produce effective OO models, and facilitate software engineering lecturers design learning materials and approaches for introductory OOAD courses.
Characterization of topological structure on complex networks.
Nakamura, Ikuo
2003-10-01
Characterizing the topological structure of complex networks is a significant problem especially from the viewpoint of data mining on the World Wide Web. "Page rank" used in the commercial search engine Google is such a measure of authority to rank all the nodes matching a given query. We have investigated the page-rank distribution of the real Web and a growing network model, both of which have directed links and exhibit a power law distributions of in-degree (the number of incoming links to the node) and out-degree (the number of outgoing links from the node), respectively. We find a concentration of page rank on a small number of nodes and low page rank on high degree regimes in the real Web, which can be explained by topological properties of the network, e.g., network motifs, and connectivities of nearest neighbors.
Simulation of how a geo-engineering intervention to restore arctic sea ice might work in practice
NASA Astrophysics Data System (ADS)
Jackson, L. S.; Crook, J. A.; Forster, P.; Jarvis, A.; Leedal, D.; Ridgwell, A. J.; Vaughan, N.
2013-12-01
The declining trend in annual minimum Arctic sea ice coverage and years of more pronounced drops like 2007 and 2012 raise the prospect of an Arctic Ocean largely free of sea ice in late summer and the potential for a climate crisis or emergency. In a novel computer simulation, we treated one realisation of a climate model (HadGEM2) as the real world and tried to restore its Arctic sea ice by the rapid deployment of geo-engineering with emission of SO2 into the Arctic stratosphere. The objective was to restore the annual minimum Arctic sea ice coverage to levels seen in the late twentieth century using as little geo-engineering as possible. We took intervention decisions as one might do in the real world: by committee, using a limited set of uncertain 'observations' from our simulated world and using models and control theory to plan the best intervention strategy for the coming year - so learning as we went and being thrown off course by future volcanoes and technological breakdowns. Uncertainties in real world observations were simulated by applying noise to emerging results from the climate model. Volcanic forcing of twenty-first century climate was included with the timing and magnitude of the simulated eruptions unknown by the 'geo-engineers' until after the year of the eruption. Monitoring of Arctic sea ice with the option to intervene with SO2 emissions started from 2018 and continued to 2075. Simulated SO2 emissions were made in January-May each year at a latitude of 79o N and an altitude within the range of contemporary tanker aircraft. The magnitude of emissions was chosen annually using a model predictive control process calibrated using results from CMIP5 models (excluding HadGEM2), using the simplified climate model MAGICC and assimilation of emerging annual results from the HadGEM2 'real world'. We found that doubts in the minds of the 'geo-engineers' of the effectiveness and the side effects of their past intervention, and the veracity of the models used for planning intervention were a constant feature of the simulation. As a result, their assumptions and intervention approaches were considerably revised as the simulation progressed. Side effects of the geo-engineering were difficult to explicitly determine without a control experiment. Nevertheless, we found wide spread changes in precipitation that were believed to be due to the geo-engineering - a later control experiment confirmed this belief. On termination of the SO2 geo-engineering, northern hemisphere temperatures rose sharply and Arctic sea ice area dropped dramatically. These termination effects were so large that attribution to the geo-engineering cessation was unambiguous.
Parameter Estimation for a Turbulent Buoyant Jet Using Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Lapointe, Caelan; Grooms, Ian; Rieker, Gregory B.; Hamlington, Peter E.
2016-11-01
Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other "truth" data to be used for the prediction of unknown model parameters in numerical simulations of real-world engineering systems. In this presentation, we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a simulation with known boundary conditions and problem parameters. Using spatially-sparse temperature statistics from the 2D buoyant jet truth simulation, we show that the ABC method provides accurate predictions of the true jet inflow temperature. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for engineering fluid dynamics research.
Mathematical modelling in engineering: an alternative way to teach Linear Algebra
NASA Astrophysics Data System (ADS)
Domínguez-García, S.; García-Planas, M. I.; Taberna, J.
2016-10-01
Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic classroom approach in which students modelled real-world problems and turn gain a deeper knowledge of the Linear Algebra subject. Considering that most students are digital natives, we use the e-portfolio as a tool of communication between students and teachers, besides being a good place making the work visible. In this article, we present an overview of the design and implementation of a project-based learning for a Linear Algebra course taught during the 2014-2015 at the 'ETSEIB'of Universitat Politècnica de Catalunya (UPC).
NASA Technical Reports Server (NTRS)
Balabanovic, Marko; Becker, Craig; Morse, Sarah K.; Nourbakhsh, Illah R.
1994-01-01
The success of every mobile robot application hinges on the ability to navigate robustly in the real world. The problem of robust navigation is separable from the challenges faced by any particular robot application. We offer the Real-World Navigator as a solution architecture that includes a path planner, a map-based localizer, and a motion control loop that combines reactive avoidance modules with deliberate goal-based motion. Our architecture achieves a high degree of reliability by maintaining and reasoning about an explicit description of positional uncertainty. We provide two implementations of real-world robot systems that incorporate the Real-World Navigator. The Vagabond Project culminated in a robot that successfully navigated a portion of the Stanford University campus. The Scimmer project developed successful entries for the AIAA 1993 Robotics Competition, placing first in one of the two contests entered.
Engineering Education in K-12 Schools
NASA Astrophysics Data System (ADS)
Spence, Anne
2013-03-01
Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.
Tuning Out the World with Noise-Canceling Headphones
ERIC Educational Resources Information Center
McCulloch, Allison W.; Whitehead, Ashley; Lovett, Jennifer N.; Whitley, Blake
2017-01-01
Context is what makes mathematical modeling tasks different from more traditional textbook word problems. Math problems are sometimes stripped of context as they are worked on. For modeling problems, however, context is important for making sense of the mathematics. The task should be brought back to its real-world context as often as possible. In…
ERIC Educational Resources Information Center
Stump, Sheryl L.; Bryan, Joel A.; McConnell, Tom J.
2016-01-01
Integrated approaches to education in science, technology, engineering, and mathematics (STEM), especially those set in the context of real-world situations, can motivate and deepen students' learning of the STEM subjects (National Academy of Engineering and National Research Council 2014). This article describes two integrated investigations used…
Data Literacy: Real-World Learning through Problem-Solving with Data Sets
ERIC Educational Resources Information Center
Erwin, Robin W., Jr.
2015-01-01
The achievement of deep learning by secondary students requires teaching approaches that draw students into task commitment, integrated curricula, and analytical thinking. By using real-world data sets in project based instructional units, teachers can guide students in analyzing, interpreting, and reporting quantitative data. Working with…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, E.; Burton, E.; Duran, A.
Understanding the real-world power demand of modern automobiles is of critical importance to engineers using modeling and simulation to inform the intelligent design of increasingly efficient powertrains. Increased use of global positioning system (GPS) devices has made large scale data collection of vehicle speed (and associated power demand) a reality. While the availability of real-world GPS data has improved the industry's understanding of in-use vehicle power demand, relatively little attention has been paid to the incremental power requirements imposed by road grade. This analysis quantifies the incremental efficiency impacts of real-world road grade by appending high fidelity elevation profiles tomore » GPS speed traces and performing a large simulation study. Employing a large real-world dataset from the National Renewable Energy Laboratory's Transportation Secure Data Center, vehicle powertrain simulations are performed with and without road grade under five vehicle models. Aggregate results of this study suggest that road grade could be responsible for 1% to 3% of fuel use in light-duty automobiles.« less
Beyond the Renderer: Software Architecture for Parallel Graphics and Visualization
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.
1996-01-01
As numerous implementations have demonstrated, software-based parallel rendering is an effective way to obtain the needed computational power for a variety of challenging applications in computer graphics and scientific visualization. To fully realize their potential, however, parallel renderers need to be integrated into a complete environment for generating, manipulating, and delivering visual data. We examine the structure and components of such an environment, including the programming and user interfaces, rendering engines, and image delivery systems. We consider some of the constraints imposed by real-world applications and discuss the problems and issues involved in bringing parallel rendering out of the lab and into production.
NASA Astrophysics Data System (ADS)
Mitarai, Namiko; Nori, Franco
2006-04-01
Most studies on granular physics have focused on dry granular media, with no liquids between the grains. However, in geology and many real world applications (e.g. food processing, pharmaceuticals, ceramics, civil engineering, construction, and many industrial applications), liquid is present between the grains. This produces inter-grain cohesion and drastically modifies the mechanical properties of the granular media (e.g. the surface angle can be larger than 90 degrees). Here we present a review of the mechanical properties of wet granular media, with particular emphasis on the effect of cohesion. We also list several open problems that might motivate future studies in this exciting but mostly unexplored field.
Putting the Second Law to Work
NASA Astrophysics Data System (ADS)
Widmer, Thomas F.
2008-08-01
Thermo Electron Corporation was founded in 1956 by Dr. George Hatsopoulos with the goal of applying thermodynamics to the solution of energy problems throughout society. As the company grew from a small research laboratory to a multi-billion dollar Fortune 500 enterprise, the Second Law of thermodynamics played a pivotal role in creating a diversified portfolio of products and services. George and his staff also employed thermodynamics, particularly availability analyses of energy processes, to help guide changes in National policy arising from the 1973 oil embargo. As directors of the company, Professors Joseph Keenan and Elias Gyftopoulos made key contributions to the strategy of applying the Second Law to real-world engineering challenges.
Using mathematics to solve real world problems: the role of enablers
NASA Astrophysics Data System (ADS)
Geiger, Vincent; Stillman, Gloria; Brown, Jill; Galbriath, Peter; Niss, Mogens
2018-03-01
The purpose of this article is to report on a newly funded research project in which we will investigate how secondary students apply mathematical modelling to effectively address real world situations. Through this study, we will identify factors, mathematical, cognitive, social and environmental that "enable" year 10/11 students to successfully begin the modelling process, that is, formulate and mathematise a real world problem. The 3-year study will take a design research approach in working intensively with six schools across two educational jurisdictions. It is anticipated that this research will generate new theoretical and practical insights into the role of "enablers" within the process of mathematisation, leading to the development of principles for the design and implementation for tasks that support students' development as modellers.
Inspire Future Engineers with the Concrete Canoe Competition!
ERIC Educational Resources Information Center
Cramer, Steven; Kurten, Jaime
2005-01-01
While classroom instruction can and should still be used to teach students the fundamentals of engineering, the key to their ultimate success is learning to use that knowledge in a real-world setting. Out-of-class activities, like the American Society of Civil Engineers' (ASCE) National Concrete Canoe Competition, not only give students a hands-on…
Real-World Units in the Conceptual Age
ERIC Educational Resources Information Center
Campillo, Blanca; Pierson, Bo Hyun
2014-01-01
During an eight-week series of investigations, a class of third-grade students learned how interactions between forces are used to advance technology in their world. This five-part forces and interaction unit was led by a guiding question: How does engineering and design work in the world, and how does it affect our lives? As they explored this…
Engineering design in the primary school: applying stem concepts to build an optical instrument
NASA Astrophysics Data System (ADS)
King, Donna; English, Lyn D.
2016-12-01
Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students' learning of STEM concepts. As such, this study examined the learning that occurred when fifth-grade students completed an optical engineering activity using an iterative engineering design model. Through a qualitative methodology using a case study design, we analysed multiple data sources including students' design sketches from eight focus groups. Three key findings emerged: first, the collaborative process of the first design sketch enabled students to apply core STEM concepts to model construction; second, during the construction stage students used experimentation for the positioning of lenses, mirrors and tubes resulting in a simpler 'working' model; and third, the redesign process enabled students to apply structural changes to their design. The engineering design model was useful for structuring stages of design, construction and redesign; however, we suggest a more flexible approach for advanced applications of STEM concepts in the future.
Language Problems in Applied Linguistics: Limiting the Scope
ERIC Educational Resources Information Center
Kadarisman, A. Effendi
2014-01-01
This article critically discusses the paradigmatic shift in applied linguistics, resulting in a claim that countless real-world language problems fall within its scope, but in reality they weaken the discipline and make it lack a focus. Then it takes a closer look at the nature of these language problems, and picks out, for analysis, real examples…
NASA Astrophysics Data System (ADS)
Pagnutti, Mary; Ryan, Robert E.; Cazenavette, George; Gold, Maxwell; Harlan, Ryan; Leggett, Edward; Pagnutti, James
2017-01-01
A comprehensive radiometric characterization of raw-data format imagery acquired with the Raspberry Pi 3 and V2.1 camera module is presented. The Raspberry Pi is a high-performance single-board computer designed to educate and solve real-world problems. This small computer supports a camera module that uses a Sony IMX219 8 megapixel CMOS sensor. This paper shows that scientific and engineering-grade imagery can be produced with the Raspberry Pi 3 and its V2.1 camera module. Raw imagery is shown to be linear with exposure and gain (ISO), which is essential for scientific and engineering applications. Dark frame, noise, and exposure stability assessments along with flat fielding results, spectral response measurements, and absolute radiometric calibration results are described. This low-cost imaging sensor, when calibrated to produce scientific quality data, can be used in computer vision, biophotonics, remote sensing, astronomy, high dynamic range imaging, and security applications, to name a few.
A deep learning framework for causal shape transformation.
Lore, Kin Gwn; Stoecklein, Daniel; Davies, Michael; Ganapathysubramanian, Baskar; Sarkar, Soumik
2018-02-01
Recurrent neural network (RNN) and Long Short-term Memory (LSTM) networks are the common go-to architecture for exploiting sequential information where the output is dependent on a sequence of inputs. However, in most considered problems, the dependencies typically lie in the latent domain which may not be suitable for applications involving the prediction of a step-wise transformation sequence that is dependent on the previous states only in the visible domain with a known terminal state. We propose a hybrid architecture of convolution neural networks (CNN) and stacked autoencoders (SAE) to learn a sequence of causal actions that nonlinearly transform an input visual pattern or distribution into a target visual pattern or distribution with the same support and demonstrated its practicality in a real-world engineering problem involving the physics of fluids. We solved a high-dimensional one-to-many inverse mapping problem concerning microfluidic flow sculpting, where the use of deep learning methods as an inverse map is very seldom explored. This work serves as a fruitful use-case to applied scientists and engineers in how deep learning can be beneficial as a solution for high-dimensional physical problems, and potentially opening doors to impactful advance in fields such as material sciences and medical biology where multistep topological transformations is a key element. Copyright © 2017 Elsevier Ltd. All rights reserved.
Portable inference engine: An extended CLIPS for real-time production systems
NASA Technical Reports Server (NTRS)
Le, Thach; Homeier, Peter
1988-01-01
The present C-Language Integrated Production System (CLIPS) architecture has not been optimized to deal with the constraints of real-time production systems. Matching in CLIPS is based on the Rete Net algorithm, whose assumption of working memory stability might fail to be satisfied in a system subject to real-time dataflow. Further, the CLIPS forward-chaining control mechanism with a predefined conflict resultion strategy may not effectively focus the system's attention on situation-dependent current priorties, or appropriately address different kinds of knowledge which might appear in a given application. Portable Inference Engine (PIE) is a production system architecture based on CLIPS which attempts to create a more general tool while addressing the problems of real-time expert systems. Features of the PIE design include a modular knowledge base, a modified Rete Net algorithm, a bi-directional control strategy, and multiple user-defined conflict resolution strategies. Problems associated with real-time applications are analyzed and an explanation is given for how the PIE architecture addresses these problems.
Tuning self-motion perception in virtual reality with visual illusions.
Bruder, Gerd; Steinicke, Frank; Wieland, Phil; Lappe, Markus
2012-07-01
Motion perception in immersive virtual environments significantly differs from the real world. For example, previous work has shown that users tend to underestimate travel distances in virtual environments (VEs). As a solution to this problem, researchers proposed to scale the mapped virtual camera motion relative to the tracked real-world movement of a user until real and virtual motion are perceived as equal, i.e., real-world movements could be mapped with a larger gain to the VE in order to compensate for the underestimation. However, introducing discrepancies between real and virtual motion can become a problem, in particular, due to misalignments of both worlds and distorted space cognition. In this paper, we describe a different approach that introduces apparent self-motion illusions by manipulating optic flow fields during movements in VEs. These manipulations can affect self-motion perception in VEs, but omit a quantitative discrepancy between real and virtual motions. In particular, we consider to which regions of the virtual view these apparent self-motion illusions can be applied, i.e., the ground plane or peripheral vision. Therefore, we introduce four illusions and show in experiments that optic flow manipulation can significantly affect users' self-motion judgments. Furthermore, we show that with such manipulations of optic flow fields the underestimation of travel distances can be compensated.
Real-World Learning Opportunities in Sustainability: From Classroom into the Real World
ERIC Educational Resources Information Center
Brundiers, Katja; Wiek, Arnim; Redman, Charles L.
2010-01-01
Purpose--Academic sustainability programs aim to develop key competencies in sustainability, including problem-solving skills and the ability to collaborate successfully with experts and stakeholders. These key competencies may be most fully developed in new teaching and learning situations. The purpose of this paper is to analyze the kind of, and…
Using Mathematics to Solve Real World Problems: The Role of Enablers
ERIC Educational Resources Information Center
Geiger, Vincent; Stillman, Gloria; Brown, Jill; Galbriath, Peter; Niss, Mogens
2018-01-01
The purpose of this article is to report on a newly funded research project in which we will investigate how secondary students apply mathematical modelling to effectively address real world situations. Through this study, we will identify factors, mathematical, cognitive, social and environmental that "enable" year 10/11 students to…
Uniting Community and University through Service Learning
ERIC Educational Resources Information Center
Arney, Janna B.; Jones, Irma
2006-01-01
At its core, service-learning is about creating opportunities for students to apply theory they learn in the classroom to real-world problems and real-world needs. A service-learning project was initiated with the CEO of the Brownsville Chamber of Commerce. The project required 2nd-year business communication students to interview community…
A Community of Practice Approach to Learning Programming
ERIC Educational Resources Information Center
Chen, Gwo-Dong; Li, Liang-Yi; Wang, Chin-Yea
2012-01-01
In programming courses, teaching students who have varied levels of knowledge and skills the requisite competencies to perform in real-world software development teams is indeed difficult. To address this problem, this paper proposes a community of practice (CoP) approach and provides some guidelines to simulate a real-world CoP in a blended…
Real World Projects, Real World Problems: Capstones for External Clients
ERIC Educational Resources Information Center
Reinicke, Bryan; Janicki, Thomas
2011-01-01
Capstones form an important part of the curriculum in many undergraduate and graduate programs in Information Systems. These projects give the students a chance to synthesize and apply the skills they have been acquiring throughout their academic program. These projects can be integrated with another recent initiative in higher education: service…
Social Justice and Proportional Reasoning
ERIC Educational Resources Information Center
Simic-Muller, Ksenija
2015-01-01
Ratio and proportional reasoning tasks abound that have connections to real-world situations. Examples in this article demonstrate how textbook tasks can easily be transformed into authentic real-world problems that shed light on issues of equity and fairness, such as population growth and crime rates. A few ideas are presented on how teachers can…
Global Coverage Measurement Planning Strategies for Mobile Robots Equipped with a Remote Gas Sensor
Arain, Muhammad Asif; Trincavelli, Marco; Cirillo, Marcello; Schaffernicht, Erik; Lilienthal, Achim J.
2015-01-01
The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions. PMID:25803707
Global coverage measurement planning strategies for mobile robots equipped with a remote gas sensor.
Arain, Muhammad Asif; Trincavelli, Marco; Cirillo, Marcello; Schaffernicht, Erik; Lilienthal, Achim J
2015-03-20
The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions.
Towards a Unified Theory of Engineering Education
ERIC Educational Resources Information Center
Salcedo Orozco, Oscar H.
2017-01-01
STEM education is an interdisciplinary approach to learning where rigorous academic concepts are coupled with real-world lessons and activities as students apply science, technology, engineering, and mathematics in contexts that make connections between school, community, work, and the global enterprise enabling STEM literacy (Tsupros, Kohler and…
Stimulating Learning via Tutoring and Collaborative Entrepreneurship Gaming
ERIC Educational Resources Information Center
Alves, Antonio Manuel Cerqueira; Pereira, Anabela Maria de Sousa; Castanheira, Helder; Direito, Ines; Duarte, A. Manuel de Oliveira
2012-01-01
This paper presents results from a multidisciplinary program targeted at engineering education and at the development of entrepreneurial mind in telecommunications engineering students. The basic concept is rooted in a capstone-like project with the following characteristics: (i) Creation of student awareness about real world engineering…
Cars and Kinetic Energy -- Some Simple Physics with Real-World Relevance
NASA Astrophysics Data System (ADS)
Parthasarathy, Raghuveer
2012-10-01
Understanding energy usage is crucial to understanding modern civilization, as well as many of the challenges it faces. Energy-related issues also offer real-world examples of important physical concepts, and as such have been the focus of several articles in The Physics Teacher in the past few decades (e.g., Refs. 1-5, noted further below). Here, I illustrate how a basic understanding of kinetic energy—a topic encountered early in any introductory physics course—enables significant insights into the nature of automobile transportation. Specifically, we can accurately predict how much power the average driver in the United States uses, and explain what determines this, without needing to consider any aspects of mechanical engineering or engine design.
Systems engineering real estate development projects
NASA Astrophysics Data System (ADS)
Gusakova, Elena; Titarenko, Boris; Stepanov, Vitaliy
2017-10-01
In recent years, real estate development has accumulated a wealth of experience in implementing major projects, which requires comprehension and systematization. The scientific instrument of system engineering is studied in the article and is substantively interpreted with reference to real estate development projects. The most perspective approaches and models are substantiated, allowing strategically to plan the life cycle of the project as a whole, and also to solve the engineering butt problems of the project. The relevance of further scientific studies of regularities and specifics of the life cycle of real estate development projects conducted at the Moscow State University of Economics and Management at the ISTA department is shown.
Aging and autism spectrum disorder: Evidence from the broad autism phenotype.
Wallace, Gregory L; Budgett, Jessica; Charlton, Rebecca A
2016-12-01
This study investigated for the first time the broad autism phenotype (BAP) in the context of older adulthood and its associations with real-world executive function, social support, and both depression and anxiety symptomatology. Based on self-ratings of autistic traits, 66 older adults (60+ years old, range = 61-88) were split into BAP (n = 20) and control (n = 46) groups. Individuals in the BAP group, even after controlling for age, education level, sex, and health problems, exhibited more real-world executive function problems in multiple domains, reported lower levels of social support, and self-rated increased depression and anxiety symptomatology compared to the control group. Regression analysis revealed that level of social support was the strongest predictor of BAP traits across both groups, although real-world executive function problems and depression symptomatology were also significant predictors. Moreover, when predicting anxiety and depression symptomatology, BAP traits were the strongest predictors above and beyond the effects of demographic factors, real-world executive function problems, and social support levels. These findings suggest that the BAP in older adulthood imparts additional risks to areas of functioning that are known to be crucial to aging-related outcomes in the context of typical development. These results might in turn inform aging in autism spectrum disorder, which has been largely unexplored to date. Autism Res 2016, 9: 1294-1303. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Stanley, C. W.; Hood, W. E.
1981-01-01
The U.S. Marine Corp (USMC) has been operating the only V/STOL attack aircraft in the western world since 1971. Some of the maintenance problems experienced are related to the unique V/STOL design criteria of the Pegasus engine. However, the major part of the required maintenance effort is found to involve the more conventional engine problems. A description of the aircraft engine is provided and the problems resulting from V/STOL design demands are examined. Attention is given to the fuel system control, the engine air bleed, foreign object damage to the hp compressor, and the engine exhaust system.
ERIC Educational Resources Information Center
Berland, Leema; Steingut, Rebecca; Ko, Pat
2014-01-01
Research and policy documents increasingly advocate for incorporating engineering design into K-12 classrooms in order to accomplish two goals: (1) provide an opportunity to engage with science content in a motivating real-world context; and (2) introduce students to the field of engineering. The present study uses multiple qualitative data…
Understanding Integrated STEM Science Instruction through Experiences of Teachers and Students
ERIC Educational Resources Information Center
Gardner, Margery
2017-01-01
Integrated STEM education comprises an exploration of the interconnections between science, technology, engineering and mathematics in order to reflect on how each discipline operates within real world contexts. Students benefit from the integrated STEM approach because it values students' real-life experiences and hands-on applications that…
ERIC Educational Resources Information Center
Alhusaini, Abdulnasser Alashaal F.
2016-01-01
The Real Engagement in Active Problem Solving (REAPS) model was developed in 2004 by C. June Maker and colleagues as an intervention for gifted students to develop creative problem solving ability through the use of real-world problems. The primary purpose of this study was to examine the effects of the REAPS model on developing students' general…
Programming and Tuning a Quantum Annealing Device to Solve Real World Problems
NASA Astrophysics Data System (ADS)
Perdomo-Ortiz, Alejandro; O'Gorman, Bryan; Fluegemann, Joseph; Smelyanskiy, Vadim
2015-03-01
Solving real-world applications with quantum algorithms requires overcoming several challenges, ranging from translating the computational problem at hand to the quantum-machine language to tuning parameters of the quantum algorithm that have a significant impact on the performance of the device. In this talk, we discuss these challenges, strategies developed to enhance performance, and also a more efficient implementation of several applications. Although we will focus on applications of interest to NASA's Quantum Artificial Intelligence Laboratory, the methods and concepts presented here apply to a broader family of hard discrete optimization problems, including those that occur in many machine-learning algorithms.
Reflections on Graduate Student PBL Experiences
ERIC Educational Resources Information Center
McDonald, Betty
2008-01-01
The study designed to contribute to existing research on Problem-Based Learning (PBL) chose a focus group comprising 16 MSc. Petroleum Engineering students (six females). Using PBL as the method of instruction, students examined a real-life petroleum engineering problem that highlighted numerous areas of their existing curriculum. They worked in…
Fast and robust curve skeletonization for real-world elongated objects
USDA-ARS?s Scientific Manuscript database
These datasets were generated for calibrating robot-camera systems. In an extension, we also considered the problem of calibrating robots with more than one camera. These datasets are provided as a companion to the paper, "Solving the Robot-World Hand-Eye(s) Calibration Problem with Iterative Meth...
Vocabulary Development in Technology and Engineering Education
ERIC Educational Resources Information Center
Klink, Pamela; Loveland, Thomas
2015-01-01
Some students have trouble performing well on summative tests in technology and engineering education. This is largely due to the students' inability to apply the terms to real-world scenarios (Baker, Simmons, & Kameenui, 1995). Exams often provide situational questions and, with these, critical-thinking skills are required. Students may lack…
A Thematic Instruction Approach to Teaching Technology and Engineering
ERIC Educational Resources Information Center
Moyer, Courtney D.
2016-01-01
Thematic instruction offers flexible opportunities to engage students with real-world experiences in the technology and engineering community. Whether used in a broad unifying theme or specific project-based theme, research has proven that thematic instruction has the capacity to link cross-curricular subjects, facilitate active learning, and…
Implementing Large Projects in Software Engineering Courses
ERIC Educational Resources Information Center
Coppit, David
2006-01-01
In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that…
"Just the Answers, Please": Choosing a Web Search Service.
ERIC Educational Resources Information Center
Feldman, Susan
1997-01-01
Presents guidelines for selecting World Wide Web search engines. Real-life questions were used to test six search engines. Queries sought company information, product reviews, medical information, foreign information, technical reports, and current events. Compares performance and features of AltaVista, Excite, HotBot, Infoseek, Lycos, and Open…
NASA Astrophysics Data System (ADS)
Spelt, Elisabeth Jacoba Hendrika; Luning, Pieternelleke Arianne; van Boekel, Martinus A. J. S.; Mulder, Martin
2017-11-01
Preparing science and engineering students to work in interdisciplinary teams necessitates research on teaching and learning of interdisciplinary thinking. A multidimensional approach was taken to examine student interdisciplinary learning in a master course on food quality management. The collected 615 student experiences were analysed for the cognitive, emotional, and social learning dimensions using the learning theory of Illeris. Of these 615 experiences, the analysis showed that students reported 214, 194, and 207 times on, respectively, the emotional, the cognitive, and the social dimension. Per learning dimension, key learning experiences featuring interdisciplinary learning were identified such as 'frustrations in selecting and matching disciplinary knowledge to complex problems' (emotional), 'understanding how to apply theoretical models or concepts to real-world situations' (cognitive), and 'socially engaging with peers to recognise similarities in perceptions and experiences' (social). Furthermore, the results showed that students appreciated the cognitive dimension relatively more than the emotional and social dimensions.
MatLab Script and Functional Programming
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali
2007-01-01
MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.
A Structured Approach to Teaching Applied Problem Solving through Technology Assessment.
ERIC Educational Resources Information Center
Fischbach, Fritz A.; Sell, Nancy J.
1986-01-01
Describes an approach to problem solving based on real-world problems. Discusses problem analysis and definitions, preparation of briefing documents, solution finding techniques (brainstorming and synectics), solution evaluation and judgment, and implementation. (JM)
Multi-blocking strategies for the INS3D incompressible Navier-Stokes code
NASA Technical Reports Server (NTRS)
Gatlin, Boyd
1990-01-01
With the continuing development of bigger and faster supercomputers, computational fluid dynamics (CFD) has become a useful tool for real-world engineering design and analysis. However, the number of grid points necessary to resolve realistic flow fields numerically can easily exceed the memory capacity of available computers. In addition, geometric shapes of flow fields, such as those in the Space Shuttle Main Engine (SSME) power head, may be impossible to fill with continuous grids upon which to obtain numerical solutions to the equations of fluid motion. The solution to this dilemma is simply to decompose the computational domain into subblocks of manageable size. Computer codes that are single-block by construction can be modified to handle multiple blocks, but ad-hoc changes in the FORTRAN have to be made for each geometry treated. For engineering design and analysis, what is needed is generalization so that the blocking arrangement can be specified by the user. INS3D is a computer program for the solution of steady, incompressible flow problems. It is used frequently to solve engineering problems in the CFD Branch at Marshall Space Flight Center. INS3D uses an implicit solution algorithm and the concept of artificial compressibility to provide the necessary coupling between the pressure field and the velocity field. The development of generalized multi-block capability in INS3D is described.
Machine Learning Techniques in Optimal Design
NASA Technical Reports Server (NTRS)
Cerbone, Giuseppe
1992-01-01
Many important applications can be formalized as constrained optimization tasks. For example, we are studying the engineering domain of two-dimensional (2-D) structural design. In this task, the goal is to design a structure of minimum weight that bears a set of loads. A solution to a design problem in which there is a single load (L) and two stationary support points (S1 and S2) consists of four members, E1, E2, E3, and E4 that connect the load to the support points is discussed. In principle, optimal solutions to problems of this kind can be found by numerical optimization techniques. However, in practice [Vanderplaats, 1984] these methods are slow and they can produce different local solutions whose quality (ratio to the global optimum) varies with the choice of starting points. Hence, their applicability to real-world problems is severely restricted. To overcome these limitations, we propose to augment numerical optimization by first performing a symbolic compilation stage to produce: (a) objective functions that are faster to evaluate and that depend less on the choice of the starting point and (b) selection rules that associate problem instances to a set of recommended solutions. These goals are accomplished by successive specializations of the problem class and of the associated objective functions. In the end, this process reduces the problem to a collection of independent functions that are fast to evaluate, that can be differentiated symbolically, and that represent smaller regions of the overall search space. However, the specialization process can produce a large number of sub-problems. This is overcome by deriving inductively selection rules which associate problems to small sets of specialized independent sub-problems. Each set of candidate solutions is chosen to minimize a cost function which expresses the tradeoff between the quality of the solution that can be obtained from the sub-problem and the time it takes to produce it. The overall solution to the problem, is then obtained by solving in parallel each of the sub-problems in the set and computing the one with the minimum cost. In addition to speeding up the optimization process, our use of learning methods also relieves the expert from the burden of identifying rules that exactly pinpoint optimal candidate sub-problems. In real engineering tasks it is usually too costly to the engineers to derive such rules. Therefore, this paper also contributes to a further step towards the solution of the knowledge acquisition bottleneck [Feigenbaum, 1977] which has somewhat impaired the construction of rulebased expert systems.
Students without Borders: Global Collaborative Learning Connects School to the Real World
ERIC Educational Resources Information Center
Bickley, Mali; Carleton, Jim
2009-01-01
Kids can't help but get engaged when they're collaborating with peers across the globe to solve real-life problems. Global collaborative learning is about connecting students in communities of learners around the world so they can work together on projects that make a difference locally and globally. It is about building relationships and…
Kids Are Consumers, Too! Real-World Reading and Language Arts.
ERIC Educational Resources Information Center
Fair, Jan; Melvin, Mary; Bantz, Carol; Vause, Kate
Designed to help youngsters with real-world learning, and with being a smart consumer, this book focuses on having students participate in decisions facing consumers every day. The book contends that this is the best way to help students think critically and solve problems. Activities in the book require students to make consumer decisions related…
How to Make a Math Modeling Class from Scratch in Six (Not-So) Easy Steps
ERIC Educational Resources Information Center
Gerhardt, Ira
2017-01-01
The recent introduction of a new course in mathematical modeling at Manhattan College has provided students with a valuable opportunity to gain practical experience utilizing tools in applying their mathematical abilities to a real-world problem. This paper describes the steps taken to create this class, from obtaining a real-world partner…
Investigating Comprehension in Real World Tasks: Understanding Jury Instructions.
ERIC Educational Resources Information Center
Charrow, Veda R.; Charrow, Robert
This paper discusses the results of part of an ongoing project studying an aspect of real world language usage, the comprehension of standard jury instructions. Problems in the comprehension of these instructions include the memory load that they impose, the fact that most instructions are read only once, and the fact that instructions are written…
Developing Air Force Systems Engineers - a Flight Path
2012-12-01
to viewing problems from different perspectives. Specialists generally see the world through the lens of their own specialty. To paraphrase Abraham ... Maslow : If all you have is a hammer, everything looks like a nail. Systems engineers are supposed to take a different approach to problem solving
Multiobjective Decision Analysis With Engineering and Business Applications
NASA Astrophysics Data System (ADS)
Wood, Eric
The last 15 years have witnessed the development of a large number of multiobjective decision techniques. Applying these techniques to environmental, engineering, and business problems has become well accepted. Multiobjective Decision Analysis With Engineering and Business Applications attempts to cover the main multiobjective techniques both in their mathematical treatment and in their application to real-world problems.The book is divided into 12 chapters plus three appendices. The main portion of the book is represented by chapters 3-6, Where the various approaches are identified, classified, and reviewed. Chapter 3 covers methods for generating nondominated solutions; chapter 4, continuous methods with prior preference articulation; chapter 5, discrete methods with prior preference articulation; and chapter 6, methods of progressive articulation of preferences. In these four chapters, close to 20 techniques are discussed with over 20 illustrative examples. This is both a strength and a weakness; the breadth of techniques and examples provide comprehensive coverage, but it is in a style too mathematically compact for most readers. By my count, the presentation of the 20 techniques in chapters 3-6 covered 85 pages, an average of about 4.5 pages each; therefore, a sound basis in linear algebra and linear programing is required if the reader hopes to follow the material. Chapter 2, “Concepts in Multiobjective Analysis,” also assumes such a background.
NASA Astrophysics Data System (ADS)
Chen, Jean Chi-Jen
Physics is fundamental for science, engineering, medicine, and for understanding many phenomena encountered in people's daily lives. The purpose of this study was to investigate the relationships between student success in college-level introductory physics courses and various educational and background characteristics. The primary variables of this study were gender, high school mathematics and science preparation, preference and perceptions of learning physics, and performance in introductory physics courses. Demographic characteristics considered were age, student grade level, parents' occupation and level of education, high school senior grade point average, and educational goals. A Survey of Learning Preference and Perceptions was developed to collect the information for this study. A total of 267 subjects enrolled in six introductory physics courses, four algebra-based and two calculus-based, participated in the study conducted during Spring Semester 2002. The findings from the algebra-based physics courses indicated that participant's educational goal, high school senior GPA, father's educational level, mother's educational level, and mother's occupation in the area of science, engineering, or computer technology were positively related to performance while participant age was negatively related. Biology preparation, mathematics preparation, and additional mathematics and science preparation in high school were also positively related to performance. The relationships between the primary variables and performance in calculus-based physics courses were limited to high school senior year GPA and high school physics preparation. Findings from all six courses indicated that participant's educational goal, high school senior GPA, father's educational level, and mother's occupation in the area of science, engineering, or computer technology, high school preparation in mathematics, biology, and the completion of additional mathematics and science courses were positively related to performance. No significant performance differences were found between male and female students. However, there were significant gender differences in physics learning perceptions. Female participants tended to try to understand physics materials and relate the physics problems to real world situations while their male counterparts tended to rely on rote learning and equation application. This study found that participants performed better by trying to understand the physics material and relate physics problems to real world situations. Participants who relied on rote learning did not perform well.
Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity.
Behabtu, Natnael; Young, Colin C; Tsentalovich, Dmitri E; Kleinerman, Olga; Wang, Xuan; Ma, Anson W K; Bengio, E Amram; ter Waarbeek, Ron F; de Jong, Jorrit J; Hoogerwerf, Ron E; Fairchild, Steven B; Ferguson, John B; Maruyama, Benji; Kono, Junichiro; Talmon, Yeshayahu; Cohen, Yachin; Otto, Marcin J; Pasquali, Matteo
2013-01-11
Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.
Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling
NASA Technical Reports Server (NTRS)
Chiu, Stephen
1996-01-01
Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.
Riva, Giuseppe; Raspelli, Simona; Algeri, Davide; Pallavicini, Federica; Gorini, Alessandra; Wiederhold, Brenda K; Gaggioli, Andrea
2010-02-01
The use of new technologies, particularly virtual reality, is not new in the treatment of posttraumatic stress disorders (PTSD): VR is used to facilitate the activation of the traumatic event during exposure therapy. However, during the therapy, VR is a new and distinct realm, separate from the emotions and behaviors experienced by the patient in the real world: the behavior of the patient in VR has no direct effects on the real-life experience; the emotions and problems experienced by the patient in the real world are not directly addressed in the VR exposure. In this article, we suggest that the use of a new technological paradigm, Interreality, may improve the clinical outcome of PTSD. The main feature of Interreality is a twofold link between the virtual and real worlds: (a) behavior in the physical world influences the experience in the virtual one; (b) behavior in the virtual world influences the experience in the real one. This is achieved through 3D shared virtual worlds; biosensors and activity sensors (from the real to the virtual world); and personal digital assistants and/or mobile phones (from the virtual world to the real one). We describe different technologies that are involved in the Interreality vision and its clinical rationale. To illustrate the concept of Interreality in practice, a clinical scenario is also presented and discussed: Rosa, a 55-year-old nurse, involved in a major car accident.
ERIC Educational Resources Information Center
Polanco, Rodrigo; Calderon, Patricia; Delgado, Franciso
A 3-year follow-up evaluation was conducted of an experimental problem-based learning (PBL) integrated curriculum directed to students of the first 2 years of engineering. The PBL curriculum brought together the contents of physics, mathematics, and computer science courses in a single course in which students worked on real-life problems. In…
NASA Astrophysics Data System (ADS)
Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.; Neumann, M.; Lathem, S.
2009-12-01
Researchers at the University of Vermont were awarded a NSF-sponsored Department Level Reform (DLR) grant to incorporate a systems approach to engineering problem solving within the civil and environmental engineering programs. A systems approach challenges students to consider the environmental, social, and economic aspects within engineering solutions. Likewise, sustainability requires a holistic approach to problem solving that includes economic, social and environmental factors. Our reform has taken a multi-pronged approach in two main areas that include implementing: a) a sequence of three systems courses related to environmental and transportation systems that introduce systems thinking, sustainability, and systems analysis and modeling; and b) service-learning (SL) projects as a means of practicing the systems approach. Our SL projects are good examples of inquiry-based learning that allow students to emphasize research and learning in areas of most interest to them. The SL projects address real-world open-ended problems. Activities that enhance IT and soft skills for students are incorporated throughout the curricula. Likewise, sustainability has been a central piece of the reform. We present examples of sustainability in the SL and modeling projects within the systems courses (e.g., students have used STELLA™ systems modeling software to address the impact of different carbon sequestration strategies on global climate change). Sustainability in SL projects include mentoring home schooled children in biomimicry projects, developing ECHO exhibits and the design of green roofs, bioretention ponds and porous pavement solutions. Assessment includes formative and summative methods involving student surveys and focus groups, faculty interviews and observations, and evaluation of student work.
Real-Time Internet Mediated Laboratory Experiments for Distance Education Students.
ERIC Educational Resources Information Center
Lemckert, Charles; Florance, John
2002-01-01
Discusses the demand for distance education opportunities in engineering and science and considers delivery methods for theoretical content and for laboratory work. Explains the Real-Time Internet Mediated Laboratory Experiments (RTIMLE) that use the World Wide Web, and suggests that RTIMLE may be most appropriate for students who already have…
Acquiring Software Project Specifications in a Virtual World
ERIC Educational Resources Information Center
Ng, Vincent; Tang, Zoe
2012-01-01
In teaching software engineering, it is often interesting to introduce real life scenarios for students to experience and to learn how to collect information from respective clients. The ideal arrangement is to have some real clients willing to spend time to provide their ideas of a target system through interviews. However, this arrangement…
The Effect of World War II on Women in Engineering
NASA Astrophysics Data System (ADS)
Barker, Anne M.
The field of engineering has been one of the most difficult for women to enter. Even with an increase in the proportion of women in the engineering workforce from 0.3% before the 1970s to 9.5% in 1999, women are still seriously underrepresented. This article examines the history of women in engineering in the United States during World War II. Women were actively recruited as engineering aides by the federal government, which saw them as a temporary substitute for men who were in the military. Yet this crisis did not break down the barriers to and prejudices against women in engineering, nor did it give them a real opportunity to become professional engineers equal to men. After the war, calls for a return to normalcy were used to reestablish social norms, which kept women at home and reserved desirable places in the workforce, including in engineering, for men.
The Engineer and the Societal Dilemma: An Interdisciplinary Approach.
ERIC Educational Resources Information Center
Coleman, Robert J.
The University of North Carolina's Electrical Engineering Department developed and delivered a course for undergraduate engineering students. The course integrated technical, social, and ethical perspectives on problems and issues faced in the world of practicing engineers. It achieved this integration by making use of professors in engineering,…
Problem-Based Learning in Wind Energy Using Virtual and Real Setups
ERIC Educational Resources Information Center
Santos-Martin, D.; Alonso-Martinez, J.; Eloy-Garcia Carrasco, J.; Arnaltes, S.
2012-01-01
The use of wind energy is now an established fact, and many educational institutions are introducing this topic into their engineering studies. Problem-based learning (PBL), as a student-centered instructional approach, has contributed to important developments in engineering education over the last few years. This paper presents the experience of…
PBL-SEE: An Authentic Assessment Model for PBL-Based Software Engineering Education
ERIC Educational Resources Information Center
dos Santos, Simone C.
2017-01-01
The problem-based learning (PBL) approach has been successfully applied to teaching software engineering thanks to its principles of group work, learning by solving real problems, and learning environments that match the market realities. However, the lack of well-defined methodologies and processes for implementing the PBL approach represents a…
Estimating Classifier Accuracy Using Noisy Expert Labels
estimators to real -world problems is limited. We applythe estimators to labels simulated from three models of the expert labeling process and also four real ...thatconditional dependence between experts negatively impacts estimator performance. On two of the real datasets, the estimatorsclearly outperformed the
MATLAB Meets LEGO Mindstorms--A Freshman Introduction Course into Practical Engineering
ERIC Educational Resources Information Center
Behrens, A.; Atorf, L.; Schwann, R.; Neumann, B.; Schnitzler, R.; Balle, J.; Herold, T.; Telle, A.; Noll, T. G.; Hameyer, K.; Aach, T.
2010-01-01
In today's teaching and learning approaches for first-semester students, practical courses more and more often complement traditional theoretical lectures. This practical element allows an early insight into the real world of engineering, augments student motivation, and enables students to acquire soft skills early. This paper describes a new…
Thermodynamics in High Rhythms and Rhymes: Creative Ways of Knowing in Engineering
ERIC Educational Resources Information Center
Bairaktarova, Diana; Eodice, Michele
2017-01-01
Thermodynamics is a foundational course in nearly every engineering program. In a traditional classroom, instructors focus on the analysis of thermodynamic energy systems and their application to real world contexts. Because these complex systems can be difficult to understand, some instructors encourage students to tap into their creative side…
Introducing Whole-Systems Design to First-Year Engineering Students with Case Studies
ERIC Educational Resources Information Center
Blizzard, Jackie; Klotz, Leidy; Pradhan, Alok; Dukes, Michael
2012-01-01
Purpose: A whole-systems approach, which seeks to optimize an entire system for multiple benefits, not isolated components for single benefits, is essential to engineering design for radically improved sustainability performance. Based on real-world applications of whole-systems design, the Rocky Mountain Institute (RMI) is developing educational…
Working with Missing Data in Higher Education Research: A Primer and Real-World Example
ERIC Educational Resources Information Center
Cox, Bradley E.; McIntosh, Kadian; Reason, Robert D.; Terenzini, Patrick T.
2014-01-01
Nearly all quantitative analyses in higher education draw from incomplete datasets-a common problem with no universal solution. In the first part of this paper, we explain why missing data matter and outline the advantages and disadvantages of six common methods for handling missing data. Next, we analyze real-world data from 5,905 students across…
Image-based aircraft pose estimation: a comparison of simulations and real-world data
NASA Astrophysics Data System (ADS)
Breuers, Marcel G. J.; de Reus, Nico
2001-10-01
The problem of estimating aircraft pose information from mono-ocular image data is considered using a Fourier descriptor based algorithm. The dependence of pose estimation accuracy on image resolution and aspect angle is investigated through simulations using sets of synthetic aircraft images. Further evaluation shows that god pose estimation accuracy can be obtained in real world image sequences.
PuLP/XtraPuLP : Partitioning Tools for Extreme-Scale Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slota, George M; Rajamanickam, Sivasankaran; Madduri, Kamesh
2017-09-21
PuLP/XtraPulp is software for partitioning graphs from several real-world problems. Graphs occur in several places in real world from road networks, social networks and scientific simulations. For efficient parallel processing these graphs have to be partitioned (split) with respect to metrics such as computation and communication costs. Our software allows such partitioning for massive graphs.
Generic Entity Resolution in Relational Databases
NASA Astrophysics Data System (ADS)
Sidló, Csaba István
Entity Resolution (ER) covers the problem of identifying distinct representations of real-world entities in heterogeneous databases. We consider the generic formulation of ER problems (GER) with exact outcome. In practice, input data usually resides in relational databases and can grow to huge volumes. Yet, typical solutions described in the literature employ standalone memory resident algorithms. In this paper we utilize facilities of standard, unmodified relational database management systems (RDBMS) to enhance the efficiency of GER algorithms. We study and revise the problem formulation, and propose practical and efficient algorithms optimized for RDBMS external memory processing. We outline a real-world scenario and demonstrate the advantage of algorithms by performing experiments on insurance customer data.
Some practical approaches to a course on paraconsistent logic for engineers
NASA Astrophysics Data System (ADS)
Lambert-Torres, Germano; de Moraes, Carlos Henrique Valerio; Coutinho, Maurilio Pereira; Martins, Helga Gonzaga; Borges da Silva, Luiz Eduardo
2017-11-01
This paper describes a non-classical logic course primarily indicated for graduate students in electrical engineering and energy engineering. The content of this course is based on the vision that it is not enough for a student to indefinitely accumulate knowledge; it is necessary to explore all the occasions to update, deepen, and enrich that knowledge, adapting it to a complex world. Therefore, this course is not tied to theoretical formalities and tries at each moment to provide a practical view of the non-classical logic. In the real world, the inconsistencies are important and cannot be ignored because contradictory information brings relevant facts, sometimes modifying the entire result of the analysis. As consequence, the non-classical logics, such as annotated paraconsistent logic - APL, are efficiently framed in the approach of complex situations of the real world. In APL, the concepts of unknown, partial, ambiguous, and inconsistent knowledge are referred not to trivialise any system in analysis. This course presents theoretical and applicable aspects of APL, which are successfully used in decision-making structures. The course is divided into modules: Basic, 2vAPL, 3vAPL, 4vAPL, and Final Project.
Collaborative learning in networks.
Mason, Winter; Watts, Duncan J
2012-01-17
Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions.
Collaborative learning in networks
Mason, Winter; Watts, Duncan J.
2012-01-01
Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions. PMID:22184216
Multimedia: The Brave New World of Buckytubes | ScienceCinema
Multimedia: The Brave New World of Buckytubes Citation Details Title: The Brave New World of Buckytubes In a talk titled "The Brave New World of Buckytubes," Smalley discusses the basic science , anmore »alysis, and assembly of buckytubes for solving real-world technological problems.« less Title
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Thomas; Hamilton, Steven; Slattery, Stuart
Profugus is an open-source mini-application (mini-app) for radiation transport and reactor applications. It contains the fundamental computational kernels used in the Exnihilo code suite from Oak Ridge National Laboratory. However, Exnihilo is production code with a substantial user base. Furthermore, Exnihilo is export controlled. This makes collaboration with computer scientists and computer engineers difficult. Profugus is designed to bridge that gap. By encapsulating the core numerical algorithms in an abbreviated code base that is open-source, computer scientists can analyze the algorithms and easily make code-architectural changes to test performance without compromising the production code values of Exnihilo. Profugus is notmore » meant to be production software with respect to problem analysis. The computational kernels in Profugus are designed to analyze performance, not correctness. Nonetheless, users of Profugus can setup and run problems with enough real-world features to be useful as proof-of-concept for actual production work.« less
Facility Layout Problems Using Bays: A Survey
NASA Astrophysics Data System (ADS)
Davoudpour, Hamid; Jaafari, Amir Ardestani; Farahani, Leila Najafabadi
2010-06-01
Layout design is one of the most important activities done by industrial Engineers. Most of these problems have NP hard Complexity. In a basic layout design, each cell is represented by a rectilinear, but not necessarily convex polygon. The set of fully packed adjacent polygons is known as a block layout (Asef-Vaziri and Laporte 2007). Block layout is divided by slicing tree and bay layout. In bay layout, departments are located in vertical columns or horizontal rows, bays. Bay layout is used in real worlds especially in concepts such as semiconductor and aisles. There are several reviews in facility layout; however none of them focus on bay layout. The literature analysis given here is not limited to specific considerations about bay layout design. We present a state of art review for bay layout considering some issues such as the used objectives, the techniques of solving and the integration methods in bay.
Team-Based Development of Medical Devices: An Engineering-Business Collaborative.
Eberhardt, Alan W; Johnson, Ophelia L; Kirkland, William B; Dobbs, Joel H; Moradi, Lee G
2016-07-01
There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a "virtual company," with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement.
Mathematics and Engineering in Real Life through Mathematical Competitions
ERIC Educational Resources Information Center
More, M.
2018-01-01
We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build…
Park Forest Middle School STEM Education Fair 2010
ERIC Educational Resources Information Center
Hughes, Bill
2010-01-01
Innovations from the United States have often led the world to new discoveries and solutions to complex problems. However, there are alarming indications that the United States is falling behind other countries in the ability to apply science, technology, engineering, and math to complex problems facing our world. In order for the country to…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Chang, Shao-Chen; Chen, Pei-Ying; Chen, Xiang-Ya
2018-01-01
Engaging students in real-world learning contexts has been identified by educators as being an important way of helping them learn to apply what they have learned from textbooks to practical problems. The advancements in mobile and image-processing technologies have enabled students to access learning resources and receive learning guidance in…
A New Group-Formation Method for Student Projects
ERIC Educational Resources Information Center
Borges, Jose; Dias, Teresa Galvao; Cunha, Joao Falcao E.
2009-01-01
In BSc/MSc engineering programmes at Faculty of Engineering of the University of Porto (FEUP), the need to provide students with teamwork experiences close to a real world environment was identified as an important issue. A new group-formation method that aims to provide an enriching teamwork experience is proposed. Students are asked to answer a…
Using UML Modeling to Facilitate Three-Tier Architecture Projects in Software Engineering Courses
ERIC Educational Resources Information Center
Mitra, Sandeep
2014-01-01
This article presents the use of a model-centric approach to facilitate software development projects conforming to the three-tier architecture in undergraduate software engineering courses. Many instructors intend that such projects create software applications for use by real-world customers. While it is important that the first version of these…
The Company Approach to Software Engineering Project Courses
ERIC Educational Resources Information Center
Broman, D.; Sandahl, K.; Abu Baker, M.
2012-01-01
Teaching larger software engineering project courses at the end of a computing curriculum is a way for students to learn some aspects of real-world jobs in industry. Such courses, often referred to as capstone courses, are effective for learning how to apply the skills they have acquired in, for example, design, test, and configuration management.…
ERIC Educational Resources Information Center
Gottfried, Michael A.; Bozick, Robert
2016-01-01
Recently, through the support from the Obama administration, the traditional STEM curricula (science, technology, engineering, and mathematics) in high schools are being updated with integrated, applied STEM courses (e.g., technology and engineering) in order to enhance the "real world" applicability of scientific fields and ultimately…
Working with the HL7 metamodel in a Model Driven Engineering context.
Martínez-García, A; García-García, J A; Escalona, M J; Parra-Calderón, C L
2015-10-01
HL7 (Health Level 7) International is an organization that defines health information standards. Most HL7 domain information models have been designed according to a proprietary graphic language whose domain models are based on the HL7 metamodel. Many researchers have considered using HL7 in the MDE (Model-Driven Engineering) context. A limitation has been identified: all MDE tools support UML (Unified Modeling Language), which is a standard model language, but most do not support the HL7 proprietary model language. We want to support software engineers without HL7 experience, thus real-world problems would be modeled by them by defining system requirements in UML that are compliant with HL7 domain models transparently. The objective of the present research is to connect HL7 with software analysis using a generic model-based approach. This paper introduces a first approach to an HL7 MDE solution that considers the MIF (Model Interchange Format) metamodel proposed by HL7 by making use of a plug-in developed in the EA (Enterprise Architect) tool. Copyright © 2015 Elsevier Inc. All rights reserved.
Classification of complex networks based on similarity of topological network features
NASA Astrophysics Data System (ADS)
Attar, Niousha; Aliakbary, Sadegh
2017-09-01
Over the past few decades, networks have been widely used to model real-world phenomena. Real-world networks exhibit nontrivial topological characteristics and therefore, many network models are proposed in the literature for generating graphs that are similar to real networks. Network models reproduce nontrivial properties such as long-tail degree distributions or high clustering coefficients. In this context, we encounter the problem of selecting the network model that best fits a given real-world network. The need for a model selection method reveals the network classification problem, in which a target-network is classified into one of the candidate network models. In this paper, we propose a novel network classification method which is independent of the network size and employs an alignment-free metric of network comparison. The proposed method is based on supervised machine learning algorithms and utilizes the topological similarities of networks for the classification task. The experiments show that the proposed method outperforms state-of-the-art methods with respect to classification accuracy, time efficiency, and robustness to noise.
Biomechanically Engineered Athletes.
ERIC Educational Resources Information Center
Perry, Tekla S.
1991-01-01
The real-world meeting of electronics, computer monitoring, control systems, and mathematics, introduced in the context of sports, is described. Recent advances in the field of biomechanics and its use in improving athletic performance are discussed. (KR)
The Streetboard Rider: An Appealing Problem in Non-Holonomic Mechanics
ERIC Educational Resources Information Center
Janova, J.; Musilova, J.
2010-01-01
This paper enlarges the reservoir of solved tutor problems in non-holonomic mechanics at the undergraduate level of physics education. Unlike other, rather artificial, solved problems typically used, the streetboard-rider locomotion problem presented here represents an appealing contemporary real-world problem with interesting applications in a…
Beyond Problem-Based Learning: Using Dynamic PBL in Chemistry
ERIC Educational Resources Information Center
Overton, Tina L.; Randles, Christopher A.
2015-01-01
This paper describes the development and implementation of a novel pedagogy, dynamic problem-based learning. The pedagogy utilises real-world problems that evolve throughout the problem-based learning activity and provide students with choice and different data sets. This new dynamic problem-based learning approach was utilised to teach…
Problems as Possibilities: Problem-Based Learning for K-12 Education.
ERIC Educational Resources Information Center
Torp, Linda; Sage, Sara
Problem-based learning (PBL) is an experiential form of learning centered around the collaborative investigation and resolution of "messy, real-world" problems. This book offers opportunities to learn about problem-based learning from the perspectives of teachers, students, parents, administrators, and curriculum developers. Chapter 1 tells…
NASA Astrophysics Data System (ADS)
Ockendon, Hilary; Ockendon, John
1995-01-01
Viscous flow crops up in many real-life situations such as aerodynamics and lubrication, and because of its universality it is a paradigm for the application of mathematics to the real world. This book is a coherent account of the ways in which mathematics can both give insight into viscous flow and suggest analogies and implications for other branches of applied mathematics. The authors place particular emphasis on the unification brought about by the use of asymptotic analysis and scaling properties and the use of everyday observations from the real world (especially industry) to illustrate the theory. The book is aimed at final-year undergraduate and beginning graduate students in applied mathematics, physics, and engineering courses on fluid flow.
Using Technology to Facilitate and Enhance Project-based Learning in Mathematical Physics
NASA Astrophysics Data System (ADS)
Duda, Gintaras
2011-04-01
Problem-based and project-based learning are two pedagogical techniques that have several clear advantages over traditional instructional methods: 1) both techniques are active and student centered, 2) students confront real-world and/or highly complex problems, and 3) such exercises model the way science and engineering are done professionally. This talk will present an experiment in project/problem-based learning in a mathematical physics course. The group project in the course involved modeling a zombie outbreak of the type seen in AMC's ``The Walking Dead.'' Students researched, devised, and solved their mathematical models for the spread of zombie-like infection. Students used technology in all stages; in fact, since analytical solutions to the models were often impossible, technology was a necessary and critical component of the challenge. This talk will explore the use of technology in general in problem and project-based learning and will detail some specific examples of how technology was used to enhance student learning in this course. A larger issue of how students use the Internet to learn will also be explored.
Inverse problems in the design, modeling and testing of engineering systems
NASA Technical Reports Server (NTRS)
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
Mathematics and engineering in real life through mathematical competitions
NASA Astrophysics Data System (ADS)
More, M.
2018-02-01
We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build curiosity and give an understanding of mathematical applications in real life. Participation in the competition has been classified under four broad categories. Student can showcase their findings in various forms of expression like model, poster, soft presentation, animation, live performance, art and poetry. The basic focus of the competition is on using open source computation tools and modern technology, to emphasize the relationship of mathematical concepts with engineering applications in real life.
Pinzon Morales, Ruben Dario; Hirata, Yutaka
2016-12-20
Motor learning in the cerebellum is believed to entail plastic changes at synapses between parallel fibers and Purkinje cells, induced by the teaching signal conveyed in the climbing fiber (CF) input. Despite the abundant research on the cerebellum, the nature of this signal is still a matter of debate. Two types of movement error information have been proposed to be plausible teaching signals: sensory error (SE) and motor command error (ME); however, their plausibility has not been tested in the real world. Here, we conducted a comparison of different types of CF teaching signals in real-world engineering applications by using a realistic neuronal network model of the cerebellum. We employed a direct current motor (simple task) and a two-wheeled balancing robot (difficult task). We demonstrate that SE, ME or a linear combination of the two is sufficient to yield comparable performance in a simple task. When the task is more difficult, although SE slightly outperformed ME, these types of error information are all able to adequately control the robot. We categorize granular cells according to their inputs and the error signal revealing that different granule cells are preferably engaged for SE, ME or their combination. Thus, unlike previous theoretical and simulation studies that support either SE or ME, it is demonstrated for the first time in a real-world engineering application that both SE and ME are adequate as the CF teaching signal in a realistic computational cerebellar model, even when the control task is as difficult as stabilizing a two-wheeled balancing robot.
Pinzon Morales, Ruben Dario; Hirata, Yutaka
2016-01-01
Motor learning in the cerebellum is believed to entail plastic changes at synapses between parallel fibers and Purkinje cells, induced by the teaching signal conveyed in the climbing fiber (CF) input. Despite the abundant research on the cerebellum, the nature of this signal is still a matter of debate. Two types of movement error information have been proposed to be plausible teaching signals: sensory error (SE) and motor command error (ME); however, their plausibility has not been tested in the real world. Here, we conducted a comparison of different types of CF teaching signals in real-world engineering applications by using a realistic neuronal network model of the cerebellum. We employed a direct current motor (simple task) and a two-wheeled balancing robot (difficult task). We demonstrate that SE, ME or a linear combination of the two is sufficient to yield comparable performance in a simple task. When the task is more difficult, although SE slightly outperformed ME, these types of error information are all able to adequately control the robot. We categorize granular cells according to their inputs and the error signal revealing that different granule cells are preferably engaged for SE, ME or their combination. Thus, unlike previous theoretical and simulation studies that support either SE or ME, it is demonstrated for the first time in a real-world engineering application that both SE and ME are adequate as the CF teaching signal in a realistic computational cerebellar model, even when the control task is as difficult as stabilizing a two-wheeled balancing robot. PMID:27999381
Field balancing in the real world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracher, B.
Field balancing can achieve significant results when other problems are present in the frequency spectrum and multiple vibrations are evident in the waveform. Many references suggest eliminating other problems before attempting to balance. That`s great - if you can do it. There are valid reasons for this approach, and it would be much easier to balance machinery when other problems have been corrected. It is the theoretical ideal in field balancing. However, in the real world of machinery maintained for years by reacting to immediate problems, the classic vibration signature for unbalance is rarely seen. Maintenance personnel make most ofmore » their decisions with limited information. The decision to balance or not to balance is usually made the same way. This paper will demonstrate significant results of field balancing in the presence of multiple problems. By examining the data available and analyzing the probabilities, a reasonable chance for success can be assured.« less
Experimental quantum annealing: case study involving the graph isomorphism problem.
Zick, Kenneth M; Shehab, Omar; French, Matthew
2015-06-08
Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N(2) to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers.
Dornburg, Courtney C; Stevens, Susan M; Hendrickson, Stacey M L; Davidson, George S
2009-08-01
An experiment was conducted to compare the effectiveness of individual versus group electronic brainstorming to address difficult, real-world challenges. Although industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The present experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges during the course of 4 days. Employees and contractors at a national laboratory participated, either in a group setting or individually, in an electronic brainstorm to pose solutions to a real-world problem. The data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p < .05) outperformed the group. When quality is used to benchmark success, these data indicate that work-relevant challenges are better solved by aggregating electronic individual responses rather than by electronically convening a group. This research suggests that industrial reliance on electronic problem-solving groups should be tempered, and large nominal groups may be more appropriate corporate problem-solving vehicles.
Experimental quantum annealing: case study involving the graph isomorphism problem
Zick, Kenneth M.; Shehab, Omar; French, Matthew
2015-01-01
Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N2 to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers. PMID:26053973
Eliciting and characterizing students' mental models within the context of engineering design
NASA Astrophysics Data System (ADS)
Dankenbring, Chelsey
Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.
The approach to engineering tasks composition on knowledge portals
NASA Astrophysics Data System (ADS)
Novogrudska, Rina; Globa, Larysa; Schill, Alexsander; Romaniuk, Ryszard; Wójcik, Waldemar; Karnakova, Gaini; Kalizhanova, Aliya
2017-08-01
The paper presents an approach to engineering tasks composition on engineering knowledge portals. The specific features of engineering tasks are highlighted, their analysis makes the basis for partial engineering tasks integration. The formal algebraic system for engineering tasks composition is proposed, allowing to set the context-independent formal structures for engineering tasks elements' description. The method of engineering tasks composition is developed that allows to integrate partial calculation tasks into general calculation tasks on engineering portals, performed on user request demand. The real world scenario «Calculation of the strength for the power components of magnetic systems» is represented, approving the applicability and efficiency of proposed approach.
Team-Based Development of Medical Devices: An Engineering–Business Collaborative
Eberhardt, Alan W.; Johnson, Ophelia L.; Kirkland, William B.; Dobbs, Joel H.; Moradi, Lee G.
2016-01-01
There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a “virtual company,” with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement. PMID:26902869
Process Systems Engineering Education: Learning by Research
ERIC Educational Resources Information Center
Abbas, A.; Alhammadi, H. Y.; Romagnoli, J. A.
2009-01-01
In this paper, we discuss our approach in teaching the final-year course Process Systems Engineering. Students are given ownership of the course by transferring to them the responsibility of learning. A project-based group environment stimulates learning while solving a real engineering problem. We discuss postgraduate student involvement and how…
Detecting people of interest from internet data sources
NASA Astrophysics Data System (ADS)
Cardillo, Raymond A.; Salerno, John J.
2006-04-01
In previous papers, we have documented success in determining the key people of interest from a large corpus of real-world evidence. Our recent efforts focus on exploring additional domains and data sources. Internet data sources such as email, web pages, and news feeds make it easier to gather a large corpus of documents for various domains, but detecting people of interest in these sources introduces new challenges. Analyzing these massive sources magnifies entity resolution problems, and demands a storage management strategy that supports efficient algorithmic analysis and visualization techniques. This paper discusses the techniques we used in order to analyze the ENRON email repository, which are also applicable to analyzing web pages returned from our "Buddy" meta-search engine.
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
Application of physics engines in virtual worlds
NASA Astrophysics Data System (ADS)
Norman, Mark; Taylor, Tim
2002-03-01
Dynamic virtual worlds potentially can provide a much richer and more enjoyable experience than static ones. To realize such worlds, three approaches are commonly used. The first of these, and still widely applied, involves importing traditional animations from a modeling system such as 3D Studio Max. This approach is therefore limited to predefined animation scripts or combinations/blends thereof. The second approach involves the integration of some specific-purpose simulation code, such as car dynamics, and is thus generally limited to one (class of) application(s). The third approach involves the use of general-purpose physics engines, which promise to enable a range of compelling dynamic virtual worlds and to considerably speed up development. By far the largest market today for real-time simulation is computer games, revenues exceeding those of the movie industry. Traditionally, the simulation is produced by game developers in-house for specific titles. However, off-the-shelf middleware physics engines are now available for use in games and related domains. In this paper, we report on our experiences of using middleware physics engines to create a virtual world as an interactive experience, and an advanced scenario where artificial life techniques generate controllers for physically modeled characters.
Using Problem-Based Learning in Accounting
ERIC Educational Resources Information Center
Hansen, James D.
2006-01-01
In this article, the author describes the process of writing a problem-based learning (PBL) problem and shows how a typical end-of-chapter accounting problem can be converted to a PBL problem. PBL uses complex, real-world problems to motivate students to identify and research the concepts and principles they need to know to solve these problems.…
Closing the Gap between Formalism and Application--PBL and Mathematical Skills in Engineering
ERIC Educational Resources Information Center
Christensen, Ole Ravn
2008-01-01
A common problem in learning mathematics concerns the gap between, on the one hand, doing the formalisms and calculations of abstract mathematics and, on the other hand, applying these in a specific contextualized setting for example the engineering world. The skills acquired through problem-based learning (PBL), in the special model used at…
Structure and Management of an Engineering Senior Design Course.
Tanaka, Martin L; Fischer, Kenneth J
2016-07-01
The design of products and processes is an important area in engineering. Students in engineering schools learn fundamental principles in their courses but often lack an opportunity to apply these methods to real-world problems until their senior year. This article describes important elements that should be incorporated into a senior capstone design course. It includes a description of the general principles used in engineering design and a discussion of why students often have difficulty with application and revert to trial and error methods. The structure of a properly designed capstone course is dissected and its individual components are evaluated. Major components include assessing resources, identifying projects, establishing teams, understanding requirements, developing conceptual designs, creating detailed designs, building prototypes, testing performance, and final presentations. In addition to the course design, team management and effective mentoring are critical to success. This article includes suggested guidelines and tips for effective design team leadership, attention to detail, investment of time, and managing project scope. Furthermore, the importance of understanding business culture, displaying professionalism, and considerations of different types of senior projects is discussed. Through a well-designed course and proper mentoring, students will learn to apply their engineering skills and gain basic business knowledge that will prepare them for entry-level positions in industry.
Reaching New Heights in Middle School Science: Straw Tower Competition Builds Student Interest
ERIC Educational Resources Information Center
Pliskow, Tia
2008-01-01
Science educators face the challenge of piquing students' interest in subjects whose concepts are often entirely foreign to them. The author wanted to give her students a hands-on, "real world" experience rooted in scientific concepts. What evolved was an engineering design competition. The point of the project was two-fold: to work on real-world…
The Performance of Chinese Primary School Students on Realistic Arithmetic Word Problems
ERIC Educational Resources Information Center
Xin, Ziqiang; Lin, Chongde; Zhang, Li; Yan, Rong
2007-01-01
Compared with standard arithmetic word problems demanding only the direct use of number operations and computations, realistic problems are harder to solve because children need to incorporate "real-world" knowledge into their solutions. Using the realistic word problem testing materials developed by Verschaffel, De Corte, and Lasure…
LEGO Robotics: An Authentic Problem Solving Tool?
ERIC Educational Resources Information Center
Castledine, Alanah-Rei; Chalmers, Chris
2011-01-01
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…
Examining Problem Solving in Physics-Intensive Ph.D. Research
ERIC Educational Resources Information Center
Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris
2017-01-01
Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically…
Selection of software for mechanical engineering undergraduates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheah, C. T.; Yin, C. S.; Halim, T.
A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.
ERIC Educational Resources Information Center
Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph
2008-01-01
A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…
ERIC Educational Resources Information Center
Okutsu, Masataka; DeLaurentis, Daniel; Brophy, Sean; Lambert, Jason
2013-01-01
To test the concept of multiuser 3D virtual environments as media to teach semester-long courses, we developed a software prototype called Aeroquest. An aerospace design course--offered to 135 second-year students for university credits in Fall 2009--was divided into two groups: the real-world group attending lectures, physically, in a campus hall…
NASA Astrophysics Data System (ADS)
Belcher, Aaron Heath
The purpose of this disquisition is to disseminate an improvement initiative in a public high school that addressed female Science, Technology, Engineering and Math (STEM) disparity in STEM classes. In this high school current instructional and career guidance practices were inadequate in providing female STEM students opportunities to experience relevant instruction in STEM through the application of real world practices. The improvement initiative identified four interventions using qualitative research that addressed the question, how do instructional and career guidance practices that emphasize the real world application of STEM impact the academic choices and career aspirations of female STEM students? The interventions include (1) instructional feedback (2) instructional resources, (3) career coaching, and (4) community college partnership. These interventions were chosen as a result of insider research methods that followed a scan, focus, summarize framework for understanding the problem. The aim of the improvement initiative was to develop structured protocols that impact STEM classroom and career guidance practices. An intervention team intended to identify opportunities for female STEM students to experience the real world application of STEM. First, the research context is explained. Then, a review of the literature explains foundation knowledge that led to the conceptual and leadership framework. Next, the research methodology is outlined including design and participants, survey instruments, procedures, timeline, and measures. The research methodology is followed by an analysis of data for instructional and career guidance practice efficacy. Finally, a discussion of the initiative and its outcome are illustrated through the stories of three female STEM students. As a result of these stories, the intervention team developed STEM classroom observation protocols. These protocols can be used by school leaders as a structure for STEM instruction and career guidance.
Haptograph Representation of Real-World Haptic Information by Wideband Force Control
NASA Astrophysics Data System (ADS)
Katsura, Seiichiro; Irie, Kouhei; Ohishi, Kiyoshi
Artificial acquisition and reproduction of human sensations are basic technologies of communication engineering. For example, auditory information is obtained by a microphone, and a speaker reproduces it by artificial means. Furthermore, a video camera and a television make it possible to transmit visual sensation by broadcasting. On the contrary, since tactile or haptic information is subject to the Newton's “law of action and reaction” in the real world, a device which acquires, transmits, and reproduces the information has not been established. From the point of view, real-world haptics is the key technology for future haptic communication engineering. This paper proposes a novel acquisition method of haptic information named “haptograph”. The haptograph visualizes the haptic information like photograph. The proposed haptograph is applied to haptic recognition of the contact environment. A linear motor contacts to the surface of the environment and its reaction force is used to make a haptograph. A robust contact motion and sensor-less sensing of the reaction force are attained by using a disturbance observer. As a result, an encyclopedia of contact environment is attained. Since temporal and spatial analyses are conducted to represent haptic information as the haptograph, it is possible to be recognized and to be evaluated intuitively.
Methodological Problems of Nanotechnoscience
NASA Astrophysics Data System (ADS)
Gorokhov, V. G.
Recently, we have reported on the definitions of nanotechnology as a new type of NanoTechnoScience and on the nanotheory as a cluster of the different natural and engineering theories. Nanotechnology is not only a new type of scientific-engineering discipline, but it evolves also in a “nonclassical” way. Nanoontology or nano scientific world view has a function of the methodological orientation for the choice the theoretical means and methods toward a solution to the scientific and engineering problems. This allows to change from one explanation and scientific world view to another without any problems. Thus, nanotechnology is both a field of scientific knowledge and a sphere of engineering activity, in other words, NanoTechnoScience is similar to Systems Engineering as the analysis and design of large-scale, complex, man/machine systems but micro- and nanosystems. Nano systems engineering as well as Macro systems engineering includes not only systems design but also complex research. Design orientation has influence on the change of the priorities in the complex research and of the relation to the knowledge, not only to “the knowledge about something”, but also to the knowledge as the means of activity: from the beginning control and restructuring of matter at the nano-scale is a necessary element of nanoscience.
Kinetics in the real world: linking molecules, processes, and systems.
Kohse-Höinghaus, Katharina; Troe, Jürgen; Grabow, Jens-Uwe; Olzmann, Matthias; Friedrichs, Gernot; Hungenberg, Klaus-Dieter
2018-04-25
Unravelling elementary steps, reaction pathways, and kinetic mechanisms is key to understanding the behaviour of many real-world chemical systems that span from the troposphere or even interstellar media to engines and process reactors. Recent work in chemical kinetics provides detailed information on the reactive changes occurring in chemical systems, often on the atomic or molecular scale. The optimisation of practical processes, for instance in combustion, catalysis, battery technology, polymerisation, and nanoparticle production, can profit from a sound knowledge of the underlying fundamental chemical kinetics. Reaction mechanisms can combine information gained from theory and experiments to enable the predictive simulation and optimisation of the crucial process variables and influences on the system's behaviour that may be exploited for both monitoring and control. Chemical kinetics, as one of the pillars of Physical Chemistry, thus contributes importantly to understanding and describing natural environments and technical processes and is becoming increasingly relevant for interactions in and with the real world.
ERIC Educational Resources Information Center
Atman, Cynthia J.; Sheppard, Sheri D.; Turns, Jennifer; Adams, Robin S.; Fleming, Lorraine N.; Stevens, Reed; Streveler, Ruth A.; Smith, Karl A.; Miller, Ronald L.; Leifer, Larry J.; Yasuhara, Ken; Lund, Dennis
2010-01-01
Today's engineering graduates will solve tomorrow's problems in a world that is advancing faster and facing more critical challenges than ever before. This situation creates significant demand for engineering education to evolve in order to effectively prepare a diverse community of engineers for these challenges. Such concerns have led to the…
Project-Based Manufacturing Engineering Practice at Ibaraki University and Its Outcomes
NASA Astrophysics Data System (ADS)
Yamasaki, Kazuhiko; Wang, Dong F.; Maekawa, Katsuhiro
The real world experience of manufacturing processes from an idea stage to a final product must be related to classroom lectures in mechanical engineering curriculum, including design, materials engineering, dynamics and control. Various challenges and difficulties encountered during the manufacturing engineering practice also let students recognize their creativity as well as what kinds of knowledge is missing. Awareness is the start of growth. In line with this principle we have carried out the mechanical engineering practice for 10 years. Some modifications toward “project-based practice” , however, have been made through manufacturing engineers’ real activities. Drawing and specification, process control, cost management, and role-sharing arrangement are stressed during the semester course. The present paper describes how it works and what is left to improve further, such as a refinement of themes and a coaching method for bringing out the hidden talent in students.
Optimizing Dynamical Network Structure for Pinning Control
NASA Astrophysics Data System (ADS)
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-04-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.
Technology development and innovation for the bottom of the economic pyramid
NASA Astrophysics Data System (ADS)
Gadgil, Ashok
2015-04-01
Directed development of new technologies to solve specific problems of the poor in the developing world is a daunting task. Developing countries can be a wasteland littered with failed technologies sent there with much goodwill and effort from the industrial countries. Drawing on my team's experience I summarize our answers to some key questions for the technology designer or developer: How might one go about it? What works and what doesn't? What lessons can one draw from an examination of select successes and failures? The key lessons from our experience are: (1) successful technology design and implementation can not be separated from each other - they are tightly intertwined, (2) social factors are as critical for a technology's success as factors based on engineering science, and (3) ignorance of political economy, behavioral economics, organizational behavior, institutional imperatives, cultural norms and social drivers can prove fatal flaws when a new technology leaves the laboratory and meets the real world.
AI and simulation: What can they learn from each other
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.
1988-01-01
Simulation and Artificial Intelligence share a fertile common ground both from a practical and from a conceptual point of view. Strengths and weaknesses of both Knowledge Based System and Modeling and Simulation are examined and three types of systems that combine the strengths of both technologies are discussed. These types of systems are a practical starting point, however, the real strengths of both technologies will be exploited only when they are combined in a common knowledge representation paradigm. From an even deeper conceptual point of view, one might even argue that the ability to reason from a set of facts (i.e., Expert System) is less representative of human reasoning than the ability to make a model of the world, change it as required, and derive conclusions about the expected behavior of world entities. This is a fundamental problem in AI, and Modeling Theory can contribute to its solution. The application of Knowledge Engineering technology to a Distributed Processing Network Simulator (DPNS) is discussed.
Deepwater Ports Approach/Exit Hazard and Risk Assessment.
1979-02-01
study results reflect a less structured view of the real world, as opposed to the neat technical framework of analysts and engineers . There may...offshore at which the 1. U.S. Army Corps of Engineers , Waterborne Commerce of the United States, (Washington , D.C., 1969-1976), Volume 2. 2. This...multivessel casual ties. The number of tanker port calls was extracted from U.S. V Waterborne Commerce data published by the U.S. Army Corps of Engineers
Joint measurements of black carbon and particle mass for ...
The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate total BC emissions from historical PM data; however, theseratios have not been measured using portable emission measurement systems(PEMS) in order to obtain real-world measurements over a wide range ofdriving conditions. In this study, we developed a PEMS platform byintegrating two Aethalometers and an electric low pressure impactor torealize the joint measurement of real-world BC and PM emissions for tenHDDVs in China. Test results showed that the average BC/PM ratio for fiveHDDVs equipped with mechanical fuel injection (MI) engines was 0.43±0.06,significantly lower (P<0.05) than another five HDDVs equipped withelectronically-controlled fuel injection (EI) engines (0.56±0.12).Traffic conditions also affected the BC/PM ratios with higher BC/PMratios on freeway routes than on local roads. Further, higher ratios wereobserved for HDDVs equipped with EI engines than for the MI engines forthe highway and local road routes. With an operating mode binningapproach, we observed that the instantaneous BC/PM ratios of EI enginevehicles were above those of the MI engine vehicles in all operatingmodes except for the braking mode (i.e., Bin 0). Therefore, the compleximpacts from engine technology and
Mathematics at Work in Alberta.
ERIC Educational Resources Information Center
Glanfield, Florence, Ed.; Tilroe, Daryle, Ed.
This document is designed to assist teachers by providing practical examples of real world applications of high school mathematics. Fifteen problems are presented that individuals in industry and business solve using mathematics. Each problem provides the contributor's name, suggested skills required to solve the problem, background information…
Tucker, Lindsay
2014-01-01
Each year, the developed world is flooded with complex new medical technologies, from robotic prosthetics to remote-controlled aspirin implants. Meanwhile, only about 10% of health research funds are spent addressing the pressing problems of developing nations, although these countries make up 93% of the worldwide burden of disease. In short, while a small fraction of the world pops brand-name pharmaceuticals, the majority suffers from poor sanitation, contaminated drinking water, preventable disease, and child mortality.
NASA Technical Reports Server (NTRS)
Yuen, Vincent K.
1989-01-01
The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.
ERIC Educational Resources Information Center
Lehmann, M.; Christensen, P.; Du, X.; Thrane, M.
2008-01-01
In a world where systems are increasingly larger, where their boundaries are often difficult to identify, and where societal rather than technical issues play increasingly bigger roles, problems cannot be solved by applying a technical solution alone. It thus becomes important for engineers to be skilled not only in terms of their particular…
The AIBS In Yugoslavia: Programs in Biomedical Engineering
ERIC Educational Resources Information Center
Thompson, Mary-Frances
1978-01-01
Programs in biomedical engineering have been developing worldwide since World War II. This article describes a multidisciplinary program which operates in Yugoslavia through a cooperative effort between that county and the AIBS. A major problem has been the slowness with which hospitals accept the concept of biomedical engineering. (MA)
Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU
NASA Astrophysics Data System (ADS)
Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.
2007-03-01
In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.
New fuzzy support vector machine for the class imbalance problem in medical datasets classification.
Gu, Xiaoqing; Ni, Tongguang; Wang, Hongyuan
2014-01-01
In medical datasets classification, support vector machine (SVM) is considered to be one of the most successful methods. However, most of the real-world medical datasets usually contain some outliers/noise and data often have class imbalance problems. In this paper, a fuzzy support machine (FSVM) for the class imbalance problem (called FSVM-CIP) is presented, which can be seen as a modified class of FSVM by extending manifold regularization and assigning two misclassification costs for two classes. The proposed FSVM-CIP can be used to handle the class imbalance problem in the presence of outliers/noise, and enhance the locality maximum margin. Five real-world medical datasets, breast, heart, hepatitis, BUPA liver, and pima diabetes, from the UCI medical database are employed to illustrate the method presented in this paper. Experimental results on these datasets show the outperformed or comparable effectiveness of FSVM-CIP.
Quantum Mechanics - Fundamentals and Applications to Technology
NASA Astrophysics Data System (ADS)
Singh, Jasprit
1996-10-01
Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. The many helpful features include * Twenty-eight application-oriented sections that focus on lasers, transistors, magnetic memories, superconductors, nuclear magnetic resonance (NMR), and other important technology-driving materials and devices * One hundred solved examples, with an emphasis on numerical results and the connection between the physics and its applications * End-of-chapter problems that ground the student in both fundamental and applied concepts * Numerous figures and tables to clarify the various topics and provide a global view of the problems under discussion * Over two hundred illustrations to highlight problems and text A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.
ERIC Educational Resources Information Center
McGraw, Rebecca; Patterson, Cody L.
2017-01-01
In this study, we examine how inservice secondary mathematics teachers working together on a contextualized problem negotiate issues arising from the ill-structured nature of the problem such as what assumptions one may make, what real-world considerations should be taken into account, and what constitutes a satisfactory solution. We conceptualize…
Elements of Problem-Based Learning: Suggestions for Implementation in the Asynchronous Environment
ERIC Educational Resources Information Center
Nelson, Erik
2010-01-01
Problem-based learning, or PBL, is a student-centered instructional approach that is derived from constructivist epistemology. It is based upon ill-structured real-world problems with the goal of strengthening and developing critical thinking and problem-solving skills in learners. Initially utilized in medical schools to strengthen diagnostic…
Learning and Parallelization Boost Constraint Search
ERIC Educational Resources Information Center
Yun, Xi
2013-01-01
Constraint satisfaction problems are a powerful way to abstract and represent academic and real-world problems from both artificial intelligence and operations research. A constraint satisfaction problem is typically addressed by a sequential constraint solver running on a single processor. Rather than construct a new, parallel solver, this work…
NASA Astrophysics Data System (ADS)
Wang, Jun; Wang, Yang; Zeng, Hui
2016-01-01
A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.
NASA Astrophysics Data System (ADS)
Luján, José M.; Bermúdez, Vicente; Dolz, Vicente; Monsalve-Serrano, Javier
2018-02-01
Recent investigations demonstrated that real-world emissions usually exceed the levels achieved in the laboratory based type approval processes. By means of on-board emissions measurements, it has been shown that nitrogen oxides emitted by diesel engines substantially exceed the limit imposed by the Euro 6 regulation. Thus, with the aim of complementing the worldwide harmonized light vehicles test cycle, the real driving emissions cycle will be introduced after 1 September 2017 to regulate the vehicle emissions in real-world driving situations. This paper presents on-board gaseous emissions measurements from a Euro 6 light-duty diesel vehicle in a real-world driving route using a portable emissions measurement system. The test route characteristics follow the requirements imposed by the RDE regulation. The analysis of the raw emissions results suggests that the greatest amount of nitrogen oxides and nitrogen dioxide are emitted during the urban section of the test route, confirming that lower speeds with more accelerations and decelerations lead to higher nitrogen oxides emissions levels than constant high speeds. Moreover, the comparison of the two calculation methods proposed by the real driving emissions regulation has revealed emissions rates differences ranging from 10% to 45% depending on the pollutant emission and the trip section considered (urban or total). Thus, the nitrogen oxides emissions conformity factor slightly varies from one method to the other.
ERIC Educational Resources Information Center
Lee, Chwee Beng; Ling, Keck Voon; Reimann, Peter; Diponegoro, Yudho Ahmad; Koh, Chia Heng; Chew, Derwin
2014-01-01
Purpose: The purpose of this paper is to argue for the need to develop pre-service teachers' problem solving ability, in particular, in the context of real-world complex problems. Design/methodology/approach: To argue for the need to develop pre-service teachers' problem solving skills, the authors describe a web-based problem representation…
High-fidelity real-time maritime scene rendering
NASA Astrophysics Data System (ADS)
Shyu, Hawjye; Taczak, Thomas M.; Cox, Kevin; Gover, Robert; Maraviglia, Carlos; Cahill, Colin
2011-06-01
The ability to simulate authentic engagements using real-world hardware is an increasingly important tool. For rendering maritime environments, scene generators must be capable of rendering radiometrically accurate scenes with correct temporal and spatial characteristics. When the simulation is used as input to real-world hardware or human observers, the scene generator must operate in real-time. This paper introduces a novel, real-time scene generation capability for rendering radiometrically accurate scenes of backgrounds and targets in maritime environments. The new model is an optimized and parallelized version of the US Navy CRUISE_Missiles rendering engine. It was designed to accept environmental descriptions and engagement geometry data from external sources, render a scene, transform the radiometric scene using the electro-optical response functions of a sensor under test, and output the resulting signal to real-world hardware. This paper reviews components of the scene rendering algorithm, and details the modifications required to run this code in real-time. A description of the simulation architecture and interfaces to external hardware and models is presented. Performance assessments of the frame rate and radiometric accuracy of the new code are summarized. This work was completed in FY10 under Office of Secretary of Defense (OSD) Central Test and Evaluation Investment Program (CTEIP) funding and will undergo a validation process in FY11.
Modeling complexity in engineered infrastructure system: Water distribution network as an example
NASA Astrophysics Data System (ADS)
Zeng, Fang; Li, Xiang; Li, Ke
2017-02-01
The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.
A Hybrid Constraint Representation and Reasoning Framework
NASA Technical Reports Server (NTRS)
Golden, Keith; Pang, Wanlin
2004-01-01
In this paper, we introduce JNET, a novel constraint representation and reasoning framework that supports procedural constraints and constraint attachments, providing a flexible way of integrating the constraint system with a runtime software environment and improving its applicability. We describe how JNET is applied to a real-world problem - NASA's Earth-science data processing domain, and demonstrate how JNET can be extended, without any knowledge of how it is implemented, to meet the growing demands of real-world applications.
Agent-based modeling: Methods and techniques for simulating human systems
Bonabeau, Eric
2002-01-01
Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407
Liebert, Wolfgang J
2013-12-01
In order to raise awareness of the ambiguous nature of scientific-technological progress, and of the challenging problems it raises, problems which are not easily addressed by courses in a single discipline and cannot be projected onto disciplinary curricula, Technical University of Darmstadt has established three interdisciplinary study concentrations: "Technology and International Development", "Environmental Sciences", and "Sustainable Shaping of Technology and Science". These three programmes seek to overcome the limitations of strictly disciplinary research and teaching by developing an integrated, problem-oriented approach. For example, one course considers fundamental nuclear dilemmas and uses role-playing techniques to address a controversy in the area of nuclear security. At the same time, incorporating interdisciplinary teaching into a university that is organized around mono- or multi-disciplinary faculties also poses a number of challenges. Recognition in disciplinary curricula, and appropriate organizational support and funding are examples of those challenges. It is expected that science and engineering students, empowered by such interdisciplinary study programmes, will be better prepared to act responsibly with regard to scientific and technological challenges.
Elovic, Elie P; Simone, Lisa K; Zafonte, Ross
2004-01-01
The objective of this article was to (1) review the engineering and medical literature to structure the available information concerning the assessment of spasticity in the neurological population; (2) to discuss the strengths and weaknesses of the different methods currently in use in spasticity assessment; and (3) make recommendations for future efforts in spasticity outcome assessment. Spasticity textbooks, Web sites, and OVID, IEEE, and Medline searches from 1966 through 2003 of spasticity, quantitative measure, or outcome assessment in the rehabilitation population were used as data sources. Over 500 articles were reviewed. Articles that discussed outcome measures used to assess interventions and evaluation of spasticity were included. Authors reviewed the articles looking at inclusion criteria, data collection, methodology, assessment methods, and conclusions for validity and relevance to this article. Issues such as clinical relevance, real-world function and lack of objectivity, and time consumed during performance are important issues for spasticity assessment. Some measures such as the Ashworth Scale remain in common use secondary to ease of use despite their obvious functional limitations. More functional outcome goals are plagued by being more time consuming and a general inability to demonstrate changes after an intervention. This may be secondary to the other factors that combine with spasticity to cause dysfunction at that level. Quantitative metrics can provide more objective measurements but their clinical relevance is sometimes problematic. The assessment of spasticity outcome is still somewhat problematic. Further work is necessary to develop measures that have real-world functional significance to both the individuals being treated and the clinicians. A lack of objectivity is still a problem. In the future it is important for clinicians and the engineers to work together in the development of better outcome measures.
ERIC Educational Resources Information Center
Hay, M. Cameron
2017-01-01
Undergraduate student learning focuses on the development of disciplinary strength in majors and minors so that students gain depth in particular fields, foster individual expertise, and learn problem solving from disciplinary perspectives. However, the complexities of real-world problems do not respect disciplinary boundaries. Complex problems…
Incorporating Problem-Based Experiential Teaching in the Agricultural Curriculum.
ERIC Educational Resources Information Center
Salvador, R. J.; And Others
1995-01-01
A forestry and agronomy course at Iowa State University incorporates problem-based team projects on real-world situations as a means of providing students with integrative and meaningful experiential learning. Student evaluations of these courses indicate that students recognize and appreciate the integrative nature of the problem-based team…
Effectiveness of Problem-Based Learning in Introductory Business Courses
ERIC Educational Resources Information Center
Hartman, Katherine B.; Moberg, Christopher R.; Lambert, Jamie M.
2013-01-01
Problem-based learning (PBL) is an instructional approach that provides learners with opportunities to identify solutions to ill-structured, real-world problems. Previous research provides evidence to support claims about the positive effects of PBL on cognitive skill development and knowledge retention. This study contributes to existing…
Grand challenges for biological engineering
Yoon, Jeong-Yeol; Riley, Mark R
2009-01-01
Biological engineering will play a significant role in solving many of the world's problems in medicine, agriculture, and the environment. Recently the U.S. National Academy of Engineering (NAE) released a document "Grand Challenges in Engineering," covering broad realms of human concern from sustainability, health, vulnerability and the joy of living. Biological engineers, having tools and techniques at the interface between living and non-living entities, will play a prominent role in forging a better future. The 2010 Institute of Biological Engineering (IBE) conference in Cambridge, MA, USA will address, in part, the roles of biological engineering in solving the challenges presented by the NAE. This letter presents a brief outline of how biological engineers are working to solve these large scale and integrated problems of our society. PMID:19772647
NASA Technical Reports Server (NTRS)
Firby, R. James
1990-01-01
High-level robot control research must confront the limitations imposed by real sensors if robots are to be controlled effectively in the real world. In particular, sensor limitations make it impossible to maintain a complete, detailed world model of the situation surrounding the robot. To address the problems involved in planning with the resulting incomplete and uncertain world models, traditional robot control architectures must be altered significantly. Task-directed sensing and control is suggested as a way of coping with world model limitations by focusing sensing and analysis resources on only those parts of the world relevant to the robot's active goals. The RAP adaptive execution system is used as an example of a control architecture designed to deploy sensing resources in this way to accomplish both action and knowledge goals.
Input Devices and Interaction Techniques for VR-Enhanced Medicine
NASA Astrophysics Data System (ADS)
Gallo, Luigi; Pietro, Giuseppe De
Virtual Reality (VR) technologies make it possible to reproduce faithfully real life events in computer-generated scenarios. This approach has the potential to simplify the way people solve problems, since they can take advantage of their real life experiences while interacting in synthetic worlds.
Ghosh, Sayan; Das, Swagatam; Vasilakos, Athanasios V; Suresh, Kaushik
2012-02-01
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.
Teaching Sustainability from a Scientific Standpoint at the Introductory Level
NASA Astrophysics Data System (ADS)
Campbell-Stone, E.; Myers, J. D.
2008-12-01
In recent decades, humankind has recognized that current levels of resource utilization are seriously impacting our planet's life support systems and threatening the ability of future generations to provide for themselves. The concept of sustainability has been promoted by a variety of national and international organizations as a method to devise ways to adjust humanity's habits and consumption to levels that can be maintained over the long term, i.e. sustained. Courses on sustainability are being offered at many universities and colleges, but most are taught outside of science departments; they are often designed around policy concerns or focus primarily on environmental impacts while neglecting the science of sustainability. Because the three foundations necessary to implement sustainability are sustainability governance, sustainability accounting, and sustainability science, it is imperative that science departments play an active role in preparing citizens and professionals for dealing with sustainability issues. The geosciences are one of the scientific disciplines that offer a logical foundation from which to teach sustainability science. Geoscientists can also offer a unique and relevant geologic perspective on sustainability issues. The authors have developed an introductory, interdisciplinary course entitled 'Global Sustainability: Managing Earth's Resources' that integrates scientific disciplines in the examination of real world sustainability issues. In-depth understanding of physical, Earth and biological science principles are necessary for students to identify the limits and constraints imposed on important issues facing modern society, e.g. water, energy, population growth, etc. This course exposes students to all the scientific principles that apply directly to sustainability. The subject allows the instructors to present open-ended, multifaceted and complex problems relevant to today's industrialized and globalized world, and it encourages students to think critically about global, national, and local issues. The course utilizes a lecture/lab format; lecture concentrates on the content of sustainability and lab offers students an opportunity to apply what they have learned to actual case studies (context). Students follow a variety of Earth resources from formation to extraction to processing to production to disposal/recycling. At each stage, students examine the relevant science, economics, policies, and environmental impact. Sustainability issues clearly demonstrate the relevance of scientific content and quantitative reasoning to real-world problems of energy, pollution, water, and climate change, and they also provide meaning and context to critical thinking and problem-solving. The integrated and interdisciplinary approach builds bridges between the natural and social sciences and benefits both STEM (Science, Technology, Engineering and Mathematics) and non-STEM students. Non-STEM students learn through practice and application how science, engineering and technology are fundamental to solving many of the problems societies face, and STEM students discover that those fields cannot operate independently from issues of culture, economics, and politics. By having STEM and non-STEM students work in groups on global sustainability problems, the course helps to lower the barriers between the disciplines and promotes comprehensive and multifaceted examination of societal issues at many levels.
Integration, Authenticity, and Relevancy in College Science through Engineering Design
ERIC Educational Resources Information Center
Turner, Ken L., Jr.; Hoffman, Adam R.
2018-01-01
Engineering design is an ideal perspective for engaging students in college science classes. An engineering design problem-solving framework was used to create a general chemistry lab activity focused on an important environmental issue--dead zones. Dead zones impact over 400 locations around the world and are a result of nutrient pollution, one…
Teaching Engineering Design in a Laboratory Setting
ERIC Educational Resources Information Center
Hummon, Norman P.; Bullen, A. G. R.
1974-01-01
Discusses the establishment of an environmental systems laboratory at the University of Pittsburgh with the support of the Sloan Foundation. Indicates that the "real world" can be brought into the laboratory by simulating on computers, software systems, and data bases. (CC)
ERIC Educational Resources Information Center
Razzouk, Rabieh; Dyehouse, Melissa; Santone, Adam; Carr, Ronald
2014-01-01
Teachers typically teach subjects separately, but integrated science, technology, engineering, and mathematics (STEM) curriculums that focus on real-world practices are gaining momentum (NAE and NRC 2009). Before release of the "Next Generation of Science Standards" ("NGSS") (NGSS Lead States 2013), 36 states already had a…
Knowledge acquisition and rapid protyping of an expert system: Dealing with real world problems
NASA Technical Reports Server (NTRS)
Bailey, Patrick A.; Doehr, Brett B.
1988-01-01
The knowledge engineering and rapid prototyping phases of an expert system that does fault handling for a Solid Amine, Water Desorbed CO2 removal assembly for the Environmental Control and Life Support System for space based platforms are addressed. The knowledge acquisition phase for this project was interesting because it could not follow the textbook examples. As a result of this, a variety of methods were used during the knowledge acquisition task. The use of rapid prototyping and the need for a flexible prototype suggested certain types of knowledge representation. By combining various techniques, a representative subset of faults and a method for handling those faults was achieved. The experiences should prove useful for developing future fault handling expert systems under similar constraints.
Toward a Model for Intercultural Communication in Simulations
ERIC Educational Resources Information Center
Wiggins, Bradley E.
2012-01-01
The growing need for intercultural literacy in an increasingly interconnected and computer-mediated world contrasts with the dearth of investigation in best practices when designing simulations aimed at improving intercultural communication. Synthetic cultures inspired by real-world cultural traits, problem-based learning, and a social…
Activist engineering: changing engineering practice by deploying praxis.
Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E
2015-02-01
In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?
Disarmament, Security and Development
ERIC Educational Resources Information Center
Bulletin of the Atomic Scientists, 1976
1976-01-01
Provided is a summary of the 26th Pugwash Conference on Science and World Affairs held August 26-31, 1976, in Muhlhausen, East Germany. World problems discussed included: arms limitations, military research and development, nuclear test ban, alternative energy sources, and genetic engineering. (SL)
Public Outreach at RAL: Engaging the Next Generation of Scientists and Engineers
NASA Astrophysics Data System (ADS)
Corbett, G.; Ryall, G.; Palmer, S.; Collier, I. P.; Adams, J.; Appleyard, R.
2015-12-01
The Rutherford Appleton Laboratory (RAL) is part of the UK's Science and Technology Facilities Council (STFC). As part of the Royal Charter that established the STFC, the organisation is required to generate public awareness and encourage public engagement and dialogue in relation to the science undertaken. The staff at RAL firmly support this activity as it is important to encourage the next generation of students to consider studying Science, Technology, Engineering, and Mathematics (STEM) subjects, providing the UK with a highly skilled work-force in the future. To this end, the STFC undertakes a variety of outreach activities. This paper will describe the outreach activities undertaken by RAL, particularly focussing on those of the Scientific Computing Department (SCD). These activities include: an Arduino based activity day for 12-14 year-olds to celebrate Ada Lovelace day; running a centre as part of the Young Rewired State - encouraging 11-18 year-olds to create web applications with open data; sponsoring a team in the Engineering Education Scheme - supporting a small team of 16-17 year-olds to solve a real world engineering problem; as well as the more traditional tours of facilities. These activities could serve as an example for other sites involved in scientific computing around the globe.
Shorter, Joanne H; Herndon, Scott; Zahniser, Mark S; Nelson, David D; Wormhoudt, Joda; Demerjian, Kenneth L; Kolb, Charles E
2005-10-15
New diesel engine technologies and alternative fuel engines are being introduced into fleets of mass transit buses to try to meet stricter emission regulations of nitrogen oxides and particulates: Real-time instruments including an Aerodyne Research tunable infrared laser differential absorption spectrometer (TILDAS) were deployed in a mobile laboratory to assess the impact of the implementation of the new technologies on nitrogen oxide emissions in real world driving conditions. Using a "chase" vehicle sampling strategy, the mobile laboratory followed target vehicles, repeatedly sampling their exhaust. Nitrogen oxides from approximately 170 in-use New York City mass transit buses were sampled during the field campaigns. Emissions from conventional diesel buses, diesel buses with continuously regenerating technology (CRT), diesel hybrid electric buses, and compressed natural gas (CNG) buses were compared. The chase vehicle sampling method yields real world emissions that can be included in more realistic emission inventories. The NO, emissions from the diesel and CNG buses were comparable. The hybrid electric buses had approximately one-half the NOx emissions. In CRT diesels, NO2 accounts for about one-third of the NOx emitted in the exhaust, while for non-CRT buses the NO2 fraction is less than 10%.
Evolutionary Computation with Spatial Receding Horizon Control to Minimize Network Coding Resources
Leeson, Mark S.
2014-01-01
The minimization of network coding resources, such as coding nodes and links, is a challenging task, not only because it is a NP-hard problem, but also because the problem scale is huge; for example, networks in real world may have thousands or even millions of nodes and links. Genetic algorithms (GAs) have a good potential of resolving NP-hard problems like the network coding problem (NCP), but as a population-based algorithm, serious scalability and applicability problems are often confronted when GAs are applied to large- or huge-scale systems. Inspired by the temporal receding horizon control in control engineering, this paper proposes a novel spatial receding horizon control (SRHC) strategy as a network partitioning technology, and then designs an efficient GA to tackle the NCP. Traditional network partitioning methods can be viewed as a special case of the proposed SRHC, that is, one-step-wide SRHC, whilst the method in this paper is a generalized N-step-wide SRHC, which can make a better use of global information of network topologies. Besides the SRHC strategy, some useful designs are also reported in this paper. The advantages of the proposed SRHC and GA for the NCP are illustrated by extensive experiments, and they have a good potential of being extended to other large-scale complex problems. PMID:24883371
Using Video Prompting to Teach Mathematical Problem Solving of Real-World Video-Simulation Problems
ERIC Educational Resources Information Center
Saunders, Alicia F.; Spooner, Fred; Ley Davis, Luann
2018-01-01
Mathematical problem solving is necessary in many facets of everyday life, yet little research exists on how to teach students with more severe disabilities higher order mathematics like problem solving. Using a multiple probe across participants design, three middle school students with moderate intellectual disability (ID) were taught to solve…
Shuttle Transportation System Case-Study Development
NASA Technical Reports Server (NTRS)
Ransom, Khadijah
2012-01-01
A case-study collection was developed for NASA's Space Shuttle Program. Using lessons learned and documented by NASA KSC engineers, analysts, and contractors, decades of information related to processing and launching the Space Shuttle was gathered into a single database. The goal was to provide educators with an alternative means to teach real-world engineering processes and to enhance critical thinking, decision making, and problem solving skills. Suggested formats were created to assist both external educators and internal NASA employees to develop and contribute their own case-study reports to share with other educators and students. Via group project, class discussion, or open-ended research format, students will be introduced to the unique decision making process related to Shuttle missions and development. Teaching notes, images, and related documents will be made accessible to the public for presentation of Space Shuttle reports. Lessons investigated included the engine cutoff (ECO) sensor anomaly which occurred during mission STS-114. Students will be presented with general mission infom1ation as well as an explanation of ECO sensors. The project will conclude with the design of a website that allows for distribution of information to the public as well as case-study report submissions from other educators online.
Comparison of Ontology Reasoners: Racer, Pellet, Fact++
NASA Astrophysics Data System (ADS)
Huang, T.; Li, W.; Yang, C.
2008-12-01
In this paper, we examine some key aspects of three of the most popular and effective Semantic reasoning engines that have been developed: Pellet, RACER, and Fact++. While these reasonably advanced reasoners share some notable similarities, it is ultimately the creativity and unique nature of these reasoning engines that have resulted in the successes of each of these reasoners. Of the numerous dissimilarities, the most obvious example might be that while Pellet is written in Java, RACER employs the Lisp programming language and Fact++ was developed using C++. From this and many other distinctions in the system architecture, we can understand the benefits of each reasoner and potentially discover certain properties that may contribute to development of an optimal reasoner in the future. The objective of this paper is to establish a solid comparison of the reasoning engines based on their system architectures, features, and overall performances in real world application. In the end, we expect to produce a valid conclusion about the advantages and problems in each reasoner. While there may not be a decisive first place among the three reasoners, the evaluation will also provide some answers as to which of these current reasoning tools will be most effective in common, practical situations.
Young Engineers and Scientists: a Mentorship Program
NASA Astrophysics Data System (ADS)
Boice, Daniel C.; Wuest, Martin; Marilyn, Koch B.
The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world research experiences in physical sciences and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 10 years. All YES graduates have entered college several have worked for SwRI and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.
Multiobjective Multifactorial Optimization in Evolutionary Multitasking.
Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen
2016-05-03
In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.
Laboratory Based Case Studies: Closer to the Real World
ERIC Educational Resources Information Center
Dinan, Frank J.
2005-01-01
Case-based laboratories offer students the chance to approximate real science. Based on interesting stories that pose problems requiring experimental solutions, they avoid the cookbook approach characteristic of traditional undergraduate laboratory instruction. Instead, case-based laboratories challenge students to develop, as much as possible,…
Enabling complex genetic circuits to respond to extrinsic environmental signals.
Hoynes-O'Connor, Allison; Shopera, Tatenda; Hinman, Kristina; Creamer, John Philip; Moon, Tae Seok
2017-07-01
Genetic circuits have the potential to improve a broad range of metabolic engineering processes and address a variety of medical and environmental challenges. However, in order to engineer genetic circuits that can meet the needs of these real-world applications, genetic sensors that respond to relevant extrinsic and intrinsic signals must be implemented in complex genetic circuits. In this work, we construct the first AND and NAND gates that respond to temperature and pH, two signals that have relevance in a variety of real-world applications. A previously identified pH-responsive promoter and a temperature-responsive promoter were extracted from the E. coli genome, characterized, and modified to suit the needs of the genetic circuits. These promoters were combined with components of the type III secretion system in Salmonella typhimurium and used to construct a set of AND gates with up to 23-fold change. Next, an antisense RNA was integrated into the circuit architecture to invert the logic of the AND gate and generate a set of NAND gates with up to 1168-fold change. These circuits provide the first demonstration of complex pH- and temperature-responsive genetic circuits, and lay the groundwork for the use of similar circuits in real-world applications. Biotechnol. Bioeng. 2017;114: 1626-1631. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Object classification for obstacle avoidance
NASA Astrophysics Data System (ADS)
Regensburger, Uwe; Graefe, Volker
1991-03-01
Object recognition is necessary for any mobile robot operating autonomously in the real world. This paper discusses an object classifier based on a 2-D object model. Obstacle candidates are tracked and analyzed false alarms generated by the object detector are recognized and rejected. The methods have been implemented on a multi-processor system and tested in real-world experiments. They work reliably under favorable conditions but sometimes problems occur e. g. when objects contain many features (edges) or move in front of structured background.
United Space Alliance LLC Parachute Refurbishment Facility Model
NASA Technical Reports Server (NTRS)
Esser, Valerie; Pessaro, Martha; Young, Angela
2007-01-01
The Parachute Refurbishment Facility Model was created to reflect the flow of hardware through the facility using anticipated start and delivery times from a project level IV schedule. Distributions for task times were built using historical build data for SFOC work and new data generated for CLV/ARES task times. The model currently processes 633 line items from 14 SFOC builds for flight readiness, 16 SFOC builds returning from flight for defoul, wash, and dry operations, 12 builds for CLV manufacturing operations, and 1 ARES 1X build. Modeling the planned workflow through the PRF is providing a reliable way to predict the capability of the facility as well as the manpower resource need. Creating a real world process allows for real world problems to be identified and potential workarounds to be implemented in a safe, simulated world before taking it to the next step, implementation in the real world.
Optical projects in the Clinic program at Harvey Mudd College
NASA Astrophysics Data System (ADS)
Yang, Q.
2017-08-01
Clinic program is the senior capstone program at Harvey Mudd College (HMC). Multidisciplinary and industry-sponsored projects allow a team of students to solve a real-world problem over one academic year. Over its 50 plus years, Clinic program has completed numerous optics related projects. This report gives an overview of the Clinic program, reviews recent optical projects and discusses how this program supports the learning of the HMC engineering students. A few sample optical projects with more details are presented to provide an insight of what challenges that undergraduates can overcome. Students achieve learning within the optics discipline and the related engineering disciplines. The experiences in these optical projects indicate the great potential to bringing optical hands-on projects into the undergraduate level. Because of the general engineering curriculum at HMC, these projects often work the best with a multidisciplinary nature even if the core of the project is optically focused. Students gain leadership training, oral and written communication skills and experiences in team work. Close relationship with the sponsor liaisons allows for the students to gain skills in professional conduct, management of tight schedule and a specified budget, and it well prepares the students to their engineering practice. Optical projects have their own sets of specific challenges, so it needs to be chosen properly to match the undergraduate skill sets such as those of HMC engineering students.
On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending
NASA Astrophysics Data System (ADS)
Zheng, Qiangang; Zhang, Haibo; Miao, Lizhen; Sun, Fengyong
2017-11-01
A real-time optimization control method is proposed to extend turbo-fan engine service life. This real-time optimization control is based on an on-board engine mode, which is devised by a MRR-LSSVR (multi-input multi-output recursive reduced least squares support vector regression method). To solve the optimization problem, a FSQP (feasible sequential quadratic programming) algorithm is utilized. The thermal mechanical fatigue is taken into account during the optimization process. Furthermore, to describe the engine life decaying, a thermal mechanical fatigue model of engine acceleration process is established. The optimization objective function not only contains the sub-item which can get fast response of the engine, but also concludes the sub-item of the total mechanical strain range which has positive relationship to engine fatigue life. Finally, the simulations of the conventional optimization control which just consider engine acceleration performance or the proposed optimization method have been conducted. The simulations demonstrate that the time of the two control methods from idle to 99.5 % of the maximum power are equal. However, the engine life using the proposed optimization method could be surprisingly increased by 36.17 % compared with that using conventional optimization control.
ERIC Educational Resources Information Center
Estes, Charles R.
1994-01-01
Discusses theoretical versus applied science and the use of the scientific method for analysis of social issues. Topics addressed include the use of simulation and modeling; the growth in computer power, including nanotechnology; distributed computing; self-evolving programs; spiritual matters; human engineering, i.e., molding individuals;…
ERIC Educational Resources Information Center
Berkeihiser, Mike; Ray, Dori
2013-01-01
The interdisciplinary approach that science, technology, engineering and mathematics (STEM) projects inspire in both teachers and students "brings to light a larger picture that promotes real-world scientific applications, which has in turn been shown to increase undergraduate persistence in STEM." The high school students have been…
Using Aviation to Change Math Attitudes
ERIC Educational Resources Information Center
Wood, Jerra
2013-01-01
Mathematics teachers are constantly looking for real-world applications of mathematics. Aerospace education provides an incredible context for teaching and learning important STEM concepts, inspiring young people to pursue careers in science, technology, engineering, and mathematics. Teaching mathematics within the context of aerospace generates…
Assessing Student Work to Support Curriculum Development: An Engineering Case Study
ERIC Educational Resources Information Center
Saunders, Kevin; Brumm, Thomas; Brooke, Corly; Mickelson, Steve; Freeman, Steve
2013-01-01
Knowledge and abilities associated with interdisciplinary education include integrating knowledge across disciplines, applying knowledge to real-world situations, and demonstrating skills in creativity, teamwork, communication, and collaboration. This case study discusses how a departmental curriculum committee in Agricultural and Biosystems…
Decision-making tool for applying adaptive traffic control systems : final report.
DOT National Transportation Integrated Search
2016-03-01
Adaptive traffic signal control technologies have been increasingly deployed in real world situations. The objective of this project was to develop a decision-making tool to guide traffic engineers and decision-makers who must decide whether or not a...
Biomedical applications engineering tasks
NASA Technical Reports Server (NTRS)
Laenger, C. J., Sr.
1976-01-01
The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.
Making the Most of Modeling Tasks
ERIC Educational Resources Information Center
Wernet, Jamie L.; Lawrence, Kevin A.; Gilbertson, Nicholas J.
2015-01-01
While there is disagreement among mathematics educators about some aspects of its meaning, mathematical modeling generally involves taking a real-world scenario and translating it into the mathematical world (Niss, Blum, and Galbraith 2007). The complete modeling process involves describing situations posed in problems with mathematical concepts,…
Seven Billion People: Fostering Productive Struggle
ERIC Educational Resources Information Center
Murawska, Jaclyn M.
2018-01-01
How can a cognitively demanding real-world task such as the Seven Billion People problem promote productive struggle "and" help shape students' mathematical dispositions? Driving home from school one evening, Jaclyn Murawska heard a commentator on the radio announce three statements: (1) experts had determined that the world population…
The Web: Can We Make It Easier To Find Information?
ERIC Educational Resources Information Center
Maddux, Cleborne D.
1999-01-01
Reviews problems with the World Wide Web that can be attributed to human error or ineptitude, and provides suggestions for improvement. Discusses poor Web design, poor use of search engines, and poor quality control by search engines and directories. (AEF)
Learning Activity Predictors from Sensor Data: Algorithms, Evaluation, and Applications.
Minor, Bryan; Doppa, Janardhan Rao; Cook, Diane J
2017-12-01
Recent progress in Internet of Things (IoT) platforms has allowed us to collect large amounts of sensing data. However, there are significant challenges in converting this large-scale sensing data into decisions for real-world applications. Motivated by applications like health monitoring and intervention and home automation we consider a novel problem called Activity Prediction , where the goal is to predict future activity occurrence times from sensor data. In this paper, we make three main contributions. First, we formulate and solve the activity prediction problem in the framework of imitation learning and reduce it to a simple regression learning problem. This approach allows us to leverage powerful regression learners that can reason about the relational structure of the problem with negligible computational overhead. Second, we present several metrics to evaluate activity predictors in the context of real-world applications. Third, we evaluate our approach using real sensor data collected from 24 smart home testbeds. We also embed the learned predictor into a mobile-device-based activity prompter and evaluate the app for 9 participants living in smart homes. Our results indicate that our activity predictor performs better than the baseline methods, and offers a simple approach for predicting activities from sensor data.
Frey, H Christopher; Kuo, Po-Yao
2009-07-01
Long-haul freight trucks typically idle for 2000 or more hours per year, motivating interest in reducing idle fuel use and emissions using auxiliary power units (APUs) and shore-power (SP). Fuel-use rates are estimated based on electronic control unit (ECU) data for truck engines and measurements for APU engines. Engine emission factors were measured using a portable emission measurement system. Indirect emissions from SP were based on average utility grid emission factors. Base engine fuel use and APU and SP electrical load were analyzed for 20 trucks monitored for more than 1 yr during 2.76 million mi of activity within 42 U.S. states. The average base engine fuel use varied from 0.46 to 0.65 gal/hr. The average APU fuel use varied from 0.24 to 0.41 gal/hr. Fuel-use rates are typically lowest in mild weather, highest in hot or cold weather, and depend on engine speed (revolutions per minute [RPM]). Compared with the base engine, APU fuel use and emissions of carbon dioxide (CO2) and sulfur dioxide (SO2) are lower by 36-47%. Oxides of nitrogen (NO(x)) emissions are lower by 80-90%. Reductions in particulate matter (PM), carbon monoxide (CO), and hydrocarbon emissions vary from approximately 10 to over 50%. SP leads to more substantial reductions, except for SO2. The actual achievable reductions will be lower because only a fraction of base engine usage will be replaced by APUs, SP, or both. Recommendations are made for reducing base engine fuel use and emissions, accounting for variability in fuel use and emissions reductions, and further work to quantify real-world avoided fuel use and emissions.
Theme: The 21st Century Adult Learner
ERIC Educational Resources Information Center
Lopez Brown, P.
2017-01-01
Problem-based learning is an innovative educational approach that is gaining prominence in higher education using "real world" problems or situations as a context for learning. The present study explored the use of problem-based learning with teacher trainees of the University of Belize. Using a concurrent mixed method design with 74…
ERIC Educational Resources Information Center
Saslow Gomez, Sarah A.; Faurie-Wisniewski, Danielle; Parsa, Arlen; Spitz, Jeff; Spitz, Jennifer Amdur; Loeb, Nancy C.; Geiger, Franz M.
2015-01-01
The classroom exercise outlined here is a self-directed assignment that connects students to the environmental contamination problem surrounding the DePue Superfund site. By connecting chemistry knowledge gained in the classroom with a real-world problem, students are encouraged to personally connect with the problem while simultaneously…
ERIC Educational Resources Information Center
Cantor, Alida; DeLauer, Verna; Martin, Deborah; Rogan, John
2015-01-01
Management of "wicked problems", messy real-world problems that defy resolution, requires thinkers who can transcend disciplinary boundaries, work collaboratively, and handle complexity and obstacles. This paper explores how educators can train undergraduates in these skills through applied community-based research, using the example of…
Preservice Middle and High School Mathematics Teachers' Strategies When Solving Proportion Problems
ERIC Educational Resources Information Center
Arican, Muhammet
2018-01-01
The purpose of this study was to investigate eight preservice middle and high school mathematics teachers' solution strategies when solving single and multiple proportion problems. Real-world missing-value word problems were used in an interview setting to collect information about preservice teachers' (PSTs) reasoning about proportional…
Just-in-Time Algebra: A Problem Solving Approach Including Multimedia and Animation.
ERIC Educational Resources Information Center
Hofmann, Roseanne S.; Hunter, Walter R.
2003-01-01
Describes a beginning algebra course that places stronger emphasis on learning to solve problems and introduces topics using real world applications. Students learn estimating, graphing, and algebraic algorithms for the purpose of solving problems. Indicates that applications motivate students by appearing to be a more relevant topic as well as…
Engaging At-Risk Students with Technology.
ERIC Educational Resources Information Center
Duttweiler, Patricia Cloud
1992-01-01
Educational technology can be used to engage students in interesting activities through which teachers can present skills, concepts, and problems to be solved. At-risk students benefit from the investigation of relevant real world problems and the immediate feedback and privacy that technology affords. (EA)
Extracting Depth From Motion Parallax in Real-World and Synthetic Displays
NASA Technical Reports Server (NTRS)
Hecht, Heiko; Kaiser, Mary K.; Aiken, William; Null, Cynthia H. (Technical Monitor)
1994-01-01
In psychophysical studies on human sensitivity to visual motion parallax (MP), the use of computer displays is pervasive. However, a number of potential problems are associated with such displays: cue conflicts arise when observers accommodate to the screen surface, and observer head and body movements are often not reflected in the displays. We investigated observers' sensitivity to depth information in MP (slant, depth order, relative depth) using various real-world displays and their computer-generated analogs. Angle judgments of real-world stimuli were consistently superior to judgments that were based on computer-generated stimuli. Similar results were found for perceived depth order and relative depth. Perceptual competence of observers tends to be underestimated in research that is based on computer generated displays. Such findings cannot be generalized to more realistic viewing situations.
Creating Change in Engineering Education: A Model for Collaboration among Institutions
ERIC Educational Resources Information Center
Plumb, Carolyn; Reis, Richard M.
2007-01-01
The United States, as well as the rest of the world, will face critical civil, environmental, energy, communication, manufacturing, and health-care challenges in the coming decades, and more scientists and engineers will be needed to address those problems. The number of jobs in the U.S. labor force requiring science and engineering skills, in…
Learning Mechanisms in Multidisciplinary Teamwork with Real Customers and Open-Ended Problems
ERIC Educational Resources Information Center
Heikkinen, Juho; Isomöttönen, Ville
2015-01-01
Recently, there has been a trend towards adding a multidisciplinary or multicultural element to traditional monodisciplinary project courses in computing and engineering. In this article, we examine the implications of multidisciplinarity for students' learning experiences during a one-semester project course for real customers. We use a…
Using an Algorithm When Solving Hardy-Weinberg Problems in Biology.
ERIC Educational Resources Information Center
Stencel, John E.
1991-01-01
A real world sample of actual data that students can use to see the application of the Hardy-Weinberg law to a real population is provided. The directions for using a six-step algorithmic procedure to determine Hardy-Weinberg percentages on the data given are described. (KR)
Remembering a visit to the psychology lab: Implications of Mild Cognitive Impairment.
Davidson, Patrick S R; Cooper, Lara; Taler, Vanessa
2016-09-01
Morris Moscovitch has emphasized the importance of sensitively and carefully measuring cognition in the real world. With this lesson in mind, we examined the real-world episodic memory problems of older adults with Mild Cognitive Impairment (MCI). MCI patients often complain of episodic memory problems and perform poorly on standardized neuropsychological measures, but we still do not know enough about their actual difficulties remembering real experiences. A few days after their visit to the laboratory for an experimental session, we telephoned 19 MCI patients and 34 healthy participants without warning to ask what they could recollect about 16 elements of their visit. The patients had difficulty remembering the details of their visit, and reported lower ratings of memory vividness compared to healthy participants. Patients' memory for the visit was commensurate with their performance on three standard clinical memory assessment measures (delayed 5 word recall from the Montreal Cognitive Assessment, long delay free recall from the California Verbal Learning Test-II and recall of the details of the Wechsler Memory Scale-III Logical Memory stories), providing evidence for the generalizability of the clinical measures. Putting these findings together with those from Moscovitch and colleagues (Murphy et al., 2008) can help us better understand the real-world memory implications of Mild Cognitive Impairment. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Direct Comparison of Real-World and Virtual Navigation Performance in Chronic Stroke Patients.
Claessen, Michiel H G; Visser-Meily, Johanna M A; de Rooij, Nicolien K; Postma, Albert; van der Ham, Ineke J M
2016-04-01
An increasing number of studies have presented evidence that various patient groups with acquired brain injury suffer from navigation problems in daily life. This skill is, however, scarcely addressed in current clinical neuropsychological practice and suitable diagnostic instruments are lacking. Real-world navigation tests are limited by geographical location and associated with practical constraints. It was, therefore, investigated whether virtual navigation might serve as a useful alternative. To investigate the convergent validity of virtual navigation testing, performance on the Virtual Tubingen test was compared to that on an analogous real-world navigation test in 68 chronic stroke patients. The same eight subtasks, addressing route and survey knowledge aspects, were assessed in both tests. In addition, navigation performance of stroke patients was compared to that of 44 healthy controls. A correlation analysis showed moderate overlap (r = .535) between composite scores of overall real-world and virtual navigation performance in stroke patients. Route knowledge composite scores correlated somewhat stronger (r = .523) than survey knowledge composite scores (r = .442). When comparing group performances, patients obtained lower scores than controls on seven subtasks. Whereas the real-world test was found to be easier than its virtual counterpart, no significant interaction-effects were found between group and environment. Given moderate overlap of the total scores between the two navigation tests, we conclude that virtual testing of navigation ability is a valid alternative to navigation tests that rely on real-world route exposure.
The Algebra of Complex Numbers.
ERIC Educational Resources Information Center
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
Student Curators: Becoming Lifelong Learners.
ERIC Educational Resources Information Center
Koetsch, Peg; And Others
1994-01-01
Fifth graders at a Virginia school are applying new knowledge about world cultures by constructing artifacts for an Egyptian legacy exhibit. Exhibitions are a key facet of Museums-in-Progress (MIP), a program that links problem-solving activities with the real world. Students learn to develop, install, and interpret an exhibition by touring local…
ERIC Educational Resources Information Center
Garey, Robert W.
The Randolph, New Jersey Intermediate School updated its industrial arts program to reflect the challenges and work force of the Twentieth Century in which students apply a design/problem-solving process to solve real-world problems. In the laboratory portion of the program, students circulate between workstations to define problems, complete…
ERIC Educational Resources Information Center
Khotimah, Rita Pramujiyanti; Masduki
2016-01-01
Differential equations is a branch of mathematics which is closely related to mathematical modeling that arises in real-world problems. Problem solving ability is an essential component to solve contextual problem of differential equations properly. The purposes of this study are to describe contextual teaching and learning (CTL) model in…
NASA Astrophysics Data System (ADS)
Independent World Commission On The Oceans; Soares, Mario
1998-09-01
The Ocean, Our Future is the official report of the Independent World Commission on the Oceans, chaired by Mário Soares, former President of Portugal. Its aim is to summarize the very real problems affecting the ocean and its future management, and to provide imaginative solutions to these various and interlocking problems. The oceans have traditionally been taken for granted as a source of wealth, opportunity and abundance. Our growing understanding of the oceans has fundamentally changed this perception. We now know that in some areas, abundance is giving way to real scarcity, resulting in severe conflicts. Territorial disputes that threaten peace and security, disruptions to global climate, overfishing, habitat destruction, species extinction, indiscriminate trawling, pollution, the dumping of hazardous and toxic wastes, piracy, terrorism, illegal trafficking and the destruction of coastal communities are among the problems that today form an integral part of the unfolding drama of the oceans. Based on the deliberations, experience and input of more than 100 specialists from around the world, this timely volume provides a powerful overview of the state of our water world.
Little justification is generally provided for selection of in vitro assay testing concentrations for engineered nanomaterials (ENMs). Selection of concentration levels for hazard evaluation based on real-world exposure scenarios is desirable. We reviewed published ENM concentr...
Integrator element as a promoter of active learning in engineering teaching
NASA Astrophysics Data System (ADS)
Oliveira, Paulo C.; Oliveira, Cristina G.
2014-03-01
In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator element, called the physics elevator project. This integrator element allows us to use, in a single project, all the content taught in the course and uses several active learning strategies. In this paper, we analyse this project as: (i) a clarifying element of the contents covered in the course; (ii) a promoter element of motivation and active participation in class and finally and (iii) a link between the contents covered in the course and the 'real world'. The data were collected by a questionnaire and interviews to students. From the data collected, it seems that the integrator element improves students' motivation towards physics and develops several skills that they consider to be important to their professional future. It also acts as a clarifying element and makes the connection between the physics that is taught and the 'real world'.
Additional Crime Scenes for Projectile Motion Unit
NASA Astrophysics Data System (ADS)
Fullerton, Dan; Bonner, David
2011-12-01
Building students' ability to transfer physics fundamentals to real-world applications establishes a deeper understanding of underlying concepts while enhancing student interest. Forensic science offers a great opportunity for students to apply physics to highly engaging, real-world contexts. Integrating these opportunities into inquiry-based problem solving in a team environment provides a terrific backdrop for fostering communication, analysis, and critical thinking skills. One such activity, inspired jointly by the museum exhibit "CSI: The Experience"2 and David Bonner's TPT article "Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene,"3 provides students with three different crime scenes, each requiring an analysis of projectile motion. In this lesson students socially engage in higher-order analysis of two-dimensional projectile motion problems by collecting information from 3-D scale models and collaborating with one another on its interpretation, in addition to diagramming and mathematical analysis typical to problem solving in physics.
Active Learning with Irrelevant Examples
NASA Technical Reports Server (NTRS)
Mazzoni, Dominic; Wagstaff, Kiri L.; Burl, Michael
2006-01-01
Active learning algorithms attempt to accelerate the learning process by requesting labels for the most informative items first. In real-world problems, however, there may exist unlabeled items that are irrelevant to the user's classification goals. Queries about these points slow down learning because they provide no information about the problem of interest. We have observed that when irrelevant items are present, active learning can perform worse than random selection, requiring more time (queries) to achieve the same level of accuracy. Therefore, we propose a novel approach, Relevance Bias, in which the active learner combines its default selection heuristic with the output of a simultaneously trained relevance classifier to favor items that are likely to be both informative and relevant. In our experiments on a real-world problem and two benchmark datasets, the Relevance Bias approach significantly improved the learning rate of three different active learning approaches.
TUNS/TCIS information model/process model
NASA Technical Reports Server (NTRS)
Wilson, James
1992-01-01
An Information Model is comprised of graphical and textual notation suitable for describing and defining the problem domain - in our case, TUNS or TCIS. The model focuses on the real world under study. It identifies what is in the problem and organizes the data into a formal structure for documentation and communication purposes. The Information Model is composed of an Entity Relationship Diagram (ERD) and a Data Dictionary component. The combination of these components provide an easy to understand methodology for expressing the entities in the problem space, the relationships between entities and the characteristics (attributes) of the entities. This approach is the first step in information system development. The Information Model identifies the complete set of data elements processed by TUNS. This representation provides a conceptual view of TUNS from the perspective of entities, data, and relationships. The Information Model reflects the business practices and real-world entities that users must deal with.
van den Hoven, Jeroen
2016-12-27
In the twenty-first century, the urgent problems the world is facing (the UN Sustainable Development Goals) are increasingly related to vast and intricate 'systems of systems', which comprise both socio-technical and eco-systems. In order for engineers to adequately and responsibly respond to these problems, they cannot focus on only one technical or any other aspect in isolation, but must adopt a wider and multidisciplinary perspective of these systems, including an ethical and social perspective. Engineering curricula should therefore focus on what we call 'comprehensive engineering'. Comprehensive engineering implies ethical coherence, consilience of scientific disciplines, and cooperation between parties.
Understanding real-world implementation quality and "active ingredients" of PBIS.
Molloy, Lauren E; Moore, Julia E; Trail, Jessica; Van Epps, John James; Hopfer, Suellen
2013-12-01
Programs delivered in the "real world" often look substantially different from what was originally intended by program developers. Depending on which components of a program are being trimmed or altered, such modifications may seriously undermine the effectiveness of a program. In the present study, these issues are explored within a widely used school-based, non-curricular intervention, Positive Behavioral Intervention and Supports. The present study takes advantage of a uniquely large dataset to gain a better understanding of the "real-world" implementation quality of PBIS and to take a first step toward identifying the components of PBIS that "matter most" for student outcomes. Data from 27,689 students and 166 public primary and secondary schools across seven states included school and student demographics, indices of PBIS implementation quality, and reports of problem behaviors for any student who received an office discipline referral during the 2007-2008 school year. Results of the present study identify three key components of PBIS that many schools are failing to implement properly, three program components that were most related to lower rates of problem behavior (i.e., three "active ingredients" of PBIS), and several school characteristics that help to account for differences across schools in the quality of PBIS implementation. Overall, findings highlight the importance of assessing implementation quality in "real-world" settings, and the need to continue improving understanding of how and why programs work. Findings are discussed in terms of their implications for policy.
NASA Astrophysics Data System (ADS)
Bodenschatz, Eberhard
2014-11-01
In my talk I shall present results from particle tracking experiments in turbulence. After a short review of the history of the field, I shall summarize the most recent technological advances that range form low and high-density particle tracking to direct measurements of the Lagrangian evolution of vorticity. I shall embark on a journey that describes the discoveries made possible by this new technology in the last 15 years. I present results that challenge our understanding of turbulence and show how Lagrangian particle tracking can help us ask questions on turbulent flows that so far were hidden. I shall show how Lagrangian particle tracking may provide important insights into the reversibility of turbulent flows, on vorticity generation, the energy cascade and turbulent mixing. I shall describe the consequences of inertial particle transport on rain formation and end with an outlook on how Lagrangian particle tracking experiments on non-stationary flows in real-world situations may provide high quality data that can support real world engineering problems. I am very thankful for the support by Cornell University, the National Science Foundation, the Research Corporation, the Alfred P. Sloan Foundation, the Kavli Institute for Theoretical Physics, the German Research Foundation, the European Union and the Max Planck Society. I very gratefully acknowledge the excellent partnership with many colleagues in the field of fluid mechanics and turbulence.
A Systems Approach to Research in Vocational Education.
ERIC Educational Resources Information Center
Miller, Larry E.
1991-01-01
A methodology to address "soft system" problems (those that are unstructured or fuzzy) has these steps: (1) mapping the problem; (2) constructing a root definition; (3) applying conceptual models; (4) comparing models to the real world; and (5) finding and implementing feasible solutions. (SK)
The Tools That Help Systems Engineering
NASA Technical Reports Server (NTRS)
Gamertsfelder, Jacob O.
2017-01-01
There are many tools that systems engineers use in today's space programs. In my time in the Commercial Crew Program I sought to improve one of the vital tools for the verification and validation team. This was my main project but only a small part of what I have done in the department. I have also had the chance to learn from the best and see actual hardware, this real world experience will help me be a better aerospace engineer when I enter the workforce. I look forward to seeing the Commercial Crew Program progress to launch.
Design optimization of steel frames using an enhanced firefly algorithm
NASA Astrophysics Data System (ADS)
Carbas, Serdar
2016-12-01
Mathematical modelling of real-world-sized steel frames under the Load and Resistance Factor Design-American Institute of Steel Construction (LRFD-AISC) steel design code provisions, where the steel profiles for the members are selected from a table of steel sections, turns out to be a discrete nonlinear programming problem. Finding the optimum design of such design optimization problems using classical optimization techniques is difficult. Metaheuristic algorithms provide an alternative way of solving such problems. The firefly algorithm (FFA) belongs to the swarm intelligence group of metaheuristics. The standard FFA has the drawback of being caught up in local optima in large-sized steel frame design problems. This study attempts to enhance the performance of the FFA by suggesting two new expressions for the attractiveness and randomness parameters of the algorithm. Two real-world-sized design examples are designed by the enhanced FFA and its performance is compared with standard FFA as well as with particle swarm and cuckoo search algorithms.
NASA Astrophysics Data System (ADS)
Myers, R.; Botti, J.
2002-12-01
The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.
NASA Astrophysics Data System (ADS)
Myers, R. J.; Botti, J. A.
2001-12-01
The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.
2013-12-10
Edward A. Lee Björn Hartmann Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-200...NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING...movement. PHYSICAL TARGET ACQUISITION STUDY To understand the accuracy and performance of head- orientation-based selection through our device, we car - ried
2013-11-04
Edward A. Lee Björn Hartmann Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-182...NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING...accuracy and performance of head- orientation-based selection through our device, we car - ried out a comparative target acquisition study, where
Chen, Ying-ping; Chen, Chao-Hong
2010-01-01
An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence.
Genetic Algorithm and Tabu Search for Vehicle Routing Problems with Stochastic Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Zuhaimy, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com; Irhamah, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com
2010-11-11
This paper presents a problem of designing solid waste collection routes, involving scheduling of vehicles where each vehicle begins at the depot, visits customers and ends at the depot. It is modeled as a Vehicle Routing Problem with Stochastic Demands (VRPSD). A data set from a real world problem (a case) is used in this research. We developed Genetic Algorithm (GA) and Tabu Search (TS) procedure and these has produced the best possible result. The problem data are inspired by real case of VRPSD in waste collection. Results from the experiment show the advantages of the proposed algorithm that aremore » its robustness and better solution qualities.« less
Workcell calibration for effective offline programming
NASA Technical Reports Server (NTRS)
Stiles, Roger D.; Jones, Clyde S.
1989-01-01
In the application of graphics systems for off-line programming (OLP) of robotic systems, the inevitability of errors in the model representation of real-world situations requires that a method to map these differences is incorporated as an integral part of the overall system progamming procedures. This paper discusses several proven robot-to-positioner calibration techniques necessary to reflect real-world parameters in a work-cell model. Particular attention is given to the procedures used to adjust a graphics model to an acceptable degree of accuracy for integration of OLP for the Space Shuttle Main Engine welding automation. Consideration is given to the levels of calibration, requirements, special considerations for coordinated motion, and calibration procedures.
NASA Astrophysics Data System (ADS)
Takei, Masahiro; Xu, Lijun
2011-10-01
We are pleased to publish this special feature on the Sixth World Congress on Industrial Process Tomography (WCIPT6) in Measurement Science and Technology. The international congress was successfully held in the campus of Beihang University, Beijing, China, from 6-9 September 2010. It was jointly organized by International Society for Industrial Process Tomography (ISIPT), North China Electric Power University (NCEPU) and Beihang University (BUAA). Process tomography is a tangible tool to visualize and determine the material distribution inside a process non-intrusively in real time. The internal features that can be monitored by process tomography are frequently encountered and required in the design of processes and industrial plants in the fields of chemical, oil, power and metallurgical engineering as well as many other activities such as food, material handling and combustion systems. One of the key characteristics of process tomography is to provide a direct impression and instant and clear understanding of a complex phenomenon. From the viewpoint of practical applications, industries all over the world are currently facing a number of daunting challenges including many wide-range and complex technical problems. The innovative technology of process tomography consistently contributes to providing better and better solutions to the problems as 'seeing is believing'. As a regular event, WCIPT is playing a more and more important role in addressing the challenges to overcome these problems. We are glad to see that this special feature provides a great opportunity for world-wide top-level researchers to discuss and make further developments in process tomography and its applications. The 20 articles included in this issue cover a wide range of relevant topics including sensors and sensing mechanisms, data acquisition systems and instrumentation, electrical, optical, acoustic and hybrid systems, image reconstruction and system evaluation, data and sensor fusion, data processing, other emerging technologies, and their industrial applications such as in multi-phase systems, combustion and chemical reaction, etc. The Seventh World Congress on Industrial Process Tomography (WCIPT7) will take place in Krakow, Poland, from 2-5 September 2013. We look forward to meeting you in Poland!
ERIC Educational Resources Information Center
Mickes, Laura; Flowe, Heather D.; Wixted, John T.
2012-01-01
A police lineup presents a real-world signal-detection problem because there are two possible states of the world (the suspect is either innocent or guilty), some degree of information about the true state of the world is available (the eyewitness has some degree of memory for the perpetrator), and a decision is made (identifying the suspect or…
NASA Astrophysics Data System (ADS)
Rose, W. I.; Bluth, G. J.; Gierke, J. S.; Gross, E.
2005-12-01
Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety and, eventually, economic development, they lack the resources required to advance the development and practice of remote sensing. Both developed and developing countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development, and this common commitment creates a solid foundation upon which to build an integrated education and research project. This will prepare students for careers in science and engineering through their efforts to solve a suite of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. This project makes two important advances: (1) We intend to develop the first formal linkage among geoscience agencies from four Pacific Latin American countries (Guatemala, El Salvador, Nicaragua and Ecuador), focusing on the collaborative development of remote sensing tools for hazard mitigation and water resource development; (2) We will build a new educational system of applied research and engineering, using two existing educational programs at Michigan Tech: a new Peace Corp/Master's International (PC/MI) program in Natural Hazards which features a 2-year field assignment, and an "Enterprise" program for undergraduates, which gives teams of geoengineering students the opportunity to work for three years in a business-like setting to solve real-world problems This project will involve 1-2 post-doctoral researchers, 3 Ph.D., 9 PC/MI, and roughly 20 undergraduate students each year.
The Systems and Global Engineering Project
ERIC Educational Resources Information Center
Harms, Henry; Janosz, David A., Jr.; Maietta, Steve
2010-01-01
This article describes the Systems and Global Engineering (SAGE) Project in which students collaborate with others from around the world to model solutions to some of today's most significant global problems. Stevens Institute of Technology and the New Jersey Technology Education Association (NJTEA) have teamed up to develop innovative…
Joint Operating Environment: The Joint Force in a Contested and Disordered World
2016-07-14
spilling over borders, and creating wide-ranging international problems. The future of Science, Technology, and Engineering will see others reaching...10 Science, Technology, and Engineering and the Future Joint Force ..........................................15 Summary... Engineering – may lead to new and challenging conditions that will redefine the security environment of 2035. Section 2: Contexts of Future Conflict
Performance in Mathematical Problem Solving as a Function of Comprehension and Arithmetic Skills
ERIC Educational Resources Information Center
Voyer, Dominic
2011-01-01
Many factors influence a student's performance in word (or textbook) problem solving in class. Among them is the comprehension process the pupils construct during their attempt to solve the problem. The comprehension process may include some less formal representations, based on pupils' real-world knowledge, which support the construction of a…
ERIC Educational Resources Information Center
Große, Cornelia S.
2015-01-01
The application of mathematics to real-world problems is moving more and more in the focus of attention of mathematics education; however, many learners experience huge difficulties in relating "pure" mathematics to everyday contents. In order to solve "modeling problems", it is first necessary to find a transition from a…
ERIC Educational Resources Information Center
le Roux, Kate; Adler, Jill
2016-01-01
Mathematical problems that make links to the everyday and to disciplines other than mathematics--variously referred to as practical, realistic, real-world or applied problems in the literature--feature in school and undergraduate mathematics reforms aimed at increasing mathematics participation in contexts of inequity and diversity. In this…
ERIC Educational Resources Information Center
Hou, Su-I
2014-01-01
Purpose: Problem-based learning (PBL) challenges students to learn and work in groups to seek solutions to real world problems. Connecting academic study with community-engaged learning (CEL) experience can deeper learning and thinking. This paper highlights the integration of PBL with CEL in the Implementation Course to engage graduate students…
A Tiny Adventure: The Introduction of Problem Based Learning in an Undergraduate Chemistry Course
ERIC Educational Resources Information Center
Williams, Dylan P.; Woodward, Jonathan R.; Symons, Sarah L.; Davies, David L.
2010-01-01
Year 1 of the chemistry degree at the University of Leicester has been significantly changed by the integration of a problem based learning (PBL) component into the introductory inorganic/physical chemistry module, "Chemical Principles". Small groups of 5-6 students were given a series of problems with real world scenarios and were then…
"What's so Terrible about Swallowing an Apple Seed?" Problem-Based Learning in Kindergarten
ERIC Educational Resources Information Center
Zhang, Meilan; Parker, Joyce; Eberhardt, Jan; Passalacqua, Susan
2011-01-01
Problem-Based Learning (PBL), an instructional approach originated in medical education, has gained increasing attention in K-12 science education because of its emphasis on self-directed learning and real-world problem-solving. Yet few studies have examined how PBL can be adapted for kindergarten. In this study, we examined how a veteran…
Problem-Based Learning in an Online Course: A Case Study
ERIC Educational Resources Information Center
Cheaney, James D.; Ingebritsen, Thomas S.
2005-01-01
Problem-based learning (PBL) is the use of a "real world" problem or situation as a context for learning. The present study explores the use of PBL in an online biotechnology course. In the PBL unit, student groups dealt with the ethical, legal, social, and human issues surrounding pre-symptomatic DNA testing for a genetic disease. Issues…
Generalized Hough Transform for Object Classification in the Maritime Domain
2015-12-01
and memory storage problems of the GHT in this work . Neural networks have been used to provide excellent solutions to real-world problems in many...1 A. THESIS OBJECTIVE ...............................................................................1 B. RELATED WORK ...SIGNIFICANT CONTRIBUTIONS ......................................................47 B. RECOMMENDATIONS FOR FUTURE WORK ................................48
The Real World of the Beginning Teacher.
ERIC Educational Resources Information Center
National Education Association, Washington, DC. National Commission on Teacher Education and Professional Standards.
Problems and goals of beginning teachers are the subject of these speeches presented by both experienced and beginning teachers at the 1965 national conference of the National Commission on Teacher Education and Professional Standards. The problems include the differences between teacher expectations and encounters, unrealistic teaching and…
Leveraging Collaborative, Thematic Problem-Based Learning to Integrate Curricula
ERIC Educational Resources Information Center
Sroufe, Robert; Ramos, Diane P.
2015-01-01
This study chronicles learning from faculty who designed and delivered collaborative, problem-based learning courses that anchor a one-year MBA emphasizing sustainability. While cultivating the application of learning across the curriculum, the authors engaged MBA students in solving complex, real-world sustainability challenges using a…
Strategies to Support Students' Mathematical Modeling
ERIC Educational Resources Information Center
Jung, Hyunyi
2015-01-01
An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…
Mathematics and Water in the Garden: Weaving Mathematics into the Students' Lived Environment
ERIC Educational Resources Information Center
Clarkson, Philip
2010-01-01
In an earlier issue of "Australian Primary Mathematics Classroom," Sparrow discussed the concept of real-world mathematics and the use of mathematics to explore problems in real-life situations. Environmental issues have provided a context that some teachers have used for teaching mathematics. An example of a particular environmental…
NASA Astrophysics Data System (ADS)
Tuominen, Mark
2013-03-01
Attitude, Skills, Knowledge (ASK) - In this order, these are fundamental characteristics of scientific innovators. Through first-hand practice in using science to unpack and solve complex real-world problems, students can become self-motivated scientific leaders. This presentation describes the pedagogy of a recently developed interdisciplinary undergraduate science education program at the University of Massachusetts Amherst focused on addressing global challenges with scientific solutions. Integrated Concentration in Science (iCons) is an overarching concentration program that supplements the curricula provided within each student's chosen major. iCons is a platform for students to perform student-led research in interdisciplinary collaborative teams. With a schedule of one course per year over four years, the cohort of students move through case studies, analysis of real-world problems, development of potential solutions, integrative communication, laboratory practice, and capstone research projects. In this presentation, a track emphasizing renewable energy science is used to illustrate the iCons pedagogical methods. This includes discussion of a third-year laboratory course in renewable energy that is educationally scaffolded: beginning with a boot camp in laboratory techniques and culminating with student-designed research projects. Among other objectives, this course emphasizes the practice of using reflection and redesign, as a means of generating better solutions and embedding learning for the long term. This work is supported in part by NSF grant DUE-1140805.
Data Discovery with IBM Watson
NASA Astrophysics Data System (ADS)
Fessler, J.
2016-12-01
BM Watson is a cognitive computing system that uses machine learning, statistical analysis, and natural language processing to find and understand the clues in questions posed to it. Watson was made famous when it bested two champions on TV's Jeopardy! show. Since then, Watson has evolved into a platform of cognitive services that can be trained on very granular fields up study. Watson is being used to support a number of subject domains, such as cancer research, public safety, engineering, and the intelligence community. IBM will be providing a presentation and demonstration on the Watson technology and will discuss its capabilities including Natural Language Processing, text analytics and enterprise search, as well as cognitive computing with deep Q&A. The team will also be giving examples of how IBM Watson technology is being used to support real-world problems across a number of public sector agencies
Qualitative Discovery in Medical Databases
NASA Technical Reports Server (NTRS)
Maluf, David A.
2000-01-01
Implication rules have been used in uncertainty reasoning systems to confirm and draw hypotheses or conclusions. However a major bottleneck in developing such systems lies in the elicitation of these rules. This paper empirically examines the performance of evidential inferencing with implication networks generated using a rule induction tool called KAT. KAT utilizes an algorithm for the statistical analysis of empirical case data, and hence reduces the knowledge engineering efforts and biases in subjective implication certainty assignment. The paper describes several experiments in which real-world diagnostic problems were investigated; namely, medical diagnostics. In particular, it attempts to show that: (1) with a limited number of case samples, KAT is capable of inducing implication networks useful for making evidential inferences based on partial observations, and (2) observation driven by a network entropy optimization mechanism is effective in reducing the uncertainty of predicted events.
ERIC Educational Resources Information Center
Kostousov, Sergei; Kudryavtsev, Dmitry
2017-01-01
Problem solving is a critical competency for modern world and also an effective way of learning. Education should not only transfer domain-specific knowledge to students, but also prepare them to solve real-life problems--to apply knowledge from one or several domains within specific situation. Problem solving as teaching tool is known for a long…
NASA Technical Reports Server (NTRS)
Seldner, K.
1976-01-01
The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.
Enhancing Navigation Skills through Audio Gaming.
Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi
2010-01-01
We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks.
Analytical Chemistry: A Literary Approach
NASA Astrophysics Data System (ADS)
Lucy, Charles A.
2000-04-01
The benefits of incorporating real-world examples of chemistry into lectures and lessons is reflected by the recent inclusion of the Teaching with Problems and Case Studies column in this Journal. However, these examples lie outside the experience of many students, and so much of the impact of "real-world" examples is lost. This paper provides an anthology of references to analytical chemistry techniques from history, popular fiction, and film. Such references are amusing to both instructor and student. Further, the fictional descriptions can serve as a focal point for discussions of a technique's true capabilities and limitations.
Wixted, John T; Mickes, Laura; Fisher, Ronald P
2018-05-01
The available real-world evidence suggests that, on an initial test, eyewitness memory is often reliable. Ironically, even the DNA exoneration cases-which generally involved nonpristine testing conditions and which are usually construed as an indictment of eyewitness memory-show how reliable an initial test of eyewitness memory can be in the real world. We endorse the use of pristine testing procedures, but their absence does not automatically imply that eyewitness memory is unreliable.
Enhancing Navigation Skills through Audio Gaming
Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi
2014-01-01
We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks. PMID:25505796
Global World: A Problem of Governance
ERIC Educational Resources Information Center
Chumakov, Alexander Nikolayevich
2014-01-01
Purpose: The purpose of this paper is to include the following items: to show the absolute necessity of managing the international community, to explore the fundamental possibility of managing the global world, to prove or disprove such a possibility, to determine the real background of global governance in modern conditions and to show the…
Assessing Students' Proficiency in Math and Science
ERIC Educational Resources Information Center
Judd, Thomas P.; Keith, Bruce
2007-01-01
The U.S. Military Academy (USMA) at West Point is responsible for developing in its graduates literacy in the sciences that renders them capable of solving complex real-world problems. Throughout their careers as officers in the military, graduates will be called upon to view the physical world in a disciplined and objective manner, with an…
An Investigation into Cooperative Learning in a Virtual World Using Problem-Based Learning
ERIC Educational Resources Information Center
Parson, Vanessa; Bignell, Simon
2017-01-01
Three-dimensional multi-user virtual environments (MUVEs) have the potential to provide experiential learning qualitatively similar to that found in the real world. MUVEs offer a pedagogically-driven immersive learning opportunity for educationalists that is cost-effective and enjoyable. A family of digital virtual avatars was created within…
Design of a Prototype Mobile Application to Make Mathematics Education More Realistic
ERIC Educational Resources Information Center
Jordaan, Dawid B.; Laubscher, Dorothy J.; Blignaut, A. Seugnet
2017-01-01
To enter the world of work, students require skills which include flexibility, critical thinking, problem solving, collaboration and communication. The use of mobile technologies which are specifically created for a context could stimulate motivation in students to recognise the relevance of Mathematics in the real world. South Africa in…
GODDESS: A Goal-Directed Decision Structuring System.
1980-06-01
differ- ent support techniques. From a practical viewpoint, though, the major drawback of manual interviews is their length and cost. Since real - time ...conducting his future inquiries. A direct man-machine interface could provide three distinct advantages. First, it offers the capability of real - time ...knowledge in tree form. In many real -world applications, the decision maker may not perceive a problem in the form of a time sequence of decision
AP233: An Information Model for Systems Engineering
NASA Technical Reports Server (NTRS)
Siebes, Georg
2009-01-01
In today's world, information is abundant. We have no problems generating it. But we are challenged to find, organize, and exchange information. center dot A standardized model of information can help. Such a model nearly completed its development for Systems Engineering. It is referred to as AP233 (AP = Application Protocol).
Advanced biologically plausible algorithms for low-level image processing
NASA Astrophysics Data System (ADS)
Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan
1999-08-01
At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.
Problem-Based Learning in Biomechanics: Advantages, Challenges, and Implementation Strategies.
Clyne, Alisa Morss; Billiar, Kristen L
2016-07-01
Problem-based learning (PBL) has been shown to be effective in biomedical engineering education, particularly in motivating student learning, increasing knowledge retention, and developing problem solving, communication, and teamwork skills. However, PBL adoption remains limited by real challenges in effective implementation. In this paper, we review the literature on advantages and challenges of PBL and present our own experiences. We also provide practical guidelines for implementing PBL, including two examples of PBL modules from biomechanics courses at two different institutions. Overall, we conclude that the benefits for both professors and students support the use of PBL in biomedical engineering education.
Lessons Learned from Crowdsourcing Complex Engineering Tasks.
Staffelbach, Matthew; Sempolinski, Peter; Kijewski-Correa, Tracy; Thain, Douglas; Wei, Daniel; Kareem, Ahsan; Madey, Gregory
2015-01-01
Crowdsourcing is the practice of obtaining needed ideas, services, or content by requesting contributions from a large group of people. Amazon Mechanical Turk is a web marketplace for crowdsourcing microtasks, such as answering surveys and image tagging. We explored the limits of crowdsourcing by using Mechanical Turk for a more complicated task: analysis and creation of wind simulations. Our investigation examined the feasibility of using crowdsourcing for complex, highly technical tasks. This was done to determine if the benefits of crowdsourcing could be harnessed to accurately and effectively contribute to solving complex real world engineering problems. Of course, untrained crowds cannot be used as a mere substitute for trained expertise. Rather, we sought to understand how crowd workers can be used as a large pool of labor for a preliminary analysis of complex data. We compared the skill of the anonymous crowd workers from Amazon Mechanical Turk with that of civil engineering graduate students, making a first pass at analyzing wind simulation data. For the first phase, we posted analysis questions to Amazon crowd workers and to two groups of civil engineering graduate students. A second phase of our experiment instructed crowd workers and students to create simulations on our Virtual Wind Tunnel website to solve a more complex task. With a sufficiently comprehensive tutorial and compensation similar to typical crowd-sourcing wages, we were able to enlist crowd workers to effectively complete longer, more complex tasks with competence comparable to that of graduate students with more comprehensive, expert-level knowledge. Furthermore, more complex tasks require increased communication with the workers. As tasks become more complex, the employment relationship begins to become more akin to outsourcing than crowdsourcing. Through this investigation, we were able to stretch and explore the limits of crowdsourcing as a tool for solving complex problems.
Energy-Efficient Neuromorphic Classifiers.
Martí, Daniel; Rigotti, Mattia; Seok, Mingoo; Fusi, Stefano
2016-10-01
Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. The energy consumptions promised by neuromorphic engineering are extremely low, comparable to those of the nervous system. Until now, however, the neuromorphic approach has been restricted to relatively simple circuits and specialized functions, thereby obfuscating a direct comparison of their energy consumption to that used by conventional von Neumann digital machines solving real-world tasks. Here we show that a recent technology developed by IBM can be leveraged to realize neuromorphic circuits that operate as classifiers of complex real-world stimuli. Specifically, we provide a set of general prescriptions to enable the practical implementation of neural architectures that compete with state-of-the-art classifiers. We also show that the energy consumption of these architectures, realized on the IBM chip, is typically two or more orders of magnitude lower than that of conventional digital machines implementing classifiers with comparable performance. Moreover, the spike-based dynamics display a trade-off between integration time and accuracy, which naturally translates into algorithms that can be flexibly deployed for either fast and approximate classifications, or more accurate classifications at the mere expense of longer running times and higher energy costs. This work finally proves that the neuromorphic approach can be efficiently used in real-world applications and has significant advantages over conventional digital devices when energy consumption is considered.
Integrating Global Hydrology Into Graduate Engineering Education and Research
NASA Astrophysics Data System (ADS)
Griffis, V. W.
2007-12-01
Worldwide, polluted water affects the health of 1.2 billion people and contributes to the death of 15 million children under five every year. In addition poor environmental quality contributes to 25 per cent of all preventable ill health in the world. To address some of these problems, at the 2002 World Summit on Sustainable Development, the world community set the goal of halving, by the year 2015, the proportion of people without access to safe drinking water and basic sanitation. Solving sanitation and water resource management problems in any part of the world presents an interdisciplinary, complex challenge. However, when we attempt to solve these problems in an international context, our technical approaches must be tempered with cultural sensitivity and extraordinary management strategies. To meet this challenge, Michigan Tech has developed a unique global partnership with the U.S. Peace Corps to address our acknowledgement of the importance of placing engineering solutions in a global context. The program has graduated 30 students. Program enrollment is now over 30 and over 20 countries have hosted our students. The objective of this presentation is to demonstrate how this unique partnership can be integrated with graduate engineering education and research and also show how such a program may attract a more diverse student population into engineering. All graduate students enrolled in our Master's International Program in Civil and Environmental Engineering must complete specific coursework requirements before departing for their international experience. In CE5993 (Field Engineering in the Developing World) students learn to apply concepts of sustainable development and appropriate technology in the developing world. In FW5770 (Rural Community Development Planning and Analysis) students learn how one involves a community in the decision making process. A common theme in both courses is the role of woman in successful development projects. Technical specialization allows a student to take coursework in hydrology, water planning and management, and water quality engineering. The 2-3 semester residence on campus is then followed by three months of cultural, language, and technical training with the Peace Corps. After training students complete two years of service in the Peace Corps, typically working as a water/sanitation engineer while also completing a research project related to their Peace Corps experience. Some unique aspects of the Peace Corps experience is that it provides students with cultural awareness, language proficiency, community organizing skills, skills in consensus building and sustainable development, appreciation for technology that is economically and culturally sensitive, and a long-term field experience to develop an indepth overseas research project. Perhaps one of the greatest aspects of the Peace Corps experience is it provides students a basis to consider the social, economic, and environmental limitations of water projects in the developing world. Some examples of research projects that have been integrated into this program are: (a) culturally appropriate watershed planning and management, (b) technical capacity building of water supply systems, and (c) life cycle thinking approach applied to water and sanitation projects.
Tabu Search enhances network robustness under targeted attacks
NASA Astrophysics Data System (ADS)
Sun, Shi-wen; Ma, Yi-lin; Li, Rui-qi; Wang, Li; Xia, Cheng-yi
2016-03-01
We focus on the optimization of network robustness with respect to intentional attacks on high-degree nodes. Given an existing network, this problem can be considered as a typical single-objective combinatorial optimization problem. Based on the heuristic Tabu Search optimization algorithm, a link-rewiring method is applied to reconstruct the network while keeping the degree of every node unchanged. Through numerical simulations, BA scale-free network and two real-world networks are investigated to verify the effectiveness of the proposed optimization method. Meanwhile, we analyze how the optimization affects other topological properties of the networks, including natural connectivity, clustering coefficient and degree-degree correlation. The current results can help to improve the robustness of existing complex real-world systems, as well as to provide some insights into the design of robust networks.
Aerospace Mechanisms and Tribology Technology: Case Study
NASA Technical Reports Server (NTRS)
Miyoshi, K.
1999-01-01
This paper focuses attention on tribology technology practice related to vacuum tribology. A case study describes an aspect of a real problem in sufficient detail for the engineer and scientist to understand the tribological situation and the failure. The nature of the problem is analyzed and the tribological properties are examined.
Problems and Trends Regarding Vocational Teachers in China
ERIC Educational Resources Information Center
Kuang, Ying
2014-01-01
At present, China's vocational education system is undergoing a transition process from growing in size to improving in quality. Teacher and teaching force issues are a bottleneck and critical factor that will determine whether the transformation will be successful. The real-world problems of the number, deployment, capacity, and training systems…
A Laboratory Exercise with Related Rates.
ERIC Educational Resources Information Center
Sworder, Steven C.
A laboratory experiment, based on a simple electric circuit that can be used to demonstrate the existence of real-world "related rates" problems, is outlined and an equation for voltage across the capacitor terminals during discharge is derived. The necessary materials, setup methods, and experimental problems are described. A student laboratory…
Guide to Mathematics Released Items: Understanding Scoring
ERIC Educational Resources Information Center
Partnership for Assessment of Readiness for College and Careers, 2017
2017-01-01
The Partnership for Assessment of Readiness for College and Careers (PARCC) mathematics items measure critical thinking, mathematical reasoning, and the ability to apply skills and knowledge to real-world problems. Students are asked to solve problems involving the key knowledge and skills for their grade level as identified by the Common Core…
ERIC Educational Resources Information Center
Frazier, Wendy M.; Sterling, Donna R.
2007-01-01
Problem-based learning experiences that extend at least two weeks provide an opportunity for students to investigate a real-world problem while learning science content and skills in an exciting way. In this article, students are challenged by the president of the United States to serve as employees of the Federal Emergency Management Agency to…
ERIC Educational Resources Information Center
Foster, Patrick; Kirkwood, James
1993-01-01
Suggests that technology education is much more than simply computer literacy and must emphasize real-world problem solving and hands-on learning. Provides examples of activities, such as the construction of a model city out of scrap wood, that can be carried out with students in grades one through four to develop problem-solving skills. (MDM)
Connecting Learning & Technology for Effective Lesson Plan Design.
ERIC Educational Resources Information Center
Seamon, Mary P.
This paper focuses on the design of effective lesson plans using the Internet. Effective lesson design helps students to explore ideas, acquire and synthesize information, and frame and solve problems. The creative problem solving which depends upon context, interrelationships, and real-world activities is available through Internet projects.…
Prizes in Cereal Boxes: An Application of Probability.
ERIC Educational Resources Information Center
Litwiller, Bonnie H.; Duncan, David R.
1992-01-01
Presents four cases of real-world probabilistic situations to promote more effective teaching of probability. Calculates the probability of obtaining six of six different prizes successively in six, seven, eight, and nine boxes of cereal, generalizes the problem to n boxes of cereal, and offers suggestions to extend the problem. (MDH)
Camera calibration correction in shape from inconsistent silhouette
USDA-ARS?s Scientific Manuscript database
The use of shape from silhouette for reconstruction tasks is plagued by two types of real-world errors: camera calibration error and silhouette segmentation error. When either error is present, we call the problem the Shape from Inconsistent Silhouette (SfIS) problem. In this paper, we show how sm...
Sustainable Schools through Science Across the World
ERIC Educational Resources Information Center
Cutler, Marianne
2007-01-01
Children need new skills if they are to become part of the solution to challenges such as climate change rather than part of the problem. So states the UK's National Framework for Sustainable Schools. Skills include expressing points of view, weighing up evidence, cooperating, thinking critically, tackling real problems, participating in…
Bringing Management Reality into the Classroom--The Development of Interactive Learning.
ERIC Educational Resources Information Center
Nicholson, Alastair
1997-01-01
Effective learning in management education can be enhanced by reproducing the real-world need to solve problems under pressure of time, inadequate information, and group interaction. An interactive classroom communication system involving problems in decision making and continuous improvement is one method for bridging theory and practice. (SK)
Computation of Capacitors in Complex Arrangements
ERIC Educational Resources Information Center
Rizhov, Alexander
2011-01-01
There is a remarkable difference between formal knowledge and true understanding of the subject. While the former helps students earn top grades, the latter is crucial to the solution of real-world problems. An excellent example is the computation of capacitance, with which some students have difficulty. Also, most textbooks limit problem analysis…
Measurement and evaluation of fuels and technologies for passenger rail service in North Carolina.
DOT National Transportation Integrated Search
2012-08-01
The purpose of this project is to measure a baseline for fuel use and emission rates on the rebuilt or replaced engines on each locomotive in the NCDOT Rail Division fleet, using ultra-low sulfur diesel (ULSD) fuel; measure real-world, in-use over...
Invention and Writing in Technical Work: Representing the Object.
ERIC Educational Resources Information Center
Winsor, Dorothy A.
1994-01-01
Describes the way invention is relevant to the practice of technical writing. Studies three engineering students engaged in a real-world project. Shows how the students' technical work and invention for the final report were simultaneous activities. Claims that invention for and through writing overlaps with technical invention. (HB)
My Two Boots ... A Walk through the Wetlands. An Annual Outing for 700 Middle School Students
ERIC Educational Resources Information Center
Cwikla, Julie; Lasalle, Mark; Wilner, Sybil
2009-01-01
Project WetKids (www.projectwetkids.net) provides wetland, environmental, estuary, and watershed experiences with local scientists, engineers, and naturalists to Pascagoula, Mississippi students and their families. Extensive activities provide participants: (1) real world, locally relevant science-based events; (2) meaningful scientific…
Introducing Chemistry Students to the "Real World" of Chemistry
ERIC Educational Resources Information Center
Brown, Michael E.; Cosser, Ronald C.; Davies-Coleman, Michael T.; Kaye, Perry T.; Klein, Rosalyn; Lamprecht, Emmanuel; Lobb, Kevin; Nyokong, Tebello; Sewry, Joyce D.; Tshentu, Zenixole R.; van der Zeyde, Tino; Watkins, Gareth M.
2010-01-01
A majority of chemistry graduates seek employment in a rapidly changing chemical industry. Our attempts to provide the graduates with skills in entrepreneurship and the ability to understand and communicate with their chemical engineering colleagues, in addition to their fundamental knowledge of chemistry, are described. This is done at…
ERIC Educational Resources Information Center
Parker, Caroline E.; Stylinski, Cathlyn D.; Bonney, Christina R.; Schillaci, Rebecca; McAuliffe, Carla
2015-01-01
Technology applications aligned with science, technology, engineering, and math (STEM) workplace practices can engage students in real-world pursuits but also present dramatic challenges for classroom implementation. We examined the impact of teacher professional development focused on incorporating these workplace technologies in the classroom.…
The Math, Science, & Manufacturing Collaborative.
ERIC Educational Resources Information Center
Abate, Ronald J.
The concept of a collaborative math and science project grew out of the need expressed by Cleveland State University (Ohio) engineering faculty and junior and senior high school teachers. These groups sought to provide students with connections to "real world" situations that they will face as they transition into the workplace of the…
NASA Astrophysics Data System (ADS)
Han, Xu; Xie, Guangping; Laflen, Brandon; Jia, Ming; Song, Guiju; Harding, Kevin G.
2015-05-01
In the real application environment of field engineering, a large variety of metrology tools are required by the technician to inspect part profile features. However, some of these tools are burdensome and only address a sole application or measurement. In other cases, standard tools lack the capability of accessing irregular profile features. Customers of field engineering want the next generation metrology devices to have the ability to replace the many current tools with one single device. This paper will describe a method based on the ring optical gage concept to the measurement of numerous kinds of profile features useful for the field technician. The ring optical system is composed of a collimated laser, a conical mirror and a CCD camera. To be useful for a wide range of applications, the ring optical system requires profile feature extraction algorithms and data manipulation directed toward real world applications in field operation. The paper will discuss such practical applications as measuring the non-ideal round hole with both off-centered and oblique axes. The algorithms needed to analyze other features such as measuring the width of gaps, radius of transition fillets, fall of step surfaces, and surface parallelism will also be discussed in this paper. With the assistance of image processing and geometric algorithms, these features can be extracted with a reasonable performance. Tailoring the feature extraction analysis to this specific gage offers the potential for a wider application base beyond simple inner diameter measurements. The paper will present experimental results that are compared with standard gages to prove the performance and feasibility of the analysis in real world field engineering. Potential accuracy improvement methods, a new dual ring design and future work will be discussed at the end of this paper.
A new solar power output prediction based on hybrid forecast engine and decomposition model.
Zhang, Weijiang; Dang, Hongshe; Simoes, Rolando
2018-06-12
Regarding to the growing trend of photovoltaic (PV) energy as a clean energy source in electrical networks and its uncertain nature, PV energy prediction has been proposed by researchers in recent decades. This problem is directly effects on operation in power network while, due to high volatility of this signal, an accurate prediction model is demanded. A new prediction model based on Hilbert Huang transform (HHT) and integration of improved empirical mode decomposition (IEMD) with feature selection and forecast engine is presented in this paper. The proposed approach is divided into three main sections. In the first section, the signal is decomposed by the proposed IEMD as an accurate decomposition tool. To increase the accuracy of the proposed method, a new interpolation method has been used instead of cubic spline curve (CSC) fitting in EMD. Then the obtained output is entered into the new feature selection procedure to choose the best candidate inputs. Finally, the signal is predicted by a hybrid forecast engine composed of support vector regression (SVR) based on an intelligent algorithm. The effectiveness of the proposed approach has been verified over a number of real-world engineering test cases in comparison with other well-known models. The obtained results prove the validity of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-layered reasoning by means of conceptual fuzzy sets
NASA Technical Reports Server (NTRS)
Takagi, Tomohiro; Imura, Atsushi; Ushida, Hirohide; Yamaguchi, Toru
1993-01-01
The real world consists of a very large number of instances of events and continuous numeric values. On the other hand, people represent and process their knowledge in terms of abstracted concepts derived from generalization of these instances and numeric values. Logic based paradigms for knowledge representation use symbolic processing both for concept representation and inference. Their underlying assumption is that a concept can be defined precisely. However, as this assumption hardly holds for natural concepts, it follows that symbolic processing cannot deal with such concepts. Thus symbolic processing has essential problems from a practical point of view of applications in the real world. In contrast, fuzzy set theory can be viewed as a stronger and more practical notation than formal, logic based theories because it supports both symbolic processing and numeric processing, connecting the logic based world and the real world. In this paper, we propose multi-layered reasoning by using conceptual fuzzy sets (CFS). The general characteristics of CFS are discussed along with upper layer supervision and context dependent processing.
Real-world effectiveness of 8 weeks treatment with ledipasvir/sofosbuvir in chronic hepatitis C.
Buggisch, Peter; Zeuzem, Stefan
2018-05-11
We thank Ojha and Steyerberg for making a good point. Indeed, defining analyses populations of real-life observational studies as ITT or PP is problematic as this wording may suggest a higher comparability to clinical trials as is adequate. In principle, even refined methods for adjusting confounders and minimizing bias cannot fully resolve the inherent problem of confounders in such trials. In our paper the wording (ITT and PP) was chosen for comparability with similar previous observational studies (e.g. Zeng et al) and a lot of effort was made to make the definitions transparent by illustrating them in a Figure and mentioning them several times in the article. Furthermore, the results were carefully discussed and, overall, highly comparable with those from clinical trials. Therefore, potential overestimation of sustained response rates as illustrated and discussed in the letter by Ojha and Steyerberg seems to be a limited problem in our article about this real world data. Copyright © 2018. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Fraser, T. M.; Pityn, P. J.
This book contains 12 case histories, each based on a real-life problem, that show how a manager can use common sense, knowledge, and interpersonal skills to solve problems in human performance at work. Each case study describes a worker's problem and provides background information and an assignment; solutions are suggested. The following cases…
Why Do They Stay: Factors Influencing Teacher Retention in Rural Zimbabwe
ERIC Educational Resources Information Center
Gomba, Clifford
2015-01-01
The attraction and retention of teachers in Zimbabwe is a problem not only unique to Zimbabwean schools, but all over the world. The problem is more pronounced in rural areas where resources are scarce, hence the tendency to repel teachers. Although the problem of teacher turnover is real, there are teachers who have remained in the profession for…
NASA Technical Reports Server (NTRS)
Parker, Jay W.; Cwik, Tom; Ferraro, Robert D.; Liewer, Paulett C.; Patterson, Jean E.
1991-01-01
The JPL designed MARKIII hypercube supercomputer has been in application service since June 1988 and has had successful application to a broad problem set including electromagnetic scattering, discrete event simulation, plasma transport, matrix algorithms, neural network simulation, image processing, and graphics. Currently, problems that are not homogeneous are being attempted, and, through this involvement with real world applications, the software is evolving to handle the heterogeneous class problems efficiently.
ERIC Educational Resources Information Center
Belland, Brian R.
2011-01-01
Problem solving is an important skill in the knowledge economy. Research indicates that the development of problem solving skills works better in the context of instructional approaches centered on real-world problems. But students need scaffolding to be successful in such instruction. In this paper I present a conceptual framework for…
ERIC Educational Resources Information Center
Burns, Nicholas R.; Lee, Michael D.; Vickers, Douglas
2006-01-01
Studies of human problem solving have traditionally used deterministic tasks that require the execution of a systematic series of steps to reach a rational and optimal solution. Most real-world problems, however, are characterized by uncertainty, the need to consider an enormous number of variables and possible courses of action at each stage in…
Energy consumption optimization of the total-FETI solver by changing the CPU frequency
NASA Astrophysics Data System (ADS)
Horak, David; Riha, Lubomir; Sojka, Radim; Kruzik, Jakub; Beseda, Martin; Cermak, Martin; Schuchart, Joseph
2017-07-01
The energy consumption of supercomputers is one of the critical problems for the upcoming Exascale supercomputing era. The awareness of power and energy consumption is required on both software and hardware side. This paper deals with the energy consumption evaluation of the Finite Element Tearing and Interconnect (FETI) based solvers of linear systems, which is an established method for solving real-world engineering problems. We have evaluated the effect of the CPU frequency on the energy consumption of the FETI solver using a linear elasticity 3D cube synthetic benchmark. In this problem, we have evaluated the effect of frequency tuning on the energy consumption of the essential processing kernels of the FETI method. The paper provides results for two types of frequency tuning: (1) static tuning and (2) dynamic tuning. For static tuning experiments, the frequency is set before execution and kept constant during the runtime. For dynamic tuning, the frequency is changed during the program execution to adapt the system to the actual needs of the application. The paper shows that static tuning brings up 12% energy savings when compared to default CPU settings (the highest clock rate). The dynamic tuning improves this further by up to 3%.
HVS: an image-based approach for constructing virtual environments
NASA Astrophysics Data System (ADS)
Zhang, Maojun; Zhong, Li; Sun, Lifeng; Li, Yunhao
1998-09-01
Virtual Reality Systems can construct virtual environment which provide an interactive walkthrough experience. Traditionally, walkthrough is performed by modeling and rendering 3D computer graphics in real-time. Despite the rapid advance of computer graphics technique, the rendering engine usually places a limit on scene complexity and rendering quality. This paper presents a approach which uses the real-world image or synthesized image to comprise a virtual environment. The real-world image or synthesized image can be recorded by camera, or synthesized by off-line multispectral image processing for Landsat TM (Thematic Mapper) Imagery and SPOT HRV imagery. They are digitally warped on-the-fly to simulate walking forward/backward, to left/right and 360-degree watching around. We have developed a system HVS (Hyper Video System) based on these principles. HVS improves upon QuickTime VR and Surround Video in the walking forward/backward.
Preschoolers' Quarantining of Fantasy Stories
ERIC Educational Resources Information Center
Richert, Rebekah A.; Smith, Erin I.
2011-01-01
Preschool-aged children are exposed to fantasy stories with the expectation that they will learn messages in those stories that are applied to real-world situations. We examined children's transfer from fantastical and real stories. Over the course of 2 studies, 3 1/2- to 5 1/2-year-old children were less likely to transfer problem solutions from…
Collaborative Invention in Computer Prototype Design: Negotiating Group Processes and Artifacts.
ERIC Educational Resources Information Center
Werner, Mark
A study looked at four groups of mostly senior graphic and industrial design students in their final semester capstone course--a collaborative studio project intended to give them the opportunity to apply their design expertise to real-world problems for real clients. The study examined the ways in which one of these groups used arguments to…
University Facilities as Real-World Foci of Multidisciplinary Science Learning
ERIC Educational Resources Information Center
Wojdak, Jeremy; Guinan, Judy; Wirgau, Joseph; Kugler, Charles; Hammond, Georgia; Small, Christine; Manyara, Charles; Singer, Frederick; Watts, Chester; Bodo, Bethany; Baldwin, Andrew
2010-01-01
The authors sought to better approximate the practice of "real" science in our classrooms by having students study a newly built storm-water remediation wetland on campus. The wetland was meant to gather and clean storm water running off of student parking lots--thus students had ownership in the problem and potential solution. Participating…
Using Student Agencies to Produce Mini-Campaigns in the Principles of Advertising Course.
ERIC Educational Resources Information Center
Lynn, Jerry R.; Gagnard, Alice L.
The use of mini-campaign projects in an introductory course in advertising can (1) provide students with actual experience in dealing with real advertising problems; (2) bring classroom lectures and laboratory assignments into a "real-world" perspective; (3) give students a broader perspective of advertising; (4) bring students into contact with…
Learning and Teaching Mathematics through Real Life Models
ERIC Educational Resources Information Center
Takaci, Djurdjica; Budinski, Natalija
2011-01-01
This paper proposes modelling based learning as a tool for learning and teaching mathematics in high school. We report on an example of modelling real world problems in two high schools in Serbia where students were introduced for the first time to the basic concepts of modelling. Student use of computers and educational software, GeoGebra, was…
Experiencing production ramp-up education for engineers
NASA Astrophysics Data System (ADS)
Bassetto, S.; Fiegenwald, V.; Cholez, C.; Mangione, F.
2011-08-01
This paper presents a game of industrialisation, based on a paper airplane, that mimics real world production ramp-up and blends classical engineering courses together. It is based on a low cost product so that it can be mass produced. The game targets graduate students and practitioners in engineering fields. For students, it offers an experiment in which methods learned in separate courses can be applied. For practitioners, it affords an opportunity to engage in reflexive practices related to industrialisation. Both students and practitioners are able to experience integrated management, required by industrialisation, in a controlled environment: the laboratory.
Career and Technology Center Guides Students in Real-Life Careers | Poster
By Carolynne Keenan, Contributing Writer Frederick County Public School students have a unique opportunity—a chance to get a real-world, hands-on experience in biomedical science and biotechnology before they even graduate from high school, thanks to the Frederick County Career and Technology Center (CTC). Several years ago, the CTC established its biomedical sciences program with a curriculum from Project Lead the Way (PLTW), a nonprofit, nationwide developer of science, technology, engineering, and mathematics (STEM) education in elementary, middle, and high schools.
The Young Engineers and Scientists (YES) mentorship program
NASA Astrophysics Data System (ADS)
Boice, D. C.; Clarac, T.
The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 11 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors.
The Young Engineers and Scientists Mentorship Program
NASA Astrophysics Data System (ADS)
Boice, D. C.; Lin, C.; Clarac, T.
2004-12-01
The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA). It provides talented high school juniors and seniors a bridge between classroom instruction and real-world, research experiences in physical sciences (including space science and astronomy) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past 12 years. All YES graduates have entered college, several have worked for SwRI, and three scientific publications have resulted. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. We acknowledge funding from local charitable foundations and the NASA E/PO program.
3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells.
Kucukgul, Can; Ozler, S Burce; Inci, Ilyas; Karakas, Ezgi; Irmak, Ster; Gozuacik, Devrim; Taralp, Alpay; Koc, Bahattin
2015-04-01
Cardiovascular diseases are the leading cause of deaths throughout the world. Vascular diseases are mostly treated with autografts and blood vessel transplantations. However, traditional grafting methods have several problems including lack of suitable harvest sites, additional surgical costs for harvesting procedure, pain, infection, lack of donors, and even no substitutes at all. Recently, tissue engineering and regenerative medicine approaches are used to regenerate damaged or diseased tissues. Most of the tissue engineering investigations have been based on the cell seeding into scaffolds by providing a suitable environment for cell attachment, proliferation, and differentiation. Because of the challenges such as difficulties in seeding cells spatially, rejection, and inflammation of biomaterials used, the recent tissue engineering studies focus on scaffold-free techniques. In this paper, the development of novel computer aided algorithms and methods are developed for 3D bioprinting of scaffold-free biomimetic macrovascular structures. Computer model mimicking a real human aorta is generated using imaging techniques and the proposed computational algorithms. An optimized three-dimensional bioprinting path planning are developed with the proposed self-supported model. Mouse embryonic fibroblast (MEF) cell aggregates and support structures (hydrogels) are 3D bioprinted layer-by-layer according to the proposed self-supported method to form an aortic tissue construct. © 2014 Wiley Periodicals, Inc.
Numerical solution of system of boundary value problems using B-spline with free parameter
NASA Astrophysics Data System (ADS)
Gupta, Yogesh
2017-01-01
This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.
ERIC Educational Resources Information Center
Strogatz, Steven
2009-01-01
Many academics like to isolate a piece of the world to study: an important social issue, a central philosophical problem, a key moment in history. They know they're oversimplifying but they do it anyway--it's the only way to make progress, and what's more, their little worlds are often more beautiful than the real one. This paper shares a story of…
Probability & Statistics: Modular Learning Exercises. Teacher Edition
ERIC Educational Resources Information Center
Actuarial Foundation, 2012
2012-01-01
The purpose of these modules is to provide an introduction to the world of probability and statistics to accelerated mathematics students at the high school level. The modules also introduce students to real world math concepts and problems that property and casualty actuaries come across in their work. They are designed to be used by teachers and…
Humanities in the Aftermath: An Interview with Gary Olson
ERIC Educational Resources Information Center
Taylor, Todd
2010-01-01
This article presents an interview with Gary Olson on the changing contexts of the humanities in this modern world. He emphasizes that the humanities are absolutely essential when it comes to the very real-world problems. He explains that what he is saying not just applies to terrorism and economic crisis; the humanities equip everyone to deal…
Triantafyllopoulos, Georgios; Katsaounis, Dimitrios; Karamitros, Dimitrios; Ntziachristos, Leonidas; Samaras, Zissis
2018-03-15
The objective of this study was to test the potential for NO x emissions improvements on a typical Euro 6 diesel vehicle, following modifications to its emissions control system, under Real Drive Emissions (RDE) testing conditions. A commercially available car was selected and was first measured in its original configuration according to RDE on the road and an initial conformity factor (CF) of 5.4 was determined. Subsequent engine calibration and installation of a Selective Catalytic Reduction (SCR) device were conducted and tested on a fully transient engine dyno setup, which precisely reproduced the engine operation under the on-road RDE test. The NO x reduction achieved with those upgrades was 90%, leading to a CF of 0.53, with no CO 2 or fuel consumption penalty. These findings demonstrate that diesel vehicles can reach low NO x levels under real world driving conditions, when well-designed modern exhaust aftertreatment components are installed and properly calibrated. Copyright © 2017 Elsevier B.V. All rights reserved.
The positive impacts of Real-World Data on the challenges facing the evolution of biopharma.
Wise, John; Möller, Angeli; Christie, David; Kalra, Dipak; Brodsky, Elia; Georgieva, Evelina; Jones, Greg; Smith, Ian; Greiffenberg, Lars; McCarthy, Marie; Arend, Michael; Luttringer, Olivier; Kloss, Sebastian; Arlington, Steve
2018-04-01
Demand for healthcare services is unprecedented. Society is struggling to afford the cost. Pricing of biopharmaceutical products is under scrutiny, especially by payers and Health Technology Assessment agencies. As we discuss here, rapidly advancing technologies, such as Real-World Data (RWD), are being utilized to increase understanding of disease. RWD, when captured and analyzed, produces the Real-World Evidence (RWE) that underpins the economic case for innovative medicines. Furthermore, RWD can inform the understanding of disease, help identify new therapeutic intervention points, and improve the efficiency of research and development (R&D), especially clinical trials. Pursuing precompetitive collaborations to define shared requirements for the use of RWD would equip service-providers with the specifications needed to implement cloud-based solutions for RWD acquisition, management and analysis. Only this approach would deliver cost-effective solutions to an industry-wide problem. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Charles; Park, Gyuhae; Farinholt, Kevin
2010-12-08
This seminar will provide an overview of structural health monitoring (SHM) research that is being undertaken at Los Alamos National Laboratory (LANL). The seminar will begin by stating that SHM should be viewed as an important component of the more comprehensive intelligent life-cycle engineering process. Then LANL's statistical pattern recognition paradigm for addressing SHM problems will be introduced and current research that is focused on each part of the paradigm will be discussed. In th is paradigm, the process can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction, and (4) Statisticalmore » Model Development for Feature Discrimination. When one attempts to apply this paradigm to data from real world structures, it quickly becomes apparent that the ability to cleanse, compress, normalize and fuse data to account for operational and environmental variability is a key implementation issue when addressing Parts 2-4 of this paradigm. This discussion will be followed by the introduction a new project entitled 'Intelligent Wind Turbines' which is the focus of much of our current SHM research . This summary will be followed by a discussion of issues that must be addressed if this technology is to make the transition from research to practice and new research directions that are emerging for SHM.« less
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Mohammed, Ahmed Ali; Kadiam, Subhash
2010-01-01
Solving large (and sparse) system of simultaneous linear equations has been (and continues to be) a major challenging problem for many real-world engineering/science applications [1-2]. For many practical/large-scale problems, the sparse, Symmetrical and Positive Definite (SPD) system of linear equations can be conveniently represented in matrix notation as [A] {x} = {b} , where the square coefficient matrix [A] and the Right-Hand-Side (RHS) vector {b} are known. The unknown solution vector {x} can be efficiently solved by the following step-by-step procedures [1-2]: Reordering phase, Matrix Factorization phase, Forward solution phase, and Backward solution phase. In this research work, a Game-Based Learning (GBL) approach has been developed to help engineering students to understand crucial details about matrix reordering and factorization phases. A "chess-like" game has been developed and can be played by either a single player, or two players. Through this "chess-like" open-ended game, the players/learners will not only understand the key concepts involved in reordering algorithms (based on existing algorithms), but also have the opportunities to "discover new algorithms" which are better than existing algorithms. Implementing the proposed "chess-like" game for matrix reordering and factorization phases can be enhanced by FLASH [3] computer environments, where computer simulation with animated human voice, sound effects, visual/graphical/colorful displays of matrix tables, score (or monetary) awards for the best game players, etc. can all be exploited. Preliminary demonstrations of the developed GBL approach can be viewed by anyone who has access to the internet web-site [4]!
NASA Astrophysics Data System (ADS)
Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.
2017-03-01
Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.
Concurrent engineering design and management knowledge capture
NASA Technical Reports Server (NTRS)
1990-01-01
The topics are presented in viewgraph form and include the following: real-time management, personnel management, project management, conceptual design and decision making; the SITRF design problem; and the electronic-design notebook.
Impact on Learning Awards, 2001.
ERIC Educational Resources Information Center
School Planning & Management, 2001
2001-01-01
Recognizes 14 architectural firms for their innovative designs, which helped solve real-world problems in K-12 school facilities. Designs for retrofits, safety and security, and specialized learning environments are profiled and critiqued. (GR)
NASA Astrophysics Data System (ADS)
Kamaludin, M.; Munawar, W.; Mahdan, D.; Simanjuntak, M. V.; Wendi, H. F.
2018-02-01
The learning system is not only studied on campus but also practicing in the world of work. Industry Practical aims to enable students to develop their skills in accordance with the real world of work. To know the success of the implementation of industry practical program then held evaluation. The evaluation of the program in this study used the CIPP evaluation approach (Context, Input, Process, Product). The purpose of this research is to know the extent of achievement and success of industry practical program at vocational school in Bandung with descriptive research method using mix method approach. The sample in this research is students majoring in mechanical engineering in the city of Bandung who have done industry practical.
Beyond rules: The next generation of expert systems
NASA Technical Reports Server (NTRS)
Ferguson, Jay C.; Wagner, Robert E.
1987-01-01
The PARAGON Representation, Management, and Manipulation system is introduced. The concepts of knowledge representation, knowledge management, and knowledge manipulation are combined in a comprehensive system for solving real world problems requiring high levels of expertise in a real time environment. In most applications the complexity of the problem and the representation used to describe the domain knowledge tend to obscure the information from which solutions are derived. This inhibits the acquisition of domain knowledge verification/validation, places severe constraints on the ability to extend and maintain a knowledge base while making generic problem solving strategies difficult to develop. A unique hybrid system was developed to overcome these traditional limitations.
NASA Astrophysics Data System (ADS)
2001-03-01
Virtual reality - whose reality? There is an old joke about a farmer who wanted to improve his milk yields and employed an engineer, a psychologist and a physicist to make suggestions. They all went away for a month and came back with their proposals. The engineer had measured the size of the milking stalls, the ambient temperature and the milking process. She suggested a modest rise in ambient temperature and an alteration in the pumping equipment. The psychologist decided to paint the stalls green and play a tape-recording of birdsong to the cows to make them feel more content and release their milk more easily. The physicist explained that he had decided to look at things more fundamentally: 'Let us assume that the cow is a sphere' ... he began. And that's the joke. Some people think that this is the funniest thing out - a physicist can't recognize a cow when they see one. What troubles me is that I didn't get the joke straight away. I am so used to the language and the often-ludicrous assumptions in physics that it did not seem particularly strange or funny. What did you think? The joke, for me, illustrates the essence of our problem in physics teaching. In a very real way, physics is about another world. It isn't about the real world in which ordinary people live, and they know it. Physics has its own language, its own laws and its own values. Depleted uranium has been in the news of late. It is interesting to compare the casual way in which physics teachers have discussed the possibilitiy that one atom of uranium can kill someone with the shock-horror reporting of this fact in the press. We are caricatured, sometimes for good reason, being callous, calculating, cold people - out of touch with the things that really matter. And then there's that other 'real world' - of really tough people who make serious money. Our friends who work out in the worlds of commerce and industry like to mutter, with some superiority, that teachers would never survive in the real world. So here we are, buffered from the 'reality' of commerce by kind managers, left to teach equations at the expense of moral standards ... Excuse me! Physics is the only subject that confronts real reality head on. Physics is all about how this world, this Universe, this reality works. Moral laws, government legislation and theories of economics are all well, and sometimes good, but they take place within this space we call Our Universe. Physics is real This issue of Physics Education contains lots of excellent suggestions for practical work - demonstrations of what happens, and suggestions for investigations. I hope that readers will find them useful and maybe share some good ideas of their own. We are dealing with stuff that actually happens, and that is what makes physics both significant and attractive. The joke I really hate runs 'If it moves it's biology, if it smells it's chemistry and if it doesn't work it's physics'. This is rubbish: gravity always works, in my experience, physics never gets it wrong. In the classroom, maybe a piece of equipment is broken, or the technician forgot the batteries, but we can never say truthfully that 'the experiment didn't work'. Virtual physics Last week a school governor challenged me to justify the cost of so much laboratory space and equipment when, nowadays, so much can be done using computers. Probably the best 'virtual physics' currently available is on CD-ROM. In this issue of Physics Education we have concentrated on CDs for our review section. There is lots of good material out there which can enhance our teaching with wonderful images, immediate feedback for students, and the possibility of continuously monitored differentiated work but, as I explained to the governor, I don't want to teach virtual physics - physics is very firmly, fairly and squarely in this real world (which may, of course, approximate to a sphere ... .). EditorDr Kerry Parker