Fitch, Alistair J; Kadyrov, Alexander; Christmas, William J; Kittler, Josef
2005-08-01
A new, fast, statistically robust, exhaustive, translational image-matching technique is presented: fast robust correlation. Existing methods are either slow or non-robust, or rely on optimization. Fast robust correlation works by expressing a robust matching surface as a series of correlations. Speed is obtained by computing correlations in the frequency domain. Computational cost is analyzed and the method is shown to be fast. Speed is comparable to conventional correlation and, for large images, thousands of times faster than direct robust matching. Three experiments demonstrate the advantage of the technique over standard correlation.
Fast and robust entanglement using Rydberg atoms
NASA Astrophysics Data System (ADS)
Côté, Robin
2001-05-01
In recent years, numerous proposals to build quantum information processors have been suggested. Due to their very long coherence times and the well-developed techniques for cooling and trapping them, neutral atoms are particularly attractive for quantum computing. To design fast quantum gates, one needs to identify strong and controllable two-body interactions. However, large interactions are usually associated with strong mechanical forces on the trapped atoms: their internal states (the qubits) may become entangled with their motional degrees of freedom, leading to rapid decoherence. A new system for implementing quantum logic gates based on ultracold Rydberg atoms is presented. Atoms in excited Rydberg states have long lifetimes and enormous dipole moments. When excited in a constant electric field, their controllable strong dipole-dipole interactions provide the large interaction energy required to perform fast gate operations. The mechanical effects can also be greatly suppressed by using the ``dipole blockade" resulting from the strong dipole-dipole interactions. The gate becomes insensitive to the temperature of the atoms and to the variations in atom-atom separation. Hence, a fast and robust two-qubit quantum gate with operation time much faster than the time scale of the atomic motion is possible(D. Jaksch et al.) Phys. Rev. Lett. 85, 2208 (2000).. The generalization to collective states of mesoscopic ensembles can be accomplished using the same dipole blockade(M.D. Lukin et al.), quant-phy/0011028..
A Fast and Robust Text Spotter
Qin, Siyang; Manduchi, Roberto
2016-01-01
We introduce an algorithm for text detection and localization (“spotting”) that is computationally efficient and produces state-of-the-art results. Our system uses multi-channel MSERs to detect a large number of promising regions, then subsamples these regions using a clustering approach. Representatives of region clusters are binarized and then passed on to a deep network. A final line grouping stage forms word-level segments. On the ICDAR 2011 and 2015 benchmarks, our algorithm obtains an F-score of 82% and 83%, respectively, at a computational cost of 1.2 seconds per frame. We also introduce a version that is three times as fast, with only a slight reduction in performance.
A Fast and Robust Text Spotter
Qin, Siyang; Manduchi, Roberto
2016-01-01
We introduce an algorithm for text detection and localization (“spotting”) that is computationally efficient and produces state-of-the-art results. Our system uses multi-channel MSERs to detect a large number of promising regions, then subsamples these regions using a clustering approach. Representatives of region clusters are binarized and then passed on to a deep network. A final line grouping stage forms word-level segments. On the ICDAR 2011 and 2015 benchmarks, our algorithm obtains an F-score of 82% and 83%, respectively, at a computational cost of 1.2 seconds per frame. We also introduce a version that is three times as fast, with only a slight reduction in performance. PMID:27616942
Fast and robust quantum computation with ionic Wigner crystals
Baltrusch, J. D.; Negretti, A.; Taylor, J. M.; Calarco, T.
2011-04-15
We present a detailed analysis of the modulated-carrier quantum phase gate implemented with Wigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze the situation in which the cyclotron ({omega}{sub c}) and the crystal rotation ({omega}{sub r}) frequencies do not fulfill the condition {omega}{sub c}=2{omega}{sub r}. It is shown that even in the presence of the magnetic field in the rotating frame the many-body (classical) Hamiltonian describing small oscillations from the ion equilibrium positions can be recast in canonical form. As a consequence, we are able to demonstrate that fast and robust two-qubit gates are achievable within the current experimental limitations. Moreover, we describe a realization of the state-dependent sign-changing dipole forces needed to realize the investigated quantum computing scheme.
Reasoning with Vectors: A Continuous Model for Fast Robust Inference
Widdows, Dominic; Cohen, Trevor
2015-01-01
This paper describes the use of continuous vector space models for reasoning with a formal knowledge base. The practical significance of these models is that they support fast, approximate but robust inference and hypothesis generation, which is complementary to the slow, exact, but sometimes brittle behavior of more traditional deduction engines such as theorem provers. The paper explains the way logical connectives can be used in semantic vector models, and summarizes the development of Predication-based Semantic Indexing, which involves the use of Vector Symbolic Architectures to represent the concepts and relationships from a knowledge base of subject-predicate-object triples. Experiments show that the use of continuous models for formal reasoning is not only possible, but already demonstrably effective for some recognized informatics tasks, and showing promise in other traditional problem areas. Examples described in this paper include: predicting new uses for existing drugs in biomedical informatics; removing unwanted meanings from search results in information retrieval and concept navigation; type-inference from attributes; comparing words based on their orthography; and representing tabular data, including modelling numerical values. The algorithms and techniques described in this paper are all publicly released and freely available in the Semantic Vectors open-source software package.1 PMID:26582967
Fast and robust recognition and localization of 2D objects
NASA Astrophysics Data System (ADS)
Otterbach, Rainer; Gerdes, Rolf; Kammueller, R.
1994-11-01
The paper presents a vision system which provides a robust model-based identification and localization of 2-D objects in industrial scenes. A symbolic image description based on the polygonal approximation of the object silhouettes is extracted in video real time by the use of dedicated hardware. Candidate objects are selected from the model database using a time and memory efficient hashing algorithm. Any candidate object is submitted to the next computation stage which generates pose hypotheses by assigning model to image contours. Corresponding continuous measures of similarity are derived from the turning functions of the curves. Finally, the previous generated hypotheses are verified using a voting scheme in transformation space. Experimental results reveal the fault tolerance of the vision system with regard to noisy and split image contours as well as partial occlusion of objects. THe short cycle time and the easy adaptability of the vision system make it well suited for a wide variety of applications in industrial automation.
Fast, accurate, robust and Open Source Brain Extraction Tool (OSBET)
NASA Astrophysics Data System (ADS)
Namias, R.; Donnelly Kehoe, P.; D'Amato, J. P.; Nagel, J.
2015-12-01
The removal of non-brain regions in neuroimaging is a critical task to perform a favorable preprocessing. The skull-stripping depends on different factors including the noise level in the image, the anatomy of the subject being scanned and the acquisition sequence. For these and other reasons, an ideal brain extraction method should be fast, accurate, user friendly, open-source and knowledge based (to allow for the interaction with the algorithm in case the expected outcome is not being obtained), producing stable results and making it possible to automate the process for large datasets. There are already a large number of validated tools to perform this task but none of them meets the desired characteristics. In this paper we introduced an open source brain extraction tool (OSBET), composed of four steps using simple well-known operations such as: optimal thresholding, binary morphology, labeling and geometrical analysis that aims to assemble all the desired features. We present an experiment comparing OSBET with other six state-of-the-art techniques against a publicly available dataset consisting of 40 T1-weighted 3D scans and their corresponding manually segmented images. OSBET gave both: a short duration with an excellent accuracy, getting the best Dice Coefficient metric. Further validation should be performed, for instance, in unhealthy population, to generalize its usage for clinical purposes.
Fast and Robust Segmentation and Classification for Change Detection in Urban Point Clouds
NASA Astrophysics Data System (ADS)
Roynard, X.; Deschaud, J.-E.; Goulette, F.
2016-06-01
Change detection is an important issue in city monitoring to analyse street furniture, road works, car parking, etc. For example, parking surveys are needed but are currently a laborious task involving sending operators in the streets to identify the changes in car locations. In this paper, we propose a method that performs a fast and robust segmentation and classification of urban point clouds, that can be used for change detection. We apply this method to detect the cars, as a particular object class, in order to perform parking surveys automatically. A recently proposed method already addresses the need for fast segmentation and classification of urban point clouds, using elevation images. The interest to work on images is that processing is much faster, proven and robust. However there may be a loss of information in complex 3D cases: for example when objects are one above the other, typically a car under a tree or a pedestrian under a balcony. In this paper we propose a method that retain the three-dimensional information while preserving fast computation times and improving segmentation and classification accuracy. It is based on fast region-growing using an octree, for the segmentation, and specific descriptors with Random-Forest for the classification. Experiments have been performed on large urban point clouds acquired by Mobile Laser Scanning. They show that the method is as fast as the state of the art, and that it gives more robust results in the complex 3D cases.
R-FUSE: Robust Fast Fusion of Multiband Images Based on Solving a Sylvester Equation
NASA Astrophysics Data System (ADS)
Wei, Qi; Dobigeon, Nicolas; Tourneret, Jean-Yves; Bioucas-Dias, Jose; Godsill, Simon
2016-11-01
This paper proposes a robust fast multi-band image fusion method to merge a high-spatial low-spectral resolution image and a low-spatial high-spectral resolution image. Following the method recently developed in [1], the generalized Sylvester matrix equation associated with the multi-band image fusion problem is solved in a more robust and efficient way by exploiting the Woodbury formula, avoiding any permutation operation in the frequency domain as well as the blurring kernel invertibility assumption required in [1]. Thanks to this improvement, the proposed algorithm requires fewer computational operations and is also more robust with respect to the blurring kernel compared with the one in [1]. The proposed new algorithm is tested with different priors considered in [1]. Our conclusion is that the proposed fusion algorithm is more robust than the one in [1] with a reduced computational cost.
A Fast and Robust Ellipse-Detection Method Based on Sorted Merging
Ren, Guanghui; Zhao, Yaqin; Jiang, Lihui
2014-01-01
A fast and robust ellipse-detection method based on sorted merging is proposed in this paper. This method first represents the edge bitmap approximately with a set of line segments and then gradually merges the line segments into elliptical arcs and ellipses. To achieve high accuracy, a sorted merging strategy is proposed: the merging degrees of line segments/elliptical arcs are estimated, and line segments/elliptical arcs are merged in descending order of the merging degrees, which significantly improves the merging accuracy. During the merging process, multiple properties of ellipses are utilized to filter line segment/elliptical arc pairs, making the method very efficient. In addition, an ellipse-fitting method is proposed that restricts the maximum ratio of the semimajor axis and the semiminor axis, further improving the merging accuracy. Experimental results indicate that the proposed method is robust to outliers, noise, and partial occlusion and is fast enough for real-time applications. PMID:24782661
NASA Technical Reports Server (NTRS)
Ryan, R.
1993-01-01
Robustness is a buzz word common to all newly proposed space systems design as well as many new commercial products. The image that one conjures up when the word appears is a 'Paul Bunyon' (lumberjack design), strong and hearty; healthy with margins in all aspects of the design. In actuality, robustness is much broader in scope than margins, including such factors as simplicity, redundancy, desensitization to parameter variations, control of parameter variations (environments flucation), and operational approaches. These must be traded with concepts, materials, and fabrication approaches against the criteria of performance, cost, and reliability. This includes manufacturing, assembly, processing, checkout, and operations. The design engineer or project chief is faced with finding ways and means to inculcate robustness into an operational design. First, however, be sure he understands the definition and goals of robustness. This paper will deal with these issues as well as the need for the requirement for robustness.
a Fast and Robust Algorithm for Road Edges Extraction from LIDAR Data
NASA Astrophysics Data System (ADS)
Qiu, Kaijin; Sun, Kai; Ding, Kou; Shu, Zhen
2016-06-01
Fast mapping of roads plays an important role in many geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance. How to extract various road edges fast and robustly is a challenging task. In this paper, we present a fast and robust algorithm for the automatic road edges extraction from terrestrial mobile LiDAR data. The algorithm is based on a key observation: most roads around edges have difference in elevation and road edges with pavement are seen in two different planes. In our algorithm, we firstly extract a rough plane based on RANSAC algorithm, and then multiple refined planes which only contains pavement are extracted from the rough plane. The road edges are extracted based on these refined planes. In practice, there is a serious problem that the rough and refined planes usually extracted badly due to rough roads and different density of point cloud. To eliminate the influence of rough roads, the technology which is similar with the difference of DSM (digital surface model) and DTM (digital terrain model) is used, and we also propose a method which adjust the point clouds to a similar density to eliminate the influence of different density. Experiments show the validities of the proposed method with multiple datasets (e.g. urban road, highway, and some rural road). We use the same parameters through the experiments and our algorithm can achieve real-time processing speeds.
Robust and fast shell registration in PET and MR/CT brain images.
Lee, Ho; Lee, Jeongjin; Kim, Namkug; Lyoo, In Kyoon; Shin, Yeong Gil
2009-11-01
A robust and fast hybrid method using a shell volume that consists of high contrast voxels with their neighbors is proposed for registering PET and MR/CT brain images. Whereas conventional hybrid methods find the best matched pairs from several manually selected or automatically extracted local regions, our method automatically selects a shell volume in the PET image, and finds the best matched corresponding volume using normalized mutual information (NMI) in overlapping volumes while transforming the shell volume into an MR or CT image. A shell volume not only can reduce irrelevant corresponding voxels between two images during optimization of transformation parameters, but also brings a more robust registration with less computational cost. Experimental results on clinical data sets showed that our method successfully aligned all PET and MR/CT image pairs without losing any diagnostic information, while the conventional registration methods failed in some cases. PMID:19674741
A robust and fast line segment detector based on top-down smaller eigenvalue analysis
NASA Astrophysics Data System (ADS)
Liu, Dong; Wang, Yongtao; Tang, Zhi; Lu, Xiaoqing
2014-01-01
In this paper, we propose a robust and fast line segment detector, which achieves accurate results with a controlled number of false detections and requires no parameter tuning. It consists of three steps: first, we propose a novel edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input image; second, we propose a top-down scheme based on smaller eigenvalue analysis to extract line segments within each obtained edge segment; third, we employ Desolneux et al.'s method to reject false detections. Experiments demonstrate that it is very efficient and more robust than two state of the art methods—LSD and EDLines.
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.
Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng
2016-01-01
Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters
Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng
2016-01-01
Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046
Fast and robust identification of single bacteria in environmental matrices by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Baritaux, Jean-Charles; Schultz, Emmanuelle; Simon, Anne-Catherine; Bourdat, Anne-Gaelle; Espagnon, Isabelle; Laurent, Patricia; Dinten, Jean-Marc
2015-03-01
We report on our recent results on robust identification of single bacterial cells embedded in various environments using Spontaneous Raman Scattering. Five species of bacteria were considered, two of which (B. Subtilis and E. Coli) were grown under various conditions, or embedded in two real-world matrices. We recorded the Raman spectra of single cells with a confocal instrument developed in our lab, and performed identification at the species level. Our system integrates a Lensfree imaging module that allows fast detection of bacteria over a large Field-Of-View. Identification rates comparable to those obtained on lab cultures were possible using a comprehensive database containing spectra from bacteria in all environments. In addition, B. Subtilis was correctly identified in 95.5% of the cases using a database composed exclusively of spectra obtained in standard conditions. This is very promising for pathogen threat detection where the construction of an exhaustive database may be challenging.
SERF: A Simple, Effective, Robust, and Fast Image Super-Resolver From Cascaded Linear Regression.
Hu, Yanting; Wang, Nannan; Tao, Dacheng; Gao, Xinbo; Li, Xuelong
2016-09-01
Example learning-based image super-resolution techniques estimate a high-resolution image from a low-resolution input image by relying on high- and low-resolution image pairs. An important issue for these techniques is how to model the relationship between high- and low-resolution image patches: most existing complex models either generalize hard to diverse natural images or require a lot of time for model training, while simple models have limited representation capability. In this paper, we propose a simple, effective, robust, and fast (SERF) image super-resolver for image super-resolution. The proposed super-resolver is based on a series of linear least squares functions, namely, cascaded linear regression. It has few parameters to control the model and is thus able to robustly adapt to different image data sets and experimental settings. The linear least square functions lead to closed form solutions and therefore achieve computationally efficient implementations. To effectively decrease these gaps, we group image patches into clusters via k-means algorithm and learn a linear regressor for each cluster at each iteration. The cascaded learning process gradually decreases the gap of high-frequency detail between the estimated high-resolution image patch and the ground truth image patch and simultaneously obtains the linear regression parameters. Experimental results show that the proposed method achieves superior performance with lower time consumption than the state-of-the-art methods.
Robust Blur Kernel Estimation for License Plate Images From Fast Moving Vehicles.
Lu, Qingbo; Zhou, Wengang; Fang, Lu; Li, Houqiang
2016-05-01
As the unique identification of a vehicle, license plate is a key clue to uncover over-speed vehicles or the ones involved in hit-and-run accidents. However, the snapshot of over-speed vehicle captured by surveillance camera is frequently blurred due to fast motion, which is even unrecognizable by human. Those observed plate images are usually in low resolution and suffer severe loss of edge information, which cast great challenge to existing blind deblurring methods. For license plate image blurring caused by fast motion, the blur kernel can be viewed as linear uniform convolution and parametrically modeled with angle and length. In this paper, we propose a novel scheme based on sparse representation to identify the blur kernel. By analyzing the sparse representation coefficients of the recovered image, we determine the angle of the kernel based on the observation that the recovered image has the most sparse representation when the kernel angle corresponds to the genuine motion angle. Then, we estimate the length of the motion kernel with Radon transform in Fourier domain. Our scheme can well handle large motion blur even when the license plate is unrecognizable by human. We evaluate our approach on real-world images and compare with several popular state-of-the-art blind image deblurring algorithms. Experimental results demonstrate the superiority of our proposed approach in terms of effectiveness and robustness.
Bucki, Marek; Lobos, Claudio; Payan, Yohan
2010-06-01
Finite Element mesh generation remains an important issue for patient specific biomechanical modeling. While some techniques make automatic mesh generation possible, in most cases, manual mesh generation is preferred for better control over the sub-domain representation, element type, layout and refinement that it provides. Yet, this option is time consuming and not suited for intraoperative situations where model generation and computation time is critical. To overcome this problem we propose a fast and automatic mesh generation technique based on the elastic registration of a generic mesh to the specific target organ in conjunction with element regularity and quality correction. This Mesh-Match-and-Repair (MMRep) approach combines control over the mesh structure along with fast and robust meshing capabilities, even in situations where only partial organ geometry is available. The technique was successfully tested on a database of 5 pre-operatively acquired complete femora CT scans, 5 femoral heads partially digitized at intraoperative stage, and 50 CT volumes of patients' heads. In the latter case, both skin and bone surfaces were taken into account by the mesh registration process in order to model the face muscles and fat layers. The MMRep algorithm succeeded in all 60 cases, yielding for each patient a hex-dominant, Atlas based, Finite Element mesh with submillimetric surface representation accuracy, directly exploitable within a commercial FE software.
Bosdriesz, Evert; Molenaar, Douwe; Teusink, Bas; Bruggeman, Frank J
2015-05-01
Maximization of growth rate is an important fitness strategy for bacteria. Bacteria can achieve this by expressing proteins at optimal concentrations, such that resources are not wasted. This is exemplified for Escherichia coli by the increase of its ribosomal protein-fraction with growth rate, which precisely matches the increased protein synthesis demand. These findings and others have led to the hypothesis that E. coli aims to maximize its growth rate in environments that support growth. However, what kind of regulatory strategy is required for a robust, optimal adjustment of the ribosome concentration to the prevailing condition is still an open question. In the present study, we analyze the ppGpp-controlled mechanism of ribosome expression used by E. coli and show that this mechanism maintains the ribosomes saturated with its substrates. In this manner, overexpression of the highly abundant ribosomal proteins is prevented, and limited resources can be redirected to the synthesis of other growth-promoting enzymes. It turns out that the kinetic conditions for robust, optimal protein-partitioning, which are required for growth rate maximization across conditions, can be achieved with basic biochemical interactions. We show that inactive ribosomes are the most suitable 'signal' for tracking the intracellular nutritional state and for adjusting gene expression accordingly, as small deviations from optimal ribosome concentration cause a huge fractional change in ribosome inactivity. We expect to find this control logic implemented across fast-growing microbial species because growth rate maximization is a common selective pressure, ribosomes are typically highly abundant and thus costly, and the required control can be implemented by a small, simple network.
A fast, robust algorithm for power line interference cancellation in neural recording
NASA Astrophysics Data System (ADS)
Keshtkaran, Mohammad Reza; Yang, Zhi
2014-04-01
Objective. Power line interference may severely corrupt neural recordings at 50/60 Hz and harmonic frequencies. The interference is usually non-stationary and can vary in frequency, amplitude and phase. To retrieve the gamma-band oscillations at the contaminated frequencies, it is desired to remove the interference without compromising the actual neural signals at the interference frequency bands. In this paper, we present a robust and computationally efficient algorithm for removing power line interference from neural recordings. Approach. The algorithm includes four steps. First, an adaptive notch filter is used to estimate the fundamental frequency of the interference. Subsequently, based on the estimated frequency, harmonics are generated by using discrete-time oscillators, and then the amplitude and phase of each harmonic are estimated by using a modified recursive least squares algorithm. Finally, the estimated interference is subtracted from the recorded data. Main results. The algorithm does not require any reference signal, and can track the frequency, phase and amplitude of each harmonic. When benchmarked with other popular approaches, our algorithm performs better in terms of noise immunity, convergence speed and output signal-to-noise ratio (SNR). While minimally affecting the signal bands of interest, the algorithm consistently yields fast convergence (<100 ms) and substantial interference rejection (output SNR >30 dB) in different conditions of interference strengths (input SNR from -30 to 30 dB), power line frequencies (45-65 Hz) and phase and amplitude drifts. In addition, the algorithm features a straightforward parameter adjustment since the parameters are independent of the input SNR, input signal power and the sampling rate. A hardware prototype was fabricated in a 65 nm CMOS process and tested. Software implementation of the algorithm has been made available for open access at https://github.com/mrezak/removePLI. Significance. The proposed
Fast and robust learning by reinforcement signals: explorations in the insect brain.
Huerta, Ramón; Nowotny, Thomas
2009-08-01
We propose a model for pattern recognition in the insect brain. Departing from a well-known body of knowledge about the insect brain, we investigate which of the potentially present features may be useful to learn input patterns rapidly and in a stable manner. The plasticity underlying pattern recognition is situated in the insect mushroom bodies and requires an error signal to associate the stimulus with a proper response. As a proof of concept, we used our model insect brain to classify the well-known MNIST database of handwritten digits, a popular benchmark for classifiers. We show that the structural organization of the insect brain appears to be suitable for both fast learning of new stimuli and reasonable performance in stationary conditions. Furthermore, it is extremely robust to damage to the brain structures involved in sensory processing. Finally, we suggest that spatiotemporal dynamics can improve the level of confidence in a classification decision. The proposed approach allows testing the effect of hypothesized mechanisms rather than speculating on their benefit for system performance or confidence in its responses.
Fast and Robust Real-Time Estimation of Respiratory Rate from Photoplethysmography.
Kim, Hodam; Kim, Jeong-Youn; Im, Chang-Hwan
2016-01-01
Respiratory rate (RR) is a useful vital sign that can not only provide auxiliary information on physiological changes within the human body, but also indicate early symptoms of various diseases. Recently, methods for the estimation of RR from photoplethysmography (PPG) have attracted increased interest, because PPG can be readily recorded using wearable sensors such as smart watches and smart bands. In the present study, we propose a new method for the fast and robust real-time estimation of RR using an adaptive infinite impulse response (IIR) notch filter, which has not yet been applied to the PPG-based estimation of RR. In our offline simulation study, the performance of the proposed method was compared to that of recently developed RR estimation methods called an adaptive lattice-type RR estimator and a Smart Fusion. The results of the simulation study show that the proposed method could not only estimate RR more quickly and more accurately than the conventional methods, but also is most suitable for online RR monitoring systems, as it does not use any overlapping moving windows that require increased computational costs. In order to demonstrate the practical applicability of the proposed method, an online RR estimation system was implemented. PMID:27649182
Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors
Ponciroli, Roberto; Passerini, Stefano; Vilim, Richard B.
2016-01-01
In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based on the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.
Fast and Robust Real-Time Estimation of Respiratory Rate from Photoplethysmography
Kim, Hodam; Kim, Jeong-Youn; Im, Chang-Hwan
2016-01-01
Respiratory rate (RR) is a useful vital sign that can not only provide auxiliary information on physiological changes within the human body, but also indicate early symptoms of various diseases. Recently, methods for the estimation of RR from photoplethysmography (PPG) have attracted increased interest, because PPG can be readily recorded using wearable sensors such as smart watches and smart bands. In the present study, we propose a new method for the fast and robust real-time estimation of RR using an adaptive infinite impulse response (IIR) notch filter, which has not yet been applied to the PPG-based estimation of RR. In our offline simulation study, the performance of the proposed method was compared to that of recently developed RR estimation methods called an adaptive lattice-type RR estimator and a Smart Fusion. The results of the simulation study show that the proposed method could not only estimate RR more quickly and more accurately than the conventional methods, but also is most suitable for online RR monitoring systems, as it does not use any overlapping moving windows that require increased computational costs. In order to demonstrate the practical applicability of the proposed method, an online RR estimation system was implemented. PMID:27649182
WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method
NASA Astrophysics Data System (ADS)
Crevoisier, David; Voltz, Marc
2013-04-01
To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute
A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.
Boschitsch, Alexander H; Fenley, Marcia O
2011-05-10
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous
Robust and fast abdominal aortic aneurysm centerline detection for rupture risk prediction
NASA Astrophysics Data System (ADS)
Zhang, Hong; Finol, Ender A.
2011-03-01
This work describes a robust and fast semi-automatic approach for Abdominal Aortic Aneurysm (AAA) centerline detection. AAA is a vascular disease accompanied by progressive enlargement of the abdominal aorta, which leads to rupture if left untreated, an event that accounts for the 13th leading cause of death in the U.S. The lumen centerline can be used to provide the initial starting points for thrombus segmentation. Different from other methods, which are mostly based on region growing and suffer from problems of leakage and heavy computational burden, we propose a novel method based on online classification. An online version of the adaboost classifier based on steerable features is applied to AAA MRI data sets with a rectangular box enclosing the lumen in the first slice. The classifier is updated during the tracking process by using the testing result of the previous image as the new training data. Unlike traditional offline versions, the online classifier can adjust parameters automatically when a leakage occurs. With the help of integral images on the computation of haar-like features, the method can achieve nearly real time processing (about 2 seconds per image on a standard workstation). Ten ruptured and ten unruptured AAA data sets were processed and the tortuosity of the 20 centerlines was calculated. The correlation coefficient of the tortuosity was calculated to illustrate the significance of the prediction with the proposed method. The mean relative accuracy is 95.68% with a standard deviation of 0.89% when compared to a manual segmentation procedure. The correlation coefficient is 0.394.
F2DPR: a fast and robust cross-correlation technique for volumetric PIV
NASA Astrophysics Data System (ADS)
Earl, Thomas; Jeon, Young Jin; Lecordier, Bertrand; David, Laurent
2016-08-01
The current state-of-the-art in cross-correlation based time-resolved particle image velocimetry (PIV) techniques are the fluid trajectory correlation, FTC (Lynch and Scarano 2013) and the fluid trajectory evaluation based on an ensemble-averaged cross-correlation, FTEE (Jeon et al 2014a). These techniques compute the velocity vector as a polynomial trajectory Γ in space and time, enabling the extraction of beneficial quantities such as material acceleration whilst significantly increasing the accuracy of the particle displacement prediction achieved by standard two-frame PIV. In the context of time-resolved volumetric PIV, the drawback of trajectory computation is the computational expense of the three-dimensional (3D) cross-correlation, exacerbated by the requirement to perform N - 1 cross-correlations, where N (for typically 5≤slant N≤slant 9 ) is the number of sequential particle volumes, for each velocity field. Therefore, the acceleration of this calculation is highly desirable. This paper re-examines the application of two-dimensional (2D) cross-correlation methods to three-dimensional (3D) datasets by Bilsky et al (2011) and the binning techniques of Discetti and Astarita (2012). A new and robust version of the 2D methods is proposed and described, called fast 2D projection—re-projection (f2dpr). Performance tests based on computational time and accuracy for both two-frame and multi-frame PIV are carried out on synthetically generated data. The cases presented herein include uniaxial uniform linear displacements and shear, and simulated turbulence data. The proposed algorithm is shown to be in the order of 10 times faster than a standard 3D FFT without loss of precision for a wide range of synthetic test cases, while combining with the binning technique can yield 50 times faster computation. The algorithm is also applied to reconstructed synthetic turbulent particle fields to investigate reconstruction noise on its performance and no
A fast-and-robust profiler for improving polymerase chain reaction diagnostics.
Besseris, George J
2014-01-01
Polymerase chain reaction (PCR) is an in vitro technology in molecular genetics that progressively amplifies minimal copies of short DNA sequences in a fast and inexpensive manner. However, PCR performance is sensitive to suboptimal processing conditions. Compromised PCR conditions lead to artifacts and bias that downgrade the discriminatory power and reproducibility of the results. Promising attempts to resolve the PCR performance optimization issue have been guided by quality improvement tactics adopted in the past for industrial trials. Thus, orthogonal arrays (OAs) have been employed to program quick-and-easy structured experiments. Profiling of influences facilitates the quantification of effects that may counteract the detectability of amplified DNA fragments. Nevertheless, the attractive feature of reducing greatly the amount of work and expenditures by planning trials with saturated-unreplicated OA schemes is known to be relinquished in the subsequent analysis phase. This is because of an inherent incompatibility of ordinary multi-factorial comparison techniques to convert small yet dense datasets. Treating unreplicated-saturated data with either the analysis of variance (ANOVA) or regression models destroys the information extraction process. Both of those mentioned approaches are rendered blind to error since the examined effects absorb all available degrees of freedom. Therefore, in lack of approximating an experimental uncertainty, any outcome interpretation is rendered subjective. We propose a profiling method that permits the non-linear maximization of amplicon resolution by eliminating the necessity for direct error estimation. Our approach is distribution-free, calibration-free, simulation-free and sparsity-free with well-known power properties. It is also user-friendly by promoting rudimentary analytics. Testing our method on published amplicon count data, we found that the preponderant effect is the concentration of MgCl2 (p<0.05) followed by the
F2DPR: a fast and robust cross-correlation technique for volumetric PIV
NASA Astrophysics Data System (ADS)
Earl, Thomas; Jeon, Young Jin; Lecordier, Bertrand; David, Laurent
2016-08-01
The current state-of-the-art in cross-correlation based time-resolved particle image velocimetry (PIV) techniques are the fluid trajectory correlation, FTC (Lynch and Scarano 2013) and the fluid trajectory evaluation based on an ensemble-averaged cross-correlation, FTEE (Jeon et al 2014a). These techniques compute the velocity vector as a polynomial trajectory Γ in space and time, enabling the extraction of beneficial quantities such as material acceleration whilst significantly increasing the accuracy of the particle displacement prediction achieved by standard two-frame PIV. In the context of time-resolved volumetric PIV, the drawback of trajectory computation is the computational expense of the three-dimensional (3D) cross-correlation, exacerbated by the requirement to perform N ‑ 1 cross-correlations, where N (for typically 5≤slant N≤slant 9 ) is the number of sequential particle volumes, for each velocity field. Therefore, the acceleration of this calculation is highly desirable. This paper re-examines the application of two-dimensional (2D) cross-correlation methods to three-dimensional (3D) datasets by Bilsky et al (2011) and the binning techniques of Discetti and Astarita (2012). A new and robust version of the 2D methods is proposed and described, called fast 2D projection—re-projection (f2dpr). Performance tests based on computational time and accuracy for both two-frame and multi-frame PIV are carried out on synthetically generated data. The cases presented herein include uniaxial uniform linear displacements and shear, and simulated turbulence data. The proposed algorithm is shown to be in the order of 10 times faster than a standard 3D FFT without loss of precision for a wide range of synthetic test cases, while combining with the binning technique can yield 50 times faster computation. The algorithm is also applied to reconstructed synthetic turbulent particle fields to investigate reconstruction noise on its performance and no
Scatterometry—fast and robust measurements of nano-textured surfaces
NASA Astrophysics Data System (ADS)
Hannibal Madsen, Morten; Hansen, Poul-Erik
2016-06-01
Scatterometry is a fast, precise and low cost way to determine the mean pitch and dimensional parameters of periodic structures with lateral resolution of a few nanometer. It is robust enough for in-line process control and precise and accurate enough for metrology measurements. Furthermore, scatterometry is a non-destructive technique capable of measuring buried structures, for example a grating covered by a thick oxide layer. As scatterometry is a non-imaging technique, mathematical modeling is needed to retrieve structural parameters that describe a surface. In this review, the three main steps of scatterometry are discussed: the data acquisition, the simulation of diffraction efficiencies and the comparison of data and simulations. First, the intensity of the diffracted light is measured with a scatterometer as a function of incoming angle, diffraction angle and/or wavelength. We discuss the evolution of the scatterometers from the earliest angular scatterometers to the new imaging scatterometers. The basic principle of measuring diffraction efficiencies in scatterometry has remained the same since the beginning, but the instrumental improvements have made scatterometry a state-of-the-art solution for fast and accurate measurements of nano-textured surfaces. The improvements include extending the wavelength range from the visible to the extreme ultra-violet range, development of Fourier optics to measure all diffraction orders simultaneously, and an imaging scatterometer to measure area of interests smaller than the spot size. Secondly, computer simulations of the diffraction efficiencies are discussed with emphasis on the rigorous coupled-wave analysis (RCWA) method. RCWA has, since the mid-1990s, been the preferred method for grating simulations due to the speed of the algorithms. In the beginning the RCWA method suffered from a very slow convergence rate, and we discuss the historical improvements to overcome this challenge, e.g. by the introduction of Li
MTC: A Fast and Robust Graph-Based Transductive Learning Method.
Zhang, Yan-Ming; Huang, Kaizhu; Geng, Guang-Gang; Liu, Cheng-Lin
2015-09-01
Despite the great success of graph-based transductive learning methods, most of them have serious problems in scalability and robustness. In this paper, we propose an efficient and robust graph-based transductive classification method, called minimum tree cut (MTC), which is suitable for large-scale data. Motivated from the sparse representation of graph, we approximate a graph by a spanning tree. Exploiting the simple structure, we develop a linear-time algorithm to label the tree such that the cut size of the tree is minimized. This significantly improves graph-based methods, which typically have a polynomial time complexity. Moreover, we theoretically and empirically show that the performance of MTC is robust to the graph construction, overcoming another big problem of traditional graph-based methods. Extensive experiments on public data sets and applications on web-spam detection and interactive image segmentation demonstrate our method's advantages in aspect of accuracy, speed, and robustness.
NASA Astrophysics Data System (ADS)
Morii, Youhi; Terashima, Hiroshi; Koshi, Mitsuo; Shimizu, Taro; Shima, Eiji
2016-10-01
We herein propose a fast and robust Jacobian-free time integration method named as the extended robustness-enhanced numerical algorithm (ERENA) to treat the stiff ordinary differential equations (ODEs) of chemical kinetics. The formulation of ERENA is based on an exact solution of a quasi-steady-state approximation that is optimized to preserve the mass conservation law through use of a Lagrange multiplier method. ERENA exhibits higher accuracy and faster performance in homogeneous ignition simulations compared to existing popular explicit and implicit methods for stiff ODEs such as VODE, MTS, and CHEMEQ2. We investigate the effects of user-specified threshold values in ERENA, to provide trade-off information between the accuracy and the computational cost.
Transitionless-based shortcuts for the fast and robust generation of W states
NASA Astrophysics Data System (ADS)
Chen, Ye-Hong; Huang, Bi-Hua; Song, Jie; Xia, Yan
2016-12-01
We propose a scheme to generate W states based on transitionless-based shortcuts technique in cavity quantum electrodynamics (QED) system. In light of quantum Zeno dynamics, we first effectively design a system whose effective Hamiltonian is equivalent to the counter-diabatic driving Hamiltonian constructed by transitionless quantum driving, then, realize the W states' generation within this framework. For the sake of clearness, we describe two stale schemes for W states' generation via traditional methods: the adiabatic dark-state evolution and the quantum Zeno dynamics. The comparison among these three schemes shows the shortcut scheme is closely related to the other two but better than them. That is, numerical investigation demonstrates that the shortcut scheme is faster than the adiabatic one, and more robust against operational imperfection than the Zeno one. What is more, the present scheme is also robust against decoherence caused by spontaneous emission and photon loss.
Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.
Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang
2016-02-17
New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams.
Ye, Jinzuo; Chi, Chongwei; Xue, Zhenwen; Wu, Ping; An, Yu; Xu, Han; Zhang, Shuang; Tian, Jie
2014-02-01
Fluorescence molecular tomography (FMT), as a promising imaging modality, can three-dimensionally locate the specific tumor position in small animals. However, it remains challenging for effective and robust reconstruction of fluorescent probe distribution in animals. In this paper, we present a novel method based on sparsity adaptive subspace pursuit (SASP) for FMT reconstruction. Some innovative strategies including subspace projection, the bottom-up sparsity adaptive approach, and backtracking technique are associated with the SASP method, which guarantees the accuracy, efficiency, and robustness for FMT reconstruction. Three numerical experiments based on a mouse-mimicking heterogeneous phantom have been performed to validate the feasibility of the SASP method. The results show that the proposed SASP method can achieve satisfactory source localization with a bias less than 1mm; the efficiency of the method is much faster than mainstream reconstruction methods; and this approach is robust even under quite ill-posed condition. Furthermore, we have applied this method to an in vivo mouse model, and the results demonstrate the feasibility of the practical FMT application with the SASP method.
Chiranjeevi, Pojala; Gopalakrishnan, Viswanath; Moogi, Pratibha
2015-09-01
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning-based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, and so on, in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as user stays neutral for majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this paper, we propose a light-weight neutral versus emotion classification engine, which acts as a pre-processer to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at key emotion (KE) points using a statistical texture model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a statistical texture model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves emotion recognition (ER) accuracy and simultaneously reduces computational complexity of the ER system, as validated on multiple databases. PMID:25872210
Development of Chemically and Thermally Robust Lithium Fast Ion Conducting Chalcogenide Glasses
NASA Technical Reports Server (NTRS)
Martin, Steve W.; Hagedorn, Norman (Technical Monitor)
2002-01-01
In this project, a new research thrust into the development of an entirely new class of FIC glasses has begun that may lead to a new set of optimized thin-film lithium ion conducting materials. New chemically robust FIC glasses are being prepared that are expected to exhibit unusually high chemical and electrochemical stability. New thermally robust FIC glasses are being prepared that exhibit softening points in excess of 500 C which will dramatically expand the usable operating temperature range of batteries, fuel-cells, and sensors using such electrolytes. Glasses are being explored in the general compositional series xLi2S+ yGa2S3 + (1-x-y)GeS2. Li2S is added as the source of the conductive lithium ions. GeS2 is the base glass-forming phase and the trivalent sulfides, Ga2S3, is added to increase the "refractoniness" of the glass, that is to significantly increase the softening point of the glass as well as its chemical stability. By optimizing the composition of the glass, new glasses and glass-ceramic FIC materials have been prepared with softening points in excess of 500 C and conductivities above 10(exp -3)/Ohm cm at room temperature. These latter attributes are currently not available in any FIC glasses to date.
Sakama, Makoto; Kanematsu, Nobuyuki; Inaniwa, Taku
2016-08-01
A simple and efficient approach is needed for robustness evaluation and optimization of treatment planning in routine clinical particle therapy. Here we propose a robustness analysis method using dose standard deviation (SD) in possible scenarios such as the robustness indicator and a fast dose warping method, i.e. deformation of dose distributions, taking into account the setup and range errors in carbon-ion therapy. The dose warping method is based on the nominal dose distribution and the water-equivalent path length obtained from planning computed tomography data with a clinically commissioned treatment planning system (TPS). We compared, in a limited number of scenarios at the extreme boundaries of the assumed error, the dose SD distributions obtained by the warping method with those obtained using the TPS dose recalculations. The accuracy of the warping method was examined by the standard-deviation-volume histograms (SDVHs) for varying degrees of setup and range errors for three different tumor sites. Furthermore, the influence of dose fractionation on the combined dose uncertainty, taking into consideration the correlation of setup and range errors between fractions, was evaluated with simple equations using the SDVHs and the mean value of SDs in the defined volume of interest. The results of the proposed method agreed well with those obtained with the dose recalculations in these comparisons, and the effectiveness of dose SD evaluations at the extreme boundaries of given errors was confirmed from the responsivity and DVH analysis of relative SD values for each error. The combined dose uncertainties depended heavily on the number of fractions, assumed errors and tumor sites. The typical computation time of the warping method is approximately 60 times less than that of the full dose calculation method using the TPS. The dose SD distributions and SDVHs with the fractionation effect will be useful indicators for robustness analysis in treatment planning, and the
NASA Astrophysics Data System (ADS)
Sakama, Makoto; Kanematsu, Nobuyuki; Inaniwa, Taku
2016-08-01
A simple and efficient approach is needed for robustness evaluation and optimization of treatment planning in routine clinical particle therapy. Here we propose a robustness analysis method using dose standard deviation (SD) in possible scenarios such as the robustness indicator and a fast dose warping method, i.e. deformation of dose distributions, taking into account the setup and range errors in carbon-ion therapy. The dose warping method is based on the nominal dose distribution and the water-equivalent path length obtained from planning computed tomography data with a clinically commissioned treatment planning system (TPS). We compared, in a limited number of scenarios at the extreme boundaries of the assumed error, the dose SD distributions obtained by the warping method with those obtained using the TPS dose recalculations. The accuracy of the warping method was examined by the standard-deviation-volume histograms (SDVHs) for varying degrees of setup and range errors for three different tumor sites. Furthermore, the influence of dose fractionation on the combined dose uncertainty, taking into consideration the correlation of setup and range errors between fractions, was evaluated with simple equations using the SDVHs and the mean value of SDs in the defined volume of interest. The results of the proposed method agreed well with those obtained with the dose recalculations in these comparisons, and the effectiveness of dose SD evaluations at the extreme boundaries of given errors was confirmed from the responsivity and DVH analysis of relative SD values for each error. The combined dose uncertainties depended heavily on the number of fractions, assumed errors and tumor sites. The typical computation time of the warping method is approximately 60 times less than that of the full dose calculation method using the TPS. The dose SD distributions and SDVHs with the fractionation effect will be useful indicators for robustness analysis in treatment planning, and the
Sakama, Makoto; Kanematsu, Nobuyuki; Inaniwa, Taku
2016-08-01
A simple and efficient approach is needed for robustness evaluation and optimization of treatment planning in routine clinical particle therapy. Here we propose a robustness analysis method using dose standard deviation (SD) in possible scenarios such as the robustness indicator and a fast dose warping method, i.e. deformation of dose distributions, taking into account the setup and range errors in carbon-ion therapy. The dose warping method is based on the nominal dose distribution and the water-equivalent path length obtained from planning computed tomography data with a clinically commissioned treatment planning system (TPS). We compared, in a limited number of scenarios at the extreme boundaries of the assumed error, the dose SD distributions obtained by the warping method with those obtained using the TPS dose recalculations. The accuracy of the warping method was examined by the standard-deviation-volume histograms (SDVHs) for varying degrees of setup and range errors for three different tumor sites. Furthermore, the influence of dose fractionation on the combined dose uncertainty, taking into consideration the correlation of setup and range errors between fractions, was evaluated with simple equations using the SDVHs and the mean value of SDs in the defined volume of interest. The results of the proposed method agreed well with those obtained with the dose recalculations in these comparisons, and the effectiveness of dose SD evaluations at the extreme boundaries of given errors was confirmed from the responsivity and DVH analysis of relative SD values for each error. The combined dose uncertainties depended heavily on the number of fractions, assumed errors and tumor sites. The typical computation time of the warping method is approximately 60 times less than that of the full dose calculation method using the TPS. The dose SD distributions and SDVHs with the fractionation effect will be useful indicators for robustness analysis in treatment planning, and the
Realising social justice in public health law.
Fox, Marie; Thomson, Michael
2013-03-01
Law has played an important, but largely constitutive, role in the development of the public health enterprise. Thus, law has been central to setting up the institutions and offices of public health. The moral agenda has, however, been shaped to a much greater extent by bioethics. While social justice has been placed at the heart of this agenda, we argue that there has been little place within dominant conceptions of social justice for gender equity and women's interests which we see as crucial to a fully realised vision of social justice. We argue that, aside from particular interventions in the field of reproduction, public health practice tends to marginalise women-a claim we support by critically examining strategies to combat the HIV pandemic in sub-Saharan Africa. To counter the marginalisation of women's interests, this article argues that Amartya Sen's capabilities approach has much to contribute to the framing of public health law and policy. Sen's approach provides an evaluative and normative framework which recognises the importance of both gender and health equity to achieving social justice. We suggest that domestic law and international human rights provisions, in particular the emerging human right to health, offer mechanisms to promote capabilities, and foster a robust and inclusive conception of social justice.
A fast, simple and robust protocol for growing crystals in the lipidic cubic phase.
Aherne, Margaret; Lyons, Joseph A; Caffrey, Martin
2012-12-01
A simple and inexpensive protocol for producing crystals in the sticky and viscous mesophase used for membrane protein crystallization by the in meso method is described. It provides crystals that appear within 15-30 min of setup at 293 K. The protocol gives the experimenter a convenient way of gaining familiarity and a level of comfort with the lipidic cubic mesophase, which can be daunting as a material when first encountered. Having used the protocol to produce crystals of the test protein, lysozyme, the experimenter can proceed with confidence to apply the method to more valuable membrane (and soluble) protein targets. The glass sandwich plates prepared using this robust protocol can further be used to practice harvesting and snap-cooling of in meso-grown crystals, to explore diffraction data collection with mesophase-embedded crystals, and for an assortment of quality control and calibration applications when used in combination with a crystallization robot.
Robust and fast pedestrian detection method for far-infrared automotive driving assistance systems
NASA Astrophysics Data System (ADS)
Liu, Qiong; Zhuang, Jiajun; Ma, Jun
2013-09-01
Despite considerable effort has been contributed to night-time pedestrian detection for automotive driving assistance systems recent years, robust and real-time pedestrian detection is by no means a trivial task and is still underway due to the moving cameras, uncontrolled outdoor environments, wide range of possible pedestrian presentations and the stringent performance criteria for automotive applications. This paper presents an alternative night-time pedestrian detection method using monocular far-infrared (FIR) camera, which includes two modules (regions of interest (ROIs) generation and pedestrian recognition) in a cascade fashion. Pixel-gradient oriented vertical projection is first proposed to estimate the vertical image stripes that might contain pedestrians, and then local thresholding image segmentation is adopted to generate ROIs more accurately within the estimated vertical stripes. A novel descriptor called PEWHOG (pyramid entropy weighted histograms of oriented gradients) is proposed to represent FIR pedestrians in recognition module. Specifically, PEWHOG is used to capture both the local object shape described by the entropy weighted distribution of oriented gradient histograms and its pyramid spatial layout. Then PEWHOG is fed to a three-branch structured classifier using support vector machines (SVM) with histogram intersection kernel (HIK). An off-line training procedure combining both the bootstrapping and early-stopping strategy is introduced to generate a more robust classifier by exploiting hard negative samples iteratively. Finally, multi-frame validation is utilized to suppress some transient false positives. Experimental results on FIR video sequences from various scenarios demonstrate that the presented method is effective and promising.
Mokhtar, Hatem I; Abdel-Salam, Randa A; Haddad, Ghada M
2015-06-19
Robustness of RP-HPLC methods is a crucial method quality attribute which has gained an increasing interest throughout the efforts to apply quality by design concepts in analytical methodology. Improvement to design space modeling approaches to represent method robustness was the goal of many previous works. Modeling of design spaces regarding to method robustness fulfils quality by design essence of ensuring method validity throughout the design space. The current work aimed to describe an improvement to robustness modeling of design spaces in context of RP-HPLC method development for screening of eight antidiabetic drugs. The described improvement consisted of in-silico simulation of practical robustness testing procedures thus had the advantage of modeling design spaces with higher confidence in estimated of method robustness. The proposed in-silico robustness test was performed as a full factorial design of simulated method conditions deliberate shifts for each predicted point in knowledge space with modeling error propagation. Design space was then calculated as zones exceeding a threshold probability to pass the simulated robustness testing. Potential design spaces were mapped for three different stationary phases as a function of gradient elution parameters, pH and ternary solvent ratio. A robust and fast separation for the eight compounds within less than 6 min was selected and confirmed through experimental robustness testing. The effectiveness of this approach regarding definition of design spaces with ensured robustness and desired objectives was demonstrated.
A fast and Robust Algorithm for general inequality/equality constrained minimum time problems
Briessen, B.; Sadegh, N.
1995-12-01
This paper presents a new algorithm for solving general inequality/equality constrained minimum time problems. The algorithm`s solution time is linear in the number of Runge-Kutta steps and the number of parameters used to discretize the control input history. The method is being applied to a three link redundant robotic arm with torque bounds, joint angle bounds, and a specified tip path. It solves case after case within a graphical user interface in which the user chooses the initial joint angles and the tip path with a mouse. Solve times are from 30 to 120 seconds on a Hewlett Packard workstation. A zero torque history is always used in the initial guess, and the algorithm has never crashed, indicating its robustness. The algorithm solves for a feasible solution for large trajectory execution time t{sub f} and then reduces t{sub f} and then reduces t{sub f} by a small amount and re-solves. The fixed time re- solve uses a new method of finding a near-minimum-2-norm solution to a set of linear equations and inequalities that achieves quadratic convegence to a feasible solution of the full nonlinear problem.
Hypothesis testing at the extremes: fast and robust association for high-throughput data.
Zhou, Yi-Hui; Wright, Fred A
2015-07-01
A number of biomedical problems require performing many hypothesis tests, with an attendant need to apply stringent thresholds. Often the data take the form of a series of predictor vectors, each of which must be compared with a single response vector, perhaps with nuisance covariates. Parametric tests of association are often used, but can result in inaccurate type I error at the extreme thresholds, even for large sample sizes. Furthermore, standard two-sided testing can reduce power compared with the doubled [Formula: see text]-value, due to asymmetry in the null distribution. Exact (permutation) testing is attractive, but can be computationally intensive and cumbersome. We present an approximation to exact association tests of trend that is accurate and fast enough for standard use in high-throughput settings, and can easily provide standard two-sided or doubled [Formula: see text]-values. The approach is shown to be equivalent under permutation to likelihood ratio tests for the most commonly used generalized linear models (GLMs). For linear regression, covariates are handled by working with covariate-residualized responses and predictors. For GLMs, stratified covariates can be handled in a manner similar to exact conditional testing. Simulations and examples illustrate the wide applicability of the approach. The accompanying mcc package is available on CRAN http://cran.r-project.org/web/packages/mcc/index.html.
X-PROP: a fast and robust diffusion-weighted propeller technique.
Li, Zhiqiang; Pipe, James G; Lee, Chu-Yu; Debbins, Josef P; Karis, John P; Huo, Donglai
2011-08-01
Diffusion-weighted imaging (DWI) has shown great benefits in clinical MR exams. However, current DWI techniques have shortcomings of sensitivity to distortion or long scan times or combinations of the two. Diffusion-weighted echo-planar imaging (EPI) is fast but suffers from severe geometric distortion. Periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted imaging (PROPELLER DWI) is free of geometric distortion, but the scan time is usually long and imposes high Specific Absorption Rate (SAR) especially at high fields. TurboPROP was proposed to accelerate the scan by combining signal from gradient echoes, but the off-resonance artifacts from gradient echoes can still degrade the image quality. In this study, a new method called X-PROP is presented. Similar to TurboPROP, it uses gradient echoes to reduce the scan time. By separating the gradient and spin echoes into individual blades and removing the off-resonance phase, the off-resonance artifacts in X-PROP are minimized. Special reconstruction processes are applied on these blades to correct for the motion artifacts. In vivo results show its advantages over EPI, PROPELLER DWI, and TurboPROP techniques.
NASA Astrophysics Data System (ADS)
Şerban, A.
2016-08-01
The layup optimization of the laminated composites is a very complex topic which involves a convoluted solution space usually explored using heuristic computational techniques. Due to the solution space complexity a lot of layup configurations are evaluated during the optimization process. This fact leads to the mandatory requirement that the configuration evaluation should be fast enough to ensure the convergence of the optimization procedure without sacrificing the accuracy. In this work, we propose a robust, accurate and very fast finite element model based on the first-order shear deformation theory (FSDT). The model is structured in three main parts: preprocessing, processing and post processing. The main strategy is to transfer as much as possible operations in the preprocessing phase which is executed only once and to subsequently reuse the results in the processing and post processing phases which are executed for each layup configuration. Using this strategy, the execution time of the processing and post processing phases is drastically reduced and almost consists of regenerating and solving the global linear system - more that 95%. The proposed procedure is relatively easy to implement in Matlab which holds a very powerful linear system solver for sparse matrices. Also, the accuracy of the model was demonstrated by comparison with Ansys and with some closed form solutions.
Hypothesis testing at the extremes: fast and robust association for high-throughput data
Zhou, Yi-Hui; Wright, Fred A.
2015-01-01
A number of biomedical problems require performing many hypothesis tests, with an attendant need to apply stringent thresholds. Often the data take the form of a series of predictor vectors, each of which must be compared with a single response vector, perhaps with nuisance covariates. Parametric tests of association are often used, but can result in inaccurate type I error at the extreme thresholds, even for large sample sizes. Furthermore, standard two-sided testing can reduce power compared with the doubled \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$\\end{document}-value, due to asymmetry in the null distribution. Exact (permutation) testing is attractive, but can be computationally intensive and cumbersome. We present an approximation to exact association tests of trend that is accurate and fast enough for standard use in high-throughput settings, and can easily provide standard two-sided or doubled \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$\\end{document}-values. The approach is shown to be equivalent under permutation to likelihood ratio tests for the most commonly used generalized linear models (GLMs). For linear regression, covariates are handled by working with covariate-residualized responses and predictors. For GLMs, stratified covariates can be handled in a manner similar to exact conditional testing. Simulations and examples illustrate the wide applicability of the approach. The accompanying mcc package is available on CRAN http://cran.r-project.org/web/packages/mcc/index.html. PMID:25792622
Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors
Knight, Travis W
2010-01-31
The focus of this effort was on the development of an advanced fuel for gas-cooled fast reactor (GFR) applications. This composite design is based on carbide fuel kernels dispersed in a ZrC matrix. The choice of ZrC is based on its high temperature properties and good thermal conductivity and improved retention of fission products to temperatures beyond that of traditional SiC based coated particle fuels. A key component of this study was the development and understanding of advanced fabrication techniques for GFR fuels that have potential to reduce minor actinide (MA) losses during fabrication owing to their higher vapor pressures and greater volatility. The major accomplishments of this work were the study of combustion synthesis methods for fabrication of the ZrC matrix, fabrication of high density UC electrodes for use in the rotating electrode process, production of UC particles by rotating electrode method, integration of UC kernels in the ZrC matrix, and the full characterization of each component. Major accomplishments in the near-term have been the greater characterization of the UC kernels produced by the rotating electrode method and their condition following the integration in the composite (ZrC matrix) following the short time but high temperature combustion synthesis process. This work has generated four journal publications, one conference proceeding paper, and one additional journal paper submitted for publication (under review). The greater significance of the work can be understood in that it achieved an objective of the DOE Generation IV (GenIV) roadmap for GFR Fuel—namely the demonstration of a composite carbide fuel with 30% volume fuel. This near-term accomplishment is even more significant given the expected or possible time frame for implementation of the GFR in the years 2030 -2050 or beyond.
A fast and robust method to clone and functionally validate T-cell receptors.
Birkholz, Katrin; Hofmann, Christian; Hoyer, Stefanie; Schulz, Birgit; Harrer, Thomas; Kämpgen, Eckhart; Schuler, Gerold; Dörrie, Jan; Schaft, Niels
2009-07-31
Sequencing, cloning and functional testing of T-cell-receptor (TCR) alpha- and beta-chains from T-cell clones is often required in immunotherapy and in immunological research. However, the determination of the TCR chains by a simple PCR is not possible, since, in contrast to the 3' constant domain and untranslated region (UTR), no conserved sequences are present in the 5' region. Furthermore, subsequent functional testing of cloned TCRs requires laborious cell culture experiments, often involving primary human material and time-consuming viral transduction strategies. Here we present a universal PCR-based protocol, adapted from the capswitch technology, that allows for amplification of the TCR alpha- and beta-chain mRNAs without knowledge of the TCR variable domain subtype by attaching a designed sequence to the mRNA's 5' end. Two different MelanA/HLA-A2-specific and one HIVgag/HLA-A2-specific TCR were cloned that way, and were functionally tested by a newly developed easy, fast, and low-cost method: we electroporated Jurkat T cells simultaneously with TCR-encoding RNA and an NFAT-reporter construct, and measured the activation status of the cells upon specific stimulation. The results of this assay correlated with the cytokine release, functional avidity, proliferative activity, and the ability to recognize MelanA/HLA-A2-presenting tumor cells of bulk T cells electroporated with RNA encoding the same TCR. Together these two protocols represent a rapid and low-cost tool for the identification and functional testing of TCRs of T-cell clones, which can then be applied in immunotherapy or immunological research. PMID:19427315
The ITS-90 realisation. A survey
Crovini, L.; Steur, P.P.M.
1994-12-31
The present state of the realisation of the International Temperature scale of 1990 is illustrated using the results of a recent inquiry conducted by the Consultative Committee for Thermometry of the CIPM among a sample group of metrology laboratories.
Hagberg, Emma E; Krarup, Anders; Fahnøe, Ulrik; Larsen, Lars E; Dam-Tuxen, Rebekka; Pedersen, Anders G
2016-08-01
Aleutian Mink Disease Virus (AMDV) is a frequently encountered pathogen associated with commercial mink breeding. AMDV infection leads to increased mortality and compromised animal health and welfare. Currently little is known about the molecular evolution of the virus, and the few existing studies have focused on limited regions of the viral genome. This paper describes a robust, reliable, and fast protocol for amplification of the full AMDV genome using long-range PCR. The method was used to generate next generation sequencing data for the non-virulent cell-culture adapted AMDV-G strain as well as for the virulent AMDV-Utah strain. Comparisons at nucleotide- and amino acid level showed that, in agreement with existing literature, the highest variability between the two virus strains was found in the left open reading frame, which encodes the non-structural (NS1-3) genes. This paper also reports a number of differences that potentially can be linked to virulence and host range. To the authors' knowledge, this is the first study to apply next generation sequencing on the entire AMDV genome. The results from the study will facilitate the development of new diagnostic tools and can form the basis for more detailed molecular epidemiological analyses of the virus. PMID:27060623
Jaafar, Haryati; Ibrahim, Salwani; Ramli, Dzati Athiar
2015-01-01
Mobile implementation is a current trend in biometric design. This paper proposes a new approach to palm print recognition, in which smart phones are used to capture palm print images at a distance. A touchless system was developed because of public demand for privacy and sanitation. Robust hand tracking, image enhancement, and fast computation processing algorithms are required for effective touchless and mobile-based recognition. In this project, hand tracking and the region of interest (ROI) extraction method were discussed. A sliding neighborhood operation with local histogram equalization, followed by a local adaptive thresholding or LHEAT approach, was proposed in the image enhancement stage to manage low-quality palm print images. To accelerate the recognition process, a new classifier, improved fuzzy-based k nearest centroid neighbor (IFkNCN), was implemented. By removing outliers and reducing the amount of training data, this classifier exhibited faster computation. Our experimental results demonstrate that a touchless palm print system using LHEAT and IFkNCN achieves a promising recognition rate of 98.64%. PMID:26113861
Towards Self-Realisation: Exploring the Ecological Self for Education
ERIC Educational Resources Information Center
Wang, Chia-Ling
2016-01-01
This study examines the concepts of self-realisation and the ecological self in Arne Naess's ecosophy, which considers the manner in which human inherent potentialities are realised in educational practices. This article first elucidates the meaning of the concepts of self-realisation and the ecological self according to Naess's work. Second, the…
The SKYLON Spaceplane - Progress to Realisation
NASA Astrophysics Data System (ADS)
Varvill, R.; Bond, A.
The Skylon spaceplane will enable single stage to orbit delivery of payloads with aircraft like operations. The key to realising this goal is a combined cycle engine that can operate both in airbreathing and pure rocket modes. To achieve this new low mass structure concepts and several new engine technologies need to be proven. An extensive program of technology development has addressed these issues with very positive results. This now allows the project to proceed to the final concept proving stage before full development commences.
NASA Astrophysics Data System (ADS)
Commerçon, B.; Debout, V.; Teyssier, R.
2014-03-01
Context. Implicit solvers present strong limitations when used on supercomputing facilities and in particular for adaptive mesh-refinement codes. Aims: We present a new method for implicit adaptive time-stepping on adaptive mesh-refinement grids. We implement it in the radiation-hydrodynamics solver we designed for the RAMSES code for astrophysical purposes and, more particularly, for protostellar collapse. Methods: We briefly recall the radiation-hydrodynamics equations and the adaptive time-stepping methodology used for hydrodynamical solvers. We then introduce the different types of boundary conditions (Dirichlet, Neumann, and Robin) that are used at the interface between levels and present our implementation of the new method in the RAMSES code. The method is tested against classical diffusion and radiation-hydrodynamics tests, after which we present an application for protostellar collapse. Results: We show that using Dirichlet boundary conditions at level interfaces is a good compromise between robustness and accuracy and that it can be used in structure formation calculations. The gain in computational time over our former unique time step method ranges from factors of 5 to 50 depending on the level of adaptive time-stepping and on the problem. We successfully compare the old and new methods for protostellar collapse calculations that involve highly non linear physics. Conclusions: We have developed a simple but robust method for adaptive time-stepping of implicit scheme on adaptive mesh-refinement grids. It can be applied to a wide variety of physical problems that involve diffusion processes.
Anisimova, Maria; Gil, Manuel; Dufayard, Jean-François; Dessimoz, Christophe; Gascuel, Olivier
2011-01-01
Phylogenetic inference and evaluating support for inferred relationships is at the core of many studies testing evolutionary hypotheses. Despite the popularity of nonparametric bootstrap frequencies and Bayesian posterior probabilities, the interpretation of these measures of tree branch support remains a source of discussion. Furthermore, both methods are computationally expensive and become prohibitive for large data sets. Recent fast approximate likelihood-based measures of branch supports (approximate likelihood ratio test [aLRT] and Shimodaira–Hasegawa [SH]-aLRT) provide a compelling alternative to these slower conventional methods, offering not only speed advantages but also excellent levels of accuracy and power. Here we propose an additional method: a Bayesian-like transformation of aLRT (aBayes). Considering both probabilistic and frequentist frameworks, we compare the performance of the three fast likelihood-based methods with the standard bootstrap (SBS), the Bayesian approach, and the recently introduced rapid bootstrap. Our simulations and real data analyses show that with moderate model violations, all tests are sufficiently accurate, but aLRT and aBayes offer the highest statistical power and are very fast. With severe model violations aLRT, aBayes and Bayesian posteriors can produce elevated false-positive rates. With data sets for which such violation can be detected, we recommend using SH-aLRT, the nonparametric version of aLRT based on a procedure similar to the Shimodaira–Hasegawa tree selection. In general, the SBS seems to be excessively conservative and is much slower than our approximate likelihood-based methods. PMID:21540409
Realising the European Network of Biodosimetry (RENEB).
Kulka, U; Ainsbury, L; Atkinson, M; Barquinero, J F; Barrios, L; Beinke, C; Bognar, G; Cucu, A; Darroudi, F; Fattibene, P; Gil, O; Gregoire, E; Hadjidekova, V; Haghdoost, S; Herranz, R; Jaworska, A; Lindholm, C; Mkacher, R; Mörtl, S; Montoro, A; Moquet, J; Moreno, M; Ogbazghi, A; Oestreicher, U; Palitti, F; Pantelias, G; Popescu, I; Prieto, M J; Romm, H; Rothkamm, K; Sabatier, L; Sommer, S; Terzoudi, G; Testa, A; Thierens, H; Trompier, F; Turai, I; Vandersickel, V; Vaz, P; Voisin, P; Vral, A; Ugletveit, F; Woda, C; Wojcik, A
2012-10-01
In Europe, a network for biological dosimetry has been created to strengthen the emergency preparedness and response capabilities in case of a large-scale nuclear accident or radiological emergency. Through the RENEB (Realising the European Network of Biodosimetry) project, 23 experienced laboratories from 16 European countries will establish a sustainable network for rapid, comprehensive and standardised biodosimetry provision that would be urgently required in an emergency situation on European ground. The foundation of the network is formed by five main pillars: (1) the ad hoc operational basis, (2) a basis of future developments, (3) an effective quality-management system, (4) arrangements to guarantee long-term sustainability and (5) awareness of the existence of RENEB. RENEB will thus provide a mechanism for quick, efficient and reliable support within the European radiation emergency management. The scientific basis of RENEB will concurrently contribute to increased safety in the field of radiation protection. PMID:22923244
Stable LPV realisation of the Smith predictor
NASA Astrophysics Data System (ADS)
Blanchini, Franco; Casagrande, Daniele; Miani, Stefano; Viaro, Umberto
2016-07-01
The paper is concerned with the control of a linear plant with an output delay. As is known, when the plant parameters do not vary in time, the transfer function approach can be used to find a high-performing controller with the Smith-predictor structure. Such an approach in the domain of the Laplace transform is not directly applicable in the time-variant case. Nevertheless, it is shown that the transfer function of the Smith controller valid for constant values of the parameters can be realised in such a way that closed-loop stability, as well as point-wise optimal performance, is ensured also when the parameters vary with time. The suggested technique is applied to the control of a heat exchanger whose varying parameters include a measurement delay.
Experiments for Realising Pragmatic Protective Measurements
Dass, N. D. Hari
2011-09-23
I shall describe Aharonov, Anandan and Vaidman's proposal for protective measurements and their claims of providing an ontological interpretation for a certain class of wavefunctions through this type of measurement. I shall then describe work done with Tabish Qureshi which dispels this myth. I will show how the AAV proposal may be useful in a pragmatic sense and provide a concrete experimental setup using cold atoms. In particular, I will discuss how techniques developed by the Schmiedmayer group in Vienna for single-particle-sensitive imaging of freely propagating cold atoms could be adopted for this purpose. I will conclude with a brief description of my work with Anirban Das on adiabatic interactions between spin-systems and a proposal for its experimental realisation.
NASA Astrophysics Data System (ADS)
Or-Guil, Michal
2009-03-01
Germinal centers (GCs) are dynamic microstructures that form in lymphatic tissues during immune responses. There, B cells undergo rapid proliferation and mutation of their B cell receptors (BCRs). Selection of B cells bearing BCRs that bind to the pathogen causing the immune response ultimately leads to BCRs that, when secreted as antibodies, form a new, effective, and pathogen specific antibody repertoire. However, the details of this evolutionary process are poorly understood, since currently available experimental techniques do not allow for direct observation of the prevailing mechanisms [Or-Guil et al., Imm.Rev. 2007]. Based on optimality considerations, we put forward the assumption that GCs are not isolated entities where evolutionary processes occur independently, but interconnected structures which allow for continuous exchange of B cells. We show that this architecture leads to a system whose response is much more robust towards different antigen variants than a set of independently working GCs could ever be. We test this hypothesis by generating our own experimental data (time course of 3-D volume distribution of GCs, analysis of high-throughput BCR sequences), and show that available data is consistent with the outlined hypothesis.
Kiefer, T; Villanueva, L G; Fargier, F; Favier, F; Brugger, J
2010-12-17
Fast hydrogen sensors based on discontinuous palladium (Pd) films on supporting polyimide layers, fabricated by a cost-efficient and full-wafer compatible process, are presented. The films, deposited by electron-beam evaporation with a nominal thickness of 1.5 nm, consist of isolated Pd islands that are separated by nanoscopic gaps. On hydrogenation, the volume expansion of Pd brings initially separated islands into contact which leads to the creation of new electrical pathways through the film. The supporting polyimide layer provides both sufficient elasticity for the Pd nanoclusters to expand on hydrogenation and a sufficiently high surface energy for good adhesion of both film and contacting electrodes. The novel order of the fabrication processes involves a dicing step prior to the Pd deposition and stencil lithography for the patterning of microelectrodes. This allows us to preserve the as-deposited film properties. The devices work at room temperature, show response times of a few seconds and have a low power consumption of some tens of nW. PMID:21098952
Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization.
Ohnishi, Takashi; Suzuki, Masahiko; Kobayashi, Tatsuya; Naomoto, Shinji; Sukegawa, Tomoyuki; Nawata, Atsushi; Haneishi, Hideaki
2013-01-01
Previously, we proposed a 2D/3D registration method that uses Powell's algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell's algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell's algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell's algorithm with the Nelder-Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell's algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell's algorithm alone.
NASA Astrophysics Data System (ADS)
Timofey, Sizonenko; Karsanina, Marina; Byuk, Irina; Gerke, Kirill
2016-04-01
To characterize pore structure relevant to single and multi-phase flow modelling it is of special interest to extract topology of the pore space. This is usually achieved using so-called pore-network models. Such models are useful not only to characterize pore space and pore size distributions, but also provide means to simulate flow and transport with very limited computational resources compared to other pore-scale modelling techniques. The main drawback of the pore-network approach is that they have first to simplify the pore space geometry. This crucial step is both time consuming and prone to numerous errors. Two most popular methods based on median axis or inscribed maximal balls have their own strong sides and disadvantages. To address aforementioned problems related to pore-network extraction here we propose a novel method utilizing the advantages of both popular approaches. Combining two algorithms resulted in much faster and robust extraction methodology. Moreover, we have found that accurate topology representation requires extension of the conventional pore-body and pore-throat classification. We test our new methodology using pore structures with "analytical solutions" such as different sphere packs. In addition, we rigorously compare it against inscribed maximal balls methodology's results using numerous 3D images of sandstone and carbonate rocks, soils and some other porous materials. Another verification includes permeability calculations which are also compared both against lab data and voxel based pore-scale modelling simulations. This work was partially supported by RFBR grant 15-34-20989 (X-ray tomography and image fusion) and RSF grant 14-17-00658 (image segmentation and pore-scale modelling).
Lochy, Aliette; Van Belle, Goedele; Rossion, Bruno
2015-01-01
Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to pseudowords) in the human brain remains challenging, in particular without an explicit linguistic task. Here we measured discrimination responses to written words by means of electroencephalography (EEG) during fast periodic visual stimulation. Sequences of pseudofonts, nonwords, or pseudowords were presented through sinusoidal contrast modulation at a periodic 10 Hz frequency rate (F), in which words were interspersed at regular intervals of every fifth item (i.e., F/5, 2 Hz). Participants monitored a central cross color change and had no linguistic task to perform. Within only 3 min of stimulation, a robust discrimination response for words at 2 Hz (and its harmonics, i.e., 4 and 6 Hz) was observed in all conditions, located predominantly over the left occipito-temporal cortex. The magnitude of the response was largest for words embedded in pseudofonts, and larger in nonwords than in pseudowords, showing that list context effects classically reported in behavioral lexical decision tasks are due to visual discrimination rather than decisional processes. Remarkably, the oddball response was significant even for the critical words/pseudowords discrimination condition in every individual participant. A second experiment replicated this words/pseudowords discrimination, and showed that this effect is not accounted for by a higher bigram frequency of words than pseudowords. Without any explicit task, our results highlight the potential of an EEG fast periodic visual stimulation approach for understanding the representation of written language. Its development in the scientific community might be valuable to rapidly and objectively measure sensitivity to word processing in different human populations, including neuropsychological patients with dyslexia and other reading
Lochy, Aliette; Van Belle, Goedele; Rossion, Bruno
2015-01-01
Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to pseudowords) in the human brain remains challenging, in particular without an explicit linguistic task. Here we measured discrimination responses to written words by means of electroencephalography (EEG) during fast periodic visual stimulation. Sequences of pseudofonts, nonwords, or pseudowords were presented through sinusoidal contrast modulation at a periodic 10 Hz frequency rate (F), in which words were interspersed at regular intervals of every fifth item (i.e., F/5, 2 Hz). Participants monitored a central cross color change and had no linguistic task to perform. Within only 3 min of stimulation, a robust discrimination response for words at 2 Hz (and its harmonics, i.e., 4 and 6 Hz) was observed in all conditions, located predominantly over the left occipito-temporal cortex. The magnitude of the response was largest for words embedded in pseudofonts, and larger in nonwords than in pseudowords, showing that list context effects classically reported in behavioral lexical decision tasks are due to visual discrimination rather than decisional processes. Remarkably, the oddball response was significant even for the critical words/pseudowords discrimination condition in every individual participant. A second experiment replicated this words/pseudowords discrimination, and showed that this effect is not accounted for by a higher bigram frequency of words than pseudowords. Without any explicit task, our results highlight the potential of an EEG fast periodic visual stimulation approach for understanding the representation of written language. Its development in the scientific community might be valuable to rapidly and objectively measure sensitivity to word processing in different human populations, including neuropsychological patients with dyslexia and other reading
NASA Astrophysics Data System (ADS)
Seidel, A.; Wagner, S.; Dreizler, A.; Ebert, V.
2014-12-01
We have developed a fast, spatially direct scanning tunable diode laser absorption spectrometer (dTDLAS) that combines four polygon-mirror based scanning units with low-cost retro-reflective foils. With this instrument, tomographic measurements of absolute 2-D water vapour concentration profiles are possible without any calibration using a reference gas. A spatial area of 0.8 m × 0.8 m was covered, which allows for application in soil physics, where greenhouse gas emission from certain soil structures shall be monitored. The whole concentration field was measured with up to 2.5 Hz. In this paper, we present the setup and spectroscopic performance of the instrument regarding the influence of the polygon rotation speed and mode on the absorption signal. Homogeneous H2O distributions were measured and compared to a single channel, bi-static reference TDLAS spectrometer for validation of the instrument. Good accuracy and precision with errors of less than 6% of the absolute concentration and length and bandwidth normalized detection limits of up to 1.1 ppmv · m · √Hz-1 were achieved. The spectrometer is a robust and easy to set up instrument for tomographic reconstructions of 2-D-concentration fields that can be considered a good basis for future field measurements in environmental research.
NASA Astrophysics Data System (ADS)
Seidel, A.; Wagner, S.; Dreizler, A.; Ebert, V.
2015-05-01
We have developed a fast, spatially scanning direct tunable diode laser absorption spectrometer (dTDLAS) that combines four polygon-mirror based scanning units with low-cost retro-reflective foils. With this instrument, tomographic measurements of absolute 2-D water vapor concentration profiles are possible without any calibration using a reference gas. A spatial area of 0.8 m x 0.8 m was covered, which allows for application in soil physics, where greenhouse gas emission from certain soil structures shall be monitored. The whole concentration field was measured with up to 2.5 Hz. In this paper, we present the setup and spectroscopic performance of the instrument regarding the influence of the polygon rotation speed and mode on the absorption signal. Homogeneous H2O distributions were measured and compared to a single channel, bi-static reference TDLAS spectrometer for validation of the instrument. Good accuracy and precision with errors of less than 6% of the absolute concentration and length and bandwidth normalized detection limits of up to 1.1 ppmv . m (Hz)-0.5 were achieved. The spectrometer is a robust and easy to set up instrument for tomographic reconstructions of 2-D-concentration fields that can be considered as a good basis for future field measurements in environmental research.
NASA Astrophysics Data System (ADS)
Cools, S.; Vanroose, W.
2016-03-01
This paper improves the convergence and robustness of a multigrid-based solver for the cross sections of the driven Schrödinger equation. Adding a Coupled Channel Correction Step (CCCS) after each multigrid (MG) V-cycle efficiently removes the errors that remain after the V-cycle sweep. The combined iterative solution scheme (MG-CCCS) is shown to feature significantly improved convergence rates over the classical MG method at energies where bound states dominate the solution, resulting in a fast and scalable solution method for the complex-valued Schrödinger break-up problem for any energy regime. The proposed solver displays optimal scaling; a solution is found in a time that is linear in the number of unknowns. The method is validated on a 2D Temkin-Poet model problem, and convergence results both as a solver and preconditioner are provided to support the O (N) scalability of the method. This paper extends the applicability of the complex contour approach for far field map computation (Cools et al. (2014) [10]).
Realising the Uncertainty Enabled Model Web
NASA Astrophysics Data System (ADS)
Cornford, D.; Bastin, L.; Pebesma, E. J.; Williams, M.; Stasch, C.; Jones, R.; Gerharz, L.
2012-12-01
The FP7 funded UncertWeb project aims to create the "uncertainty enabled model web". The central concept here is that geospatial models and data resources are exposed via standard web service interfaces, such as the Open Geospatial Consortium (OGC) suite of encodings and interface standards, allowing the creation of complex workflows combining both data and models. The focus of UncertWeb is on the issue of managing uncertainty in such workflows, and providing the standards, architecture, tools and software support necessary to realise the "uncertainty enabled model web". In this paper we summarise the developments in the first two years of UncertWeb, illustrating several key points with examples taken from the use case requirements that motivate the project. Firstly we address the issue of encoding specifications. We explain the usage of UncertML 2.0, a flexible encoding for representing uncertainty based on a probabilistic approach. This is designed to be used within existing standards such as Observations and Measurements (O&M) and data quality elements of ISO19115 / 19139 (geographic information metadata and encoding specifications) as well as more broadly outside the OGC domain. We show profiles of O&M that have been developed within UncertWeb and how UncertML 2.0 is used within these. We also show encodings based on NetCDF and discuss possible future directions for encodings in JSON. We then discuss the issues of workflow construction, considering discovery of resources (both data and models). We discuss why a brokering approach to service composition is necessary in a world where the web service interfaces remain relatively heterogeneous, including many non-OGC approaches, in particular the more mainstream SOAP and WSDL approaches. We discuss the trade-offs between delegating uncertainty management functions to the service interfaces themselves and integrating the functions in the workflow management system. We describe two utility services to address
Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Budiharto, Tom; Haustermans, Karin; Heuvel, Frank van den
2010-04-15
takes a little less than a second where most time is spent on the image preprocessing. Conclusions: The authors have developed a method to automatically detect multiple markers in a pair of projection images that is robust, accurate, and sufficiently fast for clinical use. It can be used for kV, MV, or mixed image pairs and can cope with limited motion between the projection images.
Realising Haldane's vision for a Chern insulator in buckled lattices.
Wright, Anthony R
2013-01-01
The Chern insulator displays a quantum Hall effect with no net magnetic field. Proposed by Haldane over 20 years ago, it laid the foundation for the fields of topological order, unconventional quantum Hall effects, and topological insulators. Despite enormous impact over two decades, Haldane's original vision of a staggered magnetic field within a crystal lattice has been prohibitively difficult to realise. In fact, in the original paper Haldane stresses his idea is probably merely a toy model. I show that buckled lattices with only simple hopping terms, within in-plane magnetic fields, can realise these models, requiring no exotic interactions or experimental parameters. As a concrete example of this very broad, and remarkably simple principle, I consider silicene, a honeycomb lattice with out-of-plane sublattice anisotropy, in an in-plane magnetic field, and show that it is a Chern insulator, even at negligibly small magnetic fields, which is analogous to Haldane's original model. PMID:24061332
NASA Astrophysics Data System (ADS)
Fernandez, R.; Abderrahim, H. Aït; Baeten, P.; de Bruyn, D.; Maes, D.; Mazouzi, A. Al; Ariën, B.; Malambu, E.; Schuurmans, P.; Schyns, M.; Sobolev, V.; van den Eynde, G.; Vandeplassche, D.
2010-06-01
The coupling between an accelerator, a spallation target and a subcritical core has been studied for the first time at SCK•CEN in collaboration with Ion Beam Applications (IBA, Louvain-la-Neuve) in the frame of the ADONIS project (1995-1997). ADONIS was a small irradiation facility, based on the ADS concept, having a dedicated objective to produce radioisotopes for medical purposes and more particularly 99Mo as a fission product from highly enriched 235U (HEU) fissile targets. The ad-hoc scientific advisory committee recommended extending the purpose of the ADONIS machine to become a Material Testing Reactor (MTR) for material and fuel research, to study the feasibility of transmutation of the minor actinides and to demonstrate at a reasonable power scale the principle of the ADS. The project, since 1998 named MYRRHA, has then evolved to a larger installation. MYRRHA is now conceived as a flexible irradiation facility, able to work as an Accelerator Driven (subcritical mode) and in critical mode. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV systems, material developments for fusion reactors, radioisotope production for medical and industrial applications and industrial applications, such as Si-doping. MYRRHA will also demonstrate the ADS full concept by coupling the three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow the study of efficient transmutation of high-level nuclear waste. Since MYRRHA is based on the heavy liquid metal technology, the eutectic lead-bismuth, it will be able to significantly contribute to the development of Lead Fast Reactor Technology. Since MYRRHA will also be operated in critical mode, MYRRHA can even better play the role of European Technology Pilot Plant in the roadmap for LFR.
Restrictions in the realisation of multipass unstable resonators
Strakhov, S Yu
2009-12-31
Main restrictions in the realisation of multipass unstable resonators caused by intracavity losses and large-scale aberrations are considered. The influence of intracavity losses on the laser radiation power and divergence is analysed based on the numerical simulation of an unstable resonator. The efficiency criterion for the unstable multipass resonator is proposed, which is proportional to the radiation brightness and takes into account the influence of the misalignment, thermal deformation and the main parameters of the active medium and resonator on the parameters of laser radiation. (resonators)
NASA Astrophysics Data System (ADS)
May, D. A.; Le Pourhiet, L.
2012-12-01
The use of a mixed finite element formulation to discretise Stokes equations, coupled with a particle based Lagrangian representation of the material lithology is a common numerical technique employed within geodynamics to study large deformation processes. The extension of this methodology to enable high-resolution, three-dimensional simulations still represents a number of significant computational challenges. Of most concern are the high computational memory requirements of the favoured Q2-P1 element, and the development of efficient, 'light-weight' and robust linear and non-linear solvers, which are performant on multi-core, massively parallel computational hardware. Our objective is to develop a 'cheap' and efficient methodology utilizing the mixed element Q2-P1, to study 3D geodynamic processes including subduction, rifting and folding with the inclusion of visco-plastic materials. For this class of problems, careful treatment of all of the aforementioned technical challenges is essential to achieve high resolution simulations. Here, I describe a flexible methodology which aims to rectify all of these issues. The key to the approach is 1) always pose the discrete problem in defect-correction form and 2) utilise a mixture of assembled and matrix-free operations to evaluate the non-linear residual and apply the operators and smoothers required to define the multi-level preconditioner for the Jacobian. The performance characteristics of the matrix-free, multi-level preconditioning strategy is demonstrated by considering several 3D visco-plastic models. The robustness of the preconditioner and non-linear solver with respect to the viscosity contrast and the topology of the viscosity field, together with the parallel scalability will be demonstrated.
Xue, Ming-Feng; Kang, Young Mo; Arbabi, Amir; McKeown, Steven J; Goddard, Lynford L; Jin, Jian-Ming
2014-02-24
A fast and accurate full-wave technique based on the dual-primal finite element tearing and interconnecting method and the second-order transmission condition is presented for large-scale three-dimensional photonic device simulations. The technique decomposes a general three-dimensional electromagnetic problem into smaller subdomain problems so that parallel computing can be performed on distributed-memory computer clusters to reduce the simulation time significantly. With the electric fields computed everywhere, photonic device parameters such as transmission and reflection coefficients are extracted. Several photonic devices, with simulation volumes up to 1.9×10(4) (λ/n(avg))3 and modeled with over one hundred million unknowns, are simulated to demonstrate the application, efficiency, and capability of this technique. The simulations show good agreement with experimental results and in a special case with a simplified two-dimensional simulation.
Sun, Yang; Qi, Jinyi
2012-01-01
We report a novel method for estimating fluorescence impulse response function (fIRF) from noise-corrupted time-domain fluorescence measurements of biological tissue. This method is based on the use of higher-order Laguerre basis functions (LBFs) and a constrained least-square (CLS) approach that addresses the problem of overfitting due to increased model complexity. The method was extensively evaluated on fluorescence data from simulation, fluorescent standard dyes, ex vivo tissue samples of atherosclerotic plaques, and in vivo oral carcinoma. Current results demonstrate that this new method allows for rapid and accurate deconvolution of multiple channel fluorescence decays without adaptively adjusting the Laguerre scale parameter. The appropriate choice of the scale parameter is essential for accurate estimation of the fIRF. The method described here is anticipated to play an important role in the development of computational techniques for real-time analysis of time-resolved fluorescence data from biological tissues and to support the advancement of fluorescence lifetime instrumentation for biomedical diagnostics by providing a means for on-line robust analysis of fluorescence decay. PMID:22290334
Borré, Etienne; Rouen, Mathieu; Laurent, Isabelle; Magrez, Magaly; Caijo, Fréderic; Crévisy, Christophe; Solodenko, Wladimir; Toupet, Loic; Frankfurter, René; Vogt, Carla; Kirschning, Andreas; Mauduit, Marc
2012-12-14
In this study, a new pyridinium-tagged Ru complex was designed and anchored onto sulfonated silica, thereby forming a robust and highly active supported olefin-metathesis pre-catalyst for applications under batch and continuous-flow conditions. The involvement of an oxazine-benzylidene ligand allowed the reactivity of the formed Ru pre-catalyst to be efficiently controlled through both steric and electronic activation. The oxazine scaffold facilitated the introduction of the pyridinium tag, thereby affording the corresponding cationic pre-catalyst in good yield. Excellent activities in ring-closing (RCM), cross (CM), and enyne metathesis were observed with only 0.5 mol % loading of the pre-catalyst. When this powerful pre-catalyst was immobilized onto a silica-based cationic-exchange resin, a versatile catalytically active material for batch reactions was generated that also served as fixed-bed material for flow reactors. This system could be reused at 1 mol % loading to afford metathesis products in high purity with very low ruthenium contamination under batch conditions (below 5 ppm). Scavenging procedures for both batch and flow processes were conducted, which led to a lowering of the ruthenium content to as little as one tenth of the original values.
Jović, Ozren; Smrečki, Neven; Popović, Zora
2016-04-01
A novel quantitative prediction and variable selection method called interval ridge regression (iRR) is studied in this work. The method is performed on six data sets of FTIR, two data sets of UV-vis and one data set of DSC. The obtained results show that models built with ridge regression on optimal variables selected with iRR significantly outperfom models built with ridge regression on all variables in both calibration (6 out of 9 cases) and validation (2 out of 9 cases). In this study, iRR is also compared with interval partial least squares regression (iPLS). iRR outperfomed iPLS in validation (insignificantly in 6 out of 9 cases and significantly in one out of 9 cases for p<0.05). Also, iRR can be a fast alternative to iPLS, especially in case of unknown degree of complexity of analyzed system, i.e. if upper limit of number of latent variables is not easily estimated for iPLS. Adulteration of hempseed (H) oil, a well known health beneficial nutrient, is studied in this work by mixing it with cheap and widely used oils such as soybean (So) oil, rapeseed (R) oil and sunflower (Su) oil. Binary mixture sets of hempseed oil with these three oils (HSo, HR and HSu) and a ternary mixture set of H oil, R oil and Su oil (HRSu) were considered. The obtained accuracy indicates that using iRR on FTIR and UV-vis data, each particular oil can be very successfully quantified (in all 8 cases RMSEP<1.2%). This means that FTIR-ATR coupled with iRR can very rapidly and effectively determine the level of adulteration in the adulterated hempseed oil (R(2)>0.99).
High hopes: can molecular electronics realise its potential?
Coskun, Ali; Spruell, Jason M; Barin, Gokhan; Dichtel, William R; Flood, Amar H; Botros, Youssry Y; Stoddart, J Fraser
2012-07-21
Manipulating and controlling the self-organisation of small collections of molecules, as an alternative to investigating individual molecules, has motivated researchers bent on processing and storing information in molecular electronic devices (MEDs). Although numerous ingenious examples of single-molecule devices have provided fundamental insights into their molecular electronic properties, MEDs incorporating hundreds to thousands of molecules trapped between wires in two-dimensional arrays within crossbar architectures offer a glimmer of hope for molecular memory applications. In this critical review, we focus attention on the collective behaviour of switchable mechanically interlocked molecules (MIMs)--specifically, bistable rotaxanes and catenanes--which exhibit reset lifetimes between their ON and OFF states ranging from seconds in solution to hours in crossbar devices. When these switchable MIMs are introduced into high viscosity polymer matrices, or self-assembled as monolayers onto metal surfaces, both in the form of nanoparticles and flat electrodes, or organised as tightly packed islands of hundreds and thousands of molecules sandwiched between two electrodes, the thermodynamics which characterise their switching remain approximately constant while the kinetics associated with their reset follow an intuitively predictable trend--that is, fast when they are free in solution and sluggish when they are constrained within closely packed monolayers. The importance of seamless interactions and constant feedback between the makers, the measurers and the modellers in establishing the structure-property relationships in these integrated functioning systems cannot be stressed enough as rationalising the many different factors that impact device performance becomes more and more demanding. The choice of electrodes, as well as the self-organised superstructures of the monolayers of switchable MIMs employed in the molecular switch tunnel junctions (MSTJs) associated
Huang, Dong; Cabral, Ricardo; De la Torre, Fernando
2016-02-01
Discriminative methods (e.g., kernel regression, SVM) have been extensively used to solve problems such as object recognition, image alignment and pose estimation from images. These methods typically map image features ( X) to continuous (e.g., pose) or discrete (e.g., object category) values. A major drawback of existing discriminative methods is that samples are directly projected onto a subspace and hence fail to account for outliers common in realistic training sets due to occlusion, specular reflections or noise. It is important to notice that existing discriminative approaches assume the input variables X to be noise free. Thus, discriminative methods experience significant performance degradation when gross outliers are present. Despite its obvious importance, the problem of robust discriminative learning has been relatively unexplored in computer vision. This paper develops the theory of robust regression (RR) and presents an effective convex approach that uses recent advances on rank minimization. The framework applies to a variety of problems in computer vision including robust linear discriminant analysis, regression with missing data, and multi-label classification. Several synthetic and real examples with applications to head pose estimation from images, image and video classification and facial attribute classification with missing data are used to illustrate the benefits of RR. PMID:26761740
Free-field realisations of the BMS3 algebra and its extensions
NASA Astrophysics Data System (ADS)
Banerjee, Nabamita; Jatkar, Dileep P.; Mukhi, Sunil; Neogi, Turmoli
2016-06-01
We construct an explicit realisation of the BMS3 algebra with nonzero central charges using holomorphic free fields. This can be extended by the addition of chiral matter to a realisation having arbitrary values for the two independent central charges. Via the introduction of additional free fields, we extend our construction to the minimally supersymmetric BMS3 algebra and to the nonlinear higher-spin BMS3-W3 algebra. We also describe an extended system that realises both the SU(2) current algebra as well as BMS3 via the Wakimoto representation, though in this case introducing a central extension also brings in new non-central operators.
George, Angela; Riddell, Daniel; Seal, Sheila; Talukdar, Sabrina; Mahamdallie, Shazia; Ruark, Elise; Cloke, Victoria; Slade, Ingrid; Kemp, Zoe; Gore, Martin; Strydom, Ann; Banerjee, Susana; Hanson, Helen; Rahman, Nazneen
2016-07-13
Advances in DNA sequencing have made genetic testing fast and affordable, but limitations of testing processes are impeding realisation of patient benefits. Ovarian cancer exemplifies the potential value of genetic testing and the shortcomings of current pathways to access testing. Approximately 15% of ovarian cancer patients have a germline BRCA1 or BRCA2 mutation which has substantial implications for their personal management and that of their relatives. Unfortunately, in most countries, routine implementation of BRCA testing for ovarian cancer patients has been inconsistent and largely unsuccessful. We developed a rapid, robust, mainstream genetic testing pathway in which testing is undertaken by the trained cancer team with cascade testing to relatives performed by the genetics team. 207 women with ovarian cancer were offered testing through the mainstream pathway. All accepted. 33 (16%) had a BRCA mutation. The result informed management of 79% (121/154) women with active disease. Patient and clinician feedback was very positive. The pathway offers a 4-fold reduction in time and 13-fold reduction in resource requirement compared to the conventional testing pathway. The mainstream genetic testing pathway we present is effective, efficient and patient-centred. It can deliver rapid, robust, large-scale, cost-effective genetic testing of BRCA1 and BRCA2 and may serve as an exemplar for other genes and other diseases.
George, Angela; Riddell, Daniel; Seal, Sheila; Talukdar, Sabrina; Mahamdallie, Shazia; Ruark, Elise; Cloke, Victoria; Slade, Ingrid; Kemp, Zoe; Gore, Martin; Strydom, Ann; Banerjee, Susana; Hanson, Helen; Rahman, Nazneen
2016-01-01
Advances in DNA sequencing have made genetic testing fast and affordable, but limitations of testing processes are impeding realisation of patient benefits. Ovarian cancer exemplifies the potential value of genetic testing and the shortcomings of current pathways to access testing. Approximately 15% of ovarian cancer patients have a germline BRCA1 or BRCA2 mutation which has substantial implications for their personal management and that of their relatives. Unfortunately, in most countries, routine implementation of BRCA testing for ovarian cancer patients has been inconsistent and largely unsuccessful. We developed a rapid, robust, mainstream genetic testing pathway in which testing is undertaken by the trained cancer team with cascade testing to relatives performed by the genetics team. 207 women with ovarian cancer were offered testing through the mainstream pathway. All accepted. 33 (16%) had a BRCA mutation. The result informed management of 79% (121/154) women with active disease. Patient and clinician feedback was very positive. The pathway offers a 4-fold reduction in time and 13-fold reduction in resource requirement compared to the conventional testing pathway. The mainstream genetic testing pathway we present is effective, efficient and patient-centred. It can deliver rapid, robust, large-scale, cost-effective genetic testing of BRCA1 and BRCA2 and may serve as an exemplar for other genes and other diseases. PMID:27406733
George, Angela; Riddell, Daniel; Seal, Sheila; Talukdar, Sabrina; Mahamdallie, Shazia; Ruark, Elise; Cloke, Victoria; Slade, Ingrid; Kemp, Zoe; Gore, Martin; Strydom, Ann; Banerjee, Susana; Hanson, Helen; Rahman, Nazneen
2016-01-01
Advances in DNA sequencing have made genetic testing fast and affordable, but limitations of testing processes are impeding realisation of patient benefits. Ovarian cancer exemplifies the potential value of genetic testing and the shortcomings of current pathways to access testing. Approximately 15% of ovarian cancer patients have a germline BRCA1 or BRCA2 mutation which has substantial implications for their personal management and that of their relatives. Unfortunately, in most countries, routine implementation of BRCA testing for ovarian cancer patients has been inconsistent and largely unsuccessful. We developed a rapid, robust, mainstream genetic testing pathway in which testing is undertaken by the trained cancer team with cascade testing to relatives performed by the genetics team. 207 women with ovarian cancer were offered testing through the mainstream pathway. All accepted. 33 (16%) had a BRCA mutation. The result informed management of 79% (121/154) women with active disease. Patient and clinician feedback was very positive. The pathway offers a 4-fold reduction in time and 13-fold reduction in resource requirement compared to the conventional testing pathway. The mainstream genetic testing pathway we present is effective, efficient and patient-centred. It can deliver rapid, robust, large-scale, cost-effective genetic testing of BRCA1 and BRCA2 and may serve as an exemplar for other genes and other diseases. PMID:27406733
Mechanically robust, chemically inert superhydrophobic charcoal surfaces.
Xie, Jian-Bo; Li, Liang; Knyazeva, Anastassiya; Weston, James; Naumov, Panče
2016-08-11
We report a fast and cost-effective strategy towards the preparation of superhydrophobic composites where a double-sided adhesive tape is paved with charcoal particles. The composites are mechanically robust, and resistant to strong chemical agents. PMID:27405255
Some recent progresses in quantum tomography realised at INRIM
NASA Astrophysics Data System (ADS)
Piacentini, F.; Goldschmidt, E. A.; Mingolla, Maria G.; Degiovanni, I. P.; Gramegna, M.; Berchera, I. R.; Polyakov, S. V.; Peters, S.; Kück, S.; Taralli, E.; Lolli, L.; Rajteri, M.; Paris, M. G. A.; Migdall, A.; Brida, G.; Genovese, M.
2013-09-01
We present some Quantum Tomography related results recently obtained in the Quantum Optics labs of the National Institute of Metrological Research (INRIM). Initially we describe the first experimental implementation of a new protocol for the reconstruction of a photon-number-resolving (PNR) detector's POVM (Positive Operator-Valued Measure): such a protocol, exploiting the strong quantum correlations of an ancillary state, results more robust and efficient than its classical counterparts. The second part of the paper focuses on the quantum characterization of a transition-edge sensor (TES) based PNR detector, i.e. the experimental tomography of the POVM of a TES, with a method based on a quorum of coherent probes: we show the reconstruction of the POVM elements up to 11 detected photons and 100 incoming photons, demonstrating the linearity of such a device. Finally, we present a method for the experimental reconstruction of the modal structure of multimode optical fields exploiting a single measurement of higher-order photon number autocorrelation functions. We show our reconstructions of up to three different modes per optical state, demonstrating the excellent agreement with the theoretical predictions and the robustness of our method itself.
Realising the European network of biodosimetry: RENEB-status quo.
Kulka, U; Ainsbury, L; Atkinson, M; Barnard, S; Smith, R; Barquinero, J F; Barrios, L; Bassinet, C; Beinke, C; Cucu, A; Darroudi, F; Fattibene, P; Bortolin, E; Monaca, S Della; Gil, O; Gregoire, E; Hadjidekova, V; Haghdoost, S; Hatzi, V; Hempel, W; Herranz, R; Jaworska, A; Lindholm, C; Lumniczky, K; M'kacher, R; Mörtl, S; Montoro, A; Moquet, J; Moreno, M; Noditi, M; Ogbazghi, A; Oestreicher, U; Palitti, F; Pantelias, G; Popescu, I; Prieto, M J; Roch-Lefevre, S; Roessler, U; Romm, H; Rothkamm, K; Sabatier, L; Sebastià, N; Sommer, S; Terzoudi, G; Testa, A; Thierens, H; Trompier, F; Turai, I; Vandevoorde, C; Vaz, P; Voisin, P; Vral, A; Ugletveit, F; Wieser, A; Woda, C; Wojcik, A
2015-04-01
Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed.
Realising the European network of biodosimetry: RENEB—status quo
Kulka, U.; Ainsbury, L.; Atkinson, M.; Barnard, S.; Smith, R.; Barquinero, J. F.; Barrios, L.; Bassinet, C.; Beinke, C.; Cucu, A.; Darroudi, F.; Fattibene, P.; Bortolin, E.; Monaca, S. Della; Gil, O.; Gregoire, E.; Hadjidekova, V.; Haghdoost, S.; Hatzi, V.; Hempel, W.; Herranz, R.; Jaworska, A.; Lindholm, C.; Lumniczky, K.; M'kacher, R.; Mörtl, S.; Montoro, A.; Moquet, J.; Moreno, M.; Noditi, M.; Ogbazghi, A.; Oestreicher, U.; Palitti, F.; Pantelias, G.; Popescu, I.; Prieto, M. J.; Roch-Lefevre, S.; Roessler, U.; Romm, H.; Rothkamm, K.; Sabatier, L.; Sebastià, N.; Sommer, S.; Terzoudi, G.; Testa, A.; Thierens, H.; Trompier, F.; Turai, I.; Vandevoorde, C.; Vaz, P.; Voisin, P.; Vral, A.; Ugletveit, F.; Wieser, A.; Woda, C.; Wojcik, A.
2015-01-01
Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed. PMID:25205835
Robust attitude tracking control of small-scale unmanned helicopter
NASA Astrophysics Data System (ADS)
Wang, Xiafu; Chen, You; Lu, Geng; Zhong, Yisheng
2015-06-01
Robust attitude control problem for small-scale unmanned helicopters is investigated to improve attitude control performances of roll and pitch channels under both small and large amplitude manoeuvre flight conditions. The model of the roll or pitch angular dynamics is regarded as a nominal single-input single-output linear system with equivalent disturbances which contain nonlinear uncertainties, coupling-effects, parameter perturbations, and external disturbances. Based on the signal compensation method, a robust controller is designed with two parts: a proportional-derivative controller and a robust compensator. The designed controller is linear and time-invariant, so it can be easily realised. The robust properties of the closed-loop system are proven. According to the ADS-33E-PRF military rotorcraft standard, the controller can achieve top control performances. Experimental results demonstrate the effectiveness of the proposed control strategy.
ERIC Educational Resources Information Center
Riddell, Richard
2013-01-01
Taking recent policy on education and social mobility as a working example, this article examines developments in the mechanisms for realising policy over the past ten years, as indicative of changes in the neoliberal state. This initial analysis suggests that, despite similarities in the process of policy formation before and after the General…
Technology Transfer Automated Retrieval System (TEKTRAN)
Genotyping-by-sequencing (GBS) provides an opportunity for fast and inexpensive generation of unbiased SNPs. However, due to its low coverage, GBS SNPs have a higher proportion of missing data and genotyping error associated with heterozygote undercalling than traditional genotyping platforms. These...
Minimal state space realisation of continuous-time linear time-variant input-output models
NASA Astrophysics Data System (ADS)
Goos, J.; Pintelon, R.
2016-04-01
In the linear time-invariant (LTI) framework, the transformation from an input-output equation into state space representation is well understood. Several canonical forms exist that realise the same dynamic behaviour. If the coefficients become time-varying however, the LTI transformation no longer holds. We prove by induction that there exists a closed-form expression for the observability canonical state space model, using binomial coefficients.
NASA Astrophysics Data System (ADS)
Iddir, R.; Laradi, N.
The development of the automotive circulation and the road, indispensable infras- tructures, to contribute to the economic development, sometimes drags important nui- sances on the environment, that will emerge at the time of the realisation of the work. Pollution's given out by the circulation are responsible of about 30 to 40% of gases to greenhouse effect, in the particular topographic and meteorological situations, they can aggravate the industrial pollution and can conduct to the ominous effects on the health of populations and physico chemical attacks of building facades. The analy- sis of impacts consists in discovering the eventual repercussions of the project on the different considered solutions, while appreciating the relative importance of their re- spective effects. So we signalled that the realisation of this road infrastructure to the level of the valley will drag repercussions on the natural resources as well as on the harnessing of the site. Finally among the direct aftermath's of the realisation of the project is the pollution of hydrous resources can cause disruptions on the feeding in drinking water or the irrigation, concerning a good part of the population of the val- ley. The acoustic and atmospheric pollution will be important and of a very dangerous degree in the City.
Realising effective theories of tribrid inflation: are there effects from messenger fields?
Antusch, Stefan; Nolde, David
2015-09-22
Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.
Realising effective theories of tribrid inflation: are there effects from messenger fields?
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Nolde, David
2015-09-01
Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.
Seibold, E; Maier, T; Kostrzewa, M; Zeman, E; Splettstoesser, W
2010-04-01
Francisella tularensis, the causative agent of tularemia, is a potential agent of bioterrorism. The phenotypic discrimination of closely related, but differently virulent, Francisella tularensis subspecies with phenotyping methods is difficult and time-consuming, often producing ambiguous results. As a fast and simple alternative, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was applied to 50 different strains of the genus Francisella to assess its ability to identify and discriminate between strains according to their designated species and subspecies. Reference spectra from five representative strains of Francisella philomiragia, Francisella tularensis subsp. tularensis, Francisella tularensis subsp. holarctica, Francisella tularensis subsp. mediasiatica, and Francisella tularensis subsp. novicida were established and evaluated for their capability to correctly identify Francisella species and subspecies by matching a collection of spectra from 45 blind-coded Francisella strains against a database containing the five reference spectra and 3,287 spectra from other microorganisms. As a reference method for identification of strains from the genus Francisella, 23S rRNA gene sequencing was used. All strains were correctly identified, with both methods showing perfect agreement at the species level as well as at the subspecies level. The identification of Francisella strains by MALDI-TOF MS and subsequent database matching was reproducible using biological replicates, different culture media, different cultivation times, different serial in vitro passages of the same strain, different preparation protocols, and different mass spectrometers.
Mechanisms for Robust Cognition
ERIC Educational Resources Information Center
Walsh, Matthew M.; Gluck, Kevin A.
2015-01-01
To function well in an unpredictable environment using unreliable components, a system must have a high degree of robustness. Robustness is fundamental to biological systems and is an objective in the design of engineered systems such as airplane engines and buildings. Cognitive systems, like biological and engineered systems, exist within…
NASA Astrophysics Data System (ADS)
Óskarsson, G. J.; Kjesbu, O. S.; Slotte, A.
2002-08-01
Maturing Norwegian spring-spawning (NSS) herring, Clupea harengus, were collected for reproductive analyses along the Norwegian coast prior to the spawning seasons of 1997-2000. Over this time period there was a marked change in weight (W) at length (TL) with 1998 showing extremely low values and 2000 high values in a historical perspective. Potential fecundity, amounting to about 20 000-100 000 developing (vitellogenic) oocytes per fish and positively related to fish size, increased significantly with fish condition. Relative somatic potential fecundity (RF P, number of oocytes per g ovary-free body weight) in NSS herring was found to vary by 35-55% between years. Unexpectedly, females in 2000 showed low RF P-values, possibly due to negative feedback from previous reproductive investments at low condition. A clear threshold value for Fulton's condition factor, K (K=100×W/TL 3), of 0.65-0.70 existed below which there was considerable atresia (resorption of vitellogenic oocytes). Thus, these components of the spawning stock, amounting to 1-46% in the period 1980-1999, obviously contributed relatively little to the total egg production. This was confirmed by low ovary weights and examples of delayed oocyte development in these individuals. An up-to-date atresia model is presented. The established oocyte growth curve, and to a lesser degree the assumed atretic oocytic turnover rate, was critical for the estimation of realised fecundity (number of eggs spawned). Modelled realised fecundity was significantly below observed potential fecundity. Females that had migrated the shortest distance from the over-wintering area, Vestfjorden, northern Norway, were in the poorest condition, had the least developed oocytes and the lowest potential and realised fecundities. In agreement with previously published studies on temporal and spatial changes in gonad weights, those females reaching the main spawning grounds in the south-western part of the coast (Møre) were the most
NASA Astrophysics Data System (ADS)
Walczak, Beata; Daszykowski, Michał; Stanimirova, Ivana
A large progress in the development of robust methods as an efficient tool for processing of data contaminated with outlying objects has been made over the last years. Outliers in the QSAR studies are usually the result of an improper calculation of some molecular descriptors and/or experimental error in determining the property to be modelled. They influence greatly any least square model, and therefore the conclusions about the biological activity of a potential component based on such a model are misleading. With the use of robust approaches, one can solve this problem building a robust model describing the data majority well. On the other hand, the proper identification of outliers may pinpoint a new direction of a drug development. The outliers' assessment can exclusively be done with robust methods and these methods are to be described in this chapter
ERIC Educational Resources Information Center
Zibeniene, Gintaute
2004-01-01
The author analyzes the nature of study programme assessment with regard to the assurance of study quality. The organisation of the assessment process of the non-university study programmes which were developed and submitted for realisation in Lithuania and other countries is also presented and compared. It is being analysed whether it is possible…
ERIC Educational Resources Information Center
Soriano, Encarnacion; Franco, Clemente; Sleeter, Christine
2011-01-01
This study analysed the effects a values education programme can have on the feelings of self-realisation, self-concept and self-esteem of Romany adolescents in southern Spain. To do this, an experimental group received a values education intervention but a control group did not. The intervention programme was adapted to the Romany culture. The…
Realisation d'un detecteur de radioactivite pour un systeme microfluidique
NASA Astrophysics Data System (ADS)
Girard Baril, Frederique
Pour etablir le comportement pharmacocinetique de nouveaux radiotraceurs en imagerie moleculaire, il est necessaire d'approfondir l'analyse realisee a partir d'une image par l'ajout d'une mesure dynamique de la radioactivite dans le sang. L'Universite de Sherbrooke developpe presentement une plateforme microfluidique d'echantillonnage et d'analyse permettant la mesure de la radioactivite du plasma en temps reel. L'objectif du present projet de maitrise etait de realiser le composant optoelectronique responsable de la detection des positrons et de l'integrer a la puce microfluidique. L'option retenue a ete l'utilisation de photodiodes PIN en silicium. Un procede de fabrication, ainsi qu'une serie de photomasques ont ete developpes afin de produire une premiere iteration de prototypes. Les detecteurs ont ete concus de maniere a optimiser leur sensibilite en fonction du type de rayonnement a detecter. En effet, la region de detection doit etre suffisamment epaisse et sensible pour absorber le maximum de particules energetiques. Egalement, il est essentiel de minimiser le courant de fuite en noirceur afin d'obtenir un photocourant directement proportionnel a l'energie des radiations incidentes. Les caracteristiques electriques obtenues avec les premiers detecteurs ont ete demontrees proches des performances de detecteurs commerciaux similaires. De plus, il a ete possible d'integrer un canal microfluidique au substrat contenant les photodiodes et d'en realiser l'encapsulation sans alterer les performances electriques initiales des detecteurs. Une courbe de l'activite radioactive du 18F a ete mesuree, celle-ci se comparant a l'activite theorique associee a ce radioisotope communement utilise en TEP. Enfin, un spectre en energie des emissions radiatives du 18F a ete mesure et compare aux performances de systemes utilisant des photodiodes commerciales. Il a ete demontre que le prototype offrait un rapport signal sur bruit similaire aux systemes bases sur des photodiodes
Robust control of accelerators
Johnson, W.J.D. ); Abdallah, C.T. )
1990-01-01
The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modeling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control methods leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this paper, we report on our research progress. In section one, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section two, the results of our proof-of-principle experiments are presented. In section three, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf without demodulating, compensating, and then remodulating.
Establishing a MOEMS process to realise microshutters for coded aperture imaging applications
NASA Astrophysics Data System (ADS)
McNie, Mark E.; Davies, Rhodri R.; Johnson, Ashley; Price, Nicola; Bennett, Charlotte R.; Slinger, Christopher W.; Hardy, Busbee; Hames, Greg; Monk, Demaul; Rogers, Stanley
2011-09-01
Coded aperture imaging has been used for astronomical applications for several years. Typical implementations used a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. Recently applications have emerged in the visible and infra red bands for low cost lens-less imaging systems and system studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. Previously reported work focused on realising such a mask to operate in the mid-IR band based on polysilicon micro-optoelectro-mechanical systems (MOEMS) technology and its integration with ASIC drive electronics using a tiled approach to scale to large format masks. The MOEMS chips employ interference effects to modulate incident light - achieved by tuning a large array of asymmetric Fabry-Perot optical cavities via an applied voltage using row/column addressing. In this paper we report on establishing the manufacturing process for such MOEMS microshutter chips in a commercial MEMS foundry, MEMSCAP - including the associated challenges in moving the technology out of the development laboratory into manufacturing. Small scale (7.3 x 7.3mm) and full size (22 x 22mm) MOEMS chips have been produced that are equivalent to those produced at QinetiQ. Optical and electrical testing has shown that these are suitable for integration into large format reconfigurable masks for coded aperture imaging applications.
Advances in genetic engineering of the avian genome: "Realising the promise".
Doran, Timothy J; Cooper, Caitlin A; Jenkins, Kristie A; Tizard, Mark L V
2016-06-01
This review provides an historic perspective of the key steps from those reported at the 1st Transgenic Animal Research Conference in 1997 through to the very latest developments in avian transgenesis. Eighteen years later, on the occasion of the 10th conference in this series, we have seen breakthrough advances in the use of viral vectors and transposons to transform the germline via the direct manipulation of the chicken embryo, through to the establishment of PGC cultures allowing in vitro modification, expansion into populations to analyse the genetic modifications and then injection of these cells into embryos to create germline chimeras. We have now reached an unprecedented time in the history of chicken transgenic research where we have the technology to introduce precise, targeted modifications into the chicken genome, ranging from; new transgenes that provide improved phenotypes such as increased resilience to economically important diseases; the targeted disruption of immunoglobulin genes and replacement with human sequences to generate transgenic chickens that express "humanised" antibodies for biopharming; and the deletion of specific nucleotides to generate targeted gene knockout chickens for functional genomics. The impact of these advances is set to be realised through applications in chickens, and other bird species as models in scientific research, for novel biotechnology and to protect and improve agricultural productivity.
'Lived Islam' in India and Bangladesh: negotiating religion to realise reproductive aspirations.
Sahu, Biswamitra; Hutter, Inge
2012-01-01
This paper seeks to answer the question of how Muslim women interpret and negotiate religion in order to realise their reproductive aspirations. A close reading of lived experiences of 32 Muslim women from a varied educational background yields a wider perspective of the different interpretations of reproductive norms employed by adherents of the same religion (Islam), situated in two countries (India/Bangladesh) and group (majority/minority) contexts. Further, this comparative study yields a deeper understanding of agency that is employed by Muslim participants in each country. Muslim women - both in India and Bangladesh - are not passive followers of religious norms, but have agency to bring change in their own life and take an active role in planning their family, thereby transgressing religious norms in reproductive matters. Muslim women in India exercise their agency by adopting sterilisation - a method proscribed by Islam - without the knowledge of their significant others. Muslim women in Bangladesh use their agency by making a flexible interpretation of Islam in reproductive matters. A lesson learned from this comparative study is the need to remove barriers that prevent the adoption of contraceptives by Muslim minorities in India and to design family planning programmes that takes into account their religious needs.
NASA Astrophysics Data System (ADS)
Oshri, Ilan; Kotlarsky, Julia
These days firms are, more than ever, pressed to demonstrate returns on their investment in outsourcing. While the initial returns can always be associated with one-off cost cutting, outsourcing arrangements are complex, often involving inter-related high-value activities, which makes the realisation of long-term benefits from outsourcing ever more challenging. Executives in client firms are no longer satisfied with the same level of service delivery through the outsourcing lifecycle. They seek to achieve business transformation and innovation in their present and future services, beyond satisfying service level agreements (SLAs). Clearly the business world is facing a new challenge: an outsourcing delivery system of high-value activities that demonstrates value over time and across business functions. However, despite such expectations, many client firms are in the dark when trying to measure and quantify the return on outsourcing investments: results of this research show that less than half of all CIOs and CFOs (43%) have attempted to calculate the financial impact of outsourcing to their bottom line, indicating that the financial benefits are difficult to quantify (51%).
Fast-coding robust motion estimation model in a GPU
NASA Astrophysics Data System (ADS)
García, Carlos; Botella, Guillermo; de Sande, Francisco; Prieto-Matias, Manuel
2015-02-01
Nowadays vision systems are used with countless purposes. Moreover, the motion estimation is a discipline that allow to extract relevant information as pattern segmentation, 3D structure or tracking objects. However, the real-time requirements in most applications has limited its consolidation, considering the adoption of high performance systems to meet response times. With the emergence of so-called highly parallel devices known as accelerators this gap has narrowed. Two extreme endpoints in the spectrum of most common accelerators are Field Programmable Gate Array (FPGA) and Graphics Processing Systems (GPU), which usually offer higher performance rates than general propose processors. Moreover, the use of GPUs as accelerators involves the efficient exploitation of any parallelism in the target application. This task is not easy because performance rates are affected by many aspects that programmers should overcome. In this paper, we evaluate OpenACC standard, a programming model with directives which favors porting any code to a GPU in the context of motion estimation application. The results confirm that this programming paradigm is suitable for this image processing applications achieving a very satisfactory acceleration in convolution based problems as in the well-known Lucas & Kanade method.
Van Dyke, William J.
1992-01-01
A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.
Van Dyke, W.J.
1992-04-07
A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.
Robustness of spatial micronetworks
NASA Astrophysics Data System (ADS)
McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.
2015-04-01
Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.
Realising new health technologies: problems of regulating human stem cells in the USA.
Warren-Jones, Amanda
2012-01-01
Stem cell technology holds the promise of radically changing medicine through the provision of better disease models; the creation of tissue, cells, and organs for therapeutic uses; and the increased personalisation of healthcare. However, the degree to which any of these developments can be realised in the USA rests upon how effective the regulatory environment is in nurturing the technology to market. This article assesses the regulation in terms of its ability to minimise factors which erode the public interest in developing medical innovations (abuse) and promoting them to the market. This requires an overarching review of patent law (and how it fits with anti-trust and contract law); as well as the general regulation of innovation through ethical review, clinical trials, market authorisation, post-market oversight; government lead regulation of stem cells; and finally incorporating the impact of self-regulation by industry. From this assessment, it becomes possible to appreciate that the optimal system of regulation is reliant upon the gentle tweaking of many factors, rather than the wholesale revision of only a few. It also becomes possible to identify that individual tools of regulation have varying impacts. For example, the patent system may be the most open to abuse by individual companies, but as a regulatory framework it has the most mechanisms for dealing with such abuses. However, the biggest impact upon curtailing abuse derives from the self-regulation of the industry. Conversely, government led regulation is open to abuse from political agendas, but it has the greatest capacity to nurture innovation productively.
Effects of developmental training of basketball cadets realised in the competitive period.
Trninić, S; Marković, G; Heimer, S
2001-12-01
The analysis of effects of a two-month developmental training cycle realised within a basketball season revealed statistically significant positive changes at the multivariate level in components of motor-functional conditioning (fitness) status of the sample of talented basketball cadets (15-16 years). The greatest correlations with discriminant function were found in variables with statistically significant changes at the univariate level, more explicitly in variables of explosive and repetitive power of the upper body and trunk, anaerobic lactic endurance, as well as in jumping type explosive leg power. The presented developmental conditioning training programme, although implemented within the competitive period, induced multiple positive fitness effects between the two control time points in this sample of basketball players. The authors suggest that, to assess power of shoulders and upper back, the test overgrip pull-up should not be applied to basketball players of this age due to its poor sensitivity. Instead, they propose the undergrip pull-up test, which is a facilitated version of the same test. The results presented in this article reinforce experienced opinion of experts that, in the training process with youth teams, the developmental conditioning training programme is effectively applicable throughout the entire competitive season. The proposed training model is a system of various training procedures, operating synergistically, aimed at enhancing integral fitness (preparedness) of basketball players. Further investigations should be focused on assessing effects of both the proposed and other developmental training cycle programmes, by means of assessing and monitoring actual quality (overall performance) of players, on the one hand, and, on the other, by following-up hormonal and biochemical changes over multiple time points.
Robust acoustic object detection
NASA Astrophysics Data System (ADS)
Amit, Yali; Koloydenko, Alexey; Niyogi, Partha
2005-10-01
We consider a novel approach to the problem of detecting phonological objects like phonemes, syllables, or words, directly from the speech signal. We begin by defining local features in the time-frequency plane with built in robustness to intensity variations and time warping. Global templates of phonological objects correspond to the coincidence in time and frequency of patterns of the local features. These global templates are constructed by using the statistics of the local features in a principled way. The templates have clear phonetic interpretability, are easily adaptable, have built in invariances, and display considerable robustness in the face of additive noise and clutter from competing speakers. We provide a detailed evaluation of the performance of some diphone detectors and a word detector based on this approach. We also perform some phonetic classification experiments based on the edge-based features suggested here.
Steingrimsson, Jon Arni; Diao, Liqun; Molinaro, Annette M; Strawderman, Robert L
2016-09-10
Estimating a patient's mortality risk is important in making treatment decisions. Survival trees are a useful tool and employ recursive partitioning to separate patients into different risk groups. Existing 'loss based' recursive partitioning procedures that would be used in the absence of censoring have previously been extended to the setting of right censored outcomes using inverse probability censoring weighted estimators of loss functions. In this paper, we propose new 'doubly robust' extensions of these loss estimators motivated by semiparametric efficiency theory for missing data that better utilize available data. Simulations and a data analysis demonstrate strong performance of the doubly robust survival trees compared with previously used methods. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27037609
Robust reinforcement learning.
Morimoto, Jun; Doya, Kenji
2005-02-01
This letter proposes a new reinforcement learning (RL) paradigm that explicitly takes into account input disturbance as well as modeling errors. The use of environmental models in RL is quite popular for both offline learning using simulations and for online action planning. However, the difference between the model and the real environment can lead to unpredictable, and often unwanted, results. Based on the theory of H(infinity) control, we consider a differential game in which a "disturbing" agent tries to make the worst possible disturbance while a "control" agent tries to make the best control input. The problem is formulated as finding a min-max solution of a value function that takes into account the amount of the reward and the norm of the disturbance. We derive online learning algorithms for estimating the value function and for calculating the worst disturbance and the best control in reference to the value function. We tested the paradigm, which we call robust reinforcement learning (RRL), on the control task of an inverted pendulum. In the linear domain, the policy and the value function learned by online algorithms coincided with those derived analytically by the linear H(infinity) control theory. For a fully nonlinear swing-up task, RRL achieved robust performance with changes in the pendulum weight and friction, while a standard reinforcement learning algorithm could not deal with these changes. We also applied RRL to the cart-pole swing-up task, and a robust swing-up policy was acquired.
ForBild: efficient robust image hashing
NASA Astrophysics Data System (ADS)
Steinebach, Martin; Liu, Huajian; Yannikos, York
2012-03-01
Forensic analysis of image sets today is most often done with the help of cryptographic hashes due to their efficiency, their integration in forensic tools and their excellent reliability in the domain of false detection alarms. A drawback of these hash methods is their fragility to any image processing operation. Even a simple re-compression with JPEG results in an image not detectable. A different approach is to apply image identification methods, allowing identifying illegal images by e.g. semantic models or facing detection algorithms. Their common drawback is a high computational complexity and significant false alarm rates. Robust hashing is a well-known approach sharing characteristics of both cryptographic hashes and image identification methods. It is fast, robust to common image processing and features low false alarm rates. To verify its usability in forensic evaluation, in this work we discuss and evaluate the behavior of an optimized block-based hash.
2003-01-01
The Robust Systems Test Framework (RSTF) provides a means of specifying and running test programs on various computation platforms. RSTF provides a level of specification above standard scripting languages. During a set of runs, standard timing information is collected. The RSTF specification can also gather job-specific information, and can include ways to classify test outcomes. All results and scripts can be stored into and retrieved from an SQL database for later data analysis. RSTF alsomore » provides operations for managing the script and result files, and for compiling applications and gathering compilation information such as optimization flags.« less
NASA Astrophysics Data System (ADS)
Tulsi, Avatar
2016-07-01
Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1{/}√{ln N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(ln N{/}√{N}). Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.
Robust Kriged Kalman Filtering
Baingana, Brian; Dall'Anese, Emiliano; Mateos, Gonzalo; Giannakis, Georgios B.
2015-11-11
Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel l1-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.
Ballance, Robert A.
2003-01-01
The Robust Systems Test Framework (RSTF) provides a means of specifying and running test programs on various computation platforms. RSTF provides a level of specification above standard scripting languages. During a set of runs, standard timing information is collected. The RSTF specification can also gather job-specific information, and can include ways to classify test outcomes. All results and scripts can be stored into and retrieved from an SQL database for later data analysis. RSTF also provides operations for managing the script and result files, and for compiling applications and gathering compilation information such as optimization flags.
NASA Technical Reports Server (NTRS)
Swanson, Keith; Bresina, John; Drummond, Mark
1994-01-01
This paper presents a technique for building robust telescope schedules that tend not to break. The technique is called Just-In-Case (JIC) scheduling and it implements the common sense idea of being prepared for likely errors, just in case they should occur. The JIC algorithm analyzes a given schedule, determines where it is likely to break, reinvokes a scheduler to generate a contingent schedule for each highly probable break case, and produces a 'multiply contingent' schedule. The technique was developed for an automatic telescope scheduling problem, and the paper presents empirical results showing that Just-In-Case scheduling performs extremely well for this problem.
Bayer, T.; Wollenhaupt, M.; Sarpe-Tudoran, C.; Baumert, T.
2009-01-16
We experimentally demonstrate a strong-field coherent control mechanism that combines the advantages of photon locking (PL) and rapid adiabatic passage (RAP). Unlike earlier implementations of PL and RAP by pulse sequences or chirped pulses, we use shaped pulses generated by phase modulation of the spectrum of a femtosecond laser pulse with a generalized phase discontinuity. The novel control scenario is characterized by a high degree of robustness achieved via adiabatic preparation of a state of maximum coherence. Subsequent phase control allows for efficient switching among different target states. We investigate both properties by photoelectron spectroscopy on potassium atoms interacting with the intense shaped light field.
Robust control for uncertain structures
NASA Technical Reports Server (NTRS)
Douglas, Joel; Athans, Michael
1991-01-01
Viewgraphs on robust control for uncertain structures are presented. Topics covered include: robust linear quadratic regulator (RLQR) formulas; mismatched LQR design; RLQR design; interpretations of RLQR design; disturbance rejection; and performance comparisons: RLQR vs. mismatched LQR.
Robust reflective pupil slicing technology
NASA Astrophysics Data System (ADS)
Meade, Jeffrey T.; Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.
2014-07-01
Tornado Spectral Systems (TSS) has developed the High Throughput Virtual Slit (HTVSTM), robust all-reflective pupil slicing technology capable of replacing the slit in research-, commercial- and MIL-SPEC-grade spectrometer systems. In the simplest configuration, the HTVS allows optical designers to remove the lossy slit from pointsource spectrometers and widen the input slit of long-slit spectrometers, greatly increasing throughput without loss of spectral resolution or cross-dispersion information. The HTVS works by transferring etendue between image plane axes but operating in the pupil domain rather than at a focal plane. While useful for other technologies, this is especially relevant for spectroscopic applications by performing the same spectral narrowing as a slit without throwing away light on the slit aperture. HTVS can be implemented in all-reflective designs and only requires a small number of reflections for significant spectral resolution enhancement-HTVS systems can be efficiently implemented in most wavelength regions. The etendueshifting operation also provides smooth scaling with input spot/image size without requiring reconfiguration for different targets (such as different seeing disk diameters or different fiber core sizes). Like most slicing technologies, HTVS provides throughput increases of several times without resolution loss over equivalent slitbased designs. HTVS technology enables robust slit replacement in point-source spectrometer systems. By virtue of pupilspace operation this technology has several advantages over comparable image-space slicer technology, including the ability to adapt gracefully and linearly to changing source size and better vertical packing of the flux distribution. Additionally, this technology can be implemented with large slicing factors in both fast and slow beams and can easily scale from large, room-sized spectrometers through to small, telescope-mounted devices. Finally, this same technology is directly
Tuteja, Anish; Choi, Wonjae; Mabry, Joseph M.; McKinley, Gareth H.; Cohen, Robert E.
2008-01-01
Superhydrophobic surfaces display water contact angles greater than 150° in conjunction with low contact angle hysteresis. Microscopic pockets of air trapped beneath the water droplets placed on these surfaces lead to a composite solid-liquid-air interface in thermodynamic equilibrium. Previous experimental and theoretical studies suggest that it may not be possible to form similar fully-equilibrated, composite interfaces with drops of liquids, such as alkanes or alcohols, that possess significantly lower surface tension than water (γlv = 72.1 mN/m). In this work we develop surfaces possessing re-entrant texture that can support strongly metastable composite solid-liquid-air interfaces, even with very low surface tension liquids such as pentane (γlv = 15.7 mN/m). Furthermore, we propose four design parameters that predict the measured contact angles for a liquid droplet on a textured surface, as well as the robustness of the composite interface, based on the properties of the solid surface and the contacting liquid. These design parameters allow us to produce two different families of re-entrant surfaces— randomly-deposited electrospun fiber mats and precisely fabricated microhoodoo surfaces—that can each support a robust composite interface with essentially any liquid. These omniphobic surfaces display contact angles greater than 150° and low contact angle hysteresis with both polar and nonpolar liquids possessing a wide range of surface tensions. PMID:19001270
Evolving Robust Gene Regulatory Networks
Noman, Nasimul; Monjo, Taku; Moscato, Pablo; Iba, Hitoshi
2015-01-01
Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of ‘parts’ and ‘devices’. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems. PMID:25616055
Robustness in Digital Hardware
NASA Astrophysics Data System (ADS)
Woods, Roger; Lightbody, Gaye
The growth in electronics has probably been the equivalent of the Industrial Revolution in the past century in terms of how much it has transformed our daily lives. There is a great dependency on technology whether it is in the devices that control travel (e.g., in aircraft or cars), our entertainment and communication systems, or our interaction with money, which has been empowered by the onset of Internet shopping and banking. Despite this reliance, there is still a danger that at some stage devices will fail within the equipment's lifetime. The purpose of this chapter is to look at the factors causing failure and address possible measures to improve robustness in digital hardware technology and specifically chip technology, giving a long-term forecast that will not reassure the reader!
Robust automated knowledge capture.
Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt
2011-10-01
This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.
Robust springback compensation
NASA Astrophysics Data System (ADS)
Carleer, Bart; Grimm, Peter
2013-12-01
Springback simulation and springback compensation are more and more applied in productive use of die engineering. In order to successfully compensate a tool accurate springback results are needed as well as an effective compensation approach. In this paper a methodology has been introduce in order to effectively compensate tools. First step is the full process simulation meaning that not only the drawing operation will be simulated but also all secondary operations like trimming and flanging. Second will be the verification whether the process is robust meaning that it obtains repeatable results. In order to effectively compensate a minimum clamping concept will be defined. Once these preconditions are fulfilled the tools can be compensated effectively.
NASA Astrophysics Data System (ADS)
Bliedtner, Jens; Weigel, Yvonne
2005-10-01
Realising the manifold innovations and research results in the field of optical technologies requires a more intense and target-oriented qualification of the students in the next years. In a model project a qualification network between the university, enterprises and research institutions was established for a new consecutive course of studies "Laser and Optotechnologies" at the University of Applied Sciences Jena. The integration of experts from industry and research as well as the introduction of new education methods enables a more practice and science-oriented qualification, enhancing the qualification level and the students' chances on the job market at the same time.
Efficient nearest neighbors via robust sparse hashing.
Cherian, Anoop; Sra, Suvrit; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2014-08-01
This paper presents a new nearest neighbor (NN) retrieval framework: robust sparse hashing (RSH). Our approach is inspired by the success of dictionary learning for sparse coding. Our key idea is to sparse code the data using a learned dictionary, and then to generate hash codes out of these sparse codes for accurate and fast NN retrieval. But, direct application of sparse coding to NN retrieval poses a technical difficulty: when data are noisy or uncertain (which is the case with most real-world data sets), for a query point, an exact match of the hash code generated from the sparse code seldom happens, thereby breaking the NN retrieval. Borrowing ideas from robust optimization theory, we circumvent this difficulty via our novel robust dictionary learning and sparse coding framework called RSH, by learning dictionaries on the robustified counterparts of the perturbed data points. The algorithm is applied to NN retrieval on both simulated and real-world data. Our results demonstrate that RSH holds significant promise for efficient NN retrieval against the state of the art.
Healy, M J F
2015-09-01
The quest for new sensing phenomena continues because detecting, discriminating, identifying, measuring and monitoring nuclear materials and their radiation from greater range, at lower concentrations, and in a more timely fashion brings greater safety, security and efficiency. The potential phenomena are diverse, and those that have been realised can be found in disparate fields of science, engineering and medicine, which makes the full range difficult to realise and record. The framework presented here offers a means to systematically and comprehensively explore nuclear sensing phenomena. The approach is based on the fundamental concepts of matter and energy, where the sequence starts with the original nuclear material and its emissions, and progressively considers signatures arising from secondary effects and the emissions from associated materials and the environment. Concepts of operations such as active and passive interrogation, and networked sensing are considered. In this operational light, unpacking nuclear signatures forces a fresh look at the sensing concept. It also exposes how some phenomena that exist in established technology may be considered novel based on how they could be exploited rather than what they fundamentally are. This article selects phenomena purely to illustrate the framework and how it can be best used to foster creativity in the quest for novel phenomena rather than exhaustively listing, categorising or comparing any practical aspects of candidate phenomena.
Benders, Titia
2013-12-01
Exaggeration of the vowel space in infant-directed speech (IDS) is well documented for English, but not consistently replicated in other languages or for other speech-sound contrasts. A second attested, but less discussed, pattern of change in IDS is an overall rise of the formant frequencies, which may reflect an affective speaking style. The present study investigates longitudinally how Dutch mothers change their corner vowels, voiceless fricatives, and pitch when speaking to their infant at 11 and 15 months of age. In comparison to adult-directed speech (ADS), Dutch IDS has a smaller vowel space, higher second and third formant frequencies in the vowels, and a higher spectral frequency in the fricatives. The formants of the vowels and spectral frequency of the fricatives are raised more strongly for infants at 11 than at 15 months, while the pitch is more extreme in IDS to 15-month olds. These results show that enhanced positive affect is the main factor influencing Dutch mothers' realisation of speech sounds in IDS, especially to younger infants. This study provides evidence that mothers' expression of emotion in IDS can influence the realisation of speech sounds, and that the loss or gain of speech clarity may be secondary effects of affect.
NASA Astrophysics Data System (ADS)
Yang, Qianli; Pitkow, Xaq
2015-03-01
Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.
The robustness of complex networks
NASA Astrophysics Data System (ADS)
Albert, Reka
2002-03-01
Many complex networks display a surprising degree of tolerance against errors. For example, organisms and ecosystems exhibit remarkable robustness to large variations in temperature, moisture, and nutrients, and communication networks continue to function despite local failures. This presentation will explore the effects of the network topology on its robust functioning. First, we will consider the topological integrity of several networks under node disruption. Then we will focus on the functional robustness of biological signaling networks, and the decisive role played by the network topology in this robustness.
Robust levitation control for maglev systems with guaranteed bounded airgap.
Xu, Jinquan; Chen, Ye-Hwa; Guo, Hong
2015-11-01
The robust control design problem for the levitation control of a nonlinear uncertain maglev system is considered. The uncertainty is (possibly) fast time-varying. The system has magnitude limitation on the airgap between the suspended chassis and the guideway in order to prevent undesirable contact. Furthermore, the (global) matching condition is not satisfied. After a three-step state transformation, a robust control scheme for the maglev vehicle is proposed, which is able to guarantee the uniform boundedness and uniform ultimate boundedness of the system, regardless of the uncertainty. The magnitude limitation of the airgap is guaranteed, regardless of the uncertainty. PMID:26524957
Robust, Optimal Subsonic Airfoil Shapes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2014-01-01
A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.
Robust Understanding of Statistical Variation
ERIC Educational Resources Information Center
Peters, Susan A.
2011-01-01
This paper presents a framework that captures the complexity of reasoning about variation in ways that are indicative of robust understanding and describes reasoning as a blend of design, data-centric, and modeling perspectives. Robust understanding is indicated by integrated reasoning about variation within each perspective and across…
Facial symmetry in robust anthropometrics.
Kalina, Jan
2012-05-01
Image analysis methods commonly used in forensic anthropology do not have desirable robustness properties, which can be ensured by robust statistical methods. In this paper, the face localization in images is carried out by detecting symmetric areas in the images. Symmetry is measured between two neighboring rectangular areas in the images using a new robust correlation coefficient, which down-weights regions in the face violating the symmetry. Raw images of faces without usual preliminary transformations are considered. The robust correlation coefficient based on the least weighted squares regression yields very promising results also in the localization of such faces, which are not entirely symmetric. Standard methods of statistical machine learning are applied for comparison. The robust correlation analysis can be applicable to other problems of forensic anthropology.
NASA Technical Reports Server (NTRS)
Westall, F.; Steele, A.; Toporski, J.; Walsh, M. M.; Allen, C. C.; Guidry, S.; McKay, D. S.; Gibson, E. K.; Chafetz, H. S.
2000-01-01
containing fossil biofilm, including the 3.5 b.y..-old carbonaceous cherts from South Africa and Australia. As a result of the unique compositional, structural and "mineralisable" properties of bacterial polymer and biofilms, we conclude that bacterial polymers and biofilms constitute a robust and reliable biomarker for life on Earth and could be a potential biomarker for extraterrestrial life.
FAST: FAST Analysis of Sequences Toolbox
Lawrence, Travis J.; Kauffman, Kyle T.; Amrine, Katherine C. H.; Carper, Dana L.; Lee, Raymond S.; Becich, Peter J.; Canales, Claudia J.; Ardell, David H.
2015-01-01
FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought. PMID:26042145
FAST: FAST Analysis of Sequences Toolbox.
Lawrence, Travis J; Kauffman, Kyle T; Amrine, Katherine C H; Carper, Dana L; Lee, Raymond S; Becich, Peter J; Canales, Claudia J; Ardell, David H
2015-01-01
FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.
NASA Astrophysics Data System (ADS)
Heo, Gaeun; Pyo, Kyoung-Hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong
2016-05-01
This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels–Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching–releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11.
A grating-less in-fibre magnetometer realised in a polymer-MOF infiltrated using ferrofluid
NASA Astrophysics Data System (ADS)
Candiani, A.; Argyros, A.; Lwin, R.; Leon-Saval, S. G.; Zito, G.; Selleri, S.; Pissadakis, S.
2012-04-01
We report a grating-less, in-fibre magnetometer realised in a polymethylmethacrylate (PMMA) microstructured optical fibre that has been infiltrated using a hydrocarbon oil based ferrofluid. The lossy magnetic fluid has been infiltrated by capillarity action into the microcapillaries of the fiber cladding, resulting in a generation of a short cut-off band located in the vicinity of 600nm. When the magnetic field is applied perpendicular to the fiber axis, the ferrofluid undergoes refractive index and scattering loss changes, modulating the transmission properties of the infiltrated microstructured fibre. Spectral measurements of the transmitted signal are reported for magnetic field changes up to 1300Gauss, revealing a strong decrease of the signal near its bandgap edge proportionally with the increase of the magnetic field. Instead, when the magnetic field is applied with respect to the rotational symmetry the fibre axis, the sensor exhibits high polarisation sensitivity for a specific wavelength band, providing the possibility of directional measurements.
Heo, Gaeun; Pyo, Kyoung-hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong
2016-01-01
This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels–Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching–releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11. PMID:27140436
RSRE: RNA structural robustness evaluator.
Shu, Wenjie; Bo, Xiaochen; Zheng, Zhiqiang; Wang, Shengqi
2007-07-01
Biological robustness, defined as the ability to maintain stable functioning in the face of various perturbations, is an important and fundamental topic in current biology, and has become a focus of numerous studies in recent years. Although structural robustness has been explored in several types of RNA molecules, the origins of robustness are still controversial. Computational analysis results are needed to make up for the lack of evidence of robustness in natural biological systems. The RNA structural robustness evaluator (RSRE) web server presented here provides a freely available online tool to quantitatively evaluate the structural robustness of RNA based on the widely accepted definition of neutrality. Several classical structure comparison methods are employed; five randomization methods are implemented to generate control sequences; sub-optimal predicted structures can be optionally utilized to mitigate the uncertainty of secondary structure prediction. With a user-friendly interface, the web application is easy to use. Intuitive illustrations are provided along with the original computational results to facilitate analysis. The RSRE will be helpful in the wide exploration of RNA structural robustness and will catalyze our understanding of RNA evolution. The RSRE web server is freely available at http://biosrv1.bmi.ac.cn/RSRE/ or http://biotech.bmi.ac.cn/RSRE/.
Pervasive robustness in biological systems.
Félix, Marie-Anne; Barkoulas, Michalis
2015-08-01
Robustness is characterized by the invariant expression of a phenotype in the face of a genetic and/or environmental perturbation. Although phenotypic variance is a central measure in the mapping of the genotype and environment to the phenotype in quantitative evolutionary genetics, robustness is also a key feature in systems biology, resulting from nonlinearities in quantitative relationships between upstream and downstream components. In this Review, we provide a synthesis of these two lines of investigation, converging on understanding how variation propagates across biological systems. We critically assess the recent proliferation of studies identifying robustness-conferring genes in the context of the nonlinearity in biological systems. PMID:26184598
Population genetics of translational robustness.
Wilke, Claus O; Drummond, D Allan
2006-05-01
Recent work has shown that expression level is the main predictor of a gene's evolutionary rate and that more highly expressed genes evolve slower. A possible explanation for this observation is selection for proteins that fold properly despite mistranslation, in short selection for translational robustness. Translational robustness leads to the somewhat paradoxical prediction that highly expressed genes are extremely tolerant to missense substitutions but nevertheless evolve very slowly. Here, we study a simple theoretical model of translational robustness that allows us to gain analytic insight into how this paradoxical behavior arises.
Robustness of airline route networks
NASA Astrophysics Data System (ADS)
Lordan, Oriol; Sallan, Jose M.; Escorihuela, Nuria; Gonzalez-Prieto, David
2016-03-01
Airlines shape their route network by defining their routes through supply and demand considerations, paying little attention to network performance indicators, such as network robustness. However, the collapse of an airline network can produce high financial costs for the airline and all its geographical area of influence. The aim of this study is to analyze the topology and robustness of the network route of airlines following Low Cost Carriers (LCCs) and Full Service Carriers (FSCs) business models. Results show that FSC hubs are more central than LCC bases in their route network. As a result, LCC route networks are more robust than FSC networks.
Robust mobility in human-populated environments
NASA Astrophysics Data System (ADS)
Gonzalez, Juan Pablo; Phillips, Mike; Neuman, Brad; Likhachev, Max
2012-06-01
Creating robots that can help humans in a variety of tasks requires robust mobility and the ability to safely navigate among moving obstacles. This paper presents an overview of recent research in the Robotics Collaborative Technology Alliance (RCTA) that addresses many of the core requirements for robust mobility in human-populated environments. Safe Interval Path Planning (SIPP) allows for very fast planning in dynamic environments when planning timeminimal trajectories. Generalized Safe Interval Path Planning extends this concept to trajectories that minimize arbitrary cost functions. Finally, generalized PPCP algorithm is used to generate plans that reason about the uncertainty in the predicted trajectories of moving obstacles and try to actively disambiguate the intentions of humans whenever necessary. We show how these approaches consider moving obstacles and temporal constraints and produce high-fidelity paths. Experiments in simulated environments show the performance of the algorithms under different controlled conditions, and experiments on physical mobile robots interacting with humans show how the algorithms perform under the uncertainties of the real world.
Robust Optimization of Biological Protocols
Flaherty, Patrick; Davis, Ronald W.
2015-01-01
When conducting high-throughput biological experiments, it is often necessary to develop a protocol that is both inexpensive and robust. Standard approaches are either not cost-effective or arrive at an optimized protocol that is sensitive to experimental variations. We show here a novel approach that directly minimizes the cost of the protocol while ensuring the protocol is robust to experimental variation. Our approach uses a risk-averse conditional value-at-risk criterion in a robust parameter design framework. We demonstrate this approach on a polymerase chain reaction protocol and show that our improved protocol is less expensive than the standard protocol and more robust than a protocol optimized without consideration of experimental variation. PMID:26417115
Surface-preserving robust watermarking of 3-D shapes.
Luo, Ming; Bors, Adrian G
2011-10-01
This paper describes a new statistical approach for watermarking mesh representations of 3-D graphical objects. A robust digital watermarking method has to mitigate among the requirements of watermark invisibility, robustness, embedding capacity and key security. The proposed method employs a mesh propagation distance metric procedure called the fast marching method (FMM), which defines regions of equal geodesic distance width calculated with respect to a reference location on the mesh. Each of these regions is used for embedding a single bit. The embedding is performed by changing the normalized distribution of local geodesic distances from within each region. Two different embedding methods are used by changing the mean or the variance of geodesic distance distributions. Geodesic distances are slightly modified statistically by displacing the vertices in their existing triangle planes. The vertex displacements, performed according to the FMM, ensure a minimal surface distortion while embedding the watermark code. Robustness to a variety of attacks is shown according to experimental results.
A robust chaotic algorithm for digital image steganography
NASA Astrophysics Data System (ADS)
Ghebleh, M.; Kanso, A.
2014-06-01
This paper proposes a new robust chaotic algorithm for digital image steganography based on a 3-dimensional chaotic cat map and lifted discrete wavelet transforms. The irregular outputs of the cat map are used to embed a secret message in a digital cover image. Discrete wavelet transforms are used to provide robustness. Sweldens' lifting scheme is applied to ensure integer-to-integer transforms, thus improving the robustness of the algorithm. The suggested scheme is fast, efficient and flexible. Empirical results are presented to showcase the satisfactory performance of our proposed steganographic scheme in terms of its effectiveness (imperceptibility and security) and feasibility. Comparison with some existing transform domain steganographic schemes is also presented.
Robust controls with structured perturbations
NASA Technical Reports Server (NTRS)
Keel, Leehyun
1993-01-01
This final report summarizes the recent results obtained by the principal investigator and his coworkers on the robust stability and control of systems containing parametric uncertainty. The starting point is a generalization of Kharitonov's theorem obtained in 1989, and its generalization to the multilinear case, the singling out of extremal stability subsets, and other ramifications now constitutes an extensive and coherent theory of robust parametric stability that is summarized in the results contained here.
Designing robust control laws using genetic algorithms
NASA Technical Reports Server (NTRS)
Marrison, Chris
1994-01-01
The purpose of this research is to create a method of finding practical, robust control laws. The robustness of a controller is judged by Stochastic Robustness metrics and the level of robustness is optimized by searching for design parameters that minimize a robustness cost function.
NASA Astrophysics Data System (ADS)
Kwakkel, Jan; Haasnoot, Marjolijn
2015-04-01
In response to climate and socio-economic change, in various policy domains there is increasingly a call for robust plans or policies. That is, plans or policies that performs well in a very large range of plausible futures. In the literature, a wide range of alternative robustness metrics can be found. The relative merit of these alternative conceptualizations of robustness has, however, received less attention. Evidently, different robustness metrics can result in different plans or policies being adopted. This paper investigates the consequences of several robustness metrics on decision making, illustrated here by the design of a flood risk management plan. A fictitious case, inspired by a river reach in the Netherlands is used. The performance of this system in terms of casualties, damages, and costs for flood and damage mitigation actions is explored using a time horizon of 100 years, and accounting for uncertainties pertaining to climate change and land use change. A set of candidate policy options is specified up front. This set of options includes dike raising, dike strengthening, creating more space for the river, and flood proof building and evacuation options. The overarching aim is to design an effective flood risk mitigation strategy that is designed from the outset to be adapted over time in response to how the future actually unfolds. To this end, the plan will be based on the dynamic adaptive policy pathway approach (Haasnoot, Kwakkel et al. 2013) being used in the Dutch Delta Program. The policy problem is formulated as a multi-objective robust optimization problem (Kwakkel, Haasnoot et al. 2014). We solve the multi-objective robust optimization problem using several alternative robustness metrics, including both satisficing robustness metrics and regret based robustness metrics. Satisficing robustness metrics focus on the performance of candidate plans across a large ensemble of plausible futures. Regret based robustness metrics compare the
ERIC Educational Resources Information Center
Weiss, Felix; Steininger, Hanna-Marei
2013-01-01
In this article, we evaluate the impact of social origin on the realisation of educational intentions at the time of becoming eligible for higher education in Germany. In general, we find high persistence of intentions and actual attendance of higher education. However, effects of parental education on the changes of educational intentions…
ERIC Educational Resources Information Center
Polat, Soner; Ugurlu, Celal Teyyar
2008-01-01
The aim of this research is to point out primary school teachers' expectations about inspectors' guidance roles and the realisation level of these expectations. The data used in this research that will be done in descriptive scanning model is collected from the views of primary school teachers selected randomly from Balikesir, Batman and Hatay.…
ERIC Educational Resources Information Center
Lahtero, Tapio Juhani; Kuusilehto-Awale, Lea
2013-01-01
This article introduces a quantitative research into how the leadership team members of 49 basic education schools in the city of Vantaa, Finland, experienced the realisation of strategic leadership in their leadership teams' work. The data were collected by a survey of 24 statements, rated on a five-point Likert scale, and analysed with the…
ERIC Educational Resources Information Center
Stamelos, Georgios; Bartzakli, Marianna
2013-01-01
The purpose of this article is to analyse and interpret the effect of the primary school teachers' trade union in Greece insofar as the formation and realisation of education policy is concerned, and, more precisely, insofar as it concerns the issue of teacher evaluation. The research material used comes from the filing and analysis of the…
NASA Astrophysics Data System (ADS)
McEvoy, H. C.
2008-01-01
Over the years, a number of international comparisons have been performed, in the field of radiation thermometry, to compare realisation of temperature scales. These have involved the use of a transfer instrument circulated among participants and were designed to compare the different ITS-90 realisations at different national measurement institutes (NMIs). EUROMET project 658 ('The examination of base parameters for ITS-90 scale realisation') was instigated to investigate the uncertainties of some of the underlying parameters in these ITS-90 realisations, namely: the size-of-source effect, linearity and relative spectral response of a radiation thermometer, and the calculation of the emissivity of different designs of blackbody cavity. The comparison was led by NPL and involved the following NMIs: PTB, VSL, CEM, UME, BNM-INM (Cnam) and IMGC. The comparison was performed by circulating two precision radiation thermometers (an IKE LP3 belonging to PTB and a VEGA TSP2 belonging to IMGC). This report describes the measurement procedures used in each laboratory and compares the results obtained from the measurements by the participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EUROMET, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Robust control of hypersonic aircraft
NASA Astrophysics Data System (ADS)
Fan, Yong-hua; Yang, Jun; Zhang, Yu-zhuo
2007-11-01
Design of a robust controller for the longitudinal dynamics of a hypersonic aircraft by using parameter space method is present. The desirable poles are mapped to the parameter space of the controller using pole placement approach in this method. The intersection of the parameter space is the common controller for the multiple mode system. This controller can meet the need of the different phases of aircraft. It has been proved by simulation that the controller has highly performance of precision and robustness for the disturbance caused by separation, cowl open, fuel on and fuel off and perturbation caused by unknown dynamics.
Robust Sparse Blind Source Separation
NASA Astrophysics Data System (ADS)
Chenot, Cecile; Bobin, Jerome; Rapin, Jeremy
2015-11-01
Blind Source Separation is a widely used technique to analyze multichannel data. In many real-world applications, its results can be significantly hampered by the presence of unknown outliers. In this paper, a novel algorithm coined rGMCA (robust Generalized Morphological Component Analysis) is introduced to retrieve sparse sources in the presence of outliers. It explicitly estimates the sources, the mixing matrix, and the outliers. It also takes advantage of the estimation of the outliers to further implement a weighting scheme, which provides a highly robust separation procedure. Numerical experiments demonstrate the efficiency of rGMCA to estimate the mixing matrix in comparison with standard BSS techniques.
... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ...
Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated fat, ...
Fast-track for fast times: catching and keeping generation Y in the nursing workforce.
Walker, Kim
2007-04-01
There is little doubt we find ourselves in challenging times as never before has there been such generational diversity in the nursing workforce. Currently, nurses from four distinct (and now well recognised and discussed) generational groups jostle for primacy of recognition and reward. Equally significant is the acute realisation that our ageing profession must find ways to sustain itself in the wake of huge attrition as the 'baby boomer' nurses start retiring over the next ten to fifteen years. These realities impel us to become ever more strategic in our thinking about how best to manage the workforce of the future. This paper presents two exciting and original innovations currently in train at one of Australia's leading Catholic health care providers: firstly, a new fast-track bachelor of nursing program for fee-paying domestic students. This is a collaborative venture between St Vincent's and Mater Health, Sydney (SV&MHS) and the University of Tasmania (UTas); as far as we know, it is unprecedented in Australia. As well, the two private facilities of SV&MHS, St Vincent's Private (SVPH) and the Mater Hospitals, have developed and implemented a unique 'accelerated progression pathway' (APP) to enable registered nurses with talent and ambition to fast track their career through a competency and merit based system of performance management and reward. Both these initiatives are aimed squarely at the gen Y demographic and provide potential to significantly augment our capacity to recruit and retain quality people well into the future.
Network Robustness: the whole story
NASA Astrophysics Data System (ADS)
Longjas, A.; Tejedor, A.; Zaliapin, I. V.; Ambroj, S.; Foufoula-Georgiou, E.
2014-12-01
A multitude of actual processes operating on hydrological networks may exhibit binary outcomes such as clean streams in a river network that may become contaminated. These binary outcomes can be modeled by node removal processes (attacks) acting in a network. Network robustness against attacks has been widely studied in fields as diverse as the Internet, power grids and human societies. However, the current definition of robustness is only accounting for the connectivity of the nodes unaffected by the attack. Here, we put forward the idea that the connectivity of the affected nodes can play a crucial role in proper evaluation of the overall network robustness and its future recovery from the attack. Specifically, we propose a dual perspective approach wherein at any instant in the network evolution under attack, two distinct networks are defined: (i) the Active Network (AN) composed of the unaffected nodes and (ii) the Idle Network (IN) composed of the affected nodes. The proposed robustness metric considers both the efficiency of destroying the AN and the efficiency of building-up the IN. This approach is motivated by concrete applied problems, since, for example, if we study the dynamics of contamination in river systems, it is necessary to know both the connectivity of the healthy and contaminated parts of the river to assess its ecological functionality. We show that trade-offs between the efficiency of the Active and Idle network dynamics give rise to surprising crossovers and re-ranking of different attack strategies, pointing to significant implications for decision making.
Robust Sliding Window Synchronizer Developed
NASA Technical Reports Server (NTRS)
Chun, Kue S.; Xiong, Fuqin; Pinchak, Stanley
2004-01-01
The development of an advanced robust timing synchronization scheme is crucial for the support of two NASA programs--Advanced Air Transportation Technologies and Aviation Safety. A mobile aeronautical channel is a dynamic channel where various adverse effects--such as Doppler shift, multipath fading, and shadowing due to precipitation, landscape, foliage, and buildings--cause the loss of symbol timing synchronization.
Mental Models: A Robust Definition
ERIC Educational Resources Information Center
Rook, Laura
2013-01-01
Purpose: The concept of a mental model has been described by theorists from diverse disciplines. The purpose of this paper is to offer a robust definition of an individual mental model for use in organisational management. Design/methodology/approach: The approach adopted involves an interdisciplinary literature review of disciplines, including…
Robust Portfolio Optimization Using Pseudodistances
2015-01-01
The presence of outliers in financial asset returns is a frequently occurring phenomenon which may lead to unreliable mean-variance optimized portfolios. This fact is due to the unbounded influence that outliers can have on the mean returns and covariance estimators that are inputs in the optimization procedure. In this paper we present robust estimators of mean and covariance matrix obtained by minimizing an empirical version of a pseudodistance between the assumed model and the true model underlying the data. We prove and discuss theoretical properties of these estimators, such as affine equivariance, B-robustness, asymptotic normality and asymptotic relative efficiency. These estimators can be easily used in place of the classical estimators, thereby providing robust optimized portfolios. A Monte Carlo simulation study and applications to real data show the advantages of the proposed approach. We study both in-sample and out-of-sample performance of the proposed robust portfolios comparing them with some other portfolios known in literature. PMID:26468948
Robust design of dynamic observers
NASA Technical Reports Server (NTRS)
Bhattacharyya, S. P.
1974-01-01
The two (identity) observer realizations z = Mz + Ky and z = transpose of Az + transpose of K(y - transpose of Cz), respectively called the open loop and closed loop realizations, for the linear system x = Ax, y = Cx are analyzed with respect to the requirement of robustness; i.e., the requirement that the observer continue to regulate the error x - z satisfactorily despite small variations in the observer parameters from the projected design values. The results show that the open loop realization is never robust, that robustness requires a closed loop implementation, and that the closed loop realization is robust with respect to small perturbations in the gains transpose of K if and only if the observer can be built to contain an exact replica of the unstable and underdamped dynamics of the system being observed. These results clarify the stringent accuracy requirements on both models and hardware that must be met before an observer can be considered for use in a control system.
Garber, Andrea K; Lustig, Robert H
2011-09-01
Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations.
Garber, Andrea K; Lustig, Robert H
2011-09-01
Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations. PMID:21999689
Robust multiplatform RF emitter localization
NASA Astrophysics Data System (ADS)
Al Issa, Huthaifa; Ordóñez, Raúl
2012-06-01
In recent years, position based services has increase. Thus, recent developments in communications and RF technology have enabled system concept formulations and designs for low-cost radar systems using state-of-the-art software radio modules. This research is done to investigate a novel multi-platform RF emitter localization technique denoted as Position-Adaptive RF Direction Finding (PADF). The formulation is based on the investigation of iterative path-loss (i.e., Path Loss Exponent, or PLE) metrics estimates that are measured across multiple platforms in order to autonomously adapt (i.e. self-adjust) of the location of each distributed/cooperative platform. Experiments conducted at the Air-Force Research laboratory (AFRL) indicate that this position-adaptive approach exhibits potential for accurate emitter localization in challenging embedded multipath environments such as in urban environments. The focus of this paper is on the robustness of the distributed approach to RF-based location tracking. In order to localize the transmitter, we use the Received Signal Strength Indicator (RSSI) data to approximate distance from the transmitter to the revolving receivers. We provide an algorithm for on-line estimation of the Path Loss Exponent (PLE) that is used in modeling the distance based on Received Signal Strength (RSS) measurements. The emitter position estimation is calculated based on surrounding sensors RSS values using Least-Square Estimation (LSE). The PADF has been tested on a number of different configurations in the laboratory via the design and implementation of four IRIS wireless sensor nodes as receivers and one hidden sensor as a transmitter during the localization phase. The robustness of detecting the transmitters position is initiated by getting the RSSI data through experiments and then data manipulation in MATLAB will determine the robustness of each node and ultimately that of each configuration. The parameters that are used in the functions are
ERIC Educational Resources Information Center
Fullick, Leisha; Field, John; Rees, Teresa; Gilchrist, Helen
2009-01-01
The Inquiry into the Future for Lifelong Learning proposes a strategy for lifelong learning for the next quarter-century. In this article, four of the Inquiry's commissioners--Leisha Fullick, John Field, Teresa Rees and Helen Gilchrist--reflect on some of the report's key themes. Fullick discusses the role of "local responsiveness" in…
NASA Astrophysics Data System (ADS)
Santos, Abel; Yoo, Jeong Ha; Rohatgi, Charu Vashisth; Kumeria, Tushar; Wang, Ye; Losic, Dusan
2016-01-01
This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic mode is used with the aim of engineering the effective medium of NAA in a sinusoidal fashion. A precise control over the different anodisation parameters (i.e. anodisation period, anodisation amplitude, anodisation offset, number of pulses, anodisation temperature and pore widening time) makes it possible to engineer the characteristic reflection peaks and interferometric colours of NAA-RFs, which can be finely tuned across the UV-visible-NIR spectrum. The effect of the aforementioned anodisation parameters on the photonic properties of NAA-RFs (i.e. characteristic reflection peaks and interferometric colours) is systematically assessed in order to establish for the first time a comprehensive rationale towards NAA-RFs with fully controllable photonic properties. The experimental results are correlated with a theoretical model (Looyenga-Landau-Lifshitz - LLL), demonstrating that the effective medium of these photonic nanostructures can be precisely described by the effective medium approximation. NAA-RFs are also demonstrated as chemically selective photonic platforms combined with reflectometric interference spectroscopy (RIfS). The resulting optical sensing system is used to assess the reversible binding affinity between a model drug (i.e. indomethacin) and human serum albumin (HSA) in real-time. Our results demonstrate that this system can be used to determine the overall pharmacokinetic profile of drugs, which is a critical aspect to be considered for the implementation of efficient medical therapies.This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic
Santos, Abel; Yoo, Jeong Ha; Rohatgi, Charu Vashisth; Kumeria, Tushar; Wang, Ye; Losic, Dusan
2016-01-21
This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic mode is used with the aim of engineering the effective medium of NAA in a sinusoidal fashion. A precise control over the different anodisation parameters (i.e. anodisation period, anodisation amplitude, anodisation offset, number of pulses, anodisation temperature and pore widening time) makes it possible to engineer the characteristic reflection peaks and interferometric colours of NAA-RFs, which can be finely tuned across the UV-visible-NIR spectrum. The effect of the aforementioned anodisation parameters on the photonic properties of NAA-RFs (i.e. characteristic reflection peaks and interferometric colours) is systematically assessed in order to establish for the first time a comprehensive rationale towards NAA-RFs with fully controllable photonic properties. The experimental results are correlated with a theoretical model (Looyenga-Landau-Lifshitz - LLL), demonstrating that the effective medium of these photonic nanostructures can be precisely described by the effective medium approximation. NAA-RFs are also demonstrated as chemically selective photonic platforms combined with reflectometric interference spectroscopy (RIfS). The resulting optical sensing system is used to assess the reversible binding affinity between a model drug (i.e. indomethacin) and human serum albumin (HSA) in real-time. Our results demonstrate that this system can be used to determine the overall pharmacokinetic profile of drugs, which is a critical aspect to be considered for the implementation of efficient medical therapies.
Rice, S; McAllister, E J; Dhurandhar, N V
2007-06-01
Fast food is routinely blamed for the obesity epidemic and consequentially excluded from professional dietary recommendations. However, several sections of society including senior citizens, low-income adult and children, minority and homeless children, or those pressed for time appear to rely on fast food as an important source of meals. Considering the dependence of these nutritionally vulnerable population groups on fast food, we examined the possibility of imaginative selection of fast food, which would attenuate the potentially unfavorable nutrient composition. We present a sample menu to demonstrate that it is possible to design a fast food menu that provides reasonable level of essential nutrients without exceeding the caloric recommendations. We would like to alert health-care professionals that fast food need not be forbidden under all circumstances, and that a fresh look at the role of fast food may enable its inclusion in meal planning for those who depend on it out of necessity, while adding flexibility.
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Clucas, Jean; McCabe, R. Kevin; Plessel, Todd; Potter, R.; Cooper, D. M. (Technical Monitor)
1994-01-01
The Flow Analysis Software Toolkit, FAST, is a software environment for visualizing data. FAST is a collection of separate programs (modules) that run simultaneously and allow the user to examine the results of numerical and experimental simulations. The user can load data files, perform calculations on the data, visualize the results of these calculations, construct scenes of 3D graphical objects, and plot, animate and record the scenes. Computational Fluid Dynamics (CFD) visualization is the primary intended use of FAST, but FAST can also assist in the analysis of other types of data. FAST combines the capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one environment with modules that share data. Sharing data between modules eliminates the drudgery of transferring data between programs. All the modules in the FAST environment have a consistent, highly interactive graphical user interface. Most commands are entered by pointing and'clicking. The modular construction of FAST makes it flexible and extensible. The environment can be custom configured and new modules can be developed and added as needed. The following modules have been developed for FAST: VIEWER, FILE IO, CALCULATOR, SURFER, TOPOLOGY, PLOTTER, TITLER, TRACER, ARCGRAPH, GQ, SURFERU, SHOTET, and ISOLEVU. A utility is also included to make the inclusion of user defined modules in the FAST environment easy. The VIEWER module is the central control for the FAST environment. From VIEWER, the user can-change object attributes, interactively position objects in three-dimensional space, define and save scenes, create animations, spawn new FAST modules, add additional view windows, and save and execute command scripts. The FAST User Guide uses text and FAST MAPS (graphical representations of the entire user interface) to guide the user through the use of FAST. Chapters include: Maps, Overview, Tips, Getting Started Tutorial, a separate chapter for each module, file formats, and system
Algebraic connectivity and graph robustness.
Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.
2009-07-01
Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.
Robust dynamic mitigation of instabilities
NASA Astrophysics Data System (ADS)
Kawata, S.; Karino, T.
2015-04-01
A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [S. Kawata, Phys. Plasmas 19, 024503 (2012)]. In the present paper, the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude, and the wavelength of the wobbling perturbation applied. Generally, instability would emerge from the perturbation of the physical quantity. Normally, the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superposition of perturbations imposed actively: If the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled, and the instability growth is mitigated by the superposition of the growing perturbations.
Robust dynamic mitigation of instabilities
Kawata, S.; Karino, T.
2015-04-15
A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [S. Kawata, Phys. Plasmas 19, 024503 (2012)]. In the present paper, the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude, and the wavelength of the wobbling perturbation applied. Generally, instability would emerge from the perturbation of the physical quantity. Normally, the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superposition of perturbations imposed actively: If the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled, and the instability growth is mitigated by the superposition of the growing perturbations.
Punctuated evolution and robustness in morphogenesis
Grigoriev, D.; Reinitz, J.; Vakulenko, S.; Weber, A.
2014-01-01
This paper presents an analytic approach to the pattern stability and evolution problem in morphogenesis. The approach used here is based on the ideas from the gene and neural network theory. We assume that gene networks contain a number of small groups of genes (called hubs) controlling morphogenesis process. Hub genes represent an important element of gene network architecture and their existence is empirically confirmed. We show that hubs can stabilize morphogenetic pattern and accelerate the morphogenesis. The hub activity exhibits an abrupt change depending on the mutation frequency. When the mutation frequency is small, these hubs suppress all mutations and gene product concentrations do not change, thus, the pattern is stable. When the environmental pressure increases and the population needs new genotypes, the genetic drift and other effects increase the mutation frequency. For the frequencies that are larger than a critical amount the hubs turn off; and as a result, many mutations can affect phenotype. This effect can serve as an engine for evolution. We show that this engine is very effective: the evolution acceleration is an exponential function of gene redundancy. Finally, we show that the Eldredge-Gould concept of punctuated evolution results from the network architecture, which provides fast evolution, control of evolvability, and pattern robustness. To describe analytically the effect of exponential acceleration, we use mathematical methods developed recently for hard combinatorial problems, in particular, for so-called k-SAT problem, and numerical simulations. PMID:24996115
Robust, optimal subsonic airfoil shapes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2008-01-01
Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.
Robust flight control of rotorcraft
NASA Astrophysics Data System (ADS)
Pechner, Adam Daniel
With recent design improvement in fixed wing aircraft, there has been a considerable interest in the design of robust flight control systems to compensate for the inherent instability necessary to achieve desired performance. Such systems are designed for maximum available retention of stability and performance in the presence of significant vehicle damage or system failure. The rotorcraft industry has shown similar interest in adopting these reconfigurable flight control schemes specifically because of their ability to reject disturbance inputs and provide a significant amount of robustness for all but the most catastrophic of situations. The research summarized herein focuses on the extension of the pseudo-sliding mode control design procedure interpreted in the frequency domain. Application of the technique is employed and simulated on two well known helicopters, a simplified model of a hovering Sikorsky S-61 and the military's Black Hawk UH-60A also produced by Sikorsky. The Sikorsky helicopter model details are readily available and was chosen because it can be limited to pitch and roll motion reducing the number of degrees of freedom and yet contains two degrees of freedom, which is the minimum requirement in proving the validity of the pseudo-sliding control technique. The full order model of a hovering Black Hawk system was included both as a comparison to the S-61 helicopter design system and as a means to demonstrate the scaleability and effectiveness of the control technique on sophisticated systems where design robustness is of critical concern.
Robust Path Planning and Feedback Design Under Stochastic Uncertainty
NASA Technical Reports Server (NTRS)
Blackmore, Lars
2008-01-01
Autonomous vehicles require optimal path planning algorithms to achieve mission goals while avoiding obstacles and being robust to uncertainties. The uncertainties arise from exogenous disturbances, modeling errors, and sensor noise, which can be characterized via stochastic models. Previous work defined a notion of robustness in a stochastic setting by using the concept of chance constraints. This requires that mission constraint violation can occur with a probability less than a prescribed value.In this paper we describe a novel method for optimal chance constrained path planning with feedback design. The approach optimizes both the reference trajectory to be followed and the feedback controller used to reject uncertainty. Our method extends recent results in constrained control synthesis based on convex optimization to solve control problems with nonconvex constraints. This extension is essential for path planning problems, which inherently have nonconvex obstacle avoidance constraints. Unlike previous approaches to chance constrained path planning, the new approach optimizes the feedback gain as wellas the reference trajectory.The key idea is to couple a fast, nonconvex solver that does not take into account uncertainty, with existing robust approaches that apply only to convex feasible regions. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence to a global optimum. We apply the new method to an unmanned aircraft and show simulation results that demonstrate the efficacy of the approach.
Membrane Resonance Enables Stable and Robust Gamma Oscillations
Moca, Vasile V.; Nikolić, Danko; Singer, Wolf; Mureşan, Raul C.
2014-01-01
Neuronal mechanisms underlying beta/gamma oscillations (20–80 Hz) are not completely understood. Here, we show that in vivo beta/gamma oscillations in the cat visual cortex sometimes exhibit remarkably stable frequency even when inputs fluctuate dramatically. Enhanced frequency stability is associated with stronger oscillations measured in individual units and larger power in the local field potential. Simulations of neuronal circuitry demonstrate that membrane properties of inhibitory interneurons strongly determine the characteristics of emergent oscillations. Exploration of networks containing either integrator or resonator inhibitory interneurons revealed that: (i) Resonance, as opposed to integration, promotes robust oscillations with large power and stable frequency via a mechanism called RING (Resonance INduced Gamma); resonance favors synchronization by reducing phase delays between interneurons and imposes bounds on oscillation cycle duration; (ii) Stability of frequency and robustness of the oscillation also depend on the relative timing of excitatory and inhibitory volleys within the oscillation cycle; (iii) RING can reproduce characteristics of both Pyramidal INterneuron Gamma (PING) and INterneuron Gamma (ING), transcending such classifications; (iv) In RING, robust gamma oscillations are promoted by slow but are impaired by fast inputs. Results suggest that interneuronal membrane resonance can be an important ingredient for generation of robust gamma oscillations having stable frequency. PMID:23042733
Mitigation of Remedial Action Schemes by Decentralized Robust Governor Control
Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Lian, Jianming; Kalsi, Karanjit; Du, Pengwei
2014-04-15
This paper presents transient stability improvement by a new distributed hierarchical control architecture (DHC). The integration of remedial action schemes (RAS) to the distributed hierarchical control architecture is studied. RAS in power systems are designed to maintain stability and avoid undesired system conditions by rapidly switching equipment and/or changing operating points according to predetermined rules. The acceleration trend relay currently in use in the US western interconnection is an example of RAS that trips generators to maintain transient stability. The link between RAS and DHC is through fast acting robust turbine/governor control that can also improve transient stability. In this paper, the influence of the decentralized robust turbine/governor control on the design of RAS is studied. Benefits of combining these two schemes are increasing power transfer capability and mitigation of RAS generator tripping actions; the later benefit is shown through simulations.
Robust quantum gates between trapped ions using shaped pulses
NASA Astrophysics Data System (ADS)
Zou, Ping; Zhang, Zhi-Ming
2015-12-01
We improve two existing entangling gate schemes between trapped ion qubits immersed in a large linear crystal. Based on the existing two-qubit gate schemes by applying segmented forces on the individually addressed qubits, we present a systematic method to optimize the shapes of the forces to suppress the dominant source of infidelity. The spin-dependent forces in the scheme can be from periodic photon kicks or from continuous optical pulses. The entangling gates are fast, robust, and have high fidelity. They can be used to implement scalable quantum computation and quantum simulation.
Light field reconstruction robust to signal dependent noise
NASA Astrophysics Data System (ADS)
Ren, Kun; Bian, Liheng; Suo, Jinli; Dai, Qionghai
2014-11-01
Capturing four dimensional light field data sequentially using a coded aperture camera is an effective approach but suffers from low signal noise ratio. Although multiplexing can help raise the acquisition quality, noise is still a big issue especially for fast acquisition. To address this problem, this paper proposes a noise robust light field reconstruction method. Firstly, scene dependent noise model is studied and incorporated into the light field reconstruction framework. Then, we derive an optimization algorithm for the final reconstruction. We build a prototype by hacking an off-the-shelf camera for data capturing and prove the concept. The effectiveness of this method is validated with experiments on the real captured data.
Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian
2013-01-01
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally
Grey Ballard, Austin Benson
2014-11-26
This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fast matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.
Recent Progress toward Robust Photocathodes
Mulhollan, G. A.; Bierman, J. C.
2009-08-04
RF photoinjectors for next generation spin-polarized electron accelerators require photo-cathodes capable of surviving RF gun operation. Free electron laser photoinjectors can benefit from more robust visible light excited photoemitters. A negative electron affinity gallium arsenide activation recipe has been found that diminishes its background gas susceptibility without any loss of near bandgap photoyield. The highest degree of immunity to carbon dioxide exposure was achieved with a combination of cesium and lithium. Activated amorphous silicon photocathodes evince advantageous properties for high current photoinjectors including low cost, substrate flexibility, visible light excitation and greatly reduced gas reactivity compared to gallium arsenide.
Robust Software Architecture for Robots
NASA Technical Reports Server (NTRS)
Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael
2009-01-01
Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.
Gavrankapetanović, F
1997-01-01
Fasting (arabic-savm) was proclaimed through islam, and thus it is an obligation for Holly Prophet Muhammad s.a.v.s.-Peace be to Him-in the second year after Hijra (in 624 after Milad-born of Isa a.s.). There is a month of fasting-Ramadan-each lunar (hijra) year. So, it was 1415th fasting this year. Former Prophets have brought obligative messages on fasting to their people; so there are also certain forms of fasting with other religions i.e. with Catholics, Jews, Orthodox. These kinds of fasting above differ from muslim fasting, but they also appear obligative. All revelations have brought fasting as obligative. From medical point of view, fasting has two basical components: psychical and physical. Psychical sphere correlate closely with its fundamental ideological message. Allah dz.s. says in Quran: "... Fasting is obligative for you, as it was obligative to your precedents, as to avoid sins; during very few days (II, II, 183 & 184)." Will strength, control of passions, effort and self-discipline makes a pure faithfull person, who purify its mind and body through fasting. Thinking about The Creator is more intensive, character is more solid; and spirit and will get stronger. We will mention the hadith saying: "Essaihune humus saimun!" That means: "Travellers at the Earth are fasters (of my ummet)." The commentary of this hadith, in the Collection of 1001 hadiths (Bin bir hadis), number 485, says: "There are no travelling dervishs or monks in islam; thus there is no such a kind of relligousity in islam. In stead, it is changed by fasting and constant attending of mosque. That was proclaimed as obligation, although there were few cases of travelling in the name of relligousity, like travelling dervishs and sheichs." In this paper, the author discusses medical aspects of fasting and its positive characteristics in the respect of healthy life style and prevention of many sicks. The author mentions positive influence of fasting to certain system and organs of human
Integrative Physiology of Fasting.
Secor, Stephen M; Carey, Hannah V
2016-04-01
Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting. PMID:27065168
fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies.
Tung, Chi-Hua; Yang, Jinn-Moon
2007-07-01
The fastSCOP is a web server that rapidly identifies the structural domains and determines the evolutionary superfamilies of a query protein structure. This server uses 3D-BLAST to scan quickly a large structural classification database (SCOP1.71 with <95% identity with each other) and the top 10 hit domains, which have different superfamily classifications, are obtained from the hit lists. MAMMOTH, a detailed structural alignment tool, is adopted to align these top 10 structures to refine domain boundaries and to identify evolutionary superfamilies. Our previous works demonstrated that 3D-BLAST is as fast as BLAST, and has the characteristics of BLAST (e.g. a robust statistical basis, effective search and reliable database search capabilities) in large structural database searches based on a structural alphabet database and a structural alphabet substitution matrix. The classification accuracy of this server is approximately 98% for 586 query structures and the average execution time is approximately 5. This server was also evaluated on 8700 structures, which have no annotations in the SCOP; the server can automatically assign 7311 (84%) proteins (9420 domains) to the SCOP superfamilies in 9.6 h. These results suggest that the fastSCOP is robust and can be a useful server for recognizing the evolutionary classifications and the protein functions of novel structures. The server is accessible at http://fastSCOP.life.nctu.edu.tw.
Gelman, Hannah; Gruebele, Martin
2014-01-01
Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816
O'Brien, Travis A.; Kashinath, Karthik
2015-05-22
This software implements the fast, self-consistent probability density estimation described by O'Brien et al. (2014, doi: ). It uses a non-uniform fast Fourier transform technique to reduce the computational cost of an objective and self-consistent kernel density estimation method.
Trueland, Jennifer
2013-12-18
The 5.2 diet involves two days of fasting each week. It is being promoted as the key to sustained weight loss, as well as wider health benefits, despite the lack of evidence on the long-term effects. Nurses need to support patients who wish to try intermittent fasting. PMID:24345130
Robust Inflation from fibrous strings
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Cicoli, M.; de Alwis, S.; Quevedo, F.
2016-05-01
Successful inflationary models should (i) describe the data well; (ii) arise generically from sensible UV completions; (iii) be insensitive to detailed fine-tunings of parameters and (iv) make interesting new predictions. We argue that a class of models with these properties is characterized by relatively simple potentials with a constant term and negative exponentials. We here continue earlier work exploring UV completions for these models—including the key (though often ignored) issue of modulus stabilisation—to assess the robustness of their predictions. We show that string models where the inflaton is a fibration modulus seem to be robust due to an effective rescaling symmetry, and fairly generic since most known Calabi-Yau manifolds are fibrations. This class of models is characterized by a generic relation between the tensor-to-scalar ratio r and the spectral index ns of the form r propto (ns‑1)2 where the proportionality constant depends on the nature of the effects used to develop the inflationary potential and the topology of the internal space. In particular we find that the largest values of the tensor-to-scalar ratio that can be obtained by generalizing the original set-up are of order r lesssim 0.01. We contrast this general picture with specific popular models, such as the Starobinsky scenario and α-attractors. Finally, we argue the self consistency of large-field inflationary models can strongly constrain non-supersymmetric inflationary mechanisms.
The Robustness of Acoustic Analogies
NASA Technical Reports Server (NTRS)
Freund, J. B.; Lele, S. K.; Wei, M.
2004-01-01
Acoustic analogies for the prediction of flow noise are exact rearrangements of the flow equations N(right arrow q) = 0 into a nominal sound source S(right arrow q) and sound propagation operator L such that L(right arrow q) = S(right arrow q). In practice, the sound source is typically modeled and the propagation operator inverted to make predictions. Since the rearrangement is exact, any sufficiently accurate model of the source will yield the correct sound, so other factors must determine the merits of any particular formulation. Using data from a two-dimensional mixing layer direct numerical simulation (DNS), we evaluate the robustness of two analogy formulations to different errors intentionally introduced into the source. The motivation is that since S can not be perfectly modeled, analogies that are less sensitive to errors in S are preferable. Our assessment is made within the framework of Goldstein's generalized acoustic analogy, in which different choices of a base flow used in constructing L give different sources S and thus different analogies. A uniform base flow yields a Lighthill-like analogy, which we evaluate against a formulation in which the base flow is the actual mean flow of the DNS. The more complex mean flow formulation is found to be significantly more robust to errors in the energetic turbulent fluctuations, but its advantage is less pronounced when errors are made in the smaller scales.
A Robust Feedforward Model of the Olfactory System.
Zhang, Yilun; Sharpee, Tatyana O
2016-04-01
Most natural odors have sparse molecular composition. This makes the principles of compressed sensing potentially relevant to the structure of the olfactory code. Yet, the largely feedforward organization of the olfactory system precludes reconstruction using standard compressed sensing algorithms. To resolve this problem, recent theoretical work has shown that signal reconstruction could take place as a result of a low dimensional dynamical system converging to one of its attractor states. However, the dynamical aspects of optimization slowed down odor recognition and were also found to be susceptible to noise. Here we describe a feedforward model of the olfactory system that achieves both strong compression and fast reconstruction that is also robust to noise. A key feature of the proposed model is a specific relationship between how odors are represented at the glomeruli stage, which corresponds to a compression, and the connections from glomeruli to third-order neurons (neurons in the olfactory cortex of vertebrates or Kenyon cells in the mushroom body of insects), which in the model corresponds to reconstruction. We show that should this specific relationship hold true, the reconstruction will be both fast and robust to noise, and in particular to the false activation of glomeruli. The predicted connectivity rate from glomeruli to third-order neurons can be tested experimentally. PMID:27065441
A Robust Feedforward Model of the Olfactory System
Zhang, Yilun; Sharpee, Tatyana O.
2016-01-01
Most natural odors have sparse molecular composition. This makes the principles of compressed sensing potentially relevant to the structure of the olfactory code. Yet, the largely feedforward organization of the olfactory system precludes reconstruction using standard compressed sensing algorithms. To resolve this problem, recent theoretical work has shown that signal reconstruction could take place as a result of a low dimensional dynamical system converging to one of its attractor states. However, the dynamical aspects of optimization slowed down odor recognition and were also found to be susceptible to noise. Here we describe a feedforward model of the olfactory system that achieves both strong compression and fast reconstruction that is also robust to noise. A key feature of the proposed model is a specific relationship between how odors are represented at the glomeruli stage, which corresponds to a compression, and the connections from glomeruli to third-order neurons (neurons in the olfactory cortex of vertebrates or Kenyon cells in the mushroom body of insects), which in the model corresponds to reconstruction. We show that should this specific relationship hold true, the reconstruction will be both fast and robust to noise, and in particular to the false activation of glomeruli. The predicted connectivity rate from glomeruli to third-order neurons can be tested experimentally. PMID:27065441
A Robust Feedforward Model of the Olfactory System.
Zhang, Yilun; Sharpee, Tatyana O
2016-04-01
Most natural odors have sparse molecular composition. This makes the principles of compressed sensing potentially relevant to the structure of the olfactory code. Yet, the largely feedforward organization of the olfactory system precludes reconstruction using standard compressed sensing algorithms. To resolve this problem, recent theoretical work has shown that signal reconstruction could take place as a result of a low dimensional dynamical system converging to one of its attractor states. However, the dynamical aspects of optimization slowed down odor recognition and were also found to be susceptible to noise. Here we describe a feedforward model of the olfactory system that achieves both strong compression and fast reconstruction that is also robust to noise. A key feature of the proposed model is a specific relationship between how odors are represented at the glomeruli stage, which corresponds to a compression, and the connections from glomeruli to third-order neurons (neurons in the olfactory cortex of vertebrates or Kenyon cells in the mushroom body of insects), which in the model corresponds to reconstruction. We show that should this specific relationship hold true, the reconstruction will be both fast and robust to noise, and in particular to the false activation of glomeruli. The predicted connectivity rate from glomeruli to third-order neurons can be tested experimentally.
A Robust Feedforward Model of the Olfactory System
NASA Astrophysics Data System (ADS)
Zhang, Yilun; Sharpee, Tatyana
Most natural odors have sparse molecular composition. This makes the principles of compressing sensing potentially relevant to the structure of the olfactory code. Yet, the largely feedforward organization of the olfactory system precludes reconstruction using standard compressed sensing algorithms. To resolve this problem, recent theoretical work has proposed that signal reconstruction could take place as a result of a low dimensional dynamical system converging to one of its attractor states. The dynamical aspects of optimization, however, would slow down odor recognition and were also found to be susceptible to noise. Here we describe a feedforward model of the olfactory system that achieves both strong compression and fast reconstruction that is also robust to noise. A key feature of the proposed model is a specific relationship between how odors are represented at the glomeruli stage, which corresponds to a compression, and the connections from glomeruli to Kenyon cells, which in the model corresponds to reconstruction. We show that provided this specific relationship holds true, the reconstruction will be both fast and robust to noise, and in particular to failure of glomeruli. The predicted connectivity rate from glomeruli to the Kenyon cells can be tested experimentally. This research was supported by James S. McDonnell Foundation, NSF CAREER award IIS-1254123, NSF Ideas Lab Collaborative Research IOS 1556388.
Robust temporal alignment of multimodal cardiac sequences
NASA Astrophysics Data System (ADS)
Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel
2015-03-01
Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.
Mechanisms of mutational robustness in transcriptional regulation
Payne, Joshua L.; Wagner, Andreas
2015-01-01
Robustness is the invariance of a phenotype in the face of environmental or genetic change. The phenotypes produced by transcriptional regulatory circuits are gene expression patterns that are to some extent robust to mutations. Here we review several causes of this robustness. They include robustness of individual transcription factor binding sites, homotypic clusters of such sites, redundant enhancers, transcription factors, redundant transcription factors, and the wiring of transcriptional regulatory circuits. Such robustness can either be an adaptation by itself, a byproduct of other adaptations, or the result of biophysical principles and non-adaptive forces of genome evolution. The potential consequences of such robustness include complex regulatory network topologies that arise through neutral evolution, as well as cryptic variation, i.e., genotypic divergence without phenotypic divergence. On the longest evolutionary timescales, the robustness of transcriptional regulation has helped shape life as we know it, by facilitating evolutionary innovations that helped organisms such as flowering plants and vertebrates diversify. PMID:26579194
Robust control with structured perturbations
NASA Technical Reports Server (NTRS)
Keel, Leehyun
1991-01-01
This semi-annual report describes continued progress on the research. Among several approaches in this area of research, our approach to the parametric uncertainties are being matured everyday. This approach deals with real parameter uncertainties which other techniques such as H (sup infinity) optimal control, micron analysis and synthesis, and l(sub 1) optimal control cannot deal. The primary assumption of this approach is that the mathematical models are well obtained so that the most of system uncertainties can be translated into parameter uncertainties of their linear system representations. These uncertainties may be due to modeling, nonlinearity of the physical system, some time-varying parameters, etc. In this report period of research, we are concentrating on implementing a computer aided analysis and design tool based on new results on parametric robust stability. This implementation will help us to reveal further details in this approach.
The structure of robust observers
NASA Technical Reports Server (NTRS)
Bhattacharyya, S. P.
1975-01-01
Conventional observers for linear time-invariant systems are shown to be structurally inadequate from a sensitivity standpoint. It is proved that if a linear dynamic system is to provide observer action despite arbitrary small perturbations in a specified subset of its parameters, it must: (1) be a closed loop system, be driven by the observer error, (2) possess redundancy, the observer must be generating, implicitly or explicitly, at least one linear combination of states that is already contained in the measurements, and (3) contain a perturbation-free model of the portion of the system observable from the external input to the observer. The procedure for design of robust observers possessing the above structural features is established and discussed.
Robust characterization of leakage errors
NASA Astrophysics Data System (ADS)
Wallman, Joel J.; Barnhill, Marie; Emerson, Joseph
2016-04-01
Leakage errors arise when the quantum state leaks out of some subspace of interest, for example, the two-level subspace of a multi-level system defining a computational ‘qubit’, the logical code space of a quantum error-correcting code, or a decoherence-free subspace. Leakage errors pose a distinct challenge to quantum control relative to the more well-studied decoherence errors and can be a limiting factor to achieving fault-tolerant quantum computation. Here we present a scalable and robust randomized benchmarking protocol for quickly estimating the leakage rate due to an arbitrary Markovian noise process on a larger system. We illustrate the reliability of the protocol through numerical simulations.
CONTAINER MATERIALS, FABRICATION AND ROBUSTNESS
Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.
2009-11-10
The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.
How robust are distributed systems
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.
1989-01-01
A distributed system is made up of large numbers of components operating asynchronously from one another and hence with imcomplete and inaccurate views of one another's state. Load fluctuations are common as new tasks arrive and active tasks terminate. Jointly, these aspects make it nearly impossible to arrive at detailed predictions for a system's behavior. It is important to the successful use of distributed systems in situations in which humans cannot provide the sorts of predictable realtime responsiveness of a computer, that the system be robust. The technology of today can too easily be affected by worn programs or by seemingly trivial mechanisms that, for example, can trigger stock market disasters. Inventors of a technology have an obligation to overcome flaws that can exact a human cost. A set of principles for guiding solutions to distributed computing problems is presented.
Robust matching for voice recognition
NASA Astrophysics Data System (ADS)
Higgins, Alan; Bahler, L.; Porter, J.; Blais, P.
1994-10-01
This paper describes an automated method of comparing a voice sample of an unknown individual with samples from known speakers in order to establish or verify the individual's identity. The method is based on a statistical pattern matching approach that employs a simple training procedure, requires no human intervention (transcription, work or phonetic marketing, etc.), and makes no assumptions regarding the expected form of the statistical distributions of the observations. The content of the speech material (vocabulary, grammar, etc.) is not assumed to be constrained in any way. An algorithm is described which incorporates frame pruning and channel equalization processes designed to achieve robust performance with reasonable computational resources. An experimental implementation demonstrating the feasibility of the concept is described.
Robust holographic storage system design.
Watanabe, Takahiro; Watanabe, Minoru
2011-11-21
Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration.
Van Devender, John P.; Emin, David
1986-01-01
A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.
Van Devender, J.P.; Emin, D.
1983-12-21
A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.
2014-11-26
This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fastmore » matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.« less
Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.
1980-07-01
This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.
Robust Mosaicking of Uav Images with Narrow Overlaps
NASA Astrophysics Data System (ADS)
Kim, J.; Kim, T.; Shin, D.; Kim, S. H.
2016-06-01
This paper considers fast and robust mosaicking of UAV images under a circumstance that each UAV images have very narrow overlaps in-between. Image transformation for image mosaicking consists of two estimations: relative transformations and global transformations. For estimating relative transformations between adjacent images, projective transformation is widely considered. For estimating global transformations, panoramic constraint is widely used. While perspective transformation is a general transformation model in 2D-2D transformation, this may not be optimal with weak stereo geometry such as images with narrow overlaps. While panoramic constraint works for reliable conversion of global transformation for panoramic image generation, this constraint is not applicable to UAV images in linear motions. For these reasons, a robust approach is investigated to generate a high quality mosaicked image from narrowly overlapped UAV images. For relative transformations, several transformation models were considered to ensure robust estimation of relative transformation relationship. Among them were perspective transformation, affine transformation, coplanar relative orientation, and relative orientation with reduced adjustment parameters. Performance evaluation for each transformation model was carried out. The experiment results showed that affine transformation and adjusted coplanar relative orientation were superior to others in terms of stability and accuracy. For global transformation, we set initial approximation by converting each relative transformation to a common transformation with respect to a reference image. In future work, we will investigate constrained relative orientation for enhancing geometric accuracy of image mosaicking and bundle adjustments of each relative transformation model for optimal global transformation.
Robust Optimal Adaptive Control Method with Large Adaptive Gain
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2009-01-01
In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.
NASA Astrophysics Data System (ADS)
Jiao, Xiaohong; Mei, Zhisong
2010-10-01
To improve the quality of strip thickness, synchronisation control is investigated for cold rolling mills driven by dual-cylinder electro-hydraulic servo systems. Realising synchronised control in hydraulic automatic gauge control (HAGC) systems of cold rolling mills has challenges with not only the inherent nonlinearities of hydraulic servo systems and uncertainties of load variation but also measurement delay of strip thickness. Since all states are not measurable in practice, output feedback robust synchronisation control problem should be addressed for uncertain nonlinear systems with output delay. Thus, a reduced-order observer-based robust synchronous controller is presented by employing Lyapunov functional stability theory. The controller designed by incorporating the integral of the position synchronisation error of two pistons into state variables successfully guarantees asymptotic convergence to zero of both tracking errors and synchronisation error simultaneously regardless of the nonlinearities and uncertainties as well as the measurement delay. Simulation results in a model obtained from a real cold strip rolling mill demonstrate the effectiveness of the approach.
Valiant load-balanced robust routing under hose model for WDM mesh networks
NASA Astrophysics Data System (ADS)
Zhang, Xiaoning; Li, Lemin; Wang, Sheng
2006-09-01
In this paper, we propose Valiant Load-Balanced robust routing scheme for WDM mesh networks under the model of polyhedral uncertainty (i.e., hose model), and the proposed routing scheme is implemented with traffic grooming approach. Our Objective is to maximize the hose model throughput. A mathematic formulation of Valiant Load-Balanced robust routing is presented and three fast heuristic algorithms are also proposed. When implementing Valiant Load-Balanced robust routing scheme to WDM mesh networks, a novel traffic-grooming algorithm called MHF (minimizing hop first) is proposed. We compare the three heuristic algorithms with the VPN tree under the hose model. Finally we demonstrate in the simulation results that MHF with Valiant Load-Balanced robust routing scheme outperforms the traditional traffic-grooming algorithm in terms of the throughput for the uniform/non-uniform traffic matrix under the hose model.
NASA Astrophysics Data System (ADS)
Wilkinson, P.
2016-02-01
FAST offers "transformational" performance well-suited to finding new phenomena - one of which might be polarised spectral transients. But discoveries will only be made if "the system" provides its users with the necessary opportunities. In addition to designing in as much observational flexibility as possible, FAST should be operated with a philosophy which maximises its "human bandwidth". This band includes the astronomers of tomorrow - many of whom not have yet started school or even been born.
NASA Astrophysics Data System (ADS)
Koukoulas, Triantafillos; Piper, Ben
2015-04-01
Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.
Koukoulas, Triantafillos Piper, Ben
2015-04-20
Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.
NASA Technical Reports Server (NTRS)
Wie, Bong; Liu, Qiang
1992-01-01
Both feedback and feedforward control approaches for uncertain dynamical systems (in particular, with uncertainty in structural mode frequency) are investigated. The control objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant uncertainty. Preshaping of an ideal, time optimal control input using a tapped-delay filter is shown to provide a fast settling time with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. It is shown that a properly designed, feedback controller performs well, as compared with a time optimal open loop controller with special preshaping for performance robustness. Also included are two separate papers by the same authors on this subject.
A network property necessary for concentration robustness
Eloundou-Mbebi, Jeanne M. O.; Küken, Anika; Omranian, Nooshin; Kleessen, Sabrina; Neigenfind, Jost; Basler, Georg; Nikoloski, Zoran
2016-01-01
Maintenance of functionality of complex cellular networks and entire organisms exposed to environmental perturbations often depends on concentration robustness of the underlying components. Yet, the reasons and consequences of concentration robustness in large-scale cellular networks remain largely unknown. Here, we derive a necessary condition for concentration robustness based only on the structure of networks endowed with mass action kinetics. The structural condition can be used to design targeted experiments to study concentration robustness. We show that metabolites satisfying the necessary condition are present in metabolic networks from diverse species, suggesting prevalence of this property across kingdoms of life. We also demonstrate that our predictions about concentration robustness of energy-related metabolites are in line with experimental evidence from Escherichia coli. The necessary condition is applicable to mass action biological systems of arbitrary size, and will enable understanding the implications of concentration robustness in genetic engineering strategies and medical applications. PMID:27759015
Efficient robust conditional random fields.
Song, Dongjin; Liu, Wei; Zhou, Tianyi; Tao, Dacheng; Meyer, David A
2015-10-01
Conditional random fields (CRFs) are a flexible yet powerful probabilistic approach and have shown advantages for popular applications in various areas, including text analysis, bioinformatics, and computer vision. Traditional CRF models, however, are incapable of selecting relevant features as well as suppressing noise from noisy original features. Moreover, conventional optimization methods often converge slowly in solving the training procedure of CRFs, and will degrade significantly for tasks with a large number of samples and features. In this paper, we propose robust CRFs (RCRFs) to simultaneously select relevant features. An optimal gradient method (OGM) is further designed to train RCRFs efficiently. Specifically, the proposed RCRFs employ the l1 norm of the model parameters to regularize the objective used by traditional CRFs, therefore enabling discovery of the relevant unary features and pairwise features of CRFs. In each iteration of OGM, the gradient direction is determined jointly by the current gradient together with the historical gradients, and the Lipschitz constant is leveraged to specify the proper step size. We show that an OGM can tackle the RCRF model training very efficiently, achieving the optimal convergence rate [Formula: see text] (where k is the number of iterations). This convergence rate is theoretically superior to the convergence rate O(1/k) of previous first-order optimization methods. Extensive experiments performed on three practical image segmentation tasks demonstrate the efficacy of OGM in training our proposed RCRFs.
Robust satisficing and the probability of survival
NASA Astrophysics Data System (ADS)
Ben-Haim, Yakov
2014-01-01
Concepts of robustness are sometimes employed when decisions under uncertainty are made without probabilistic information. We present a theorem that establishes necessary and sufficient conditions for non-probabilistic robustness to be equivalent to the probability of satisfying the specified outcome requirements. When this holds, probability is enhanced (or maximised) by enhancing (or maximising) robustness. Two further theorems establish important special cases. These theorems have implications for success or survival under uncertainty. Applications to foraging and finance are discussed.
Robustness enhancement of neurocontroller and state estimator
NASA Technical Reports Server (NTRS)
Troudet, Terry
1993-01-01
The feasibility of enhancing neurocontrol robustness, through training of the neurocontroller and state estimator in the presence of system uncertainties, is investigated on the example of a multivariable aircraft control problem. The performance and robustness of the newly trained neurocontroller are compared to those for an existing neurocontrol design scheme. The newly designed dynamic neurocontroller exhibits a better trade-off between phase and gain stability margins, and it is significantly more robust to degradations of the plant dynamics.
Robust Fixed-Structure Controller Synthesis
NASA Technical Reports Server (NTRS)
Corrado, Joseph R.; Haddad, Wassim M.; Gupta, Kajal (Technical Monitor)
2000-01-01
The ability to develop an integrated control system design methodology for robust high performance controllers satisfying multiple design criteria and real world hardware constraints constitutes a challenging task. The increasingly stringent performance specifications required for controlling such systems necessitates a trade-off between controller complexity and robustness. The principle challenge of the minimal complexity robust control design is to arrive at a tractable control design formulation in spite of the extreme complexity of such systems. Hence, design of minimal complexitY robust controllers for systems in the face of modeling errors has been a major preoccupation of system and control theorists and practitioners for the past several decades.
Molecular mechanisms of robustness in plants
Lempe, Janne; Lachowiec, Jennifer; Sullivan, Alessandra. M.; Queitsch, Christine
2012-01-01
Robustness, the ability of organisms to buffer phenotypes against perturbations, has drawn renewed interest among developmental biologists and geneticists. A growing body of research supports an important role of robustness in the genotype to phenotype translation, with far- reaching implications for evolutionary processes and disease susceptibility. Like for animals and fungi, plant robustness is a function of genetic network architecture. Most perturbations are buffered; however, perturbation of network hubs destabilizes many traits. Here, we review recent advances in identifying molecular robustness mechanisms in plants that have been enabled by a combination of classical genetics and population genetics with genome-scale data. PMID:23279801
Robustness: confronting lessons from physics and biology.
Lesne, Annick
2008-11-01
The term robustness is encountered in very different scientific fields, from engineering and control theory to dynamical systems to biology. The main question addressed herein is whether the notion of robustness and its correlates (stability, resilience, self-organisation) developed in physics are relevant to biology, or whether specific extensions and novel frameworks are required to account for the robustness properties of living systems. To clarify this issue, the different meanings covered by this unique term are discussed; it is argued that they crucially depend on the kind of perturbations that a robust system should by definition withstand. Possible mechanisms underlying robust behaviours are examined, either encountered in all natural systems (symmetries, conservation laws, dynamic stability) or specific to biological systems (feedbacks and regulatory networks). Special attention is devoted to the (sometimes counterintuitive) interrelations between robustness and noise. A distinction between dynamic selection and natural selection in the establishment of a robust behaviour is underlined. It is finally argued that nested notions of robustness, relevant to different time scales and different levels of organisation, allow one to reconcile the seemingly contradictory requirements for robustness and adaptability in living systems. PMID:18823391
Robust Hypothesis Testing with alpha -Divergence
NASA Astrophysics Data System (ADS)
Gul, Gokhan; Zoubir, Abdelhak M.
2016-09-01
A robust minimax test for two composite hypotheses, which are determined by the neighborhoods of two nominal distributions with respect to a set of distances - called $\\alpha-$divergence distances, is proposed. Sion's minimax theorem is adopted to characterize the saddle value condition. Least favorable distributions, the robust decision rule and the robust likelihood ratio test are derived. If the nominal probability distributions satisfy a symmetry condition, the design procedure is shown to be simplified considerably. The parameters controlling the degree of robustness are bounded from above and the bounds are shown to be resulting from a solution of a set of equations. The simulations performed evaluate and exemplify the theoretical derivations.
Fast food prices, obesity, and the minimum wage.
Cotti, Chad; Tefft, Nathan
2013-03-01
Recent proposals argue that a fast food tax may be an effective policy lever for reducing population weight. Although there is growing evidence for a negative association between fast food prices and weight among adolescents, less is known about adults. That any measured relationship to date is causal is unclear because there has been no attempt to separate variation in prices on the demand side from that on the supply side. We argue that the minimum wage is an exogenous source of variation in fast food prices, conditional on income and employment. In two-stage least-squares analyses, we find little evidence that fast food price changes affect adult BMI or obesity prevalence. Results are robust to including controls for area and time fixed effects, area time trends, demographic characteristics, substitute prices, numbers of establishments and employment in related industries, and other potentially related factors.
Robust control with structured perturbations
NASA Technical Reports Server (NTRS)
Keel, Leehyun
1988-01-01
Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.
Noise and Robustness in Phyllotaxis
Mirabet, Vincent; Besnard, Fabrice; Vernoux, Teva; Boudaoud, Arezki
2012-01-01
A striking feature of vascular plants is the regular arrangement of lateral organs on the stem, known as phyllotaxis. The most common phyllotactic patterns can be described using spirals, numbers from the Fibonacci sequence and the golden angle. This rich mathematical structure, along with the experimental reproduction of phyllotactic spirals in physical systems, has led to a view of phyllotaxis focusing on regularity. However all organisms are affected by natural stochastic variability, raising questions about the effect of this variability on phyllotaxis and the achievement of such regular patterns. Here we address these questions theoretically using a dynamical system of interacting sources of inhibitory field. Previous work has shown that phyllotaxis can emerge deterministically from the self-organization of such sources and that inhibition is primarily mediated by the depletion of the plant hormone auxin through polarized transport. We incorporated stochasticity in the model and found three main classes of defects in spiral phyllotaxis – the reversal of the handedness of spirals, the concomitant initiation of organs and the occurrence of distichous angles – and we investigated whether a secondary inhibitory field filters out defects. Our results are consistent with available experimental data and yield a prediction of the main source of stochasticity during organogenesis. Our model can be related to cellular parameters and thus provides a framework for the analysis of phyllotactic mutants at both cellular and tissular levels. We propose that secondary fields associated with organogenesis, such as other biochemical signals or mechanical forces, are important for the robustness of phyllotaxis. More generally, our work sheds light on how a target pattern can be achieved within a noisy background. PMID:22359496
Efficient and robust analysis of complex scattering data under noise in microwave resonators
Probst, S.; Song, F. B.; Bushev, P. A.; Ustinov, A. V.; Weides, M.
2015-02-15
Superconducting microwave resonators are reliable circuits widely used for detection and as test devices for material research. A reliable determination of their external and internal quality factors is crucial for many modern applications, which either require fast measurements or operate in the single photon regime with small signal to noise ratios. Here, we use the circle fit technique with diameter correction and provide a step by step guide for implementing an algorithm for robust fitting and calibration of complex resonator scattering data in the presence of noise. The speedup and robustness of the analysis are achieved by employing an algebraic rather than an iterative fit technique for the resonance circle.
The Utility of Robust Means in Statistics
ERIC Educational Resources Information Center
Goodwyn, Fara
2012-01-01
Location estimates calculated from heuristic data were examined using traditional and robust statistical methods. The current paper demonstrates the impact outliers have on the sample mean and proposes robust methods to control for outliers in sample data. Traditional methods fail because they rely on the statistical assumptions of normality and…
Robust Hope and Teacher Education Policy
ERIC Educational Resources Information Center
Sawyer, Wayne; Singh, Michael; Woodrow, Christine; Downes, Toni; Johnston, Christine; Whitton, Diana
2007-01-01
The research question for this paper is: How can we mobilise robust hope in the analysis of teacher education policy? Specifically, this paper asks how a robust hope framework might speak to the "Top of the Class," a report into teacher education by the Australian House of Representatives Standing Committee on Education and Vocational Training.
Leibon, Gregory; Rockmore, Daniel N.; Park, Wooram; Taintor, Robert; Chirikjian, Gregory S.
2008-01-01
We present algorithms for fast and stable approximation of the Hermite transform of a compactly supported function on the real line, attainable via an application of a fast algebraic algorithm for computing sums associated with a three-term relation. Trade-offs between approximation in bandlimit (in the Hermite sense) and size of the support region are addressed. Numerical experiments are presented that show the feasibility and utility of our approach. Generalizations to any family of orthogonal polynomials are outlined. Applications to various problems in tomographic reconstruction, including the determination of protein structure, are discussed. PMID:20027202
Fast Overcurrent Tripping Circuit
NASA Technical Reports Server (NTRS)
Sullender, Craig C.; Davies, Bryan L.; Osborn, Stephen H.
1993-01-01
Fast overcurrent tripping circuit designed for incorporation into power metal oxide/semiconductor field-effect transistor (MOSFET) switching circuit. Serves as fast electronic circuit breaker by sensing voltage across MOSFET's during conduction and switching MOSFET's off within 1 microsecond after voltage exceeds reference value corresponding to tripping current. Acts more quickly than Hall-effect current sensor and, in comparison with shunt current-measuring circuits, smaller and consumes less power. Also ignores initial transient overcurrents during first 5 microseconds of switching cycle.
Environmental change makes robust ecological networks fragile
Strona, Giovanni; Lafferty, Kevin D.
2016-01-01
Complex ecological networks appear robust to primary extinctions, possibly due to consumers' tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems. PMID:27511722
Evaluating efficiency and robustness in cilia design
NASA Astrophysics Data System (ADS)
Guo, Hanliang; Kanso, Eva
2016-03-01
Motile cilia are used by many eukaryotic cells to transport flow. Cilia-driven flows are important to many physiological functions, yet a deep understanding of the interplay between the mechanical structure of cilia and their physiological functions in healthy and diseased conditions remains elusive. To develop such an understanding, one needs a quantitative framework to assess cilia performance and robustness when subject to perturbations in the cilia apparatus. Here we link cilia design (beating patterns) to function (flow transport) in the context of experimentally and theoretically derived cilia models. We particularly examine the optimality and robustness of cilia design. Optimality refers to efficiency of flow transport, while robustness is defined as low sensitivity to variations in the design parameters. We find that suboptimal designs can be more robust than optimal ones. That is, designing for the most efficient cilium does not guarantee robustness. These findings have significant implications on the understanding of cilia design in artificial and biological systems.
Environmental change makes robust ecological networks fragile.
Strona, Giovanni; Lafferty, Kevin D
2016-01-01
Complex ecological networks appear robust to primary extinctions, possibly due to consumers' tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host-parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems. PMID:27511722
Environmental change makes robust ecological networks fragile
Strona, Giovanni; Lafferty, Kevin D.
2016-01-01
Complex ecological networks appear robust to primary extinctions, possibly due to consumers’ tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems.
Evaluating efficiency and robustness in cilia design.
Guo, Hanliang; Kanso, Eva
2016-03-01
Motile cilia are used by many eukaryotic cells to transport flow. Cilia-driven flows are important to many physiological functions, yet a deep understanding of the interplay between the mechanical structure of cilia and their physiological functions in healthy and diseased conditions remains elusive. To develop such an understanding, one needs a quantitative framework to assess cilia performance and robustness when subject to perturbations in the cilia apparatus. Here we link cilia design (beating patterns) to function (flow transport) in the context of experimentally and theoretically derived cilia models. We particularly examine the optimality and robustness of cilia design. Optimality refers to efficiency of flow transport, while robustness is defined as low sensitivity to variations in the design parameters. We find that suboptimal designs can be more robust than optimal ones. That is, designing for the most efficient cilium does not guarantee robustness. These findings have significant implications on the understanding of cilia design in artificial and biological systems. PMID:27078459
Robust and intelligent bearing estimation
Claassen, J.P.
1998-07-01
As the monitoring thresholds of global and regional networks are lowered, bearing estimates become more important to the processes which associate (sparse) detections and which locate events. Current methods of estimating bearings from observations by 3-component stations and arrays lack both accuracy and precision. Methods are required which will develop all the precision inherently available in the arrival, determine the measurability of the arrival, provide better estimates of the bias induced by the medium, permit estimates at lower SNRs, and provide physical insight into the effects of the medium on the estimates. Initial efforts have focused on 3-component stations since the precision is poorest there. An intelligent estimation process for 3-component stations has been developed and explored. The method, called SEE for Search, Estimate, and Evaluation, adaptively exploits all the inherent information in the arrival at every step of the process to achieve optimal results. In particular, the approach uses a consistent and robust mathematical framework to define the optimal time-frequency windows on which to make estimates, to make the bearing estimates themselves, and to withdraw metrics helpful in choosing the best estimate(s) or admitting that the bearing is immeasurable. The approach is conceptually superior to current methods, particular those which rely on real values signals. The method has been evaluated to a considerable extent in a seismically active region and has demonstrated remarkable utility by providing not only the best estimates possible but also insight into the physical processes affecting the estimates. It has been shown, for example, that the best frequency at which to make an estimate seldom corresponds to the frequency having the best detection SNR and sometimes the best time interval is not at the onset of the signal. The method is capable of measuring bearing dispersion, thereby withdrawing the bearing bias as a function of frequency
Adaptive line enhancers for fast acquisition
NASA Technical Reports Server (NTRS)
Yeh, H.-G.; Nguyen, T. M.
1994-01-01
Three adaptive line enhancer (ALE) algorithms and architectures - namely, conventional ALE, ALE with double filtering, and ALE with coherent accumulation - are investigated for fast carrier acquisition in the time domain. The advantages of these algorithms are their simplicity, flexibility, robustness, and applicability to general situations including the Earth-to-space uplink carrier acquisition and tracking of the spacecraft. In the acquisition mode, these algorithms act as bandpass filters; hence, the carrier-to-noise ratio (CNR) is improved for fast acquisition. In the tracking mode, these algorithms simply act as lowpass filters to improve signal-to-noise ratio; hence, better tracking performance is obtained. It is not necessary to have a priori knowledge of the received signal parameters, such as CNR, Doppler, and carrier sweeping rate. The implementation of these algorithms is in the time domain (as opposed to the frequency domain, such as the fast Fourier transform (FFT)). The carrier frequency estimation can be updated in real time at each time sample (as opposed to the batch processing of the FFT). The carrier frequency to be acquired can be time varying, and the noise can be non-Gaussian, nonstationary, and colored.
2015-01-01
Universal health coverage is gaining momentum and is likely to form a core part of the post Millennium Development Goal (MDG) agenda and be linked to social determinants of health, including gender; Close to community health providers are arguably key players in meeting the goal of universal health coverage through extending and delivering health services to poor and marginalised groups; Close to community health providers are embedded in communities and may therefore be strategically placed to understand intra household gender and power dynamics and how social determinants shape health and well-being. However, the opportunities to develop critical awareness and to translate this knowledge into health system and multi-sectoral action are poorly understood; Enabling close to community health providers to realise their potential requires health systems support and human resource management at multiple levels.
NASA Astrophysics Data System (ADS)
Leutenegger, Marcel; Geissbuehler, Matthias; Märki, Iwan; Leitgeb, Rainer A.; Lasser, Theo
2008-02-01
We present a method for fast calculation of the electromagnetic field near the focus of an objective with a high numerical aperture (NA). Instead of direct integration, the vectorial Debye diffraction integral is evaluated with the fast Fourier transform for calculating the electromagnetic field in the entire focal region. We generalize this concept with the chirp z transform for obtaining a flexible sampling grid and an additional gain in computation speed. Under the conditions for the validity of the Debye integral representation, our method yields the amplitude, phase and polarization of the focus field for an arbitrary paraxial input field in the aperture of the objective. Our fast calculation method is particularly useful for engineering the point-spread function or for fast image deconvolution. We present several case studies by calculating the focus fields of high NA oil immersion objectives for various amplitude, polarization and phase distributions of the input field. In addition, the calculation of an extended polychromatic focus field generated by a Bessel beam is presented. This extended focus field is of particular interest for Fourier domain optical coherence tomography because it preserves a lateral resolution of a few micrometers over an axial distance in the millimeter range.
ERIC Educational Resources Information Center
Education Commission of the States, Denver, CO.
This paper provides an overview of Fast ForWord, a CD-ROM and Internet-based training program for children (pre-K to grade 8) with language and reading problems that helps children rapidly build oral language comprehension and other critical skills necessary for learning to read or becoming a better reader. With the help of computers, speech…
Till, C.E.; Chang, Y.I. ); Lineberry, M.J. )
1990-01-01
Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.
Analysis of the Spatial Organization of Molecules with Robust Statistics
Lagache, Thibault; Lang, Gabriel; Sauvonnet, Nathalie; Olivo-Marin, Jean-Christophe
2013-01-01
One major question in molecular biology is whether the spatial distribution of observed molecules is random or organized in clusters. Indeed, this analysis gives information about molecules’ interactions and physical interplay with their environment. The standard tool for analyzing molecules’ distribution statistically is the Ripley’s K function, which tests spatial randomness through the computation of its critical quantiles. However, quantiles’ computation is very cumbersome, hindering its use. Here, we present an analytical expression of these quantiles, leading to a fast and robust statistical test, and we derive the characteristic clusters’ size from the maxima of the Ripley’s K function. Subsequently, we analyze the spatial organization of endocytic spots at the cell membrane and we report that clathrin spots are randomly distributed while clathrin-independent spots are organized in clusters with a radius of , which suggests distinct physical mechanisms and cellular functions for each pathway. PMID:24349021
High frequency activity correlates of robust movement in humans.
Kerr, Matthew S D; Kahn, Kevin; Hyun-Joo Park; Thompson, Susan; Hao, Stephanie; Bulacio, Juan; Gonzalez-Martinez, Jorge A; Gale, John; Sarma, Sridevi V
2014-01-01
The neural circuitry underlying fast robust human motor control is not well understood. In this study we record neural activity from multiple stereotactic encephalograph (SEEG) depth electrodes in a human subject while he/she performs a center-out reaching task holding a robotic manipulandum that occasionally introduces an interfering force field. Collecting neural data from humans during motor tasks is rare, and SEEG provides an unusual opportunity to examine neural correlates of movement at a millisecond time scale in multiple brain regions. Time-frequency analysis shows that high frequency activity (50-150 Hz) increases significantly in the left precuneus and left hippocampus when the subject is compensating for a perturbation to their movement. These increases in activity occur with different durations indicating differing roles in the motor control process.
Robust and efficient estimation with weighted composite quantile regression
NASA Astrophysics Data System (ADS)
Jiang, Xuejun; Li, Jingzhi; Xia, Tian; Yan, Wanfeng
2016-09-01
In this paper we introduce a weighted composite quantile regression (CQR) estimation approach and study its application in nonlinear models such as exponential models and ARCH-type models. The weighted CQR is augmented by using a data-driven weighting scheme. With the error distribution unspecified, the proposed estimators share robustness from quantile regression and achieve nearly the same efficiency as the oracle maximum likelihood estimator (MLE) for a variety of error distributions including the normal, mixed-normal, Student's t, Cauchy distributions, etc. We also suggest an algorithm for the fast implementation of the proposed methodology. Simulations are carried out to compare the performance of different estimators, and the proposed approach is used to analyze the daily S&P 500 Composite index, which verifies the effectiveness and efficiency of our theoretical results.
Defining robustness protocols: a method to include and evaluate robustness in clinical plans
NASA Astrophysics Data System (ADS)
McGowan, S. E.; Albertini, F.; Thomas, S. J.; Lomax, A. J.
2015-04-01
We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties.
Not so fast: hippocampal amnesia slows word learning despite successful fast mapping.
Warren, David E; Duff, Melissa C
2014-08-01
The human hippocampus is widely believed to be necessary for the rapid acquisition of new declarative relational memories. However, processes supporting on-line inferential word use ("fast mapping") may also exercise a dissociable learning mechanism and permit rapid word learning without the hippocampus (Sharon et al. (2011) Proc Natl Acad Sci USA 108:1146-1151). We investigated fast mapping in severely amnesic patients with hippocampal damage (N = 4), mildly amnesic patients (N = 6), and healthy comparison participants (N = 10) using on-line measures (eye movements) that reflected ongoing processing. All participants studied unique word-picture associations in two encoding conditions. In the explicit-encoding condition, uncommon items were paired with their names (e.g., "This is a numbat."). In the fast mapping study condition, participants heard an instruction using a novel word (e.g., "Click on the numbat.") while two items were presented (an uncommon target such as a numbat, and a common distracter such as a dog). All groups performed fast mapping well at study, and on-line eye movement measures did not reveal group differences. However, while comparison participants showed robust word learning irrespective of encoding condition, severely amnesic patients showed no evidence of learning after fast mapping or explicit encoding on any behavioral or eye-movement measure. Mildly amnesic patients showed some learning, but performance was unaffected by encoding condition. The findings are consistent with the following propositions: the hippocampus is not essential for on-line fast mapping of novel words; but is necessary for the rapid learning of arbitrary relational information irrespective of encoding conditions. PMID:24719218
Not so fast: hippocampal amnesia slows word learning despite successful fast mapping.
Warren, David E; Duff, Melissa C
2014-08-01
The human hippocampus is widely believed to be necessary for the rapid acquisition of new declarative relational memories. However, processes supporting on-line inferential word use ("fast mapping") may also exercise a dissociable learning mechanism and permit rapid word learning without the hippocampus (Sharon et al. (2011) Proc Natl Acad Sci USA 108:1146-1151). We investigated fast mapping in severely amnesic patients with hippocampal damage (N = 4), mildly amnesic patients (N = 6), and healthy comparison participants (N = 10) using on-line measures (eye movements) that reflected ongoing processing. All participants studied unique word-picture associations in two encoding conditions. In the explicit-encoding condition, uncommon items were paired with their names (e.g., "This is a numbat."). In the fast mapping study condition, participants heard an instruction using a novel word (e.g., "Click on the numbat.") while two items were presented (an uncommon target such as a numbat, and a common distracter such as a dog). All groups performed fast mapping well at study, and on-line eye movement measures did not reveal group differences. However, while comparison participants showed robust word learning irrespective of encoding condition, severely amnesic patients showed no evidence of learning after fast mapping or explicit encoding on any behavioral or eye-movement measure. Mildly amnesic patients showed some learning, but performance was unaffected by encoding condition. The findings are consistent with the following propositions: the hippocampus is not essential for on-line fast mapping of novel words; but is necessary for the rapid learning of arbitrary relational information irrespective of encoding conditions.
Not So Fast: Hippocampal Amnesia Slows Word Learning Despite Successful Fast Mapping
Warren, David E.; Duff, Melissa C.
2015-01-01
The human hippocampus is widely believed to be necessary for the rapid acquisition of new declarative relational memories. However, processes supporting on-line inferential word use (“fast mapping”) may also exercise a dissociable learning mechanism and permit rapid word learning without the hippocampus (Sharon et al. (2011) Proc Natl Acad Sci USA 108:1146–1151). We investigated fast mapping in severely amnesic patients with hippocampal damage (N = 4), mildly amnesic patients (N = 6), and healthy comparison participants (N = 10) using on-line measures (eye movements) that reflected ongoing processing. All participants studied unique word-picture associations in two encoding conditions. In the explicit-encoding condition, uncommon items were paired with their names (e.g., “This is a numbat.”). In the fast mapping study condition, participants heard an instruction using a novel word (e.g., “Click on the numbat.”) while two items were presented (an uncommon target such as a numbat, and a common distracter such as a dog). All groups performed fast mapping well at study, and on-line eye movement measures did not reveal group differences. However, while comparison participants showed robust word learning irrespective of encoding condition, severely amnesic patients showed no evidence of learning after fast mapping or explicit encoding on any behavioral or eye-movement measure. Mildly amnesic patients showed some learning, but performance was unaffected by encoding condition. The findings are consistent with the following propositions: the hippocampus is not essential for on-line fast mapping of novel words; but is necessary for the rapid learning of arbitrary relational information irrespective of encoding conditions. PMID:24719218
Robust hybrid elastomer/metal-oxide superhydrophobic surfaces.
Hoshian, S; Jokinen, V; Franssila, S
2016-08-21
We introduce a new type of hybrid material: a nanostructured elastomer covered by a hard photoactive metal-oxide thin film resembling the exoskeleton of insects. It has extreme water repellency and fast self-recovery after damage. A new fabrication method for replicating high aspect ratio, hierarchical re-entrant aluminum structures into polydimethylsiloxane (PDMS) is presented. The method is based on a protective titania layer deposited by atomic layer deposition (ALD) on the aluminum template. The ALD titania transfers to the elastomeric scaffold via sacrificial release etching. The sacrificial release method allows for high aspect ratio, even 100 μm deep and successful release of overhanging structures, unlike conventional peeling. The ALD titania conformally covers the 3D multihierarchical structures of the template and protects the polymer during the release etch. Afterwards it prevents the high aspect ratio nanostructures from elasticity based collapse. The resulting nanostructured hybrid PDMS/titania replicas display robust superhydrophobicity without any further fluoro-coating or modification. Their mechanical and thermal robustness results from a thick nanostructured elastomeric layer which is conformally covered by ceramic titania instead of a monolayer hydrophobic coating. We have demonstrated the durability of these replicas against mechanical abrasion, knife scratches, rubbing, bending, peel tape test, high temperature annealing, UV exposure, water jet impingement and long term underwater storage. Though the material loses its superhydrophobicity in oxygen plasma exposure, a fast recovery from superhydrophilic to superhydrophobic can be achieved after 20 min UV irradiation. UV-assisted recovery is correlated with the high photoactivity of ALD titania film. This novel hybrid material will be applicable to the large area superhydrophobic surfaces in practical outdoor applications. PMID:27418238
Robust hybrid elastomer/metal-oxide superhydrophobic surfaces.
Hoshian, S; Jokinen, V; Franssila, S
2016-08-21
We introduce a new type of hybrid material: a nanostructured elastomer covered by a hard photoactive metal-oxide thin film resembling the exoskeleton of insects. It has extreme water repellency and fast self-recovery after damage. A new fabrication method for replicating high aspect ratio, hierarchical re-entrant aluminum structures into polydimethylsiloxane (PDMS) is presented. The method is based on a protective titania layer deposited by atomic layer deposition (ALD) on the aluminum template. The ALD titania transfers to the elastomeric scaffold via sacrificial release etching. The sacrificial release method allows for high aspect ratio, even 100 μm deep and successful release of overhanging structures, unlike conventional peeling. The ALD titania conformally covers the 3D multihierarchical structures of the template and protects the polymer during the release etch. Afterwards it prevents the high aspect ratio nanostructures from elasticity based collapse. The resulting nanostructured hybrid PDMS/titania replicas display robust superhydrophobicity without any further fluoro-coating or modification. Their mechanical and thermal robustness results from a thick nanostructured elastomeric layer which is conformally covered by ceramic titania instead of a monolayer hydrophobic coating. We have demonstrated the durability of these replicas against mechanical abrasion, knife scratches, rubbing, bending, peel tape test, high temperature annealing, UV exposure, water jet impingement and long term underwater storage. Though the material loses its superhydrophobicity in oxygen plasma exposure, a fast recovery from superhydrophilic to superhydrophobic can be achieved after 20 min UV irradiation. UV-assisted recovery is correlated with the high photoactivity of ALD titania film. This novel hybrid material will be applicable to the large area superhydrophobic surfaces in practical outdoor applications.
Biological Robustness: Paradigms, Mechanisms, and Systems Principles
Whitacre, James Michael
2012-01-01
Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g., mutational, environmental) are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior. PMID:22593762
Biological robustness: paradigms, mechanisms, and systems principles.
Whitacre, James Michael
2012-01-01
Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g., mutational, environmental) are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior. PMID:22593762
Robust Multiobjective Controllability of Complex Neuronal Networks.
Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen
2016-01-01
This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc.
A Fast MEANSHIFT Algorithm-Based Target Tracking System
Sun, Jian
2012-01-01
Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397
Robustness and structure of complex networks
NASA Astrophysics Data System (ADS)
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks
Robust stability of second-order systems
NASA Technical Reports Server (NTRS)
Chuang, C. H.
1993-01-01
This report presents a robust control design using strictly positive realness for second-order dynamic systems. The robust strictly positive real controller allows the system to be stabilized with only acceleration measurements. An important property of this design is that stabilization of the system is independent of the system parameters. The control design connects a virtual system to the given plant. The combined system is positive real regardless of system parameter uncertainty. Then any strictly positive real controllers can be used to achieve robust stability. A spring-mass system example and its computer simulations are presented to demonstrate this controller design.
Unsupervised, Robust Estimation-based Clustering for Multispectral Images
NASA Technical Reports Server (NTRS)
Netanyahu, Nathan S.
1997-01-01
To prepare for the challenge of handling the archiving and querying of terabyte-sized scientific spatial databases, the NASA Goddard Space Flight Center's Applied Information Sciences Branch (AISB, Code 935) developed a number of characterization algorithms that rely on supervised clustering techniques. The research reported upon here has been aimed at continuing the evolution of some of these supervised techniques, namely the neural network and decision tree-based classifiers, plus extending the approach to incorporating unsupervised clustering algorithms, such as those based on robust estimation (RE) techniques. The algorithms developed under this task should be suited for use by the Intelligent Information Fusion System (IIFS) metadata extraction modules, and as such these algorithms must be fast, robust, and anytime in nature. Finally, so that the planner/schedule module of the IlFS can oversee the use and execution of these algorithms, all information required by the planner/scheduler must be provided to the IIFS development team to ensure the timely integration of these algorithms into the overall system.
Robust visual tracking with dual spatio-temporal context trackers
NASA Astrophysics Data System (ADS)
Sun, Shiyan; Zhang, Hong; Yuan, Ding
2015-12-01
Visual tracking is a challenging problem in computer vision. Recent years, significant numbers of trackers have been proposed. Among these trackers, tracking with dense spatio-temporal context has been proved to be an efficient and accurate method. Other than trackers with online trained classifier that struggle to meet the requirement of real-time tracking task, a tracker with spatio-temporal context can run at hundreds of frames per second with Fast Fourier Transform (FFT). Nevertheless, the performance of the tracker with Spatio-temporal context relies heavily on the learning rate of the context, which restricts the robustness of the tracker. In this paper, we proposed a tracking method with dual spatio-temporal context trackers that hold different learning rate during tracking. The tracker with high learning rate could track the target smoothly when the appearance of target changes, while the tracker with low learning rate could percepts the occlusion occurring and continues to track when the target starts to emerge again. To find the target among the candidates from these two trackers, we adopt Normalized Correlation Coefficient (NCC) to evaluate the confidence of each sample. Experimental results show that the proposed algorithm performs robustly against several state-of-the-art tracking methods.
Robust adaptive backstepping control for reentry reusable launch vehicles
NASA Astrophysics Data System (ADS)
Wang, Zhen; Wu, Zhong; Du, Yijiang
2016-09-01
During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.
Robust labeling methods for copy protection of images
NASA Astrophysics Data System (ADS)
Langelaar, Gerhard C.; van der Lubbe, Jan C. A.; Lagendijk, Reginald L.
1997-01-01
In the European project SMASH a mass multimedia storage device for home usage is being developed. The success of such a storage system depends not only on technical advances, but also on the existence of an adequate copy protection method. Copy protection for visual data requires fast and robust labeling techniques. In this paper, two new labeling techniques are proposed. The first method extends an existing spatial labeling technique. This technique divides the image into blocks and searches an optimal label- embedding level for each block instead of using a fixed embedding-level for the complete image. The embedding-level for each block is dependent on a lower quality JPEG compressed version of the labeled block. The second method removes high frequency DCT-coefficients in some areas to embed a label. A JPEG quality factor and the local image structure determine how many coefficients are discarded during the labeling process. Using both methods a perceptually invisible label of a few hundred bits was embedded in a set of true color images. The label added by the spatial method is very robust against JPEG compression. However, this method is not suitable for real-time applications. Although the second DCT-based method is slightly less resistant to JPEG compression, it is more resistant to line-shifting and cropping than the first one and is suitable for real-time labeling.
Robustness of phylogenetic inference based on minimum evolution.
Pardi, Fabio; Guillemot, Sylvain; Gascuel, Olivier
2010-10-01
Minimum evolution is the guiding principle of an important class of distance-based phylogeny reconstruction methods, including neighbor-joining (NJ), which is the most cited tree inference algorithm to date. The minimum evolution principle involves searching for the tree with minimum length, where the length is estimated using various least-squares criteria. Since evolutionary distances cannot be known precisely but only estimated, it is important to investigate the robustness of phylogenetic reconstruction to imprecise estimates for these distances. The safety radius is a measure of this robustness: it consists of the maximum relative deviation that the input distances can have from the correct distances, without compromising the reconstruction of the correct tree structure. Answering some open questions, we here derive the safety radius of two popular minimum evolution criteria: balanced minimum evolution (BME) and minimum evolution based on ordinary least squares (OLS + ME). Whereas BME has a radius of 1/2, which is the best achievable, OLS + ME has a radius tending to 0 as the number of taxa increases. This difference may explain the gap in reconstruction accuracy observed in practice between OLS + ME and BME (which forms the basis of popular programs such as NJ and FastME).
Robustness of FRC and the MRX-CT Project
NASA Astrophysics Data System (ADS)
Himura, H.; Yamada, M.; Ji, H.; Heitzenroeder, P.
1997-11-01
A field-reversed configuration (FRC) with β ~ 0.9 is an elongated compact toroid (CT) which can be easily translated(H. Himura et al.), Phys. Plasmas 2, 191 (1995); H. Himura et al., Phys. Rev. Lett. 78, 1916 (1997). axially when driven by a gradient in a solenoidal field. The structure of the FRC is quite robust against external perturbations. The translated FRC keeps its configuration intact even when deflected strongly across an externally applied curved magnetic field. To produce such a plasma, there are five different methods. In each method, a magnetic reconnection phenomenon plays an essential role to form the FRC. Recently, a stable FRC has been successfully formed by a slow formation scheme based on merging of co- and counter-helicity spheromaks(Y. Ono et al.), in Proc. 16th IAEA Fusion Energy Conference (IAEA, Vienna, 1997).. This robust FRC is obtained inside a metal chamber, and several heating and/or current drive devices such as NBI and/or OH coil can be applied to the plasma just after formation. With respect to developing a compact reactor core, this novel formation scheme, which was pioneered on MRX and TS-3, has significant advantages over the conventional utilization of either fast shock heating or electrode discharges.
Highly Robust Silver Nanowire Network for Transparent Electrode.
Song, Tze-Bin; Rim, You Seung; Liu, Fengmin; Bob, Brion; Ye, Shenglin; Hsieh, Yao-Tsung; Yang, Yang
2015-11-11
Solution-processed silver nanowire networks are one of the promising candidates to replace a traditional indium tin oxide as next-generation transparent and flexible electrodes due to their ease of processing, moderate flexibility, high transparency, and low sheet resistance. To date, however, high stability of the nanowire networks remains a major challenge because the long-term usages of these electrodes are limited by their poor thermal and chemical stabilities. Existing methods for addressing this challenge mainly focus on protecting the nanowire network with additional layers that require vacuum processes, which can lead to an increment in manufacturing cost. Here, we report a straightforward strategy of a sol-gel processing as a fast and robust way to improve the stabilities of silver nanowires. Compared with reported nanoparticles embedded in nanowire networks, better thermal and chemical stabilities are achieved via sol-gel coating of TiO2 over the silver nanowire networks. The conformal surface coverage suppressed surface diffusion of silver atoms and prevented chemical corrosion from the environment. These results highlight the important role of the functional layer in providing better thermal and chemical stabilities along with improved electrical properties and mechanical robustness. The silver nanowire/TiO2 composite electrodes were applied as the source and drain electrodes for In2O3 thin-film transistors (TFTs) and the devices exhibited improved electrical performance annealed at 300 °C without the degradation of the electrodes. These key findings not only demonstrated a general and effective method to improve the thermal and chemical stabilities of metal nanowire networks but also provided a basic guideline toward rational design of highly efficient and robust composite electrodes.
Robust hashing with local models for approximate similarity search.
Song, Jingkuan; Yang, Yi; Li, Xuelong; Huang, Zi; Yang, Yang
2014-07-01
Similarity search plays an important role in many applications involving high-dimensional data. Due to the known dimensionality curse, the performance of most existing indexing structures degrades quickly as the feature dimensionality increases. Hashing methods, such as locality sensitive hashing (LSH) and its variants, have been widely used to achieve fast approximate similarity search by trading search quality for efficiency. However, most existing hashing methods make use of randomized algorithms to generate hash codes without considering the specific structural information in the data. In this paper, we propose a novel hashing method, namely, robust hashing with local models (RHLM), which learns a set of robust hash functions to map the high-dimensional data points into binary hash codes by effectively utilizing local structural information. In RHLM, for each individual data point in the training dataset, a local hashing model is learned and used to predict the hash codes of its neighboring data points. The local models from all the data points are globally aligned so that an optimal hash code can be assigned to each data point. After obtaining the hash codes of all the training data points, we design a robust method by employing l2,1 -norm minimization on the loss function to learn effective hash functions, which are then used to map each database point into its hash code. Given a query data point, the search process first maps it into the query hash code by the hash functions and then explores the buckets, which have similar hash codes to the query hash code. Extensive experimental results conducted on real-life datasets show that the proposed RHLM outperforms the state-of-the-art methods in terms of search quality and efficiency.
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental
Fast traffic sign recognition with a rotation invariant binary pattern based feature.
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-01
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.
Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-01
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217
Magnetically assisted fast ignition.
Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T
2015-01-01
Fast ignition (FI) is investigated via integrated particle-in-cell simulation including both generation and transport of fast electrons, where petawatt ignition lasers of 2 ps and compressed targets of a peak density of 300 g cm(-3) and areal density of 0.49 g cm(-2) at the core are taken. When a 20 MG static magnetic field is imposed across a conventional cone-free target, the energy coupling from the laser to the core is enhanced by sevenfold and reaches 14%. This value even exceeds that obtained using a cone-inserted target, suggesting that the magnetically assisted scheme may be a viable alternative for FI. With this scheme, it is demonstrated that two counterpropagating, 6 ps, 6 kJ lasers along the magnetic field transfer 12% of their energy to the core, which is then heated to 3 keV. PMID:25615473
NASA Astrophysics Data System (ADS)
Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.
2016-03-01
Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.
Spatiotemporal Encoding As A Robust Basis for Fast 3D In Vivo MRI
Ben-Eliezer, Noam; Frydman, Lucio
2016-01-01
Recent studies have described some of the new opportunities opened within the context of ultrafast 2D imaging, by the advent of spatiotemporal encoding methods. This paper explores the potential of integrating these non-Fourier, single scan 2D MRI principles, with multi-slice and with phase encoding schemes acting along a third dimension. In unison, these combinations enable the acquisition of complete three-dimensional images from volumes-of-interest within a one-second timescale. A number of alternatives are hereby explored for carrying out these very rapid 3D acquisitions, including: (i) the use of two-dimensional slice-selective, spatiotemporal encoding excitation radiofrequency pulses, (ii) driven-equilibrium slice selective schemes, and (iii) phase encoded volumetric approaches. Whenever tested under in vivo conditions, the ‘hybrid’ schemes combining spatiotemporal encoding with k-encoding imaging principles, proved superior to traditional schemes based on EPI. The resulting images were found less affected by field inhomogeneities and by other potential offset-derived distortions, owing to a combination of factors whose origin is discussed. Further features, extensions and applications of these principles are also addressed. PMID:21360603
Herráez, Miguel Arevallilo; Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-12-10
We describe what is to our knowledge a novel approach to phase unwrapping. Using the principle of unwrapping following areas with similar phase values (homogenous areas), the algorithm reacts satisfactorily to random noise and breaks in the wrap distributions. Execution times for a 512 x 512 pixel phase distribution are in the order of a half second on a desktop computer. The precise value depends upon the particular image under analysis. Two inherent parameters allow tuning of the algorithm to images of different quality and nature. PMID:12502302
Herráez, Miguel Arevallilo; Gdeisat, Munther A; Burton, David R; Lalor, Michael J
2002-12-10
We describe what is to our knowledge a novel approach to phase unwrapping. Using the principle of unwrapping following areas with similar phase values (homogenous areas), the algorithm reacts satisfactorily to random noise and breaks in the wrap distributions. Execution times for a 512 x 512 pixel phase distribution are in the order of a half second on a desktop computer. The precise value depends upon the particular image under analysis. Two inherent parameters allow tuning of the algorithm to images of different quality and nature.
Elliptical Local Vessel Density: a Fast and Robust Quality Metric for Fundus Images
Giancardo, Luca; Chaum, Edward; Karnowski, Thomas Paul; Meriaudeau, Fabrice; Tobin Jr, Kenneth William; Abramoff, M.D.
2008-01-01
A great effort of the research community is geared towards the creation of an automatic screening system able to promptly detect diabetic retinopathy with the use of fundus cameras. In addition, there are some documented approaches to the problem of automatically judging the image quality. We propose a new set of features independent of Field of View or resolution to describe the morphology of the patient's vessels. Our initial results suggest that they can be used to estimate the image quality in a time one order of magnitude shorter respect to previous techniques.
Fast and Robust STEM Reconstruction in Complex Environments Using Terrestrial Laser Scanning
NASA Astrophysics Data System (ADS)
Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N.
2016-06-01
Terrestrial Laser Scanning (TLS) is an effective tool in forest research and management. However, accurate estimation of tree parameters still remains challenging in complex forests. In this paper, we present a novel algorithm for stem modeling in complex environments. This method does not require accurate delineation of stem points from the original point cloud. The stem reconstruction features a self-adaptive cylinder growing scheme. This algorithm is tested for a landslide region in the federal state of Vorarlberg, Austria. The algorithm results are compared with field reference data, which show that our algorithm is able to accurately retrieve the diameter at breast height (DBH) with a root mean square error (RMSE) of ~1.9 cm. This algorithm is further facilitated by applying an advanced sampling technique. Different sampling rates are applied and tested. It is found that a sampling rate of 7.5% is already able to retain the stem fitting quality and simultaneously reduce the computation time significantly by ~88%.
A fast converging robust controller using adaptive second order sliding mode.
Mondal, Sanjoy; Mahanta, Chitralekha
2012-11-01
This paper proposes an adaptive second order sliding mode (SOSM) controller with a nonlinear sliding surface. The nonlinear sliding surface consists of a gain matrix having a variable damping ratio. Initially the sliding surface uses a low value of damping ratio to get a quick system response. As the closed loop system approaches the desired reference, the value of the damping ratio gets increased with an aim to reducing the overshoot and the settling time. The time derivative of the control signal is used to design the controller. The actual control input obtained by integrating the derivative control signal is smooth and chattering free. The adaptive tuning law used by the proposed controller eliminates the need of prior knowledge about the upper bound of system uncertainties. Simulation results demonstrate the effectiveness of the proposed control strategy.
Tempering temperature changes for robust development.
Delidakis, Christos
2014-05-22
Developmental signaling pathways needed to evolve to be robust against environmental fluctuations. In this issue, Shimizu et al. reveal a complex system of interacting endocytic pathways that help to maintain consistent levels of Notch activity across a range of temperatures.
Robust lateral control of highway vehicles
Byrne, R.H.; Abdallah, C.
1994-08-01
Vehicle lateral dynamics are affected by vehicle mass, longitudinal velocity, vehicle inertia, and the cornering stiffness of the tires. All of these parameters are subject to variation, even over the course of a single trip. Therefore, a practical lateral control system must guarantee stability, and hopefully ride comfort, over a wide range of parameter changes. This paper describes a robust controller which theoretically guarantees stability over a wide range of parameter changes. The robust controller is designed using a frequency domain transfer function approach. An uncertainty band in the frequency domain is determined using simulations over the range of expected parameter variations. Based on this bound, a robust controller is designed by solving the Nevanlinna-Pick interpolation problem. The performance of the robust controller is then evaluated over the range of parameter variations through simulations.
Bypass rewiring and robustness of complex networks.
Park, Junsang; Hahn, Sang Geun
2016-08-01
A concept of bypass rewiring is introduced, and random bypass rewiring is analytically and numerically investigated with simulations. Our results show that bypass rewiring makes networks robust against removal of nodes including random failures and attacks. In particular, random bypass rewiring connects all nodes except the removed nodes on an even degree infinite network and makes the percolation threshold 0 for arbitrary occupation probabilities. In our example, the even degree network is more robust than the original network with random bypass rewiring, while the original network is more robust than the even degree networks without random bypass. We propose a greedy bypass rewiring algorithm which guarantees the maximum size of the largest component at each step, assuming which node will be removed next is unknown. The simulation result shows that the greedy bypass rewiring algorithm improves the robustness of the autonomous system of the Internet under attacks more than random bypass rewiring.
Bypass rewiring and robustness of complex networks
NASA Astrophysics Data System (ADS)
Park, Junsang; Hahn, Sang Geun
2016-08-01
A concept of bypass rewiring is introduced, and random bypass rewiring is analytically and numerically investigated with simulations. Our results show that bypass rewiring makes networks robust against removal of nodes including random failures and attacks. In particular, random bypass rewiring connects all nodes except the removed nodes on an even degree infinite network and makes the percolation threshold 0 for arbitrary occupation probabilities. In our example, the even degree network is more robust than the original network with random bypass rewiring, while the original network is more robust than the even degree networks without random bypass. We propose a greedy bypass rewiring algorithm which guarantees the maximum size of the largest component at each step, assuming which node will be removed next is unknown. The simulation result shows that the greedy bypass rewiring algorithm improves the robustness of the autonomous system of the Internet under attacks more than random bypass rewiring.
Robust control design for aerospace applications
NASA Technical Reports Server (NTRS)
Yedavalli, Rama K.
1989-01-01
Time-domain control design for stability robustness of linear systems with structured uncertainty is addressed. Upper bounds on the linear perturbation of an asymptotically stable linear system are obtained, making it possible to maintain stability by using the structural information of the uncertainty. A quantitative measure called the stability robustness index is introduced and used to design controllers for robust stability. The proposed state feedback control design algorithm can be used, for a given set of perturbations, to select the range of control effort for which the system is stability-robust. Conversely it can be used, for a given control effort, to determine the size of the tolerable perturbation. The algorithm is illustrated with examples from aircraft control and large-space-structure control problems.
Robust optimisation of railway crossing geometry
NASA Astrophysics Data System (ADS)
Wan, Chang; Markine, Valeri; Dollevoet, Rolf
2016-05-01
This paper presents a methodology for improving the crossing (frog) geometry through the robust optimisation approach, wherein the variability of the design parameters within a prescribed tolerance is included in the optimisation problem. Here, the crossing geometry is defined by parameterising the B-spline represented cross-sectional shape and the longitudinal height profile of the nose rail. The dynamic performance of the crossing is evaluated considering the variation of wheel profiles and track alignment. A multipoint approximation method (MAM) is applied in solving the optimisation problem of minimising the contact pressure during the wheel-rail contact and constraining the location of wheel transition at the crossing. To clarify the difference between the robust optimisation and the normal deterministic optimisation approaches, the optimisation problems are solved in both approaches. The results show that the deterministic optimum fails under slight change of the design variables; the robust optimum, however, has improved and robust performance.
Robust design of polyrhythmic neural circuits
NASA Astrophysics Data System (ADS)
Schwabedal, Justus T. C.; Neiman, Alexander B.; Shilnikov, Andrey L.
2014-08-01
Neural circuit motifs producing coexistent rhythmic patterns are treated as building blocks of multifunctional neuronal networks. We study the robustness of such a motif of inhibitory model neurons to reliably sustain bursting polyrhythms under random perturbations. Without noise, the exponential stability of each of the coexisting rhythms increases with strengthened synaptic coupling, thus indicating an increased robustness. Conversely, after adding noise we find that noise-induced rhythm switching intensifies if the coupling strength is increased beyond a critical value, indicating a decreased robustness. We analyze this stochastic arrhythmia and develop a generic description of its dynamic mechanism. Based on our mechanistic insight, we show how physiological parameters of neuronal dynamics and network coupling can be balanced to enhance rhythm robustness against noise. Our findings are applicable to a broad class of relaxation-oscillator networks, including Fitzhugh-Nagumo and other Hodgkin-Huxley-type networks.
Robust nonlinear control of vectored thrust aircraft
NASA Technical Reports Server (NTRS)
Doyle, John C.; Murray, Richard; Morris, John
1993-01-01
An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations.
Robust facial expression recognition via compressive sensing.
Zhang, Shiqing; Zhao, Xiaoming; Lei, Bicheng
2012-01-01
Recently, compressive sensing (CS) has attracted increasing attention in the areas of signal processing, computer vision and pattern recognition. In this paper, a new method based on the CS theory is presented for robust facial expression recognition. The CS theory is used to construct a sparse representation classifier (SRC). The effectiveness and robustness of the SRC method is investigated on clean and occluded facial expression images. Three typical facial features, i.e., the raw pixels, Gabor wavelets representation and local binary patterns (LBP), are extracted to evaluate the performance of the SRC method. Compared with the nearest neighbor (NN), linear support vector machines (SVM) and the nearest subspace (NS), experimental results on the popular Cohn-Kanade facial expression database demonstrate that the SRC method obtains better performance and stronger robustness to corruption and occlusion on robust facial expression recognition tasks.
Bypass rewiring and robustness of complex networks.
Park, Junsang; Hahn, Sang Geun
2016-08-01
A concept of bypass rewiring is introduced, and random bypass rewiring is analytically and numerically investigated with simulations. Our results show that bypass rewiring makes networks robust against removal of nodes including random failures and attacks. In particular, random bypass rewiring connects all nodes except the removed nodes on an even degree infinite network and makes the percolation threshold 0 for arbitrary occupation probabilities. In our example, the even degree network is more robust than the original network with random bypass rewiring, while the original network is more robust than the even degree networks without random bypass. We propose a greedy bypass rewiring algorithm which guarantees the maximum size of the largest component at each step, assuming which node will be removed next is unknown. The simulation result shows that the greedy bypass rewiring algorithm improves the robustness of the autonomous system of the Internet under attacks more than random bypass rewiring. PMID:27627320
Violations of robustness trade-offs
Kitano, Hiroaki
2010-01-01
Biological robustness is a principle that may shed light on system-level characteristics of biological systems. One intriguing aspect of the concept of biological robustness is the possible existence of intrinsic trade-offs among robustness, fragility, performance, and so on. At the same time, whether such trade-offs hold regardless of the situation or hold only under specific conditions warrants careful investigation. In this paper, we reassess this concept and argue that biological robustness may hold only when a system is sufficiently optimized and that it may not be conserved when there is room for optimization in its design. Several testable predictions and implications for cell culture experiments are presented. PMID:20571533
Design principles for robust oscillatory behavior.
Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M
2015-09-01
Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.
NASA Astrophysics Data System (ADS)
Chadwick, Alan V.
Fast ion conductors, sometimes referred to as superionic conductors or solid electrolytes, are solids with ionic conductivities that are comparable to those found in molten salts and aqueous solutions of strong electrolytes, i.e., 10-2-10 S cm-1. Such materials have been known of for a very long time and some typical examples of the conductivity are shown in Fig. 1, along with sodium chloride as the archetypal normal ionic solid. Faraday [1] first noted the high conductivity of solid lead fluoride (PbF2) and silver sulphide (Ag2S) in the 1830s and silver iodide was known to be unusually high ionic conductor to the German physicists early in the 1900s. However, the materials were regarded as anomalous until the mid 1960s when they became the focus of intense interest to academics and technologists and they have remained at the forefront of materials research [2-4]. The academic aim is to understand the fundamental origin of fast ion behaviour and the technological goal is to utilize the properties in applications, particularly in energy applications such as the electrolyte membranes in solid-state batteries and fuel cells, and in electrochemical sensors. The last four decades has seen an expansion of the types of material that exhibit fast ion behaviour that now extends beyond simple binary ionic crystals to complex solids and even polymeric materials. Over this same period computer simulations of solids has also developed (in fact these methods and the interest in fast ion conductors were almost coincidental in their time of origin) and the techniques have played a key role in this area of research.
Soha, Aria; Chiu, Mickey; Mannel, Eric; Stoll, Sean; Lynch, Don; Boose, Steve; Northacker, Dave; Alfred, Marcus; Lindesay, James; Chujo, Tatsuya; Inaba, Motoi; Nonaka, Toshihiro; Sato, Wataru; Sakatani, Ikumi; Hirano, Masahiro; Choi, Ihnjea
2014-01-15
This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of PHENIX Fast TOF group who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program. The goals for this test beam experiment are to verify the timing performance of the two types of time-of-flight detector prototypes.
Fast track evaluation methodology.
Duke, J R
1991-06-01
Evaluating hospital information systems has taken a variety of forms since the initial development and use of automation. The process itself has moved from a hardware-based orientation controlled by data processing professionals to systems solutions and a user-driven process overseen by management. At Harbor Hospital Center in Baltimore, a fast track methodology has been introduced to shorten system evaluation time to meet the rapid changes that constantly affect the healthcare industry.
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Fast Track Study supports the efforts of a Special Study Group (SSG) made up of members of the Advanced Project Management Class number 23 (APM-23) that met at the Wallops Island Management Education Center from April 28 - May 8, 1996. Members of the Class expressed interest to Mr. Vem Weyers in having an input to the NASA Policy Document (NPD) 7120.4, that will replace NASA Management Institute (NMI) 7120.4, and the NASA Program/Project Management Guide. The APM-23 SSG was tasked with assisting in development of NASA policy on managing Fast Track Projects, defined as small projects under $150 million and completed within three years. 'Me approach of the APM-23 SSG was to gather data on successful projects working in a 'Better, Faster, Cheaper' environment, within and outside of NASA and develop the Fast Track Project section of the NASA Program/Project Management Guide. Fourteen interviews and four other data gathering efforts were conducted by the SSG, and 16 were conducted by Strategic Resources, Inc. (SRI), including five interviews at the Jet Propulsion Laboratory (JPL) and one at the Applied Physics Laboratory (APL). The interviews were compiled and analyzed for techniques and approaches commonly used to meet severe cost and schedule constraints.
NASA Astrophysics Data System (ADS)
Mar, Mark H.
1990-11-01
The purpose of this paper is to report the results of testing the fast Hartley transform (FHT) and comparing it with the fast Fourier transform (FFT). All the definitions and equations in this paper are quoted and cited from the series of references. The author of this report developed a FORTRAN program which computes the Hartley transform. He tested the program with a generalized electromagnetic pulse waveform and verified the results with the known value. Fourier analysis is an essential tool to obtain frequency domain information from transient time domain signals. The FFT is a popular tool to process many of today's audio and electromagnetic signals. System frequency response, digital filtering of signals, and signal power spectrum are the most practical applications of the FFT. However, the Fourier integral transform of the FFT requires computer resources appropriate for the complex arithmetic operations. On the other hand, the FHT can accomplish the same results faster and requires fewer computer resources. The FHT is twice as fast as the FFT, uses only half the computer resources, and so could be more useful than the FFT in typical applications such as spectral analysis, signal processing, and convolution. This paper presents a FORTRAN computer program for the FHT algorithm along with a brief description and compares the results and performance of the FHT and the FFT algorithms.
Johnstone, A M
2007-05-01
Adult humans often undertake acute fasts for cosmetic, religious or medical reasons. For example, an estimated 14% of US adults have reported using fasting as a means to control body weight and this approach has long been advocated as an intermittent treatment for gross refractory obesity. There are unique historical data sets on extreme forms of food restriction that give insight into the consequences of starvation or semi-starvation in previously healthy, but usually non-obese subjects. These include documented medical reports on victims of hunger strike, famine and prisoners of war. Such data provide a detailed account on how the body adapts to prolonged starvation. It has previously been shown that fasting for the biblical period of 40 days and 40 nights is well within the overall physiological capabilities of a healthy adult. However, the specific effects on the human body and mind are less clearly documented, either in the short term (hours) or in the longer term (days). This review asks the following three questions, pertinent to any weight-loss therapy, (i) how effective is the regime in achieving weight loss, (ii) what impact does it have on psychology? and finally, (iii) does it work long-term? PMID:17444963
Research in robust control for hypersonic aircraft
NASA Technical Reports Server (NTRS)
Calise, A. J.
1993-01-01
The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.
Robustness of entanglement as a resource
Chaves, Rafael; Davidovich, Luiz
2010-11-15
The robustness of multipartite entanglement of systems undergoing decoherence is of central importance to the area of quantum information. Its characterization depends, however, on the measure used to quantify entanglement and on how one partitions the system. Here we show that the unambiguous assessment of the robustness of multipartite entanglement is obtained by considering the loss of functionality in terms of two communication tasks, namely the splitting of information between many parties and the teleportation of states.
Yang, Xiaofan; Zhu, Yuanrui; Hong, Jing; Yang, Lu-Xing; Wu, Yingbo; Tang, Yuan Yan
2016-01-01
There are quite a number of different metrics of network robustness. This paper addresses the rationality of four metrics of network robustness (the algebraic connectivity, the effective resistance, the average edge betweenness, and the efficiency) by investigating the robust growth of generalized meshes (GMs). First, a heuristic growth algorithm (the Proximity-Growth algorithm) is proposed. The resulting proximity-optimal GMs are intuitively robust and hence are adopted as the benchmark. Then, a generalized mesh (GM) is grown up by stepwise optimizing a given measure of network robustness. The following findings are presented: (1) The algebraic connectivity-optimal GMs deviate quickly from the proximity-optimal GMs, yielding a number of less robust GMs. This hints that the rationality of the algebraic connectivity as a measure of network robustness is still in doubt. (2) The effective resistace-optimal GMs and the average edge betweenness-optimal GMs are in line with the proximity-optimal GMs. This partly justifies the two quantities as metrics of network robustness. (3) The efficiency-optimal GMs deviate gradually from the proximity-optimal GMs, yielding some less robust GMs. This suggests the limited utility of the efficiency as a measure of network robustness. PMID:27518448
Liu Wei; Li Yupeng; Li Xiaoqiang; Cao Wenhua; Zhang Xiaodong
2012-06-15
Purpose: The distal edge tracking (DET) technique in intensity-modulated proton therapy (IMPT) allows for high energy efficiency, fast and simple delivery, and simple inverse treatment planning; however, it is highly sensitive to uncertainties. In this study, the authors explored the application of DET in IMPT (IMPT-DET) and conducted robust optimization of IMPT-DET to see if the planning technique's sensitivity to uncertainties was reduced. They also compared conventional and robust optimization of IMPT-DET with three-dimensional IMPT (IMPT-3D) to gain understanding about how plan robustness is achieved. Methods: They compared the robustness of IMPT-DET and IMPT-3D plans to uncertainties by analyzing plans created for a typical prostate cancer case and a base of skull (BOS) cancer case (using data for patients who had undergone proton therapy at our institution). Spots with the highest and second highest energy layers were chosen so that the Bragg peak would be at the distal edge of the targets in IMPT-DET using 36 equally spaced angle beams; in IMPT-3D, 3 beams with angles chosen by a beam angle optimization algorithm were planned. Dose contributions for a number of range and setup uncertainties were calculated, and a worst-case robust optimization was performed. A robust quantification technique was used to evaluate the plans' sensitivity to uncertainties. Results: With no uncertainties considered, the DET is less robust to uncertainties than is the 3D method but offers better normal tissue protection. With robust optimization to account for range and setup uncertainties, robust optimization can improve the robustness of IMPT plans to uncertainties; however, our findings show the extent of improvement varies. Conclusions: IMPT's sensitivity to uncertainties can be improved by using robust optimization. They found two possible mechanisms that made improvements possible: (1) a localized single-field uniform dose distribution (LSFUD) mechanism, in which the
Enhancing network robustness against malicious attacks
NASA Astrophysics Data System (ADS)
Zeng, An; Liu, Weiping
2012-06-01
In a recent work [Schneider , Proc. Natl. Acad. Sci. USAPNASA60027-842410.1073/pnas.1009440108 108, 3838 (2011)], the authors proposed a simple measure for network robustness under malicious attacks on nodes. Using a greedy algorithm, they found that the optimal structure with respect to this quantity is an onion structure in which high-degree nodes form a core surrounded by rings of nodes with decreasing degree. However, in real networks the failure can also occur in links such as dysfunctional power cables and blocked airlines. Accordingly, complementary to the node-robustness measurement (Rn), we propose a link-robustness index (Rl). We show that solely enhancing Rn cannot guarantee the improvement of Rl. Moreover, the structure of an Rl-optimized network is found to be entirely different from that of an onion network. In order to design robust networks that are resistant to a more realistic attack condition, we propose a hybrid greedy algorithm that takes both the Rn and Rl into account. We validate the robustness of our generated networks against malicious attacks mixed with both nodes and links failure. Finally, some economical constraints for swapping the links in real networks are considered, and significant improvement in both aspects of robustness is still achieved.
Robust fuzzy mappings for QSAR studies.
Kumar, Mohit; Thurow, Kerstin; Stoll, Norbert; Stoll, Regina
2007-05-01
This study presents a new robust method of developing quantitative structure-activity relationship (QSAR) models based on fuzzy mappings. An important issue in QSAR modelling is of robustness, i.e., model should not undergo overtraining and model performance should be least sensitive to the modelling errors associated with the chosen descriptors and structure of the model. We establish robust input-output mappings for QSAR studies based on fuzzy "if-then" rules. The identification of these mappings (i.e. the construction of fuzzy rules) is based on a robust criterion that the maximum possible value of energy-gain from modelling errors to the identification errors is minimum. The robustness of proposed approach has been illustrated with simulation studies and QSAR modelling examples. The method of robust fuzzy mappings has been compared with Bayesian regularized neural networks through the QSAR modelling examples of (1) carboquinones' data set, (2) benzodiazepine data set, and (3) predicting the rate constant for hydroxyl radical tropospheric degradation of 460 heterogeneous organic compounds.
Enhancing network robustness against malicious attacks.
Zeng, An; Liu, Weiping
2012-06-01
In a recent work [Schneider et al., Proc. Natl. Acad. Sci. USA 108, 3838 (2011)], the authors proposed a simple measure for network robustness under malicious attacks on nodes. Using a greedy algorithm, they found that the optimal structure with respect to this quantity is an onion structure in which high-degree nodes form a core surrounded by rings of nodes with decreasing degree. However, in real networks the failure can also occur in links such as dysfunctional power cables and blocked airlines. Accordingly, complementary to the node-robustness measurement (R(n)), we propose a link-robustness index (R(l)). We show that solely enhancing R(n) cannot guarantee the improvement of R(l). Moreover, the structure of an R(l)-optimized network is found to be entirely different from that of an onion network. In order to design robust networks that are resistant to a more realistic attack condition, we propose a hybrid greedy algorithm that takes both the R(n) and R(l) into account. We validate the robustness of our generated networks against malicious attacks mixed with both nodes and links failure. Finally, some economical constraints for swapping the links in real networks are considered, and significant improvement in both aspects of robustness is still achieved.
Enhancing network robustness against malicious attacks.
Zeng, An; Liu, Weiping
2012-06-01
In a recent work [Schneider et al., Proc. Natl. Acad. Sci. USA 108, 3838 (2011)], the authors proposed a simple measure for network robustness under malicious attacks on nodes. Using a greedy algorithm, they found that the optimal structure with respect to this quantity is an onion structure in which high-degree nodes form a core surrounded by rings of nodes with decreasing degree. However, in real networks the failure can also occur in links such as dysfunctional power cables and blocked airlines. Accordingly, complementary to the node-robustness measurement (R(n)), we propose a link-robustness index (R(l)). We show that solely enhancing R(n) cannot guarantee the improvement of R(l). Moreover, the structure of an R(l)-optimized network is found to be entirely different from that of an onion network. In order to design robust networks that are resistant to a more realistic attack condition, we propose a hybrid greedy algorithm that takes both the R(n) and R(l) into account. We validate the robustness of our generated networks against malicious attacks mixed with both nodes and links failure. Finally, some economical constraints for swapping the links in real networks are considered, and significant improvement in both aspects of robustness is still achieved. PMID:23005185
Transient absolute robustness in stochastic biochemical networks.
Enciso, German A
2016-08-01
Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485
Neighborhood fast food availability and fast food consumption
Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D
2015-01-01
Recent nutritional and public health research has focused on how the availability of various types of food in a person’s immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person’s perceived availability of fast-food and an objective measure of fast-food presence—Geographic Information Systems (GIS)—within that person’s neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant’s neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely
Neighborhood fast food availability and fast food consumption.
Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D
2015-09-01
Recent nutritional and public health research has focused on how the availability of various types of food in a person's immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person's perceived availability of fast-food and an objective measure of fast-food presence - Geographic Information Systems (GIS) - within that person's neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant's neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely effective.
Neighborhood fast food availability and fast food consumption.
Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D
2015-09-01
Recent nutritional and public health research has focused on how the availability of various types of food in a person's immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person's perceived availability of fast-food and an objective measure of fast-food presence - Geographic Information Systems (GIS) - within that person's neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant's neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely effective. PMID
Robust G2 pausing of adult stem cells in Hydra.
Buzgariu, Wanda; Crescenzi, Marco; Galliot, Brigitte
2014-01-01
Hydra is a freshwater hydrozoan polyp that constantly renews its two tissue layers thanks to three distinct stem cell populations that cannot replace each other, epithelial ectodermal, epithelial endodermal, and multipotent interstitial. These adult stem cells, located in the central body column, exhibit different cycling paces, slow for the epithelial, fast for the interstitial. To monitor the changes in cell cycling in Hydra, we established a fast and efficient flow cytometry procedure, which we validated by confirming previous findings, as the Nocodazole-induced reversible arrest of cell cycling in G2/M, and the mitogenic signal provided by feeding. Then to dissect the cycling and differentiation behaviors of the interstitial stem cells, we used the AEP_cnnos1 and AEP_Icy1 transgenic lines that constitutively express GFP in this lineage. For the epithelial lineages we used the sf-1 strain that rapidly eliminates the fast cycling cells upon heat-shock and progressively becomes epithelial. This study evidences similar cycling patterns for the interstitial and epithelial stem cells, which all alternate between the G2 and S-phases traversing a minimal G1-phase. We also found interstitial progenitors with a shorter G2 that pause in G1/G0. At the animal extremities, most cells no longer cycle, the epithelial cells terminally differentiate in G2 and the interstitial progenitors in G1/G0. At the apical pole ~80% cells are post-mitotic differentiated cells, reflecting the higher density of neurons and nematocytes in this region. We discuss how the robust G2 pausing of stem cells, maintained over weeks of starvation, may contribute to regeneration.
ERIC Educational Resources Information Center
Charner, Ivan; Fraser, Bryna Shore
A study examined the employment of Hispanics in the fast-food industry. Data were obtained from a national survey of employees at 279 fast-food restaurants from seven companies in which 194 (4.2 percent) of the 4,660 respondents reported being Hispanic. Compared with the total sample, Hispanic fast-food employees were slightly less likely to be…
On accuracy, robustness, and security of bag-of-word search systems
NASA Astrophysics Data System (ADS)
Voloshynovskiy, Svyatoslav; Diephuis, Maurits; Kostadinov, Dimche; Farhadzadeh, Farzad; Holotyak, Taras
2014-02-01
In this paper, we present a statistical framework for the analysis of the performance of Bag-of-Words (BOW) systems. The paper aims at establishing a better understanding of the impact of different elements of BOW systems such as the robustness of descriptors, accuracy of assignment, descriptor compression and pooling and finally decision making. We also study the impact of geometrical information on the BOW system performance and compare the results with different pooling strategies. The proposed framework can also be of interest for a security and privacy analysis of BOW systems. The experimental results on real images and descriptors confirm our theoretical findings. Notation: We use capital letters to denote scalar random variables X and X to denote vector random variables, corresponding small letters x and x to denote the realisations of scalar and vector random variables, respectively. We use X pX(x) or simply X p(x) to indicate that a random variable X is distributed according to pX(x). N(μ, σ 2 X ) stands for the Gaussian distribution with mean μ and variance σ2 X . B(L, Pb) denotes the binomial distribution with sequence length L and probability of success Pb. ||.|| denotes the Euclidean vector norm and Q(.) stands for the Q-function. D(.||.) denotes the divergence and E{.} denotes the expectation.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, Andreas; Künsch, Hans Rudolf; Schwierz, Cornelia; Stahel, Werner A.
2013-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outliers affect the modelling of the large-scale spatial trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation (Welsh and Richardson, 1997). Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and non-sampled locations and kriging variances. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis a data set on heavy metal contamination of the soil in the vicinity of a metal smelter. Marchant, B.P. and Lark, R
Measure of robustness for complex networks
NASA Astrophysics Data System (ADS)
Youssef, Mina Nabil
Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view. PMID:23515240
Resonant Interneurons Can Increase Robustness of Gamma Oscillations
Tikidji-Hamburyan, Ruben A.; Martínez, Joan José; White, John A.
2015-01-01
Gamma oscillations are believed to play a critical role in in information processing, encoding, and retrieval. Inhibitory interneuronal network gamma (ING) oscillations may arise from a coupled oscillator mechanism in which individual neurons oscillate or from a population oscillator in which individual neurons fire sparsely and stochastically. All ING mechanisms, including the one proposed herein, rely on alternating waves of inhibition and windows of opportunity for spiking. The coupled oscillator model implemented with Wang–Buzsáki model neurons is not sufficiently robust to heterogeneity in excitatory drive, and therefore intrinsic frequency, to account for in vitro models of ING. Similarly, in a tightly synchronized regime, the stochastic population oscillator model is often characterized by sparse firing, whereas interneurons both in vivo and in vitro do not fire sparsely during gamma, but rather on average every other cycle. We substituted so-called resonator neural models, which exhibit class 2 excitability and postinhibitory rebound (PIR), for the integrators that are typically used. This results in much greater robustness to heterogeneity that actually increases as the average participation in spikes per cycle approximates physiological levels. Moreover, dynamic clamp experiments that show autapse-induced firing in entorhinal cortical interneurons support the idea that PIR can serve as a network gamma mechanism. Furthermore, parvalbumin-positive (PV+) cells were much more likely to display both PIR and autapse-induced firing than GAD2+ cells, supporting the view that PV+ fast-firing basket cells are more likely to exhibit class 2 excitability than other types of inhibitory interneurons. SIGNIFICANCE STATEMENT Gamma oscillations are believed to play a critical role in information processing, encoding, and retrieval. Networks of inhibitory interneurons are thought to be essential for these oscillations. We show that one class of interneurons with an
NASA Astrophysics Data System (ADS)
Polat, Esra; Gunay, Suleyman
2013-10-01
One of the problems encountered in Multiple Linear Regression (MLR) is multicollinearity, which causes the overestimation of the regression parameters and increase of the variance of these parameters. Hence, in case of multicollinearity presents, biased estimation procedures such as classical Principal Component Regression (CPCR) and Partial Least Squares Regression (PLSR) are then performed. SIMPLS algorithm is the leading PLSR algorithm because of its speed, efficiency and results are easier to interpret. However, both of the CPCR and SIMPLS yield very unreliable results when the data set contains outlying observations. Therefore, Hubert and Vanden Branden (2003) have been presented a robust PCR (RPCR) method and a robust PLSR (RPLSR) method called RSIMPLS. In RPCR, firstly, a robust Principal Component Analysis (PCA) method for high-dimensional data on the independent variables is applied, then, the dependent variables are regressed on the scores using a robust regression method. RSIMPLS has been constructed from a robust covariance matrix for high-dimensional data and robust linear regression. The purpose of this study is to show the usage of RPCR and RSIMPLS methods on an econometric data set, hence, making a comparison of two methods on an inflation model of Turkey. The considered methods have been compared in terms of predictive ability and goodness of fit by using a robust Root Mean Squared Error of Cross-validation (R-RMSECV), a robust R2 value and Robust Component Selection (RCS) statistic.
Liu, Qun; Liu, Qinglian; Hendrickson, Wayne A.
2013-01-01
Structure determinations for biological macromolecules that have no known structural antecedents typically involve the incorporation of heavier atoms than those found natively in biological molecules. Currently, selenomethionyl proteins analyzed using single- or multi-wavelength anomalous diffraction (SAD or MAD) data predominate for such de novo analyses. Naturally occurring metal ions such as zinc or iron often suffice in MAD or SAD experiments, and sulfur SAD has been an option since it was first demonstrated using crambin 30 years ago; however, SAD analyses of structures containing only light atoms (Z max ≤ 20) have not been common. Here, robust procedures for enhancing the signal to noise in measurements of anomalous diffraction by combining data collected from several crystals at a lower than usual X-ray energy are described. This multi-crystal native SAD method was applied in five structure determinations, using between five and 13 crystals to determine substructures of between four and 52 anomalous scatterers (Z ≤ 20) and then the full structures ranging from 127 to 1200 ordered residues per asymmetric unit at resolutions from 2.3 to 2.8 Å. Tests were devised to assure that all of the crystals used were statistically equivalent. Elemental identities for Ca, Cl, S, P and Mg were proven by f′′ scattering-factor refinements. The procedures are robust, indicating that truly routine structure determination of typical native macromolecules is realised. Synchrotron beamlines that are optimized for low-energy X-ray diffraction measurements will facilitate such direct structural analysis. PMID:23793158
Li, Zukui; Ding, Ran; Floudas, Christodoulos A.
2011-01-01
Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263
Li, Zukui; Ding, Ran; Floudas, Christodoulos A
2011-09-21
Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented.
Simplified fast neutron dosimeter
Sohrabi, Mehdi
1979-01-01
Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.
NASA Technical Reports Server (NTRS)
Bishop, Matt
1988-01-01
The organization of some tools to help improve passwork security at a UNIX-based site is described along with how to install and use them. These tools and their associated library enable a site to force users to pick reasonably safe passwords (safe being site configurable) and to enable site management to try to crack existing passworks. The library contains various versions of a very fast implementation of the Data Encryption Standard and of the one-way encryption functions used to encryp the password.
DeLuca, P.M. Jr.; Pearson, D.W.
1992-01-01
This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.
Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.; Berry, Ray A.
1999-01-01
A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.
Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.
1999-08-10
A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.
Snell, A.H.
1957-12-01
This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.
Robust optimization of intensity modulated proton therapy
Liu Wei; Zhang Xiaodong; Li Yupeng; Mohan, Radhe
2012-02-15
Purpose: Intensity modulated proton therapy (IMPT) is highly sensitive to range uncertainties and uncertainties caused by setup variation. The conventional inverse treatment planning of IMPT optimized based on the planning target volume (PTV) is not often sufficient to ensure robustness of treatment plans. In this paper, a method that takes the uncertainties into account during plan optimization is used to mitigate the influence of uncertainties in IMPT. Methods: The authors use the so-called ''worst-case robust optimization'' to render IMPT plans robust in the face of uncertainties. For each iteration, nine different dose distributions are computed--one each for {+-} setup uncertainties along anteroposterior (A-P), lateral (R-L) and superior-inferior (S-I) directions, for {+-} range uncertainty, and the nominal dose distribution. The worst-case dose distribution is obtained by assigning the lowest dose among the nine doses to each voxel in the clinical target volume (CTV) and the highest dose to each voxel outside the CTV. Conceptually, the use of worst-case dose distribution is similar to the dose distribution achieved based on the use of PTV in traditional planning. The objective function value for a given iteration is computed using this worst-case dose distribution. The objective function used has been extended to further constrain the target dose inhomogeneity. Results: The worst-case robust optimization method is applied to a lung case, a skull base case, and a prostate case. Compared with IMPT plans optimized using conventional methods based on the PTV, our method yields plans that are considerably less sensitive to range and setup uncertainties. An interesting finding of the work presented here is that, in addition to reducing sensitivity to uncertainties, robust optimization also leads to improved optimality of treatment plans compared to the PTV-based optimization. This is reflected in reduction in plan scores and in the lower normal tissue doses for the
Robust Unit Commitment Considering Uncertain Demand Response
Liu, Guodong; Tomsovic, Kevin
2014-09-28
Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to themore » uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.« less
Robust Crossfeed Design for Hovering Rotorcraft
NASA Technical Reports Server (NTRS)
Catapang, David R.
1993-01-01
Control law design for rotorcraft fly-by-wire systems normally attempts to decouple angular responses using fixed-gain crossfeeds. This approach can lead to poor decoupling over the frequency range of pilot inputs and increase the load on the feedback loops. In order to improve the decoupling performance, dynamic crossfeeds may be adopted. Moreover, because of the large changes that occur in rotorcraft dynamics due to small changes about the nominal design condition, especially for near-hovering flight, the crossfeed design must be 'robust'. A new low-order matching method is presented here to design robust crossfeed compensators for multi-input, multi-output (MIMO) systems. The technique identifies degrees-of-freedom that can be decoupled using crossfeeds, given an anticipated set of parameter variations for the range of flight conditions of concern. Cross-coupling is then reduced for degrees-of-freedom that can use crossfeed compensation by minimizing off-axis response magnitude average and variance. Results are presented for the analysis of pitch, roll, yaw and heave coupling of the UH-60 Black Hawk helicopter in near-hovering flight. Robust crossfeeds are designed that show significant improvement in decoupling performance and robustness over nominal, single design point, compensators. The design method and results are presented in an easily used graphical format that lends significant physical insight to the design procedure. This plant pre-compensation technique is an appropriate preliminary step to the design of robust feedback control laws for rotorcraft.
On the robustness of Herlihy's hierarchy
NASA Technical Reports Server (NTRS)
Jayanti, Prasad
1993-01-01
A wait-free hierarchy maps object types to levels in Z(+) U (infinity) and has the following property: if a type T is at level N, and T' is an arbitrary type, then there is a wait-free implementation of an object of type T', for N processes, using only registers and objects of type T. The infinite hierarchy defined by Herlihy is an example of a wait-free hierarchy. A wait-free hierarchy is robust if it has the following property: if T is at level N, and S is a finite set of types belonging to levels N - 1 or lower, then there is no wait-free implementation of an object of type T, for N processes, using any number and any combination of objects belonging to the types in S. Robustness implies that there are no clever ways of combining weak shared objects to obtain stronger ones. Contrary to what many researchers believe, we prove that Herlihy's hierarchy is not robust. We then define some natural variants of Herlihy's hierarchy, which are also infinite wait-free hierarchies. With the exception of one, which is still open, these are not robust either. We conclude with the open question of whether non-trivial robust wait-free hierarchies exist.
Robust Unit Commitment Considering Uncertain Demand Response
Liu, Guodong; Tomsovic, Kevin
2014-09-28
Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to the uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.
Replication and robustness in developmental research.
Duncan, Greg J; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J
2014-11-01
Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key results are robust across estimation methods, data sets, and demographic subgroups. This article makes the case for prioritizing both explicit replications and, especially, within-study robustness checks in developmental psychology. It provides evidence on variation in effect sizes in developmental studies and documents strikingly different replication and robustness-checking practices in a sample of journals in developmental psychology and a sister behavioral science-applied economics. Our goal is not to show that any one behavioral science has a monopoly on best practices, but rather to show how journals from a related discipline address vital concerns of replication and generalizability shared by all social and behavioral sciences. We provide recommendations for promoting graduate training in replication and robustness-checking methods and for editorial policies that encourage these practices. Although some of our recommendations may shift the form and substance of developmental research articles, we argue that they would generate considerable scientific benefits for the field. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Robust Signal Processing in Living Cells
Steuer, Ralf; Waldherr, Steffen; Sourjik, Victor; Kollmann, Markus
2011-01-01
Cellular signaling networks have evolved an astonishing ability to function reliably and with high fidelity in uncertain environments. A crucial prerequisite for the high precision exhibited by many signaling circuits is their ability to keep the concentrations of active signaling compounds within tightly defined bounds, despite strong stochastic fluctuations in copy numbers and other detrimental influences. Based on a simple mathematical formalism, we identify topological organizing principles that facilitate such robust control of intracellular concentrations in the face of multifarious perturbations. Our framework allows us to judge whether a multiple-input-multiple-output reaction network is robust against large perturbations of network parameters and enables the predictive design of perfectly robust synthetic network architectures. Utilizing the Escherichia coli chemotaxis pathway as a hallmark example, we provide experimental evidence that our framework indeed allows us to unravel the topological organization of robust signaling. We demonstrate that the specific organization of the pathway allows the system to maintain global concentration robustness of the diffusible response regulator CheY with respect to several dominant perturbations. Our framework provides a counterpoint to the hypothesis that cellular function relies on an extensive machinery to fine-tune or control intracellular parameters. Rather, we suggest that for a large class of perturbations, there exists an appropriate topology that renders the network output invariant to the respective perturbations. PMID:22215991
Topological plasticity increases robustness of mutualistic networks.
Ramos-Jiliberto, Rodrigo; Valdovinos, Fernanda S; Moisset de Espanés, Pablo; Flores, José D
2012-07-01
1. Earlier studies used static models to evaluate the responses of mutualistic networks to external perturbations. Two classes of dynamics can be distinguished in ecological networks; population dynamics, represented mainly by changes in species abundances, and topological dynamics, represented by changes in the architecture of the web. 2. In this study, we model the temporal evolution of three empirical plant-pollination networks incorporating both population and topological dynamics. We test the hypothesis that topological plasticity, realized through the ability of animals to rewire their connections after depletion of host abundances, enhances tolerance of mutualistic networks to species loss. We also compared the performance of various rewiring rules in affecting robustness. 3. The results show that topological plasticity markedly increased the robustness of mutualistic networks. Our analyses also revealed that network robustness reached maximum levels when animals with less host plant availability were more likely to rewire. Also, preferential attachment to richer host plants, that is, to plants exhibiting higher abundance and few exploiters, enhances robustness more than other rewiring alternatives. 4. Our results highlight the potential role of topological plasticity in the robustness of mutualistic networks to species extinctions and suggest some plausible mechanisms by which the decisions of foragers may shape the collective dynamics of plant-pollinator systems.
NASA Astrophysics Data System (ADS)
Ghosh, Sanjay; Chaudhury, Kunal N.
2016-03-01
We propose a simple and fast algorithm called PatchLift for computing distances between patches (contiguous block of samples) extracted from a given one-dimensional signal. PatchLift is based on the observation that the patch distances can be efficiently computed from a matrix that is derived from the one-dimensional signal using lifting; importantly, the number of operations required to compute the patch distances using this approach does not scale with the patch length. We next demonstrate how PatchLift can be used for patch-based denoising of images corrupted with Gaussian noise. In particular, we propose a separable formulation of the classical nonlocal means (NLM) algorithm that can be implemented using PatchLift. We demonstrate that the PatchLift-based implementation of separable NLM is a few orders faster than standard NLM and is competitive with existing fast implementations of NLM. Moreover, its denoising performance is shown to be consistently superior to that of NLM and some of its variants, both in terms of peak signal-to-noise ratio/structural similarity index and visual quality.
Nguyen, M.N.; /SLAC
2007-06-18
As part of an improvement project on the linear accelerator at SLAC, it was necessary to replace the original thyratron trigger generator, which consisted of two chassis, two vacuum tubes, and a small thyratron. All solid-state, fast rise, and high voltage thyratron drivers, therefore, have been developed and built for the 244 klystron modulators. The rack mounted, single chassis driver employs a unique way to control and generate pulses through the use of an asymmetric SCR, a PFN, a fast pulse transformer, and a saturable reactor. The resulting output pulse is 2 kV peak into 50 {Omega} load with pulse duration of 1.5 {mu}s FWHM at 180 Hz. The pulse risetime is less than 40 ns with less than 1 ns jitter. Various techniques are used to protect the SCR from being damaged by high voltage and current transients due to thyratron breakdowns. The end-of-line clipper (EOLC) detection circuit is also integrated into this chassis to interrupt the modulator triggering in the event a high percentage of line reflections occurred.
Fast Fourier transform telescope
Tegmark, Max; Zaldarriaga, Matias
2009-04-15
We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog{sub 2}N rather than N{sup 2}) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.
Fast analysis of radionuclide decay chain migration
NASA Astrophysics Data System (ADS)
Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.
2014-12-01
A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.
Spielman, R.B.; Deeney, C.; Fehl, D.L.; Hanson, D.L.; Keltner, N.R.; McGurn, J.S.; McKenney, J.L.
1998-06-01
Resistive bolometry is an accurate, robust, spectrally broadband technique for measuring absolute x-ray fluence and flux. Bolometry is an independent technique for x-ray measurements that is based on a different set of physical properties than other diagnostics such as x-ray diodes, photoconducting detectors, and P-I-N diodes. Bolometers use the temperature-driven change in element resistivity to determine the total deposited energy. The calibration of such a device is based on fundamental material properties and its physical dimensions. The authors describe the use of nickel and gold bolometers to measure x rays generated by high power Z pinches on Sandia`s Saturn and Z accelerators. The Sandia bolometer design described herein has a pulse response of {approximately}1 ns. They describe in detail the fabrication, fielding, and data analysis issues leading to highly accurate x-ray measurements. The fundamental accuracy of resistive bolometry will be discussed.
Aveling, Emma-Louise; Martin, Graham
2013-09-01
Partnership is a prominent approach to delivering healthcare globally, with advocates arguing that partnership has distinctive advantages over alternatives such as hierarchies or markets. There is much debate as to whether partnerships represent a distinctive mode of coordination in practice, however. Furthermore, despite evidence from diverse settings of the challenges of putting partnerships into practice, there has been little cross-pollination between literature from different fields. We bring together existing literature and two partnership case studies in the contrasting contexts of the UK National Health Service and an internationally-funded health intervention in Cambodia. The case studies were conducted between 2005 and 2008. Based on our synthesis of the literature, we propose an analytical distinction between instrumental and transformative partnerships, arguing that it is transformative partnerships that can deliver the unique advantages set out in theory. Comparative analysis of the cases illustrates that although both were able to achieve some valuable successes, they fell short of realising their transformative potential. We identify five common issues that impeded or facilitated transformative partnership-working, at micro, meso- and macro-levels: starting conditions; programme set-up; funding asymmetries and interdependence; accountability mechanisms; and relationships and distance from the field. Through systematic comparison we offer a more nuanced understanding of how programmes themselves create particular architectures for partnership, how underlying globalised institutional logics of managerialism promote instrumental partnerships, and how local-level, interpersonal relationships may help to overcome barriers to partnership's transformative potential.
Strocov, V N; Wang, X; Shi, M; Kobayashi, M; Krempasky, J; Hess, C; Schmitt, T; Patthey, L
2014-01-01
Soft-X-ray angle-resolved photoelectron spectroscopy (ARPES) with photon energies around 1 keV combines the momentum space resolution with increasing probing depth. The concepts and technical realisation of the new soft-X-ray ARPES endstation at the ADRESS beamline of SLS are described. The experimental geometry of the endstation is characterized by grazing X-ray incidence on the sample to increase the photoyield and vertical orientation of the measurement plane. The vacuum chambers adopt a radial layout allowing most efficient sample transfer. High accuracy of the angular resolution is ensured by alignment strategies focused on precise matching of the X-ray beam and optical axis of the analyzer. The high photon flux of up to 10(13) photons s(-1) (0.01% bandwidth)(-1) delivered by the beamline combined with the optimized experimental geometry break through the dramatic loss of the valence band photoexcitation cross section at soft-X-ray energies. ARPES images with energy resolution up to a few tens of meV are typically acquired on the time scale of minutes. A few application examples illustrate the power of our advanced soft-X-ray ARPES instrumentation to explore the electronic structure of bulk crystals with resolution in three-dimensional momentum, access buried heterostructures and study elemental composition of the valence states using resonant excitation.
Robust estimation procedure in panel data model
Shariff, Nurul Sima Mohamad; Hamzah, Nor Aishah
2014-06-19
The panel data modeling has received a great attention in econometric research recently. This is due to the availability of data sources and the interest to study cross sections of individuals observed over time. However, the problems may arise in modeling the panel in the presence of cross sectional dependence and outliers. Even though there are few methods that take into consideration the presence of cross sectional dependence in the panel, the methods may provide inconsistent parameter estimates and inferences when outliers occur in the panel. As such, an alternative method that is robust to outliers and cross sectional dependence is introduced in this paper. The properties and construction of the confidence interval for the parameter estimates are also considered in this paper. The robustness of the procedure is investigated and comparisons are made to the existing method via simulation studies. Our results have shown that robust approach is able to produce an accurate and reliable parameter estimates under the condition considered.
Information theory perspective on network robustness
NASA Astrophysics Data System (ADS)
Schieber, Tiago A.; Carpi, Laura; Frery, Alejandro C.; Rosso, Osvaldo A.; Pardalos, Panos M.; Ravetti, Martín G.
2016-01-01
A crucial challenge in network theory is the study of the robustness of a network when facing a sequence of failures. In this work, we propose a dynamical definition of network robustness based on Information Theory, that considers measurements of the structural changes caused by failures of the network's components. Failures are defined here as a temporal process defined in a sequence. Robustness is then evaluated by measuring dissimilarities between topologies after each time step of the sequence, providing a dynamical information about the topological damage. We thoroughly analyze the efficiency of the method in capturing small perturbations by considering different probability distributions on networks. In particular, we find that distributions based on distances are more consistent in capturing network structural deviations, as better reflect the consequences of the failures. Theoretical examples and real networks are used to study the performance of this methodology.
Average-cost based robust structural control
NASA Technical Reports Server (NTRS)
Hagood, Nesbitt W.
1993-01-01
A method is presented for the synthesis of robust controllers for linear time invariant structural systems with parameterized uncertainty. The method involves minimizing quantities related to the quadratic cost (H2-norm) averaged over a set of systems described by real parameters such as natural frequencies and modal residues. Bounded average cost is shown to imply stability over the set of systems. Approximations for the exact average are derived and proposed as cost functionals. The properties of these approximate average cost functionals are established. The exact average and approximate average cost functionals are used to derive dynamic controllers which can provide stability robustness. The robustness properties of these controllers are demonstrated in illustrative numerical examples and tested in a simple SISO experiment on the MIT multi-point alignment testbed.
Robust tooth surface reconstruction by iterative deformation.
Jiang, Xiaotong; Dai, Ning; Cheng, Xiaosheng; Wang, Jun; Peng, Qingjin; Liu, Hao; Cheng, Cheng
2016-01-01
Digital design technologies have been applied extensively in dental medicine, especially in the field of dental restoration. The all-ceramic crown is an important restoration type of dental CAD systems. This paper presents a robust tooth surface reconstruction algorithm for all-ceramic crown design. The algorithm involves three necessary steps: standard tooth initial positioning and division; salient feature point extraction using Morse theory; and standard tooth deformation using iterative Laplacian Surface Editing and mesh stitching. This algorithm can retain the morphological features of the tooth surface well. It is robust and suitable for almost all types of teeth, including incisor, canine, premolar, and molar. Moreover, it allows dental technicians to use their own preferred library teeth for reconstruction. The algorithm has been successfully integrated in our Dental CAD system, more than 1000 clinical cases have been tested to demonstrate the robustness and effectiveness of the proposed algorithm.
An engineering viewpoint on biological robustness.
Khammash, Mustafa
2016-03-23
In his splendid article "Can a biologist fix a radio?--or, what I learned while studying apoptosis," Y. Lazebnik argues that when one uses the right tools, similarity between a biological system, like a signal transduction pathway, and an engineered system, like a radio, may not seem so superficial. Here I advance this idea by focusing on the notion of robustness as a unifying lens through which to view complexity in biological and engineered systems. I show that electronic amplifiers and gene expression circuits share remarkable similarities in their dynamics and robustness properties. I explore robustness features and limitations in biology and engineering and highlight the role of negative feedback in shaping both.
An engineering viewpoint on biological robustness.
Khammash, Mustafa
2016-01-01
In his splendid article "Can a biologist fix a radio?--or, what I learned while studying apoptosis," Y. Lazebnik argues that when one uses the right tools, similarity between a biological system, like a signal transduction pathway, and an engineered system, like a radio, may not seem so superficial. Here I advance this idea by focusing on the notion of robustness as a unifying lens through which to view complexity in biological and engineered systems. I show that electronic amplifiers and gene expression circuits share remarkable similarities in their dynamics and robustness properties. I explore robustness features and limitations in biology and engineering and highlight the role of negative feedback in shaping both. PMID:27007299
Robust visual tracking with contiguous occlusion constraint
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Qian, Weixian; Chen, Qian
2016-02-01
Visual tracking plays a fundamental role in video surveillance, robot vision and many other computer vision applications. In this paper, a robust visual tracking method that is motivated by the regularized ℓ1 tracker is proposed. We focus on investigating the case that the object target is occluded. Generally, occlusion can be treated as some kind of contiguous outlier with the target object as background. However, the penalty function of the ℓ1 tracker is not robust for relatively dense error distributed in the contiguous regions. Thus, we exploit a nonconvex penalty function and MRFs for outlier modeling, which is more probable to detect the contiguous occluded regions and recover the target appearance. For long-term tracking, a particle filter framework along with a dynamic model update mechanism is developed. Both qualitative and quantitative evaluations demonstrate a robust and precise performance.
Robust fuzzy logic stabilization with disturbance elimination.
Danapalasingam, Kumeresan A
2014-01-01
A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design. PMID:25177713
Robust Fuzzy Logic Stabilization with Disturbance Elimination
Danapalasingam, Kumeresan A.
2014-01-01
A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design. PMID:25177713
Experimental Robust Control of Structural Acoustic Radiation
NASA Technical Reports Server (NTRS)
Cox, David E.; Gibbs, Gary P.; Clark, Robert L.; Vipperman, Jeffrey S.
1998-01-01
This work addresses the design and application of robust controllers for structural acoustic control. Both simulation and experimental results are presented. H(infinity) and mu-synthesis design methods were used to design feedback controllers which minimize power radiated from a panel while avoiding instability due to unmodeled dynamics. Specifically, high order structural modes which couple strongly to the actuator-sensor path were poorly modeled. This model error was analytically bounded with an uncertainty model, which allowed controllers to be designed without artificial limits on control effort. It is found that robust control methods provide the control designer with physically meaningful parameters with which to tune control designs and can be very useful in determining limits of performance. Experimental results also showed, however, poor robustness properties for control designs with ad-hoc uncertainty models. The importance of quantifying and bounding model errors is discussed.
Robust audio hashing for audio authentication watermarking
NASA Astrophysics Data System (ADS)
Zmudzinski, Sascha; Steinebach, Martin
2008-02-01
Current systems and protocols based on cryptographic methods for integrity and authenticity verification of media data do not distinguish between legitimate signal transformation and malicious tampering that manipulates the content. Furthermore, they usually provide no localization or assessment of the relevance of such manipulations with respect to human perception or semantics. We present an algorithm for a robust message authentication code in the context of content fragile authentication watermarking to verify the integrity of audio recodings by means of robust audio fingerprinting. Experimental results show that the proposed algorithm provides both a high level of distinction between perceptually different audio data and a high robustness against signal transformations that do not change the perceived information. Furthermore, it is well suited for the integration in a content-based authentication watermarking system.
Robust fuzzy logic stabilization with disturbance elimination.
Danapalasingam, Kumeresan A
2014-01-01
A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design.
FPGA implementation of robust Capon beamformer
NASA Astrophysics Data System (ADS)
Guan, Xin; Zmuda, Henry; Li, Jian; Du, Lin; Sheplak, Mark
2012-03-01
The Capon Beamforming algorithm is an optimal spatial filtering algorithm used in various signal processing applications where excellent interference rejection performance is required, such as Radar and Sonar systems, Smart Antenna systems for wireless communications. Its lack of robustness, however, means that it is vulnerable to array calibration errors and other model errors. To overcome this problem, numerous robust Capon Beamforming algorithms have been proposed, which are much more promising for practical applications. In this paper, an FPGA implementation of a robust Capon Beamforming algorithm is investigated and presented. This realization takes an array output with 4 channels, computes the complex-valued adaptive weight vectors for beamforming with an 18 bit fixed-point representation and runs at a 100 MHz clock on Xilinx V4 FPGA. This work will be applied in our medical imaging project for breast cancer detection.
Dynamical robustness of coupled heterogeneous oscillators.
Tanaka, Gouhei; Morino, Kai; Daido, Hiroaki; Aihara, Kazuyuki
2014-05-01
We study tolerance of dynamic behavior in networks of coupled heterogeneous oscillators to deterioration of the individual oscillator components. As the deterioration proceeds with reduction in dynamic behavior of the oscillators, an order parameter evaluating the level of global oscillation decreases and then vanishes at a certain critical point. We present a method to analytically derive a general formula for this critical point and an approximate formula for the order parameter in the vicinity of the critical point in networks of coupled Stuart-Landau oscillators. Using the critical point as a measure for dynamical robustness of oscillator networks, we show that the more heterogeneous the oscillator components are, the more robust the oscillatory behavior of the network is to the component deterioration. This property is confirmed also in networks of Morris-Lecar neuron models coupled through electrical synapses. Our approach could provide a useful framework for theoretically understanding the role of population heterogeneity in robustness of biological networks.
A fast computation method for MUSIC spectrum function based on circular arrays
NASA Astrophysics Data System (ADS)
Du, Zhengdong; Wei, Ping
2015-02-01
The large computation amount of multiple signal classification (MUSIC) spectrum function seriously affects the timeliness of direction finding system using MUSIC algorithm, especially in the two-dimensional directions of arrival (DOA) estimation of azimuth and elevation with a large antenna array. This paper proposes a fast computation method for MUSIC spectrum. It is suitable for any circular array. First, the circular array is transformed into a virtual uniform circular array, in the process of calculating MUSIC spectrum, for the cyclic characteristics of steering vector, the inner product in the calculation of spatial spectrum is realised by cyclic convolution. The computational amount of MUSIC spectrum is obviously less than that of the conventional method. It is a very practical way for MUSIC spectrum computation in circular arrays.
Competition improves robustness against loss of information.
Kermani Kolankeh, Arash; Teichmann, Michael; Hamker, Fred H
2015-01-01
A substantial number of works have aimed at modeling the receptive field properties of the primary visual cortex (V1). Their evaluation criterion is usually the similarity of the model response properties to the recorded responses from biological organisms. However, as several algorithms were able to demonstrate some degree of similarity to biological data based on the existing criteria, we focus on the robustness against loss of information in the form of occlusions as an additional constraint for better understanding the algorithmic level of early vision in the brain. We try to investigate the influence of competition mechanisms on the robustness. Therefore, we compared four methods employing different competition mechanisms, namely, independent component analysis, non-negative matrix factorization with sparseness constraint, predictive coding/biased competition, and a Hebbian neural network with lateral inhibitory connections. Each of those methods is known to be capable of developing receptive fields comparable to those of V1 simple-cells. Since measuring the robustness of methods having simple-cell like receptive fields against occlusion is difficult, we measure the robustness using the classification accuracy on the MNIST hand written digit dataset. For this we trained all methods on the training set of the MNIST hand written digits dataset and tested them on a MNIST test set with different levels of occlusions. We observe that methods which employ competitive mechanisms have higher robustness against loss of information. Also the kind of the competition mechanisms plays an important role in robustness. Global feedback inhibition as employed in predictive coding/biased competition has an advantage compared to local lateral inhibition learned by an anti-Hebb rule.
Robust control synthesis for uncertain dynamical systems
NASA Technical Reports Server (NTRS)
Byun, Kuk-Whan; Wie, Bong; Sunkel, John
1989-01-01
This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.
Outlier robust nonlinear mixed model estimation.
Williams, James D; Birch, Jeffrey B; Abdel-Salam, Abdel-Salam G
2015-04-15
In standard analyses of data well-modeled by a nonlinear mixed model, an aberrant observation, either within a cluster, or an entire cluster itself, can greatly distort parameter estimates and subsequent standard errors. Consequently, inferences about the parameters are misleading. This paper proposes an outlier robust method based on linearization to estimate fixed effects parameters and variance components in the nonlinear mixed model. An example is given using the four-parameter logistic model and bioassay data, comparing the robust parameter estimates with the nonrobust estimates given by SAS(®).
Security analysis of robust perceptual hashing
NASA Astrophysics Data System (ADS)
Koval, Oleksiy; Voloshynovskiy, Sviatoslav; Beekhof, Fokko; Pun, Thierry
2008-02-01
In this paper we considered the problem of security analysis of robust perceptual hashing in authentication application. The main goal of our analysis was to estimate the amount of trial efforts of the attacker, who is acting within the Kerckhoffs security principle, to reveal a secret key. For this purpose, we proposed to use Shannon equivocation that provides an estimate of complexity of the key search performed based on all available prior information and presented its application to security evaluation of particular robust perceptual hashing algorithms.
Fast Food Jobs. National Study of Fast Food Employment.
ERIC Educational Resources Information Center
Charner, Ivan; Fraser, Bryna Shore
A study examined employment in the fast-food industry. The national survey collected data from employees at 279 fast-food restaurants from seven companies. Female employees outnumbered males by two to one. The ages of those fast-food employees in the survey sample ranged from 14 to 71, with fully 70 percent being in the 16- to 20-year-old age…
Robust stabilization, robust performance, and disturbance attenuation for uncertain linear systems
NASA Technical Reports Server (NTRS)
Wang, Yeih J.; Shieh, Leang S.; Sunkel, John W.
1992-01-01
This paper presents a linear quadratic regulator approach to the robust stabilization, robust performance, and disturbance attenuation of uncertain linear systems. The state-feedback designed systems provide both the robust stability with optimal performance and the disturbance attenuation with H-infinity-norm bounds. The proposed approach can be applied to matched and/or mismatched uncertain linear systems. For a matched uncertain linear system, it is shown that the disturbance attenuation robust-stabilizing controllers with or without optimal performance always exist and can be easily determined without searching; whereas, for a mismatched uncertain linear system, the introduced tuning parameters greatly enhance the flexibility of finding the disturbance-attenuation robust-stabilizing controllers.
Robust rate-control for wavelet-based image coding via conditional probability models.
Gaubatz, Matthew D; Hemami, Sheila S
2007-03-01
Real-time rate-control for wavelet image coding requires characterization of the rate required to code quantized wavelet data. An ideal robust solution can be used with any wavelet coder and any quantization scheme. A large number of wavelet quantization schemes (perceptual and otherwise) are based on scalar dead-zone quantization of wavelet coefficients. A key to performing rate-control is, thus, fast, accurate characterization of the relationship between rate and quantization step size, the R-Q curve. A solution is presented using two invocations of the coder that estimates the slope of each R-Q curve via probability modeling. The method is robust to choices of probability models, quantization schemes and wavelet coders. Because of extreme robustness to probability modeling, a fast approximation to spatially adaptive probability modeling can be used in the solution, as well. With respect to achieving a target rate, the proposed approach and associated fast approximation yield average percentage errors around 0.5% and 1.0% on images in the test set. By comparison, 2-coding-pass rho-domain modeling yields errors around 2.0%, and post-compression rate-distortion optimization yields average errors of around 1.0% at rates below 0.5 bits-per-pixel (bpp) that decrease down to about 0.5% at 1.0 bpp; both methods exhibit more competitive performance on the larger images. The proposed method and fast approximation approach are also similar in speed to the other state-of-the-art methods. In addition to possessing speed and accuracy, the proposed method does not require any training and can maintain precise control over wavelet step sizes, which adds flexibility to a wavelet-based image-coding system.
Bender, M.; Bennett, F.K.; Kuckes, A.F.
1963-09-17
A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)
Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.
1959-08-18
An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.
Batzer, T.H.; Cummings, D.B.; Ryan, J.F.
1962-05-22
A high-current, fast-acting switch is designed for utilization as a crowbar switch in a high-current circuit such as used to generate the magnetic confinement field of a plasma-confining and heat device, e.g., Pyrotron. The device particularly comprises a cylindrical housing containing two stationary, cylindrical contacts between which a movable contact is bridged to close the switch. The movable contact is actuated by a differential-pressure, airdriven piston assembly also within the housing. To absorb the acceleration (and the shock imparted to the device by the rapidly driven, movable contact), an adjustable air buffer assembly is provided, integrally connected to the movable contact and piston assembly. Various safety locks and circuit-synchronizing means are also provided to permit proper cooperation of the invention and the high-current circuit in which it is installed. (AEC)
Maximoff, Sergey N.; Head-Gordon, Martin P.
2009-01-01
A chemicurrent is a flux of fast (kinetic energy ≳ 0.5−1.3 eV) metal electrons caused by moderately exothermic (1−3 eV) chemical reactions over high work function (4−6 eV) metal surfaces. In this report, the relation between chemicurrent and surface chemistry is elucidated with a combination of top-down phenomenology and bottom-up atomic-scale modeling. Examination of catalytic CO oxidation, an example which exhibits a chemicurrent, reveals 3 constituents of this relation: The localization of some conduction electrons to the surface via a reduction reaction, 0.5 O2 + δe− → Oδ− (Red); the delocalization of some surface electrons into a conduction band in an oxidation reaction, Oδ− + CO → CO2δ− → CO2 + δe− (Ox); and relaxation without charge transfer (Rel). Juxtaposition of Red, Ox, and Rel produces a daunting variety of metal electronic excitations, but only those that originate from CO2 reactive desorption are long-range and fast enough to dominate the chemicurrent. The chemicurrent yield depends on the universality class of the desorption process and the distribution of the desorption thresholds. This analysis implies a power-law relation with exponent 2.66 between the chemicurrent and the heat of adsorption, which is consistent with experimental findings for a range of systems. This picture also applies to other oxidation-reduction reactions over high work function metal surfaces. PMID:19561296
CIDER: Enabling Robustness-Power Tradeoffs on a Computational Eyeglass
Mayberry, Addison; Tun, Yamin; Hu, Pan; Smith-Freedman, Duncan; Ganesan, Deepak; Marlin, Benjamin; Salthouse, Christopher
2016-01-01
The human eye offers a fascinating window into an individual’s health, cognitive attention, and decision making, but we lack the ability to continually measure these parameters in the natural environment. The challenges lie in: a) handling the complexity of continuous high-rate sensing from a camera and processing the image stream to estimate eye parameters, and b) dealing with the wide variability in illumination conditions in the natural environment. This paper explores the power–robustness tradeoffs inherent in the design of a wearable eye tracker, and proposes a novel staged architecture that enables graceful adaptation across the spectrum of real-world illumination. We propose CIDER, a system that operates in a highly optimized low-power mode under indoor settings by using a fast Search-Refine controller to track the eye, but detects when the environment switches to more challenging outdoor sunlight and switches models to operate robustly under this condition. Our design is holistic and tackles a) power consumption in digitizing pixels, estimating pupillary parameters, and illuminating the eye via near-infrared, b) error in estimating pupil center and pupil dilation, and c) model training procedures that involve zero effort from a user. We demonstrate that CIDER can estimate pupil center with error less than two pixels (0.6°), and pupil diameter with error of one pixel (0.22mm). Our end-to-end results show that we can operate at power levels of roughly 7mW at a 4Hz eye tracking rate, or roughly 32mW at rates upwards of 250Hz. PMID:27042165
Robustness of predictive sensor network routing in fading channels
NASA Astrophysics Data System (ADS)
Muraleedharan, Rajani; Osadciw, Lisa A.
2005-06-01
Sensors have varied constraints, which make the network challenging for communicating with peers. In this paper, an extension, to the physical layer of the previous predictive sensor network model using the ant system is proposed. The tiny and low-cost sensor nodes are made of RF wireless links, where the states of the nodes vary with respect to time and environment. The ant system is a learning algorithm, that can be used to solve any NP hard communication problem and possesses characteristics such as robustness and versatility. The ant system possesses unique features that keep the network functional by detecting weak links and re-routing the agents. The swarm agents are distributed along the network, where the agent communicates with its neighbors (agents) by means of pheromone deposition and tabu list. The transition probability in the ant system includes an objective function, which is influenced by the poset weights. The poset weights on each of the orthogonal communication parameters greatly affects the decisions made by ant system. The agents carry updated information of its previous nodes, which helps in monitoring the strength of the communication links. Through simulation, comparison between DSSS-BPSK and Bluetooth-GFSK signals are shown. This paper demonstrates the robustness of the model under slow/fast fading, and energy loss at node during transmission. Implementation of this algorithm should be able to handle hostile environmental conditions and human tampering of data. The performance of the network is evaluated based on accuracy and response time of the agents within the network.
Methods for quantifying uncertainty in fast reactor analyses.
Fanning, T. H.; Fischer, P. F.
2008-04-07
Liquid-metal-cooled fast reactors in the form of sodium-cooled fast reactors have been successfully built and tested in the U.S. and throughout the world. However, no fast reactor has operated in the U.S. for nearly fourteen years. More importantly, the U.S. has not constructed a fast reactor in nearly 30 years. In addition to reestablishing the necessary industrial infrastructure, the development, testing, and licensing of a new, advanced fast reactor concept will likely require a significant base technology program that will rely more heavily on modeling and simulation than has been done in the past. The ability to quantify uncertainty in modeling and simulations will be an important part of any experimental program and can provide added confidence that established design limits and safety margins are appropriate. In addition, there is an increasing demand from the nuclear industry for best-estimate analysis methods to provide confidence bounds along with their results. The ability to quantify uncertainty will be an important component of modeling that is used to support design, testing, and experimental programs. Three avenues of UQ investigation are proposed. Two relatively new approaches are described which can be directly coupled to simulation codes currently being developed under the Advanced Simulation and Modeling program within the Reactor Campaign. A third approach, based on robust Monte Carlo methods, can be used in conjunction with existing reactor analysis codes as a means of verification and validation of the more detailed approaches.
Applying robust multibit watermarks to digital images
NASA Astrophysics Data System (ADS)
Tsolis, Dimitrios; Nikolopoulos, Spiridon; Drossos, Lambros; Sioutas, Spyros; Papatheodorou, Theodore
2009-05-01
The current work is focusing on the implementation of a robust multibit watermarking algorithm for digital images, which is based on an innovative spread spectrum technique analysis. The paper presents the watermark embedding and detection algorithms, which use both wavelets and the Discrete Cosine Transform and analyzes the arising issues.
The Quantitative Genetics of Phenotypic Robustness
Fraser, Hunter B.; Schadt, Eric E.
2010-01-01
Phenotypic robustness, or canalization, has been extensively investigated both experimentally and theoretically. However, it remains unknown to what extent robustness varies between individuals, and whether factors buffering environmental variation also buffer genetic variation. Here we introduce a quantitative genetic approach to these issues, and apply this approach to data from three species. In mice, we find suggestive evidence that for hundreds of gene expression traits, robustness is polymorphic and can be genetically mapped to discrete genomic loci. Moreover, we find that the polymorphisms buffering genetic variation are distinct from those buffering environmental variation. In fact, these two classes have quite distinct mechanistic bases: environmental buffers of gene expression are predominantly sex-specific and trans-acting, whereas genetic buffers are not sex-specific and often cis-acting. Data from studies of morphological and life-history traits in plants and yeast support the distinction between polymorphisms buffering genetic and environmental variation, and further suggest that loci buffering different types of environmental variation do overlap with one another. These preliminary results suggest that naturally occurring polymorphisms affecting phenotypic robustness could be abundant, and that these polymorphisms may generally buffer either genetic or environmental variation, but not both. PMID:20072615
Replication and Robustness in Developmental Research
ERIC Educational Resources Information Center
Duncan, Greg J.; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J.
2014-01-01
Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key…
Robust Refinement as Implemented in TOPAS
Stone, K.; Stephens, P
2010-01-01
A robust refinement procedure is implemented in the program TOPAS through an iterative reweighting of the data. Examples are given of the procedure as applied to fitting partially overlapped peaks by full and partial models and also of the structures of ibuprofen and acetaminophen in the presence of unmodeled impurity contributions
Applications of robust control theory - Educational implications
NASA Technical Reports Server (NTRS)
Dorato, P.; Yedavalli, R. K.
1992-01-01
A survey is made of applications of robust control theory to problems of flight control, control of flexible space structures, and engine control which have appeared in recent conferences and journals. An analysis is made of which theoretical techniques are most commonly used and what implications this has for graduate and undergraduate education in aerospace engineering.
Robust keyword retrieval method for OCRed text
NASA Astrophysics Data System (ADS)
Fujii, Yusaku; Takebe, Hiroaki; Tanaka, Hiroshi; Hotta, Yoshinobu
2011-01-01
Document management systems have become important because of the growing popularity of electronic filing of documents and scanning of books, magazines, manuals, etc., through a scanner or a digital camera, for storage or reading on a PC or an electronic book. Text information acquired by optical character recognition (OCR) is usually added to the electronic documents for document retrieval. Since texts generated by OCR generally include character recognition errors, robust retrieval methods have been introduced to overcome this problem. In this paper, we propose a retrieval method that is robust against both character segmentation and recognition errors. In the proposed method, the insertion of noise characters and dropping of characters in the keyword retrieval enables robustness against character segmentation errors, and character substitution in the keyword of the recognition candidate for each character in OCR or any other character enables robustness against character recognition errors. The recall rate of the proposed method was 15% higher than that of the conventional method. However, the precision rate was 64% lower.
Structurally robust control of complex networks
NASA Astrophysics Data System (ADS)
Nacher, Jose C.; Akutsu, Tatsuya
2015-01-01
Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role.
The Robust Beauty of Ordinary Information
ERIC Educational Resources Information Center
Katsikopoulos, Konstantinos V.; Schooler, Lael J.; Hertwig, Ralph
2010-01-01
Heuristics embodying limited information search and noncompensatory processing of information can yield robust performance relative to computationally more complex models. One criticism raised against heuristics is the argument that complexity is hidden in the calculation of the cue order used to make predictions. We discuss ways to order cues…
Dealing with Outliers: Robust, Resistant Regression
ERIC Educational Resources Information Center
Glasser, Leslie
2007-01-01
Least-squares linear regression is the best of statistics and it is the worst of statistics. The reasons for this paradoxical claim, arising from possible inapplicability of the method and the excessive influence of "outliers", are discussed and substitute regression methods based on median selection, which is both robust and resistant, are…
Robust Utility Maximization Under Convex Portfolio Constraints
Matoussi, Anis; Mezghani, Hanen Mnif, Mohamed
2015-04-15
We study a robust maximization problem from terminal wealth and consumption under a convex constraints on the portfolio. We state the existence and the uniqueness of the consumption–investment strategy by studying the associated quadratic backward stochastic differential equation. We characterize the optimal control by using the duality method and deriving a dynamic maximum principle.
Robust Face Clustering Via Tensor Decomposition.
Cao, Xiaochun; Wei, Xingxing; Han, Yahong; Lin, Dongdai
2015-11-01
Face clustering is a key component either in image managements or video analysis. Wild human faces vary with the poses, expressions, and illumination changes. All kinds of noises, like block occlusions, random pixel corruptions, and various disguises may also destroy the consistency of faces referring to the same person. This motivates us to develop a robust face clustering algorithm that is less sensitive to these noises. To retain the underlying structured information within facial images, we use tensors to represent faces, and then accomplish the clustering task based on the tensor data. The proposed algorithm is called robust tensor clustering (RTC), which firstly finds a lower-rank approximation of the original tensor data using a L1 norm optimization function. Because L1 norm does not exaggerate the effect of noises compared with L2 norm, the minimization of the L1 norm approximation function makes RTC robust. Then, we compute high-order singular value decomposition of this approximate tensor to obtain the final clustering results. Different from traditional algorithms solving the approximation function with a greedy strategy, we utilize a nongreedy strategy to obtain a better solution. Experiments conducted on the benchmark facial datasets and gait sequences demonstrate that RTC has better performance than the state-of-the-art clustering algorithms and is more robust to noises. PMID:25546869
Robust target implosion in heavy ion fusion
NASA Astrophysics Data System (ADS)
Kawata, Shigeo; Iizuka, Yoshifumi; Kodera, Tomohiro; Ogoyski, Alexandar
2008-11-01
In heavy ion inertial fusion (HIF) a robust mode of target implosion is proposed to mitigate the beam illumination non-uniformity and the Rayleigh-Taylor (R-T) instability growth. In the HIF target implosion, key issues include uniformity of heavy ion beam (HIB) illumination, target implosion symmetry, compressed fuel ignition, reduction of the R-T instability growth, etc [1]. In the robust target in HIF, an oscillating implosion acceleration is employed to reduce the R-T instability growth, and a low-density foam layer is also inserted to enhance the radiation conversion efficiency from. The oscillating acceleration can be introduced by HIB axis oscillation, which can be easily realized in an actual accelerator final element. The oscillating acceleration introduces a new method of the R-T instability growth control. In the robust foam target, the radiation converted is confined and reduces the HIB illumination non-uniformity, though the HIBs illumination scheme is spherically symmetric and the target is also spherically symmetric. Therefore, the foam target irradiated by the oscillating HIBs can serve a robust direct-indirect hybrid mode of the symmetric target implosion in HIF. [1] Phys. of Plasmas, 12 (2005) 122702; NIMA, 577 (2007) 21.
Robust control algorithms for Mars aerobraking
NASA Technical Reports Server (NTRS)
Shipley, Buford W., Jr.; Ward, Donald T.
1992-01-01
Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.
Regularized robust coding for face recognition.
Yang, Meng; Zhang, Lei; Yang, Jian; Zhang, David
2013-05-01
Recently the sparse representation based classification (SRC) has been proposed for robust face recognition (FR). In SRC, the testing image is coded as a sparse linear combination of the training samples, and the representation fidelity is measured by the l2-norm or l1 -norm of the coding residual. Such a sparse coding model assumes that the coding residual follows Gaussian or Laplacian distribution, which may not be effective enough to describe the coding residual in practical FR systems. Meanwhile, the sparsity constraint on the coding coefficients makes the computational cost of SRC very high. In this paper, we propose a new face coding model, namely regularized robust coding (RRC), which could robustly regress a given signal with regularized regression coefficients. By assuming that the coding residual and the coding coefficient are respectively independent and identically distributed, the RRC seeks for a maximum a posterior solution of the coding problem. An iteratively reweighted regularized robust coding (IR(3)C) algorithm is proposed to solve the RRC model efficiently. Extensive experiments on representative face databases demonstrate that the RRC is much more effective and efficient than state-of-the-art sparse representation based methods in dealing with face occlusion, corruption, lighting, and expression changes, etc.
An inexpensive and robust conductance electrode.
Lorimer, J P; Jagit, K; Mason, T J
1985-03-01
A conductance electrode consisting of carbon "pultrusion" rod embedded in PTFE has been shown to have similar characteristics to those of the traditional platinum-on-glass type. The new electrode has the advantages of being both robust and inexpensive and could prove particularly useful in Karl Fischer analyses of biological material where maceration of the sample is required.
Robust observer for uncertain linear quantum systems
Yamamoto, Naoki
2006-09-15
In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is generally unrealistic. Therefore, in this paper, we consider a class of linear quantum systems subjected to time-varying norm-bounded parametric uncertainties and then propose a robust observer such that the variance of the estimation error is guaranteed to be within a certain bound. Although in the linear case much of classical control theory can be applied to quantum systems, the quantum robust observer obtained in this paper does not have a classical analog due to the system's specific structure with respect to the uncertainties. Moreover, by considering a typical quantum control problem, we show that the proposed robust observer is fairly robust against a parametric uncertainty of the system even when the other estimators--the optimal Kalman filter and risk-sensitive observer--fail in the estimation.
Chromatin regulators, phenotypic robustness, and autism risk
Suliman, Reut; Ben-David, Eyal; Shifman, Sagiv
2014-01-01
Though extensively characterized clinically, the causes of autism spectrum disorder (ASD) remain a mystery. ASD is known to have a strong genetic basis, but it is genetically very heterogeneous. Recent studies have estimated that de novo disruptive mutations in hundreds of genes may contribute to ASD. However, it is unclear how it is possible for mutations in so many different genes to contribute to ASD. Recent findings suggest that many of the mutations disrupt genes involved in transcription regulation that are expressed prenatally in the developing brain. De novo disruptive mutations are also more frequent in girls with ASD, despite the fact that ASD is more prevalent in boys. In this paper, we hypothesize that loss of robustness may contribute to ASD. Loss of phenotypic robustness may be caused by mutations that disrupt capacitors that operate in the developing brain. This may lead to the release of cryptic genetic variation that contributes to ASD. Reduced robustness is consistent with the observed variability in expressivity and incomplete penetrance. It is also consistent with the hypothesis that the development of the female brain is more robust, and it may explain the higher rate and severity of disruptive de novo mutations in girls with ASD. PMID:24782891
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, A.; Künsch, H. R.; Schwierz, C.; Stahel, W. A.
2012-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outlying observations may results from errors (e.g. in data transcription) or from local perturbations in the processes that are responsible for a given pattern of spatial variation. As an example, the spatial distribution of some trace metal in the soils of a region may be distorted by emissions of local anthropogenic sources. Outliers affect the modelling of the large-scale spatial variation, the so-called external drift or trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) [2] proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) [1] for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation. Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled
Fast-flowering mini-maize: seed to seed in 60 days
Technology Transfer Automated Retrieval System (TEKTRAN)
Two lines of Zea mays were developed as a short-generation model for maize. The Fast-Flowering Mini-Maize (FFMM) lines A and B are robust inbred lines with a significantly shorter generation time, much smaller stature, and better greenhouse adaptation than traditional maize varieties. Five generatio...
Robust static and moving object detection via multi-scale attentional mechanisms
NASA Astrophysics Data System (ADS)
Honda, Alexander; Chen, Yang; Khosla, Deepak
2013-05-01
Real-time detection of objects in video sequences captured from an aerial platforms is a key task for surveillance applications. It is common to perform expensive frame to frame registration as preprocessing to moving object detection in this type of application, and there is no principled approach to the detection of stationary targets.We explore the Spectral Residual algorithm,6 a fast linearithmic run time saliency model which requires no training and has no temporal dependencies, and is capable of detecting proto-objects in a single image. In this paper we describe methods for enhancing the Spectral Residual saliency algorithm to generate candidate object detections from video sequences captured from moving platforms. These object candidates can then be passed to a classification module for further processing. We describe a method that makes the Spectral Residual algorithm more robust to natural variances in color images, and a pyramidal approach to make the processes more robust to objects of varying size. Furthermore we describe a technique for processing the resulting saliency map into a set of tight bounding boxes suitable for extracting image regions for classification. These methods result in a system that is fast, robust, and efficient with reliable performance for low SWaP surveillance platforms.
Fast word reading in pure alexia: "fast, yet serial".
Bormann, Tobias; Wolfer, Sascha; Hachmann, Wibke; Neubauer, Claudia; Konieczny, Lars
2015-01-01
Pure alexia is a severe impairment of word reading in which individuals process letters serially with a pronounced length effect. Yet, there is considerable variation in the performance of alexic readers with generally very slow, but also occasionally fast responses, an observation addressed rarely in previous reports. It has been suggested that "fast" responses in pure alexia reflect residual parallel letter processing or that they may even be subserved by an independent reading system. Four experiments assessed fast and slow reading in a participant (DN) with pure alexia. Two behavioral experiments investigated frequency, neighborhood, and length effects in forced fast reading. Two further experiments measured eye movements when DN was forced to read quickly, or could respond faster because words were easier to process. Taken together, there was little support for the proposal that "qualitatively different" mechanisms or reading strategies underlie both types of responses in DN. Instead, fast responses are argued to be generated by the same serial-reading strategy.
Cao, Weihua; Tsiatis, Anastasios A; Davidian, Marie
2009-09-01
Considerable recent interest has focused on doubly robust estimators for a population mean response in the presence of incomplete data, which involve models for both the propensity score and the regression of outcome on covariates. The usual doubly robust estimator may yield severely biased inferences if neither of these models is correctly specified and can exhibit nonnegligible bias if the estimated propensity score is close to zero for some observations. We propose alternative doubly robust estimators that achieve comparable or improved performance relative to existing methods, even with some estimated propensity scores close to zero. PMID:20161511
The effect of fasting on indicators of muscle damage.
Dannecker, Erin A; Liu, Ying; Rector, R Scott; Thomas, Tom R; Sayers, Stephen P; Leeuwenburgh, Christiaan; Ray, Bimal K
2013-10-01
Many studies have tested the consumption of foods and supplements to reduce exercise-induced muscle damage, but fasting itself is also worthy of investigation due to reports of beneficial effects of caloric restriction and/or intermittent fasting on inflammation and oxidative stress. This preliminary investigation compared indicators of exercise-induced muscle damage between upper-body untrained participants (N=29, 22yrs old (SD=3.34), 12 women) who completed 8h water-only fasts or ate a controlled diet in the 8h prior to five consecutive laboratory sessions. All sessions were conducted in the afternoon hours (i.e., post meridiem) and the women completed the first session while in the follicular phase of their menstrual cycles. Measures of muscle pain, resting elbow extension, upper arm girth, isometric strength, myoglobin (Mb), total nitric oxide (NO), interleukin 1beta (IL1b), and tumor necrosis factor alpha (TNFa) were collected before and after eccentric contractions of the non-dominant elbow flexors were completed. The fasting group's loss of elbow extension was less than the post-prandial group (p<.05, eta(2)=.10), but the groups did not change differently across time for any other outcome measures. However, significantly higher NO (p<.05, eta(2)=.22) and lower TNFa (p<.001, eta(2)=.53) were detected in the fasting group than the post-prandial group regardless of time. These results suggest intermittent fasting does not robustly inhibit the signs and symptoms of exercise-induced muscle damage, but such fasting may generally affect common indirect markers of muscle damage. PMID:23266375
Meyers, M C; Brown, B R; Bloom, J A
2001-01-01
The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision
Meyers, M C; Brown, B R; Bloom, J A
2001-01-01
The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision
Fast ignition breakeven scaling.
Slutz, Stephen A.; Vesey, Roger Alan
2005-01-01
A series of numerical simulations have been performed to determine scaling laws for fast ignition break even of a hot spot formed by energetic particles created by a short pulse laser. Hot spot break even is defined to be when the fusion yield is equal to the total energy deposited in the hot spot through both the initial compression and the subsequent heating. In these simulations, only a small portion of a previously compressed mass of deuterium-tritium fuel is heated on a short time scale, i.e., the hot spot is tamped by the cold dense fuel which surrounds it. The hot spot tamping reduces the minimum energy required to obtain break even as compared to the situation where the entire fuel mass is heated, as was assumed in a previous study [S. A. Slutz, R. A. Vesey, I. Shoemaker, T. A. Mehlhorn, and K. Cochrane, Phys. Plasmas 7, 3483 (2004)]. The minimum energy required to obtain hot spot break even is given approximately by the scaling law E{sub T} = 7.5({rho}/100){sup -1.87} kJ for tamped hot spots, as compared to the previously reported scaling of E{sub UT} = 15.3({rho}/100){sup -1.5} kJ for untamped hotspots. The size of the compressed fuel mass and the focusability of the particles generated by the short pulse laser determines which scaling law to use for an experiment designed to achieve hot spot break even.
Responder fast steering mirror
NASA Astrophysics Data System (ADS)
Bullard, Andrew; Shawki, Islam
2013-10-01
Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.
Responder fast steering mirror
NASA Astrophysics Data System (ADS)
Bullard, Andrew; Shawki, Islam
2013-09-01
Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.
Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan
2010-01-01
We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.
Fast Fuzzy Arithmetic Operations
NASA Technical Reports Server (NTRS)
Hampton, Michael; Kosheleva, Olga
1997-01-01
In engineering applications of fuzzy logic, the main goal is not to simulate the way the experts really think, but to come up with a good engineering solution that would (ideally) be better than the expert's control, In such applications, it makes perfect sense to restrict ourselves to simplified approximate expressions for membership functions. If we need to perform arithmetic operations with the resulting fuzzy numbers, then we can use simple and fast algorithms that are known for operations with simple membership functions. In other applications, especially the ones that are related to humanities, simulating experts is one of the main goals. In such applications, we must use membership functions that capture every nuance of the expert's opinion; these functions are therefore complicated, and fuzzy arithmetic operations with the corresponding fuzzy numbers become a computational problem. In this paper, we design a new algorithm for performing such operations. This algorithm is applicable in the case when negative logarithms - log(u(x)) of membership functions u(x) are convex, and reduces computation time from O(n(exp 2))to O(n log(n)) (where n is the number of points x at which we know the membership functions u(x)).
Jensen, T L; Kiersgaard, M K; Sørensen, D B; Mikkelsen, L F
2013-10-01
Fasting of mice is a common procedure performed in association with many different types of experiments mainly in order to reduce variability in investigatory parameters or to facilitate surgical procedures. However, the effects of fasting not directly related to the investigatory parameters are often ignored. The aim of this review is to present and summarize knowledge about the effects of fasting of mice to facilitate optimization of the fasting procedure for any given study and thereby maximize the scientific outcome and minimize the discomfort for the mice and hence ensure high animal welfare. The results are presented from a number of experimental studies, providing evidence for fasting-induced changes in hormone balance, body weight, metabolism, hepatic enzymes, cardiovascular parameters, body temperature and toxicological responses. A description of relevant normal behaviour and standard physiological parameters is given, concluding that mice are primarily nocturnal and consume two-thirds of their total food intake during the night. It is argued that overnight fasting of mice is not comparable with overnight fasting of humans because the mouse has a nocturnal circadian rhythm and a higher metabolic rate. It is suggested that because many physiological parameters are regulated by circadian rhythms, fasting initiated at different points in the circadian rhythm has different impacts and produces different results.
Fast Feedback in Classroom Practice
ERIC Educational Resources Information Center
Emmett, Katrina; Klaassen, Kees; Eijkelhof, Harrie
2009-01-01
In this article we describe one application of the fast feedback method (see Berg 2003 "Aust. Sci. Teach. J." 28-34) in secondary mechanics education. Two teachers tried out a particular sequence twice, in consecutive years, once with and once without the use of fast feedback. We found the method to be successful, and the data that we obtained…
Fast-Polynomial-Transform Program
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Chu, Y. F.
1987-01-01
Computer program uses fast-polynomial-transformation (FPT) algorithm applicable to two-dimensional mathematical convolutions. Two-dimensional cyclic convolutions converted to one-dimensional convolutions in polynomial rings. Program decomposes cyclic polynomials into polynomial convolutions of same length. Only FPT's and fast Fourier transforms of same length required. Modular approach saves computional resources. Program written in C.
Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)
2001-01-01
This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.
Stochastic robustness of linear control systems
NASA Technical Reports Server (NTRS)
Stengel, Robert F.; Ryan, Laura E.
1990-01-01
A simple numerical procedure for estimating the stochastic robustness of a linear, time-invariant system is described. Monte Carlo evaluation of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This definition of robustness is an alternative to existing deterministic definitions that address both structured and unstructured parameter variations directly. This analysis approach treats not only Gaussian parameter uncertainties but non-Gaussian cases, including uncertain-but-bounded variations. Trivial extensions of the procedure admit alternate discriminants to be considered. Thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions also can be estimated. Results are particularly amenable to graphical presentation.
Parallax-Robust Surveillance Video Stitching
He, Botao; Yu, Shaohua
2015-01-01
This paper presents a parallax-robust video stitching technique for timely synchronized surveillance video. An efficient two-stage video stitching procedure is proposed in this paper to build wide Field-of-View (FOV) videos for surveillance applications. In the stitching model calculation stage, we develop a layered warping algorithm to align the background scenes, which is location-dependent and turned out to be more robust to parallax than the traditional global projective warping methods. On the selective seam updating stage, we propose a change-detection based optimal seam selection approach to avert ghosting and artifacts caused by moving foregrounds. Experimental results demonstrate that our procedure can efficiently stitch multi-view videos into a wide FOV video output without ghosting and noticeable seams. PMID:26712756
Robust bidirectional links for photonic quantum networks
Xu, Jin-Shi; Yung, Man-Hong; Xu, Xiao-Ye; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can
2016-01-01
Optical fibers are widely used as one of the main tools for transmitting not only classical but also quantum information. We propose and report an experimental realization of a promising method for creating robust bidirectional quantum communication links through paired optical polarization-maintaining fibers. Many limitations of existing protocols can be avoided with the proposed method. In particular, the path and polarization degrees of freedom are combined to deterministically create a photonic decoherence-free subspace without the need for any ancillary photon. This method is input state–independent, robust against dephasing noise, postselection-free, and applicable bidirectionally. To rigorously quantify the amount of quantum information transferred, the optical fibers are analyzed with the tools developed in quantum communication theory. These results not only suggest a practical means for protecting quantum information sent through optical quantum networks but also potentially provide a new physical platform for enriching the structure of the quantum communication theory. PMID:26824069
Robust clustering using exponential power mixtures.
Zhang, Jian; Liang, Faming
2010-12-01
Clustering is a widely used method in extracting useful information from gene expression data, where unknown correlation structures in genes are believed to persist even after normalization. Such correlation structures pose a great challenge on the conventional clustering methods, such as the Gaussian mixture (GM) model, k-means (KM), and partitioning around medoids (PAM), which are not robust against general dependence within data. Here we use the exponential power mixture model to increase the robustness of clustering against general dependence and nonnormality of the data. An expectation-conditional maximization algorithm is developed to calculate the maximum likelihood estimators (MLEs) of the unknown parameters in these mixtures. The Bayesian information criterion is then employed to determine the numbers of components of the mixture. The MLEs are shown to be consistent under sparse dependence. Our numerical results indicate that the proposed procedure outperforms GM, KM, and PAM when there are strong correlations or non-Gaussian components in the data. PMID:20163406
Robustness of topological quantum codes: Ising perturbation
NASA Astrophysics Data System (ADS)
Zarei, Mohammad Hossein
2015-02-01
We study the phase transition from two different topological phases to the ferromagnetic phase by focusing on points of the phase transition. To this end, we present a detailed mapping from such models to the Ising model in a transverse field. Such a mapping is derived by rewriting the initial Hamiltonian in a new basis so that the final model in such a basis has a well-known approximated phase transition point. Specifically, we consider the toric codes and the color codes on various lattices with Ising perturbation. Our results provide a useful table to compare the robustness of the topological codes and to explicitly show that the robustness of the topological codes depends on triangulation of their underlying lattices.
Robust optimization with transiently chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.
2014-05-01
Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.
Network robustness: detecting topological quantum phases.
Chou, Chung-Pin
2014-12-17
Can the topology of a network that consists of many particles interacting with each other change in complexity when a phase transition occurs? The answer to this question is particularly interesting to understand the nature of the phase transitions if the distinct phases do not break any symmetry, such as topological phase transitions. Here we present a novel theoretical framework established by complex network analysis for demonstrating that across a transition point of the topological superconductors, the network space experiences a homogeneous-heterogeneous transition invisible in real space. This transition is nothing but related to the robustness of a network to random failures. We suggest that the idea of the network robustness can be applied to characterizing various phase transitions whether or not the symmetry is broken.
The robustness and innovability of protein folds.
Tóth-Petróczy, Agnes; Tawfik, Dan S
2014-06-01
Assignment of protein folds to functions indicates that >60% of folds carry out one or two enzymatic functions, while few folds, for example, the TIM-barrel and Rossmann folds, exhibit hundreds. Are there structural features that make a fold amenable to functional innovation (innovability)? Do these features relate to robustness--the ability to readily accumulate sequence changes? We discuss several hypotheses regarding the relationship between the architecture of a protein and its evolutionary potential. We describe how, in a seemingly paradoxical manner, opposite properties, such as high stability and rigidity versus conformational plasticity and structural order versus disorder, promote robustness and/or innovability. We hypothesize that polarity--differentiation and low connectivity between a protein's scaffold and its active-site--is a key prerequisite for innovability.
Robust bidirectional links for photonic quantum networks.
Xu, Jin-Shi; Yung, Man-Hong; Xu, Xiao-Ye; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can
2016-01-01
Optical fibers are widely used as one of the main tools for transmitting not only classical but also quantum information. We propose and report an experimental realization of a promising method for creating robust bidirectional quantum communication links through paired optical polarization-maintaining fibers. Many limitations of existing protocols can be avoided with the proposed method. In particular, the path and polarization degrees of freedom are combined to deterministically create a photonic decoherence-free subspace without the need for any ancillary photon. This method is input state-independent, robust against dephasing noise, postselection-free, and applicable bidirectionally. To rigorously quantify the amount of quantum information transferred, the optical fibers are analyzed with the tools developed in quantum communication theory. These results not only suggest a practical means for protecting quantum information sent through optical quantum networks but also potentially provide a new physical platform for enriching the structure of the quantum communication theory.
Monks, K; Molnár, I; Rieger, H-J; Bogáti, B; Szabó, E
2012-04-01
Robust HPLC separations lead to fewer analysis failures and better method transfer as well as providing an assurance of quality. This work presents the systematic development of an optimal, robust, fast UHPLC method for the simultaneous assay of two APIs of an eye drop sample and their impurities, in accordance with Quality by Design principles. Chromatography software is employed to effectively generate design spaces (Method Operable Design Regions), which are subsequently employed to determine the final method conditions and to evaluate robustness prior to validation.
Robustness of DNA repair through collective rate control.
Verbruggen, Paul; Heinemann, Tim; Manders, Erik; von Bornstaedt, Gesa; van Driel, Roel; Höfer, Thomas
2014-01-01
DNA repair and other chromatin-associated processes are carried out by enzymatic macromolecular complexes that assemble at specific sites on the chromatin fiber. How the rate of these molecular machineries is regulated by their constituent parts is poorly understood. Here we quantify nucleotide-excision DNA repair in mammalian cells and find that, despite the pathways' molecular complexity, repair effectively obeys slow first-order kinetics. Theoretical analysis and data-based modeling indicate that these kinetics are not due to a singular rate-limiting step. Rather, first-order kinetics emerge from the interplay of rapidly and reversibly assembling repair proteins, stochastically distributing DNA lesion repair over a broad time period. Based on this mechanism, the model predicts that the repair proteins collectively control the repair rate. Exploiting natural cell-to-cell variability, we corroborate this prediction for the lesion-recognition factor XPC and the downstream factor XPA. Our findings provide a rationale for the emergence of slow time scales in chromatin-associated processes from fast molecular steps and suggest that collective rate control might be a widespread mode of robust regulation in DNA repair and transcription.
Robust population transfer in atomic beams induced by Doppler shifts
NASA Astrophysics Data System (ADS)
Unanyan, R. G.
2016-10-01
The influence of photon momentum recoil on adiabatic population transfer in an atomic three-level lambda system is studied. It is shown that the Doppler frequency shifts, due to atomic motion, can play an important role in adiabatic population transfer processes of atomic internal states by a pair of laser fields. For the limiting case of slow atoms (Doppler shift much smaller than the photon recoil energy), the atoms occupy the same target state regardless of the order of switching of laser fields, while for the case of fast atoms interacting with the intuitive sequence of pulses, the target state is the intermediate atomic state. Furthermore, it is shown that this novel technique for adiabatic population transfer is related to a level crossing in the bright-intermediate state basis (rather than in the original atomic basis). It is shown that these processes are robust with respect to parameter fluctuations, such as the laser pulse area and the relative spatial offset (delay) of the laser beams. The obtained results can be used for the control of temporal evolution of atomic populations in cold atomic beams by externally adjustable Doppler shifts.
Distributed reinforcement learning for adaptive and robust network intrusion response
NASA Astrophysics Data System (ADS)
Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel
2015-07-01
Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.
Robust simulation of buckled structures using reduced order modeling
NASA Astrophysics Data System (ADS)
Wiebe, R.; Perez, R. A.; Spottswood, S. M.
2016-09-01
Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.
The robust australopithecine face: a morphogenetic perspective.
McCollum, M A
1999-04-01
The robust australopithecines were a side branch of human evolution. They share a number of unique craniodental features that suggest their monophyletic origin. However, virtually all of these traits appear to reflect a singular pattern of nasomaxillary modeling derived from their unusual dental proportions. Therefore, recent cladistic analyses have not resolved the phylogenetic history of these early hominids. Efforts to increase cladistic resolution by defining traits at greater levels of anatomical detail have instead introduced substantial phyletic error. PMID:10195892
Robust frame-dependent video watermarking
NASA Astrophysics Data System (ADS)
Holliman, Matthew J.; Macy, William W.; Yeung, Minerva M.
2000-05-01
In this paper, we describe some of the problems associated with watermarking key management, with particular attention to the case of video. We also describe a possible solution to the problem, which is that of image-dependent watermarking, and briefly discuss some of the possible advantages to be gained from adopting such an approach. The paper also presents a simple, efficient means of robustly extracting bits from a video sequence. The algorithm has applications to secure, oblivious video watermark detection.
Blink detection robust to various facial poses.
Lee, Won Oh; Lee, Eui Chul; Park, Kang Ryoung
2010-11-30
Applications based on eye-blink detection have increased, as a result of which it is essential for eye-blink detection to be robust and non-intrusive irrespective of the changes in the user's facial pose. However, most previous studies on camera-based blink detection have the disadvantage that their performances were affected by the facial pose. They also focused on blink detection using only frontal facial images. To overcome these disadvantages, we developed a new method for blink detection, which maintains its accuracy despite changes in the facial pose of the subject. This research is novel in the following four ways. First, the face and eye regions are detected by using both the AdaBoost face detector and a Lucas-Kanade-Tomasi (LKT)-based method, in order to achieve robustness to facial pose. Secondly, the determination of the state of the eye (being open or closed), needed for blink detection, is based on two features: the ratio of height to width of the eye region in a still image, and the cumulative difference of the number of black pixels of the eye region using an adaptive threshold in successive images. These two features are robustly extracted irrespective of the lighting variations by using illumination normalization. Thirdly, the accuracy of determining the eye state - open or closed - is increased by combining the above two features on the basis of the support vector machine (SVM). Finally, the SVM classifier for determining the eye state is adaptively selected according to the facial rotation. Experimental results using various databases showed that the blink detection by the proposed method is robust to various facial poses. PMID:20826183
Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.
Chen, Jun; Yang, Jin; Guo, Hengyu; Li, Zhaoling; Zheng, Li; Su, Yuanjie; Wen, Zhen; Fan, Xing; Wang, Zhong Lin
2015-12-22
Although the triboelectric nanogenerator (TENG) has been proven to be a renewable and effective route for ambient energy harvesting, its robustness remains a great challenge due to the requirement of surface friction for a decent output, especially for the in-plane sliding mode TENG. Here, we present a rationally designed TENG for achieving a high output performance without compromising the device robustness by, first, converting the in-plane sliding electrification into a contact separation working mode and, second, creating an automatic transition between a contact working state and a noncontact working state. The magnet-assisted automatic transition triboelectric nanogenerator (AT-TENG) was demonstrated to effectively harness various ambient rotational motions to generate electricity with greatly improved device robustness. At a wind speed of 6.5 m/s or a water flow rate of 5.5 L/min, the harvested energy was capable of lighting up 24 spot lights (0.6 W each) simultaneously and charging a capacitor to greater than 120 V in 60 s. Furthermore, due to the rational structural design and unique output characteristics, the AT-TENG was not only capable of harvesting energy from natural bicycling and car motion but also acting as a self-powered speedometer with ultrahigh accuracy. Given such features as structural simplicity, easy fabrication, low cost, wide applicability even in a harsh environment, and high output performance with superior device robustness, the AT-TENG renders an effective and practical approach for ambient mechanical energy harvesting as well as self-powered active sensing.
Matlab as a robust control design tool
NASA Technical Reports Server (NTRS)
Gregory, Irene M.
1994-01-01
This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.
Robust Acoustic Transducers for Bubble Chambers
NASA Astrophysics Data System (ADS)
Wells, Jonathan
2015-04-01
The PICO collaboration utilizes bubble chambers filled with various superheated liquids as targets for dark matter. Acoustic sensors have proved able to distinguish nuclear recoils from radioactive background on an event-by-event basis. We have recently produced a more robust transducer which should be able to operate for years, rather than months, in the challenging environment of a heated high pressure hydraulic fluid outside these chambers. Indiana University South Bend.
Robust adaptive control of HVDC systems
Reeve, J.; Sultan, M. )
1994-07-01
The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.
Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.
Chen, Jun; Yang, Jin; Guo, Hengyu; Li, Zhaoling; Zheng, Li; Su, Yuanjie; Wen, Zhen; Fan, Xing; Wang, Zhong Lin
2015-12-22
Although the triboelectric nanogenerator (TENG) has been proven to be a renewable and effective route for ambient energy harvesting, its robustness remains a great challenge due to the requirement of surface friction for a decent output, especially for the in-plane sliding mode TENG. Here, we present a rationally designed TENG for achieving a high output performance without compromising the device robustness by, first, converting the in-plane sliding electrification into a contact separation working mode and, second, creating an automatic transition between a contact working state and a noncontact working state. The magnet-assisted automatic transition triboelectric nanogenerator (AT-TENG) was demonstrated to effectively harness various ambient rotational motions to generate electricity with greatly improved device robustness. At a wind speed of 6.5 m/s or a water flow rate of 5.5 L/min, the harvested energy was capable of lighting up 24 spot lights (0.6 W each) simultaneously and charging a capacitor to greater than 120 V in 60 s. Furthermore, due to the rational structural design and unique output characteristics, the AT-TENG was not only capable of harvesting energy from natural bicycling and car motion but also acting as a self-powered speedometer with ultrahigh accuracy. Given such features as structural simplicity, easy fabrication, low cost, wide applicability even in a harsh environment, and high output performance with superior device robustness, the AT-TENG renders an effective and practical approach for ambient mechanical energy harvesting as well as self-powered active sensing. PMID:26529374
Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares
NASA Technical Reports Server (NTRS)
Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.
2012-01-01
A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.
Robust Multilayer Insulation for Cryogenic Systems
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.
2007-01-01
New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.
Robust interface between flying and topological qubits.
Xue, Zheng-Yuan; Gong, Ming; Liu, Jia; Hu, Yong; Zhu, Shi-Liang; Wang, Z D
2015-07-28
Hybrid architectures, consisting of conventional and topological qubits, have recently attracted much attention due to their capability in consolidating robustness of topological qubits and universality of conventional qubits. However, these two kinds of qubits are normally constructed in significantly different energy scales, and thus the energy mismatch is a major obstacle for their coupling, which can support the exchange of quantum information between them. Here we propose a microwave photonic quantum bus for a strong direct coupling between the topological and conventional qubits, where the energy mismatch is compensated by an external driving field. In the framework of tight-binding simulation and perturbation approach, we show that the energy splitting of Majorana fermions in a finite length nanowire, which we use to define topological qubits, is still robust against local perturbations due to the topology of the system. Therefore, the present scheme realizes a rather robust interface between the flying and topological qubits. Finally, we demonstrate that this quantum bus can also be used to generate multipartitie entangled states with the topological qubits.
Species interactions differ in their genetic robustness
Chubiz, Lon M.; Granger, Brian R.; Segre, Daniel; Harcombe, William R.
2015-04-14
Conflict and cooperation between bacterial species drive the composition and function of microbial communities. Stability of these emergent properties will be influenced by the degree to which species' interactions are robust to genetic perturbations. We use genome-scale metabolic modeling to computationally analyze the impact of genetic changes when Escherichia coli and Salmonella enterica compete, or cooperate. We systematically knocked out in silico each reaction in the metabolic network of E. coli to construct all 2583 mutant stoichiometric models. Then, using a recently developed multi-scale computational framework, we simulated the growth of each mutant E. coli in the presence of S.more » enterica. The type of interaction between species was set by modulating the initial metabolites present in the environment. We found that the community was most robust to genetic perturbations when the organisms were cooperating. Species ratios were more stable in the cooperative community, and community biomass had equal variance in the two contexts. Additionally, the number of mutations that have a substantial effect is lower when the species cooperate than when they are competing. In contrast, when mutations were added to the S. enterica network the system was more robust when the bacteria were competing. These results highlight the utility of connecting metabolic mechanisms and studies of ecological stability. Cooperation and conflict alter the connection between genetic changes and properties that emerge at higher levels of biological organization.« less
Robust preconditioners for incompressible MHD models
NASA Astrophysics Data System (ADS)
Ma, Yicong; Hu, Kaibo; Hu, Xiaozhe; Xu, Jinchao
2016-07-01
In this paper, we develop two classes of robust preconditioners for the structure-preserving discretization of the incompressible magnetohydrodynamics (MHD) system. By studying the well-posedness of the discrete system, we design block preconditioners for them and carry out rigorous analysis on their performance. We prove that such preconditioners are robust with respect to most physical and discretization parameters. In our proof, we improve the existing estimates of the block triangular preconditioners for saddle point problems by removing the scaling parameters, which are usually difficult to choose in practice. This new technique is applicable not only to the MHD system, but also to other problems. Moreover, we prove that Krylov iterative methods with our preconditioners preserve the divergence-free condition exactly, which complements the structure-preserving discretization. Another feature is that we can directly generalize this technique to other discretizations of the MHD system. We also present preliminary numerical results to support the theoretical results and demonstrate the robustness of the proposed preconditioners.
Sparse alignment for robust tensor learning.
Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming
2014-10-01
Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods. PMID:25291733
Robust Multitask Multiview Tracking in Videos.
Mei, Xue; Hong, Zhibin; Prokhorov, Danil; Tao, Dacheng
2015-11-01
Various sparse-representation-based methods have been proposed to solve tracking problems, and most of them employ least squares (LSs) criteria to learn the sparse representation. In many tracking scenarios, traditional LS-based methods may not perform well owing to the presence of heavy-tailed noise. In this paper, we present a tracking approach using an approximate least absolute deviation (LAD)-based multitask multiview sparse learning method to enjoy robustness of LAD and take advantage of multiple types of visual features, such as intensity, color, and texture. The proposed method is integrated in a particle filter framework, where learning the sparse representation for each view of the single particle is regarded as an individual task. The underlying relationship between tasks across different views and different particles is jointly exploited in a unified robust multitask formulation based on LAD. In addition, to capture the frequently emerging outlier tasks, we decompose the representation matrix to two collaborative components that enable a more robust and accurate approximation. We show that the proposed formulation can be effectively approximated by Nesterov's smoothing method and efficiently solved using the accelerated proximal gradient method. The presented tracker is implemented using four types of features and is tested on numerous synthetic sequences and real-world video sequences, including the CVPR2013 tracking benchmark and ALOV++ data set. Both the qualitative and quantitative results demonstrate the superior performance of the proposed approach compared with several state-of-the-art trackers. PMID:25730831
TAO-robust backpropagation learning algorithm.
Pernía-Espinoza, Alpha V; Ordieres-Meré, Joaquín B; Martínez-de-Pisón, Francisco J; González-Marcos, Ana
2005-03-01
In several fields, as industrial modelling, multilayer feedforward neural networks are often used as universal function approximations. These supervised neural networks are commonly trained by a traditional backpropagation learning format, which minimises the mean squared error (mse) of the training data. However, in the presence of corrupted data (outliers) this training scheme may produce wrong models. We combine the benefits of the non-linear regression model tau-estimates [introduced by Tabatabai, M. A. Argyros, I. K. Robust Estimation and testing for general nonlinear regression models. Applied Mathematics and Computation. 58 (1993) 85-101] with the backpropagation algorithm to produce the TAO-robust learning algorithm, in order to deal with the problems of modelling with outliers. The cost function of this approach has a bounded influence function given by the weighted average of two psi functions, one corresponding to a very robust estimate and the other to a highly efficient estimate. The advantages of the proposed algorithm are studied with an example.
Robustness of airline alliance route networks
NASA Astrophysics Data System (ADS)
Lordan, Oriol; Sallan, Jose M.; Simo, Pep; Gonzalez-Prieto, David
2015-05-01
The aim of this study is to analyze the robustness of the three major airline alliances' (i.e., Star Alliance, oneworld and SkyTeam) route networks. Firstly, the normalization of a multi-scale measure of vulnerability is proposed in order to perform the analysis in networks with different sizes, i.e., number of nodes. An alternative node selection criterion is also proposed in order to study robustness and vulnerability of such complex networks, based on network efficiency. And lastly, a new procedure - the inverted adaptive strategy - is presented to sort the nodes in order to anticipate network breakdown. Finally, the robustness of the three alliance networks are analyzed with (1) a normalized multi-scale measure of vulnerability, (2) an adaptive strategy based on four different criteria and (3) an inverted adaptive strategy based on the efficiency criterion. The results show that Star Alliance has the most resilient route network, followed by SkyTeam and then oneworld. It was also shown that the inverted adaptive strategy based on the efficiency criterion - inverted efficiency - shows a great success in quickly breaking networks similar to that found with betweenness criterion but with even better results.
Robust interface between flying and topological qubits
Xue, Zheng-Yuan; Gong, Ming; Liu, Jia; Hu, Yong; Zhu, Shi-Liang; Wang, Z. D.
2015-01-01
Hybrid architectures, consisting of conventional and topological qubits, have recently attracted much attention due to their capability in consolidating robustness of topological qubits and universality of conventional qubits. However, these two kinds of qubits are normally constructed in significantly different energy scales, and thus the energy mismatch is a major obstacle for their coupling, which can support the exchange of quantum information between them. Here we propose a microwave photonic quantum bus for a strong direct coupling between the topological and conventional qubits, where the energy mismatch is compensated by an external driving field. In the framework of tight-binding simulation and perturbation approach, we show that the energy splitting of Majorana fermions in a finite length nanowire, which we use to define topological qubits, is still robust against local perturbations due to the topology of the system. Therefore, the present scheme realizes a rather robust interface between the flying and topological qubits. Finally, we demonstrate that this quantum bus can also be used to generate multipartitie entangled states with the topological qubits. PMID:26216201
Robust disturbance rejection for flexible mechanical structures
NASA Astrophysics Data System (ADS)
Enzmann, Marc R.; Doeschner, Christian
2000-06-01
Topic of the presentation is a procedure to determine controller parameters using principles from Internal Model Control (IMC) in combination with Quantitative Feedback Theory (QFT) for robust vibration control of flexible mechanical structures. IMC design is based on a parameterization of all controllers that stabilize a given nominal plant, called the Q-parameter or Youla-parameter. It will be shown that it is possible to choose the controller structure and the Q- parameter in a very straightforward manner, so that a low order controller results, which stabilizes the given nominal model. Additional constraints can be implemented, so that the method allows for a direct and transparent trade-off between control performance and controller complexity and facilitates the inclusion of low-pass filters. In order to test (and if necessary augment) the inherent robust performance of the resulting controllers, boundaries based on the work of Kidron and Yaniv are calculated in the Nichols-Charts of the open loop and the complementary sensitivity function. The application of these boundaries is presented. Very simple uncertainty models for resonant modes are used to assess the robustness of the design. Using a simply structured plant as illustrative example we will demonstrate the design process. This will illuminate several important features of the design process, e.g. trade-off between conflicting objectives, trade- off between controller complexity and achievable performance.
UNIX-based operating systems robustness evaluation
NASA Technical Reports Server (NTRS)
Chang, Yu-Ming
1996-01-01
Robust operating systems are required for reliable computing. Techniques for robustness evaluation of operating systems not only enhance the understanding of the reliability of computer systems, but also provide valuable feed- back to system designers. This thesis presents results from robustness evaluation experiments on five UNIX-based operating systems, which include Digital Equipment's OSF/l, Hewlett Packard's HP-UX, Sun Microsystems' Solaris and SunOS, and Silicon Graphics' IRIX. Three sets of experiments were performed. The methodology for evaluation tested (1) the exception handling mechanism, (2) system resource management, and (3) system capacity under high workload stress. An exception generator was used to evaluate the exception handling mechanism of the operating systems. Results included exit status of the exception generator and the system state. Resource management techniques used by individual operating systems were tested using programs designed to usurp system resources such as physical memory and process slots. Finally, the workload stress testing evaluated the effect of the workload on system performance by running a synthetic workload and recording the response time of local and remote user requests. Moderate to severe performance degradations were observed on the systems under stress.
Causal Drift, Robust Signaling, and Complex Disease
Wagner, Andreas
2015-01-01
The phenotype of many regulatory circuits in which mutations can cause complex, polygenic diseases is to some extent robust to DNA mutations that affect circuit components. Here I demonstrate how such mutational robustness can prevent the discovery of genetic disease determinants. To make my case, I use a mathematical model of the insulin signaling pathway implicated in type 2 diabetes, whose signaling output is governed by 15 genetically determined parameters. Using multiple complementary measures of a parameter’s importance for this phenotype, I show that any one disease determinant that is crucial in one genetic background will be virtually irrelevant in other backgrounds. In an evolving population that drifts through the parameter space of this or other robust circuits through DNA mutations, the genetic changes that can cause disease will vary randomly over time. I call this phenomenon causal drift. It means that mutations causing disease in one (human or non-human) population may have no effect in another population, and vice versa. Causal drift casts doubt on our ability to infer the molecular mechanisms of complex diseases from non-human model organisms. PMID:25774510
Zarzoso, Vicente; Comon, Pierre
2010-02-01
Independent component analysis (ICA) aims at decomposing an observed random vector into statistically independent variables. Deflation-based implementations, such as the popular one-unit FastICA algorithm and its variants, extract the independent components one after another. A novel method for deflationary ICA, referred to as RobustICA, is put forward in this paper. This simple technique consists of performing exact line search optimization of the kurtosis contrast function. The step size leading to the global maximum of the contrast along the search direction is found among the roots of a fourth-degree polynomial. This polynomial rooting can be performed algebraically, and thus at low cost, at each iteration. Among other practical benefits, RobustICA can avoid prewhitening and deals with real- and complex-valued mixtures of possibly noncircular sources alike. The absence of prewhitening improves asymptotic performance. The algorithm is robust to local extrema and shows a very high convergence speed in terms of the computational cost required to reach a given source extraction quality, particularly for short data records. These features are demonstrated by a comparative numerical analysis on synthetic data. RobustICA's capabilities in processing real-world data involving noncircular complex strongly super-Gaussian sources are illustrated by the biomedical problem of atrial activity (AA) extraction in atrial fibrillation (AF) electrocardiograms (ECGs), where it outperforms an alternative ICA-based technique.
Analytic differential approach for robust registration of rat brain histological images.
Hsu, Wei-Yen
2011-06-01
Image registration is an important topic in medical image analysis. It is usually used to reconstruct 3D structure of tissues from a series of microscopic images. However, a variety of inherent factors may result in great differences between acquired slices during imaging even if they are adjacent. The common differences include the color difference and geometry discrepancy, which make the registration problem a difficult challenge. In this study, we propose a robust registration method to automatically reconstruct 3D volume data of the rat brain. It mainly consists of three procedures, including multiscale wavelet-based feature extraction, analytic robust point matching (ARPM), and registration refinement with feature-based modified Levenberg-Marquardt algorithm (FMLM). The product of gradient moduli in multi-scales is used to decide if extracted feature points are true according to the characteristic that features could exist in multiscale. The ARPM registration algorithm is proposed to speedily accomplish the registration of two point sets with different size by simultaneously evaluating the spatial correspondence and geometrical transformation. In addition, a FMLM method is also proposed to further refine registration results and achieve subpixel accuracy. The FMLM method converges much faster than most other methods due to its feature-based and nonlinear characteristic. The performance of proposed method is evaluated by comparing it with well-known thin-plate spline robust point matching (TPS-RPM) algorithm. The results indicate that ARPM-FMLM algorithm is a robust and fast method in image registration. PMID:20945464
NASA Astrophysics Data System (ADS)
Skala, Vaclav
2016-06-01
There are many applications in which a bounding sphere containing the given triangle E3 is needed, e.g. fast collision detection, ray-triangle intersecting in raytracing etc. This is a typical geometrical problem in E3 and it has also applications in computational problems in general. In this paper a new fast and robust algorithm of circumscribed sphere computation in the n-dimensional space is presented and specification for the E3 space is given, too. The presented method is convenient for use on GPU or with SSE or Intel's AVX instructions on a standard CPU.
On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms
Leu, Jun-Yi
2015-01-01
Biologists have long observed that physiological and developmental processes are insensitive, or robust, to many genetic and environmental perturbations. A complete understanding of the evolutionary causes and consequences of this robustness is lacking. Recent progress has been made in uncovering the regulatory mechanisms that underlie environmental robustness in particular. Less is known about robustness to the effects of mutations, and indeed the evolution of mutational robustness remains a controversial topic. The controversy has spread to related topics, in particular the evolutionary relevance of cryptic genetic variation. This review aims to synthesize current understanding of robustness mechanisms and to cut through the controversy by shedding light on what is and is not known about mutational robustness. Some studies have confused mutational robustness with non-additive interactions between mutations (epistasis). We conclude that a profitable way forward is to focus investigations (and rhetoric) less on mutational robustness and more on epistasis. PMID:26034410
Zarzoso, Vicente; Comon, Pierre
2008-01-01
The problems of signal separation and signal extraction arise in a wide variety of applications in biomedical engineering and other areas. Under the source statistical independence assumption, these problems can be solved by independent component analysis (ICA) methods. A simple ICA technique, referred to as RobustICA, has recently been proposed that shows interesting features such as very fast convergence, local-extrema escaping capabilities and the possibility of avoiding prewhitening. The present contribution explains how RobustICA can easily be modified to target particular sources according to their impulsive character as measured by the kurtosis sign. This new feature makes it possible to extract the sources of interest only, or a subspace thereof, with the subsequent reduction in computational complexity and error accumulation. The performance of this modification is illustrated on signal recordings issued from electrocardiography.
NASA Astrophysics Data System (ADS)
Chen, Yanli; Du, Lianhuan; Yang, Peihua; Sun, Peng; Yu, Xiang; Mai, Wenjie
2015-08-01
Here, we report robust, flexible CNT-based supercapacitor (SC) electrodes fabricated by electrodepositing polypyrrole (PPy) on freestanding vacuum-filtered CNT film. These electrodes demonstrate significantly improved mechanical properties (with the ultimate tensile strength of 16 MPa), and greatly enhanced electrochemical performance (5.6 times larger areal capacitance). The major drawback of conductive polymer electrodes is the fast capacitance decay caused by structural breakdown, which decreases cycling stability but this is not observed in our case. All-solid-state SCs assembled with the robust CNT/PPy electrodes exhibit excellent flexibility, long lifetime (95% capacitance retention after 10,000 cycles) and high electrochemical performance (a total device volumetric capacitance of 4.9 F/cm3). Moreover, a flexible SC pack is demonstrated to light up 53 LEDs or drive a digital watch, indicating the broad potential application of our SCs for portable/wearable electronics.
Huang, Lei
2015-09-30
To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required.
Femtosecond soliton source with fast and broad spectral tunability.
Masip, Martin E; Rieznik, A A; König, Pablo G; Grosz, Diego F; Bragas, Andrea V; Martinez, Oscar E
2009-03-15
We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (approximately 40 fs) and spectral widths (approximately 20 nm) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters. PMID:19282951
Security-Enhanced Fast Mobile IPv6 Handover
NASA Astrophysics Data System (ADS)
Park, Chang-Seop
Motivated by the fact that the existing FMIPv6 security scheme has several weaknesses in terms of security and efficiency, we propose a security-enhanced fast mobile IPv6 in this letter. Based on the concept of a secret key-based CGA (Cryptographically Generated Address), we show how to establish a new security association between the MN and AR (Access Router) whenever a handover occurs. We also show that the proposed scheme is robust against several types of security attacks feasible with the existing scheme. Our scheme is more efficient in that it requires fewer public key operations.
A fast neighbor joining method.
Li, J F
2015-01-01
With the rapid development of sequencing technologies, an increasing number of sequences are available for evolutionary tree reconstruction. Although neighbor joining is regarded as the most popular and fastest evolutionary tree reconstruction method [its time complexity is O(n(3)), where n is the number of sequences], it is not sufficiently fast to infer evolutionary trees containing more than a few hundred sequences. To increase the speed of neighbor joining, we herein propose FastNJ, a fast implementation of neighbor joining, which was motivated by RNJ and FastJoin, two improved versions of conventional neighbor joining. The main difference between FastNJ and conventional neighbor joining is that, in the former, many pairs of nodes selected by the rule used in RNJ are joined in each iteration. In theory, the time complexity of FastNJ can reach O(n(2)) in the best cases. Experimental results show that FastNJ yields a significant increase in speed compared to RNJ and conventional neighbor joining with a minimal loss of accuracy. PMID:26345805
A robust method for online stereo camera self-calibration in unmanned vehicle system
NASA Astrophysics Data System (ADS)
Zhao, Yu; Chihara, Nobuhiro; Guo, Tao; Kimura, Nobutaka
2014-06-01
Self-calibration is a fundamental technology used to estimate the relative posture of the cameras for environment recognition in unmanned system. We focused on the issue of recognition accuracy decrease caused by the vibration of platform and conducted this research to achieve on-line self-calibration using feature point's registration and robust estimation of fundamental matrix. Three key factors in this respect are needed to be improved. Firstly, the feature mismatching exists resulting in the decrease of estimation accuracy of relative posture. The second, the conventional estimation method cannot satisfy both the estimation speed and calibration accuracy at the same tame. The third, some system intrinsic noises also lead greatly to the deviation of estimation results. In order to improve the calibration accuracy, estimation speed and system robustness for the practical implementation, we discuss and analyze the algorithms to make improvements on the stereo camera system to achieve on-line self-calibration. Based on the epipolar geometry and 3D images parallax, two geometry constraints are proposed to make the corresponding feature points search performed in a small search-range resulting in the improvement of matching accuracy and searching speed. Then, two conventional estimation algorithms are analyzed and evaluated for estimation accuracy and robustness. The third, Rigorous posture calculation method is proposed with consideration of the relative posture deviation of each separated parts in the stereo camera system. Validation experiments were performed with the stereo camera mounted on the Pen-Tilt Unit for accurate rotation control and the evaluation shows that our proposed method is fast and of high accuracy with high robustness for on-line self-calibration algorithm. Thus, as the main contribution, we proposed methods to solve the on-line self-calibration fast and accurately, envision the possibility for practical implementation on unmanned system as
Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data.
Benoussaad, Mourad; Sijobert, Benoît; Mombaur, Katja; Coste, Christine Azevedo
2015-01-01
This paper introduces a method for the robust estimation of foot clearance during walking, using a single inertial measurement unit (IMU) placed on the subject's foot. The proposed solution is based on double integration and drift cancellation of foot acceleration signals. The method is insensitive to misalignment of IMU axes with respect to foot axes. Details are provided regarding calibration and signal processing procedures. Experimental validation was performed on 10 healthy subjects under three walking conditions: normal, fast and with obstacles. Foot clearance estimation results were compared to measurements from an optical motion capture system. The mean error between them is significantly less than 15 % under the various walking conditions. PMID:26703622
Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data.
Benoussaad, Mourad; Sijobert, Benoît; Mombaur, Katja; Coste, Christine Azevedo
2015-12-23
This paper introduces a method for the robust estimation of foot clearance during walking, using a single inertial measurement unit (IMU) placed on the subject's foot. The proposed solution is based on double integration and drift cancellation of foot acceleration signals. The method is insensitive to misalignment of IMU axes with respect to foot axes. Details are provided regarding calibration and signal processing procedures. Experimental validation was performed on 10 healthy subjects under three walking conditions: normal, fast and with obstacles. Foot clearance estimation results were compared to measurements from an optical motion capture system. The mean error between them is significantly less than 15 % under the various walking conditions.
A fast quantum mechanics based contour extraction algorithm
NASA Astrophysics Data System (ADS)
Lan, Tian; Sun, Yangguang; Ding, Mingyue
2009-02-01
A fast algorithm was proposed to decrease the computational cost of the contour extraction approach based on quantum mechanics. The contour extraction approach based on quantum mechanics is a novel method proposed recently by us, which will be presented on the same conference by another paper of us titled "a statistical approach to contour extraction based on quantum mechanics". In our approach, contour extraction was modeled as the locus of a moving particle described by quantum mechanics, which is obtained by the most probable locus of the particle simulated in a large number of iterations. In quantum mechanics, the probability that a particle appears at a point is equivalent to the square amplitude of the wave function. Furthermore, the expression of the wave function can be derived from digital images, making the probability of the locus of a particle available. We employed the Markov Chain Monte Carlo (MCMC) method to estimate the square amplitude of the wave function. Finally, our fast quantum mechanics based contour extraction algorithm (referred as our fast algorithm hereafter) was evaluated by a number of different images including synthetic and medical images. It was demonstrated that our fast algorithm can achieve significant improvements in accuracy and robustness compared with the well-known state-of-the-art contour extraction techniques and dramatic reduction of time complexity compared to the statistical approach to contour extraction based on quantum mechanics.
Fast predictive control of networked energy systems
NASA Astrophysics Data System (ADS)
Chuang, Frank Fu-Han
In this thesis we study the optimal control of networked energy systems. Networked energy systems consist of a collection of energy storage nodes and a network of links and inputs which allow energy to be exchanged, injected, or removed from the nodes. The nodes may exchange energy between each other autonomously or via controlled flows between the nodes. Examples of networked systems include building heating, ventilation, and air conditioning (HVAC) systems and networked battery systems. In the building system example, the nodes of the system are rooms which store thermal energy in the air and other elements which have thermal capacity. The rooms transfer energy autonomously through thermal conduction, convection, and radiation. Thermal energy can be injected into or removed from the rooms via conditioned air or slabs. In the case of a networked battery system, the batteries store electrical energy in their chemical cells. The batteries may be electrically linked so that a controller can move electrical charge from one battery to another. Networked energy systems are typically large-scale (contain many states and inputs), affected by uncertain forecasts and disturbances, and require fast computation on cheap embedded platforms. In this thesis, the optimal control technique we study is model predictive control for networked energy systems. Model predictive or receding horizon control is a time-domain optimization-based control technique which uses predictive models of a system to forecast its behavior and minimize a performance cost subject to system constraints. In this thesis we address two primary issues concerning model predictive control for networked energy systems: robustness to uncertainty in forecasts and reducing the complexity of the large-scale optimization problem for use in embedded platforms. The first half of the thesis deals primarily with the efficient computation of robust controllers for dealing with random and adversarial uncertainties in the
Lemasson, Quentin; Moignard, Brice; Pacheco, Claire; Pichon, Laurent; Guerra, Maria Filomena
2015-10-01
A new PIXE setup at the external beamline of the AGLAE accelerator is assessed for fast mapping the joining regions and the PGE inclusions of nine Egyptian gold items from the Louvre museum collection, dated to the end of the 2nd Intermediate Period and to the New Kingdom. The setup is composed of a cluster of SDD detectors divided in two "super detectors" dedicated to analyse the matrix and the trace elements. It provides the possibility to realise large and/or fast maps on artefacts by scanning the beam over the sample surface. Different softwares have been developed or updated to visualise, process, and quantify the data. By using this setup, we could determine the elemental distribution of major elements Au, Ag and Cu on the different joining regions, estimate the composition of the brazes, and show that they were produced by adding Cu to the base gold alloy. By fast mapping the PGE inclusions we could reveal a large variety of compositions within a single object. In addition to the expected Ir-Os-Ru system inclusions, we could also show for several inclusions the presence of another element, Pt. For a region where PGE inclusions overlap the joining area we could show that fast mapping allows to determine the compositions of the inclusion, the brazing alloy, and the base-alloy. PMID:26078160
Lemasson, Quentin; Moignard, Brice; Pacheco, Claire; Pichon, Laurent; Guerra, Maria Filomena
2015-10-01
A new PIXE setup at the external beamline of the AGLAE accelerator is assessed for fast mapping the joining regions and the PGE inclusions of nine Egyptian gold items from the Louvre museum collection, dated to the end of the 2nd Intermediate Period and to the New Kingdom. The setup is composed of a cluster of SDD detectors divided in two "super detectors" dedicated to analyse the matrix and the trace elements. It provides the possibility to realise large and/or fast maps on artefacts by scanning the beam over the sample surface. Different softwares have been developed or updated to visualise, process, and quantify the data. By using this setup, we could determine the elemental distribution of major elements Au, Ag and Cu on the different joining regions, estimate the composition of the brazes, and show that they were produced by adding Cu to the base gold alloy. By fast mapping the PGE inclusions we could reveal a large variety of compositions within a single object. In addition to the expected Ir-Os-Ru system inclusions, we could also show for several inclusions the presence of another element, Pt. For a region where PGE inclusions overlap the joining area we could show that fast mapping allows to determine the compositions of the inclusion, the brazing alloy, and the base-alloy.
NASA Astrophysics Data System (ADS)
Wang, Wenqin; Nguang, Sing Kiong; Zhong, Shouming; Liu, Feng
2014-05-01
This study examines the problem of robust stability of uncertain stochastic genetic regulatory networks with time-varying delays. The system's uncertainties are modeled as both polytopic form and structured linear fractional form. Based on a novel augmented Lyapunov-Krasovskii functional and different integral approaches, new stability conditions have been derived. Furthermore, these stability criteria can be applicable to both fast and slow time-varying delays. Finally, a numerical example is presented to illustrate the effectiveness of the proposed stability conditions.
Gazor, Saeed
2013-01-01
This paper presents a novel noise-robust feature extraction method for speech recognition using the robust perceptual minimum variance distortionless response (MVDR) spectrum of temporally filtered autocorrelation sequence. The perceptual MVDR spectrum of the filtered short-time autocorrelation sequence can reduce the effects of residue of the nonstationary additive noise which remains after filtering the autocorrelation. To achieve a more robust front-end, we also modify the robust distortionless constraint of the MVDR spectral estimation method via revised weighting of the subband power spectrum values based on the sub-band signal to noise ratios (SNRs), which adjusts it to the new proposed approach. This new function allows the components of the input signal at the frequencies least affected by noise to pass with larger weights and attenuates more effectively the noisy and undesired components. This modification results in reduction of the noise residuals of the estimated spectrum from the filtered autocorrelation sequence, thereby leading to a more robust algorithm. Our proposed method, when evaluated on Aurora 2 task for recognition purposes, outperformed all Mel frequency cepstral coefficients (MFCC) as the baseline, relative autocorrelation sequence MFCC (RAS-MFCC), and the MVDR-based features in several different noisy conditions. PMID:24501584
Species interactions differ in their genetic robustness
Chubiz, Lon M.; Granger, Brian R.; Segre, Daniel; Harcombe, William R.
2015-04-14
Conflict and cooperation between bacterial species drive the composition and function of microbial communities. Stability of these emergent properties will be influenced by the degree to which species' interactions are robust to genetic perturbations. We use genome-scale metabolic modeling to computationally analyze the impact of genetic changes when Escherichia coli and Salmonella enterica compete, or cooperate. We systematically knocked out in silico each reaction in the metabolic network of E. coli to construct all 2583 mutant stoichiometric models. Then, using a recently developed multi-scale computational framework, we simulated the growth of each mutant E. coli in the presence of S. enterica. The type of interaction between species was set by modulating the initial metabolites present in the environment. We found that the community was most robust to genetic perturbations when the organisms were cooperating. Species ratios were more stable in the cooperative community, and community biomass had equal variance in the two contexts. Additionally, the number of mutations that have a substantial effect is lower when the species cooperate than when they are competing. In contrast, when mutations were added to the S. enterica network the system was more robust when the bacteria were competing. These results highlight the utility of connecting metabolic mechanisms and studies of ecological stability. Cooperation and conflict alter the connection between genetic changes and properties that emerge at higher levels of biological organization.
Robust Generalized Low Rank Approximations of Matrices.
Shi, Jiarong; Yang, Wei; Zheng, Xiuyun
2015-01-01
In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods. PMID:26367116
Robust expertise effects in right FFA.
McGugin, Rankin Williams; Newton, Allen T; Gore, John C; Gauthier, Isabel
2014-10-01
The fusiform face area (FFA) is one of several areas in occipito-temporal cortex whose activity is correlated with perceptual expertise for objects. Here, we investigate the robustness of expertise effects in FFA and other areas to a strong task manipulation that increases both perceptual and attentional demands. With high-resolution fMRI at 7T, we measured responses to images of cars, faces and a category globally visually similar to cars (sofas) in 26 subjects who varied in expertise with cars, in (a) a low load 1-back task with a single object category and (b) a high load task in which objects from two categories were rapidly alternated and attention was required to both categories. The low load condition revealed several areas more active as a function of expertise, including both posterior and anterior portions of FFA bilaterally (FFA1/FFA2, respectively). Under high load, fewer areas were positively correlated with expertise and several areas were even negatively correlated, but the expertise effect in face-selective voxels in the anterior portion of FFA (FFA2) remained robust. Finally, we found that behavioral car expertise also predicted increased responses to sofa images but no behavioral advantages in sofa discrimination, suggesting that global shape similarity to a category of expertise is enough to elicit a response in FFA and other areas sensitive to experience, even when the category itself is not of special interest. The robustness of expertise effects in right FFA2 and the expertise effects driven by visual similarity both argue against attention being the sole determinant of expertise effects in extrastriate areas.
Robust kernel collaborative representation for face recognition
NASA Astrophysics Data System (ADS)
Huang, Wei; Wang, Xiaohui; Ma, Yanbo; Jiang, Yuzheng; Zhu, Yinghui; Jin, Zhong
2015-05-01
One of the greatest challenges of representation-based face recognition is that the training samples are usually insufficient. In other words, the training set usually does not include enough samples to show varieties of high-dimensional face images caused by illuminations, facial expressions, and postures. When the test sample is significantly different from the training samples of the same subject, the recognition performance will be sharply reduced. We propose a robust kernel collaborative representation based on virtual samples for face recognition. We think that the virtual training set conveys some reasonable and possible variations of the original training samples. Hence, we design a new object function to more closely match the representation coefficients generated from the original and virtual training sets. In order to further improve the robustness, we implement the corresponding representation-based face recognition in kernel space. It is noteworthy that any kind of virtual training samples can be used in our method. We use noised face images to obtain virtual face samples. The noise can be approximately viewed as a reflection of the varieties of illuminations, facial expressions, and postures. Our work is a simple and feasible way to obtain virtual face samples to impose Gaussian noise (and other types of noise) specifically to the original training samples to obtain possible variations of the original samples. Experimental results on the FERET, Georgia Tech, and ORL face databases show that the proposed method is more robust than two state-of-the-art face recognition methods, such as CRC and Kernel CRC.
Robust atomic force microscopy using multiple sensors.
Baranwal, Mayank; Gorugantu, Ram S; Salapaka, Srinivasa M
2016-08-01
Atomic force microscopy typically relies on high-resolution high-bandwidth cantilever deflection measurements based control for imaging and estimating sample topography and properties. More precisely, in amplitude-modulation atomic force microscopy (AM-AFM), the control effort that regulates deflection amplitude is used as an estimate of sample topography; similarly, contact-mode AFM uses regulation of deflection signal to generate sample topography. In this article, a control design scheme based on an additional feedback mechanism that uses vertical z-piezo motion sensor, which augments the deflection based control scheme, is proposed and evaluated. The proposed scheme exploits the fact that the piezo motion sensor, though inferior to the cantilever deflection signal in terms of resolution and bandwidth, provides information on piezo actuator dynamics that is not easily retrievable from the deflection signal. The augmented design results in significant improvements in imaging bandwidth and robustness, especially in AM-AFM, where the complicated underlying nonlinear dynamics inhibits estimating piezo motions from deflection signals. In AM-AFM experiments, the two-sensor based design demonstrates a substantial improvement in robustness to modeling uncertainties by practically eliminating the peak in the sensitivity plot without affecting the closed-loop bandwidth when compared to a design that does not use the piezo-position sensor based feedback. The contact-mode imaging results, which use proportional-integral controllers for cantilever-deflection regulation, demonstrate improvements in bandwidth and robustness to modeling uncertainties, respectively, by over 30% and 20%. The piezo-sensor based feedback is developed using H∞ control framework. PMID:27587128
Robust atomic force microscopy using multiple sensors
NASA Astrophysics Data System (ADS)
Baranwal, Mayank; Gorugantu, Ram S.; Salapaka, Srinivasa M.
2016-08-01
Atomic force microscopy typically relies on high-resolution high-bandwidth cantilever deflection measurements based control for imaging and estimating sample topography and properties. More precisely, in amplitude-modulation atomic force microscopy (AM-AFM), the control effort that regulates deflection amplitude is used as an estimate of sample topography; similarly, contact-mode AFM uses regulation of deflection signal to generate sample topography. In this article, a control design scheme based on an additional feedback mechanism that uses vertical z-piezo motion sensor, which augments the deflection based control scheme, is proposed and evaluated. The proposed scheme exploits the fact that the piezo motion sensor, though inferior to the cantilever deflection signal in terms of resolution and bandwidth, provides information on piezo actuator dynamics that is not easily retrievable from the deflection signal. The augmented design results in significant improvements in imaging bandwidth and robustness, especially in AM-AFM, where the complicated underlying nonlinear dynamics inhibits estimating piezo motions from deflection signals. In AM-AFM experiments, the two-sensor based design demonstrates a substantial improvement in robustness to modeling uncertainties by practically eliminating the peak in the sensitivity plot without affecting the closed-loop bandwidth when compared to a design that does not use the piezo-position sensor based feedback. The contact-mode imaging results, which use proportional-integral controllers for cantilever-deflection regulation, demonstrate improvements in bandwidth and robustness to modeling uncertainties, respectively, by over 30% and 20%. The piezo-sensor based feedback is developed using H∞ control framework.
Robust video hashing via multilinear subspace projections.
Li, Mu; Monga, Vishal
2012-10-01
The goal of video hashing is to design hash functions that summarize videos by short fingerprints or hashes. While traditional applications of video hashing lie in database searches and content authentication, the emergence of websites such as YouTube and DailyMotion poses a challenging problem of anti-piracy video search. That is, hashes or fingerprints of an original video (provided to YouTube by the content owner) must be matched against those uploaded to YouTube by users to identify instances of "illegal" or undesirable uploads. Because the uploaded videos invariably differ from the original in their digital representation (owing to incidental or malicious distortions), robust video hashes are desired. We model videos as order-3 tensors and use multilinear subspace projections, such as a reduced rank parallel factor analysis (PARAFAC) to construct video hashes. We observe that, unlike most standard descriptors of video content, tensor-based subspace projections can offer excellent robustness while effectively capturing the spatio-temporal essence of the video for discriminability. We introduce randomization in the hash function by dividing the video into (secret key based) pseudo-randomly selected overlapping sub-cubes to prevent against intentional guessing and forgery. Detection theoretic analysis of the proposed hash-based video identification is presented, where we derive analytical approximations for error probabilities. Remarkably, these theoretic error estimates closely mimic empirically observed error probability for our hash algorithm. Furthermore, experimental receiver operating characteristic (ROC) curves reveal that the proposed tensor-based video hash exhibits enhanced robustness against both spatial and temporal video distortions over state-of-the-art video hashing techniques.
Robust Generalized Low Rank Approximations of Matrices
Shi, Jiarong; Yang, Wei; Zheng, Xiuyun
2015-01-01
In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods. PMID:26367116
Robust expertise effects in right FFA
McGugin, Rankin Williams; Newton, Allen T; Gore, John C; Gauthier, Isabel
2015-01-01
The fusiform face area (FFA) is one of several areas in occipito-temporal cortex whose activity is correlated with perceptual expertise for objects. Here, we investigate the robustness of expertise effects in FFA and other areas to a strong task manipulation that increases both perceptual and attentional demands. With high-resolution fMRI at 7Telsa, we measured responses to images of cars, faces and a category globally visually similar to cars (sofas) in 26 subjects who varied in expertise with cars, in (a) a low load 1-back task with a single object category and (b) a high load task in which objects from two categories rapidly alternated and attention was required to both categories. The low load condition revealed several areas more active as a function of expertise, including both posterior and anterior portions of FFA bilaterally (FFA1/FFA2 respectively). Under high load, fewer areas were positively correlated with expertise and several areas were even negatively correlated, but the expertise effect in face-selective voxels in the anterior portion of FFA (FFA2) remained robust. Finally, we found that behavioral car expertise also predicted increased responses to sofa images but no behavioral advantages in sofa discrimination, suggesting that global shape similarity to a category of expertise is enough to elicit a response in FFA and other areas sensitive to experience, even when the category itself is not of special interest. The robustness of expertise effects in right FFA2 and the expertise effects driven by visual similarity both argue against attention being the sole determinant of expertise effects in extrastriate areas. PMID:25192631
Robust indexing for automatic data collection
Sauter, Nicholas K.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
2003-12-09
We present improved methods for indexing diffraction patterns from macromolecular crystals. The novel procedures include a more robust way to verify the position of the incident X-ray beam on the detector, an algorithm to verify that the deduced lattice basis is consistent with the observations, and an alternative approach to identify the metric symmetry of the lattice. These methods help to correct failures commonly experienced during indexing, and increase the overall success rate of the process. Rapid indexing, without the need for visual inspection, will play an important role as beamlines at synchrotron sources prepare for high-throughput automation.
Design analysis, robust methods, and stress classification
Bees, W.J.
1993-01-01
This special edition publication volume is comprised of papers presented at the 1993 ASME Pressure Vessels and Piping Conference, July 25--29, 1993 in Denver, Colorado. The papers were prepared for presentations in technical sessions developed under the auspices of the PVPD Committees on Computer Technology, Design and Analysis, Operations Applications and Components. The topics included are: Analysis of Pressure Vessels and Components; Expansion Joints; Robust Methods; Stress Classification; and Non-Linear Analysis. Individual papers have been processed separately for inclusion in the appropriate data bases.
Robust surface roughness indices and morphological interpretation
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano; Rocca, Michele
2016-04-01
Geostatistical-based image/surface texture indices based on variogram (Atkison and Lewis, 2000; Herzfeld and Higginson, 1996; Trevisani et al., 2012) and on its robust variant MAD (median absolute differences, Trevisani and Rocca, 2015) offer powerful tools for the analysis and interpretation of surface morphology (potentially not limited to solid earth). In particular, the proposed robust index (Trevisani and Rocca, 2015) with its implementation based on local kernels permits the derivation of a wide set of robust and customizable geomorphometric indices capable to outline specific aspects of surface texture. The stability of MAD in presence of signal noise and abrupt changes in spatial variability is well suited for the analysis of high-resolution digital terrain models. Moreover, the implementation of MAD by means of a pixel-centered perspective based on local kernels, with some analogies to the local binary pattern approach (Lucieer and Stein, 2005; Ojala et al., 2002), permits to create custom roughness indices capable to outline different aspects of surface roughness (Grohmann et al., 2011; Smith, 2015). In the proposed poster, some potentialities of the new indices in the context of geomorphometry and landscape analysis will be presented. At same time, challenges and future developments related to the proposed indices will be outlined. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Lucieer, A., Stein, A., 2005. Texture-based landform segmentation of LiDAR imagery
Improving robustness of speech recognition systems
NASA Astrophysics Data System (ADS)
Mitra, Vikramjit
2010-11-01
Current Automatic Speech Recognition (ASR) systems fail to perform nearly as good as human speech recognition performance due to their lack of robustness against speech variability and noise contamination. The goal of this dissertation is to investigate these critical robustness issues, put forth different ways to address them and finally present an ASR architecture based upon these robustness criteria. Acoustic variations adversely affect the performance of current phone-based ASR systems, in which speech is modeled as 'beads-on-a-string', where the beads are the individual phone units. While phone units are distinctive in cognitive domain, they are varying in the physical domain and their variation occurs due to a combination of factors including speech style, speaking rate etc.; a phenomenon commonly known as 'coarticulation'. Traditional ASR systems address such coarticulatory variations by using contextualized phone-units such as triphones. Articulatory phonology accounts for coarticulatory variations by modeling speech as a constellation of constricting actions known as articulatory gestures. In such a framework, speech variations such as coarticulation and lenition are accounted for by gestural overlap in time and gestural reduction in space. To realize a gesture-based ASR system, articulatory gestures have to be inferred from the acoustic signal. At the initial stage of this research an initial study was performed using synthetically generated speech to obtain a proof-of-concept that articulatory gestures can indeed be recognized from the speech signal. It was observed that having vocal tract constriction trajectories (TVs) as intermediate representation facilitated the gesture recognition task from the speech signal. Presently no natural speech database contains articulatory gesture annotation; hence an automated iterative time-warping architecture is proposed that can annotate any natural speech database with articulatory gestures and TVs. Two natural
Charlemagne was very tall, but not robust.
Rühli, Frank J; Blümich, Bernhard; Henneberg, Maciej
2010-07-01
The left tibia of Charlemagne, the Medieval "Father of Europe" has been X-rayed and CT scanned to determine his still highly debated stature. We found the healthy bone to be long (430 mm) but rather not robust (total mid-shaft cross-sectional area 473 mm(2), cortical area 352 mm(2)). Reconstructed stature of 1.84 m falls at about 99% of Medieval heights, which would be ca. 1.95 m in present-day Europe. Thus, tall stature indeed could have contributed to the success of "Charles the Great" as a king emperor and soldier. PMID:20153271
Robust Bioinformatics Recognition with VLSI Biochip Microsystem
NASA Technical Reports Server (NTRS)
Lue, Jaw-Chyng L.; Fang, Wai-Chi
2006-01-01
A microsystem architecture for real-time, on-site, robust bioinformatic patterns recognition and analysis has been proposed. This system is compatible with on-chip DNA analysis means such as polymerase chain reaction (PCR)amplification. A corresponding novel artificial neural network (ANN) learning algorithm using new sigmoid-logarithmic transfer function based on error backpropagation (EBP) algorithm is invented. Our results show the trained new ANN can recognize low fluorescence patterns better than the conventional sigmoidal ANN does. A differential logarithmic imaging chip is designed for calculating logarithm of relative intensities of fluorescence signals. The single-rail logarithmic circuit and a prototype ANN chip are designed, fabricated and characterized.
Quantum error correction via robust probe modes
Yamaguchi, Fumiko; Nemoto, Kae; Munro, William J.
2006-06-15
We propose a scheme for quantum error correction using robust continuous variable probe modes, rather than fragile ancilla qubits, to detect errors without destroying data qubits. The use of such probe modes reduces the required number of expensive qubits in error correction and allows efficient encoding, error detection, and error correction. Moreover, the elimination of the need for direct qubit interactions significantly simplifies the construction of quantum circuits. We will illustrate how the approach implements three existing quantum error correcting codes: the three-qubit bit-flip (phase-flip) code, the Shor code, and an erasure code.
Exact solution of the robust knapsack problem☆
Monaci, Michele; Pferschy, Ulrich; Serafini, Paolo
2013-01-01
We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose weight differs from the expected one. For this problem, we provide a dynamic programming algorithm and present techniques aimed at reducing its space and time complexities. Finally, we computationally compare the performances of the proposed algorithm with those of different exact algorithms presented so far in the literature for robust optimization problems. PMID:24187428
Research in robust control for hypersonic aircraft
NASA Technical Reports Server (NTRS)
Calise, A. J.
1994-01-01
The research during the third reporting period focused on fixed order robust control design for hypersonic vehicles. A new technique was developed to synthesize fixed order H(sub infinity) controllers. A controller canonical form is imposed on the compensator structure and a homotopy algorithm is employed to perform the controller design. Various reduced order controllers are designed for a simplified version of the hypersonic vehicle model used in our previous studies to demonstrate the capabilities of the code. However, further work is needed to investigate the issue of numerical ill-conditioning for large order systems and to make the numerical approach more reliable.
Enhancing robustness and immunization in geographical networks
Huang Liang; Yang Kongqing; Yang Lei
2007-03-15
We find that different geographical structures of networks lead to varied percolation thresholds, although these networks may have similar abstract topological structures. Thus, strategies for enhancing robustness and immunization of a geographical network are proposed. Using the generating function formalism, we obtain an explicit form of the percolation threshold q{sub c} for networks containing arbitrary order cycles. For three-cycles, the dependence of q{sub c} on the clustering coefficients is ascertained. The analysis substantiates the validity of the strategies with analytical evidence.
Robust control technique for nuclear power plants
Murphy, G.V.; Bailey, J.M.
1989-03-01
This report summarizes the linear quadratic Guassian (LQG) design technique with loop transfer recovery (LQG/LTR) for design of control systems. The concepts of return ratio, return difference, inverse return difference, and singular values are summarized. The LQG/LTR design technique allows the synthesis of a robust control system. To illustrate the LQG/LTR technique, a linearized model of a simple process has been chosen. The process has three state variables, one input, and one output. Three control system design methods are compared: LQG, LQG/LTR, and a proportional plus integral controller (PI). 7 refs., 20 figs., 6 tabs.
Robust technique allowing manufacturing superoleophobic surfaces
NASA Astrophysics Data System (ADS)
Bormashenko, Edward; Grynyov, Roman; Chaniel, Gilad; Taitelbaum, Haim; Bormashenko, Yelena
2013-04-01
We report the robust technique allowing manufacturing of superhydrophobic and oleophobic (omniphobic) surfaces with industrial grade low density polyethylene. The reported process includes two stages: (1) hot embossing of polyethylene with micro-scaled steel gauzes; (2) treatment of embossed surfaces with cold radiofrequency plasma of tetrafluoromethane. The reported surfaces demonstrate not only pronounced superhydrophobicity but also superoleophobicity. Superoleophobicity results from the hierarchical nano-scaled topography of fluorinated polyethylene surface. The observed superoleophobicity is strengthened by the hydrophobic recovery. The stability of the Cassie wetting regime was studied.
Reconfigurable Robust Routing for Mobile Outreach Network
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang
2010-01-01
The Reconfigurable Robust Routing for Mobile Outreach Network (R3MOO N) provides advanced communications networking technologies suitable for the lunar surface environment and applications. The R3MOON techn ology is based on a detailed concept of operations tailored for luna r surface networks, and includes intelligent routing algorithms and wireless mesh network implementation on AGNC's Coremicro Robots. The product's features include an integrated communication solution inco rporating energy efficiency and disruption-tolerance in a mobile ad h oc network, and a real-time control module to provide researchers an d engineers a convenient tool for reconfiguration, investigation, an d management.
Adaptive control: Stability, convergence, and robustness
NASA Technical Reports Server (NTRS)
Sastry, Shankar; Bodson, Marc
1989-01-01
The deterministic theory of adaptive control (AC) is presented in an introduction for graduate students and practicing engineers. Chapters are devoted to basic AC approaches, notation and fundamental theorems, the identification problem, model-reference AC, parameter convergence using averaging techniques, and AC robustness. Consideration is given to the use of prior information, the global stability of indirect AC schemes, multivariable AC, linearizing AC for a class of nonlinear systems, AC of linearizable minimum-phase systems, and MIMO systems decouplable by static state feedback.
Fast Access Data Acquisition System
Dr. Vladimir Katsman
1998-03-17
Our goal in this program is to develop Fast Access Data Acquisition System (FADAS) by combining the flexibility of Multilink's GaAs and InP electronics and electro-optics with an extremely high data rate for the efficient handling and transfer of collider experimental data. This novel solution is based on Multilink's and Los Alamos National Laboratory's (LANL) unique components and technologies for extremely fast data transfer, storage, and processing.
Psychophysiological study on fasting therapy.
Yamamoto, H; Suzuki, J; Yamauchi, Y
1979-01-01
The Tohoku University method of fasting therapy was performed on 380 patients. The clinical results revealed an efficacy rate of 87%. With regard to psychosomatic diseases, irritable colon syndrome, neurocirculatory asthenia, mild diabetes mellitus, obesity and borderline hypertension were good indications for this therapy. In order to clarify the therapeutic mechanism, several clinical examinations were administered before, during and after therapy. EEG data was analysed according to the power spectral method. The peak frequency decreased as fasting progressed, while it increased as re-fed continued. Percent energy of alpha waves after fasting therapy was significantly higher than that of the pre-fasting stage. The dexamethasone suppression rate of urine 17-OHCS after fasting therapy was significantly lower than that of the pre-fasting stage. It seems that ketone nutrition may work as a strong stressor in the brain cell, temporarily placing all biological mechanisms in a stress state and then activating the natural healing power inherent to the human body, thereby bringing about homeostasis.
Robust Radiomics feature quantification using semiautomatic volumetric segmentation.
Parmar, Chintan; Rios Velazquez, Emmanuel; Leijenaar, Ralph; Jermoumi, Mohammed; Carvalho, Sara; Mak, Raymond H; Mitra, Sushmita; Shankar, B Uma; Kikinis, Ron; Haibe-Kains, Benjamin; Lambin, Philippe; Aerts, Hugo J W L
2014-01-01
Due to advances in the acquisition and analysis of medical imaging, it is currently possible to quantify the tumor phenotype. The emerging field of Radiomics addresses this issue by converting medical images into minable data by extracting a large number of quantitative imaging features. One of the main challenges of Radiomics is tumor segmentation. Where manual delineation is time consuming and prone to inter-observer variability, it has been shown that semi-automated approaches are fast and reduce inter-observer variability. In this study, a semiautomatic region growing volumetric segmentation algorithm, implemented in the free and publicly available 3D-Slicer platform, was investigated in terms of its robustness for quantitative imaging feature extraction. Fifty-six 3D-radiomic features, quantifying phenotypic differences based on tumor intensity, shape and texture, were extracted from the computed tomography images of twenty lung cancer patients. These radiomic features were derived from the 3D-tumor volumes defined by three independent observers twice using 3D-Slicer, and compared to manual slice-by-slice delineations of five independent physicians in terms of intra-class correlation coefficient (ICC) and feature range. Radiomic features extracted from 3D-Slicer segmentations had significantly higher reproducibility (ICC = 0.85±0.15, p = 0.0009) compared to the features extracted from the manual segmentations (ICC = 0.77±0.17). Furthermore, we found that features extracted from 3D-Slicer segmentations were more robust, as the range was significantly smaller across observers (p = 3.819e-07), and overlapping with the feature ranges extracted from manual contouring (boundary lower: p = 0.007, higher: p = 5.863e-06). Our results show that 3D-Slicer segmented tumor volumes provide a better alternative to the manual delineation for feature quantification, as they yield more reproducible imaging descriptors. Therefore, 3D-Slicer can be